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ABSTRACT 
 
Water is a fundamental natural resource necessary for life, and contributes to the 
development of the nation, including urbanization, shifting agricultural practices, and 
deforestation. These factors have both direct and indirect impacts on the watershed. 
This study presented machine learning for statistical downscaling as a means of 
hydrological modeling. A statistical downscaling model was created using a global 
circulation model from the community climate system model (version 4.0), and 
compared to different machine learning techniques, including linear regression, 
gaussian process, and support vector machine. The soil and water assessment tool 
(SWAT) was used to model climate-induced runoff and downscaling procedures. 
The output climate scenarios of the machine learning model were incorporated into 
SWAT to simulate water runoff in the study area of Lake Tana basin, Ethiopia. The 
simulation results of SWAT water runoff under deep learning climate conditions 
demonstrated the highest performance. The results could contribute to the 
hydrological analysis and improve the quality of statistical downscaling.  
 
Keywords: climate change; machine learning; statistical downscaling method; soil and water 
assessment tool 
 
 
 
 

1. INTRODUCTION                                    
 
Rapidly rising temperature of the global surface contributes 
to the water crisis (Berardy and Chester, 2017). The 
equilibrium between incoming solar energy and surface 
reflection determines the Earth's surface temperature. 
Consequently, solar energy can penetrate the atmosphere 

and warm the planet's surface (Booij, 2005; Patz et al., 2005). 
With the rapid increase in greenhouse gases, human-
consumed gases, such as chlorofluorocarbons (CFCs) and 
carbon dioxide, significantly impact climate change 
(Abbaspour et al., 2009; Akhtar et al., 2008; Haines et al., 
2006; Hughes et al., 2017; McMichael et al., 2006).  
       The rapid increase of greenhouse gases in the 21st  
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century has significantly impacted the world's water 
resources (Githui et al., 2009; Piao et al., 2010; Setegn et al., 
2011). However, the effect of climate change varies, 
depending on the topography, atmosphere, and environment 
(Li and Fang, 2016). Thus, authentic climate information that 
is fine enough is necessary for an accurate regional-scale 
analysis. Unfortunately, although regional climate model 
(RCM) is a regional simulation model that studies climate 
change, accurate results are hardly received due to coarse 
information from the general circulation model (GCM) 
(Nawaz et al., 2010). Therefore, the statistical downscaling 
model (SDSM) plays a vital role as an information processor 
to achieve delicate data for regional study (Abatzoglou and 
Brown, 2012; Anderson et al., 2012; Herrera et al., 2013).  
       Moreover, temperature and precipitation are essential 
variables for current climate simulation and risk 
management research. Many research reports on climate 
simulation use GCM as big data. However, the data are coarse 
because the resolution of GCM around 250-600 kilometers. 
Then, the climate downscaling model has been used to 
process the information for the regional study. Downscaling 
is required to increase the resolution of GCM simulations by 
combining information on local conditions and large-scale 
climate change (Shrestha et al., 2018; Ullah et al., 2018; Wang 
et al., 2018). Dynamic and statistical downscaling are two 
primary strategies for linking the data. Dynamic downscaling 
is based on a precise depiction of the physical principles 
(such as thermodynamics and fluid mechanics), which is 
handled in a model comparable to a GCM. It is a 
computational luxury and requires a lot of data and expertise 
to execute and explain the results. The statistical 
downscaling model (SDSM) is an additional principle that 
adequately describes the relationship between observation-
based surface data and atmospheric circulation (Hadipour et 
al., 2016; Sachindra et al., 2018). 
       Regarding hydrology, climate change and its effect on the 
seasonal timeline are the most crucial water degradation 
factors (Mankin et al., 2010). Temperature and precipitation 
variations directly affect evapotranspiration, quantity, and 
quality. Consequently, water resources have been impacted, 
causing problems for agricultural sectors, industries, and 
livelihoods (Bannwarth et al., 2015). Using parameter 
sensitivity analysis, model calibration, and model validation, 
Zhu et al. (2019) accurately validated the ability of water 
basin simulation to predict hydrology. Incorrect input 
variables such as precipitation and temperature affected 
sediment and water quality in the hydrological simulation 
(Birara et al., 2020; Lee et al., 2020; Wang et al., 2020; Zhu et 
al., 2019). 
       Haylock et al. (2006) have studied the statistical and 
dynamic downscale in the United Kingdom using artificial 
neural network (ANN), but they have not applied it to a 
specific problem. Gutmann et al. (2014) has analyzed the 
statistical decline in the United States but excludes ANN. 
Mendes and Marengo (2009) used ANN and autocorrelation 
techniques to downscale daily precipitation in the Amazon 
Basin, concluding that ANN outperforms statistical models 
but has no application. Ba et al. (2018) have studied 
statistical methods that are simple to execute and explain. 
The SDSM requires lower computing resources. Nonetheless, 
surface data based on sufficient observation are required. Li 
and Fang (2021) reported that the SDSM was used in the soil 
and water assessment tool (SWAT), but did not delve into the 
distinctions between machine learning methods. Zhou et al. 
(2015) integrated SWAT and SDSM in the Lake Dianchi 

watershed, China, using the multi-linear regression method 
and NCEP/NCAR reanalysis and observed data. 
Consequently, this research studied the SDSM by four 
machine learning and then applied the climate scenarios to 
SWAT for evaluating the water runoff at Lake Tana, Ethiopia. 
The primary objectives of this study were to find the best 
machine learning (ML) algorithm applicable to climate 
change data and use those algorithms to project the climate 
scenarios that would be used as input for the SWAT analysis. 
 
  
2. MATERIALS AND METHODS    
 
2.1 General circulation model (GCM) 
       GCM is the most sophisticated instrument for simulating 
physical processes in the atmosphere, oceans, freezing 
temperatures, and land surface. GCM refers to global climate 
data produced by complex mathematical models that 
describe climate change due to differential pressures, 
chemical composition, velocity, and temperature. A typical 
global three-dimensional grid has a horizontal resolution of 
250 and 600 kilometers, 10 to 20 vertical levels in the sky, and 
as many as 30 layers in the oceans. Consequently, the 
resolution is relatively coarse, compared to the scale of 
exposure units in most impact assessments. The GCM has 
gained attention from researchers who developed a 
community earth system model called the community 
climate system model (CCSM) (Gent et al., 2011).  

 
2.2 Soil and water assessment tool (SWAT) 
SWAT is a hydrological model that simulates the physical 
properties of a watershed-based on the physical state of the 
area as a parametric distribution. SWAT can predict long-
term runoff with changing soils, land use, and management 
conditions (Mankin et al., 2010). The SWAT composed of 6 
processes is following. 
 
2.2.1 Determination of sub-watershed 
boundaries and reservoir location 
The determination of sub-watershed boundaries was created 
by using DEM with following factors: the desired position 
from the model, the controllable water-flow position such as 
weir and dam that include the expected future construction 
as well, and the position of the station that can be calibrated 
for the model, such as runoff metering station. 
   
2.2.2 Construction of a hydrological management 
unit (HRUs) 
Each sub-watershed generally has a unique land use, soil 
type, slope, and management strategy. The SWAT model 
simulates the hydrological cycle based on the water balance 
Equation (1) (Srinivasan et al., 1998). 

 

 𝑆𝑆𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑆𝑆0� �𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐸𝐸𝑑𝑑 −𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑄𝑄𝑔𝑔𝑔𝑔�
𝑡𝑡

𝑖𝑖=1
  (1)  

                                                                                                           
where 𝑆𝑆𝑆𝑆𝑡𝑡 is the final soil water content (mm), 𝑆𝑆𝑆𝑆0 is the 
initial soil water content on day i (mm), 𝑡𝑡  is the time (days), 
𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 is the amount of precipitation on day 𝑖𝑖 (mm), 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is 
the amount of surface runoff on day 𝑖𝑖 (mm), 𝐸𝐸𝑑𝑑 is the amount 
of evapotranspiration on day 𝑖𝑖 (mm), 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the amount of 
water entering the vadose zone from the soil profile on 
day 𝑖𝑖 (mm), and 𝑄𝑄𝑔𝑔𝑔𝑔  is the amount of return flow on day 
𝒊𝒊 (mm).  
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       The SWAT used the spatial data in the GIS program, which 
calculated three data layers of land use, soil type, and slope of 
an area (Abbaspour et al., 2018; Zhou et al., 2015), which 
were then layered on top of one another to create a new layer 
of information for each area containing these three layers, 
called HRUs. Each sub-watershed in SWAT is composed of 
more than one HRUs, which can design different SWAT 
parameters. Therefore, this type of calculation yields 
accurate and reliable results. 
 
2.2.3 Climate input 
SWAT data includes daily precipitation, temperature, 
humidity, wind speed, and solar energy. The SWAT 
automatically selects the climate station for each sub-
watershed that best represents the climate of that sub-
watershed. In calculating climate conditions, only a single 
station is used per sub-watershed.  
 
2.2.4 Reservoir input 
Location and primary data of the reservoir are entered, 
including surface area, capacity, and drainage. 
 
2.2.5 Other parameters 
Other parameters affect the runoff and groundwater. 

 
2.2.6 Model calibration and verification 
The model was validated using runoff and groundwater 
indicators after entering SWAT parameters. A statistical 
relationship was used to validate the model's output by 
comparing calculated results to observational data. 

 
2.3 Verification of model accuracy 
The model's validity was determined by comparing model 
results to actual measurements and observations. The 
process of evaluating the model's precision involved 
considering consistency by examining the graph comparing 
the two values and calculating the error value using the 
coefficient of determination (R2) and Nash-Sutcliffe efficiency 
(NSE) (Lin et al., 2017), and validating the results of 
calculations using weather data derived from statistical 
downscaling by deep learning. The model parameters were 
optimized to produce an accurate and reliable result.  

 

𝑅𝑅2 = [∑ (𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠−𝑄𝑄�𝑜𝑜𝑜𝑜𝑠𝑠)𝑁𝑁
𝑠𝑠=1 (𝑄𝑄𝑜𝑜𝑜𝑜𝑠𝑠−𝑄𝑄�𝑜𝑜𝑜𝑜𝑠𝑠)]2

�∑ (𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠−𝑄𝑄�𝑜𝑜𝑜𝑜𝑠𝑠)2𝑁𝑁
𝑠𝑠=1 ��∑ (𝑄𝑄𝑜𝑜𝑜𝑜𝑠𝑠−𝑄𝑄�𝑜𝑜𝑜𝑜𝑠𝑠)2𝑁𝑁

𝑠𝑠=1 �
               (2) 

𝑁𝑁𝑆𝑆𝐸𝐸 = 1 − ∑ (𝑄𝑄𝑜𝑜𝑜𝑜𝑠𝑠−𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠)2𝑁𝑁
𝑠𝑠=1

∑ (𝑄𝑄𝑜𝑜𝑜𝑜𝑠𝑠−𝑄𝑄�𝑜𝑜𝑜𝑜𝑠𝑠)2𝑁𝑁
𝑠𝑠=1

                  (3) 

 
where Qobs is the amount of observed runoff, Osim is the 
amount of simulated runoff, and Q�obs is the amount of 
averaged observed runoff. 

 
2.4 Proposed methodology 
This study was divided into two processes. In the first step, 
the climate model was simulated with statistical downscaling 
using four machine learning techniques (DL, LR, GP, and 
SVM) (Campozano et al., 2016; LeCun et al., 2015; Liu et al., 
2016). The model producing the best performance was 
passed through another step. The second step, which is 
shown in Figure 1, entailed estimating the runoff quantity 
with SWAT using climate predictions from the previous 
procedure. 
       For statistical downscaling, there are two terms of data: 
predictor and predictand. The predictor utilized GCM data 
collected by the National Oceanic and Atmospheric 
Administration (NOAA), as shown in Table 1. The U.S. 
Department of Commerce provides data, tools, and 
information to help individuals comprehend climate 
variability and change, and prepare for it. The predictand 
used the data from the Global Historical Climatology Network 
(GHCN), which is climate summaries from weather stations 
across the globe. GHCN data were archived from more than 
20 sources. Statistical downscaling will reduce the ratio from 
100-500 km to 10-50 km, based on the station in the research 
area. In this study, the researchers used data from six stations 
to downscale. According to Figure 2, four MLs were visible 
during the downscaling process. We selected each method's 
covariates from maximum temperature (TMAX), minimum 
temperature (TMIN), and precipitation. Both predictors and 
predictands perform quality control on each ML. These two 
parameters for downscaling were combined to identify all 
four climate scenario-generating models for SWAT analysis 
(Figure 1). 
       Agricultural (AGRL) encircled the research area, as shown 
in Table 2. Lake Tana consists of nine subbasins and is 
divided into four categories: pasture (PAST), forest (FRST), 
corn and teff (Eragrostis tef). In addition, various areas are 
adjacent to the watershed within the subbasin. The largest of 
the nine subbasins are corn and teff. 

 

 
 
Figure 1. Proposed techniques using machine learning and SWAT analysis 



Estimating water runoff from downscaling climate change scenarios using soil and water assessment tool and machine learning 

 
4 

Table 1. Data set of GCM by NOAA 
 

Experiment number Statistical downscale method Number of station GCM models 

1 Deep learning 6 CCSM4 

2 Gaussian process 6 CCSM4 

3 Linear regression 6 CCSM4 

4 Support vector machine 6 CCSM4 

 
 

 
 

Figure 2. Flow chart of statistical downscale  
 
2.5 Study area 
Lake Tana basin has 15,096 km2 and average annual rainfall 
of approximately 1,280 mm. The average annual 
evapotranspiration and amount of water in the catchment 
area are 773 mm and 392 mm, respectively (Setegn et al., 
2008). In addition, it has extensive wetland areas. This basin  
is of national importance for hydroelectric power, irrigation, 
livestock production, high-value crops, and ecotourism, 
among others. Lake Tana is situated in the northwest 
highlands of the country (latitude 12°00N, longitude 
37°150E). This lake has a maximum depth of 15 meters and 
a surface area of 3,000-3,600 km2 at an elevation of 1800 
meters. The climate of this region is 'tropical highland 
monsoon' with the primary rainy season between June and 
September. The average annual temperature is 20°C. 
 
 
3. RESULTS AND DISCUSSION 

 
The collected data from GCMs and six weather stations were 
used to calculate correlation and RMSE. The box plot was 
plotted by being divided into correlation and RMSE, as 
illustrated in Figure 3. The result showed that the DL 
performed better than GP, LR, and SVM. Furthermore, RMSE 
and correlation show that DL performs better than GL, LR, 
and SVM in Table 3 and Table 4. In this study, we examined 
many scenarios. The DL method created the scenario with 2, 
5, 10, and 15 hidden layers, each consisting of 10, 20, 30, 50, 
and 100 neurons. The result showed that the best number of 

nodes and layers was 2 and 50 nodes for each layer. However, 
an appreciable performance improvement was not observed 
due to the multiple processor kernels present in GP and SVM. 
The SDSM study revealed that the best kernel for SVM was 
polynomial, and the best kernel for GP is cauchy (Chattrairat 
et al., 2021). 
       According to research conducted to determine water flow 
from SWAT analysis using R2 and NSE in calibration and 
validation, R2 must be greater than 0.70 and NSE must be 
greater than 0.50 for the model to proceed to the next step. 
The results are shown in the model (Figure 1) calculated 
within the SWAT+ program. 
       Figure 4 illustrates the outcomes of the ML data imported 
in Step 1 of Figure 1, including DL, GP, LR, and SVM. SWAT 
analysis required DL, GP, LR, and SVM as inputs for 
calculating water flow. Using meteorological data to calculate 
the water flow results, the green SWAT in the graph 
represented the baseline of this study. 
       Using RMSE and correlation as indicators, the SWAT 
model results for channel one at latitude 11.66 and longitude 
37.42 indicated that statistical downscaling by deep learning 
outperformed meteorological data. For instance, the RMSE 
calculation of water runoff using climate scenarios and data 
from deep learning was 0.1591, which was less than when 
using meteorological data, which is 0.3596. Moreover, the 
correlation value derived from deep learning is greater than 
the value derived from meteorological data, which was 
0.9852 and 0.6974, respectively. 
       The comparison of the water runoff prediction that 
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computed from the SWAT model with the different climate 
data inputs (DL, GP, LR, SVM) and meteorological data is 
shown in Figure 5. Again, the result shows that DL was the 
best performance. Figure 6 shows the comparison of 
performance of SWAT models, between RMSE and 
correlation. The DL showed best performance with RMSE 
of 0.159, and the correlation is 0.98. The climate data from 

machine learning showed a good correlation, but the RMSE 
and the DL showed the best performance. Figure 7 shows 
the monthly result of the flow rate for four climate 
scenarios, meteorological data, and observed flow. It can 
be seen from Figure 7 that the flow rate was highest in 
August and lowest in April. The GP offered the highest 
value for every month.        

 
Table 2. Landuse of Lake Tana (Ethiopia) consisting of 9 subbasins 
 

Subbasin AGRL Area (ha) % 
Watershed 

% 
Subbasin 

1 

PAST 25.83 1.54 11.17 
FRST 12.09 0.72 5.23 
CORN 96.64 5.77 41.8 
TEFF 96.64 5.77 41.8 

2 

PAST 55.35 3.3 14.94 
FRST 2.71 0.16 0.73 
CORN 156.19 9.32 42.16 
TEFF 159.19 9.32 42.16 

3 

PAST 19.71 1.18 5.73 

FRST 2.29 0.14 0.67 

CORN 161.04 9.61 46.8 

TEFF 161.04 9.61 46.8 

4 

PAST 0 0 0 
FRST 8.37 0.5 3.46 
CORN 116.91 6.98 48.27 
TEFF 116.91 6.98 48.27 

5 

PAST 3.42 0.2 6.16 
FRST 0.27 0.02 0.49 
CORN 25.92 1.55 46.68 
TEFF 25.92 1.55 46.68 

6 

PAST 0 0 0 
FRST 0 0 0 
CORN 61.11 3.65 50 
TEFF 61.11 3.65 50 

7 

PAST 0 0 0 
FRST 0.18 0.01 2 
CORN 4.41 0.26 49 
TEFF 4.41 0.26 49 

8 

PAST 17.01 1.02 8.61 
FRST 2.52 0.15 1.28 
CORN 89.01 5.31 45.06 
TEFF 89.01 5.31 45.06 

9 

PAST 5.40 0.32 5.24 
FRST 2.03 0.12 1.97 
CORN 47.81 2.85 46.4 
TEFF 47.81 2.85 46.4 

       Due to the abundance of information, DL was the most 
widely used ML technique among researchers worldwide 
for learning new concepts.  Wang et al. (2 0 2 0 ) have used 
the ANN and recurrent neural network to downscale 
extreme precipitation.  However, in this study, we 
calculated TMAX, TMIN, and PRCP; the results showed that 
the DL calculated the current streamflow in the catchment 
area and could predict future streamflow. The trained DL 
model could be applied to future climate data and used as 
input for the SWAT model to determine what occurs in the  

watershed and catchment area. 
       As mentioned earlier, it can be summarized in Table 5 
that four research papers Haylock et al. (2006), Mendes and 
Marengo (2009), Abatzoglou and Brown (2012) and 
Gutmann et al. (2014) have presented only statistical 
downscale while two research papers have exploited the use 
of only SWAT Bannwarth et al. (2015), Tufa and Sime (2021). 
The last research paper used statistical downscale and SWAT 
(Zhou et al., 2015) but did not focus on ML and DL to estimate 
water runoff. However, no research paper has been proposed 
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on combining the three technique methods (ML, statistical 
downscale and SWAT). This research presented ML and DL 

to solve climate statistical downscale and SWAT to estimate 
water runoff in Lake Tana basin, Ethiopia.). 

 

 
Figure 3. Study area – Lake Tana, Ethiopia 
 

 
 
Figure 4. Box plot of correlation and RMSE comparing between four SDSM for PRCP (left), TMAX (middle) and TMIN (right) 
 

 
 
Figure 5. Comparison of water runoff prediction between L and SWAT model 
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Figure 6. Comparison of performance of SWAT models 
 

 

Figure 7. Comparison of monthly water flow of all models 
 
Table 5. Comparisons of downscaling methods and SWAT application 
 

References  Methodology Study area Application 
(SWAT) 

Statistical model Theories Training 
model 

Validation   

One model Various 
models 

Haylock et al. 
(2006) 

  ANN  Separate 
Validation 
period 

northwest and 
southeast 
England (UK) 

 

Gutmann et al. 
(2014) 

  BCSDd, BCSDm, 
AR, and BCCA* 

 Separate 
Validation 
period 

United States  

Mendes and 
Marengo 
(2009) 

 
 ANN, 

Autocorrelation 
 CV Amazon Basin 

Lake Tana 
(Ethiopia) 

 

Abatzoglou 
and Brown 
(2012) 

  BCSD, MACA  CV North 
American (US) 

 

Bannwarth et 
al. (2015) 

  ANSELM  Separate 
Validation 
period 

Thailand  

Zhou et al. 
(2015) 

  SDSM  Separate 
Validation 
period 

Lake 
Dianchi 
watershed, 
China 

 

Tufa and Sime 
(2021) 

  ArcSWAT  SWAT-CUP Toba 
sub-watershed, 
Ethiopia 

 

This research   DL, LR, GP, and 
SVM 

 10-Fold CV Lake Tana, 
Ethiopia 

 

Note: *bias corrected spatial disaggregation (BCSDd, BCSDm), asynchronous regression (AR), and bias corrected constructed analog 
(BCCA), cross-validation (CV), artificial neural network (ANN), soil and water assessment tool (SWAT) 

0.0
0.2
0.4
0.6
0.8
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1.2

RMSE Correlation

DL GP LR SVM SWAT
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4. CONCLUSION  
 
This research is focused on the topic of global warming. 
Maximum temperature, minimum temperature, and 
precipitation are among the methods that lead to climate 
forecasts.  The research was conducted on Lake Tana in 
Ethiopia. The experiments consisted of statistical simulations 
on a smaller scale utilizing ML techniques such as DL, LR, GP, 
and SVM.  Experiments employing ten- fold cross-validation 
demonstrated that DL was sufficient.  The climate scenario 
derived from the DL model proved optimal for surface water 
volume calculations using SWAT analysis. It can be stated 
that the DL algorithm outperformed other ML techniques 
used in this study. 
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