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Abstract
Changes in land cover in the Chiang Mai-Lamphun basin have been influenced by pressures 
of rapid socio-economic developments. The Markov-cellular automata and a multi-layer 
perceptron technique (Markov-CA-MLP) were employed to simulate three scenarios in 
2021. Then, the future land cover maps in 2030 and 2050 were built based on the transition 
probability metric from 2021. The different scenarios were based on socio-economic schemes, 
which include the business-as-usual (BaU), the ecological protection scenario (EPS), and 
the baseline development scenario (BDS). A result of model validations using 534 ground 
survey points in 2021 showed that the BaU model in 2021 generated the highest overall 
accuracy (82.77%) with a Kappa value of 0.7846, quantity disagreement value of 0.0693, 
and allocation disagreement value of 0.1030. The projected BaU in 2050 revealed a decrease 
in forest land (6.70%). At the same time, the built-up and agricultural areas gained 5.57% 
and 0.88%, respectively. In BaU, class transformation between 2021 and 2050, including 
forests to agricultural areas (6.04%), agricultural areas to built-up areas (4.62%), and forests 
to built-up areas (1.59%). The BDS depicted the lowest accuracy level compared to BaU and 
EPS. Following this procedure, this study can provide scientific trends for possible land use 
management in the Chiang Mai-Lamphun basin based on the described socio-economic settings.
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1. Introduction
Changes  in  l and  cover  and  i t s 

consequences are most apparent when 
accompanied by significant transformations 
of the global surface caused by increasing 
population, socio-economic growth, and land 
management change (Landry & Ramankutty, 
2015). Since 1984, the achievement of 
Thailand’s national development strategy 
following the economic boom has regulated 
the provision of public infrastructures to 
serve socio-economic growth in regional 
centers, which directly influenced rapid 

urbanization in the Chiang Mai-Lamphun 
basin (McGrath et al., 2017). Recent studies 
entitled improvements of road infrastructure, 
especially in remote areas, accelerated 
disturbance in forest biome and converted to 
agricultural or residential areas (Sangawongse 
et al., 2012; McGrath et al., 2017; Lee et al., 
2022). Indeed, geospatial analysis based on 
datasets published by Land Development 
Department (2020) showed that the remaining 
forest cover decreased between 2008 and 
2018 from 62.78% to 61.64% of the total area 
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(9,524.98 km2). Besides the area conversion, 
changes in the spatial pattern of forest areas in 
the Chiang Mai-Lamphun basin were directly 
related to the deterioration of ecosystems as 
it could reduce the forest’s capacity to supply 
ecosystem services (Arunyawat & Shrestha, 
2016; Elliott et al., 2019).

Under Thailand’s forest conservation 
policies, the Chiang Mai-Lamphun basin 
is managed to resist the drivers of change, 
varying from the lower basin to the upland 
forests (McGrath et al., 2017). Most upland 
forests are managed under protected area 
legislation, ranging from the most stringent 
to community-managed forests (Pomoim 
et al., 2021). On the other hand, comprehensive 
land use plans were imposed in the lower 
basin, described as built-up areas surrounded 
by agricultural wedges and satellite cities 
(Department of Public Works and Town & 
Country Planning, 2019; McGrath et al., 
2017). Although protected area network and 
land use policy were enforced to sustain the 
forest ecosystem in this region, their efficacy 
has been both commended and criticized 
because some parts were designed primarily 
on economic potential, which caused conflict 
with stakeholders (Elliott et al., 2019; Singh 
et al., 2021).

The multi-simulation of land cover 
scenarios demonstrated an understanding 
of the drivers and trends of future forest 
changes as a way to improve the diagnosis 
of key success and the formulation of 
strategies for developing policy and legislation 
(International Union for Conservation of 
Nature & World Resources Institute, 2014; 
Mayer et al., 2016). The Markov-CA-MLP 
technique may be utilized to evaluate the 
significance of land transformations from 
historical data, compute transition potential 
models using driving variables, and predict 
future land cover maps under contrary 
scenarios (Hamad et al., 2018; Kamusoko 
et al., 2011; Shen et al., 2020).

This article aimed to use data from 
the Chiang Mai-Lamphun basin as a case 
study to analyze the likely effects of various 
socio-economic conditions on land cover 
change in the region, with the combined use 
of multi-scenario simulations. The objectives 
were (1) to simulate multiple land cover 

scenarios in 2021, 2030, and 2050 using the 
Markov-CA-MLP, (2) to validate land cover 
model accuracy in 2021 using field surveys, and 
(3) to address characteristics and trends using 
landscape-level indices. The study outcomes 
are expected to lead policymakers to improve 
integration strategies in the research area.

2. Materials and Methods

2.1 Study Area

The Chiang Mai-Lamphun basin was 
chosen as a case study because of its high 
possibility of land transformation influenced by 
rapid socio-economic development (McGrath 
et al., 2017). The study area is located from 
18°30’N to 19°N and from 98°45’E to 
99°15’E. It is kidney-shaped with mountain 
ranges on either side, which reach a maximum 
elevation of 1,685 m to the west and 1,025 m 
to the east (Margane & Tattong, 1999). The 
width of this basin reaches more than 25 km, 
whereas the lower basin is the location of the 
central business districts of Chiang Mai and 
Lamphun provinces (McGrath et al., 2017). 
The boundary of the study area was defined 
by using the hydrology toolset and watershed 
model in ArcGIS Pro (version 10.4). It encloses 
approximately 9,524.98 km2. The boundary of 
the study area is illustrated in Figure 1.

2.2 Data Source and Preprocessing

Datasets of land cover in the Chiang 
Mai-Lamphun basin from 2008 to 2018 
were derived in shapefile format with the 
1:25,000 scale map, which was developed 
from ortho-aerial photographs at 0.75 m 
resolution, field investigation, and satellite 
imagery from THEOS (2 m resolution after pan 
sharpening), Landsat 8 OLI (30 m resolution), 
and Sentinel-2 (10 m resolution) (Division of 
Land Use Planning and Policy, 2020; Land 
Development Department, 2020). The land 
cover datasets were projected onto WGS 84 
UTM zone 47 datum and rasterized to 30 
m resolution. Then, the land cover datasets 
were reclassified into five classes following 
Thailand’s level 1 land use class (Anderson et al.,
1976; Klindao, 2007). The datasets, ancillary 
data, and their sources are denoted in Table 1.
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Figure 1. Location and boundary of the study site. The topographic map was adopted from 
Environmental Systems Research Institute (2021)

Table 1. Types, formats, and sources of data used in this study.

The land cover classes and their definitions 
are explained as follows:
Forests: land areas dominated by the 
tree (deciduous forest, evergreen forest, 
agroforestry, and plantation forest).
Agricultural areas: lands used for 
systematic and controlled rearing, 
plantation, and livestock for human food 
production (paddy field, crops, perennials, 
orchards, horticulture, pastures, aquatic 
plants, shifting-swidden cultivation, 
farmland, and aquacultural land).

Built-up areas:  urban areas and 
infrastructures (city,  commercial 
and service, village, transportation and 
communica t ion ,  indus t r ia l ,  and 
institutional land).
Miscellaneous areas: other land covers 
without buildings, agricultural activity, or 
forest vegetation (rangeland, wetland, 
garbage dumps, mines, and pits).
Water bodies: surface water (natural and 
artificial water bodies).
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Figure 2. Conceptual framework of the study

2.3 Multi-scenario simulation

Multi-scenario simulation is a method 
that analyzes current land cover change 
processes and forecasts future development 
in an alternative context (Mayer et al., 2016). 
Socio-economic variables were utilized as a 
factor of land cover change and deforestation 
(Samie et al., 2017). Variable usages and 
treatment procedures are shown in Table 2,
following the TerrSet manual (Eastman, 
2020). The chosen variables were converted 
to IDRISI format with 30 m pixels. Fuzzy 
operations were used for making distance 
variables (i.e.,  logistic variables) to 
construct the forecast based on a continuous 
scale of suitability (Amato et al., 2018). 
For example, an agricultural area located in 
a built-up neighborhood has a higher chance 
of becoming urbanized (Amato et al., 2018; 
Eastman, 2020). For zoning constraint-incentive, 
strictness of land use enforcement values were 
assigned in IDRISI raster using reclassification 
tool, ranged from the maximum constraint 
(value = 0), constraint (0 < value < 1), no 
constraint (value = 1), and incentive (value > 1) 
(Eastman, 2020). The protocols were set for 
the following three scenarios:

The Business-as-Usual Scenario (BaU) 
is based on recent trends in socio-economic 
development and land use enforcement 
(Kamusoko et al., 2011). Further, various 
levels of law enforcement have been 

collated from studies on the effectiveness 
of protected areas and comprehensive 
land use plans (Department of Public Works 
and Town & Country Planning, 2019; 
Pomoim et al., 2021; Singh et al., 2021).
Ecological Protection Scenario (EPS) 
emphasizes socio-economic development 
based on ecological protection by using 
strict forest enforcement and all level 
protected areas (Chen et al., 2021; Kamusoko
et al., 2011). Therefore, the EPS can depict 
the gap between existing and ideal 
ecological management (Chen et al., 2021).
Baseline Development Scenario (BDS) 
follows the socio-economic development 
without land use enforcement (Chen 
et al., 2021). 

Future forest changes under different 
land cover scenarios were projected by 
Markov-CA-MLP in TerrSet 2020: Land 
Change Modeler (Denis & Sorin, 2019; 
Eastman, 2020; Marinelli & Bernetti, 2020; 
Mishra et al., 2014). The processing flow in 
Land Change Modeler is shown in Figure 3. 
The transition probability metric based on 
transition potentials in EPS was modified 
to constrain forest loss (Kamusoko et al., 
2011). Finally, the scenario maps were 
generated for the years 2021, 2030, and 
2050 based on the present state of the 
transition probability for each transition 
(Eastman, 2020; Shade & Kremer, 2019).
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Table 2. Data treatments and variables were used for BaU, EPS, and BDS

Figure 3. The processing procedure of multi-scenario simulation using Land Change Modeler



R. Arunsurat et al.  /  EnvironmentAsia 16(1) (2023) 1-15

6

2.4 Accuracy Validation

The accuracy metrics were examined to 
verify map quality in 2021 by measuring the 
agreement between the produced maps and the 
reference data (Shao et al., 2019). The sample 
size was determined based on multinomial 
distribution to reach an appropriate number 
that validity represented the map accuracy 
(Congalton & Green, 2009). The calculation 
of the sample numbers is as follows:

where n represents the appropriate sample 
numbers, b represents the desired precision of 
the sample, B is a critical value that determine 
from the Chi-square table with 1 degree of 
freedom and left-tail p-values = 1-   /k, k 
represents numbers of land cover class where      
    values represent the probability of making 
wrong decisions, which is directly related to 
the confidence level (     =1- confidence level), 
∏ represents the class proportion presented on 
the map, ∏ was assumed as 30% in normal 
condition.

In this study, 550 sample numbers 
were calculated from Equation 1, with five 
categories in our classification scheme 
(k = 5), that the desired confidence level 
is 95%, and the desired precision is 5%. 
The sampling points were assigned for 
the field survey based on the road buffer 
in 2021 predicted maps using equalized 
class-stratified random in ArcGIS Pro 
(version 10.4) (Environmental Systems 
Research Institute, 2022; OpenStreetMap 
contributors, 2020). A 50 m buffer from 
the roadside was used for stratification that 
facilitates accessibility during fieldwork 
(Haub et al., 2015). Despite the calculated 
sample numbers, only 534 ground truths 
were derived from May 2021 and used for 
validation of the scenarios of 2021, including 
forests (109 points), agricultural areas (106 
points), miscellaneous areas (106 points), 
built-up areas (107 points), and water bodies 
(106 points). All accuracy indicators were 
calculated using Map Tools (Salk et al., 
2018) based on confusion metrics on a per-
map basis (all categories) and a per-class 
basis (binary maps) as follows:

Overall accuracy was used to explain the 
proportion of pixels correctly classified in the 
predicted maps (Ayala-Izurieta et al., 2017; 
Shao et al., 2019). The overall accuracy was 
computed as:

where q represents the number of categories, 
the predicted categories ( i = 1, 2, ..., q ) are 
represented by rows, the references ( j = 1, 2, …, q)
are represented by columns, njj represents the 
number of pixels categorized as belonging 
to class i and belonging to category j in the 
reference dataset, ni+ represents the total number 
of pixels categorized as belonging to class i in 
the map.

Kappa was used to measure the chance 
agreement between the predicted map and 
the reference data (Salk et al., 2018). The 
statistical testing of Kappa was accounted to 
compare accuracy to a baseline of randomness 
(Pontius & Millones, 2011). Kappa was 
computed as:

where q represents the number of 
categories, the predicted categories (i = 1, 2, 
..., q) are represented by rows, the reference 
(j = 1, 2, …, q) are represented by columns, 
nii represents the number of observations in 
row i and column i, ni+ and n+i represents the 
total number of observations in row i and the 
total number of observations in column i, 
respectively, and N represents the number of 
observed pixels in the confusion metric.

Quantity disagreement measured the 
difference between the predicted map and 
reference data due to the less than perfect 
match in the proportions of the class categories 
(Ayala-Izurieta et al., 2017; Salk et al., 2018) 
The definition of quantity disagreement was 
proposed by Pontius & Millones (2011). The 
quantity disagreement of each land cover class 
i was computed as:

where pi+ represents the estimated proportion 
of land cover class in the predicted categories, 
p+i represents the estimated proportion of 
land cover class in the reference categories.
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Allocation disagreement was used 
to interpret errors due to differences in the 
location of map categories (Pickard et al., 
2017; Salk et al., 2018). This accuracy 
metric provides an estimate of how well each 
model simulates pixels spatially, with some 
allocations having greater similarities to the 
observed land cover than others (Pontius & 
Millones, 2011). The allocation disagreement 
of land cover class i was computed as:

where the first argument (pi+ - pii) within 
the minimum function represents the omission 
of the predict categories, the second argument 
(p+i - pii) represents the commission of the 
reference categories, pi+ represents the 
estimated proportion of land cover class in 
the predicted categories, p+i represents the 
estimated proportion of land cover class in 
the reference categories, pii represents the 
proportion of the pixels that are correctly 
predicted.
 
2.5 Change Characteristics

Landscape change analysis was used to 
detect quantitative changes in predicted maps 
(Fichera et al., 2017). The CROSSTAB in 
TerrSet calculates changes in the predicted 
maps in BaU, EPS, and BDS (Eastman, 
2020). Both the class percentages and shifting 

quantity were interpreted in the Sankey 
diagram at the interval changes in two periods 
(2021:2030 and 2030:2050).

The landscape-level metrics were used to 
examine land characteristics on a macro-scale 
(Narmada et al., 2021; Sertel et al., 2018). 
Changes in spatial characteristics were 
detected using FRAGSTATS (version 4.2) 
(McGarigal, 2015). The predicted maps were 
exported as 4-bit unsigned GeoTIFF to meet 
software compatibility (McGarigal, 2015). 
Landscape-level metric types used in this 
study are shown in Table 3.

3. Results and Discussion

3.1 Predicted Scenarios and Accuracy Validation

Predicted scenarios using Markov-CA-MLP 
showed the trends forecast of land cover maps 
in 2021, 2030, and 2050 resulting from the 
BaU, EPS, and BDS scenarios (Figure 4). 
Accuracy validation was used to ascertain 
the quality of the predicted map in 2030 and 
2050 based on the comparison of predicted 
scenarios for 2021 and the actual ground 
truth in 2021 (Hamad et al., 2018; Shade & 
Kremer, 2019). The accuracy results in 2021 
of each scenario showed that BaU had the 
highest overall accuracy (82.77%), followed 
by EPS (82.58%) and BDS (72.85%) (Figure 
4). The accuracy in class-level for forests, 
built-up areas, and water bodies was higher 

Table 3. Landscape-level metrics, abbreviations, and descriptions (Aguilera et al., 2011; 
McGarigal, 2015; Sertel et al., 2018)

that takes
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than in agricultural areas and miscellaneous 
areas (Figure 5A). The high accuracy for the 
forests and built-up areas classes showed 
the suitability for transition potential modeling 
(Figure 5). In comparison, the low accuracy of 
agricultural classes and miscellaneous classes 
(Figure 5A-D) was probably resulted from the 
lower capabilities of model calibration. The 
Kappa showed similar trends to the overall 
accuracy in which the result of BaU, EPS, 
and BDS were 0.7846, 0.7823, and 0.6522, 
respectively (Figure 5). The highest accuracy 
and Kappa for water bodies in every scenario 
over the study period may result from no 
transition simulated for water bodies (Figure 
4; Figure 5), as the hydrological factor was 
not concerned as a socio-economic factor 
(Choudhari, 2013). In the future, additional 
bio-physical data that correspond to land use 
decisions following the study carried out by 
Choudhari (2013) should be incorporated into 

the modeling framework to improve the model’s 
credibility, especially rainfall and drainage maps.

The quantity disagreement describes 
an opposite pattern to overall accuracy 
and Kappa. BDS had the highest quantity 
disagreement, followed by EPS and BaU, 
respectively (Figure 4). At the class level, 
agricultural areas had the highest quantity 
disagreement, followed by miscellaneous 
areas in all scenarios (Figure 5C). At the 
same time, the quantity of disagreement of 
forests class in BDS was distinctly higher 
than in BaU and EPS (Figure 5C). Besides, 
the agriculture and miscellaneous classes 
had the highest allocation disagreement, 
followed by the built-up class (Figure 5D). In 
contrast, forests showed the lower allocation 
disagreement (Figure 5D). However, water 
bodies showed the lowest quantity and 
allocation disagreement caused by no change 
predicted in this class (Figure 5C; Figure 5D).

Figure 4. Predicted land cover maps in 2021, 2030, and 2050 for the scenarios:
(A) BaU, (B) EPS, and (C) BDS
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Figure 5. Class-level accuracy metrics calculated on confusion metrics derived from simulated 
maps in 2021: (A) Accuracy, (B) Kappa, (C) Quantity disagreement, and (D) Allocation 

disagreement. The percentage of accuracy is expressed as decimals

3.2 Landscape Changes and Characteristics

Figure 6 shows the land cover proportion 
derived from BaU, EPS, and BDS. For the 
most part, the built-up areas had increased, 
while the areas for water bodies remained 
at 1.21% over the study periods. However, 
the results for the agricultural areas and 
forest classes displayed different trends. 
In BaU, forest covers are predicted to decrease 
over the study periods, while agricultural 
areas and miscellaneous areas are increased 
(Figure 6A). In BDS, the class proportions 
were like BaU (Figure 6C). However, the 
deforestation caused by the expansion of 
built-up areas in BaU was 0.09% greater 
than that found in BDS between 2021 and 
2030, while the deforestation by agricultural 
expansion was identical (2.00%) (Figure 
6A; Figure 6C). The amount of forest areas 
changed to miscellaneous areas between 
2021 and 2030 of BaU was less than 0.09% 
compared to BDS (Figure 6A; Figure 6C). 
Reductions in forest areas contributed to 
built-up area expansion in BaU, which was 
0.32% greater than BDS between 2021 and 2030 

(Figure 6A; Figure 6D). Between 2030 
and 2050, the deforestation contributed by 
agriculture in BaU rose by 1.26% compared 
to the previous period, and 0.05% less than 
showed in BDS (Figure 6A; Figure 6D). The 
amount of forest areas turned to miscellaneous 
areas in BaU was 0.28% less than in BDS 
(Figure 6A; Figure 6C).

In EPS, the proportion of forests and 
water bodies was predicted to remain 
at 61.65% and 1.21%, respectively. In 
addition, in BaU and BDS, the rise in built-up
areas and the decrease in agricultural 
regions are distinct (Figure 6B). A major 
contribution to the decrease of agricultural 
areas was an expansion of built-up areas 
and conversion to miscellaneous areas 
(Figure 6B). In comparison, the predicted 
forest change in BaU and BDS was 2.36% 
greater than forest change in EPS between 
2021 and 2030, and 4.34% between 2030 
and 2050 (Figures 6A-C). The increase 
of built-up areas, agricultural areas, and 
agriculture areas in EPS was not contributed 
by forest reduction as in BaU and BDS 
(Figures 6A-C).
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Landscape-level metrics depicted the 
changes in spatial patterns of simulated land 
cover maps of three predicted scenarios 
(Figure 7). The decreasing trend of the 
mean shape index in Figure 7A revealed 
the transformation from irregular shapes 
of natural land cover to basic geometric 
shapes of manmade land use (Aguilera 
et al., 2011), while the decreasing trend of the 
aggregation index in Figure 7B reflected the 
increase of patch isolation in the subsequent 
years (Fichera et al., 2017). In comparison, 

the mean shape index and aggregation index 
in BaU were higher than in BDS but lower 
than in EPS (Figure 7A; Figure 7B). When 
compared the mean shape index to the data 
in 2021, EPS showed the smallest changes 
due to the preservation of forest patches 
(Figure 7A). Trends for Shannon’s Diversity 
Index and Simpson’s Diversity Index describe 
the increase of disorder and uncertainty 
of individual land classes, and the relative 
abundance of each class in the landscape, 
respectively (McGarigal, 2015). 

Figure 6. Relationships between land cover classes derived from landscape change analysis. 
The results were interpreted by land cover scenarios in 2021, 2030, and 2050: (A) BaU,

(B) EPS, and (C) BDS
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Alternatively, the EPS forecasts the 
development under forest management 
guided explicitly by ecological values 
(Xi et al., 2010). Aside from preserving 
forest covers in EPS, the built-up areas 
replaced the existing agricultural and 
miscellaneous areas due to the limited 
available space for land utilization (Figure 6B). 
The trade-offs found in EPS showed that the 
Chiang Mai-Lamphun basin would face 
a shortage of cultivable land (Figure 6B). 
Therefore, the socio-economic development 
under EPS may involve an innovative solution 
to maximize the agricultural production within 
the remaining areas instead of converting forest 
areas (Mayer et al., 2016). On the other hand, 
the most aggregated pattern shown in BDS 
was driven by the development in the absence 
of land use policy interventions (Figure 7B), 
despite geographical features playing a role as 
natural buffers to safeguard natural habitats. 
The evidence of increased patch fragmentation 
and interpretation based on Fichera et al. (2017) 
highlighted the significance of protected area 
networks and their enforcement to preserve the 
quality of forest habitats.

Figure 7. Landscape-level metrics: (A) Mean shape index, (B) Aggregation index, (C) 
Shannon’s diversity index, and (D) Simpson’s diversity index

3.3 Trends, Conflicts, and Future Resolutions

Although forests in the Chiang Mai-Lamphun 
basin are primarily administered by a protected 
area network, areas vulnerable to destruction 
still exist (Elliott et al., 2018; Elliott et al., 
2019; Lee et al., 2022). The national reserved 
forest in Thailand is less effective in the 
prevention of forest loss compared to the 
national parks system (Pomoim et al., 2021; 
Singh et al., 2021). Conflicted stakeholders 
and agricultural land redistribution may 
jeopardize their protected area potential, 
particularly in the national reserved forest 
(Singh et al., 2021). The 4th revision of 
Chiang Mai’s comprehensive land use plan 
in 2022 highlighted government-initiated 
land redistribution for agricultural activities 
in semi-protected regions, particularly in 
the San Sai, Mae Taeng, and Mae Rim 
districts in Chiang Mai (Department of 
Public Works and Town & Country Planning, 
2022). In terms of policy implementation, 
Chiang Mai and Lamphun provinces still 
have rooms for improvement, especially 
the goals for local forest conservation. 
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Despite our findings, BaU is the best scenario 
for the Chiang Mai-Lamphun basin to 
understand existing and future socio-economic 
forces. The future developments are suggested 
to be more concerned with ecological values 
than exploiting the vulnerabilities of protected 
regions. Additionally, forest conservation 
should focus on both the socio-economic 
factors and the selection of priority regions 
by engaging all stakeholders.

4. Conclusion

Different perspectives show future 
forest changes driven by socio-economic 
development in the Chiang Mai-Lamphun 
basin. This article proposes the use of 
Markov-CA-MLP model in Land Change 
Modeler for simulation of future land cover 
maps. Three development scenarios (BaU, 
EPS, and BDS) for the years 2021, 2030, and 
2050, were designed according to different 
socio-economic variables. The accuracy 
test in 2021 demonstrated that the BaU 
could better fit the study site development’s 
pathway. If factors in BaU persist, future 
forest lands will experience pressure from 
the development incorporated by the existing 
land use regulations. On the other hand, the 
EPS projected good practices of forest area 
protection, and the BDS predicted land cover 
changes without controls. These findings are 
anticipated to support the requirement for 
sustainable development, where ecological 
values need to be concerned in tandem with 
future socio-economic growth.
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