

 P-ISSN 2586-9000
E-ISSN 2586-9027

 Homepage : https://tci-thaijo.org/index.php/SciTechAsia Science & Technology Asia

 Vol. 27 No.4 October - December 2022 Page: [343-362]

Original research article

*Corresponding author: dingshukai521@gmail.com

Automatic Driving for Road Tracking and
Traffic Sign Recognition

Shukai Ding*, Jian Qu

Faculty of Engineering and Technology, Panyapiwat Institute of Management,

Nonthaburi 11000, Thailand

Received 1 October 2021; Received in revised form 31 May 2022;
Accepted 20 July 2022; Available online 31 December 2022

ABSTRACT
 Automatic driving has become a very important research field that may change how
humans travel. Most of the existing research on automatic driving has been on road tracking.
However, there has been little research on automatic driving to simultaneously achieve road
tracking and traffic sign recognition (relying on only one camera as input). In this paper, we
achieve the simultaneous implementation of both functions and explore the effects of the
model, speed, and batch size on the automatic driving of the smart car. We constructed a
smart car based on a Jetson Nano and one camera. In addition, we designed three real
simulation environments and three groups of experiments. Firstly, the smart car is trained and
tested in Experiment Group 1 using Environment 1. ResNet18 and ResNet34 are compared
with speed modifications, and it screens a base model for Experiment Groups 2 and 3.
Secondly, the smart car performs road-tracking experiments in an untrained environment
(Environment 2) with the model from Experiment Group 1. Thirdly, road tracking and traffic
sign recognition are achieved simultaneously in Environment 3. We conducted a total of 53
experiments in different network setups and found out that S0.6 is the best speed,
ResNet34_B32 is the best model, and road tracking can be achieved in both trained and
untrained environments. The results of Experiment Group 3 show that the smart car can
perform traffic sign recognition smoothly during road tracking.

Keywords: Automatic driving; CNN; Deep Learning; Jetson Nano; Neural network model

1. Introduction

The application of AI in automatic
driving is powered by deep learning
algorithms of three significant functions:
environment perception, planning and
decision-making, and controlling. Smart
cars use methods such as deep learning,

fuzzy logic, expert systems, and genetic
algorithms [1-3] to have a certain level of
intelligence in automatic driving through
autonomous learning.

Deep learning has been applied to
automatic driving research in the
automotive sector, making automatic

S. Ding and J. Qu | Science & Technology Asia | Vol.27 No.4 October – December 2022

344

driving a hot area. Google and Baidu
conduct research on automatic driving in
real cars, which is undoubtedly the most
realistic method of conducting the research.
However, this approach is costly and
dangerous and thus cannot be applied to a
broad range of ordinary research. As a
result, two different types of research are
becoming more and more widely adopted:
research conducted in a virtual online
environment and research conducted in a
realistic simulation.

Road tracking and traffic sign
recognition are two critical functions of
automatic driving for smart cars. ZTÜRK et
al. [4] studied autonomous vehicles in a
virtual environment. However, using virtual
environments on the Web to simulate
complex actual-world scenarios is difficult,
and the test results are not convincing. Qi
Zhang et al. [5] used reinforcement learning
to train in a virtual environment and then
migrated to a real-world environment for
testing. Experimental results in a virtual
environment are positive, but it is difficult
to transfer such experimental results to a
real-world environment. The real-world
environment is dynamic and ever changing,
owing to factors such as lighting, shadows,
and other noise sources. Furthermore, none
of these factors is considered in a virtual
environment. Therefore, we use smart cars
in an already constructed simulation
environment for training and testing. Our
approach can be closer to real-world
automatic driving than the abovementioned
methods.

Additionally, Xi Li et al. [6] evaluat-
ed their study about a related study on
automatic driving tasks using a high-
performance graphics card on a PC
platform. Although the test performed well,
this was attributed to powerful graphics
cards and large servers. The difference is
that we deployed deep learning on an
embedded development platform, which
enabled autonomous driving and achieved
good results. We used the Jetson Nano as a

development board to build a smart car for
autonomous driving experiments. The
Jetson Nano is similar to a microcomputer
and it can be used as a controller, a
processor, and a deep learning platform.

In addition, we have constructed three
environments as driving simulation tracks
for smart cars. Environment 1 is used for
data collection and testing; Environment 2
discusses the effects of noise on smart cars;
and Environment 3 demonstrates that smart
cars are capable of road tracking and traffic
sign recognition. In addition, we discuss the
impact of model, batch size and speed on
automatic driving.

2. Related Research
2.1 Hardware

Constructing a smart car platform
takes into account the hardware
configuration of the development board and
sensors. Sumeth Yuyong and Jian Qu [7]
chose Arduino as the development board
and used reinforcement learning to
implement path planning. Their smart car
requires a Bluetooth connection between the
Arduino and the PC, then transmits the
decisions of PC to the Arduino, which
controls the car. Therefore, it is not a stand-
alone agent. Moreover, Arduino is a
hardware platform based on a
microcontroller, and it can only execute
programs that have been pre-programmed
into the chip. Arduino can only be used in a
few simple scenarios because of its limited
performance, and the implementation of
certain functions requires the assistance of a
large number of external sensors. For
instance, Ayesha Iqbal et al. [8] chose
Arduino for their research, but they required
cameras and infrared sensors to accomplish
road tracking. Numerous previous studies
[9-12] have used Raspberry Pi rather than
Arduino. Raspberry Pi is a hardware
platform based on a microprocessor capable
of handling complex application scenarios
such as network communication and image
processing. For instance, Xinxin Du et al.

S. Ding and J. Qu | Science & Technology Asia | Vol.27 No.4 October – December 2022

345

[13] used cameras and radar to achieve road
tracking for smart cars in their study. While
many studies use the Raspberry Pi as a
development board, we found that most of
these studies used CNN and RNN deep
neural networks, which have few layers and
simple structures. Although the Raspberry
Pi has improved performance compared to
the Arduino, it lacks in computing power
and execution speed compared to the Jetson
Nano, as the Raspberry Pi has no video
memory. Therefore, we recommend using
the Jetson Nano as a development board for
smart cars.

2.2 Deep neural networks

A Convolutional Neural Network
(CNN/ConvNet) is a deep learning model or
a multilayer perceptron [14] that is similar
to an artificial neural network. The
multilayer perceptron is like a black box,
including one input layer, multiple hidden
layers, and one output layer (Fig. 1).

Fig. 1. Schematic diagram of deep learning.

A CNN is usually used to analyze

visual images and is one of the critical
algorithms for deep learning. The CNN was
first proposed by Yann LeCun in 1989 [15-
16] and applied to handwritten font
recognition (MINST). The role of CNN is to
restore the image to a form that is easier to
process without losing the features that are
essential to obtain good predictions.

Compared to other classification
algorithms, CNNs require much less
preprocessing. In the original method, the
filter was designed manually. Furthermore,

with adequate training, CNNs can learn
these functions.
 Convolutional networks typically
consist of convolutional layers, pooling
layers, and fully connected layers. CNN
simulates feature differentiation through
convolution, reduces the order of magnitude
of network parameters through weight
sharing and pooling of convolution, and
finally accomplishes tasks such as
classification through a fully connected
layer [17].

Convolution:
An example of a convolution

operation shows in Fig. 2.

Fig. 2. Example diagram of the convolution
operation.

These numbers are a image with
a convolution kernel:

1 0 1
0 1 0
1 0 1

Use the convolution kernel to
convolve the image. The convolution kernel
traverses all the image pixels from left to
right and top to bottom in the image. The
convolution kernel and the corresponding
image pixel values are multiplied and
summed to obtain a convolution result.
We can understand it as using a filter
(convolution kernel) to filter each small area
of the image to get the feature value of these
small areas. In the actual training process,
the value of the convolution kernel is
learned during the learning process.

After the convolution operation, the
image size can be relatively reduced, but the
image is still large, so pooling is required to
reduce the data dimension of the image [18].

a1

x1

xi

a2

a3

an

b1

b2

b3

bn

y1

y2

Input
layer

Hidden
layer a

Hidden
layer b

Output
layer

5 5´
3 3´

3 3´

S. Ding and J. Qu | Science & Technology Asia | Vol.27 No.4 October – December 2022

346

Pooling is down sampling. The
pooling process is shown in Fig. 3.

Fig. 3. Example diagram of the pooling
operation.

The original image is , we
downsample it and the sampling window is

, and finally, it is downsampled into a
 feature map. In practical applications,

pooling is divided into max pooling and
average pooling according to the down-
sampling method.

The key to automatic driving is deep
neural networks, but most existing research
has chosen simple CNN [19-21] neural
networks. For instance, Viktor Rausch et al.
[19] used a 6-layer CNN neural network in
their study. Truong-Dong Do et al. [20]
used a CNN neural network with nine
layers. However, shallow layer neural
networks have the potential to cause two
issues. First, feature extraction is
insufficient; second, tens of thousands of
image datasets are required. Pranav Gupta et
al. [22] used VGG to address these issues in
their study. While the layers of this network

are deep, they are also large, creating a
latency issue. These neural networks were
initially designed for deployment on
desktop computers equipped with powerful
GPUs rather than mobile, edge-based
devices. To address this issue, we chose
Resnet18. Kaiming He et al. proposed
Resnet18 [23] in 2016. They proposed
adding a residual network (Fig. 4) to the
neural network, which significantly
increases the number of layers in the
network and alleviates the network's
degradation problem.

Fig. 4. Residual learning structure diagram.

3. Experimental Setup

In chapter 3, we focus on two factors:
lane line detection (road tracking) and
traffic sign detection (road tracking-based).
Then, in Section 3.1, we introduce the
environment construction; in Section 3.2,
we describe the hardware; in Section 3.3,
we screen the convolutional neural
networks; and in Section 3.4, we
demonstrate our experimental setup, which

4 4´

2 2´
2 2´

S. Ding and J. Qu | Science & Technology Asia | Vol.27 No.4 October – December 2022

347

Fig. 5. Experimental framework diagram.

focuses on three experiments. The specific
experimental framework diagram is shown
in Fig. 5.

3.1 Environment construction

In Section 3.1, we introduced three
experimental environments built for
different experiments. We present them in
two ways: schematic diagrams and real
pictures of the environment.

3.1.1 Environment of Experiment 1

(Road tracking in the original environ-
ment)
 Environment 1

Environment 1 is the scene of
Experiment group 1, which has two main
purposes: collecting data and verifying the
road tracking of the smart car in the trained
environment. Fig. 6 is the schematic
diagram of Environment 1.

Fig. 6. Schematic diagram of Environment 1.

Fig. 7. Environment 1.

Fig. 7 is the picture of Environment 1.

It is an oval track, and the yellow and white
lines are the lane lines. We set up straight
roads and curves to restore realistic roads
with complex road conditions. We collected
data in Environment 1. The data were
collected for Experiment 1. (Remarks:

Experimental
setup

Environment
building

Hardware

Automatic driving
experiment

Experiment 1

Jetson Nano

Smart car
platform

Data
collection

Model
training

Experiment 1

Experiment 2

Speed

Road tracking & traffic
sign recognition

Environment 1

Experiment 2

Experiment 3

Experiment 3

Test_Environment 1

Result 1

Test_Environment 2

Result 2

Test_Environment 3

Result 3

Experiment
preparation

Output Model

Model

Environment 1

Environment 2

Environment 3

4 best models and
corresponding

speed

Best model

Selection of
CNN

Resnet18

Resnet34

109cm

44cm

395cm

S. Ding and J. Qu | Science & Technology Asia | Vol.27 No.4 October – December 2022

348

Collect training data in the form of taking
photos.) We trained the model with the data
collected in Experiment 1. In Experiment 1,
we will test the effect of different models
and different speeds on road tracking.

3.1.2 Environment of Experiment 2

(Road tracking in the new environment)
 Environment 2

Environment 2 is the scene of
Experiment group 2, which is used to verify
the road tracking of the smart car in an
environment without training. Fig. 8 is the
schematic diagram of Environment 2. Fig. 9
shows the photos of Environment 2. They
are stitched shapes based on Environment 1
and are used to test whether the car can
achieve road tracking and adapt to
unfamiliar environments.

Fig. 8. Schematic diagram of Environment 2.

Fig. 9. Environment 2.

3.1.3 Environment of Experiment 3
(Road tracking & traffic sign recognition)
 Environment 3

Environment 3 is the scene of
Experiment group 3, which is used to verify
that the smart car can achieve traffic sign
recognition during road tracking. We used a
circular track, which had two turn-offs, and
we would randomly place left-turn or right-
turn signs at the turn-offs. Fig. 10 shows the

schematic diagram of Environment 3, and
Fig. 11 shows the photos of Environment 3.

Fig. 10. Schematic diagram of Environment 3.

Fig. 11. Environment 3.

3.2 Hardware preparation

3.2.1 Introduction to Jetson Nano
motherboard

The Jetson Nano is a product released
by NVIDIA at the 2019 NVIDIA GPU
Technology Conference. The specific
information of the Jetson Nano is shown in
Fig. 12.

Fig. 12. Jetson Nano diagram.

The Jetson Nano has four high-speed

USB 3.0 ports, MIPI CSI-2 camera
connector, HDMI 2.0 and DisplayPort 1.3,
Gigabit Ethernet, M.2 Key-E module,
MicroSD card slot, and 40-pin GPIO
connector. The specific information on the
Jetson Nano is shown in Table 1.

S. Ding and J. Qu | Science & Technology Asia | Vol.27 No.4 October – December 2022

349

Table 1. Information table of Jetson Nano.

Project NVIDIA Jetson Nano

CPU Quad-Core ARM Cortex-A57 64-bit @
1.42Ghz

GPU NVIDIA Maxwell w/128 CUDA cores @
921 Mhz

Memory 4GB LPDDR4
Networking Gigabit Ethernet/M.2 Key E(for Wifi

support)
Video Encode H.264/H.265(4Kp30)

Camera MIPI CSI port
USB 4 * USB3.0, USB2.0 Micro-B

Display HDMI2.0 and eDP1.4
Other 40-pin GPIO

Storage Micro-SD

The Jetson Nano can run a wide range
of advanced frameworks, including full
native versions of popular machine learning
frameworks, such as TensorFlow, PyTorch,
Caffe/Caffe2, Keras, and MXNet. In
addition, these frameworks can be used to
build automatic machines and complex
artificial intelligence systems by
implementing robust image recognition,
object detection, localization, pose
estimation, and intelligent analysis.

This paper used the PyTorch
framework for road tracking and traffic sign
recognition, with the programming language
Python. In addition, Torch, Torchvision, and
OpenCV are also used for image processing
and neural network deployment.

3.2.2 Smart car platform
We used a four-wheeled car as the

platform; only a camera was used for the
sensing part. This platform is equipped with
a Jetson Nano development board, an
aluminum alloy chassis, and four single-axis
metal gear motors.

The specific image of the completed
smart car is shown in Fig. 13.

Fig. 13. Smart car platform.

3.3 Selection of convolutional neural
networks

In 2012, Krizhevsky and Hinton
founded AlexNet, which kicked off the
craze for deep learning. The VGG, ResNet,
and DenseNet were proposed immediately
afterward, and they all contributed to the
development of computer vision. As a
technique for image processing,
convolutional neural networks have become
the basis of automatic driving. This paper
aims to discuss the task of smart cars
tracking and recognizing traffic signs. The
selection of a high-quality CNN for
experimentation is also crucial to the
success of this paper. Therefore, we
examined several different types of neural
networks and produced the following
conclusions through training, as illustrated
in Table 2.

Nine neural networks were tested by
loading them onto a Jetson Nano board,
including the AlexNet, VGG, ResNet, and
DenseNet series. According to the results,
VGG, Resnet101, Resnet152, Resnext101-
32x8d, Densenet121, and Densenet169 all
exhibit delays. Complex neural networks
require sufficient GPU memory to keep the
model running smoothly. However, the
Jetson Nano, an embedded development
board, only has 4GB of memory, which is

Si
de

 o
f S

m
ar

t C
ar

Fr
on

t o
f S

m
ar

t C
ar

To
p

vi
ew

 S
m

ar
t c

ar
Re

ar
 o

f S
m

ar
t C

ar

S. Ding and J. Qu | Science & Technology Asia | Vol.27 No.4 October – December 2022

350

Table 2. Comparison of convolutional
neural networks.

Model Validation loss Remark

AlexNet 0.026504 Normal
VGG 0.018504 Delay

Resnet18 0.009344 Normal
Resnet34 0.007575 Normal

Resnet101 0.013330 Delay
Resnet152 0.013140 Delay

Resnext101_32x8d 0.013070 Delay
Densenet121 0.013070 Delay
Densenet169 0.010492 Delay

not enough to support smoothly running
complex neural networks. Therefore, there
are problems with delays during model
testing. The delay is hazardous for smart
cars, preventing them from predicting in
real-time based on the road conditions. The
delay increases the likelihood of accidents.
Therefore, we chose Resnet18 and Resnet34
for model training and model testing. In
addition, we avoided AlexNet despite its
lack of delay issues but high validation loss
value. It means that AlexNet does not
perform well in driving prediction and does
not enable automatic driving. Resnet18 and
Resnet34 are the two top-performing neural
networks, exhibiting negligible latency and
very low validation loss values. Finally, for
the automatic driving trials, we chose
Resnet18 and Resnet34.

3.4 Experiments and methods

In Section 3.4, we introduce three
elements. First, we describe the method and
operational details of data collection.
Second, we describe how model training is
performed. These two sections were the
preliminaries for the start of the three
experiments. Finally, we introduce our three
experimental components.

a. Experiment 1: Road tracking in a
trained environment. In Experiment 1, we
compared the two models, ResNet18 and
ResNet34, and the different effects on the
smart car when the batch size was equal to
16 and 32. Moreover, we also tested the

effect of different speeds on it. Therefore,
we are able to find out the appropriate batch
size and speed for each model.

b. Experiment 2: Road tracking in a
new environment without training.
Experiment 2 used Environment 2 to test the
smart car to verify whether the model
trained from Experiment 1 can achieve road
tracking in an unfamiliar environment. At
the same time, we can also test the running
effect of the four setups and pick the best
model and the best speed.

c. Experiment 3: Road tracking &
traffic sign recognition. In Experiment 3, we
used the best model and the corresponding
speed derived from Experiment 2 and
applied them in Environment 3. We verified
whether smart cars can achieve road
tracking along with traffic sign recognition.

3.4.1 Data collection
We collected images using the smart

car by taking photographs. Therefore, it is
critical to avoid excessive daylight noise.
We closed curtains and doors to prevent
daylight from influencing the environment.
In addition, the room lights were switched
on to provide stable light conditions. Data
were collected and tested in environments
with such light conditions.

We used OpenCV to visualize and
save images using tags. Libraries such as
UUID and DATETIME are used for image
naming; the IPython library is used for
display and widgets, and the basic Python
library for image tagging.

The neural network in this paper uses
an image of 224x224 pixels as input. The
image is set to this size to minimize the
network. Then, we created two sliders (Fig.
14) to adjust the "x" and "y" values of the
smart car. We moved the green dot and blue
line of Fig. 14 by sliding the "x" and "y"
sliders to get the position information of the
smart car. As shown on the right of Fig. 14,
this photo has an "x" value of 0.06 and a "y"

S. Ding and J. Qu | Science & Technology Asia | Vol.27 No.4 October – December 2022

351

Fig. 14. Data collection diagram.

value of 0.36. At the same time, we created
several small windows to observe the
number of saved photos. As shown on the
left of Fig. 14, we have collected a total of
1025 photos.

Instead of using video to collect
images in the simulated environment, we
collect images by taking pictures manually.
Therefore, there is no frame rate for the
model training data. However, during the
testing of autonomous driving, the frame
rate was 34 FPS, and we captured images in
the field of view of the smart car. In Fig. 15,
we compare the collected training image
with the test screenshot, and they are clear
and similar in resolution.

 Fig. 15. Comparison of the collected training
image and the screenshot of tests.

The specific steps of data collection
are shown in Fig. 16.

Fig. 16. Diagram of data collection steps.

3.4.2 Model training
Model training is the second and most

important step in smart car research. First,
we need to configure an environment that
conforms to deep learning on the PC side
and then use the dataset to train it. The
specific steps are shown in Fig. 17.

We divided the collected dataset into
two parts; one part was the training set, and
the other part was the test set. The training
set, which is 90%, is used to train the model,
and the test set, which is 10%, is used to
verify the accuracy of our trained model.

We performed a total of four setup
training sessions. ResNet18 is the official

Co
lle

ct
io

n
tr

ai
ni

ng

of
 im

ag
e

Sc
re

en
sh

ot
 o

f t
he

 te
st

Data collection

Fixed visual head

Load the library

Real-time display of
camera images

Images are collected and
labeled for training

Save data set

S. Ding and J. Qu | Science & Technology Asia | Vol.27 No.4 October – December 2022

352

Fig. 17. Diagram of data training steps.

Table 3. Models used in Environment 1.

Setup Remark

ResNet18_B16 Based on ResNet18, Batch_size is 16
ResNet18_B32 Based on ResNet18, Batch_size is 32

ResNet34_B16 Based on ResNet34, Batch_size is 16
ResNet34_B32 Based on ResNet34, Batch_size is 32

model provided by NVIDIA, while we
chose ResNet34 to compare with it. To
compare the effect of different Batch_size
on the model, we chose Batch_size=16 and
32. Four setups were trained in this
experiment (Table 3).

The size of Batch_size affects the
degree of optimization of the model, and it
directly affects the usage of GPU memory.
We need to train the model as the setup
shown in Table 3, and each round trains 70
epochs and saves the best model. We found
that the epoch to get the best model every
time is always between 50-70, more often
between 60-70. We do not get a better
model when the epoch is greater than 70.

3.4.3 Experiment
We now describe the three

experiments in detail.
a. Experiment 1 (Road tracking in the
original environment)

Experiment 1 is a road tracking
experiment in the original environment
(trained environment 1). We collected data
through environment 1 and trained the best
model. Using environment 1, we compared
the effects of speed, model, and Batch_size
on the experiment. It is verified that the
smart car can achieve road tracking and get
the best speed matching the four setups. We
chose the best model from the four setups
we tested in Environment 1.

Fig. 18. Measurement points of environment 1.

In Experiment 1, we chose one curve of the
track as the experimental object (because
the smart car drove well on the straight
lane), and the curve was preset with five
points as the measurement points for
measuring the distance (shown in Fig. 18).
Angle (angle between the centerline of the
smart car and the tangent line of the
measurement point) and distance (distance
between the center point of the smart car
and the measurement point) are used to
judge the degree of autonomy of a smart
car. The smaller the angle and the smaller
the distance, the smoother the smart car
travels. The test data were collected by first
taking videos; screenshots are taken and
measured from such videos. We set up a
tripod for the camera to collect the videos to
ensure photo accuracy. We designed a
standard rectangle (3cm in length and 2cm

Model training

Load the library

Upload data set

Divided into train set and
test set

Create a data loader

Define a deep NN model

Unzip the data set

Load data in bulk

Choose a model

Regression training

Save the model and upload

S. Ding and J. Qu | Science & Technology Asia | Vol.27 No.4 October – December 2022

353

in width), which is used as the scale length
standard for the distance measurement later
(shown in Fig. 18). Fig. 19 is a screenshot

of the video we captured during Experiment
1 for distance and angle measurements.

Table 4. Experimental operation table of the curve.

Fig. 19. Some photos of the collection of
Experiment 1.

The specific demonstration steps are
shown in Fig. 20.

Fig. 20. Step-by-step diagram to demonstrate the
model.

We have selected four setups, each of
which measures 11 speeds so that 44 videos
will be obtained (see Table 4 for details).
The range of the smart car speed is between
0 and 1. As shown in Table 4, there is no

speed of 0.1 due to ESC failing to start the
motor with such speed; when the speed is
over 0.70, the smart car is driven over the
lines. Therefore, we chose a speed between
0.2 and 0.7.

We have two goals for Experiment 1:
To verify that the smart car can execute road
tracking in familiar environments, and to
find out the four best setups and the corre-
sponding best speed from the experiment
results.

b. Experiment 2 (Road tracking in the
new environment)

Experiment 2 is a road tracking
experiment in the new environment
(untrained Environment 2). We used
Environment 2 to verify whether road
tracking can still be performed in
Environment 2. It is difficult for automatic
vehicles to collect data on all road
conditions and trains. Therefore, a good
model should be able to handle unseen
environments.

Fig. 21. Measurement points of Environment 2.

As shown in Fig. 21, we selected five

locations as data measurement points. As
described in the previous section, we also
chose the angle between the midline tangent
line of the smart car and the measurement

Test model

Load the trained model

Load weight

Create preprocessing
function

Real-time display of
camera images

Run the code to drive the
motor

Weights are transferred
from CPU to GPU

Preprocess camera images

Execute NN

Create call function

NN execution function
attached to the camera

Model Speed
Resnet18_B16 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
Resnet18_B32 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
Resnet34_B16 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
Resnet34_B32 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

S. Ding and J. Qu | Science & Technology Asia | Vol.27 No.4 October – December 2022

354

points and the distance between the center
point of the smart car and the measurement
points as the criteria for judging the
goodness of smart cars for automatic
driving. The smart car starts from the
starting point, passes through 5 locations,
and reaches the end. We applied the four
setups with the optimal speed obtained in
Experiment 1 to Experiment 2. Therefore,
we performed four experiments to obtain 20
angles and 20 distances.

We have two goals for Experiment 2:
To verify that smart cars can achieve road
tracking in unfamiliar environments, and to
filter the optimal settings and the
corresponding optimal speed from the
parameter settings.

c. Experiment 3 (Road tracking & traffic
sign recognition)

The goal of Experiment 3 is to
execute the recognition of traffic signs (turn
left and right signs, as shown in Fig. 22)
while carrying out road tracking (verified in
Experiment 1 and Experiment 2). Therefore,
we set up Environment 3 and added the
traffic sign for turning left and right. We
collected data from Environment 3 and

conducted model training. In this
experiment, we test whether the smart car
can achieve the goal with the best model
and corresponding speed obtained in
Experiment 1.

Fig. 22. Traffic signs for left turn and right turn.

Fig. 23. Explanatory diagram of the experi-
mental operation in Environment 3.

Specific experimental operation: We

let the smart car drive in a loop in
Environment 3, a cyclic track (as shown in
Fig. 23). It will start from the starting
position; first, it will arrive at the Left fork
(A). We will place a turn sign

Table 5. Operation of Experiment 3.

(left or right) over there beforehand. Then it
will arrive at the Left fork(B), where we
will place a random turn sign in advance.
Furthermore, it will return to the starting
point. Thus, it is the process of the smart car
cycles once. The smart car completes three
cycles in each set of five tests. Moreover,
we randomly placed turn signs at the forks
six times, as shown in Table 5. Finally, we
judged whether the smart car has achieved

its goal by turning correctly according to the
traffic signs.

4. Result

In this chapter, we described the
results of our three experiments. Videos of
the experiments can be viewed at
https://github.com/Bryantding/Automatic-
Driving-for-Road-Tracking-and-Traffic-
Sign-Recognition.

Group
Fork

Left
fork(A)

Left
fork(B)

Left
fork(A)

Left
fork(B)

Left
fork(A)

Left
fork(B)

Group1 Left Left Right Left Right Right
Group2 Left Right Right Right Left Right
Group3 Right Left Left Right Right Left
Group4 Left Left Left Left Left Left
Group5 Right Right Right Right Right Right

S. Ding and J. Qu | Science & Technology Asia | Vol.27 No.4 October – December 2022

355

4.1 Results and discussion of Experiment
1

In Experiment 1, to investigate the
effects of models, Batch_size, and speed on
smart car road tracking, we chose two
ResNet models, two batch sizes, and 11
speeds while ensuring other conditions, such
as the dataset were the same.

We chose Batch_size of 16 and 32 for
ResNet18 and ResNet34, respectively, and
performed three training sessions for each
case. The training results are shown in Table
6; Avg loss is the average loss value of the
three training sessions. Table 6 shows that
the size of ResNet18 is 42.6MB, which is
smaller than the size of ResNet34
(81.3MB). In addition, based solely on
validation_loss values, ResNet18_B32 is a
superior model to ResNet18_B16, and
ResNet34_B32 is superior to
ResNet34_B16. Although ResNet18_B32
obtained the best result (0.0090) in one of
the training, ResNet34_B32 had the best
result in terms of the average loss of the
three training sessions. Losses are the result
of the Colab training of the model, which
can only be used as one factor in evaluating
the effectiveness of the model. Finally, we
deployed the trained models on the smart
car and used its actual performance as an
important criterion for evaluating the
models.

Table 6. Table of Validation_loss and size
for each model.
Model Batch

size
Validation_loss Variance Size Losses Avg loss

R
esN

et18

B16
0.0198

0.0193 3.67×10-6 42.6MB 0.0167
0.0215

B32
0.0090

0.0137 1.12×10-5 42.6MB 0.0156
0.0165

R
esN

et34

B16
0.0157

0.0151 1.65×10-6 81.3MB 0.0164
0.0134

B32
0.0140

0.0125 1.10×10-6 81.3MB 0.0120
0.0116

The results of Experiment 1 are shown in
Table 7 and Fig. 24. What needs to be
explained is that S0.20-S0.70 means speed
from 0.20-0.70; L11-L15 means Location1-
5 in Environment 1; "✓" means the smart
car does not touch the line, driving normal;
S0.60D means the distance when the speed
is 0.60; S0.60A means the turning angle
when the speed is 0.60; BestD1 is the best
distance of the smart car driving through 5
locations in Environment 1; BestA1 is the
best angle of the smart car driving through 5
locations in Environment 1. In addition, the
underlined data indicates the best result for
each group. For Resnet18_B16, because the
smart car's speeds are S0.20-S0.50 and
S0.70, it would touch the line; we call this
situation unqualified road conditions.
Therefore, we do not count the results for
these speeds in Table 7. For Resnet18_B32,
the road conditions would be unqualified
when the speeds are S0.20-S0.45 and S0.70.
Similarly, for Resnet34_B16, the road
conditions would be unqualified when the
speeds are S0.20-S0.55 and S0.70. In the
same way, for Resnet34_B32, the road
conditions would be unqualified when the
speeds are S0.20-S0.40 and S0.70.

S. Ding and J. Qu | Science & Technology Asia | Vol.27 No.4 October – December 2022

356

Table 7. Experimental results for each model of Experiment 1.

Speed

M
odel

Curve

Remark

L11 L12 L13 L14 L15 Average

D
istance(cm

)

A
ngle

D
istance(cm

)

A
ngle

D
istance(cm

)

A
ngle

D
istance(cm

)

A
ngle

D
istance(cm

)

A
ngle

D
istance(cm

)

A
ngle

S0.55 R
esN

et18_
B

16

7.22 27 9.87 10 11.39 2 7.72 6 2.86 25 7.81 14 ✓
S0.60 7.53 20 8.47 5 6.96 1 3.4 12 3.42 22 5.96 12 ✓
S0.65 7.14 22 6.66 6 5.21 5 5.69 9 6.39 19 6.22 12.2 ✓
S0.50 R

esN
et1

8_B
16

3.93 36 8.28 15 10 1 6.76 6 4.81 23 6.77 16.2 ✓
S0.55 3.02 33 6.98 13 8.11 0 5.02 6 1.36 20 4.90 14.4 ✓
S0.60 3.78 24 4.78 11 5.00 0 2.60 14 3.65 22 3.96 14.2 ✓
S0.65 4.34 33 4.08 11 3.76 6 3.52 15 7.09 21 4.56 17.2 ✓

S0.60

R
esN

et34_B
16

8.54 31 11.85 8 11.16 7 4.78 20 3.13 30 7.89 19.2 ✓

S0.45 R
esN

et34_
B

32

4.42 35 10.52 16 13.01 2 11.11 5 9.6 27 9.73 17 ✓
S0.50 4.46 28 7.46 14 10.08 0 7.84 7 5.55 22 7.08 14.2 ✓
S0.55 2.99 29 6.60 15 8.25 0 6.15 6 2.02 20 5.20 14 ✓
S0.60 3.61 27 4.28 10 4.89 1 3.79 9 2.36 18 3.79 13 ✓
S0.65 3.24 25 3.33 9 3.13 2 3.22 12 6.19 19 3.82 13.4 ✓

First, speed has a significant

influence on the quality of driving. Using
the ResNet34_B32 model as an example:
when the speeds were between S0.20-S0.40,
the smart car always touched the line, so it
did not drive well at those speeds. When the
speeds were between S0.45-S0.65, the
distances decreased from 9.73cm (S0.45) to
3.79cm (S0.60) and then increased to

0.82cm (S0.65). Similarly, the angles
decreased from 17°(S0.45) to 13°(S0.60)
and then increased to 13.4°(S0.65). Finally,
when the speeds were over S0.70, it started
to touch the line again. In summary, as the
speed increased, the driving condition of the
smart car improved from poor to good and
then deteriorated from good to gradually

0

5

10

15

20

25

30

35

40

0

2

4

6

8

10

12

14

1 2 3 4 5

A
ng
le

D
is
ta
nc
e

Location(1)

Resnet18_B16

0

5

10

15

20

25

30

35

40

0

2

4

6

8

10

12

14

1 2 3 4 5

A
ng
le

Location(1)

D
is
ta
nc
e

Resnet18_B32

S. Ding and J. Qu | Science & Technology Asia | Vol.27 No.4 October – December 2022

357

Fig. 24. Experimental results on velocity in environment 1.

Fig. 25. Comparison of averages for the first part of the experiment in Experiment 1.

worse. The overall driving situation was the
best when the speed was set at S0.60. Thus,
S0.60 was the optimal speed for these
models.

Second, for the same ResNet model,
the greater the Batch_size, the better the
smart car performed. Using the ResNet34
model as an example the distance of
ResNet34_B16 compared with
ResNet34_B32 was smaller (3.79 cm) than
that of ResNet34_B16 (7.89 cm) at their
optimal speed S0.60; the angle of
ResNet34_B32 (13°) was smaller than that
of the angle of ResNet34_B16 (19.2°).

Third, the model ResNet34 performed
better than ResNet18. In Fig. 25, it depicted
the distance and angle comparison plots for
the best velocities of the four setups, the
combined distance, and angle of

ResNet34_B32 were better than the two
models of ResNet18.

4.2 Results and discussion of Experiment
2

The results of Experiment 2 are
shown in Fig. 26, Fig. 27, and Table 8. We
applied the best velocity S0.60 of the four
setups obtained from Experiment 1 to
Environment 2, an unfamiliar and untrained
environment. BestD2 was the best distance
for the smart car driving through 5 locations
in Environment 2; BestA2 was the best
angle for the smart car driving through 5
locations in Environment 2. L21- L25 meant
Locations 1-5 in Environment 2, and the
other markers were the same as in
Experiment 1.

0

5

10

15

20

25

30

35

40

0

2

4

6

8

10

12

14

1 2 3 4 5

A
ng
le

D
is
ta
nc
e

Location(1)

Resnet34_B16

0

5

10

15

20

25

30

35

40

0

2

4

6

8

10

12

14

1 2 3 4 5

A
ng
le

D
is
ta
nc
e

Location(1)

Resnet34_B32

5.95

3.96

7.89

3.7912

14.4
19.2 13.4

0

5

10

15

20

25

0

2

4

6

8

10

A
ng
le

D
ist
an
ce

Distance Angle
ResNet18_B16 ResNet34_B16 ResNet34_B32ResNet18_B32

S. Ding and J. Qu | Science & Technology Asia | Vol.27 No.4 October – December 2022

358

Fig. 26. Experimental results of the four setups in Environment 2.

Fig. 27. Comparison of the four setups averages for Experiment 2.

Table 8. Experiment 2 Experimental results for each model.

M
od

el

Curve
L21 L22 L23 L24 L25 Average

D
is

ta
nc

e

A
ng

le

D
is

t a
nc

e

A
ng

le

D
is

ta
nc

e

A
ng

le

D
is

ta
nc

e

A
ng

le

D
is

ta
nc

e

A
ng

le

D
is

ta
nc

e

A
ng

le

Resnet18_B16 10.83 18 5.66 8 2.05 5 6.64 11 9.34 3 6.91 9
Resnet18_B32 8.78 12 5.93 3 2.56 1 7.42 16 8.95 0 6.73 6.4
Resnet34_B16 6.25 15 6.92 7 0.47 1 6.73 5 5.64 1 5.20 5.8
Resnet34_B32 6.61 9 1.31 5 2.93 0 1.68 4 3.37 4 3.18 4.4

It shows the following three results

by combining Figs. 26-27, and Table 8.
First, all four setups can achieve road

tracking in unfamiliar environments and
adapt to new environments that have not
been trained. This means that the results of

deep learning of the smart car had wide
applicability and practicality. The result
makes our study more meaningful because it
is ordinary to achieve road tracking in a
trained environment. More importantly, we
have achieved normal driving of smart cars

6.91

6.73
5.2

3.18

9

6.4 5.8
4.4

0

2

4

6

8

10

0

2

4

6

8

A
ng
le

D
is
ta
nc
e

Distance Angle

ResNet18_B32ResNet18_B16 ResNet34_B16 ResNet34_B32

S. Ding and J. Qu | Science & Technology Asia | Vol.27 No.4 October – December 2022

359

in unknown environments. We can achieve
safe driving of smart cars in more road
environments through training in limited
road environments.

Second, when the smart car faced an
unfamiliar environment, Resnet34_B32
performed best among the four setups. The
average distance of its five positions was
3.18cm, and the average angle was 4.4°,
which were both the smallest. It is worth
noting that in the face of the new
environment, the two models of Resnet34
were better than the two models of
Resnet18. This means that the Resnet34
model has a stronger ability to predict
unfamiliar environments and a stronger
ability to adapt to the external environment
and resist external noise.

Third, even in the face of unfamiliar
environments, the experimental results
again proved that for the models of the

Resnet series, the larger the Batch_size was,
the better the model was and the better it
was for prediction. Taking Resnet34 as an
example, when the Batch_size increased
from 16 to 32, the average distance of five
points decreased from 5.20cm to 3.18cm,
and the average angle decreased from 5.8°
to 4.4°.

4.3 Results and discussion of Experiment
3
 In Experiment 1 and Experiment 2,
we proved that the smart car could track the
road in trained and untrained environments.
In Experiment 3, we proved that the smart
car could execute the recognition of traffic
signs while performing road tracking. We
randomly measured five sets of
experimental data, as shown in Table 9.
"6/6" means that the smart car could make
six smooth turns in 6 random forks.

Table 9. Experimental results of Experiment 3.

Left fork

Left

Right

Right fork Left

Group
Fork

Car performs Left
fork(A)

Left
fork(B)

Left
fork(A)

Left
fork(B)

Left
fork(A)

Left
fork(B)

Group1 Left Left Right Left Right Right 6/6
Group2 Left Right Right Right Left Right 6/6
Group3 Right Left Left Right Right Left 6/6
Group4 Left Left Left Left Left Left 6/6
Group5 Right Right Right Right Right Right 6/6

S. Ding and J. Qu | Science & Technology Asia | Vol.27 No.4 October – December 2022

360

Right

Fig. 28. Experiment 3 partial steering diagram.

Fig. 28 illustrates the turning diagram
of Experiment 3. From Fig. 28, we can see
that when the smart car arrived at two forks,
it would make a turn according to the left
and right turn signs and continue to drive
along the lane line.

As we know from Table 9, all five
sets of experimental data are 6/6. This
means that when the smart car sees the left
and right turn signs while road tracking, it
can be recognize them and turn according to
the direction without any problem.
Furthermore, the accuracy rate is 100%.

5. Conclusion

The achievement of road tracking and
traffic sign recognition are two key tasks for
automatic driving and are the focus of our
current experiments. In addition, we
examined the effects of speed, model and
Batch_size on automatic driving. We
conducted three experiments and came up
with the conclusions shown below.

1. We found that speed, model and
Batch_size are the key factors affecting
automatic driving performance. For the two
neural network models we studied, too fast
or too slow speeds resulted in poor
performance of automatic driving. Under
different experimental settings, S0.6 is the
optimal speed setting. In Experiments 1 and
2, the results show ResNet34 to be superior
to ResNet18. Furthermore, the larger the
Batch_size is in the same model, the better
the results will be. The complete
experimental results show that ResNet34
with Batch_size=32 is the best model, and it
performs well in both Environment 1 and
Environment 2.

2. The smart car can perform road
tracking in trained and untrained
environments. In addition, in Environment 1
and Environment 2, the smart car was able
to complete its driving in good condition,
driving smoothly without touching the line.

3. With only one camera, the smart
car can accomplish both road tracking and
traffic sign recognition tasks. However, this
is not completely driverless, and we will
conduct more research in the future.

Acknowledgements

The first author designed and
performed the experiments. The second
author guided and advised on the
experiments, and the two authors jointly
drafted the manuscript. Thus, the first and
second authors contributed 50% each to this
work.

The first author received scholarship
support from CPALL for conducting this
research in PIM.

References
[1] Shreyas V, Bharadwaj SN, Srinidhi S,

Ankith K, Rajendra A. Self-driving cars:
An overview of various autonomous driv-
ing systems. Advances in Data and In-
formation Sciences 2020:361-71.

[2] Van Brummelen J, O’Brien M, Gruyer D,

Najjaran H. Autonomous vehicle percep-
tion: The technology of today and tomor-
row. Transportation research part C:
emerging technologies 2018;89:384-06.

[3] Li B, Hou B, Yu W, et al. Applications of

artificial intelligence in intelligent
manufacturing: a review. Frontiers of
Information Technology & Electronic
Engineering 2017;18(1):86-96.

S. Ding and J. Qu | Science & Technology Asia | Vol.27 No.4 October – December 2022

361

[4] ÖZTÜRK G, KÖKER R, ELDOğAN O,
Durmuş K. Recognition of vehicles,
pedestrians and traffic signs using
convolutional neural networks. 2020 4th
International Symposium on Multidisci-
plinary Studies and Innovative
Technologies (ISMSIT). IEEE, 2020: 1-8.

[5] Zhang Q, Du T, Tian C. Self-driving

scale car trained by deep reinforcement
learning. arXiv preprint arXiv:
1909.03467, 2019.

[6] Li X, Ma H, Wang X, Zhang X. Traffic

light recognition for complex scene with
fusion detections. IEEE Transactions on
Intelligent Transportation Systems, 2017;
19(1): 199-208.

[7] Yuenyong S, and Jian Q. Generating

Synthetic Training Images for Deep
Reinforcement Learning of a Mobile
Robot. Journal of Intelligent Informatics
and Smart Technology 2017:16-20.

[8] Iqbal A, Ahmed SS, Tauqeer MD, Sultan

A; Abbas SY. Design of multifunctional
autonomous car using ultrasonic and
infrared sensors. International symposium
on wireless systems and networks
(ISWSN). IEEE, 2017: 1-5.

[9] Deac MA, Al-doori RWY, Negru M,

Blaga BCZ, Dǎnescu R. Miniature
autonomous vehicle development on
raspberry pi. 2018 IEEE 14th Interna-
tional Conference on Intelligent
Computer Communication and Proces-
sing (ICCP). IEEE, 2018: 229-36.

[10] Krauss R. Combining Raspberry Pi and

Arduino to form a low-cost, real-time
autonomous vehicle platform. American
Control Conference (ACC). IEEE, 2016:
6628-33.

[11] Jain AK. Working model of self-driving

car using convolutional neural network,
Raspberry Pi and Arduino. 2018 Second
International Conference on Electronics,
Communication and Aerospace
Technology (ICECA). IEEE, 2018: 1630-
5.

[12] Lee KL, Lam HY. Development of deep
learning autonomous car using Raspberry
Pi. Progress in Engineering Application
and Technology. 2021, 2(1): 534-48.

[13] Du X, Ang MH, Rus D. Car detection for

autonomous vehicle: LIDAR and vision
fusion approach through deep learning
framework. 2017 IEEE/RSJ International
Conference on Intelligent Robots and
Systems (IROS). IEEE, 2017: 749-54.

[14] Krizhevsky A, Sutskever I, Hinton G E.

ImageNet classification with deep
convolutional neural networks[J].
Communications of the ACM 2017;
60(6):84-90.

[15] LeCun Y. Generalization and network

design strategies. Connectionism in
perspective. 1989;19:143-55.

[16] LeCun Y, Boser B, Denker JS,

Henderson D, Howard RE, Hubbard W,
et al. Backpropagation applied to hand-
written zip code recognition. Neural
computation 1989;1(4):541-51.

[17] Wu J. Introduction to convolutional neu-

ral networks. China: National Key Lab
for Novel Software Technology Nanjing
University; 2017.

[18] Lavin A, Gray S. Fast algorithms for

convolutional neural networks.
Proceedings of the IEEE conference on
computer vision and pattern recognition
2016: 4013-21.

[19] Rausch V, Hansen A, Solowjow E, Liu C,

Kreuzer E, Hedrick J. K. Learning a deep
neural net policy for end-to-end control
of autonomous vehicles. American
Control Conference (ACC). IEEE, 2017:
4914-9.

[20] Do TD, Duong MT, Dang QV, Le MH.

Real-time self-driving car navigation
using deep neural network. 2018 4th
International Conference on Green
Technology and Sustainable Develop-
ment (GTSD). IEEE, 2018: 7-12.

S. Ding and J. Qu | Science & Technology Asia | Vol.27 No.4 October – December 2022

362

[21] Li Y, Qu J. Intelligent road tracking and
real-time acceleration-deceleration for
autonomous driving using modified
convolutional neural networks.
CURRENT APPLIED SCIENCE AND
TECHNOLOGY, 2022: 26 pages-26
pages.

[22] Gupta P, Singh V, Parashar A. Smart
autonomous vehicle using end to end
learning. Journal of Innovation in
Computer Science and Engineering,
2020, 9(2): 7-11.

[23] He K, Zhang X, Ren S, Sun J. Deep

residual learning for image recogni-tion.
Proceedings of the IEEE conference on
computer vision and pattern recogni-tion
2016:770-8.

