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Abstract
Assessment of land use and land cover (LULC) change in any region is one of the prominent 
features used in environmental resource management and its overall sustainable development. 
Tools to measure the past, present, and build a future scenario based on them are necessary 
for an effective evaluation of LULC changes. The changes in LULC are inevitable throughout 
the world, but especially in developing nations. Without the identification of acceptable 
methodologies and approaches, the future perdition will be less accurate since LULC is too 
complex and dynamic. The integrated Cellular Automata Markov Chain (CA-Markov) model 
is therefore regarded as a capable estimator. The Khlong Nam Lai Watershed (KNLW) LULC 
alterations were examined in this study using various images and data that were taken from 
satellite data in the years 2001 and 2021 to generate the LULC scenario in the year 2041. The 
model was validated using actual data and projected to the year 2021. The overall agreement 
on the two extracted maps was 97.23 % in the year 2001 and 96.41 % in the year 2021, 
respectively. According more detailed analysis of the validation of calibration based on the kappa 
index were showed the highest data reliability of 0.97 in 2001 and 0.96 in 2021, respectively. 
The LULC of KNLW in the year 2041 will undergo changes in the KNLW based on the past 
scenario (2001 to 2021). Concurrently, the forest, paddy field, para rubber, and other classes 
continue to decline, except cassava, sugarcane, urban, and orchard. The results obtained showed 
that the forest class had continued to reduce more than other classes. As a result, the research 
can aid in the prevention of LULC problems affecting life, ecology, and the environment, 
including developing the necessary planning guidelines for limited natural resources, such as 
planning for sustainable watershed management using systematic and sustainable concepts. 

Keywords: Land Use and Land Cover Change; Integrated Mathematical Model; Watershed

EnvironmentAsia 16(1) 2023 16-27
DOI 10.14456/ea.2023.2

ISSN 1906-1714; ONLINE ISSN: 2586-8861

Predicting Spatial Land Use and Land Cover Change Using an 
Integrated Mathematical Model in the Khlong Nam Lai Watershed,

Kamphaeng Phet Province, Thailand
Banchongsak Faksomboon*

Department of Environmental Sciences, Kamphaeng Phet Rajabhat University,
Kamphaeng Phet, 62000 Thailand

* Corresponding Author: banchongsakf@gmail.com
Received: October 28, 2022; Revised: November 30, 2022, Accepted: December 6, 2022

1. Introduction
The land use and land cover (LULC) 

changes have raised concerns on a worldwide 
scale since they have an impact on the global 
system (Hailu et al., 2020). Globally, variations 
in LULC are the key anthropogenic drivers of 
national resource change on all time-based 
and spatial scales (Naschen et al., 2019). On 
a local and global scale, LULC changes have 
created unique concerns in natural resource 
management and sustainable development. 

Land use encompasses all forms of varying 
land usage for varying human demands. The 
most crucial criteria are making the best use 
of the land available, understanding land 
use patterns, and being aware of how each 
has changed through time. Human activity 
has had an impact on LULC resources on 
a local, regional, and global scales, such as 
rising land surface temperatures, rainfall 
distribution, ecosystem service disruption, 
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and ecohydrological impacts (Gohin et al., 
2020; Bhattacharya et al., 2020; Huang et al., 
2020; Banchongsak et al., 2022). Therefore, 
the quality of the land cover is formed by 
complex interactions between ecological, 
physical, and hydrological characteristics 
in a particular area (Chemura et al., 2020). 
Assessing the current spatial and temporal 
dynamics of LULC is vital to monitoring the 
trend of changes for better future assessment.

The spatial and temporal impacts of 
rapid land use change go beyond urban and 
rural boundaries (Kojuri et al., 2020; Kamran 
et al., 2020). The excessive use of LULC for 
different political and economic purposes 
can reduce the current and future capacities 
of the appropriate use of land. As a prime 
example, socioeconomic aspects of land use 
change in the agriculture sector have become 
a serious issue when the drought impacts have 
been followed by the expansion of roads and 
public transportation, which has made land 
abandonment in rural areas easier and faster to 
move. Consequently, productivity reduction, 
unsustainable agricultural development, and 
many other environmental and socioeconomic 
issues with strong spatial and temporal 
impacts appear. An effective current LULC 
assessment can help farmers save land in the 
future (Tang et al., 2020). On the other hand, 
rapid urbanization can reduce rural resources 
by a wide range of environmental impacts 
(habitat quality, resource degradation, e.g.), 
as urban expansion and urban sprawl change 
arable lands to other urban land use and 
threaten natural resources.

The effects of LULC changes on 
ecological changes were commonly studied 
in a variety of fields using multi-temporal 
image methods. The studies revealed 
that human actions and natural resource 
disturbances are the fundamental drivers 
of LULC dynamics (Singh et al., 2015; 
Basommi et al., 2016; Singh et al., 2018; 
Varga et al., 2019; Banchongsak et al., 2022). 
The effective evaluation for standardization 
and compatibility between data sets and the 
possibility of mapping maps depends on the 
appropriateness of present and future land 
use. In contrast to previous models, logistic 
regression models do describe the weights of 
the driving forces. The CA Markov is a mixed 

model that combines the ideas of the Markov 
Chain and Cellular Automata (CA), an open 
configuration that may be easily merged 
with knowledge-driven models (Modeling 
spatiotemporal dynamic high accuracy result). 
When, The Markov chain is made up of a set 
of probability values that show the probability 
of converting user interfaces over some time, 
depending on the amount of change in the past. 
It is theoretically possible for a certain region 
of the globe to go from one land use category 
to another at any moment. Matrix-based 
Markov Chain analysis is used to examine 
all changes in land use among all distinct 
groups that are accessible to represent land 
uses. In the past three decades, the Markov 
Chain model has become more widely used 
for a variety of LULC research due to its 
accuracy and dependability (Nadoushan et al., 
2015). The transition probabilities of various 
land use interactions at various timeframes 
are evaluated using CA-Markov. These scale 
transitions allow for the spatial dominance 
of one or more land uses over other land 
uses. With this method, the matrix of the area 
changes shows how many pixels will shift 
from one land use class to another during 
specific periods. Coating classes have been 
employed as chain states in Markov Chain 
analysis.

The Markov Chain model produces 
a possible change matrix and an output 
picture from a possible change matrix for 
the last year after it has analyzed images 
of land use zoning. The likelihood that 
each class of land use classification will 
switch to different land use in the future 
is displayed in a probable change matrix. 
One of the best bottom-up approaches for 
simulating land use change is the Markov 
Chain and cellular automata model. As 
a user-friendly model for predicting the 
future spatial model and LULC through the 
identification of complex system dynamics. 
Furthermore, it is acknowledged as an 
effective two-dimensional technique for 
illustrating both the spatial and temporal 
dynamics of place and space dynamics. In 
tropical and subtropical regions, the Markov 
model’s efficacy has been demonstrated on 
various scales and with excellent accuracy 
(Gidey et al., 2017). Recent developments in 
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Geographic Information Systems (GIS) and 
Remote Sensing (RS) increase the precision 
of computation and modeling. Several 
studies indicate that the CA–Markov model 
when combined with RS and GIS creates a 
suitable method for studying the dynamics 
of LULC changes (Riccioli et al., 2013; 
Roose and Hietal, 2018; Banchongsak 
et al., 2022). In this study, the quantification 
of the transition probabilities of various 
land cover categories from discrete time 
steps is frequently done using a Markov 
Chain model. Then, a Cellular Automata 
(CA) model is applied to these probabilities 
to forecast spatially explicit changes 
over a predetermined period. An initial 
distribution and a transition matrix serve 
as the foundation of a CA-Markov model, 
which assumes that the factors responsible 
for the observable patterns of land cover 
categories will continue to operate as they 
have in the past. Because we are interested 
in extrapolating the pre-intervention 
landscape into the future while assuming 
no change in the type of intervention, this 
very assumption makes a CA-Markov model 
acceptable for a counterfactual approach.

The current LULC of the Khlong Nam 
Lai Watershed (KNLW) issue is likely 
to worsen and intensify, due to the high 
concentration of agricultural activities. The 
natural resources become a serious issue for 
the KNLW, affecting the quality of life for 
people and other creatures living along in the 
surrounding areas. This study uses historical 
and contemporary analyses to predict future 
LULC changes in the KNLW. The objective 
of this study to simulate each LULC using CA 
and Markov Chain in the KNLW and prepares 
data for the LULC map from the years 2001 
to 2021, forecasts using the Markov model 
to improve simulation accuracy in the 2041 
analyzes of KNLW. The result of this study 
will contribute to the existing or assist in 
building a new scientific knowledge base on 
the spatial-temporal change of LULC and link 
to the natural resource protection of KNLW. 
This will benefit all stakeholders, including 
natural resource professionals, policymakers, 
and researchers, as well as the community 
regarding sustainable management and 
monitoring of LULC and the ecosystem.

2. Materials and Methods

2.1 Study site
 

The Khlong Nam Lai Watershed (KNLW) 
area is in Northern Thailand, between latitudes 
99°10′57.14′′E and 99°20′49.63′′E, and 
longitudes 16°18′52.41′′N and 16°09′29.54′′N. 
The KNLW, with a 193.27 Km2 area, is the 
most important part of the Ping Watershed. The 
land use was classified into 9 classes: paddy 
field, water body, sugarcane, cassava, para 
rubber, forest, orchard, urban, and other. The 
land east of the KNLW area is predominantly 
agricultural, filled with cassava and paddy field. 
To the west are the foothills, mostly covered 
with forests and mountains, with elevations 
rising to 1,100 meters above mean sea level in 
Figure 1 (A). The KNLW experiences bimodal 
conditions in which the wet and dry seasons are 
distinguished. The wet season normally occurs 
between May to October and the dry season 
between November to April. The climate of 
the KNLW area in terms of annual rainfall 
observed from the years 2020 to 2021 was 
1,304.60 mm and the highest rainfall from May 
to October was between 159.4 - 268.8 mm,
which covers about 88.23 % of the annual 
rainfall, and only 11.77 % of the rainfall 
from November to April was 2.3 - 52.80 mm 
in Figure 1 (B). The average humidity and 
temperature were 75.80 %, and 28.16°C, 
respectively in Figure 1 (C and D). According 
to the Thai classification system, there are 2 
soil groups.

2.2 Cellular Automata (CA)
 
The CA model demonstrates the nearest 

neighbor effect and how many elements alter 
substantially over time mathematically. In 
actuality, CA frequently creates homogeneous 
states and self-similar patterns. In general, it is 
used to investigate chaos and self-organization 
in dynamic systems more thoroughly (Wolfram, 
1983). Additionally, CA demonstrates how 
cells interact; it displays the quantity and 
geographic variation of each value in several 
cells (Arsanjani et al., 2011). Due to the 
complexity and dynamic nature of LULC, CA 
is a dynamic model that may be mixed with 
other models and is discrete in time, place, 
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Figure 1. Geographical location of KNLW area; (A), Annual temperature; (B),
Annual humidity; (C), and Annual rainfall; (D)

and state. Cells can alter their state in time 
and space using geometrical relationships and 
spatial order. These modifications could be 
taking place at the edge or in the middle of a 
cluster of cells. In general, and geographically, 
borders move very frequently, but when 
they begin at the heart of a clump of cells, 
the effects on the future will be profound 
(hydrologic changes, e.g.). The negative 
and positive dimensions of the quality of 
change are clarified by the computation of 
all these nonlinear dynamical transitions 
from one value of a cell to another value.

With the combination of the spatial and 
temporal aspects of the dynamic method, the CA 
model reliability makes it a popular and successful 
technique to address LULC alterations (Zhou et al.,
2020). By combining conditional and statistical 
principles, this model can be modified to predict 
the transition of each land use classes on a calibrated 
geographical and temporal scale. The modeler 
can apply the knowledge of important elements 
influencing past LULC changes practically. How 
sensitive the model was to calibration, classification, 
parameter value, chosen time, and the CA model 
must address space. Additionally, how well did 
the model simulate LULC changes, presence, 
and location (Jabbarian Amiri et al., 2017).

2.3 Markov Chain model
 
A Markov Chain is a random process in 

which a single limiting condition moves from 
point i to point j in a system with a transition 
probability of pij. These transitions between 
the many components of this system vary; 
some of them change while others stay the 
same in terms of time. Each class that is 
identified in land use research may persist 
for a long period, and some individuals may 
switch to different classes. Accordingly, using 
historical data for each class, a matrix of 
actual transition probabilities can be utilized 
to forecast future land use change. The model 
of self-working cells has found widespread 
use in anticipating land use change due to 
its dynamic nature and unique properties in 
simulating the natural and physical elements 
of the earth’s surface (Alimohammadi et al., 
2008).

The Markov Chain is a collection of 
random processes where each process’ current 
outcome solely depends on the outcome of 
the process immediately to its left or right. 
However, Markov Chain random variables 
might have multiple probability distributions, 
and each one only depends on the variable that 
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came before it (Behbahani and Heidarizadi, 
2019). The following is a list of random 
variables in Equation 1.

In Equation (1), X is the state of the system 
at a time. The Markov Chain sample space 
for random variables might be continuous 
or discrete, small or large. Any random 
variable can be represented by its probability 
distribution under the assumption that the 
sample space has a finite number of discrete 
states. With the use of a vector that contains 
the probabilities for each value in the sample 
space, we can visualize this distribution in 
Equation 2.

In Equation (2), P is the probability of 
making a transition from the state. According 
to the Markov chain definition, knowing 
the first - (i) of the component (1 – i) of the 
chain component and the interface that my 
component produces is enough to make the 
chain. The conversion of probability vector 
components by this function is obtained 
according to Equation 3.

In Equation (3), T is the t-step transition 
probability given by the matrix. If in the 
Markov chain, the relationship between 
successive random variables does not depend 
on their position in the chain. The relationship 
homogeneous chains in Equation 4.

These relationships can be summarized 
in Equation 5.

Two raster maps are always used in this 
analysis as the model inputs. Additionally, the 
two generated maps, the gap in time between 
the two photos, and the prediction are all 
taken into account in this model. The model’s 
output also contains the potential for changing 
the status, a matrix of the converted areas for 
each rank, and, after the images, conditional 
probabilities for the conversion of various 

uses. A Markov Chain analysis is a method 
of calculating the transition probability matrix 
for a future evaluation based on a first-time 
assessment (past and present) (Asadzadeh 
et al., 2018).

2.4 CA-Markov model
 

CA-Markov is used for time and purposes. 
We lack knowledge or our understanding 
is constrained by physical and temporal 
constraints in the future. The CA-Markov 
Chain model is frequently used to display the 
transitional probabilities of various LULC 
across various time intervals. The CA model 
employs these probabilities to demonstrate 
significant geographic shifts in LULC. 
Additionally, given the significant influence of 
the drivers who have established this pattern, 
these changes may persist in the future. This is 
highly helpful in predicting the dominance of 
LULC in the future and understanding how it 
will affect the environment, natural resources, 
and the creation of the landscape (Firozjaei 
et al., 2018). Different environmental 
dimensions cannot be incorporated into 
the simulation using the CA model alone. 
For modelers like Markov Chain, CA’s 
ability to combine with other models makes 
it particularly intriguing. An efficient 
mixed model for simulating future LULC 
modifications and natural complexity is the 
CA-Markov Chain model (Moein et al., 2018; 
Mirzaeizadeh et al., 2015). The CA-Markov
model takes time into account when displaying 
trends and the factors that will lead to 
transitions that will manifest in the future. 
The CA-Markov cells change systemically 
by influencing adjacent neighborhoods, 
producing the spatial formation for each 
class. This is how the cells’ value changes 
produce a new spatial pattern for the area, and 
these changes are associated with a cohesive 
transition in entire cells over and done with 
time and space. Additionally, if the center 
of a certain set of cells has less effect, the 
other classes will have greater influence, and 
changes will occur much more quickly. The 
importance of these classes in the overall 
system can demonstrate where and how 
positive and negative make the transitions 
when a collection of cells occasionally shifts 

(  )

(  )

(  )

(  )

(  )
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between a few different classes throughout 
time. Significantly, because of consistent 
transition rules, nearby cell’s values change, 
making them more like themselves and 
affecting the entire system.

2.5 Data preparation for LULC changes 
analysis

To explain LULC changes in the context 
of this study, Google Earth Engine employed 
satellite data search images. Landsat images, 
including those taken from the real two 
satellite observations in 2001 and 2021, 
were used because of their spectral and 
geographic resolution, capacity to modify 
the topography and availability. Since the 
satellite data for the KNLW (2001 and 
2021) was produced by various Landsat data 
collections via various routes, This satellite 
offers precise maps with high resolution that 
have both been preprocessed (atmospherically 
and geometrically). This study used the 
supervised classification of the Support Vector 
Machine (SVM) for the pre-identification 
of the precisely targeted classification once 
the photos were transferred using the ENVI 
program. The images were categorized using 
supervised classification using maximum 
likelihood estimation, which produced a 
pixel-by-pixel land use map of the KNLW. 
Finally, Terrasat software processed CA-
Markov for LULC prediction in KNLW for 
20 years in the future. 9 classifications were 
therefore identified as the main LULC (forest, 
urban, sugarcane, cassava, orchard, paddy 
field, para rubber, water body, and others). 
The correctness of the data was validated by 
calibration based on the Kappa coefficients to 
model future LULC changes, and the overall 
agreement on the two extracted maps was 
97.23 in the year 2001 (from Landsat 5) and 
96.41 in the year 2021 (from Landsat 8) in 
Table 1, respectively.

3. Results and Discussion

3.1 Transition probabilities and matrix for 
LULC in 2021

 
The combination of the two images, 

which were extracted from two distinct 
Landsat images collected in 2001 and 2021, 
was used to estimate the potential magnitude 
and percentage of LULC. The significant 
LULC variations in KNLW after about 20 
years of the study indicated that the areas 
of land under different LULC types and 
percentage rate of changes are given in Table 2
and Figure 2. According to the statistics 
gathered, the forest was the biggest LULC 
in the KNLW with 62.10 %, 60.17 %, and 
58.24 % or around 120.02 km2, 116.29 km2, 
and 112.56 km2 in the years 2001, 2021, and 
2041, respectively. Following the significant 
LULC changes in the KNLW depicted, there 
were an increase in cassava, sugarcane, and 
urban areas of 2.206 %, 0.273 %, and 0.197 %,
or around 4.263 km2, 0.528 km2, and 0.380 km2
from the year 2001 to 2021, and 2.244 %, 
0.286 %, and 0.119 %, or around 4.337 km2,
0.552 km2, and 0.230 km2 from the year 
2021 to 2041, respectively. In the same 
way, orchards increased slowly but steadily 
between the years 2001 and 2021 by 0.060 % 
or around 0.115 km2, and 0.182 % or around 
0.352 km2 in year 2021 to 2041. In contrast, 
the paddy field shrank considerably during 
2001 to 2021 by about 0.674 %, which is equal 
to 1.302 km2, and 1.503 km2 in year 2021 to 
2041, as well as para rubber and other area 
during 2001 to 2021 decreased by 0.062 %
and 0.064 %, which was about 0.120 km2 
and 0.123 km2, and 0.061 % and 0.061 % 
or around 0.118 km2 and 0.118 km2 in year 
2021 to 2041, respectively. There is a slower 
decrease in the water body by less than 0.005 %
and 0.002 %, which is roughly about 0.009 km2
and 0.004 km2 from 2001 to 2041.

Table 1. SVM classification accuracy for LULC
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Table 2. The trend of LULC perdition between 2001 and 2021, as well as 2041

Figure 2. LULC change graph between 2001 and 2021, as well as 2041

The changes in LULC for the study period 
(2001 to 2041) are in Figure 3. The results 
reveal that the highest net gain showed an 
increase of cassava by 4.45 %, followed by 
sugarcane (0.56 %), urban (0.32 %), and 
orchard (0.24 %), while net loss was in a forest 
(3.86 %), followed by paddy field (1.45 %), 
para rubber and other (0.12 %), and water 
body (0.01 %), respectively.

3.2 Validation of the model
 
Verification of models by calculating 

the information needed to match the created 
thematic map with the actual map of the 
area is frequently essential to assess image 
correctness. The thematic map created by 
the classification of satellite images should 
be contrasted with the two-subject map 

of terrestrial reality. It is not possible to 
demonstrate the reliability of the image by 
measuring merely two points in one or two 
classes. Although the LULC class changes 
in a certain area may not have altered, the 
LULC geographical distribution in the area 
has changed dramatically. As a result, their 
location should be taken into account in 
addition to the class location. The number 
of map readings and matching maps can be 
expressed in a variety of ways, and these 
methods are based on the many functions that 
have been made available to accomplish. The 
percentage of map cells with equal values 
is shown by the general accuracy criterion 
(depending on their location). This criterion 
is not satisfied by cells that do not match. 
It refers to the proper classification, which 
may be followed by a random agreement 
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between the two images, about the observed 
accuracy of the error in the expected error 
matrix (Moein et al., 2018). Comparing 
maps based on chosen classes from 2001 
and 2021 reveals that they are trustworthy. 
The reliability of the findings demonstrates 
the veracity of each classes declining and 
growing spatiotemporal rates. As a result, 
the CA-Markov model can be trusted to 
forecast future LULC. Because CA-Markov 
is a forecasting model built on historical 
data collection, it examines the relationship 
between past trends and then offers potential 
future outcomes. CA-Markov, on the 
other hand, excludes the environment and 
socioeconomic factors.

3.3 LULC transition probabilities and 
transition matrix for the year 2041

 
Natural resources are a significant 

problem in KNLW because of the high 
concentration of agricultural activities 
in this area. Natural forest with high 
environmental values was found to be 
continuously declining under the current 
land management trend, causing the loss of 
the KNLW ecological values. The current 
and simulated LULC dynamics of the 
KNLW indicate that the cassava, sugarcane, 
and urban land LULC classes are very likely 
to continue to supplant other LULC classes. 
Due to the extensive use of water and soil 

resources for agricultural purposes, humans 
have a considerable negative impact on the 
KNLW region. It seems any reduction and 
increases in each LULC class in this region 
is highly related to the quality of one of them 
both. However, the east appears to offer 
a better environment for the extension of 
agricultural fields in addition to changing 
forest areas. According to the results, forest 
area will continue to decrease gradually 
over time. For example, it will decrease 
by 60.17 % in 2021 and 58.24 % in 2041. 
Significantly, the increase in urban land not 
only continues throughout the entire period 
but also is the primary factor behind the 
declines in other classes, starting with 4.03 %
in 2021 and continuing with 4.15 % in 2041. 
On the other hand, the decline in other 
classes will continue with a slower rhythm 
of reduction in comparison to previous 
times. Paddy fields fell from 9.65 % in 
2021 to 8.87% in 2041, while para rubber 
fell from 1.27 % in 2021 to 1.21 % in 2041
in Figure 4 and Figure 5.  Accurate 
measurement of change in different LULC 
classes, on the other hand, can be made 
possible by incorporating the effects of 
other variables such as market influence, 
population growth, and technological 
advancement. Typically, decision-makers 
and planners for sustainable land resources 
might benefit from understanding the 
primary factors in the area.

Figure 3. Net LULC changed from 2001 to 2041
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Figure 4. The trend of LULC changes perdition between 2001; (A), 2021; (B), and 2041;(C)

Figure 5. LULC map of 2001; (A), Extracted LULC map of 2021; (B), The Simulated 
LULC 2041 through the calibrated CA-Markov model of the 2001 to 2021 period; (C)

Comparing results under past, present, and 
future scenarios demonstrates that agricultural 
activities are significant in LULC in the future. 
Importantly, the KNLW eastern regions, 
where agricultural activities are particularly 
concentrated, have seen the greatest changes 
in the LULC classes. As changes in the 
number of cells indicate, the west part of 
the KNLW does not appear to have seen any 
substantial alterations, in contrast to the east 
part of the region. The overuse of land and 
water resources in the north of the KNLW is 
primarily due to the expansion of community 
areas. Agricultural activities related to water 
are the most significant factor in the LULC 
transition from one class to another. However, 
the body of water itself does not appear to be 
very big in comparison to the other classes, 
but it is extremely important in every class.

The results obtained from the CA-Markov
model appear to be logically plausible for the 
future. To develop a future scenario, only one 
model that successfully passes validation and 
calibration should be used. Therefore, based 
on validation and calibration of historical 
data, which, as was previously indicated, 
has been the longest period for calibration. 

Additionally, because LULC is too dynamic 
and complicated, it is impossible to calibrate 
and validate all changes in both space and time 
using CA-Markov strength alone.

4. Conclusion
 
In this study, the comparing extracted 

LULC map from 2001 to 2041, show that 
cassava and sugarcane area expansion in 
the east part of the KNLW. As a result, the 
forest area of about 3.89 % reduced from 
120.02 Km2 in 2001 to 112.56 km2 in 2041. 
However, the simulated scenario for 2041 
shows that the urban and orchard area will 
have a gradual increase and significant growth 
from 7.41 and 2.27 Km2 in 2001 to 7.79 and 
2.39 Km2 in 2021 in the east and southern 
part of the KNLW and it will continue to 
2041. On the other hand, paddy field, para 
rubber, and other area will reduce due to 
the expansion of agricultural activities and 
development. For the sustainable use of 
natural resources, it is crucial to understand 
the trends and directions of LULC in a given 
area. Rapid LULC changes are the main cause 
of many problems, including water yield, 
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erosion, flood, and drought. It is very useful to 
understand the most important current causes 
and assess the future impact of LULC changes 
for sustainable use of land resources. Water 
resources and the amount of precipitation in 
the past and future are important to the spatial 
and temporal expansion of LULC classes. 
Furthermore, the socioeconomic and human 
dimensions of LULC changes, such as GDP, 
population, and the level of technology used 
to collect or utilize natural resources, are 
not taken into consideration by CA-Markov. 
Each LULC’s spatial expansion can be 
evaluated in calibrated time. These changes 
in the area are crucial to understanding how 
detrimental human activities have been, in 
particular LULC classes in the same region. 
As a result, the CA-Markov model appears 
to be a very useful one for other locations 
with comparable circumstances because it 
can account for both time and space, like the 
KNLW. The wise use of natural resources 
can lessen future harm and destruction 
by comparing results based on various 
scenarios and approaches. Additionally, 
the  s tudy per iod (2001-2021-2041)
was chosen based on the significant 
socioeconomic choices that affected the 
environment in Thailand. The findings of the 
simulations reveal that the trend of LULC 
has an impact on natural resources and the 
environment. The need for water may continue 
to rise in the future. This affects people living 
in Pong Nam Ron, Khlong Nam Lai, and 
Sakngam sub-district as well as surrounding 
areas and all living things. A rational land 
use plan must be made to control the increase 
of cultivated land and urban area counting 
a rational land use plan, ecosystem, and 
environmental protection guidelines. Decision 
makers should involve stakeholders to support 
improved LULC management for balanced 
and sustainable natural resources
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