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Abstract 
 

In this paper, an extension of the generalized extreme value (GEV) distribution called the Topp Leone-GEV (TL-GEV) 

distribution is applied. The TL-GEV distribution has four parameters (λ, μ, σ, ξ), and it has the three named sub-models TL-

Gumbel (for ξ = 0), TL-Fréchet (for ξ > 0), and TL-reversed Weibull (for ξ < 0). Its properties and maximum likelihood 

estimation are discussed. A data set was used to demonstrate the efficiency of the proposed distribution. The TL-GEV 

distribution was employed for fitting the data and compared to some selected distributions. The two datasets represented PM2.5 

data for Chiang Mai Province (Tambon Sri Phum and Tambon Chang Phueak), in Thailand. According to the Kolmogorov-

Smirnov test, Akaike Information Criterion, and Bayesian Information Criterion, the TL-GEV distribution for ξ > 0 or TL-

Fréchet distribution can be considered competitive. The TL-GEV distribution is an alternative flexible way to analyze any 

extreme values and to estimate the return level, because the additional parameter λ provides flexibility to the distribution 

affecting its skewness and kurtosis. 

 

Keywords: extreme value theory, T-X family of distributions, topp leone-generalized extreme value distribution, PM2.5,  
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1. Introduction  
 

 Probability modelling of continuous data plays an 

essential role in many fields, for instance in engineering, 

medicine, biological science, management, and public health. 

Probability distributions may provide helpful information 

supporting conclusions and decisions. When there is a need 

for more cover and flexible distributions, many researchers 

will use the new ones that are more general. There are several 

methods for generating families of continuous distributions, 

such as differential equations, transformations, quantile 

 
functions, and adding extra parameters or combining existing 

distributions. Recently, applying new generators for 

continuous distributions has become more interesting. Some 

recent developments can improve the goodness of fit and 

determine tail properties. In general, many newly developed 

distributions mainly add more flexibility to existing 

distributions, which result from implanting a primary 

distribution into a more capable structure (Hamed & Alzaghal, 

2021; Lee, Famoye & Alzaatreh, 2013). These features have 

been established by the results of many generators, such as 

beta-X family (Eugene, Lee, & Famoye, 2002), transformed 

transformer (T-X) family (Alzaatreh, Lee, & Famoye, 2013), 

and Topp Leone-generated (TL-G) family (Sangsanit & 

Bodhisuwan, 2016) of distributions. The TL-G family of 

distributions was proposed by Sangsanit and Bodhisuwan 
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(2016). They show the Topp Leone-generalized exponential 

distribution to be an example of the TL-G distribution. Its 

density function has flexible shapes, such as decreasing 

function or unimodal shape that is right-tailed. It has a 

decreasing hazard function, or a constant or increasing hazard 

function. This study considers the TL-G distribution family to 

contribute a new model to analyze data. 

One of the most outstanding modelling 

achievements is finding an optimal model for the data. If the 

extreme values are included, an analyst usually cuts them out 

from the data because of problems with complexity. In 

practice, if an analyst wants to know the extreme event’s 

probability, the extreme values are in the tails. A popular 

statistical tool for extreme value analysis is the so-called 

“Extreme Value Theory”. Typically, most analysts who 

analyze data where extreme values occur discard that portion 

of the data from consideration. But, in fact, often we want to 

know the probability of events with the largest or smallest 

value, which normally are located at the ends of the 

distribution tails. Some examples are the highest or lowest 

rainfall in the month, the highest wind speed, daily highest or 

lowest temperature, etc. Statistical analysis is used as a tool in 

decision-making and for finding ways to prevent and resolve 

various subsequent situations, such as droughts, floods, 

storms, earthquakes, etc., based on extreme value theory 

(Coles, 2001; Kotx & Nadaraja, 2000). The extreme value 

theory is a branch of statistics that focuses on the extreme 

events and especially the tail behaviors of a distribution. The 

theory uses the block maxima approach to derive extreme 

value distributions, including the Fréchet, Weibull, and 

Gumbel distributions. In addition, the generalized extreme 

value (GEV) distribution is developed within the extreme 

value theory to combine the Gumbel, Fréchet and Weibull 

distributions. The GEV distribution has been widely used. 

The fine particulate matter (PM2.5) is one air 

pollutant that affects people's health when its levels are very 

high. The PM2.5 are tiny particles in the air that reduce 

visibility and cause the air to appear hazy when the levels are 

elevated. Outdoor PM2.5 levels are most likely to be elevated 

on days with little or no wind or air mixing. Since the last 

decade or so, the PM2.5 in Chiang Mai, Thailand has been 

dramatically increasing with an average of 54.14 ug/m3 

(ug/m3: micrograms per cubic meter), and a maximum value 

of 266.00 ug/m3, which represents an extreme value. There are 

much research and applications based on the extreme value 

theory in various fields, especially in hydrology (Castillo, 

Hadi, Balakrishnan, & Sarabia, 2004; Guloksuz & Celik, 

2020; Nadarajah & Pogány, 2013; Shukla, Trivedi, & Kumar, 

2012). 

Coverage and flexibility are areas of great 

importance for developing quality improvement of the 

statistical model. A statistical model is an important and 

necessary tool in data analysis. The GEV distribution may 

prove somewhat inadequate in practice, and generalizations 

ought to provide greater flexibility for data modelling 

purposes. For example, extensions of the GEV distribution 

have been studied, such as the uniform-GEV distribution by 

Guloksuz and Celik (2020). It is used to analyze earthquake 

data. The results show that the uniform-GEV is a better fit 

than the GEV distribution. 

This paper aims to propose new modifications to 

GEV models that incorporate an additional parameter, hoping 

that this will yield better results in certain practical situations. 

We will create a new extended GEV distribution for analyzing 

extreme values. The proposed distribution is developed using 

the TL-G family of distributions proposed by Sangsanit and 

Bodhisuwan (2016). This TL-G family is obtained using the 

method for generating a family of distributions, that is, the T-

X family, which was proposed by Alzaatreh et al. (2013). The 

article is organized as follows. In Section 2, some methods are 

introduced. Some results and discussion are provided in 

Section 3, including a new extended GEV distribution, the 

proposed model parameter estimation, and a simulation study. 

Furthermore, the example of extreme value analysis including 

return level estimation of rainfall data in Thailand, is 

demonstrated. Finally, some conclusions are provided in the 

last section. 

 

2. Materials and Methods 
  

 In this section, the GEV distribution, the T-X family 

of distributions, and the Topp-Leone distribution are 

introduced to derive the new extended GEV distribution. 

 

2.1 The GEV distribution 
  

 Let X be a random variable which is distributed as 

the GEV distribution with parameters μ, σ and ξ, denoted by 

X ~GEV (μ, σ, ξ). The cumulative density function (cdf) and 

the probability density function (pdf) of X are respectively 

 

  
 

1

GEV
z

exp 1 z , 0,
G (x)

exp e , 0,

 



     
 

  

 
(1) 

 

    

 

(1 1 ) 1

GEV
z z

1
1 z exp 1 z , 0,

g (x)
1

e exp e , 0,

    

 


       

   


 
(2) 

 

where z = (x-μ)/σ and parameters μ, σ and ξ represent 

location, scale, and shape, respectively, with -∞ < μ < ∞, σ > 0 

and -∞ < ξ < ∞. The corresponding quantile function is 

explicitly  

 

 

 
GEV

log(p) 1 , 0,
Q (p)

log log(p) , 0,

          
   

 
(3) 

 
where 0 < p < 1. The GEV distributions can be represented by 

a single shape parameter which controls the tail behavior. Its 

mean and variance are respectively,  
 

 E(X) Γ 1 ,
 

   
 

   

    

    
2

2

2
Var(X) Γ 1 2 Γ 1 ,

      
 

           

 

where Γ( )  is the complete gamma function. The class of the 

GEV distribution has three sub-models (Bali, 2003), namely
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(i) Gumbel (Gum) or type I extreme value distribution ( 0  ): 

 z

GumG (x) exp e ,   and  z z

Gum

1
g (x) e exp e ,  


 (4) 

where x   and z (x )   . 

 

(ii) Fréchet (Fr) or type II extreme value distribution ( 0  ): 

 1

FrG (x) exp y ,    and  1 1 1

Fr

1
g (x) y exp y ,    


 (5) 

where y 0 , y 1 z   and z (x )   . 

 

(iii) Reversed Weibull (RW) or type III extreme value distribution ( 0  ): 

 1

RWG (x) exp ( y ) ,     and  1 1 1

RW

1
g (x) y exp ( y ) ,     


 (6) 

where y 0, y (1 z)    and z (x )   . 

 

2.2 The T-X family of distributions 
   

  We consider the method for generating families of continuous distributions which was proposed by Alzaatreh et al. 

(2013). This method is transforming a random variable X to T, for T [a,b]  and a b ,    through the function 

 W G(x) .  The generated families of this method are called the T-X family of distributions. Its cdf and pdf are respectively 

 
W[G(x)]

T-X

a

F (x) r(t)dt ,    (7) 

 

    T-X

d
f (x) W G(x) r W G(x) ,

dx

 
  
 

 (8) 

where r(t) and G(x)  are respectively, the pdf and cdf of parent distribution.  W G(x)  is a function of G(x) , which satisfies the 

following conditions: (i)  W G(x) [a,b] , (ii)  W G(x)  is differentiable and monotonically non-decreasing, and (iii) 

 W G(x) a  as x   and  W G(x) b  as x .  

 

2.3 The Topp-Leone family of distributions 
   

  If a random variable T is distributed as the Topp Leone (TL) distribution with a parameter 0,   denoted by 

T~TL ( ) , it has pdf 1 1r(t) 2 t (1 t)(2 t) ,      0 t 1.   Let  W G(x) G(x),  where G(x)  is a cdf of any specified 

random variable X , and the TL distribution is a parent distribution. This generated family is called the Topp Leone-generated 

(TL-G) family of distributions, and was introduced by Sangsanit and Bodhisuwan (2016). Its cdf and pdf are respectively, 

 

 TL-GF (x) G (x) 2 G(x) ,
   (9) 

 

   
11

TL-Gf (x) 2 g(x) 1 G(x) G (x) 2 G(x) ,
     (10) 

where g(x)  is a pdf of X, which is distributed as a parent distribution. The quantile function of the TL-G family of distributions 

is  

 
1 1 2

TL-G GQ (u) Q 1 (1 u ) ,    
 (11) 

where 0 u 1,   and 
GQ (u)  is the quantile function of a specified parent distribution. 

 

3. Results and Discussion 
 

In this section, a new extended GEV distribution and its properties are discussed. Parameters of the proposed 

distribution are estimated using the maximum likelihood (ML) method, and its simulation is studied. An extreme value analysis 

and return level estimation of the PM2.5 in Chiang Mai, Thailand, are illustrated. 
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3.1 A new extended GEV distribution 
 

In this section, we will develop a new extended GEV distribution based on the TL-G family with the GEV distribution 

as a parent distribution, namely the Topp Leone-generalized extreme value (TL-GEV) distribution. 

 

Theorem 1. If X be a random variable which is distributed as the TL-GEV distribution with the parameters λ, σ, μ, and ξ, 

denoted by X~TL-GEV(λ, μ, σ, ξ), then its cdf and pdf are respectively 

(x) (x)

TL-GEVF (x) e 2 e ,


    
 (12) 

 

  
1

(x) (x) (x) 1

TL-GEV

2
f (x) 1 e 2 e e (x) ,


   

   


 (13) 

where z (x )   , parameters 0  , 0,   ,   and ,    and 

 
 

1
1 z , if 0

(x)
exp z , if 0

     
  

  

 and 
( , ], if 0,

x [ , ), if 0,

( , ), if 0.

    


     
   

 

 

Proof. Based on the method of T-X family of distributions (Alzaatreh et al., 2013), the cdf of the TL-G distribution (Sangsanit & 

Bodhisuwan, 2016) is obtained by replacing the pdf as 1 1r(t) 2 t (1 t)(2 t) ,      and  W G(x) G(x)  in Equation (7): 

 

 

By replacing the GEV’s cdf in Equation (1) as in above equation 
TL-XF (x) , we have the cdf of the TL-GEV distribution 

as follows: 

     
   

(x) (x)

TL-GEV

1 1

z z

F (x) e 2 e

2 exp 1 z exp 1 z , 0,

2 exp e exp e , 0.


 


   


 

   

           
     
 

   

Its corresponding pdf is 

 
  

(x) (x)

TL-GEV

1
(x) (x) (x) 1

d
f (x) e 2 e

dx
2

1 e 2 e e (x) .


 


   

   


   


 

The class of the TL-GEV distributions can be represented by the shape parameter which controls the tail behavior. It 

has three sub-models as follows:  

 

(i) If 0,   the TL-GEV distribution reduces to the TL-Gumbel (TL-Gum) distribution with the cdf and pdf as 

   z z

TL-GumF (x) 2 exp e exp e ,


     
 

              (14) 

 

    

   

z z z

TL-Gum

1
z z

2
f (x) 1 exp e e exp e

2 exp e exp ( 1)e ,

  


 


    
 

      
 

                   (15) 

where x   and z (x )   . The TL-Gum and Gum distributions are right-tailed. The TL-Gum distribution is more 

long-tailed (heavy-tailed) than the Gum distribution. The TL-Gum curve has more kurtosis when λ is large (Figure 1). 

 

(ii) If 0,   the TL-GEV distribution reduces to the TL-Fréchet (TL-Fr) distribution with the cdf and pdf as 

   1 1

TL-FrF (x) 2 exp y exp y ,


       
 

 (16) 

 

   

   

(1 1 ) 1 1

TL-Fr

1
1 1

2
f (x) y 1 exp y exp y

2 exp y exp ( 1)y ,

      


   


    
 

      
 

 
(17) 

where y 1 z   and z (x )   . The TL-Fr and Fr distributions are right-tailed. The TL-Fr distribution is more long-tailed 

(heavy-tailed) than the Fr distribution. The curve of the TL-Fr has more kurtosis when λ is large (Figure 2). 
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Figure 1. The pdf plots of the GEV and TL-GEV distributions with ξ = 0 
 

   

   
 

Figure 2. The pdf plots of the GEV and TL-GEV distributions with  0   

 



S. Aryuyuen, & W. Bodhisuwan / Songklanakarin J. Sci. Technol. 44 (6), 1450-1461, 2022 1455 

(iii) If 0,   the TL-GEV reduces to the TL-reversed Weibull (TL-RW) distribution with the cdf and pdf as  

 

   1 1

TL-RWF (x) 2 exp ( y ) exp ( y ) ,


         
 

 (18) 

 

   

   

1 (1 1 ) 1

TL-RW

1
1 1

2
f (x) 1 exp ( y ) y exp ( y )

2 exp ( y ) exp ( 1)( y ) ,

      


   


      
 

        
 

 
(19) 

where y (1 z)    and z (x )   . The TL-RW and RW distributions are left-tailed. The TL-RW distribution is less fat-

tailed than the RW distribution when 3  , and it is more long-tailed than the RW distribution for 3  (Figure 3). 

 

   

   
 

Figure 3. The pdf plots of the GEV and TL-GEV distributions with  0   

 

3.2 Statistical properties of the TL-GEV distribution 
 

In this section, expressions for the quantile function, moments, moment generating function, and order statistics, are 

derived. 

 

3.2.1 Quantile function 
 

If X is distributed as TL-GEV then its quantile function is 

 

 

1

TL-GEV

1

log 1 1 u 1 , 0,

Q (u)

log log 1 1 u , 0,






                   
       
   

 
(20) 

where u is a value of a uniform random variable in the interval (0,1). 

An estimate of the extreme quantiles of the annual maximum are obtained by QTL-GEV(u). Let FTL-GEV(xp)=1-p, and xp is 

called return level with the return period. This means that xp is exceeded by the annual maximum in any particular year with 

probability p (Coles, 2001). For p=1/m, m is called a return period. The return level for the TL-GEV distribution is 
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 

 

1

p

1

log 1 p 1 , 0,

x

log log 1 p , 0.






                  
      
   

 
(21) 

 

3.2.2 Moments 
 

The moments of the TL-G family of distribution (Sangsanit & Bodhisuwan, 2016) are  

 
k

s j k r

s,r 1

j,k 0 r 0

j k
E(X ) r( 1) ,

j k r


 



 

     
     

   
  for 

1

r s

s,r G

0

u Q (u) u   d   

where 0   and 
s,r  is (s,r)th probability weighted moment of X (Greenwood et al., 1979). From the quantile function in 

Equation (20), the moment of the TL-GEV distribution is 

 

   

    

k
s j k r

j,k 0 r 0

s1 r
1 1

0

1 sr
1 1

0

j k
E(X ) ( 1) r

j k r

1 1 u log 1 1 u 1 u, 0,
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



d

d

 

where 0,   0,   ,   and .    

 

3.2.3 Moment generating function 
 

The moment generating function (mgf) of the TL-G family of distributions (Sangsanit & Bodhisuwan, 2016) is 

 G

1

tQ (u)tX j 1 j 1

G

j 0 0

E(e ) ( j)(1) 2 e u Q (u) u,
j


  



 
   

 
  d  for 0  . 

 From the quantile function in Equation (20), the mgf of the TL-GEV distribution is 

    
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1 1
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                   

 b

d

  

     
  

1 j 1
1 1

, j

j 0 0

1

M(t) 1 1 u exp t log log 1 1 u

log log 1 1 u u, for 0,

  
 







         
    

        
  

 b

d

 

where j 1

, j ( j) (1) 2
j





 
    

 
b   for 0  . 

 

3.2.4 Order statistics 
 

Let 
1 2 3 nX ,X ,X ,...,X  be a random sample of size n from the TL-GEV distribution. Then the pdf of the ith order 

statistic, 1 i n,   can be obtained as follows 

 
n i

i 1TL GEV
i:n TL GEV TL GEV

f (x)
f (x) F (x) 1 F (x)

B(i,n i 1)



 

    
, 

where B(a,b)  is a beta function. Finally, we have the 
i:nf (x)  as 
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1
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du 
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du, 



S. Aryuyuen, & W. Bodhisuwan / Songklanakarin J. Sci. Technol. 44 (6), 1450-1461, 2022 1457 

 The moments and mgf of the TL-GEV distribution are not available in closed form. Thus, the expressions for mean, 

standard deviation, skewness, and kurtosis are also not in closed form. However, these values are shown in a simulation study as 

follows. 

 Some simulations were performed for illustration purposes of how the skewness of the TL-GEV distribution changes 

with different λ values, and for comparison to the GEV distribution. Random samples with size 1,000 were generated 1,000 times 

for the GEV and TL-GEV distributions using Equation (3) and Equation (20), respectively, that is, X~TL-GEV(λ, μ, σ, ξ) 

Y~GEV(μ, σ, ξ). The results, including sample mean (X),  standard deviation (SD), skewness (SV), and kurtosis (KV), when μ = 

2, σ = 2, and ξ = 0, 0.5-0.5, are shown in Table 1. Skewness can be used as a measure of the symmetry of distribution, where 

SV=0 for a symmetrical distribution. Meanwhile, the KV is often compared to the kurtosis of the normal distribution, which has 

KV=3. If KV>3, then the dataset has heavier tails than a normal distribution, and the data have lighter tails than a normal 

distribution when KV<3. 

 The results in Table 1 show that the parameter λ provides flexibility to the TL-GEV distribution. The parameter λ 

affects skewness and kurtosis of the TL-GEV distribution. For 0,   the random variables for TL-GEV and GEV distributions 

are right-skewed (SV>0) and heavier tailed (KV>3) than a normal distribution. But the TL-GEV distribution provides both SV 

and KV below those of the GEV distribution. The proposed distribution has the SV and KV increase as λ increases.  For ξ<0, the 

random variables for TL-GEV and GEV distributions are left-skewed (SV<0) and heavy-tailed (KV>3) for λ<3. But the TL-GEV 

distribution provides KV less than 3 for 3,  which indicates that it has lighter tails than the normal distribution. 

 

Table 1. The simulation results for the GEV and TL-GEV distributions (Dist.) with μ=2, σ=2, and ξ=0, 0.5, -0.5 

 

Dist.   

0    0.5    0.5    

X  SD SV KV  X  SD SV KV  X  SD SV KV 

                

GEV - 3.15 2.56 1.13 5.35  5.07 10.32 9.95 174.05  2.46 1.85 -0.63 3.23 
TL-GEV 0.5 0.78 1.78 0.65 3.79  1.29 1.87 3.54 31.96  0.07 2.42 -0.61 3.36 

 1 1.77 1.65 0.71 4.04  2.15 2.20 3.57 32.19  1.41 1.73 -0.50 3.23 

 1.5 2.31 1.59 0.76 4.15  2.72 2.41 3.58 32.30  2.02 1.44 -0.43 3.14 
 3 2.68 1.56 0.79 4.26  3.86 2.84 3.61 32.94  2.83 1.08 -0.31 2.99 

 5 3.81 1.46 0.88 4.53  4.78 3.20 3.66 33.88  3.30 0.89 -0.24 2.92 

 10 4.61 1.41 0.94 4.72  6.24 3.76 3.70 34.26  3.80 0.69 -0.16 2.86 
 15 5.06 1.39 0.98 4.84  7.21 4.16 3.73 34.69  4.04 0.61 -0.12 2.82 

 30 5.82 1.36 1.01 4.94  9.11 4.93 3.79 35.33  4.38 0.49 -0.06 2.79 

 50 6.37 1.34 1.03 4.97  10.71 5.55 3.81 35.89  4.59 0.42 -0.03 2.77 
                

 

3.3 The parameter estimation of the TL-GEV distribution 
  

 Let 
1 nx (x , , x )   be observations of a random sample (X1,…, Xn) such that Xi are independent and identically 

distributed random variables, of size n when Xi~TL-GEV (μ, σ, ξ, λ). According to the pdf in Equation (13), its corresponding 

likelihood functions are  

Case 1: 0,   

   
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1 1n n n

0 i
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L 2 1 z
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                   
1 1

1

i iexp 1 z 2 exp 1 z
   
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, 

where 
i iz (x ) .    Its log-likelihood function is 
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1
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
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1n

i

i 1

( 1) exp 1 z
 



       

         n log    
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log 2 exp 1 z
 



     
  

 . 

 To estimate the unknown parameters, we take the partial derivatives with respect to each parameter, and equate them 

to zero, i.e., 
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The solutions of the ML estimators μ, σ, ξ, and λ, are obtained by using the nlm function in the R stats package (R Core Team, 

2021). 

Case 2: 0,   

      i i

n
z zn n n

0 i

i 1

L 2 exp z ( 1) e 1 exp e
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



        
      i i

1 1
z zexp e 2 exp e

 
       

   
. 

Its log-likelihood function is 
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 To estimate the unknown parameters, we take the partial derivatives with respect to each parameter, and equate them to 

zero, i.e., 

  
 Since above equation cannot be derived in closed form, in the same manner as in Case 1 , the solutions of the ML 

estimators of μ, σ, and λ, are obtained by using the nlm function in the R stats package (R Core Team, 2021). 

 

3.4 Simulation study for parameter estimation of distributions  
  

 Simulations are performed for different configurations of the GEV and TL-GEV distributions; (i) the GEV distribution, 

Yi = QGEV (ui; μ, σ, ξ) for fixed values of μ = 2 and σ = 2, including Gum(μ, σ, ξ = 0), Fr(μ, σ, ξ = 0.5), and RW (μ, σ, ξ = -0.5) 

distributions, and (ii) the TL-GEV distribution, Xi = QTL-GEV (ui; λ, μ, σ, ξ), for fixed values of λ =1.5, μ = 2 and σ = 2, including 

the TL-Gum (λ, μ, σ, ξ=0), TL-Fr (λ, μ, σ, ξ=0.5), and TL-RW(λ, μ, σ, ξ=-0.5) distributions. Each case is considered by 

experiments at sizes of n set at 25, 50, 100, 200, 500, and 1,000 replications. The mean and mean square error (MSE) of ML 

estimators are shown in Table 2. 
             

Table 2. The simulation results for parameter estimation of the GEV and TL-GEV distributions 
 

ξ n Values 
GEV  TL-GEV 

μ = 2 σ = 1 ξ  λ = 1.5 μ = 2 σ = 1 ξ 

           

0 25 Estimates 2.021 0.963 -  1.218 2.820 0.826 - 
  MSE 0.044 0.025 -  8.608 1.400 0.061 - 

 50 Estimates 2.011 0.984 -  1.544 2.598 0.880 - 

  MSE 0.023 0.012 -  7.586 1.095 0.042 - 
 100 Estimates 2.005 0.992 -  1.592 2.476 0.909 - 

  MSE 0.011 0.006 -  5.156 0.940 0.031 - 

 200 Estimates 2.001 0.995 -  1.634 2.263 0.950 - 
  MSE 0.006 0.003 -  2.872 0.548 0.017 - 

 500 Estimates 1.999 0.998 -  1.596 2.107 0.981 - 

  MSE 0.002 0.001 -  1.153 0.235 0.007 - 
0.5 25 Estimates 2.007 0.958 0.524  1.263 3.844 1.533 0.409 

  MSE 0.063 0.057 0.064  10.332 5.679 1.129 0.077 

 50 Estimates 2.008 0.976 0.514  1.410 3.688 1.449 0.402 
  MSE 0.027 0.024 0.025  8.584 5.152 0.663 0.045 

 100 Estimates 2.002 0.989 0.506  1.477 2.633 1.257 0.466 

  MSE 0.013 0.013 0.012  4.562 1.315 0.218 0.015 
 200 Estimates 1.999 0.995 0.505  1.573 2.242 1.084 0.488 

  MSE 0.007 0.006 0.005  2.474 0.385 0.055 0.008 

 500 Estimates 1.998 0.995 0.501  1.518 2.135 1.053 0.493 
  MSE 0.003 0.002 0.002  1.312 0.205 0.029 0.003 

-0.5 25 Estimates 2.052 1.042 -0.625  1.734 2.228 0.954 -0.435 

  MSE 0.068 0.080 0.092  9.015 1.085 1.045 0.090 
 50 Estimates 2.028 0.996 -0.537  1.709 2.138 0.934 -0.480 

  MSE 0.024 0.017 0.015  5.467 0.587 0.341 0.027 

 100 Estimates 2.046 1.010 -0.551  1.659 2.129 0.936 -0.485 
  MSE 0.483 0.259 0.015  3.886 0.483 0.259 0.015 

 200 Estimates 2.010 1.004 -0.516  1.558 2.146 0.925 -0.480 

  MSE 0.009 0.006 0.007  2.749 0.404 0.188 0.009 
 500 Estimates 2.007 1.001 -0.509  1.592 2.088 0.958 -0.485 

  MSE 0.004 0.002 0.003  1.849 0.304 0.136 0.006 
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 The results in Table 2, in all cases, show that each parameter's mean of ML estimates has a value close to the true 

parameter when the sample size is increased. The MSE of ML estimators decreases when the sample size is increased. The MSE 

of the ML estimators of GEV’s parameters is less than the MSE of the ML estimators of TL-GEV’s parameters. 

 

3.5 Extreme value analysis and return level estimation of PM2.5 in Chiang Mai, Thailand 
  

 In this study, we analyze a Particulate Matter 2.5 (PM2.5) data set as an application of the TL-GEV distribution in 

extreme value analysis, and compare it to the GEV distribution. The two example data sets are on PM2.5 (ug/m3) from air quality 

monitoring station at Mueang Chiang Mai, Chiang Mai Province in Thailand. Observations of daily PM2.5 are the 24-hour 

averages of PM2.5 (see http://air4thai.pcd.go.th/webV2/ history/#). In this study, the Kolmogorov-Smirnov (KS) test, Akaike 

Information Criterion (AIC), and Bayes Information Criterion (BIC) are used as criteria for the goodness of fit, where the model 

that gives the smaller values of AIC, BIC, and KS is the better fit to the data. 

 Data set I: We consider the PM2.5 data in 2012-2021 (the past 10 years) at Tambon Sri Phum. Let Xi(n) is the maximum 

PM2.5 in each month (120 months), Xi(n)=max{Xi1, Xi2,. . . Xi(ni)} where ni is the number of days in the month ith as i=1, 2, . . ., 

120. The data set is shown in Figure 4 (a) – (b). The parameter estimates and the goodness of fit test for these data are 

summarized in Table 3. The TL-Fr distribution gives lower AIC, BIC, and KS values than other distributions, namely Fr, Gum, 

and TL-Gum. We conclude that the TL-Fr distribution is appropriate to fit these data (KS=0.0588, p-value = 0.8008), Figure 4. 

The ML estimates of the TL-Fr distribution are ˆ 18.250,   ˆ 14.171,   ˆ 1.2737,   and ˆ 4.3529  . The expression of return 

levels of the PM2.5 value at Tambon Sri Phum is 

 
1.2737

1 4.3529

p

14.171
x 18.250 log 1 p 1 ,

1.2737

          

           

where p=1/m. The return levels of the PM2.5 in Chiang Mai are presented in Table 4, for m=2, 3, 4, . . ., 13. 

 Data set II: We consider the PM2.5 data in 2017-2021 (the data are collected in the past 5 years) at Tambon Chang 

Phueak. Let Xi(n) be the maximum PM2.5 in each month (60 months), Xi(n) )=max{Xi1, Xi2,. . . Xi(ni)} where in the month ith as 

i=1, 2, . . ., 60. The data are presented in Figure 4 (c) – (d). The parameter estimates and the goodness of fit test for these data are 

summarized in Table 3. The TL-Fr distribution gives lower AIC, BIC, and KS than the other distributions, namely Fr, Gum, and 

TL-Gum. We conclude that the TL-Fr distribution is appropriate to fit these data (KS=0.0924, p-value = 0.6854), Figure 4. The 

ML estimates of the TL-Fr distribution are ˆ 25.189,   ˆ 16.538,   ˆ 2.5449,   and ˆ 1.5546  . The expression of return 

levels of PM2.5 at Tambon Chang Phueak is 

 
2.5449

1 1.5546

p

16.538
x 25.189 log 1 p 1 ,

2.5449

          

           

where p=1/m. The return levels of the PM2.5 in Chiang Mai are presented in Table 4, for m=2, 3, 4, . . ., 13. 
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Figure 4. The maximum PM2.5 values in Chiang Mai, Thailand for each month 
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Table 3. Results of an extreme value analysis of the maximum PM2.5 values in each month in Chiang Mai, Thailand 
 

 

Dist. 
ML estimates (Standard error) 

-log L AIC BIC 
KS test  

(p-value) ̂  ̂  ̂  ̂  
         

Data I: The PM2.5 at Tambon Sri Phum 
Gum - 35.920  

(0.1702) 

26.553 

(0.2382) 

- 595.83 1195.66 1201.24 0.1670  

(0.0025) 

Fr 0.6732 
(112.55) 

26.531 
(1.3995) 

16.452 
(1.1126) 

- 589.89 1185.78 1194.14 0.0755 
(0.5014) 

TL-Gum - 2.1561 

(0.1420) 

47.870 

(0.1198) 

6.2724 

(3.0495) 

601.24 1208.48 1216.84 0.1773 

(0.0011) 
TL-Fr 1.2737 

(42.981) 

18.250 

(1.5576) 

14.171 

(0.4338) 

4.3529 

(6.3319) 

569.41 1146.82 1157.97 0.0588 

(0.8008) 

Data II: The PM2.5 at Tambon Chang Phueak 
Gum - 36.900 

(0.3072) 

25.219 

(0.3631) 

- 294.66 593.32 597.51 0.1559 

(0.1082) 

Fr 0.8892 
(7.4387) 

28.360 
(1.3016) 

13.503 
(1.0245) 

- 279.98 565.96 572.24 0.0958 
(0.6400) 

TL-Gum - 2.3799 

(0.2833) 

45.333 

(0.2696) 

6.8761 

(1.1264) 

297.21 600.42 606.70 0.1701 

(0.0622) 
TL-Fr 1.5546 

(4.1912) 

25.189 

(1.3854) 

16.538 

(0.6631) 

2.5449 

(3.0434) 

277.74 563.48 571.86 0.0924 

(0.6854) 
         

    

 Table 4. The return levels of the maximum PM2.5 levels (ug/m3) in Chiang Mai 
 

m-month 2 3 4 5 6 7 8 9 10 11 12 13 
             

Data I 18.9 23.2 26.4 29.0 31.3 33.3 35.2 36.8 38.3 39.8 41.1 42.4 

Data II 32.4 43.6 53.5 62.6 71.2 79.2 86.9 94.2 101.3 108.1 114.7 121.2 
             

  

Data I: The PM2.5 at Tambon Sri Phum 

 
Data II: The PM2.5 at Tambon Chang Phueak 
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Figure 5. Probability plots of the fits of distributions to two real data sets 
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4. Conclusions 
  

 In this study, we introduced an extension of the 

generalized extreme value (GEV) distribution, generated 

based on the Topp Leone-generated (TL-G) family of 

distributions, which was proposed by Sangsanit and 

Bodhisuwan (2016). The new extension is called the Topp 

Leone-generalized extreme value (TL-GEV) distribution. The 

TL-GEV distribution has the four parameters (λ, μ, σ, ξ), and 

it has the three named sub-models TL-Gumbel (for ξ=0), TL-

Fréchet (for ξ>0), and TL-reversed Weibull (for ξ<0). Some 

properties of the proposed distribution, including quantile 

function, moments, moment generating function, and order 

statistics, were provided. The model parameters were 

estimated based on the maximum likelihood (ML) method. 

The simulation results show that each parameter's mean of 

ML estimates has a value close to the true parameter when the 

sample size is increased. The MSE of ML estimators 

decreases when the sample size is increased. Two real data 

sets of PM2.5 in Chiang Mai, Thailand, were used to 

demonstrate the efficiency of the proposed distribution. Based 

on the results, the TL-Fréchet distribution gives the best fit to 

the studied data, on PM2.5 in Chaing Mai, among the 

considered distributions (Fréchet, Gumbel, and TL-Gumbel 

distributions). The usefulness of the TL-GEV of heavy-tailed 

distributions has been demonstrated with two data sets, on 

PM2.5 data for Chiang Mai Province from the stations at 

Tambon Sri Phum and Tambon Chang Pheak, and the model 

performed reasonably well relative to the well-known 

competing heavy-tailed distributions, namely Gumbel, Fréchet 

and revised Weibull.  The developed distribution is promising 

for modeling data distributions, and may be helpful for 

researchers who deal with such datasets. The additional 

parameter λ provides flexibility to the distribution, affecting 

its skewness and kurtosis. Thus, the new model can provide 

good competition as an alternative to prior existing models. 

Future work includes (i) bivariate extension of actuarial 

measures and a Monte Carlo simulation study of these 

measures, (ii) modeling heavy-tailed data with bivariate 

extension, (iii) regression problems with covariates, and (iv) 

parameter reduction. 
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