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Appendix A 
 

Theoretical Background 
 

1. Calculation of NMR Chemical Shifts 
 

NMR spectroscopy is a very important analytical tool for the identification 

and characterization of molecules. However, since there is no simple correlation 

between the measured chemical shifts and structural parameters, the interpretation of 

experimental NMR spectra is not trivial and can be in many cases quite involved. The 

ability to calculate NMR chemical shifts ab initio is therefore a very important 

advancement in quantum chemistry. The calculation of chemical shifts can provide in 

many cases the necessary information for the correct interpretation of experimental 

NMR spectra. 

In recent years, calculations of NMR shieldings have included the effects of 

relativity non-perturbationally. Schreckenbach and Ziegler implemented a scalar-

relativistic DFT routine within the framework of the ADF package for calculation 

NMR shielding tensors.  In their calculations they used: gauge-including atomic 

orbitals (GIAO), a frozen core approximation, and the scalar relativistic draw in and 

mass-velocity terms. 

 

1.1 Defining the NMR shielding tensor 

 

In the absence of electrons, the magnetic field at the nucleus is the same as the 

external magnetic field.  In the presence of electrons the magnetic field induces 

electronic currents that create their own magnetic fields. As a result the magnetic field 

at the nucleus may be different to the external magnetic field. Paramagnetic currents 

reinforce the external field and thus de-shield the nucleus. Diamagnetic currents 

counter the external field and thus shield the nucleus. 

The magnetic field at the nucleus and the external magnetic field can be 

related by a 3X3 NMR shielding tensor: 
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@ nucl externalB Bδ=  

 

1B                               xxσ  xyσ  xzσ                1B  

2B          =              yxσ  yyσ  yzσ               2B  

3B                              zxσ  zyσ  zzσ                 3B  

 

In a crystal, the three components: , ,xx yy zzσ σ σ  can be distinguished. In 

solution, because the molecules are rapidly tumbling, only the trace of the tensor can 

be determined.  One third of the trace of the tensor gives the NMR isotropic shielding 

constant: 

 

    ( )1
3 xx yy zzσ σ σ σ= + +                                   (1) 

In most experiments, the isotropic shielding constant is not measured directly, but 

rather its relation to a standard is measured.  This gives the NMR shift: 

 

sample reference sampleδ σ σ= −                               (2) 

 

1.2 Calculating the NMR shielding tensor 

 

 If we have an expression for the energy of a system in terms of the nuclear 

magnetic moment μ and the external magnetic field B, then the NMR shielding tensor 

can be determined from: 
2

kt
t k

E
B

σ
μ
∂

=
∂ ∂                                                (3) 

 

@nucl external 



 100

Where k and t are the components of the external magnetic field and induced 

magnetic moment, respectively.  Considering SCF theory in general, the SCF energy 

and Fock matrix are 

  

     1
22 ( )e xcE hP PG P E V= + + +                         (4) 

               2 ( )e xc
EF h G P G h G
P
∂

= = + + = +
∂                     (5) 

Where P is the density matrix, h is the one-electron Hamiltonian, and V is the 

nuclear repulsion energy and 

 

                                  σμλ
λσ

λσμ vPPG ve ∑=)(2                              (6) 

where σμλ v  is the antisymmetrized two-electron integral over spin orbitals 

, ,
νμ λχ χ χ  and σχ  which includes a coefficient for Hartree-Fock exchange, CHFX  

,as  follows 

 

21
12

** )]2()1()2()1([1)2()1( ττχχχχχχσμλ σσλμ dC
r

v vHFXv −= ∫      (7) 

 

The exchange-correlation energy is 

 

   ( ), , , ,XCE f d rα β αα αβ ββρ ρ γ γ γ= ∫
r

                           (8) 

 

where α  and β  refer to the spin components and  f  is a general first-order 

exchange-correlation functional and does not include an explicit magnetic field 

dependent term. The spin densities and the density gradient invariant are given as 

follows:  

                                        ,Pα
α μν μ ν

μν

ρ χ χ=∑                      (9) 
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,αα α αγ ρ ρ= ∇ ⋅∇   ,αβ α βγ ρ ρ= ∇ ⋅∇                (10) 

 

( )Pα
α μ ν

μν

ρ χ χ∇ = ∇∑                                                        (11) 

and xcG , the exchange-correlation piece of  F  is 

 

 ( ) rdffG vvvxc
ρ

∫
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∇⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∇

∂
∂
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∂
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∂
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= **** 2)( χχρ
γ

ρ
γ

χχ
ρ μβ

αβ
α

αα
μ

α
μ

α   (12) 

 

with a similar expression for xcGβ .  The coefficient for Hartree-Fock exchange, CHFX, 

in equation (7) is one of Hartree-Fock, zero for pure DFT and non-zero for hybrid 

methods.  Similarly, f is 0 for Hartree-Fock theory. 

 

 Using the notation, where first and higher derivatives are denoted by 

superscripts specifying the variable(s) of differentiation, the expression for the 

shielding tensor for nucleus N becomes: 

 

                    
2

( , )i Nt Nt kB m BN
kt

Nt k

h P h P
B

μζσ
μ
∂

= = +
∂ ∂                (13) 

 

where the derivatives of the Hamiltonian are given by 

 

( ,
;k NtNt

B mmh hμν μ νχ χ=
)

                                          (14) 

$
3

( )
Nt

Nm
t

N

r Rih
c r R

− ×∇
= −

−

r ur ur

r ur                                           (15) 
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( ,( , ) ;k Ntk Nt
B mB mh hμν μ νχ χ=
)

           (16) 

32

),( )()(
2

1

N

tNkktN
mB

Rr

RrrRrr
c

h
Ntk

ρρ

ρρρρρρ

−

−−∂−
=

∧
        (17) 

 

In addition to the derivatives of the one-electron Hamiltonian, the calculation 

of the nuclear magnetic shielding tensor also requires the derivative of the density 

matrix with respect to the magnetic field, kBP .   This is obtained via solution of the 

coupled-perturbed (CP) equations for the appropriate perturbation. 

 

 Separating P into its occupied-occupied and virtual-occupied blocks, the CP 

equations for an external magnetic field perturbation kB  are  

 

( ) ( ) ( )k k k k k k k kB B B B B B B B
ov ov ov vo ov ov ov ov ov oo ovFP P F G P P h G P FS G S− − + = + − +

 

      ,k kB B
oo ooP S= −          0kB

vvP =           (18) 

 

where the subscripts oo and ov refer to the occupied-occupied and virtual-occupied 

blocks of the matrix, respectively.  S is the overlap matrix and G(X) is define as  

       σμλ
λσ

λσμ vXXG v ∑=)(                                  (19) 

where σμλ v  was defined  as the same.  The term ( )kBG P μν  which results from 

the derivative of the basis function with respect to the field is  

 

kkk B
xc

B
v

B GvPPG +=∑ σμλ
λσ

λσμ)(                           (20) 

 

Note that there is no exchange-correlation contribution to these equations 

because the standard functional considered here depends only on ( )rρ
uur

 and its 
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derivative and not on the magnetic field explicitly. If   CHFX    is taken to be one in 

equation (7) with f = 0 in equation (12), then the CPHF equation result from equation 

(16). For an imaginary perturbation, the coulomb contributions in both 

( )k kB B
ov vo oG P P ν+  and ( )kB

oo oG S ν  equation (18) vanish leaving only an explicit 

dependence upon the field (via the basis functions), the DFT exchange-correlation 

contribution to these two terms is zero. For hybrid methods, which include a mixture 

of Hartree-Fock exchange and DFT exchange correlation, only Hartree-Fock 

exchange is present in these two terms. As gauge-invariance is achieved in different 

ways, the gauge including atomic orbital (GIAO) method differs at this point in the 

formation of the right-hand side of equation (18). 

 

1.3 GIAO Method 

 

The GIAO method (Wolinski et al., 1990: Gauss 1993) for calculating 

magnetic properties uses the following explicit field-dependent basis functions. 

 

( ) exp[ ( ) ] (0)
2
iB B R r
c

μμ μχ χ= − × ⋅
ur ur ur r r

                  (21) 

where Rμ
ur

 is the position vector of basis function μχ   and (0)μχ
r

 denotes the usual 

field independent basis functions.  The derivative of a field dependent basis function 

with respect to the magnetic field direction  i  is  

 

( ) (0)
2

kB
k

i R r
c

μμ μχ χ= − ×
ur r r

          (22) 

 

Defining  ,R R Rμν νμ= −
ur uur ur

 the derivative of the overlap S and Hamiltonian h 

matrices with respect to the external magnetic field in the AO basis are 

( )2
kB iS R r

cμν μ νχ χ= ×
ur r

                          (23) 
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kk k k
BB B Bh h h h

νμν μ ν μ ν μχ χ χ χ χ χ= + +
) ) )

                   (24) 

 

( )2
i R r h r R
c

μν νμ ν μ ν μ νχ χ χ χ χ χ= × − ×∇ + ∇
ur r r r ur

         (25) 

 

where the derivative of the Hamiltonian operator is   

 

$ ( )2
kB

k

ih r
c

= − ×∇
r

           (26) 

 

The term kB
xcG  in equation (20), which results from the derivative of the field-

dependent basis functions with respect to the field is 

 

( ) ( )( ) * *2 ( )k k k
B B B

xc v
f fG d rα

μ ν α β μμν
α αα αβ

χ χ ρ ρ χ χ
ρ γ γ

⎡ ⎤⎛ ⎞∂ ∂ ∂
= + ∇ + ∇ ⋅∇⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
∫

r
        (27)

           

where     ( ) ( )* *

2
kB

k

i R r
c

μνμ ν μ νχ χ χ χ= ×
ur r

         (28) 

 

and χ  for the component of the gradient, 

( ) ( ) ( ) ( )* * * *

0
( )

2 2
k

k
BB

x x xk x B

i iR r B R
c c

μν μνμ ν μ ν μ ν μ μχ χ χ χ χ χ χ χ
=

⎡ ⎤⎡ ⎤∇ = × ∇ + ∇ + ×⎣ ⎦ ⎢ ⎥⎣ ⎦ur
ur r ur ur

        (29)

                  

Three sets of equation (18) are then solved, one for each magnetic field 

direction. How well can we actually calculate theoretically NMR shielding?  If we 

expect to make reasonable predictions and to perform meaningful analyses, the 

theoretical calculations must agree, at least semiquantitatively, with the experiment.  

Theoretical predictions are especially useful in NMR spectroscopy, because the 

interpretation of experimental information is not always straightforward.  In 



 105

particular, the spectral analysis for unusual molecules is difficult because there is no 

clear relationship between qualitative molecular and electronics structure and the 

NMR parameters. 

 

2. Integral Equation Formalism Polarized Continuum (IEF-PCM) Solvation 

Continuum Model 

 

In the IEF-PCM model, the solvent is represented by a homogeneous 

continuum medium which is polarized by the solute placed in a cavity built in the 

bulk of the dielectric. The solute-solvent interactions are described in terms of a 

solvent reaction potential. The basic hypothesis is that one can always define a new 

energetic functional, the free energy G, depending on the solute electronic wave 

function. 

 

   ψψψψψ RVHG ˆ
2
1)( 0 +=

)
    (30) 

 

where 0H
)

is the Halmiltonian describing the isolated molecule and RV̂ represents the 

solvent reaction operator. By applying the variational principle to this functional, we 

can derive the nonlinear Schrödinger equation specific for the solvated system. 

 

In general, the computational strategy formulated to define the reaction 

potential is based on a modelization of the solvent interactions according to the theory 

of intermolecular forces. Within this framework, the energetic quantity G and the 

corresponding reaction operator RV̂ are written as a sum of contributions of different 

physical origin related to dispersion, repulsion, and electrostatic forces between solute 

and solvent molecules. However, we shall consider the electrostatic part of the 

interactions only.  

 

The electrostatic problem of a charge distribution, ρM, embedded in a cavity, 

C, (within which the permittivity is assumed to be equal to 1) surrounded by an 
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isotropic continuum dielectric with a given permittivity, ε, can be expressed as 

follows: 

 

-ΔV = 4πρM   in C  

-εΔV  = 0 outside C 

[V] = 0 on Σ     (31) 

[∂xV] = 0 on Σ 

 

where V indicates the electrostatic potential and Σ is the cavity surface. The jump 

condition, [V] = 0, means that the potential V is continuous across the interface Σ, i.e., 

Ve – Vi = 0 on Σ where the subscripts e and i indicate the exterior and the interior of 

the molecular cavity, respectively. The equality [∂xV] = 0 is a formal expression of the 

jump condition of the gradient of the potential; for a homogeneous isotropic 

dielectric, it takes the well-known form 

 

0=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

en n
V

n
V ε     (32) 

 

where n is the outward pointing unit vector perpendicular to the cavity. 

 

Within the integral equation formalism (IEF), one can transform the first two 

equations in system in equation (31) into integral equations on the surface Σ that can 

be solved with standard numerical methods. The solution of system in equation (31) is 

thus reduced to a sum of two electrostatic potentials, one produced by ρM in vacuo 

and the other due to a surface charge distribution σ placed on the interface which 

arises from the polarization of the dielectric medium: 

 

  ds
sx

sdy
yx

yxVxVxV
R

M
M ∫∫ −

+
−

=+=
Σ

)()()()()( 3

σρ
σ   (33) 
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where the integral in the first term is taken over the entire three-dimensional space. 

The problem is then shifted to the definition of the proper apparent surface charge 

(ASC), σ. In computational practice, use is made of a partition of the cavity surface 

into small regions, called tesserae, with known area, ak. In the limit of a sufficiently 

accurate mapping, one can always approximate the continuum distribution σ on each 

tessera with a single-value quantify to define the equivalent sets of pointlike charges 

as q(sk) = σ(sk) ak where sk indicates the representative point of tessera k (i.e., the 

point at which we computeσ).  

 

In this scheme, the reaction potential, RV̂ , to be introduced in the effective 

Hamiltonian is reduced to one-electron operators depending on q(sk), and thus, the 

IEF-PCM method can be straightforwardly applied to different levels of the quantum 

mechanical description and modeled to include various concepts and approaches 

provided by the general quantum mechanical theory. The important new aspect to be 

taken into account is the introduction of an additional nonlinear character not present 

in isolated systems; the apparent charges, q(sk), depend on the solute charge 

distribution they contribute to modify.  

 

2.1 Nuclear Shielding for an IEF solute  

 
For a molecular solute, the nuclear magnetic shielding tensor σX of a nucleus, 

X, is expressed as mixed second derivatives of the free energy functional, G, with 

respect to the external magnetic field, B, and the nuclear magnetic moment, μX,  

 

X
ji

X
ij B

G
μ

σ
∂∂

∂
=

2

    (34) 

Where Bi and μj
X (i, j = x, y, z) are the Cartesian components of the external magnetic 

field, B, and of the nuclear magnetic moment, μX, respectively.  

The presence of the magnetic field introduces the problem of the definition of 

the origin of the corresponding vector potential. However, because σ is a molecular 

property, it must be invariant with respect to changes of the gauge origin. To obtain 
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this gauge invariance in the ab initio calculations, one can introduce gauge factors 

into the atomic orbitals of the basis set in such a manner that the results are 

independent of the gauge origin even though the calculation is approximate. Inclusion 

of gauge factors in the atomic orbitals may be accomplished by using gauge invariant 

atomic orbitals (GIAO)  

 

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ⋅×−= rRB

c
iXBX vvv 2

exp0)(    (35) 

 

Where Rv is the position vector of the basis function, and Xv(0) denots the usual field-

independent basis function.  

 

The GIAO method is used in conjunction with analytical derivative theory; in 

this approach, the magnetic field perturbation is treated in an analogous way to the 

perturbation produced by changes in the nuclear coordinates. For a solute described at 

Hartee-Fock or DFT level with expansion of the molecular orbitals over the 

previously defined field-dependent basis set, the components of the nuclear magnetic 

shielding tensor are obtained as 

 

[ ]X
ji

X
ji hhtr BBX

ij
μμσ Ρ+Ρ=    (36) 

 

where iBΡ is the derivative of the density matrix with respect to the magnetic field. 

Matrices 
X
jhμ and 

X
jiBh μ contain the first derivative of the standard one-electron 

Hamiltonian with respect to the nuclear magnetic moment and the second derivative 

with respect the magnetic field and the nuclear magnetic moment, respectively. Both 

terms do not contain explicit solvent-induced contributions as these contributions do 

not depend on the nuclear magnetic moment of the solute and thus the corresponding 

derivatives are zero. On the contrary, explicit solvent effects act on the first derivative 

of the density matrix PB which can be obtained as solution of the corresponding first-

order coupled-perturbed HF (or Kohn-Sham, KS) equation. 
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3. ONIOM calculations 

  
The main disadvantage of accurate quantum chemical methods is that the 

computational cost scales extremely unfavorably with the size of system. One 

approach to improve the computational efficiency is to different methods for the 

different parts of system. Most of these so-called hybrid methods combined quantum 

chemical methods with molecular mechanics methods, often referred to as QM/MM, 

and proven very successful. 

 

 For systems normally treated with molecular mechanics (MM), the integrated 

molecular orbital and molecular mechanics method (IMOMM), has been proposed 

and tested for several different systems. For systems and reactions that require a more 

accurate description of the geometries and energies, the integrated MO+MO 

(IMOMO) method has been shown to reproduce high-level ab initio results. 

Consequently, it would be attractive to combine these approaches into an onion-like 

mutilayered scheme named the ONIOM method (our own-layered integrated 

molecular orbital + molecular mechanics method) (Svensson et al., 1996) 

  

Recently, ONIOM method has been proven to be powerful tools for the 

theoretical treatment of large molecular systems where different levels of theory are 

applied to different parts of molecule (Appendix Figure 1) (Morokuma et al., 1995; 

Dapprich et al., 1999; Morokuma et al., 2000). 
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Appendix Figure 1   Schematic concept of ONIOM method. 

Source: Morokuma, et al., (2000) 
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Appendix Figure 2 ONIOM extrapolation scheme for a molecular system partitioned 

into two (left) and three (right) layers. 

Source: Morokuma, et al., (2000) 
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3.1 ONIOM energy definition 

 

The basic idea behind the ONIOM approach can be explained most easily 

when it is considered as an extrapolation scheme in the two-dimensional space, 

spanned by the size of the system on one axis and the level of theory on the other axis. 

Figure 2 shows the extrapolation procedure schematically. The goal is E4 describe the 

real system at the higher level of the theory, i.e., the approximation of the target E4 

(point 4) in the system partitioned into the two-layer ONIOM or E9 (point 9) in the 

system consisting of the three layers. In the two-layered (ONIOM2) method, the 

extrapolated energy EONIOM2 is then defined as 

 

EONIOM2 = E3 – E1 + E2 
      (37) 

 

Where E3 is the energy of the entire (real) system calculated at the low level of theory 

and E1 and E2 are the energies of the model system determined at the low and high 

level of theory, respectively. EONIOM is an approximation to the true energy of the real 

system E4 : 

 

E4 = EONIOM2 + D     (38) 

  

Therefore, if the error D of the extrapolation procedure is constant for two 

different structures (e.g. between reactant and transition state), their relative ∆E4 will 

be evaluated correctly by using the ONIOM energy ∆EONIOM2. 

 

For a system partitioned into three different layers, the expression for the   total 

energy EONIOM3 as an approximation for E9 is: 

   

EONIOM3 = E6 – E3 + E5 – E2 + E4   (39) 

   

Since the evaluation of E1 (the smallest model system at the lowest level of 

theory) does not require much computational effort, this value is used to determine the 

effect of the three-layer approach as compared to the two-layer partitioning with point 
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1, 4 and 6. If the energy difference between the two− and three−layer extrapolation is 

constant, a two layer partitioning with the intermediate layer omitted would give 

comparably accurate results. 

 

It should be noted that the layers need not be inclusive or contiguous. The so-

called “inner layer” does not have to be physically inside the “outer layer”. The layers 

can be any part of the system. Each layer does not have to be contiguous: it can 

consist of several separate regions of system. 

 
 
4. The Theoretical Background of Molecualr Dynamics Simulations 

 

The molecular dynamics simulations method is based on Newton’s second law 

or the equation of motion, F= ma, where F is the force exerted on the particle, m is its 

mass and a is its acceleration. From knowledge of the force on each atom, it is 

possible to determine the acceleration of each atom in the system. Integration of the 

equations of motion then yields a trajectory that describes the positions, velocities and 

accelerations of the particles. From this trajectory, the average values of properties 

can be determined. The method is deterministic; once the positions and velocities of 

each atom are known, the state of the system can be predicted at any time in the future 

or the past. 

 

Newton’s equation of motion is given by 

 

Fi = miai    (40) 

 

where Fi is the force exerted on the particle i, mi is the mass on the particle i, and ai is 

its acceleration. The force can also be expressed as the gradient of the potential 

energy. 

 

         Fi = ∇iV    (41) 
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Combining these two equations yields 

 

2

2

dt
rd

m
dr
dV i

i
i

=−
    (42) 

 

where V is the potential energy of the system. Newton’s equation of motion can be 

related the derivative of the potential energy to the changes in position as a function 

of time. 

 

In case of property calculations of the system, 

 

F = ma = m
dt
dv  = m 2

2

dt
xd    (43) 

 

and the acceleration is constant, 

 

a = 
dt
dv     (44) 

 

Expression for the velocity after integration is obtained, 

 

v = at + v0    (45) 

 

and since  

 

v = 
dt
dx     (46) 

 

therefore, 

 

x = vt + x0    (47) 
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Combining this equation for the velocity, it can be obtained the following 

relation which gives the value of x at time t as a function of the acceleration, a, the 

initial position, x0 and the initial velocity, v0. 

 

The acceralation is given as the derivative of the potential energy with respect 

to the position, r, 

 

a = -
dr
dE

m
1     (48) 

 

Therefore, to calculate a trajectory, one only needs the initial positions of the atoms, 

an initial distribution of velocities and the acceleration, which is determined by the 

gradient of the potential energy function. The equations of motion are deterministic, 

e.g., the position and the velocities at time zero determine the positions and velocities 

at all other times, t. The initial positions can be obtained from experimental structures, 

such as the x-ray crystal structure of the protein. 

 

4.1 Initial condition 

 

The initial condition in a molecular simulation is the initial positions and 

velocities of all atoms. In this study, the corrected structure was exerted to be the 

initial positions. Generally, the initial distribution of velocities is usually determined 

from a random distribution with the magnitudes conforming to the required 

temperature. Therefore, there is no overall momentum, for instance 

 

 

P = ∑
=

N

i
iivm

1
= 0      (49) 

 

The velocities, vi, are often chosen randomly from a Maxwell-Boltzmann or Gaussian 

distribution at a given temperature, which gives the probability that an atom i has a 

velocity vx in the x direction at a temperature T. 
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P(vix) = ]
2
1exp[)

2
(

2
2/1

Tk
vm

Tk
m

b

ixi

b

i −
π

    (50) 

 

And the temperature can be calculated from the velocities using the relation 

 

T = ∑
=

N

i i

i

m
P

N 1 2)3(
1      (51) 

 

where i is the number of atoms in the system. 

 

4.2 An integration algorithm 

 

The potential energy is a function of the atomic position (3N) of all the atoms 

in the system. Due to the complicated nature of this function, it must be solved 

numerically. Numerous numerical algorithms have been developed for integrating the 

equations of motion. 

 

 All the integration algorithms assume the positions, velocities and 

accelerations can be approximated by a Taylor series expansion as shown in equation 

(52) – (54), 

 

   r(t+Δt) = r(t) + v(t)Δt + (1/2)a(t)Δt2 + ....    (52) 

  v(t+Δt) = v(t) + a(t)Δt + (1/2)b(t)Δt2 + ....   (53) 

  a(t+Δt) = a(t) + b(t)Δt + ....      (54) 

 

where r is the position, v is the velocity (the first derivative with respect to time), a is 

the acceleration (the second derivative with respect to time), etc. The popular 

integration methods for MD calculations are the Verlet algorithm and predictor-

corrector algorithms. 
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4.3 Periodic boundary conditions 

 

It is the most common boundary condition for mimicking bulk behavior; the 

parent system is surrounded as infinite with copies of itself in all dimensions, a trick 

borrowed from solid state theory. Appendix Figure 3 illustrates the idea of periodic 

boundary condition. Periodicity applies not only to the interactions between atoms but 

also to the motion of atoms. If the atom leaves the parent cell its periodic image 

appears at the opposite side. In the cases of molecules, periodicity can also apply to 

the chemical connectivity. An interesting consequence of periodic boundary 

conditions (which need not be cubic as in the example but may be based on any 

space-filling polyhedron) is the artificial periodicity (superlattice) imposed on the 

system, even if the system is inherently non-periodic like a liquid. It is clear that in 

order to rule out artifacts, the system has to be “large enough” for effects of 

periodicity to disappear in the noise of other influences. 

 

4.4 An ensemble 

 

 An ensemble is a collection of points in phase space satisfying the connditions 

of a particular thermodynamic state. A molecular dynamics simulations generates a 

sequence of points in phase space as a function of time, these points belong to the 

same ensemble, and it corresponds to the different conformations of the system and 

their respective momenta. Several different ensembles are described below. 

 

 An ensemble is a collection of all possible systems which have different 

microscopic states but have an identical macroscopic or thermodynamic state. There 

are different ensembles with different characteristics. 

 

4.4.1  Microcanonical Ensemble (NVE) 

 

 The thermodynamic state characterized by a fixed number of atoms, N, a fixed 

volume, V, and a fixed energy, E. This corresponds to an isolated system. 
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4.4.2 Canonical Ensemble (NVT) 

 

 This is a collection of all systems whose thermodynamic state is characterized 

by a fixed number of atoms, N, a fixed volume,V, and a fixed temperature, T. 

 

4.4.3 Isobaric-Isothermal Ensemble (NPT) 

  

This ensemble is characterized by a fixed number of atoms, N, a fixed 

pressure, P, and a fixed temperature, T. 

 

4.4.4 Grand Canonical Ensemble (μVT) 

 

 The thermodynamic state for this ensemble is characterized by a fixed 

chemical potential, μ, a fixed volume, V, and a fixed temperature, T. 
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Appendix Figure 3 Illustration of periodic boundary conditions (for clarity, in 2  

dimensions): (i) Atoms A interacts with the nearest periodic 

image of atom B, B’ (“minimum image convention”) but not with 

atom B itself which is outside the interaction cut-off distance. (ii) 

When atom B moves out of the parent simulation cell (shaded), 

its periodic image B’’ enter through the opposite face. 
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5. Gradient-selected versions Heteronuclear Multiple Bond Coherence (gHMBC) 

NMR  

 
Appendix Figure 4 gHMBC experiment 

Source: http://www.chem.uky.edu/research/miller/ 

 

Heteronuclear Multiple Bond Coherence (HMBC) is 2-dimensional inverse H, 

C correlation techniques that allow for the determination of carbon (or other 

heteroatom such as 15N) to hydrogen connectivity. Gradient-selected versions HMBC 

(gHMBC) improves the acquired spectra by significantly reducing unwanted signal 

artifacts. 

 

The HMBC experiment detects long range coupling between proton and 

hetereoatom (two or three bonds away) with great sensitivity. The length of the tau 

delay can be adjusted to detect relatively large coupling constants (4-10 Hz) tau = 

0.06 s or snakker ciyokubgs (2-7 Hz) tau = 0.1 s. 

 

In this sequence, the first 90º -pulse on 13C serves as a low-pass filter that 

suppresses one-bond correlation and passes the smaller coupling. This pulse creates 
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multiple quantum coherence for the one-bond coupling, which is removed from the 

spectra by alternating the phase of the 13C pulse. The second 90º -pulse on 13C creates 

multiple quantum coherence for the long-range couplings. After the evolution time t1, 

the magnetization is converted back into detectable single quantum proton 

magnetization. The carbon decoupler is never used in this sequence. Therefore the 

protons display homonuclear as well as heteromuclear couplings. 

 

This technique is very valuable to detect indirectly quaternary carbons coupled 

to protons. Especially useful if direct 13C is impossible to obtain due to low amount of 

material available. This very useful sequence provides information about the skeleton 

of a molecule. It could be an alternative to the 2D-INADEQUATE experiment (which 

is so insensitive). It is also very useful in carbohydrate area as a sequence analysis 

tool that provides unique information concerning connectivities across glycosidic 

linkages. Another area of interest for using HMBC is in the peptide-protein area. 

Especially when applied to a 15N labeled protein. It is possible with this technique to 

get connectivities between the Nitrogen and the CHα proten of the amino acid of the 

next residue. 

 

 


