TABLE OF CONTENTS

	Page	
TABLE OF CONTENTS	i	
LIST OF TABLES		
LIST OF FIGURES	vii	
LIST OF ABBREVIATIONS	xi	
INTRODUCTION	1	
LITERATURE REVIEW	6	
MATERIALS AND METHODS	17	
Model	17	
Method of calculations	17	
NMR calculations	19	
Conformational analysis	20	
Solvent optimization effects	21	
Molecular Dynamics simulations (MD)	21	
Infrared (IR) frequency calculations	25	
Experiment	25	
NMR experiment	25	
Infrared (IR) experiment	26	
RESULTS AND DISCUSSION	28	
Comparing NMR calculations of nevirapine in gas		
phase and solvation models	28	
Conformational analysis of nevirapine and NMR		
Calculations	31	
Comparing of IEFPCM solvation models and solvent		
optimization effects	48	
¹ H-NMR chemical shifts improvement : MD-QM approach		
Infrared (IR) frequency results	62	

TABLE OF CONTENTS (cont'd)

	Page
CONCLUSIONS	82
LITERATURE CITED	85
APPENDIX	97

LIST OF TABLES

	Page
Comparison of the selected torsion angles of the fully optimized	
geometries of nevirapine, obtained by different method and compared	
to experimental X-ray crystallographic data	18
Calculated ¹ H-NMR chemical shift (ppm) in different	
solvents	29
Calculated ¹³ C-NMR chemical shifts (ppm) in different	
solvents	30
Calculated ¹⁵ N-NMR chemical shifts (ppm) in different solvents	30
Comparison of the selected torsion angles of the fully optimized	
geometries of nevirapine, obtained by each local minima at $\alpha = 100$, α	
= 220 and α = 340 degrees and compared to experimental X-ray	
crystallographic data	33
Comparison of experimental and calculated ¹ H-NMR chemical shifts	
(ppm) at different α angle (degree) of the cyclopropyl ring (C15-N11-	
C17-C19) calculated at B3LYP/6-311++G**//B3LYP/6-31G** level	
with DMSO and chloroform IEFPCM solvation models	34
Comparison of experimental and calculated ¹³ C-NMR chemical shifts	
(ppm) at different α angle (degree) of the cyclopropyl ring (C15-N11-	
C17-C19) calculated at B3LYP/6-311++G**//B3LYP/6-31G** level	
with DMSO and chloroform IEFPCM solvation models	35
Comparison of experimental and calculated ¹⁵ N-NMR chemical shifts	
(ppm) at different α angle (degree) of the cyclopropyl ring (C15-N11-	
C17-C19) calculated at B3LYP/6-311++G**//B3LYP/6-31G** level	
with DMSO IEFPCM solvation models	39
	Comparison of the selected torsion angles of the fully optimized geometries of nevirapine, obtained by different method and compared to experimental X-ray crystallographic data Calculated ¹ H-NMR chemical shift (ppm) in different solvents Calculated ¹³ C-NMR chemical shifts (ppm) in different solvents Calculated ¹⁵ N-NMR chemical shifts (ppm) in different solvents Calculated ¹⁵ N-NMR chemical shifts (ppm) in different solvents Comparison of the selected torsion angles of the fully optimized geometries of nevirapine, obtained by each local minima at $\alpha = 100$, $\alpha = 220$ and $\alpha = 340$ degrees and compared to experimental X-ray crystallographic data Comparison of experimental and calculated ¹ H-NMR chemical shifts (ppm) at different α angle (degree) of the cyclopropyl ring (C15-N11-C17-C19) calculated at B3LYP/6-311++G**//B3LYP/6-31G** level with DMSO and chloroform IEFPCM solvation models Comparison of experimental and calculated ¹³ C-NMR chemical shifts (ppm) at different α angle (degree) of the cyclopropyl ring (C15-N11-C17-C19) calculated at B3LYP/6-311++G**//B3LYP/6-31G** level with DMSO and chloroform IEFPCM solvation models Comparison of experimental and calculated ¹⁵ N-NMR chemical shifts (ppm) at different α angle (degree) of the cyclopropyl ring (C15-N11-C17-C19) calculated at B3LYP/6-311++G**//B3LYP/6-31G** level with DMSO and chloroform IEFPCM solvation models

LIST OF TABLES (cont'd)

Table		Page
9	Comparison of experimental and calculated ¹⁵ N-NMR chemical shifts	
	(ppm) at different α angle (degree) of the cyclopropyl ring (C15-N11-	
	C17-C19) calculated at B3LYP/6-311++G**//B3LYP/6-31G** level	
	with chloroform IEFPCM solvation models	40
10	Calculated energies of nevirapine at B3LYP/6-311++G**// B3LYP/6-	
	31G** level in the gas phase and solution	41
11	Experimental ^{15}N chemical shifts, δ_{expt} , and calculated isotropic	
	nitrogen shielding constants, σ_{calc} (ppm), calculated at B3LYP/6-	
	311++G**//B3LYP/6-31G** level	43
12	Linear regressions between experimental chemical shifts and	
	calculated isotropic shielding constants (ppm), $\delta_{expt} = a + b\sigma_{calc}$, of	
	nitrogen (R^2 = correlation coefficient, SD = standard deviation)	44
13	Predicted 15 N-NMR chemical shifts, δ (ppm), by B3LYP/6-	
	311++G**//B3LYP/6-31G** calculations in DMSO and chloroform	
	of nevirapine by using scaling theoretical data linear regressions, δ_{expt}	
	$= a + b\sigma_{calc}$	45
14	Predicted ¹⁵ N-NMR chemical shifts, δ (ppm), by B3LYP/6-	
	311++G**//B3LYP/6-31G** calculations in DMSO and chloroform	
	of nevirapine by using scaling theoretical data linear regressions, δ_{expt}	
	$= a + b\sigma_{calc}$	47
15	Comparison of experimental, GAUSSIAN98 (G98) and	
	GAUSSIAN03 (G03) calculated ¹ H-NMR chemical shifts (ppm)	
	calculated at B3LYP/6-311++G**//B3LYP/6-31G** level with	
	DMSO IEFPCM solvation models	49
16	Comparison of experimental, GAUSSIAN98 (G98) and	
	GAUSSIAN03 (G03) calculated ¹ H-NMR chemical shifts (ppm)	
	calculated at B3LYP/6-311++G**//B3LYP/6-31G** level with	
	chloroform IEFPCM solvation models	50

LIST OF TABLES (cont'd)

Table		Page
17	Comparison of experimental, GAUSSIAN98 (G98) and	
	GAUSSIAN03 (G03) calculated ¹³ C-NMR chemical shifts (ppm)	
	calculated at B3LYP/6-311++G**//B3LYP/6-31G** level with	
	DMSO IEFPCM solvation models	51
18	Comparison of experimental, GAUSSIAN98 (G98) and	
	GAUSSIAN03 (G03) calculated ¹³ C-NMR chemical shifts (ppm)	
	calculated at B3LYP/6-311++G**//B3LYP/6-31G** level with	
	chloroform IEFPCM solvation models	52
19	Comparison of experimental GAUSSIAN98 (G98) and	
	GAUSSIAN03 (G03) calculated ¹⁵ N-NMR chemical shifts (ppm)	
	calculated at B3LYP/6-311++G**//B3LYP/6-31G** level with	
	DMSO IEFPCM solvation models	53
20	Comparison of experimental GAUSSIAN98 (G98) and	
	GAUSSIAN03 (G03) calculated ¹⁵ N-NMR chemical shifts (ppm)	
	calculated at B3LYP/6-311++G**//B3LYP/6-31G** level in gas	
	phase and chloroform IEF-PCM solvation models	53
21	Comparison of the selected torsion angles of nevirapine, obtained by	
	different methods and compared to experimental X-ray	
	crystallographic data by GAUSSIAN03	55
22	Comparison of experimental and calculated ¹ H-NMR chemical shifts	
	(ppm) calculated at B3LYP/6-311++G**//B3LYP/6-31G** level with	
	DMSO IEFPCM solvation models	56
23	Comparison of experimental and calculated ¹ H-NMR chemical shifts	
	(ppm) alculated at B3LYP/6-311++G**//B3LYP/6-31G** level with	
	chloroform IEFPCM solvation models	57
24	Comparison of experimental and calculated ¹³ C-NMR chemical shifts	
	(ppm) calculated at B3LYP/6-311++G**//B3LYP/6-31G** level with	
	DMSO IEFPCM solvation models	59

LIST OF TABLES (cont'd)

Table		Page
25	Comparison of experimental and calculated ¹³ C-NMR chemical shifts	
	(ppm) calculated at B3LYP/6-311++G**//B3LYP/6-31G** level with	
	chloroform IEFPCM solvation models	60
26	Comparison of experimental and calculated ¹⁵ N-NMR chemical shifts	
	(ppm) calculated at B3LYP/6-311++G**//B3LYP/6-31G** level with	
	DMSO IEFPCM solvation models	61
27	Comparison of experimental and calculated ¹⁵ N-NMR chemical shifts	
	(ppm) calculated at B3LYP/6-311++G**//B3LYP/6-31G** level	
	with chloroform IEFPCM solvation models	61
28	Comparison of experimental and calculated ¹ H-NMR chemical shifts,	
	$\boldsymbol{\delta}$ (ppm). Including standard deviation (SD) of differences between	
	these values	66
29	Comparison of experimental and calculated ¹ H-NMR chemical shifts	
	of simple nevirapine and nevirapine-DMSO model by using ONIOM2	
	method, δ (ppm). Including standard deviations (SD)s of differences	
	between these values	69
30	Comparison of experimental and calculated ¹ H-NMR chemical shifts	
	of simple nevirapine and nevirapine-CHCl ₃ model by using ONIOM2	
	method, δ (ppm). Including standard deviations (SD)s of differences	
	between these values	77
31	Experimental and calculated IR vibrational frequencies at B3LYP/6-	
	31G*//B3LYP/6-31G** level of nevirapine	79

LIST OF FIGURES

Figure		Page
1	Structures of some non-nucleoside reverse transcriptase	
	inhibitors (NNRTIs)	2
2	Chemical structure of nevirapine	2
3	(a) 3-dimensional structure of nevirapine and its atomic	
	numbering (b) butterfly-like-shape	3
4	Rotational potential (kcal/mol) of dihedral angle α obtained from	
	AM1, HF/3-21G level, HF/6-31G level, HF/6-31G** level, and	
	B3LYP/6-31G** level of calculations	31
5	Correlation plots between calculated and experimental chemical	
	shifts (ppm) for the α = 101.8 (M1), α = 217.4 (M2) and α =	
	334.3 (M3) (a) 1 H-NMR chemical shifts in DMSO, (b) 1 H-NMR	
	chemical shifts in chloroform, (c) ¹³ C-NMR chemical shifts in	
	DMSO and (d) ¹³ C-NMR chemical shifts in chloroform	37
6	Correlation plots between calculated and experimental chemical	
	shifts (ppm) of H30, H31, H32, H33, H34, C17, C18 and C19 for	
	the α = 101.8 (M1), α = 217.4 (M2) and α = 334.3 (M3) (a) ¹ H-	
	NMR chemical shifts in DMSO, (b) ¹ H-NMR chemical shifts in	
	chloroform, (c) 13 C-NMR chemical shifts in DMSO and (d) 13 C-	
	NMR chemical shifts in chloroform	38
7	Correlation plots between calculated and experimental chemical	
	shifts (ppm) of N1, N5, N10, and N11, for the α = 101.8 (M1), α	
	= 217.4 (M2) and α = 334.3 (M3) (a) ¹⁵ N-NMR chemical shifts	
	in DMSO, (b) ¹⁵ H-NMR chemical shifts in chloroform	40
8	Experimental ¹⁵ N-NMR chemical shifts, δ , versus calculated	
	isotropic nitrogen shielding constants, σ , performed at	
	$B3LYP/6-311++G^{**}//B3LYP/6-31G^{**}$ level (a) DMSO (b)	
	chloroform	47

LIST OF FIGURES (cont'd)

Figure		Page
9	(a)RMSD (Å) and (b) total energy (kcalmol ⁻¹) of nevirapine in	
	DMSO from MD simulations	63
10	RDFs for the atoms of DMSO relative to the acidic proton H23	
	of nevirapine. By integration 1 st coordination shell contains one	
	DMSO oxygen atom. Hence one DMSO molecule is bonded to	
	the proton	64
11	A snapshot of nevirapine in a box of 182 DMSO molecules is	
	shown on the left. Four examples of the nevirapine-DMSO	
	model cropped from snapshots taken during from MD	
	simulations, used in ONIOM2 and NMR calculations, are shown	
	on the right. The numbers indicate the distance between the	
	acidic proton H23 and the oxygen of DMSO in Å	64
12	Plot of (a) simple nevirapine, (b) simple nevirapine with DMSO	
	IEFPCM model, (c) nevirapine-DMSO and (d) nevirapine-	
	DMSO with IEFPCM models calculated ¹ H chemical shifts	
	versus experimental chemical shifts in ppm	67
13	Plot of (a) simple nevirapine and (b) ONIOM2 nevirapine-	
	DMSO models calculated ¹ H chemical shifts versus experimental	
	chemical shifts in ppm	70
14	(a) RMSD (Å) and (b) total energy (kcalmol ⁻¹) of nevirapine in	
	chloroform from MD simulations	72
15	RDFs for the atoms of $CHCl_3$ relative to the acidic proton H23 of	
	nevirapine. By integration 1 st coordination shell contains three	
	CHCl ₃ hydrogen atoms	73
16	A snapshot of nevirapine in a box of 141 CHCl ₃ molecules	73

viii

LIST OF FIGURES (cont'd)

Figure		Page
17	Five nevirapine-DMSO models cropped from snapshots taken	
	during from MD simulations, used in ONIOM2 and NMR	
	calculations, are shown the right. The numbers indicate the	
	distance between the acidic proton H23 and the oxygen of	
	DMSO in Å	74
18	Plot of (a) simple nevirapine and (b) ONIOM2 nevirapine-CHCl $_3$	
	models calculated ¹ H chemical shifts versus experimental	
	chemical shifts in ppm	76
19	Comparison of IR spectra of experimental solid nevirapine and	
	calculated of simple nevirapine, nevirapine-DMSO and	
	nevirapine-CHCl ₃	80
20	Calculated IR spectra of DMSO and CHCl ₃	80
21	Experimental IR spectra of nevirapine, nevirapine in DMSO and	
	nevirapine in CHCl ₃	81
Append	ix Figure	
1	Schematic concept of ONIOM method	110
2	ONIOM extrapolation scheme for a molecular system	
	partitioned in to two (left) and three (right) layers	110
3	Illustration of periodic boundary conditions (for clarity, in 2	
	dimensions): (i) Atoms A interacts with the nearest periodic	
	image of atom B, B' ("minimum image convention") but not	
	with atom B itself which is outside the interaction cut-off	
	distance. (ii) when atom B moves out of the parent simulations	
	cell (shaded), its periodic image B" enter through the opposite	
	face	118

4 gHMBC experiment 119

LIST OF FIGURES (cont'd)

Appendix Figure		Page
5	¹ H chemical shift spectrum of nevirapine in DMSO- <i>d6</i>	121
6	¹ H chemical shift spectrum of nevirapine in CDCl ₃	122
7	¹³ C chemical shift spectrum of nevirapine in DMSO- <i>d6</i>	123
8	¹³ C chemical shift spectrum of nevirapine in CDCl ₃	124
9	¹⁵ N gHMBC spectrum of nevirapine in DMSO- <i>d6</i>	125
10	¹⁵ N gHMBC spectrum of nevirapine in CDCl ₃	126
11	Experimental IR spectrum of solid nevirapine in KBr	127

LIST OF ABBREVIATIONS

B3LYP	=	Beck's three parameter hybrid functional
		using the LYP correlation functional
DFT	=	Density function theory
FT-IR	=	Fourier Transform Infrared spectroscopy
HF	=	Hartree Fock
NMR	=	Nuclear Magnetic Resonance
AM1	=	Austin Model 1
ONIOM	=	The Our own N-layered Integrated
		Molecular Orbital Molecular Mechanics
kcal/mol	=	Kilocalorie per mol
SD	=	Standard Deviation
RMSD	=	Root Mean Squares Deviation
NRTIs	=	Nucleoside Reverse Transcriptase Inhibitors
NNRTIs	=	Non-Nucleoside Reverse Transcriptase Inhibitors
RT	=	Reverse Transcriptase
HIV-1	=	Human Immunodeficiency Virus Type 1
MD	=	Molecular Dynamics
МК	=	Merz-Kollman Singh Charge Method
MM	=	Molecular Mechanics
NEV	=	Nevirapine
GIAO	=	Gauge including atomic orbitals
SCRF	=	Self-consistent reaction field
IEFPCM	=	Integral equation formalism polarized continuum
ASC	=	Apparent surface charge
RDF	=	Radial distribution function
gHMBC	=	Gradient-selected versions Heteronuclear Multiple Bond
		Coherence