TABLE OF CONTENTS

TABLE OF CONTENTS	i
LIST OF TABLES	iii
LIST OF FIGURES	vi
INTRODUCTION	1
OBJECTIVE	3
SCOPE OF THE STUDY	3
LITERATURE REVIEWS	4
Colloids	4
Coagulation	5
Flocculation	8
Principle of floating plastic media	10
Mechanisms of solid removal in granular medium-depth filter	12
Direct ciltration and contact-flocculation filtration	15
Particle size and shape	15
Image analysis in flocculation process	19
MATERIALS AND METHODS	22
Materials	22
Methods	26
RESULTS AND DISCUSSION	34
CONCLUSIONS	73
RECOMMENDATIONS	75
LITERATURE CITED	76
APPENDIX	79
Appendix A Properties of Kaolin clay 200 mesh : Sample No. 47-016	80
Appendix B Properties of Polypropylene	81
Appendix C Properties of Polyaluminium chloride 30%	82

TABLE OF CONTENTS (cont'd)

Appendix D Experimental data	83
Appendix E Floc size distribution	112
Appendix F Image processing steps	141

Page

LIST OF TABLES

Table		Page
1	Classification of colloids	4
2	Principal mechanisms and phenomena contributing to removal of material with	
	in granular medium-depth filter	12
3	Advantages and disadvantages of microscopic technique and image analysis	
	techniqu	18
4	Experiment schdule of the performance of the optimum condition	32
5	Experiment schdule of the performance of floating media flocculation	33
6	Performance of single floating media flocculator at different dosages of PAC1	
	and different hydraulic rates (layer depth of 60 cm. and media size of 3 mm)	39
7	Performance of single, dual, and multilayer floating media system	56
8	Performance of floating media system	68

Appendix Table

A1	Properties of Kaolin clay 200 mesh : Sample No. 47-016	80
B1	Properties of Polypropylene	81
C1	Properties of Polyaluminium chloride 30%	82
D1	Experimental data of run no.1	84
D2	Experimental data of run no.2	85
D3	Experimental data of run no.3	86
D4	Experimental data of run no.4	87
D5	Experimental data of run no.5	89
D6	Experimental data of run no.6	90
D7	Experimental data of run no.7	91
D8	Experimental data of run no.8	92
D9	Experimental data of run no.9	93
D10	Experimental data of run no.10	94

LIST OF TABLES (cont'd)

Appe	ndix Table	Page
D11	Experimental data of run no.11	95
D12	Experimental data of run no.12	96
D13	Experimental data of run no.13	97
D14	Experimental data of run no.14	98
D15	Experimental data of run no.15	99
D16	Experimental data of run no.16	100
D17	Experimental data of run no.17	101
D18	Experimental data of run no.18	102
D19	Experimental data of run no.19	103
D20	Experimental data of run no.20	104
D21	Experimental data of run no.21	105
D22	Experimental data of run no.22	106
D23	Experimental data of run no.23	107
D24	Experimental data of run no.24	108
D25	Experimental data of run no.25	109
D26	Experimental data of run no.26	110
D27	Experimental data of run no.27	111
E1	Floc size distribution of run no. 1	113
E2	Floc size distribution of run no. 2	114
E3	Floc size distribution of run no. 3	115
E4	Floc size distribution of run no. 4	116
E5	Floc size distribution of run no. 5	118
E6	Floc size distribution of run no. 6	119
E7	Floc size distribution of run no. 7	120
E8	Floc size distribution of run no. 8	121
E9	Floc size distribution of run no. 9	122

LIST OF TABLES (cont'd)

Appei	ndix Table	Page
E10	Floc size distribution of run no. 10	123
E11	Floc size distribution of run no. 11	124
E12	Floc size distribution of run no. 12	125
E13	Floc size distribution of run no. 13	126
E14	Floc size distribution of run no. 14	127
E15	Floc size distribution of run no. 15	128
E16	Floc size distribution of run no. 16	129
E17	Floc size distribution of run no. 17	130
E18	Floc size distribution of run no. 18	131
E19	Floc size distribution of run no. 19	132
E20	Floc size distribution of run no. 20	133
E21	Floc size distribution of run no. 21	134
E22	Floc size distribution of run no. 22	135
E23	Floc size distribution of run no. 23	136
E24	Floc size distribution of run no. 24	137
E25	Floc size distribution of run no. 25	138
E26	Floc size distribution of run no. 26	139
E27	Floc size distribution of run no. 27	140

LIST OF FIGURES

Figur	e	Page
1	Conceptual schematic of the sub-processes controlling particle aggregation, the	
	size spectrum for naturally occurring rainfall-runoff particles	9
2	Contact flocculation-filtration process	10
3	Removal of suspended particle matter with in a granular filter (a)by straining	14
4	Schematic of the floating -media flocculator system set-up for operating	23
5	Experimental setup as bench-scale at Kasetsart University	24
6	Floating plastic media flocculator column with 3-mm and 10-mm media sizes	25
7	Experimental methodology	26
8	Schematic of the experimental system set-up for taking of floc images.	31
9	The positions of illuminates (a) the illuminates are side of the digital camera,	
	(b) the illuminate opposite of the digital camera.	35
10	Turbidity removal of the single floating-media (3-mm bead diameter, 60-cm	
	layer depth) flocculator at different dosages of PACl under the hydraulic rate of	
	$2.5 \text{ m}^3/\text{m}^2$ -h.	37
11	Turbidity removal of single floating-media (3-mm bead diameter, 60-cm layer	
	depth) flocculator at different dosages of PACl under the hydraulic rate of 5	
	m3/m2-h.	37
12	Turbidity removal of single floating-media (3-mm bead diameter, 60-cm layer	
	depth) flocculator at different dosages of PACl under the hydraulic rate of 10	
	m3/m2-h.	38
13	Head-loss development of single floating-media (3-mm bead diameter, 60-cm	
	layer depth) flocculator at different doses of PACl under hydraulic rate of 2.5	
	m3/m2-h	40
14	Head-loss development of single floating-media (3-mm bead diameter, 60-cm	
	layer depth) flocculator at different dosages of PACl under hydraulic rate of 5	
	m3/m2-h.	40

Figure	2	Page
15	Head-loss development of single floating-media (3-mm bead diameter, 60-cm	
	layer depth) flocculator at different dosages of PACl under hydraulic rate of 10	
	m3/m2-h	41
16	Average floc size of single floating-media (3-mm bead diameter, 60-cm layer	
	depth) flocculator different dosages of PACl under the hydraulic rate of 2.5	
	m3/m2-h.	43
17	Average floc size of single floating-media (3-mm bead diameter, 60-cm layer	
	depth) flocculator different dosages of PACl under the hydraulic rate of 5	
	m3/m2-h.	43
18	Average floc size of single floating-media (3-mm bead diameter, 60-cm layer	
	depth) flocculator different dosages of PACl under the hydraulic rate of 10	
	m3/m2-h.	44
19	Turbidity removal of single floating-media (3-mm bead diameter, 60-cm depth)	
	flocculator at different hydraulic rate on PACl dose of 1.25 mg/L	45
20	Turbidity removal of single floating-media (3-mm bead diameter, 60-cm depth)	
	flocculator at different hydraulic rates on PACl dose of 2.5 mg/L	46
21	Turbidity removal of single floating-media (3-mm bead diameter, 60-cm depth)	
	flocculator at different hydraulic rates on PACl dose of 5 mg/L	46
22	Turbidity removal of single floating-media (3-mm bead diameter, 60-cm depth)	
	flocculator at different hydraulic rates on PACl dose of 10 mg/L	47
23	Turbidity removal of single floating-media (3-mm bead diameter, 60-cm depth)	
	flocculator at different hydraulic rates on PACl dose of 40 mg/L	47
24	Head-loss development of single floating-media (3-mm bead diameter, 60-cm	
	layer depth) flocculator at different hydraulic rates on dose of PACl of 1.25	49
	mg/L	
25	Head-loss development of single floating-media (3-mm bead diameter, 60-cm	
	layer depth) flocculator at different hydraulic rates on dose of PACl of 2.5 mg/L	49

Figur	e	Page
26	Head-loss development of single floating-media (3-mm bead diameter, 60-cm	
	layer depth) flocculator at different hydraulic rates on dose of PACl of 5 mg/L	50
27	Head-loss development of single floating-media (3-mm bead diameter, 60-cm	
	layer depth) flocculator at different hydraulic rates on dose of PACl of 10 mg/L	50
28	Head-loss development of single floating-media (3-mm bead diameter, 60-cm	
	layer depth) at flocculator different hydraulic rates on dose of PACl of 40 mg/L	51
29	Average floc size of single floating-media (3-mm bead diameter, 60-cm layer	
	depth) flocculator different hydraulic rates on dose of PACl of 1.25 mg/L	52
30	Average floc size of single floating-media (3-mm bead diameter, 60-cm layer	
	depth)flocculator different hydraulic rates on dose of PACl of 2.5 mg/L	53
31	Average floc size of single floating-media (3-mm bead diameter, 60-cm layer	
	depth) flocculator different hydraulic rates on dose of PACl of 5 mg/L	53
32	Average floc size of single floating-media (3-mm bead diameter, 60-cm layer	
	depth) flocculator different hydraulic rates on dose of PACl of 10 mg/L	54
33	Average floc size of single floating-media (3-mm bead diameter, 60-cm layer	
	depth)flocculator different hydraulic rates on dose of PACl of 40 mg/L	54
34	Performance of single and multilayer floating media at layer depth of 30 cm	
	under hydraulic rate of 2.5 m3/m2-h and PACl dose of 2.5 mg/L	57
35	Performance of single and multilayer floating media at layer depth of 60 cm	
	under hydraulic rate of 2.5 m3/m2-h and PACl dose of 2.5 mg/ L $$	57
36	Maximum floc size of single floating-media difference media size (PACl of 2.5	
	mg/L, hydraulic rate of 2.5 m3/m2-h, layer depth of 30-cm)	59
37	Maximum floc size of single floating-media difference media size (PACl of 2.5	
	mg/L, hydraulic rate of 2.5 m3/m2-h, layer depth of 60-cm)	59
38	Maximum floc size of dual-layer floating-media (PACl of 2.5 mg/, hydraulic	
	rate of 2.5 m3/m2-h, 30-cm layer depth) flocculator different size of medium	60
39	Maximum floc size of dual-layer floating-media (PACl of 2.5 mg/, hydraulic	
	rate of 2.5 m3/m2-h, 60-cm layer depth) flocculator different size of medium	60

Figure		Page
40	Maximum floc size of multilayer-floating-media (PACl of 2.5 mg/L, hydraulic	
	rate of 2.5 m3/m2-h) flocculator different size of medium and layer depth of 30-	
	cm and 60-cm	61
41	Floc size distribution (Media size 3-mm, layer depth 30-cm $$, hydraulic rate of	
	2.5 m3/m2-h and PACl dose of 2.5mg/L)	63
42	Head-loss development versus average velocity gradient under hydraulic rate of	
	2.5 m^3/m^2 -h, PACl dose of 2.5mg/L, and 30-cm layer depth	64
43	Floc size distribution of single-layer different media sizes (30-cm layer depth,	
	hydraulic rate of 2.5 m3/m2-h and PACl dose of 2.5mg/L) at 6^{th} hour.	64
44	Floc size distribution of single-layer different media sizes (60-cm layer depth,	
	hydraulic rate of 2.5 m3/m2-h and PACl dose of 2.5mg/L) at 6^{th} hour.	65
45	Floc size distribution of dual-layer different media sizes (30-cm layer depth,	
	hydraulic rate of 2.5 m3/m2-h and PACl dose of 2.5mg/L) at 6 $^{\text{th}}$ hour.	65
46	Floc size distribution of dual-layer different media sizes (60-cm layer depth,	
	hydraulic rate of 2.5 m3/m2-h and PACl dose of 2.5mg/L) at 6 $^{\text{th}}$ hour.	66
47	Floc size distribution of multilayer different media sizes, layers depth	
	(hydraulic rate of 2.5 m3/m2-h and PACl dose of 2.5 mg/L) at 6 $^{\text{th}}$ hour.	66
48	Floc density of single-layer different media size 3-mm, 6-mm and 10-mm bead	
	diameter (30-cm layer depth, hydraulic rate of 2.5 m3/m2-h and PACl dose of	
	2.5 mg/L)	68
49	Floc density of single-layer different media size 3-mm, 6-mm and 10-mm bead	
	diameter (60-cm layer depth, hydraulic rate of 2.5 m3/m2-h and PACl dose of	
	2.5 mg/L)	69
50	Floc density of dual-layer different media size 3-mm, 6-mm and 10-mm bead	
	diameter (30-cm layer depth, hydraulic rate of 2.5 m3/m2-h and PACl dose of	
	2.5 mg/L)	69

Figure	2	Page
51	Floc density of dual-layer different media size 3-mm, 6-mm and 10-mm bead	
	diameter (30-cm layer depth, hydraulic rate of 2.5 m3/m2-h and PACl dose of	
	2.5 mg/L)	70
52	Floc density of multilayer different media size 3-mm, 6-mm and 10-mm bead	
	diameter, 30-cm and 60-cm layer depth (hydraulic rate of 2.5 m3/m2-h and	
	PACl dose of 2.5mg/L)	70
53	Floc density versus average floc size flocculator under hydraulic rate of 2.5	
	m3/m2-h, PACl dose of 2.5mg/L, and layer depth 30-cm	71
54	The relationship between of the average maximum floc size of microscopic	
	analysis (d_M) and the average maximum floc size of digital image analysis (d_D)	
	(3-mm bead diameter, 30-cm layer depth) flocculator under hydraulic rate of	
	$2.5 \text{ m}^3/\text{m}^2$ -h and PACl dose of 2.5 mg/L	72
Apper	ndix Figure	

F1	Image processing steps	142
F2	Image processing steps (cont'd)	143
F3	Image processing steps (cont'd)	144

LIST OF ABBREVIATIONS

Tb	=	Turbidity
NTU	=	Nephelometric turbidity unit
Δ_h	=	Head loss across bed depth (mm)
$d_{_M}$	=	diameter of particle of microscopic analysis (µm)
$d_{\scriptscriptstyle D}$	=	diameter of particle of digital camera analysis (μm)
ΔL_{L}	=	Expanded depth (cm)
θ	=	Hydraulic detention time in bed (s)
μ	=	absolute viscosity (g/cm-s)
d_s	=	diameter of collector (mm)
v	=	hydraulic rate (m^3/m^2-h)
V_s	=	settling velocity (m^3/m^2-h)
W	=	the settling velocity occurred (m^3/m^2-h)
$ ho_{ m f}$	=	mass density of floc (g/cm ³)
$ ho_{\scriptscriptstyle 1}$	=	mass density of liquid (g/cm ³)
g	=	acceleration due to gravity (m/s^2)