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1. INTRODUCTIONห 

Understanding and monitoring the state of the world’s forests 
have never been as important as it is today (FAO and UNEP, 
2020). Typically, plant ecology investigations include four 
types of studies (Gerhart et al., 2004): plant species surveys; 
estimates of cover percentages and age structures of 
dominant perennial plant species; evaluations of the 
composition, relative abundance, and distribution of plant 
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associations; and vegetation mapping. Vegetation mapping is 
particularly critical for understanding biodiversity patterns 
through space and time and underpins biodiversity 
management and planning at local and global scales (Tierney 
et al., 2019). It is a key resource for the assessment of 
woodland resources and National Forest Inventories (NFIs) 
(Waser et al., 2017). Vegetation maps using remote sensing 
and GIS modeling techniques have been used, for example, to 
investigate landscape changes and analyze vegetation 

Research Article 

 Mapping forest types using 
ecological niche modeling and fuzzy 
accuracy assessment in Thailand 

 
Yaowaret Jantakat1*, Jefferson Fox2 and Pongpun Juntakut3 

 
1 Department of Information and Communication Technology, Faculty of Sciences and Liberal 
Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand 
2 East West Center, Honolulu, Hawaii 96848, USA 
3 Department of Civil Engineering, Chulachomklao Royal Military Academy, Nakhon Nayok 26001, 
Thailand 

 
 
 
 

*Corresponding author: 
Yaowaret Jantakat 

yaowaret.ja@rmuti.ac.th 
 

Received: 16 July 2022 
Revised: 23 November 2022 
Accepted: 7 December 2022 

Published: 29 December 2022 
 

Citation: 
Jantakat, Y., Fox, J., and 

Juntakut, P. (2022). Mapping 
forest types using ecological 

niche modeling and fuzzy 
accuracy assessment in 

Thailand. Science, Engineering 
and Health Studies, 16, 

22020011. 

 
ABSTRACT 

 
The forest map remains essential for investigating plant ecology and biodiversity 
patterns. This study proposed methods for mapping forest types based on 
ecological niche modeling and then used fuzzy error matrix for accuracy 
assessment. The upper Ping basin of northern Thailand was selected as study area. 
The modeled data included forest inventory, topographic, climatic, soil, and 
geological data. Ecological niche factor analysis was used to model and produce 
the best habitat suitability index of each forest type, which were then combined 
using hierarchically generated coding. As a result, eight classes of forest types were 
generated: dry dipterocarp forest (7,373.94 km2, 32.81%), evergreen ecotone or 
transition area (3,666.97 km2, 16.32%), mixed deciduous forest (3,440.79 km2, 
15.31%), deciduous ecotone or transition area (3,225.58 km2, 14.35%), deciduous 
and evergreen forest (2,027.12 km2, 9.02), coniferous forest (CF; 365.28 km2, 
1.63%), moist and dry evergreen forest (290.08 km2, 1.29%), and hill evergreen 
forest (270.56 km2, 1.21%). Four variables were found to be critical in forest type 
distribution: elevation, mean annual temperature, annual maximum temperatures 
and annual minimum temperatures. To assess map accuracy, fuzzy error matrix, 
which allows the recognition of ambiguous classes and does not ignore variation in 
the interpretation of the reference data at class boundaries, was used (75.89% of 
overall accuracy). 
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transitions, forest limits, and expected future forest 
expansion (e.g., Ihse, 2010; Miller et al., 1994). Therefore, 
vegetation maps consist of two essential elements: a 
classification of vegetation and a spatial attribution of that 
classification (Tierney et al., 2019). 

This article focused on the spatial attribution of 
vegetation pattern-based on GIS modeling techniques. The 
use of GIS for vegetation-related research has been a key 
focus from the very beginning of the development of GIS in 
the early 1960s (Bareth and Waldhoff, 2017). Mapping of 
vegetation has progressed from the earliest geographical 
approaches through the development of systematic methods 
based on naturalists’ understanding of observable patterns to 
today’s highly technical modeling approaches (Tierney et al., 
2019). Although forest types dominant within a region 
depend on climate, elevation, wind, rainfall, temperature, and 
soil conditions (Oregon Forest Resources Institute, 2021), 
these physical variables can be modeled in an ecological 
niche approach with GIS modeling techniques. In other 
words, we can view forest ecosystems, in terms of 
ecological niches—the particular sets of environmental 
conditions and resources that allow a given organism or 
species to survive and grow (Barve et al., 2011; Peterson et 
al., 2011). This allows us to address a variety of important 
problems, including resource use, geographical diversity, and 
many aspects of community composition and structure 
(McGill et al., 2006). However, the maps generated must still 
be assessed for accuracy. Accuracy information is integral to 
a user’s ability to responsibly utilize such maps for forest 
management decisions (Milliken and Woodcock, 1996). In 
addition, accuracy assessment can contribute to improving 
the quality of maps’ information by identifying the sources of 
errors and correcting them (Lunetta and Lyon, 2004). The 
underlying principle of accuracy assessment is that it 
compares mapped land classifications to higher quality 
reference data, collected through a sample-based approach 
(FAO, 2016). 

With a traditional error matrix, only one possible answer 
(the one considered to be the best answer by an ‘expert’ in 
the field) is compared to the map label. In contrast, fuzzy set 
theory allows both users and producers to look at ranges of 
acceptable answers (Milliken et al., 1998). Therefore, the 
current study used a modified fuzzy accuracy assessment, 
based on the fuzzy error matrix approach of Congalton and 
Green (2009). Because it allows for grades of membership 
and provides considerably more flexibility than classical set 
theory, fuzzy set theory has many applications ranging from 
pattern recognition to control engineering to modeling 
human decision-making (Woodcock and Gopal, 2000). In the 
case of a vegetation map, one label may be absolutely correct, 
but other labels may be considered good or acceptable 
(Milliken et al., 1998). For example, for a given site (in this 
case an inventory plot within a map polygon), a map label of 
‘red fir’ may be considered absolutely correct, but a map label 
of ‘subalpine conifer’ might still be considered acceptable 
(Congalton and Green, 2009). 

In this study, fuzzy error matrix approach was used to 
accurately assess the relationship between predictive forest 
type map and ground checking. However, accuracy 
assessment may be difficult because of appropriate map label 
for some locations (Gopal and Roodcock, 1994), produced by 
a resultant multi-layer model involving representation of 
forest types (Zadeh, 1965; Burrough, 1989; Brown, 1998) 
that any given location in area with two events (Brown, 
1998). Additionally, it is less certain in places where the 

neighboring trees are not clearly indicative of one forest type 
and more certain where the trees more clearly suggest one 
forest type. For example, possible gradations between two 
classes in a map of forest (Woodcock and Gopal, 2000) that 
considered the difference between the vegetation categories 
conifer forest and hardwood forest (Gopal and Roodcock, 
1994) as the same problem was defined by the breaking line 
between mixed forest and both hardwood forest and conifer 
forest (Woodcock and Gopal, 2000). 

Based on the above reasons, the purpose of this research 
was to present a method for mapping forest types based on 
ecological niche modeling, which was then accurately 
assessed by technique of fuzzy error matrix. This study 
focused on the upper Ping basin because it has available 
forest inventory data from Forest Royal Department (FRD) of 
Thailand. Moreover, the Ping basin is considered the most 
degraded natural forest area in Thailand; currently, it is 
intensively managed based on academic principles and 
fundamentals of forest ecology with the goal of conservation 
and rehabilitation of the forest lands. 

 

2. MATERIALS AND METHODS 

2.1 Study area 
The upper Ping basin is a major watershed in northern 
Thailand. The study area is part of the Ping basin I, which is 
one of the four upper tributary basins forming the Chao 
Phraya river system, the most important river basin in 
Thailand. The study area is 22,473.66 km2 and is situated 
approximately between latitudes 17° and 20° N and between 
longitudes 98° to 100° E, or from 1925648–2190195 N to 
402478–542869 in the UTM coordinate system (WGS 1984 
and 48N), as shown in Figure 1a. The topography of the study 
area included a series of complex mountains that range in 
elevation from 0 m to 2,775 m above mean sea level (MSL), 
as shown in Figure 1b; the area comprised steep lands of 
more than 35% slope, which restricted its uses to woodland, 
watershed protection, and wildlife conservation. Data on the 
climate, which is dominantly affected by the monsoon, came 
from 21 meteorological stations of the Thailand 
Meteorological Department (TMD), as shown in Figure 1c. In 
addition, forest area in the upper Ping basin currently 
covered 16,947.38 km2, as seen in Figure 1d. Soil data of 
study area were mostly classified as slope complex (Figure 
1e) and geological data included 32 geological formation 
characteristics with mostly sedimentary and metamorphic 
rock types in study area, as shown Figure 1f. 

2.2 Datasets and sources 
This study required ecological niche modeling. Therefore, 
datasets of ecogeographical variables (EGV) related to forest 
types in Thailand were selected, which included forest 
inventory data, climatic data, topographical data, soil data, 
and geological data. Characteristics and sources of the EGV 
datasets are summarized in Table 1. 

The forest inventory dataset focused on 460 permanent 
plots, which included 179 plots of dry dipterocarp forest 
(DDF), 164 plots of mixed deciduous forest (MDF), 83 plots of 
hill evergreen forest (HEF), 19 plots of moist and dry 
evergreen forest (MDEF), and 15 plots of coniferous forest 
(CF). Forest inventory data of Thailand from the Department 
of National Parks, Wildlife and Plant Conservation (DNP) has 
been surveyed every five years with same positions and 
points to monitor changing forest communities. Forest 
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inventory points are usually collected with a uniform spacing 
size of 20 x 20 km but forest inventory data of Ping basin was 
surveyed with spacing size 5 x 5 km grid. Each forest 
inventory point included 5 circular plots (1 plot which 
located on intersection grid of 5 x 5 km was assigned as 
permanent plot while other 4 plots were temporary). Each 
plot were superimposed by concentric circular plots. Each 
circular plot was designed to collect a specific forest 
inventory data. In this study, identified forest types in 
permanent plot were selected for studying forest ecological 
model because they are a key component of a long-term 
ecological research program. 

Topographical data is essential for modeling ecological 
niche of forest. Therefore, this study considered elevation 
(m), slope (degree), and aspect (direction). Elevation data 
were not only directly extracted from a Digital Elevation 
Model (DEM) 30 m but slope and aspect were also derived 
using standard GIS techniques from DEM 30 m. 

The climatic data includes rainfall and temperature data, 
which have an influence on forest distribution. These climatic 
data were characterized by using the monthly mean data 
from a recently released 30-year period (1985-2014) from 
TMD of Thailand that was modeled by BIOCLIM. In this 
climatic modeling, we provided bioclimatic variables derived 
from the monthly temperature and rainfall values in order to 
generate more biologically meaningful variables (WorldClim, 
2020). The BIOCLIM modeling produced 19 bioclimatic 
variables that were examined by using correlation analysis, 

which showed 10 of the 19 bioclimatic variables to be strongly 
correlated: mean annual temperature (BIO1), mean 
diurnal range (BIO2), temperature seasonality (BIO4), 
annual maximum temperature (BIO5), annual minimum 
temperature (BIO6), annual temperature range (BIO7), 
mean annual precipitation (BIO12), annual maximum 
precipitation (BIO13), annual minimum precipitation 
(BIO14), and precipitation seasonality (BIO15). These 10 
bioclimatic variables conform to the climate factors 
identified by Kutintara (1999) and Santisuk (2006) as 
fundamental to Thai forest ecology. 

Soil data were mostly classified by slope complex (about 
71.5%) and characterized based on geological formation. 
Thirty subtypes modified soil data were used for modeling. 

2.3 Ecological niche modeling and validating 
Data input for the ecological niche modeling comprised four 
datasets: 460 forest inventory plots, three topographic 
variables, 10 bioclimate variables, and 30 subtypes of soil 
data based on slope complex and geological formation. These 
datasets were transformed into GIS data with WGS 1984 
UTM Zone 48N and were used for the ecological niche factor 
analysis (ENFA) in BIOMAPPER 4.0, developed by Hirzel et al. 
(2007). ENFA produced habitat suitability (HS) indices based 
on the extracted variables for each forest type, which were 
validated by using the absolute validation index (AVI) and the 
contrast validation index (CVI) to select the best HS index for 
each of the forest types. 

 

 
 
           Figure 1. The study area: (a) map, (b) topography, (c) climatic, (d) forest, (e) soil, and (f) geology 

 

(b) Topographic data (c) Climatic data (d) Forest data (e) Soil data (f) Geological data 

(a) The upper Ping basin 
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Table 1. Compilation of ecological niche modeling sources and datasets 
 

EGV data Characteristics of available data Sources 
1. Forest inventory data and 
topographical data based on 
digital elevation model 
(DEM) 

- Forest inventory data based on permanent plots is in 
the form of vector-based GIS and spreadsheet data 
(2004-2007) 
- DEM is in the form of raster-based GIS with cell size 
of 30 x 30 m. 

Department of National Parks, Wildlife 
and Plant Conservation (DNP) at 
https://www.dnp.go.th/inventory/pin 
g/method.htm 

2. Climatic data The 30-year meteorological data of monthly mean 
rainfall and temperature (1985-2014) is in the form of 
spreadsheet data and paper reports 

Thailand Meteorological Department 
(TMD) 

3. Soil data Vector-based GIS and paper and digital reports Land Development Department (LDD) 

4. Geology data Vector-based GIS and paper and digital reports Department of Mineral Resources 
(DMR) 

 

2.4 Mapping forest types 
The best HS indices based on ENFA for each forest type were 
combined using GIS techniques, based on codes for the forest 
types. The five forest types were placed into two groups: 
deciduous forest (MDF and DDF) and evergreen forest (CF, 
MDEF, and HEF). There were two steps for coding forest 
types to produce the forest map. In the first step, a 
hierarchical coding system was set and applied to each forest 
type according to HS classes (see Figure 2 for the example of 
deciduous forest). Next, the codes for the deciduous and 
evergreen forest types were combined and assigned to each 
forest type using a maximum operator in the GIS program. 
For example, MDF with moderate HS (code 2) combined with 

DDF with high HS (code 30) became DDF (code 32), as shown 
in Figure 3. If the HS class or code of forest type was equal, it 
was labeled an ‘ecotone’. In the last step, the existing coding 
for the deciduous forest type was assigned a new code by 
multiplying by 1,000; this new code was combined with the 
code for the evergreen forest type using a maximum operator 
in the GIS program. For example, DDF with high HS (code 
32000) combined with CF with moderate HS (code 112) 
became DDF (code 32112). Again, if the codes were equal, it 
was labeled an ‘ecotone’. For example, DDF with moderate HS 
(code 22000) combined with CF with moderate HS (code 
112) became deciduous and evergreen ecotone (code 
22112). 

 

 
Figure 2. Example of hierarchical code system for deciduous forest 
Note: MDF = mixed deciduous forest, LHS = low habitat suitability, MHS = moderate habitat suitability, HHS = high habitat suitability, and 
DDF = dry dipterocarp forest 

 

Figure 3. GIS spatial analysis for combining deciduous forest types 

http://www.dnp.go.th/inventory/pin
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2.5 Fuzzy accuracy assessment 
In this study, fuzzy set approach was set by accuracy level 
(modified from Landis and Koch (1977) for forest type) 
(Table 2), as follows: 

- Forest type value higher than 50% represents perfect 
(P) accuracy between the classified map and the ground 
reference data. 

- Forest type value close to (fuzzy) 50% represents 
approval (A) accuracy between the classified map and the 
ground reference data. 

- Forest type value lower than 50% represents imperfect 
(I) accuracy between the classified map and the ground 
reference data. 

For accuracy assessment, the most common way to 
represent the classification accuracy of remotely sensed data 
is in the form of an error matrix (Congalton, 1991; Foody, 
2008; Rogan et al., 2008; Lawrence and Moran, 2015; 
Maxwell et al., 2018). Such metrics generally assume that 

map features have discrete and well-defined boundaries, and 
that the true value of all pixels can be ascertained with equal 
accuracy, regardless of spatial location relative to feature 
edges (Maxwell and Warner, 2020). Moreover, the error 
matrix can be implemented as a starting point for a series of 
descriptive and analytical statistical technique (Congalton 
and Green, 2009). One advantage of these techniques is that 
they yield a single overall map accuracy index, usually 
presented as a percent correct (Gopal and Roodcock, 1994). 
However, the classification scheme breaks represent 
artificial distinctions along continuum of land cover or 
observer variability, which is often difficult to control but can 
be solved by the fuzzy error matrix (Green and Congalton, 
2009). For example, the possibility of three classes (such as 
deciduous and evergreen forest and their ecotones) were 
considered by accuracy evaluation of fuzzy vegetation maps 
(Berberoglu and Satir, 2008; Zlinszky and Kania, 2016). 

 

Table 2. Fuzzy logic for accuracy assessment of forest type map in this study 
 

 

Mapped 
forest type 

Ground references 
 

 

Deciduous forest (D)  Evergreen forest (E)   DEEco 

MDF DDF DEco CF MDEF HEF EEco 
MDF P A A I I I I Approval with D:E = 50:50 
DDF A P A I I I I Approval with D:E = 50:50 
DEco A A P I I I I Approval 

CF I I I P A A A Approval with E:D = 50:50 
MDEF I I I A P A A Approval with E:D = 50:50 
HEF I I I A A P A Approval with E:D = 50:50 
EE I I I A A A P Approval 

DEEco A A A A A A A P 

Note: P = perfect, I = imperfect, A = approval, MDF = mixed deciduous forest, DDF = dry dipterocarp forest, DEco = deciduous ecotone, CF 
= coniferous forest, MDEF = moist and dry evergreen forest, HEF = hill evergreen forest, EEco = evergreen ecotone and deciduous and 
evergreen ecotone 

 

3. RESULTS 

3.1 HS for forest type distribution 
In the forest type distribution, HS indices were produced by 
ENFA, and then analyzed to determine relationships 
among the EGVs and to find combinations of specific EGVs 
(also called ‘forest components’) to produce correlated HS 
indices of the five forest types (MDF, DDF, HEF, MDEF, and 
CF). In general, ENFA, marginality, and specialization 
coefficients of EGV for each forest type were computed and 
combined to generate a global HS map using a median 
algorithm. The values of the HS indices varied from 0 to 
100. Thus, all derived HS-index-based forest components 
of each forest type were validated as the best HS-based 
ENFA using AVI and CVI (in BIOMAPPER. The most 
accurate model is one that maximizes both AVI and CVI), as 
shown in Table 3. 

 
3.1.1 Mixed deciduous forest (MDF) 
The best HS of MDF was derived by using component 1 of 
MDF, or ‘MDF1’, comprised of four EGVs: elevation, BIO1, 
BIO5, and BIO6. The proportion of explainable information 
preferred 92% of marginality as a result of the best MDF- 
HS, indicating that the distribution of MDF species in the 
study area was greater than the species variation. 
Moreover, BIO1 (mean annual temperature) and BIO5 

(mean monthly maximum temperature) are critical in the 
ecological niche model. 

 
3.1.2 Dry dipterocarp forest (DDF) 
The best HS of DDF was derived by using component 2 of 
DDF, or ‘DDF2’, and comprised of four EGVs: elevation, BIO1, 
BIO5, and BIO6. The proportion of explainable information 
preferred 91% of marginality as a result of the best DDF-HS, 
which indicated that the distribution of DDF species in the 
study area was higher than the species variation. Although 
BIO6 (mean monthly minimum temperature) was the highest 
essential EGV for the ecological niche model, the marginality 
value was not much different from the three other EGVs. 

 
3.1.3 Hill evergreen forest (HEF) 
The best HS of HEF was derived by using component 1 of HEF, 
or ‘HEF2’, comprising of four EGVs: elevation, BIO1, BIO5, and 
BIO6. The proportion of explainable information preferred 
75% of marginality as a result of the best HEF-HS, which 
indicated that the distribution of HEF species in the study 
area was higher than the species variation. Moreover, 
elevation is critical in the ecological niche model. 

 
3.1.4 Moist and dry evergreen forest (MDEF) 
The best HS of MDEF was derived by using component 1 of 
MDEF, or ‘MDEF1’, comprising of four EGVs: elevation, BIO1, 
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BIO5, and BIO6. The proportion of explainable information 
preferred 60% of specialization as a result of the best MDEF- 
HS, which indicated that MDEF species variation in the study 
area was higher than the global distribution of species. 
Moreover, BIO5 (mean monthly maximum temperature) is 
critical for the ecological niche model. 

 
3.1.5 Coniferous forest (CF) 
The best HS of CF was derived by using component 2 of CF, or 
‘CF2’, comprising four EGVs: elevation, BIO1, BIO5, and BIO6. 
The proportion of explainable information preferred 80% of 

marginality as a result of the best CF-HS, which indicated that 
the distribution of CF species in the study area was higher 
than the species variation. Moreover, elevation is critical for 
the ecological niche model. 

 
3.2 The forest type map 
To obtain the forest type map, this study combined all five 
forest types based on hierarchical coding of HS indices in a 
GIS operation, as seen in Figure 5. In this GIS operation, there 
were three specific outputs. 

 

Table 3. The best HS-based ENFA using maximum values of AVI and CVI for distribution of forest suitability 
 

Forest 
type 

EGVs Marg. Spec.1 Spec.2 Spec.3 

1. MDF BIO1 0.718 0.244 -0.379 0.643 
 BIO5 0.620 -0.362 0.708 -0.748 
 BIO6 0.243 0.690 -0.582 0.111 
 Elevation -0.204 0.577 0.124 0.123 
 % of Explanation 92% 6% 1% 1% 

HS(MDF1) = [1/(0.725+0.268+0.007+0.001)]*[0.725HS(marg.,c) + 0.268HS(spec.1,c) 
+ 0.007HS(spec.2,c)+ 0.001H(spec.3,c) 

2. DDF BIO6 0.572 -0.351 0.209 - 
 BIO1 0.521 -0.330 0.578 - 
 Elevation -0.449 0.042 0.170 - 
 BIO5 0.447 0.875 -0.770 - 
 % of Explanation 91% 7% 1% - 

HS(DDF2) = [1/(1.912+0.069+0.011)]*[1.912HS(marg.,c) +0.069HS(spec.1,c) 
+0.011HS(spec.2,c) 

3. HEF Elevation 0.805 0.047 -0.296 - 
 BIO6 -0.510 0.495 -0.645 - 
 BIO1 -0.247 -0.287 -0.123 - 
 BIO5 -0.175 -0.819 0.694 - 
 % of Explanation 75% 24% 1% - 

HS(HEF1) = [1/(1.747+0.243+0.006)]*[1.747HS(marg.,c) + 0.243HS(spec.1,c) 
+0.006HS(spec.2,c) 

4. MDEF Elevation 0.862 0.111 - - 
 BIO6 -0.444 0.386 - - 
 BIO1 -0.217 0.136 - - 
 BIO5 -0.115 -0.906 - - 
 % of Explanation 40% 60% - - 

HS(MDEF1) = [1/(1.389+0.606)]*[1.389HS(marg.,c) +0.606HS(spec.1,c) 

5. CF Elevation 0.903 -0.027 - - 
 BIO6 -0.396 0.259 - - 
 BIO1 -0.159 -0.911 - - 
 BIO5 -0.058 0.319 - - 
 % of Explanation 80% 20% - - 

HS(CF2) = [1/(1.805+0.187)]*[1.805HS(marg.,c) +0.187HS(spec.1,c)  

 
 
 

Note: MDF = mixed deciduous forest, DDF = dry dipterocarp forest, HEF = hill evergreen forest, MDEF = moist and dry evergreen forest 
and CF = coniferous forest, BIO1 = mean annual temperature (°C), BIO5 = mean monthly maximum temperature (°C), BIO6 = mean 
monthly minimum temperature (°C) and positive and negative signs of marginality and specialization coefficient indicate whether each 
ecological model prefers higher or lower than the mean and variation of global distribution in each particular variable of environment. 
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Figure 5. Combination of forest type map using hierarchical coding and GIS techniques 
Note: MDF = mixed deciduous forest, DDF = dry dipterocarp forest, CF = coniferous forest, MDEF = moist and dry evergreen forest, and 
HEF = hill evergreen forest 

 

3.2.1 Map of the deciduous forest type 
We produced a map of the deciduous forest (DF) type by 
combining MDF and DDF with their assigned HS class 
codes, and then overlaid them in a GIS map to generate the 
DF type distribution. As a result, the DF types in the study 
area included DDF (7,400.20 km2, 32.93%), MDF (5,912.58 
km2, 26.31%) and a deciduous ecotone (9,159.47 km2, 
40.76%). 

As explained above, DF was combined by using HS 
classes of DDF and MDF, modeled by four EGVs (BIO1, 
BIO6, BIO5, and elevation). According to Kutintara (1999) 
and Santisuk (2006), in Thai forest ecology, BIO1 (mean 
annual temperature) is a major determinant of DDF, while 
BIO6 (mean monthly minimum temperature) is the main 
determinant of MDF. 

 
3.2.2 Map of evergreen forest type 
The map of the evergreen forest (EF) type combined HEF, 
MDEF, and CF, with their assigned HS class codes, and then 
overlaid them in a GIS operation to generate the EF types’ 

distribution. As a result, the EF types in the study area 
included evergreen ecotone (19,052.70 km2, 84.78%), CF 
(2,845.98 km2, 12.67%), MDEF (295.04 km2, 1.31%), and 
HEF (278.53 04 km2, 1.24%). EF was produced by using HS 
classes of HEF, MDEF, and CF, modeled with four EGVs (BIO1, 
BIO6, BIO5, and elevation). 

 
3.2.3 Map of deciduous and evergreen forest type 
The maps of deciduous and evergreen forest type were 
integrated to generate a map of all occurring forest types in 
the study area using GIS-operation-based hierarchical 
coding. This process generated eight forest types: DDF 
(7,373.94 km2, 32.81%), evergreen ecotone (3,666.97 km2, 
16.32%), MDF (3,440.79 km2, 15.31%), deciduous ecotone 
(3,225.58 km2, 14.35%), deciduous and evergreen forest 
(2,027.12 km2, 9.02), CF (365.28 km2, 1.63%), MDEF (290.08 
km2, 1.29%), and HEF (270.56 km2, 1.21%). Moreover, the 
eight forest types were generated by using the HS classes 
of deciduous and evergreen forests, which were 
ecologically modeled by mainly four EGVs (BIO1, BIO6, 
BIO5 and elevation). 
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3.3 Ground checking and fuzzy accuracy 
assessment 
The combined forest type map was created by using 
hierarchical coding and GIS techniques, and assessed for 
accuracy with fuzzy logical rule based on field surveys 
conducted from January to April 2021. Using multinomial 

distribution theory at a 90 percent confidence level and 
10 percent precision, 141 sampling points were 
calculated. The sampling method was stratified random 
sampling with the proportion of sampling points of each 
forest type, including ecotone types, shown in Table 4 
and Figure 6. 

 

Table 4. Points of stratified random sampling for ground check 
 

Forest type Area (km2) Percent Sampling points 
1. MDF 3,440.79 15.31 23 
2. DDF 7,373.94 32.81 50 
3. DEco 3,225.58 14.35 22 
4. CF 365.28 1.63 3 
5. MDEF 290.08 1.29 2 
6. HEF 270.55 1.20 2 
7. EEco 3,666.97 16.32 25 
8. DEEco 2,027.12 9.02 14 
9. Unsuitable forest area 1,811.93 8.06 0 
Total 22,472.25 100.00 141 

Note: MDF = mixed deciduous forest, DDF = dry dipterocarp forest, DEco = deciduous ecotone, CF = coniferous forest, MDEF = moist and dry 
evergreen forest, HEF = hill evergreen forest, EEco = evergreen ecotone and deciduous and evergreen ecotone 

 

 

Figure 6. Sampling points for ground check and fuzzy accuracy assessment 
Note: MDF = mixed deciduous forest, DDF = dry dipterocarp forest, DEco = deciduous ecotone, CF = coniferous forest, MDEF = moist and dry 
evergreen forest, HEF = hill evergreen forest, EEco = evergreen ecotone and deciduous and evergreen ecotone 
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In the fuzzy accuracy assessment, the 141 sample points 
based on the field data on September-December 2021 were 
used for the fuzzy error matrix, as in Figure 7. The overall 
accuracy in the fuzzy assessment of the forest-type-based 

ecological niche modeling was 75.89%. At the same time, 
producer’s accuracy (PA) varied from 72.73% for DEco to 
100% for CF, MDEF and HEF. User’s accuracy (UA) varied 
from 81.82% for DEco to 100% for CF, MDEF and HEF. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. The fuzzy error matrix for accuracy assessment of forest type map 
 

4. DISCUSSION 
Map of the deciduous forest type can be explained in terms of 
a continuum with changing species composition along 
environmental gradients arising in antithesis to the 
community-unit theory, which states that plant communities 
are natural units of coevolved species populations forming 
homogeneous, discrete, and recognizable units. In DE, this 
can be explained by Gleason’s view (Cox and Moore, 2005) of 
plant communities in which the ecological ranges of two 
species or more coincide precisely, and the degree of 
association between ground flora and canopy is often weaker 
than one might assume from casual observation. In other 
words, in Gleason’s ‘individualistic’ model, each species is 
distributed independently and ‘communities’ are not 
apparent. 

Map of evergreen forest type in Thai forest ecology as 
reported by Kutintara (1999) and Santisuk (2006) indicated 
that the influence of a common topographic factor (especially 
elevation) is the main determinant of the distribution of CF 
and HEF, while BIO5 (mean monthly maximum temperature) 
is an important factor in MDEF distribution. In addition, the 
distribution of EF can be explained by Gleason’s continuum 
concept; in this view, the coincident area labeled ‘evergreen 
ecotone’ identifies the overlapping of the three evergreen 
forest types. 

Map of deciduous and evergreen forest types can be 
explained by Gleason’s continuum concept in which the 
overlapping of deciduous and evergreen ecotones has the 
same explanation as the distribution of deciduous and 
evergreen forest types above. 

In accuracy assessment of forest type map-based field 
data, fuzzy accuracy assessment provided a high value of 
overall accuracy because it does not ignore any variation in 
the interpretation of reference data or inherent fuzziness at 
class boundaries. Therefore, it is not the same as simple 
descriptive statistics or discrete multivariate analytical 
statistics (‘kappa analysis’). 

 

5. CONCLUSION 
The best HSs of five forest types (MDF, DDF, HEF, MDEF, and 
CF) were derived from using four EGVs: elevation, BIO1, 
BIO5, and BIO6. In the best HSs, the proportion of explainable 
information preferred marginality coefficients, except for 
MDEF. These results revealed that the distribution of species 
in MDF, DDF, HEF, and CF was greater than the species 
variation in the study area. In this ecological niche modeling, 
elevation is of the highest importance for CF and HEF, while 
BIO5 is more important for MDF and MDEF. 

The forest type map was produced by using ENFA based 
on the best HSs of the five forest types, which were combined 
using hierarchical-coding-based GIS techniques. This process 
resulted in the generation of eight classes of forest type. DDF 
covered the highest proportion of the study area at 32.81%, 
while HEF and MDEF were very rare, at 1.21% and 1.29% of 
the study area, respectively. The overall accuracy for the 
fuzzy assessment of the forest type-based on ecological niche 
modeling was 75.89%; this overall accuracy value was 
possible because this approach does not ignore any variation 
in the interpretation of the reference data or the inherent 

 Producer’s accuracy   User’s accuracy  

Ground reference 
M
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fuzziness at class boundaries. However, in general, the wise 
use of emerging technologies and thoughtful standardization 
of mapping approaches holds significant promise for the 
management of vegetation and ecosystems in the future. 

 

REFERENCES 

Bareth, G., and Waldhoff, G. (2018). GIS for mapping 
vegetation. In Comprehensive Geographic Information 
Systems, vol. 2: GIS Applications for Environment and 
Resources (Bareth, G., Song, C., and Song, Y., eds.), pp. 1- 
27. Amsterdam: Elsevier. 

Barve, N. B., Barve, V., Jimenez-Valverde, A., Lira-Noriega, A., 
Maher, S. P., Peterson, A. T., Soberon, J., and Villalobos, F. 
(2011). The crucial role of the accessible area in 
ecological niche modelling and species distribution 
modelling. Journal of Ecological Modeling, 222(11), 
1810-1819. 

Berberoglu, S., and Satir, O. (2008). Fuzzy classification of 
Mediterranean type forest using ENVISAT MERRIS data. 
International Archives of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences, Vol. XXXVII. 
Part B8, pp. 1109-1114. Beijing, China. 

Brown, D. G. (1998). Mapping historical forest types in Baraga 
County Michigan, USA as fuzzy sets. Plant Ecology, 134, 
97-111. 

Burrough, P. A. (1989). Fuzzy mathematical methods for soil 
survey and land evaluation. Journal of Soil Sciences, 40, 
477-492. 

Congalton, R. G. (1991). A review of assessing the accuracy of 
classification of remotely sensed data. Remote Sensing of 
Environment, 37, 35-46. 

Congalton, R. G., and Green, K. (2009). Assessing the Accuracy 
of Remote Sensed Data, 2nd, Boca Raton: CRC Press, pp. 
131-140. 

Cox, C. B., and Moore, P. D. (2005). Biography: An Ecological 
and Evolutionary Approach, 7th, Oxford: Blackwell, pp. 
117-142. 

FAO. (2016). Map accuracy assessment and area estimation: 
A practical guide. [Online URL: http://www.fao.org/3/ 
i5601e/i5601e.pdf] accessed on September 24, 2021. 

FAO., and UNEP. (2020). The state of the world’s forests 2020: 
forests, biodiversity and people. [Online URL: http://www. 
fao.org/documents/card/en/c/ca8642en/] accessed on 
September 23, 2021. 

Foody, G. M. (2008). Harshness in image classification 
accuracy assessment. International Journal of Remote 
Sensing, 29, 3137-3158. 

Gerhart, V. J., Waugh, W. J., Glenn, E. P., and Pepper, I. L. 
(2004). Ecological restoration-19. In Environmental 
Monitoring and Characterization (Artiola, J. F., Pepper, I. 
L., and Brusseau, M. L., eds.), pp. 357-375. Amsterdam: 
Elsevier. 

Gopal, S., and Roodcock, C. (1994). Theory and methods for 
accuracy assessment of thematic maps using fuzzy sets. 
Photogrammetric Engineering & Remote Sensing, 60(2), 
181-188. 

Green, K., and Congalton, R. G. (2004). An error matrix 
approach to fuzzy accuracy assessment: the NIMA 
Geocover project. In Remote Sensing and GIS Accuracy 
Assessment (Lunetta, R. S., and J. G. Lyon, eds.), pp. 163- 
172. Boca Raton, Florida: CRC Press. 

Hirzel, A. H., Hausser, J., and Perrin, N. (2007). Biomapper 1.0- 
4.0. University of Lausanne. [Online URL: https://www2. 

unil.ch/biomapper/products.html] accessed on August 
18, 2020. 

Ihse, M. (2010). Vegetation mapping and landscape changes, 
GIS-modelling and analysis of vegetation transitions, 
forest limits and expected future forest expansion. 
Journal of Geography, 64(1), 76. 

Kutintara, U. (1999). Fundamental Forest Ecology, 1st, 
Bangkok: Kasetsart University, pp. 80-110. 

Landis, J., and Koch, G. (1977). The measurement of observer 
agreement for categorical data. Biometrics, 33, 159- 
174. 

Lawrence, R. L., and Moran, C. J. (2015). The America view 
classification methods accuracy comparison project: A 
rigorous approach for model selection. Remote Sensing 
of Environment, 170, 115-120. 

Lunetta, R. S., and Lyon, J. G. (2004). Remote Sensing and GIS 
Accuracy Assessment, 1st, Boca Raton: CRC Press, pp. 
321-328. 

Maxwell, A. E., Warner, T. A., and Fang, F. (2018). 
Implementation of machine-learning classification in 
remote sensing: An applied review. International Journal 
of Remote Sensing, 39, 2784-2817. 

Maxwell, A. E., and Warner, T. A. (2020). Thematic 
classification accuracy assessment with inherently    

uncertain boundaries: An argument for center-weighted 
accuracy assessment aetrics. Remote Sensing, 12, 1905. 

McGill, B. J., Enquist, B. J., Weiher, E., and Westoby, M. (2006). 
Rebuilding community ecology from functional traits. 

Trends in Ecology and Evolution, 21(4), 178-185. 
Miller, S., Eng, H., Byrne, M., Milliken, J., and Rosenberg, M. 

(1994). Northeastern California vegetation mapping: A 
joint agency effort. In Remote Sensing and Ecosystem 
Management: Proceedings of the Fifth Forest Service 
Remote Sensing Applications Conference (Greer, J. D., ed.), 
pp. 115-125. Darby, PA: Diane Publishing. 

Milliken, J., Beardsley, D., and Gill, S. (1998). Accuracy 
assessment of vegetation map of Northeastern California 
using permanent plots and fuzzy sets. US Forest Service. 
[Online URL: https://www.fs.fed.us/r5/rsl/publications/] 
accessed on September 24, 2021. 

Milliken, J. A., and Woodcock, C. F. (1996). Integration of 
inventory and field data for automated fuzzy accuracy 
assessment of large scale remote-sensing derived 
vegetation maps in region 5 national forests. In Spatial 
Accuracy Assessment in Natural Resources and 
Environmental Sciences: Second International Symposium 
(Mowrer, H. T., Czaplewski, R. L., and Hamre, R. H., eds.), 
pp. 541-544. Fort Collins, CO: Rocky Mountain Forest and 
Range Experiment Station. 

Oregon Forest Resources Institute. (2021). Forest type map. 
[Online URL: https:// oregonforests.org/content/forest- 
type-interactive-map] accessed on September 23, 2021. 

Peterson, A. T., Soberon, J., Pearson, R. G., Anderson, R. P., 
Martinez-Meyer, E., Nakamura, M., and Araujo, A. B. 
(2011). Ecological Niches and Geographic Distributions. 
Princeton, NJ: Princeton University Press, pp. 118-150. 

Rogan, J., Franklin, J., Stow, D., Miller, J., Woodcock, C., and 
Roberts, D. (2008). Mapping land-cover modifications 
over large areas: A comparison of machine learning 
algorithms. Remote Sensing of Environment, 112, 2272- 
2283. 

Santisuk, T. (2006). Forest of Thailand, Bangkok: Prachachon 
Co., Ltd. [Online URL: https://www.dnp.go.th/botany 
/PDF/publications/veget.pdf] accessed on September 18, 
2021. [in Thai] 

http://www.fao.org/3/
http://www/
http://www.fs.fed.us/r5/rsl/publications/
http://www.dnp.go.th/botany


11 
 

Jantakat, Y., et al. 
 

Tierney, D. A., Powell, M. J., and Eriksson, C. E. (2019). 
Vegetation mapping. [Online URL: https://www.oxford 
bibliographies.com/view/document/obo-9780199830060/ 
obo-9780199830060-0176.xml] accessed on September 
24, 2021. 

Waser, L. T., Boesch, R., Wang, Z., and Ginzler, C. (2017). 
Towards automated forest mapping. In Mapping Forest 
Landscape Patterns (Remmel, T. K., and Perera, A. H., 
eds.), pp. 263-304. Birmensdorf: Springer. 

Woodcock, C. E., and Gopal, S. (2000). Fuzzy set theory and 
thematic maps: accuracy assessment and area estimation. 
International Journal of Geographical Information Science, 
14(2), 153-172. 

WorldClim. (2020). Bioclimatic variables. [Online URL: https:// 
www.worldclim.org/data/bioclim.html] accessed on 
September 28, 2021. 

Zadeh, L. (1965). Fuzzy sets. Information Control, 8, 338- 
353. 

Zlinszky, A., and Kania, A. (2016). Will it blend? Visualization 
and accuracy evaluation of high-resolution fuzzy 
vegetation maps. International Archives of the 
Photogrammetry, Remote Sensing and Spatial 
Information Sciences, Vol. XLI-B2, pp. 335-342. Prague, 
Czech Republic. 

http://www.worldclim.org/data/bioclim.html

	1. INTRODUCTIONห
	2. MATERIALS AND METHODS
	2.1 Study area
	2.2 Datasets and sources
	2.3 Ecological niche modeling and validating
	2.4 Mapping forest types
	2.5 Fuzzy accuracy assessment

	3. RESULTS
	3.1 HS for forest type distribution
	3.1.1 Mixed deciduous forest (MDF)
	3.1.2 Dry dipterocarp forest (DDF)
	3.1.3 Hill evergreen forest (HEF)
	3.1.4 Moist and dry evergreen forest (MDEF)
	3.1.5 Coniferous forest (CF)
	3.2 The forest type map
	3.2.1 Map of the deciduous forest type
	3.2.2 Map of evergreen forest type
	3.3 Ground checking and fuzzy accuracy assessment

	4. DISCUSSION
	5. CONCLUSION
	REFERENCES

