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APPENDIX A 

 

Theoretical Background 

 

The Theory of Quantum Chemical Calculations: Ground State Methods 

 

Molecular orbital theory is concerned with predicting the properties of atomic 

and molecular systems. It is based upon the fundamental laws of quantum mechanics 

and uses a variety of mathematical transformation and approximation techniques to 

solve the fundamental equations, in contrast to semi-empirical models. 

 

1.  The Schrödinger Equation 

 

The quantum chemical methods are based on finding solutions to the 

Schrödinger equation on molecular orbital theory. Quantum mechanics explains how 

entities like electrons have both particle-like and wave-like characteristics. The time 

independent Schrödinger equation for a molecule (n-electron and N-nuclei system): 
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and the Hamiltonian is (in atomic units):  
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where T and V are the kinetic and potential energy operators, respectively, which 

separate out the motion of the nuclei from the motion of the electrons, equation (2) 

can be rewritten as 
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This focus on the electronic Hamiltonian, elΗ , and try to solve the electronic 

Schrödinger equation in the field of the fixed nuclei. The nuclear-nuclear repulsion 

term (the final in equation (2)) appears as a constant in elΗ . Further assume the wave 

function ( )R,r
vv

ψ  to be a product of an electronic and a nuclear part: 

  

( ) ( ) ( )RR,rR,r nuclelec

vvvvv
ψψ=ψ  (4) 

 

The justification for this is that the electrons are much lighter than the nuclei. 

This is called the Born-Oppenheimer approximation. The parametric R
v

 dependence 

of elecψ  arises since the electron distribution depends implicitly on the particular 

nuclear arrangement for the system under study. The nuclear wave function, nuclψ , 

describes the vibrational, rotational and translational motion of the nuclei. From (1), 

(3) and (4) can obtain;   
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The electronic wavefunction ( )R,relec

vv
ψ can be divided out from both sides of 

equation (5), provided that terms in ( )R,relec
2 vv
ψ∇ are small, i.e. the electronic 

wavefunction changes slowly upon small displacements of the nuclear positions. 

Thus, if we neglect the influence of the nuclear derivative on the electron wave 

function ( elψ ) (i.e. the nuclei move slowly compared with the electrons) which can 

separate equation (5) into two equations, an electronic part: 

  



 141

( ) ( ) ( )R,rRR,r elelelel

vvvvv
ψΕ=ψΗ  (6) 

  

where 
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and a nuclear part: 

  

( ) ( )RR nuclnuclnucl

vv
ψΕ=ψΗ  (8) 

  

where 
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2. Hartree Fock Theory 

 

An exact solution to the Schrödinger equation is not possible for any but the 

most trivial molecular systems. However, a number of simplifying assumptions and 

procedures do make an approximate solution possible for a large range of molecules. 

To simplify the treatment further, the next step is to assume that the electrons are non-

interacting. This implies that (apart from the constant nuclear-nuclear repulsion term) 

which can rewrite the total n-electron Hamiltonian as a sum of n one-electron 

Hamiltonians,   
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This is clearly an oversimplification, since have neglected the electron-

electron repulsion term 
ijr
1 . Equation (10) defines the independent particle model.  

The one-electron Hamiltonians (equation (11)) are termed core-Hamiltonians, since 

the only interactions included are those between the electrons and the bare nuclei. 

Including an average interaction term in the { ( )ih }, these become effective one-

electron Hamiltonians. As a consequence of equation (10), the total wave function can 

be rewritten as a product of n single-particle wave functions, 

  

( ) ( ) ( ) ( )nn2211 r...rrr
vrrv

φφφ=ψ                  (12) 

  

or, take the electron spin into account, 

  

( ) ( ) ( )nn2211 x...xx
vvv

χχχ=ψ             (13) 

  

The spin orbitals { ( )ii x
v

χ } are the products of the spatial orbitals ( )ii r
v

φ  and the 

spin functions ( ( )ωα  and ( )ωβ ); ix
v

 denotes both the space and spin coordinates of 

electron i. The total independent particle spin-orbital wave function (equation (13)) is 

called a Hartree-product. This is an eigenfunction of the n-electron model 

Hamiltonian defined in equation (10), and the corresponding eigenvalue is a sum of 

the single-particle spin-orbital energies, 
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A further requirement on the state wave function (13) is that it must be anti-

symmetric with respect to the interchange of coordinate r (both space and spin) of any 

two electrons, 
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( ) ( )n12n21 x,...,x,xx,...,x,x
vvvvvv

ψ±=ψ                  (16) 

  

It is also possible to write equation (16) in terms of a nn ×  determinant, a 

Slater determinant, which has the same antisymmetric properties: 
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Which commonly is written like: 

  

( ) ( ) ( ) ( )nn2211
2/1 x,...,x,x!n

vvv
χχχ=ψ −                  (18) 

  

It can easily be verified that the Slater determinant obeys the Pauli principle, as the 

determinant then becomes zero. The pre-factor ( ) 2/1!n − is a normalisation constant, 

and the { iχ } are assumed orthonormal. By antisym-metrizing the Hartree-product 

(13) in the form of a Slater determinant (17), that the probability of finding any two 

electrons at the same point in space (i.e. 21 xx
vv

= ) is zero.  

 

Through the wave functions, the effective potential is generated. This potential 

allows refining wave functions, from which a new potential is obtained. The 

procedure is repeated until a stable, self-consistent solution is reached. Due to the 

iterative procedure, the initial guess of the wave function can of course be chosen ad 

hoc. However, the better the initial guess is, the easier it is to reach a stable solution to 

the eigenvalue problems in a relatively short computational time, is provided by the 

variation principle. This can be stated in the following way: Given any approximate 

wave function, satisfying the correct boundary conditions, the expectation value of the 

energy obtained by this wave function never lies below the exact energy of the ground 

state. Expressed in mathematical terms: 
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                                       exact
e

e Ε≥
ψψ

ψΗψ
=Ε                                             (19) 

 

A conceptually appealing model for the (trial) wave function of our molecular 

system is to regard it as being constructed from molecular orbitals (MO). This 

description in analogous to the model used for the atomic orbitals (AO). The MO's, 

the elements of the wave function determinant, are in turn thought of as being 

constructed by a Linear Combination of Atomic Orbitals (LCAO),  

  
AO

i
MO
i c μ

μ
μ φ=ψ ∑                  (20) 

  

The variational principle leads to following equations describing the molecular 

orbital expansion coefficients, icν , derived by Roothaan and by Hall: 
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Equation 21 can be rewritten in matrix form: 
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μνμνμν +Η= GF core                   (24) 

where core
μνΗ , core-Hamiltonian matrix, defined as 

( ) ( ) ( )∫ νμμν φφ=Η 11h1dr *
1
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The matrix P is the density matrix or charge- and bond-order matrix, 

  

                                      ∑ ∗
νμμν =

2/N

a
aa CC2P                                                       (26)       

 

The matrix S is the overlap matrix, indicating the overlap between orbitals. 

  

( ) ( )11drS 1 ν
∗
μμν φφ= ∫                  (27) 

 

The term ( )λσμν  in Equation 23 signified the two-electron repulsion 

integrals, defined as  

  

( ) ( ) ( ) ( ) ( )∫ σ
∗
λ

−
ν

∗
μ φφφφ=λσμν 22r11drdr 1

1221                  (28) 

  

The (initial) wave function is used to generate an effective potential, which 

apply this potential in order to refine the coefficient matrix. The modified MO's form 

the new input in the Roothaan equations, and a new potential is generated. The 

iterative procedure is repeated until convergence is reached, i.e. when the changes in 

energy and/or charge density in two subsequent iterations are below a pre-set 

threshold value. 

 

Before a more technical description of the SCF-procedure is presented, first 

need to define a new transformation matrix X, used for orthogonalisation of the basis 

set. This orthogonalisation can be either symmetric or canonical. A symmetric 

orthogonalisation implies that X is formed through the relation 

  
τ−− == UUsSX 2/12/1                  (29) 
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where S is the overlap matrix, U is an unitary matrix which diagonalizes S, and the 

diagonal matrix of the eigenvalues of S is given by the relations. In the canonical 

orthogonalisation procedure, X is instead given by 

  
2/1UsX −=                  (30) 

  

Consider a new coefficient matrix C′ related to the old coefficient matrix Cby  

                 

CXC 1−=′ ,    CXC ′=                           (31) 

  

where assumed that X possesses an inverse. Substituting CXC ′=  into the Roothaan 

equations gives 

  

ε′=′ CSXCFX                  (32) 

  

Multiplying on the left by τX  gives 

  

( ) ( ) ε′=′ ττ CSXXCFXX                  (33) 

  

if define a new matrix τF by 

  

FXXF ττ =                  (34) 

  

and use (27),then 

  

ε′=′′ CCF                  (35) 
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The SCF procedure, outlined in Appendix figure A1, is as follows 

 

1. Specify a molecule (a set of nuclear coordinates {RA}, atomic numbers {ZA}, 

and number of electron N) and a basis set{ }μφ . 

2. Calculate all required molecular integrals, μνS , core
μνΗ  and ( )λσμν . 

3. Diagonalize the overlap matrix S and obtain a transformation matrix X from 

either equation τ−− =≡ UUsSX 2/12/1 or X = Us-1/2. 

4. Obtain a guess at the density matrix P. 

5. Calculate the matrix G of equation μνμνμν +Η= GF core  from the density matrix 

P and the two-electron integral ( )λσμν . 

6. Add G to the core-Hamiltonian to obtain the Fock matrix GF core +Η= . 

7. Calculate the transformed Fork matrix FXXF ττ =  

8. Diagonalize τF to obtain C′  and ε. 

9. Calculate CXC ′= . 

10. Form a new density matrix P from C using ∑ ∗
νμμν =

2/N

a
aa CC2P . 

11. Determine whether the procedure has converged, i.e. determine whether the 

new density matrix of step (10) is the same as the previous density matrix 

within a specified criterion. If the procedure has not converged, return to step 

(5) with the new density matrix. 

12. If the procedure has converged, then use the resultant solution, represented by 

C, P, F, etc., to calculate expectation values and other quantities of interest. 
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Appendix Figure A1  Schematic view of a Hartree-Fock self consistent field  

calculation. 

Geometry, Basis set, Molecular structure and computational 
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3.  Basis Set 

 

The basis set most commonly used in quantum mechanical calculations are 

composed of atomic functions. The next approximation involves expressing the 

molecular orbitals as linear combinations of a pre-defined set of one-electron 

functions known as basis function. An individual molecular orbitals is defined as: 

 

                                      ∑
=μ

μμ χ=φ
N

1
ii c                                                              (36) 

 

where the coefficients icμ  are known as molecular orbital expansion coefficients. The 

basis function N1...χχ  are also chosen to be normalized. Gaussian-type atomic 

functions were used as basis functions. Gaussian functions have the general form 

  

( ) 2rlmn ezycxr,g α−=α
v

                 (37) 

  

where r
v

 is of course composed of x, y, and z. α  is a constant determining the size 

(radical extent) of the function. In Gaussian function, 
2re α−  is multiplied by powers 

(possibly 0) of x, y, and z and a constant for normalization, so that: 
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Thus, c depends on α , l, m, and n.  

 

Here are three representative Gaussian functional (s, py and dxy types, 

respectively): 
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Linear combinations of primitive gaussians like these are used to form the 

actual basis functions; the latter are called contracted Gaussians and have the form 

  

∑ μμ =χ
P

ppgd                  (40) 

 

where the pdμ ’s are fixed constants within a given basis set. Note that contracted 

functions are also normalized in common practice. A few commonly used basis sets 

are lists as following. 

  

Minimal Basis Sets: Minimal basis sets contain the minimum number of basis 

functions needed for each atom, as in these examples: 

 

H: 1s 

C: 1s, 2s, 2px, 2py, 2pz 

  

Minimal basis sets use fixed-size atomic-type orbitals. The STO-3G basis set 

is a minimal basis set (although it is not the smallest possible basis set). It used three 

gaussian primitives per basis function, which accounts for the “3G” in its name. 

“STO” stands for “Slater-type orbitals,” and the STO-3G basis set approximates 

Slater orbitals with gaussian functions. 
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Split Valence Basis Sets 

 

C1          +  C2      =

 
 

The first way that a basis set can be made larger is to increase the number of 

basis functions per atom. Split valence basis sets, such as 3-21G and 6-31G, have two 

(or more) sized of basis function for each valence orbital. For example, hydrogen and 

carbon are represented as: 

  

H: 1s, 1s’ 

C: 1s, 2s, 2s’, 2px, 2py, 2pz, 2p’
x, 2p’

y, 2p’
z 

 

where the primed and unprimed otbitals differ in size. 

  

The double zeta basis sets, such as the Dunning-Huzinaga basis set (D95), 

form all molecular orbitals from linear combinations of two sized of functions for 

each atomic orbital. Similarly, triple split valence basis sets, like 6-311G, use three 

sizes of contracted functions for each orbital-type. 

 

Polarized Basis Sets 

 

+

- +

+

-
-

+  C
+

-
= .

 
 

Split valence basis sets allow orbitals to change size, but not to change shape. 

Polarized basis sets remove this limitation by adding orbitals with angular momentum 

beyond what is required for the ground state to the description of each atom.            

For example, polarized basis sets add d functions to carbon atoms and f functions to 

transition metals, and some of them add p functions to hydrogen atoms. 
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So far, the only polarized basis set 6-31G(d) is used. Its name indicates that it 

is the 6-31G basis set with d functions added to heavy atoms. This basis set is 

becoming very common for calculations involving up to medium-sized systems. This 

basis set is also known as 6-31G*. Another popular polarized basis set is 6-31G(d,p), 

also known as 6-31G**, which adds p functions to hydrogen atoms in addition to the 

d functions on heavy atoms. 

 

Diffuse Functions  

  

. ..C1 +  C2 =
 

 

Diffuse functions are large-size versions of s- and p- type functions (as 

opposed to the standard valence-size functions) which allow orbitals to occupy a 

larger region of space. Basis sets with diffuse functions are important for systems 

where electrons are relatively far from the nucleus: molecules with lone pairs, anions 

and other systems with significant negative charge, systems in their excited states, 

systems with low ionization potentials, descriptions of absolute acidities. The 6-

31+G(d) basis set is the 6-31G(d) basis set with diffuse functions added to heavy 

atoms. The double plus version, 6-31++G(d), adds diffuse functions to the hydrogen 

atoms as well. Diffuse functions on hydrogen atoms seldom make a significant 

difference in accuracy. 

 

High Angular Momentum Basis Sets 

  

Even larger basis sets are now practical for many systems. Such basis sets add 

multiple polarization functions per atom to triple zeta basis set. For example, the       

6-31G(2d) basis set adds two d functions per heavy atom instead of just one, while the 

6-311++G(3df,3pd) basis set contains three sets of valence region functions, diffuse 

functions on both heavy atoms and hydrogens, and multiple polarization funtions:3 d 

functions and 1 f function on heavy atoms and 3 p functions and 1 d function on 
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hydrogen atoms. Such basis sets are useful for describing the interactions between 

electrons in electron correlation methods. 

 

4.  Density Functional Theory 

 

Methods that are rooted in the so-called density functional theory are currently 

regarded as very promising since are able to include a large amount of correlation 

effects in a formalism that essentially requires very similar computational resources as 

the Hartree-Fock procedure. In fact the algorithms of the approach, in which the 

electron density is described in terms of one-electron basis functions, are very similar 

to the single-determinant HF algorithm. This property has helped to establish density 

functional methods as a standard tool for chemistry and physics. 

 

While the concept of expressing part or all of the molecular energy as a 

functional of the electron density goes back to the early days of quantum theory, 

Density Functional Theory (DFT) was put on a rigorous theoretical foundation by the 

Hohenberg-Kohn theorem. It states that there exists unique density ρ  that yields the 

exact ground energy of system. The subsequent work of Kohn and Sham laid the basis 

for practical computational applications of the DFT to real systems. The basis of their 

formalism is the so-called Kohn-Sham equations. 

  

iii EH Ψ=Ψ                  (41) 

  

in which the Hamiltonian H  is defined as 
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⎠
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⎜
⎝
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2 V
2
1H                                                        (42) 

 

where KSV is a local potential defined such that the total density of the non-interacting 

system  
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                                         2

i
i∑Ψ=ρ                                                                (43) 

 

is the same as the density of the “real” system. KSV  has the three components extV , 

CV  and XCV  containing the nuclear and external, Coulomb potential of the electrons 

and the exchange-correlation interactions. 

             

                ∑∑
λσμ

λσμ
μ

μμ ++ℑ++=
v

Cxv
v

vvextKS )P(E)P(EPP
2
1HPVE                    (44) 

 

In most cases the expressions for EC and EX cannot be computed analytically 

and must be obtained by numerical methods. The key difference between the Hartree-

Fock and Kohn-Sham approaches to the SCF methods is the term EXC, which was 

mostly omitted in above discussion. In HF theory, this EXC is written as 

 

                         ∑
λσμ

β
λσ

β
μ

α
λσ

α
μ λσμ=

v
vv

HF
XC )/v)(PPPP(

2
1E                                           (45) 

 

while the KS theory introduces a functional 

  

∫= )drγ,γ,γ,ρ,f(ρE ββαβαα
βαHF

XC                  (46) 

  

for the description. The density gradient invariants γ )( yxxy ρ∇ρ∇=γ  

 

Density Functionals 

 

It is often customary to make a partition of the density functional into an 

exchange and correlation part for the separation of  

  

)(E)(E)(E CXXC ρ+ρ=ρ                  (47) 
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Although distinction between exchange and correlation contributions is 

somewhat artificial in the context of DFT, the above separation considerably 

simplifies the discussion. It should, however, be explicitly noted that the definition of 

EC does not correspond to the ab initio EC since correlation has, by definition, 

meaning only in a mean field approximation and DFT is not using such an 

approximation. The exchange part, on the other hand, follows closely the HF 

definition of exchange, does however not necessarily reproduce the exact exchange. 

 

Exchange 

 

The exchange energy of a uniform spin-polarized gas of spin density σρ  is 

  

∑∫ σ
σ ρρ−= dr))r((f)r(E S

X
S
X                  (48) 

  

with 3
1

X
S
X )]r([))r((f σσ ρα=ρ  and 

3
1

X 4
3

2
3

⎟
⎠
⎞

⎜
⎝
⎛

π
=α . The exchange expression is 

sometimes labeled Slater exchange, thus the superscript S. This exchange expression 

serves as a base for other functional, which can be conveniently expressed in terms of 

their enhancement factor FX over the exchange of the uniform electron gas 

         

                  dr))r()((F))r((f)r(E X
S
XX σσσ

σ
σσ γρρρ−= ∑∫                                  (49) 

 

For instance, the exchange functional proposed by Perdew and Wang uses the 

following factor: 

            
m

64
2

PW
X csbs

m
s0864.01)s(F ⎥

⎦

⎤
⎢
⎣

⎡
+++=                                                    (50) 

with 15/1m = , 14b = , 2.0c =  and )/()24(s 3/43/12 ργπ= σσ
−  σσγ  here is again the 

squared density gradient 2
ω∇ . One of the most used exchange functionals is that of 

Becke 1988, which is often labeled B88 or simply B. 
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)x(sinh61

xF 1

2
3/1B

x −β+
βρ−=                                                           (51) 

 

which uses the values )/(x 3/4
σσσ ργ=  and 0042.0=β  in order to maintain correct 

boundary conditions. In a different approach, Perdew and Wang proposed an 

exchange formula that is designed from purely first principles. 

 

               4
5

1
21

22
43

1
2191PW

X sasinh)sa)(sa(1
s))s100exp(aa(sinh)sa)(sa(1F

++
−+++

= −

−

                      (52) 

 

where 19645.0a1 = , 7956.7a2 = , 2743.0a3 = , 1508.0a4 −= , 004.0a5 =  and s the 

same as in eq. 50. 

 

In practice, the three above exchange functionalism are very similar, and are in 

fact based on minor corrections to the previous ones. Therefore they can be expected 

to produce very similar results. The enhancements over the simple electron gas, 

however, are significant enough and usually constitute a major improvement.  

 

Correlation 

 

While it is possible to obtain EC by some numerical methods from EXC and the 

already known EX (cf. eq. 47) for the uniform electron gas, it is much more common 

to use separate correlation functionals. Distinction is made between local and gradient 

corrected functionals, referring to absence or presence of first order terms of the 

density σρ . The local functional proposed by Vosko, Wilk and Nusair (VWN) was 

obtained using Pad’s approximated interpolations of Ceperley and Alder results of 

their accurate quantum Monte Carlo calculations for the homogeneous electron gas. 

The functional is, 
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where the functions 2/1
brx = , cbxx)x(X 2 ++=  and 2/12 )bc4(Q −=  and the 

constants are 0621814.0A = , 409286.0x0 −= , 0720.13b =  and 7189.42c = . br  

represents are the Wigner-radius and is defined by 3
b )r(

3
4/1 π

=ρ . Together with the 

exchange expression from eq. 48 this constitutes what is often called the local density 

approximation (LDA) or local spin density approximation (LSDA) when spin is 

considered. 

 

Due to the experiences with the LDA and as a consequence of some of its 

shortcomings, recent developments have resulted in a number of gradient corrections 

to local functionals like the aforementioned VWN or a completely new class of 

gradient corrected functionals. 

 

Another frequently used functional has been published by Lee, Yang and Parr. 

It replaces both the local and the gradient part of the LDA correlation functional. 
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where
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⎟

⎠
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⎜

⎝

⎛
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ρ
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w 8
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F )3(
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3C π= , 04918.0a = , 132.0b = , 2533.0c =  

and 349.0d =  

 

Hybrid Functionals 

 

More recently, following an approach proposed by Becke, the combination of 

DFT functionals with ab initio formulations led to a class of expressions which are 

essentially a mixture of both DFT and HF contributions with fitted coefficients for 
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each contribution. The aim of this approach is to provide expressions that include the 

full exchange contribution and avoid side-effects arising from a complete replacement 

of the DFT exchange expression by the HF one. As an example, the B3LYP 

functional looks like this: 

  
LYP
CC

VWN
C

B
XX1

HF
XX0

S
XX0

B3LYP
XC ΔEaEΔEa)Ea(1EaE +++−+=                  (55) 

 

with 80.0a 0X = , 72.0a 1X =  and 81.0aC = , which are values fitted for a selected set of 

molecules to reproduce the heat of formation. The term HF
XE  is calculated using the 

Kohn-Sham orbitals in the manner of the HF procedure by computing the exchange 

integrals )v/v( μμ . The B3LYP functional often uses VWN
C

LYP
C

LYP3
C EEE −=Δ . 
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The Theory of Quantum Chemical Calculations: Excited State Methods 

 

1.  Excited Slater Determinants 

 

The Hartree-Fock method generates solutions to the Schrodinger equation 

where the real electron-electron interaction is replaced by an average interaction. In 

the sufficiently large basis, the HF wave function is able to account for ∼ 99% of the 

total energy, but the remaining ∼1% is often very important for describing chemical 

phenomena. It is therefore clear that in order to improve on HF results, the starting 

point must be a trial wave function which contains more than one Slater Determinant 

(SD) Φ. Then electron correlation methods normally use the HF wave function as a 

starting point for improvements. 

 

 A generic multi-determinant trial wave function can be written as 

 

                                        Ψ = a0ΦHF + ∑
=1i

ai ΦI    (56) 

 

where a0 usually is close to 1. Electron correlation methods differ in how they 

calculate the coefficients in front of the other determinants, a0 being determined by 

the normalization condition. 

 

How are the additional determinants beyond the HF constructed? With N 

electrons and M basis functions, solution of the Roothaan-Hall equations for the RHF 

case will yield N/2 occupied MOs and M – N/2 unoccupied (virtual) MOs. A slater 

determined by N/2 spatial MOs multiplied by two spin functions to yield N 

spinorbitals. By replacing MOs which are occupied in the HF determinant by MOs 

which are unoccupied, a whole series of determinants may be generated as shown in 

Figure A2. These can be denoted according to how many occupied HF MOs have 

been replaced by unoccupied MOs, i.e. Slater determinants which are singly, doubly, 

triply, quadruply etc. excited relative to the HF determinants, up to a maximum of N 
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excited electrons. These determinants are often referred to as Singles (S), Doubles 

(D), Triples (T), Quadruples (Q) etc.  

 

The total number of determinants that can be generated depends on the size of 

the basis set, the larger the basis, the more virtual MOs, and the more excited 

determinants can be constructed. If all possible determinants in a given basis set are 

included, all the electron correlation (in the given basis) is (or can be) recovered. 

Methods which include electron correlation are thus two-dimensional, the larger the 

one-electron expansion (basis set size) and the larger the many-electron expansion 

(number of determinants), the better are the results.  

 

           HF             S-type      S-type       D-type        D-type       T-type     Q-type 

 

 

 

 

 

 

 

 

 

                                                                                                                    

 

 

Appendix Figure A2  Excited Slater determinants generated from a HF reference. 
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2.  Molecular Orbital Theories for Excited States 

 

2.1  Configuration Interaction (CI) 

 

The term “configuration” was originally used for the interaction of just a 

few Slater determinants required for the proper description of some electronic states 

of atoms and molecules, though the concept of configuration interaction has been 

known as a tool for obtaining, at least in principle, the exact solution of the 

Schrodinger equation since the early days of quantum mechanics. The results of CI 

calculations, and especially the results of full configuration (FCI) calculations, have 

been used as benchmarks for testing the newly developed methods. FCI is still the 

only method which is used for the definition of the correlation energy as the 

difference between the exact nonrelativistic energy (represented by the FCI energy) 

and the Hartree-Fock (HF) energy: 

 

Ecorr = Eexact – EHF     (57) 

 

CI is still a standard method for calculation of excited electronic states 

and its conceptual simplicity makes it the method of choice for qualitative explanation 

of phenomena for which the single-determinant Hartree-Fock approximation is 

unsatisfactory because of near-degeneracies or rearrangement of electrons within 

partly occupied shells. 

 

Definition and the essence of configuration interaction 

 

For any CI calculation, we need first an orbital set, i.e., a set of one-

electron functions ϕ = {ϕi, i = 1, 2, … , m}, that satisfy the orthonormality 

 

<ϕi | ϕj>  =  δij     (58) 

 

and the completeness conditions 
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∑
i

| ϕi>  <ϕi | = 1     (59) 

 

In the most applications these orbitals are chosen to be Hartree-Fock 

orbitals, though as will be noted below other types of orbitals (Huckel orbitals, natural 

orbitals, or even nonorthogonal orbitals) may also be used. 

 

Next the orbitals are in a certain order, for example in the order of their 

increasing energy. Then assign to each orbital ϕi an occupation number ni , which may 

take the 0, 1, or 2. The sum of the occupation numbers must be equal to the number of 

electrons. A set of occupation numbers (n1, n2, …, nm) is called a configuration. In the 

ground state configuration of a closed-shell system all the lowest orbitals are doubly 

occupied. For example, for a ten electron system and the orbital set with m = 7, the 

ground state configuration is (2222200). The configuration (2222110), corresponding 

to the excitation of a single electron from orbital 5 to orbital 6, is called a singly 

excited configuration.  

 

For a configuration having n singly occupied orbitals, we can in general 

form 2n spin functions and therefore also 2n different Slater determinants. A true 

number of linearly independent spin functions for a given configuration, i.e., for an 

orbital product function, and a total spin S is given by following formula: 

 

  f (n, S) =  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1-q

n - 
q
n                  (60) 

 

where 

  q = 2
1 n – S                    (61) 

 

In general the selected functions are linear combinations of several Slater 

determinants and, in contrast to individual Slater determinants, they are 

eigenfunctions of the spin operators Sz and S2. Therefore they are called spin-adapted 

configuration fuctions or, most frequently, configuration state functions (CSFs). The 
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spin adapted reference configuration is called the reference state function. Because of 

orthogonality of orbitals and spin functions, the CSFs are also orthogonal, and 

because of the completeness of the orbital set, a set of all possible CSFs forms a 

complete set  

     

∑
i

| Φi>  < Φi | = 1     (62) 

 

Hence the exact wave function for a particular orbitals set may be expressed as  

 

Ψ = ∑
i

ΨΦΦ ii        (63) 

where the overlab intergrals between CSFs and the exact wave function have the 

meaning of expansion coeffients. 

 

Ψ = ∑
i

Ci Φi     (64) 

Use of a complete set of CSFs in the expansion (63) is referred to as the 

complete or full configuration (FCI). Since FCI calculations are computationally very 

demanding, they are only feasible for small sets and a small number of electrons. In 

chemical applications of the CI method, smaller expansions are used in order to 

develop a computationally tractable model. Standard levels of the CI method are 

termed according to the extent of the CI expansion: CIS, CISD, CISDT, and CISDTQ 

correspond to expansions through singly, doubly, triply and quadruply excited CSFs, 

respectively. Those methods will be called truncated CI methods. Truncating the 

excitation level at 1 (CI with Singles, CIS) does not give any improvement over the 

HF result as all matrix elements between the HF wave function and singly excited 

determinants are zero. CIS is equal to HF for the ground-state energy, although higher 

roots from the secular equations may be used as approximations to excited states. It 

has already been mentioned that only doubly excited determinants have matrix 

elements with the HF wave function different from zero, thus the lowest CI level 

which gives an improvement over the HF result is that which includes only doubly 

excited states, yielding the CID. Although the singly excited determinants have zero 
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matrix elements with the HF reference, they enter the wave function indirectly as they 

have non-zero matrix elements with the doubly excited determinants. So that the only 

CI method is generally applicable for a large variety of systems is CISD. For 

molecular properties, the singly excited states thus allow the CI wave function to 

“relax” the MOs, i.e. letting the wave function respond to the perturbation. 

 

Size Consistency, Performance, and Accuracy 

 

Size consistency is the property that is required for any theoretical model 

incorporating electron correlation to be applicable to problems of chemical reactivity. 

It means that the method when applied to an ensemble of isolated molecules should 

give results which are additive for the energy and other properties. Unfortunately, any 

incomplete CI does not satisfy this requirement and its applications therefore must be 

treated with caution if comparison is made for properties of molecule of different size. 

The origin of this deficiency is well understood and the terms contained in the CI 

energy, which do not scale linearly with the number of particles, have been identified. 

The most convenient tool for the examination of size inconsistency in CI is the many-

body perturbation theory. It was found that, unlike in the fourth- and higher-order 

many-body perturbation theory, the unphysical terms in CISD are not canceled and 

their cancellation is only achieved if quadruply and higher excited CSFs are included 

in the CI expansion. Complete cancellation is secured only by full CI, though it is 

believed that CISDTQ properties should be very near the full CI limit for chemical 

systems which can be well represented by a single restricted HF wave function. For 

dimer (H2O)2 and the double zeta basis set the CISDTQ size-inconsistency error 

amounts to 0.0003 au. This is considerably less than the CISD error of 0.0047 au. In 

general, we must expect that CISD does not provide results with the accuracy 

sufficient, for example, for thermo chemistry. This stimulated attempts to eliminate 

unphysical terms in the CISD energy in some computationally simple, though 

approximate way. Several formulas were suggested for the a posteriori correction of 

the CISD energy. The most popular among these is the Davidson correction: 

 

  ΔE = (1- 2
0C )(ECID-ESCF)    (65) 
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where ECID is the CID energy and C0 is the expansion coefficient for the ground state 

CSF. Originally the Davidson correction was developed for CID but it is commonly 

used for correction of CISD energies. 

 

It has been stated that CISDTQ properties are very near to the full CI data 

for systems which can be well represented by a single restricted HF wave function. 

Unfortunately, in spite of the progress made recently in CISDTQ calculation, the 

method cannot be advocated for general use because of the immense number of triply 

and quadruply excited CSFs. The method scales as n10, where n is the number of 

active molecular orbitals, and it can be used only for the smallest molecular systems. 

On the other hand, the CISD method scales only as N6, N being the number of 

(atomic) basis set functions, which makes the method amenable to routine 

calculations. In general, the errors in CISD energy predictions (heats of reactions, 

activation barriers) have to be expected to be considerably larger than that 

corresponding to the ‘chemical accuracy’ (1 kcal/mol-1), even if the Davidson 

correction is applied. CISD fails particularly in those cases where the size-

inconsistency effect is important.  

 

If a higher accuracy is required, it is recommended to pass to the coupled 

cluster (CCs) theory, Basically, CCSD is also an N6 procedure, but the test 

calculations showed that the timing ratio CCSD/CISD ranged from 4 to 8, though as 

with any comparison of two different methods, the ratio depends strongly on the 

efficiency of the two programs. 
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 2.2  Symmetry Adapted Cluster and Symmetry Adapted Cluster 

Configuration (SAC/SAC-CI) Method 

 

SAC theory for the ground state 

 

SAC is abbreviation for the symmetry adapted cluster, the meaning of 

which will become clear later. It belongs to the cluster expansion approach, which 

was originated in the statistical theory of interacting atoms, in the theory of electron 

correlations in atoms and molecules.  

 

Electron correlation is defined on the basis of the HF theory as  

 

                               Ecorr = Eexact – EHF   (66) 

    

                               χcorr = Ψexact - ΨHF     (67)  

 

where ‘exact’ stands for the exact solution of the non-relativistic Schrodinger 

equation. Since the HF model is independent particle model, electron correlations 

represent mainly the collisions of electrons scattering into unoccupied orbitals. We 

introduce an excitation operator +
IT which represents such a collision. For example, a 

collision of two electrons belonging to the occupied orbital ϕi, resulting in the 

scattering into the unoccupied orbital ϕa, is represented by the excitation operator aa
iiT ,  

 

                             aa
iiT  = +

αaa +
βaa αia βia      (68) 

                        

     aa
iiT 0  = βαϕϕβαϕϕβαϕϕ nnaa ......11 , where 0  = HF

gΨ    (69) 

 

Configuration interaction (CI) method is one of the most popular methods 

for including electron correlations. This method is based on the expansion theorem, 

and the correlated wave function is expressed as 
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                 ΨCI = B0 0  + +∑ I
I

I TB 0     (70) 

where BI are expansion coefficients. This method is simple and exact, but is usually 

slowly converging, especially for excited states. The dimension of the configurations 

easily reaches to the order of 108, though many efficient algorithms for handling such 

large matrices are proposed. Further, it is difficult to extract a physical meaning from 

such a large number of configurations. It is also difficult to solve many lower 

solutions of such a large matrix, which is necessary for studying shake-up spectra, for 

example. 

 

The main factor of electron correlation is collisions of two electrons. In 

many electron systems, however, there is a chance for three, four and more electrons 

to collide each other. However, the probabilities for four collisions actually important 

are the products of pair collisions occurring at different places of the molecule. This is 

because the fluctuation potential for the electron correlation is very short range. When 

we introduce a sum of the excitation operation as  

 

                                  T = +∑ I
I

I TC    (71) 

The wave function including higher-order collisional effects is written as 

 

  

           Ψg = (1+ T +1/2 T2 + 1/6 T3 + …..) 0     (72) 

 

where the terms T2, T3, etc., represent two pair collisions, three pair collisions, etc., 

and the factors 1/2, 1/6, etc., are due to the indistinguishability of pair collisions. Eq. 

(72) is more compactly written as  

 

                                  Ψg = exp (T) 0    (73) 

 

which is the cluster expansion. The suffix g again stands for the ground state. The 

theory based on this expansion in called coupled cluster (CC) theory. Hereafter, we 
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call the term, (1+T) 0  as linked term and term, (1/2 T2 + 1/6 T3 + …..) 0  as unliked 

term.  

 

In the above formulation, we have introduced the operators +
IT  

representing two electron excitations (pair collisions). However, generally speaking, 

this is just an example, and we may take any operators physically important. An 

important example is to choose T as a sum of all single excitation operators, 

 

              T(1) = ∑
occ

i
∑

unocc

a

a
iC +

aa ia     (74) 

where i and a stand for the general spin orbital. Then we get Thouless theorem, 

 

             ΨSD =  N exp (T(1)) ΦSD     (75) 

 

where ΦSD and ΨSD are different single determinants, N a normalization constant. 

This theorem states that the transformation of single determinants to another one is 

expressed by the operator N exp (T(1)): the cluster expansion includes the self-

consistency of orbitals. 

 

We note that for open-shell systems, the single determinant ΨSD on the 

left hand side of eq. (75) is not a restricted determinant, but an unrestricted one which 

is not an eigenfunction of the spin-squared operator S2. Generally, the wave function 

of the CC theory is not an eigenfunction of S2, as actually reported for the CCSD 

wave functions for doublet radicals. In the linear expansions like CI, the solution of 

the secular equation is always symmetry-adapted, irrespective of the choice of the 

excited configurations, because the Hamiltonian is totally symmetric. However, this is 

not the case for the non-linear expansions like cluster expansion. Further, as explained 

below, coupled cluster expansion may involve a larger number of variables than that 

necessary for describing the state. 
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These difficulties do not occur when excitation operations are chosen to 

be symmetry adapted. Excitation operator +
IS  are defined to be symmetry adapted 

when the configuration +
IS 0  is symmetry adapted. For totally symmetric singlet 

states, the symmetry adapted cluster (SAC) expansion are defined as 

 

                   SAC
gΨ  = exp (S) 0     (76) 

where 

 

                       S = +∑ I
I

I SC      (77) 

Since +
IS  is totally symmetric, the unliked terms of eq. (76) are also 

totally symmetric. For open-shell states like doublet and triplet states, we need a 

symmetry projector Q as 

 

 SAC
gΨ = Q exp (S) 0  = [1 + S + Q (1/2S2 + 1/6S3 + …) ] 0   (23) 

 

where 0  is a restricted determinant and Q  applies only to the unliked terms, since 

the linked term is already symmetry adapted. The SAC expansion defined by eq. (76) 

is thus different from the CC expansion given by eq. (73). Table 1 is summarized the 

differences in schematic way.  
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Appendix Table A1 Schematic summary of the differences of the SAC expansion 

from the conventional cluster expansionsa. 

 

Expansion Linked term Unliked 

termb 

Number of independent 

variablesc 

Symmetryd 

exp(T) 0  T 0  IT JT 0  Larger  Mixed 

Qexp(T) 

0  

QT 0 →S 0 Q IT JT 0  Larger  Pure 

Qexp(S) 0  S 0  Q IS JS 0  Just as required Pure 
a The operators TI  are not symmetry-adapted, but the operators SI are symmetry-adapted. b Only the 

second-order unliked terms are given. c The number of the independent variables included in each 

expansion is compared with that necessary  for the description of the system under consideration.         
d Symmetry of the total wave function. 

 

Now the solution of SAC theory was considered. In the SAC expansion, 

the unknown variables CI are associated to the linked excitation operator +
IS , so that 

we require the Schrodinger equation, H-Eg SAC
gΨ = 0, within the space of the linked 

configurations as 

 

                             0  H-Eg SAC
gψ = 0   (78a) 

  

                                        0  SI(H-Eg) SAC
gΨ = 0    (78b) 

 

We have the same number of equations as the number of the unknown variables, This 

solution is called non-variational solution. 

 

The variational solution is obtained by applying the variational principle 

to the SAC wave function and we obtain, 

   

                               SAC
gΨ  SI(H-Eg) SAC

gΨ = 0    (79a) 
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                                          SAC
gΨ  (H-Eg) SI SAC

gΨ = 0   (79b) 

  

This equation is valid only for the SAC expansion, but not for the CC 

expansion, because of the reason summarized in Table 1. Generally, the variation 

solution is more difficult than the non-vairational one, because former involves the 

intergrals between the umliked terms. However, we believe, as long as the wave 

function itself is accurate, the difference between the variational and non-variational 

solutions should be small. 

 

It is shown that eq. (79b) is the generalized Brillouin theorem. In 

comparison with eq. (80). 

 

                                   HF
gΨ H a

iφ  = 0   (80) 

 

 where SAC
gΨ  corresponds to HF

gΨ  and SAC
gIS Ψ+  does to a

iφ . As the Brillouin theorem 

is a key equation in the HF/SECI theory, the generalized Brillouin theorem given by 

eq. (79b) is a key equation in the theoretical framework of the SAC/SAC-CI theory. 

The SAC theory has the following properties. The first three are common to the CC 

theory. 

 

(1) It effectively involves higher-order effects of electron collisions. It describes 

dynamic correlations quite effectively. 

(2) It is size consistent or size extensive, so that it correctly describes the energy 

change in the dissociation process such as Xn → nX. This property is a direct 

consequence of the exponential, since 

 

                   exp (A) exp (B) = exp (A+B)    (81) 

 

when the operators A and B are commutable.  
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(3) It includes self-consistency. This property is best represented by the Thouless’ 

theorem given by eq. (75). It guarantees that the cluster expansion is independent of a 

choice of the reference orbitals, when we include all the single excitation operations. 

(4) The SAC theory defines not only the SAC wave function itself SAC
gΨ  for the 

ground state, but also the excited functions which span the basis for excited states. 

The SAC-CI theory is based on this property. This property is probably the most 

important property, among others, and is valid only for the SAC theory. 

 

SAC-CI theory for excited, ionized, and electron attached states 

 

It was thought for a long time that the description of electron correlations 

in excited states is much more difficult than that in the ground state. Excited states are 

generally open shells and are not represented by a single Slater determinant. Many 

different states of many different symmetries and natures are involves in a narrow 

energy range, which makes it difficult to suppose a single general theory in a useful 

form. However, this is not the case in the SAC-CI theory. By using the SAC-CI 

method, we can easily calculate the correlated wave function of the excited, ionized 

and electron attached states, as explained in the following. 

 

The electron correlations in the excited state will be described on the basis 

of those in the ground state. Approximately, excitations and ionizations involve only 

one or two electrons, and most other electrons lie essentially in the same orbitals as in 

the ground state. Therefore, the electron correlations in the excited state should be 

able to be compactly described by considering only some modifications to the ground-

state electron correlations. 

 

The excited functions {ΦK} by using the SAC wave function was written 

as 

 

                          ΦK  =  P +
KS SAC

gΨ      (82) 
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where P is the operator which projects out the ground state wave function, 

 

                   P = 1- SAC
gΨ SAC

gΨ     (83) 

 

and { +
KS }a set of the excitation operations involving the excitations under 

consideration in a orbital picture. From the generalized Brillouin theorem of the SAC 

theory, eq. (79b), it is easily shown that the functions {ΦK} satisfy 

 

               SAC
gK ΨΦ  = 0,  SAC

gK H ΨΦ = 0    (84) 

 

These equation shows, that the set of the functions spans the space for the 

excited states. We therefore describe the excited state by a linear combination of the 

functions {ΦK}, 

 

                           CISAC
e

−Ψ  = K
K

Kd Φ∑     (85) 

which is the SAC-CI theory. 

 

Obviously, the SAC-CI wave function for the excited state satisfied the 

correct relations with the SAC ground state, 

 

        CISAC
g

SAC
g

−ΨΨ  = 0,    CISAC
g

SAC
g H −ΨΨ = 0    (86) 

 

Applying the variational principle to eq. (86) for solving the unknown variables {dK}, 

we obtain 

 

                           CISAC
geK EH −Ψ−Φ = 0    (87) 

 

Different solutions of eq. (86), which correspond to different excited 

states, satisfy 
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              CISAC
f

CISAC
e

−− ΨΨ  = 0,          CISAC
f

CISAC
e H −− ΨΨ     (88) 

 

Since, they are the solutions of the common secular equation. Thus, the 

SAC-CI wave function satisfies the correct relations with the ground state and with 

the other excited states. This is very important when we consider the properties, like 

transitions and relaxations, which interconnect different states. 

  

In the above formulation, we have considered implicitly the excited states 

having the same symmetry as the ground state. However, the SAC-CI theory is also 

valid for the excited states having different symmetries (e.g., triplet), and for the 

ionized and electron attached states. We generalize eq. (82) as 

 

                    

                          ΦK   =  P SAC
gKR Ψ+     (89) 

 

where { +
KR } represents a set of excitation, ionization, and/or electron attachment 

operators. In any cases, eqs. (83)-(88) are valid. 

 

Though, the above formulation of the SAC-CI theory is variational and 

non-variational formulation. The non-variational SAC-CI solution is obtained by 

projecting the Schrodinger equation onto the space of the linked configurations, 

 

                            CISAC
geK EHR −Ψ− )(0 = 0   (90) 

 

Referring to eq. (79), we note that in the non-variational case, the SAC 

and SAC-CI wave functions satisfy the common set of equations. In particular, when 

we consider the excited states belonging to the same symmetry as the ground state, 

the operator { +
KR } in eq. (88) are actually { +

IS }. The solutions of the Schrodinger 

equation belonging to different eigenvalues are orthogonal and Hamiltonian 

orthogonal. Therefore, we obtain eqs. (86) and (88) within the space of the liked 



 175

operators under consideration. These equations are quite important for the theoretical 

consistency of the different states under consideration. 

 

Practically, the non-variational solution is easier than the variational one 

by the reason similar to that stated for the SAC solution, but we have to diagonalize 

non-symmetric matrices. When the SAC-CI program was first coded, it was no 

efficient method for diagonalizing non-symmetric matrices of large dimentions, 

Therefore, we had to prepare the algorithm of iterative diagonaliztions of non-

symmetric, extending the Davidson ‘s algorithm for symmetric matrices.  

 

As the SAC theory is exact, the SAC-CI theory is also exact. Though the 

introduction of the SAC-CI theory so far given is rather formal and straightforward, it 

has some interesting physics. First, omitting the projector, or including the identity 

operator into { +
KR }, then the SAC-CI wave function was written as 

 

                             CISAC
e

−Ψ  = ℜ SAC
gΨ     (91a) 

where the excitatory ℜ (a king of reaction operator) is defined as  

 

                              ℜ = +∑ K
K

K Rd     (91b) 

 

We already know that the SAC wave function well describes the electron 

correlation of the ground state. The excitatory ℜ describes the excitation starting from 

the electron correlation involved in the SAC ground state SAC
gΨ . 

 

Generally, excitation is only one or two electron processes and most other 

electrons lie in the situation (orbitals) similar to those in the ground state. Therefore, it 

is clever to start from the ground-state electron correlation and describe only the 

modifications caused by the excitation. eqs. (91a) and (91b) just represent such as an 

idea, which is the transferability of electron correlations between ground and excited 

states. This method is much easier than calculation all of the electron correlations of 
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each state from the beginning. Since the ground-state electron correlation is easier to 

calculate than the excited state one, when we calculate from the beginning, we first 

calculate it by the SAC method and then utilize it in the SAC-CI method for 

calculating the excited-state correlations based on its transferability. For this reason, 

the SAC-CI expansion is much easier and more rapidly convergent than ordinary CI. 

 

The SAC-CI wave function is also written in the form 

 

                 CISAC
e

−Ψ  = exp 0∑∑ ++
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

K
KK

I
II RdSC     (92) 

 

which has the structure of multi-reference CI. The configurations 0+
KR  represent the 

reference configurations and the operator exp )( +∑ I
I

I SC  represents the excitations 

from these reference configurations. In the latter, we use the coefficients { IC } 

determined for the ground state, which is based on the transferability of electron 

correlations between the ground and excited states. The dimension of the SAC-CI 

method is the number of the reference configurations which are typically in the order 

of 103-105, not like limited to ∼10. Therefore, in the SAC-CI method, there is almost 

no ambiguity in the choice of the ‘main reference’ configurations in contrast to the 

ordinary multireference CI method.  

 

The SAC-CI method can be applied to various kinds of excited states by 

using appropriate excitation operators. It can be applied to excited states, ionized 

states, and electron attached states having spin multiplicities of singlet, doublet, triplet 

and up to septet. An important merit is that we can calculate these different 

electronics states in a same accuracy. We can directly compare the energies and the 

wave functions of different electronic states: a property quite important and useful in 

actual applications. Thus using the SAC-CI method, we can study chemistry and 

physics involving the ground state and excited states of various spin multiplicities. 
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2.3  Time Dependent Density Functional Theory  

 

A DFT method that is strongly analogous to RPA is called time-

dependent DFT (TDDFT). In this case, the Kohn-Sham (KS) orbital energies and 

various exchange integrals are used in place of matrix elements of the Hamiltonian. 

TDDFT is usually most successful for low-energy excitations, because the KS orbital 

energies for orbitals that are high up in the virtual manifold are typically quite poor. 

Casida, and coworker (1998) have suggested that TDDFT results are most reliable if 

the following two criteria are met: (i) the excitation energy should be significantly 

smaller than the molecular ionization potential (note that excitations from occupied 

orbitals below the HOMO are allowed, so this is not a tautological condition) and (ii) 

promotion(s) should not take place into orbitals having positive KS eigenvalues. 

 

Time-dependent density functional theory is widely used as a reliable 

method for the prediction of electronic excitation processes and other fast time-

dependent phenomena involving the electronic response to an external perturbation. 

Density functional theory (DFT) accounts for the electron correlation of a system in 

the ground state by virtue of approximations to the exact but unknown exchange-

correlation functional. Thus, TDDFT can also, in principle, incorporate a large 

fraction of the effects of electron correlation in an excited state within the framework 

of single-excitation theory. In practice, the accuracy of TDDFT employing the most 

widely available exchange-correlation functionals, which are approximations to the 

true functional and so-called adiabatic approximation, has been varied. For vertical 

excitation energies to low-lying valence excited states, TDDFT with these 

approximate functionals has proven quite accurate, significantly outperforming the 

Hartree-Fock based analogues, such as CIS and TDHF. However, for high lying 

excited states or Rydberg excite states, TDDFT underestimates the excitation energies 

by up to 1 eV or more. 

 

Ground-state DFT is based on the papers by Hohenberg and Kohn, and by 

Kohn and Sham. The main results are that the density of system is identical to the 
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density of an associated noninteracting particle system moving in local potential vs (r) 

defined by the Khon-Sham equations (atomic units are used throughout): 

 

   [ ] )r()r()r(v
2
1

iiis
2 ϕε=ϕ⎥⎦

⎤
⎢⎣
⎡ ρ+∇−          (93) 

 

Here the local potential vs[ρ](r) is the so-call Kohn-Sham potential, 

consisting of the external potential vext (the Coulomb field of the nuclei and external 

field if present), the Hatree potential vH , which is trivially calculated from the density, 

and the xc potential vxc which is the only unknown part: 

  

     )r(v)r(v)r(v)r(v xcHexts ++=  (94) 

 

The Kohn-Sham orbitals φi move in the effective field vs which depends 

upon the electron density ρ(r). This density is exactly obtained by summing the 

squares of the Kohn-Sham orbitals and multiplying by their occupation numbers ni. 

  

     2)()( rnr i

occ

i
i ϕρ ∑=  (95) 

 

As the KS potential vs(r) and the density ρ(r) are inter-dependent, the 

equation have to be solved in a Self-Consistent Field (SCF) procedure, which means 

that one iteratively adapts the effective potential vs and the density  ρ until the 

difference in the energy between two subsequent cycles is sufficiently small. In the 

most straightforward fashion, this can be performed by mixing the density of the 

previous cycle with a small part of the density in the present cycle. This “simple 

damping” approach usually converges very slowly, and in practice the Direct 

Inversion in the Iterative Subspace (DIIS) procedure by Pulay and co-workers, is 

much to be preferred. In the DIIS approach, not only the results of previous cycle, but 

the results of all, or many, previous cycles are taken into account, in order to obtain 
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the optimal guess for the next cycle. If one is close to self-consistency, this procedure 

converge the SCF equation above. 

 

In order to solve the KS equations an approximation for the exchange-

correlation (xc) potential vxc(r) is required and the simplest one is the LDA which is 

based upon the local density of the system. The GGAs go beyond this and take the 

local gradient of the density into account as well, allowing for a much improved 

accuracy in the results for energies and geometries. Many other approximations, for 

examples those based directly on the KS orbitals, are also available. 

 

The usual ground state DFT sheme enables one to determine the density, 

and consequently the dipole moment, of a molecule with or without external electric 

fields. This affords the determination of the static polarizability and 

hyperpolarizability tensors α, β and γ by performing calculations in small electric 

fields of varying magnitudes and directions. In this so-call finite field (FF) approach, 

the tensor are then determined from finite difference techniques. The main advantage 

of this approach is that no programming work is needed. Any standard DFT code will 

allow the determination of static properties in this manner. However, for the 

determination of higher order tensors, such as γ, one need very well converged 

solution to the KS equations in order to make reliable predictions, which may be 

technically hard to achieve and which will certainly lead to considerable increase in 

CPU time consuming. 

 

The most fundamental disadvantage of the FF approach, however, is that 

one has access to static properties only. The frequency-dependent polarizability and 

hyperpolarizabilty tensors are not accessible. Excitation energies and oscillator 

strengths can also not be obtained from the FF calculations. This is and important 

drawback of the FF approach, as it makes a direct comparison with experimental 

results are impossible. Especially for hyperpolarizabilities, it is known that there are 

substantial differences between the frequency-dependent and zero frequency results. 
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If one is interested in the time dependent properties mentioned above, a 

time dependent theory is required. In the DFT framework, this means that one has to 

start from the time dependent KS (TDKS) equations as derived by Runge and Gross; 
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The time dependent KS potential vs(r,t) is subdivided in the same manner 

as its static counterpart: 

  

      )t,r(v)t,r(v)t,r(v)t,r(v xcHexts ++=  (97) 

 

the Hatree potential being explicitly given by: 

  

      ∫ −
ρ

=
'rr
)r,'r('dr)t,r(vH  (98) 

 

and the time dependent xc potential vxc[ρ](r,t) being an unknown functional of the 

time dependent density ρ(r,t) now given by: 

  

      ∑=
occ

i
ii trntr 2),(),( ϕρ  (99) 

 

If a certain approximation for the time dependent xc potential vxc (r,t) has 

been chosen, the TDKS equations can be solved iteratively to yield the time 

dependent density of system, which may be exposed to an external time dependent 

electric field. If one is interested in the effects due to extremely large laser fields, the 

perturbative expansion of the dipole moment become meaningless, and the TDKS 

equations have to be solved non-peturbatively. This has until now been performed for 

atoms, by Hirata and coworker (1999), and more recently also by others, and gives 

access to such effects as higher harmonic generation (HHG), which are not accessible 
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in a perturbative approach. The drawback of this is that the calculations are very time 

consuming, forbidding the treatment of medium-sized molecules. If one restricts 

oneself to properties which are accessible through perturbative methods, as we will do 

here, a much more efficient approach is possible, allowing the treatment of large 

molecules (>100 atoms).  

 

   2.4  An Intermediate Neglect of Differential Overlap (INDO) Technique 

for Spectroscopy  

 

The intermediate neglect of different overlap (INDO) is based on the 

simplest molecular orbital theory that properly accounts for the two-electron terms 

required in spectroscopy. INDO/s, where the one-center core integrals are obtained 

from ionized potentials only, rather than from ionization potentials and electron 

affinities, is used to calculate the ground-state configuration in terms of molecular 

orbital coefficients and eigenvalues.  

 

In the molecular orbital model, using the unrestricted Hartree-Fock 

theory, we are interested in solving the Hartree-Fock equations 

 

    FαCα = CαEα     (100) 

 

for an orthogonalized atomic basis set {φμ}, where Eα is the diagonal matrix of 

eigenvalues for the α spin molecular orbital, Cα is a square matrix the i th column of 

which is the molecular orbital coefficients of the i th molecular orbital φi
α 

 

    φi
α = Σcαiμ φμ      (101) 

 

Fα is the Fock or energy matrix 

 

    Fα = H + J - Kα  ≅  H  + Gα   (102) 
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and similar expressions are appropriate for β spin matrices and orbitals. In the above, 

H is the one-electron matrix, and Gα = J - Kα is the two-electron matrix consisting of 

Coulomb terms minus exchange. The one-electron matrix H is specified by 

 

   HAA
μμ = U AA

μμ  - ∑
≠AB

ZB(φμ 1−
BR φμ)  (103)     

 

   U AA
μμ  ≅ (φμ AA RZ /2/2 −−∇ φμ)   (104) 

 

   Hμν = (φμ AA
A

RZ /2/2 ∑−−∇ φμ)   (105) 

 

Using the INDO model of Pople, Santry, and Segal we obtained 

 

   HAA
μμ = U AA

μμ  - ∑
≠AB

ZBγAB    (106) 

 

    HAA
μν = 0     (107) 

 

   HAB
μν = (β0

A,μ + β0
A,μ)Δ μν/2    (108) 

 

γAB= ννμμ φφφφ ≅  )2()2(r)1()1()2(d)1(d 1
12 υυ

−
μμ φφφφττ∫   (109) 

 

{β0
A,μ} are atomic parameters, chosen empirically to give best agreement with 

experiment. The same parameter is used for either an s or p atomic orbital, β0
A,s = 

β0
A,p, but a different parameter is chosen  for the d orbitals. Δ μν is a proportionality 

constant, usually the orbital overlap calculated treating φμ and φν as Slater-type 

orbitals, or an integral simply related to the overlap. γAB is the two-electron Coulomb 

integral calculated treating φμ of atom A and φν of atom B as if both were of s 

symmetry. Such an approximation is required by rotational invariance. Since the 

orbital exponents of s and p atomic orbitals are chosen the same for a given atom,  
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γAB
ss = γAB

sp = γAB
pp = γAB. However, the exponent of a d atomic orbital is not the same 

as an s and p.  

 

In the unrestricted Hartree-Fock formalism that is used here, the G matrix 

elements are given by 

 

   Gα
μν = νλμσ−σλμν

σλ
α

σλ
σλ∑ PP   (110) 

 

with a similar expression for the β electron  Gβ matrix. Here Pα is the first-order α 

spin density matrix or, in the orthogonalized set envisioned here, the α spin charge 

and bond order matrix  

 

    Pα
μν = aa

MO

a
a nCC ν

α
μ

α∑     (111) 

 

Where na = 0 or 1, the occupancy of φαa, and P is the total first-order density 

 

    P = Pα + Pβ     (112) 

 

Under this formalism, for a closed-shell system 

 

    Pα = Pβ = 1/2P     (113) 

 

Invoking the INDO model simplifies eq. (109) greatly: 

 

 Gα
μμ = σμ

∉σ
σσσλ

α

σλ
σπ γ+νλμσ−σλμμ ∑∑

A

A

P  ]PP[ ; μ ∈ A  (114) 

 

 Gα
μν =  ]P2/1P[

A

νλμσ−σλμν
σλ

α

σλ
σπ∑ ; μ, ν ∈ A  (115) 
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   Gα
μν = - Pα

μν γ
νμ
 ; μ ∈ A, ν ∈ B, A ≠ B  (116) 

 

with similar expressions for Gβ. 

 

The two-electron two-center Coulomb integrals γ
νμ
are required for eq. 

(109) and for eq (116). For spectroscopy, however, a great deal of experience has 

been gained by using Coulomb integrals chosen semi-empirically.  

 

The two-electron Coulomb integrals are evaluated from a modified 

Mataga-Nishimoto formula 

 

    γAB  =  
ABBBAA R)/(f2

f
+γ+γγ

γ   (117) 

 

where RAB is the distance between the two centers in Bohr radii, γAA is obtained from 

 

    γAA = F0(AA) = IA - AA   (118) 

 

as the difference between the ionization potential and electron affinity of an s, p or d 

electron. The formula is modified by the introduction of the parameter fγ as suggested 

by Weiss, which set equal to 1.2. This value has been extensively used and has proven 

very successful in the calculation of spectra of conjugated systems. Since values of IA 

- AA are similar for s and p orbitals, we make the approximation that γ AA  = γ ss  = 

γ ps = γ pp  = F0(AA) as before.  

 

The INDO spectroscopic model has been parameterized by comparison of 

experimental spectra with calculated results obtained after extensive studies with 

singly excited configurations in a configuration interaction treatment. This basic 

model has been extended to include members of the first transition series (Zerner et 

al., 1979), and has been applied to rather large systems in which the role of higher 

excited configurations (double excited, triple excited, etc., as opposed to higher 
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energy configurations) is uncertain. Although use of semi-empirical two-electron 

integrals (γ) and empirical resonance integrals (β) might be expected to include the 

effect of higher energy excitations in an average way, no such parameterizations can 

be expected to compensate for multiple excited configurations if those configurations 

are actually in the spectroscopic region of interest, or if a given double excitation 

heavily mixes with the reference configuration in the mathematical description of the 

ground state. In these cases, certain higher excitations must be included explicitly. 

Preliminary investigations seem to indicate that higher excitation excitations can be 

included in the model without extensive re-parameterizations. Nevertheless, some 

systems cannot be well described without these higher excitations, even with the 

given semi-empirical parameterizations. The frequency of these more difficult to 

handle systems is expected to increase with increasing molecular size, and the effect 

will be aggravated by the presence of a transition metal. The presence of two like 

transition metals in most complexes will require consideration of higher excitations in 

the description of both ground and excited states. 

 

In addition to the model being grounded on singly excited configuration 

interaction, which is not a severe limitation in most cases, the model is founded on 

basis set of valence-type orbital.  Since Rydberg-type orbitals are not included in the 

atom basis, Rydberg-type states cannot be described. This is as severe a limitation on 

small molecules where the Rydberg states are among the lowest lying excited states as 

exclusion of higher excitations is for very large systems, where they are low lying. 

For most molecules Rydberg states might be expected to make their appearance 2-3 

eV below the first ionization potential. In this region of the spectrum the density of 

states is quite high. The appearance of broad absorptions usually found within 2-3 eV 

of the first ionization potential for large systems may have as much to do with the 

presence of many electronic origins as it have to do with the vibration broadening 

usually considered. 

 

 

 


