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Abstract  
In this paper, we study Jacobsthal sine, Jacobsthal-Lucas sine, Jacobsthal cosine, Jacobsthal-

Lucas cosine, Jacobsthal tangent, Jacobsthal-Lucas tangent, Jacobsthal cotangent, Jacobsthal-Lucas 

cotangent, Jacobsthal secant, Jacobsthal-Lucas secant, Jacobsthal cosecant, and Jacobsthal-Lucas 

cosecant. Furthermore, we establish some identities of Jacobsthal sine, Jacobsthal-Lucas sine, 

Jacobsthal cosine, Jacobsthal-Lucas cosine, Jacobsthal tangent, Jacobsthal-Lucas tangent, Jacobsthal 

cotangent, Jacobsthal-Lucas cotangent, Jacobsthal secant, Jacobsthal-Lucas secant, Jacobsthal 

cosecant, and Jacobsthal-Lucas cosecant.  
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1. Introduction  

The well-known Fibonacci nF , 

Lucas  nL , Pell nP , and Pell-Lucas  nQ  

sequences have been found for several years. 

Their Binet’s formulas are 

n n

n

a b
F

a b

−
=

−
, 

n n

nL a b= + , 

n n

nJ
 

 

−
=

−
, and 

n n

nj  = + , where n is an integer, 

1 5

2
a

+
= , 

1 5

2
b

−
=  and 2 = , 1 = −  

are the root of the characteristic equation 
2 1 0r r− − =  and  

2 2 0r r− − = , respectively 

[1,2,4]. So a b , 1a b+ = 5a b− = , 

2ab = −  and   , 1 + = , 3 − = , 

2 = − . 

 

Recently, the general solution of a 

second-order homogeneous linear differential 

equation in terms of numbers was studied by 

many authors in different ways to derive many 

identities. In 1964, Verner E. Hoggatt, Jr. [3] 

studied a general solution of a second-order 

homogeneous linear differential equation

0y y y − − = with an initial value ( )0 0y =  

( )0 1y = , which is defined by 

0 !

ax bx n n n

n

e e a b x
y

a b a b n



=

− −
= =

− −
 , (1.1)

 

where 
1 5

2
a

+
=  and 

1 5

2
b

−
=  are the 

roots of the characteristic equation
2 1 0r r− − = . They obtained some identities of 

these [5,7]. 
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In 2016, Prasanta Kumar Ray [6] 

studied a general solution of a second-order 

homogeneous linear differential equation

6 0y y y − + =  with an initial value

( )0 0y =  ( )0 1y = . The author obtained 

some identities of these. 

The inspiration for doing this research 

due to the direction of this research and 

development. We present the general solution of 

a second-order homogeneous linear differential 

equation in terms of Jacobsthal and Jacobsthal-

Lucas numbers, along with finding these 

identities. 

2. Main results  

In this section, we begin to give 

second-order homogeneous linear differential 

equations 

2 0y y y − − =  (2.1)
 

with initial value ( )0 0y =  ( )0 1y =  and  

( )0 2y =  ( )0 1y = ,  respectively. 

Next, we define Jacobsthal sine and 

Jacobsthal-Lucas sine, which correspond to the 

following definition. 

Definition 2.1 Let   . Then the Jacobsthal 

sine ( )sinJ x  and Jacobsthal-Lucas sine 

( )sin j x  are defined respectively by 

( )sin
x xe e

J x
 

 

−
=

−
, (2.2) 

( )sin x xj x e e = + . (2.3) 

Note that equations (2.2) and (2.3) are the 

general solution of (2.1). 

Also, we find some identities of 

Jacobsthal and Jacobsthal-Lucas numbers which 

correspond to the following lemma. 

Lemma 2.2 Let 0n   and 2 = , 1 = − . 

The following results hold. 

(i)  1 12n n nJ J j+ −+ =  

(ii)  1 12 9n n nj j J+ −+ = , 

(iii) 1 1 24 2 8 9n n n n nj j j j j+ − −+ + + = , 

(iv) 
12n

n nJ J  −= + , 

(v) 
12n

n nJ J  −= + . 

Proof. Since Binet’s formulas, we have 
1 1 1

1 1

1

22
n

n

n

n

n n

J J
 

   

 
−

+ + −

+

−− −
+ = +

− −
 

  
n n = +  

  nj= . 

( )1 1 1 1

1 1 22n n

n n n nj j  +

−

+ − −

+ + = + + +  

  ( )
2

n n 
 

 

 −
= −  

− 
 

  9 nJ= . 

1 1 24 2 8n n n nj j j j+ − −+ + +  

( ) ( )1 1 1 14 2n n n n n n    + + − −= + +++ +

( )2 28 n n − −+ +  

( ) ( )
2 n n   = − +  

9 nj= . 

Next, If 0n = , then the proof is 

obvious. Next, we will be shown by 

mathematical induction that 
12n

n nJ J  −= +  

for n . Since
1 02J J + = , it follows that 

1n =  is ture. Assume that the result is true for 

the positive integer, n k= . Then 

12k

k kJ J  −= + . Now, we need to show that 

(iv) also holds for 1n k= +  as follows: 

1k k  + =  

 ( )12k kJ J −= +  

 
2

12k kJ J −= +  

 ( ) 12 2k kJ J −= + +  

 12 2k k kJ J J −= + +  

 12 2k k kJ J J −= + +  

 ( )12 2k k kJ J J−= + +  

 1 2k kJ J+= + . 

Thus, 1n k= +  is ture. The similar proof of (iv) 

is applied for (v). Therefore, the proof is 

complete. 

After that, we find undetermined 

coefficients of the Maclaurin series, the general 
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solution of second-order homogeneous linear 

differential equations, as follows. 

Lemma 2.3 Let 0n  . Then the recurrence 

relation nc  is given by  

( )( ) ( )2 12 1 1 2 0n n nn n c n c c+ ++ + − + − = . 

Proof. Let the Maclaurin series 

0

n

n

n

y c x


=

= . (2.4) 

Since the differentiation of equation (2.4), we 

have  

1

1

n

n

n

y nc x


−

=

 =  (2.5) 

and 

( ) 2

2

1 n

n

n

y n n c x


−

=

 = − . (2.6) 

By using equations (2.4), (2.5), and (2.6) in (2.1), 

we obtain 

( ) 2 1

2 1 0

1 2 0n n n

n n n

n n n

n n c x nc x c x
  

− −

= = =

− − − =  

( )( ) ( )2 1

0 0

2 1 1n n

n n

n n

n n c x n c x
 

+ +

= =

+ + − +   

  
0

2 0n

n

n

c x


=

− =

( )( ) ( )2 1

0

2 1 1 2 n

n n n

n

n n c n c c x


+ +

=

+ + − + −  

        0= . 

Thus, 

( )( ) ( )2 12 1 1 2 0n n nn n c n c c+ ++ + − + − = . 

Therefore, the proof is complete. 

Lemma 2.4 Let 0n  . The following results 
hold. 

1 1 02

!

n n

n

J c J c
c

n

−+
= , (2.7) 

( ) ( )1 1 1 2 02 2 2
.

9 !

n n n n

n

j j c j j c
c

n

− + −+ + +
=

 (2.8) 

Proof. If 0n = , then 0 1 1 0

0

2

0!

J c J c
c−+

= the 

proof is obvious. Next, we will be shown that 

1 1 02

!

n n

n

J c J c
c

n

−+
=  for n . It is not hard 

to see that 1 1 0 0

1

2

1!

J c J c
c

+
= . Thus (2.7) holds 

1n = . Let us assume that the equality in (2.7) 

holds for all n k   by iterating this 

procedure and considering induction steps. To 

finish the proof. We must show that (2.7)  also 

holds 1n k= +  by considering Lemma 2.3. 

Thus  

1kc +
 

( )
12

1

k kkc c

k k

−+
=

+
 

( )

( )

1 1 0 1 1 2 02 2
2

! 1 !

1

k k k kJ c J c J c J c
k

k k

k k

− − −
 + + 

+     −   
=

+
 

( )

( )
1 1 0 1 1 2 02 2 2

1 !

k k k kJ c J c J c J c

k

− − −+ + +
=

+
 

( ) ( )

( )
1 1 1 2 02 2 2

1 !

k k k kJ J c J J c

k

− − −+ + +
=

+
 

( )
1 1 02

1 !

k kJ c J c

k

+ +
=

+
. 

Thus, 1n k= +  is true. The similar proof of 

(2.7) is applied for (2.8). Therefore, the proof is 

complete. 

Now, we find ( )sin J x  and 

( )sin j x  in terms of sums, which corresponds 

to the following theorem. 

Theorem 2.5 Let 0n  . Then ( )sin J x  and 

( )sin j x  are given respectively by 

( )
0

sin
!

n

n

n

x
J x J

n



=

= , (2.9)
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( )
0

sin
!

n

n

n

x
j x j

n



=

= . (2.10)

 

Proof. Let 
0

n

n

n

y c x


=

= , we have 

22 1 1 0

0 1

2

2!

J c J c
y c c x x

+
= + + +

 

               

1 1 02

!

nn nJ c J c
x

n

−+
+ +  (2.11) 

and 

( )1 2 1 1 02y c J c J c x = + + +
 

               
( )

11 1 02

1 !

nn nJ c J c
x

n

−−+
+ +

−
. (2.12)

 

By using initial values ( )0 0y = , ( )0 1y =  in 

(2.11) and (2.12), we obtain 

0 0c =  and 1 1c = . (2.13) 

By using (2.13) in (2.11), we get 

22

0

.
2! ! !

n
nn

n

n

JJ x
y x x x J

n n



=

= + + + + =  

Thus, ( )
0

sin .
!

n

n

n

x
J x J

n



=

=  The similar proof 

of (2.9) is applied for (2.10). Therefore, the proof 

is complete. 

Then, we define Jacobsthal cosine 

( )cosJ x  and Jacobsthal-Lucas cosine 

( )cos j x by using derivatives, which 

correspond to the following definition. 

Definition 2.6 Let   . Then the Jacobsthal 

cosine ( )cosJ x  and Jacobsthal-Lucas cosine 

( )cos j x  are defined respectively by 

( )cos
x xe e

J x
  

 

−
=

−
, (2.14)

 

( )cos x xj x e e  = + , (2.15) 

Moreover, we find ( )cos J x  and ( )cos j x  in 

terms of sums, which corresponds to the 

following theorem. 

Theorem 2.7 Let 0n  . Then ( )cos J x  and 

( )cos j x  are given respectively by 

( ) 1

0

cos
!

n

n

n

x
J x J

n



+

=

= , (2.16)

 

( ) 1

0

cos
!

n

n

n

x
j x j

n



+

=

= . (2.17) 

Proof. Since Theorem 2.4, we have 

( )
0

sin
!

n

n

n

d d x
J x J

dx dx n



=

=   

0 !

n

n

n

d x
J

dx n



=

=  

( )

1

1 1 !

n

n

n

x
J

n

−

=

=
−

  

1

0 !

n

n

n

x
J

n



+

=

= . 

Thus, ( ) 1

0

cos
!

n

n

n

x
J x J

n



+

=

= . The similar 

proof of (2.9) is applied for (2.10). Therefore, the 

proof is complete. 

Furthermore, we find Jacobsthal 

tangent, Jacobsthal-Lucas tangent, Jacobsthal 

cotangent, and Jacobsthal-Lucas cotangent, 

which corresponds to the following lemma 

definition and theorem. 

Lemma 2.8 For all real numbers x . The 

following results hold. 

(i)  ( )cos 0J x  , 

(ii) ( )cos 0j x  ’ 

(iii) ( )sin 0J x  , 

(iv) ( )sin 0j x  . 

Proof. Suppose that ( )cos 0J x = , then 

0
x xe e  

 

−
=

−
. It follows that 

0x xe e  − = . So 
x xe e  = . Therefore 

 = . But   , we have a contradiction. 
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Thus ( )cos 0J x  , for all real numbers x . 

The similar proof of (i) is applied for (ii), (iii), 

and (iv). Therefore, the proof is complete. 

Definition 2.9 Let   . Then the Jacobsthal 

tangent ( )tan J x , Jacobsthal-Lucas tangent 

( )tan j x , Jacobsthal cotangent ( )cot J x , 

and Jacobsthal-Lucas cotangent ( )cot j x  are 

defined respectively by 

( )
( )

( )

sin
tan

cos

x x

x x

J x e e
J x

J x e e

 

  

−
= =

−
, (2.18) 

( )
( )

( )

sin
tan

cos

x x

x x

j x e e
j x

j x e e

 

  

+
= =

+
, (2.19)

 

( )
( )

( )

cos
cot

sin

x x

x x

J x e e
J x

J x e e

 

 

 −
= =

−
, (2.20)

 

( )
( )

( )

cos
cot

sin

x x

x x

j x e e
j x

j x e e

 

 

 +
= =

+
. (2.21)

 

Theorem 2.10 Let 0n  . Then ( )tan J x , 

( )tan j x , ( )cot J x , and ( )cot j x  are given 

respectively by 

( )tan J x =
 

( )
( ) ( )( )

22
11

0

24
1 ,

2 4 2

n n xn n

n
n

J J
e

    
− + −−

=

++
− + −

 (2.22) 

( )tan j x =

( ) ( )( )

22
11 1 2

0

2 4 24
,

2 324 2

n xn n n n

n
n

j j j j
e

     
− + −− + −

=

+ + ++
− − 

 

 (2.23) 

( ) ( )( )1

0

4
cot

n x

n

t
J x e

 

 


− + −

=

+
= − −  ,(2.24) 

( ) ( ) ( )( )1

0

4
cot 1 .

n n x

n

t
j x e

 

 


− + −

=

+
= − + −

 (2.25) 

Proof. Since (2.18), we have 

( )tan
x x

x x

e e
J x

e e

 

  

−
=

−  

( )

( )
2

1

2
1

2

x

x

e

e

 

 





−

−

 
 − +

=  
 + 
 

 

( ) ( )
2

24 4
1

2 2 2 2

x x
e e

      − − + +
= − + − + 

 
 

( ) ( )
2 2 2

24 4

2 4 4 2

x x
e e

        − −+ +
= − + − +  

( ) ( )( )
2 2

1

0

4
1 .

2 4 2

n
n n x

n
n

e
    

− + −

=

+
= − + −

 

Thus, ( )tan J x =  

( )
( ) ( )( )

22
11

0

24
1

2 4 2

n n xn n

n
n

J J
e

    
− + −−

=

++
− + − . 

The similar proof of (2.18) is applied for (2.19), 

(2.20), and (2.21). Therefore, the proof is 

complete. 

Next, we find Jacobsthal secant, 

Jacobsthal-Lucas secant, Jacobsthal cosecant, 

and Jacobsthal-Lucas cosecant, which 

corresponds to the following definition and 

theorem. 

Definition 2.11 Let   . Then the Jacobsthal 

secant ( )secJ x , Jacobsthal-Lucas secant

( )sec j x , Jacobsthal cosecant ( )cosecJ x , 

and Jacobsthal-Lucas cosecant ( )cosec j x  are 

defined respectively by 

( )
( )

1
sec

cos x x
J x

J x e e 

 

 

−
= =

−
, (2.26) 

( )
( )

1 1
sec

cos x x
j x

j x e e  
= =

+
, (2.27)

 

( )
( )

1
cos

sin x x
ecJ x

J x e e 

 −
= =

−
, (2.28)

 

( )
( )

1 1
cos

sin x x
ecj x

j x e e 
= =

+
. (2.29)

 

Theorem 2.12 Let 0n  . Then ( )sec J x , 

( )sec j x , ( )cosecJ x , and ( )cosecj x  are 

given respectively by 

https://dx.doi.org/10.14456/x0xx00000x
https://www.sci.rmutt.ac.th/
https://ph02.tci-thaijo.org/index.php/past/index


6 Prog Appl Sci Tech. 2023; 13(1):1-6 

Prog Appl Sci Tech © 2022 Faculty of Science and Technology, RMUTT 

( )
2

1

0

3
sec ,

!

n

nx x
n

x
J x J

ne e  



+

=

 
=  

− 


 (2.30) 

( )
( )

12
0

1
sec ,

!

n

n
x x

n

x
j x j

ne e  



+

=

=
+

  (2.31) 

( )
2

0

3
cos ,

!

n

nx x
n

x
ecJ x J

ne e  



=

 
=  

− 


 (2.32) 

( )
( )

2
0

1
cos .

!

n

n
x x

n

x
ecj x j

ne e 



=

=
+

  (2.33) 

Proof. The proof of Theorem 2.10 is applied for 

(2.30), (2.31), (2.32), and (2.33). 

Finally, we find some identities of the 

Jacobsthal sine, Jacobsthal-Lucas sine, 

Jacobsthal cosine, Jacobsthal-Lucas cosine, 

Jacobsthal tangent, Jacobsthal-Lucas tangent, 

Jacobsthal cotangent, Jacobsthal-Lucas 

cotangent, Jacobsthal secant, Jacobsthal-Lucas 

secant, Jacobsthal cosecant, and Jacobsthal -

Lucas cosecant, which corresponds to the 

following definition and theorem. 

Theorem 2.13 Let   . The following 

results hold. 

(i) ( ) ( ) ( ) ( )2 2cos sin cos 2sin ,xJ x J x J x J x e− − =  

(ii) ( ) ( ) ( ) ( )2 2cos sin cos 2sin 9 ,xj x j x j x j x e− − = −  

(iii) ( ) ( ) ( )2 2sec tan 2tan 1,xe J x J x J x+ + =  

(iv) ( ) ( ) ( )2 29 sec tan 2tan 1.xe j x j x j x− + + =  

Proof. Since (2.2) and (2.14), we have 

( ) ( ) ( ) ( )2 2cos sin cos 2sinJ x J x J x J x− −  

2
x x

x x

e e

e e

 

 

  −
=  

− 
   

2

2
x x x x x x

x x x x x x

e e e e e e

e e e e e e

     

     

     − − −
− −    

− − −    
xe= . 

Thus,

( ) ( ) ( ) ( )2 2cos sin cos 2sinJ x J x J x J x− −

xe= , The proof of (i) is applied for (ii), (iii), 

and (iv). by using (2.3), (2.15), (2.18), (2.26), 

and (2.27). Therefore, the proof is complete. 

3. Conclusions 

In this paper, we investigate 

Jacobsthal sine, Jacobsthal-Lucas sine, 

Jacobsthal cosine, Jacobsthal-Lucas cosine, 

Jacobsthal tangent, Jacobsthal-Lucas tangent, 

Jacobsthal cotangent, Jacobsthal-Lucas 

cotangent, Jacobsthal secant, Jacobsthal-Lucas 

secant, Jacobsthal cosecant, and Jacobsthal-

Lucas cosecant. Furthermore, we obtain some 

identities of Jacobsthal sine, Jacobsthal-Lucas 

sine, Jacobsthal cosine, Jacobsthal-Lucas cosine, 

Jacobsthal tangent, Jacobsthal-Lucas tangent, 

Jacobsthal cotangent, Jacobsthal-Lucas 

cotangent, Jacobsthal secant, Jacobsthal-Lucas 

secant, Jacobsthal cosecant, and Jacobsthal-

Lucas cosecant.  
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