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ABSTRACT 
  Automatic driving has become a very important research field that may change how 
humans travel. Most of the existing research on automatic driving has been on road tracking. 
However, there has been little research on automatic driving to simultaneously achieve road 
tracking and traffic sign recognition (relying on only one camera as input). In this paper, we 
achieve the simultaneous implementation of both functions and explore the effects of the 
model, speed, and batch size on the automatic driving of the smart car. We constructed a 
smart car based on a Jetson Nano and one camera. In addition, we designed three real 
simulation environments and three groups of experiments. Firstly, the smart car is trained and 
tested in Experiment Group 1 using Environment 1. ResNet18 and ResNet34 are compared 
with speed modifications, and it screens a base model for Experiment Groups 2 and 3. 
Secondly, the smart car performs road-tracking experiments in an untrained environment 
(Environment 2) with the model from Experiment Group 1. Thirdly, road tracking and traffic 
sign recognition are achieved simultaneously in Environment 3. We conducted a total of 53 
experiments in different network setups and found out that S0.6 is the best speed, 
ResNet34_B32 is the best model, and road tracking can be achieved in both trained and 
untrained environments. The results of Experiment Group 3 show that the smart car can 
perform traffic sign recognition smoothly during road tracking. 
 

Keywords: Automatic driving; CNN; Deep Learning; Jetson Nano; Neural network model 
 
1. Introduction 

The application of AI in automatic 
driving is powered by deep learning 
algorithms of three significant functions: 
environment perception, planning and 
decision-making, and controlling. Smart 
cars use methods such as deep learning, 

fuzzy logic, expert systems, and genetic 
algorithms [1-3] to have a certain level of 
intelligence in automatic driving through 
autonomous learning. 

Deep learning has been applied to 
automatic driving research in the 
automotive sector, making automatic
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driving a hot area. Google and Baidu 
conduct research on automatic driving in 
real cars, which is undoubtedly the most 
realistic method of conducting the research. 
However, this approach is costly and 
dangerous and thus cannot be applied to a 
broad range of ordinary research. As a 
result, two different types of research are 
becoming more and more widely adopted: 
research conducted in a virtual online 
environment and research conducted in a 
realistic simulation. 

Road tracking and traffic sign 
recognition are two critical functions of 
automatic driving for smart cars. ZTÜRK et 
al. [4] studied autonomous vehicles in a 
virtual environment. However, using virtual 
environments on the Web to simulate 
complex actual-world scenarios is difficult, 
and the test results are not convincing. Qi 
Zhang et al. [5] used reinforcement learning 
to train in a virtual environment and then 
migrated to a real-world environment for 
testing. Experimental results in a virtual 
environment are positive, but it is difficult 
to transfer such experimental results to a 
real-world environment. The real-world 
environment is dynamic and ever changing, 
owing to factors such as lighting, shadows, 
and other noise sources. Furthermore, none 
of these factors is considered in a virtual 
environment. Therefore, we use smart cars 
in an already constructed simulation 
environment for training and testing. Our 
approach can be closer to real-world 
automatic driving than the abovementioned 
methods. 

Additionally, Xi Li et al. [6] evaluat-
ed their study about a related study on 
automatic driving tasks using a high-
performance graphics card on a PC 
platform. Although the test performed well, 
this was attributed to powerful graphics 
cards and large servers. The difference is 
that we deployed deep learning on an 
embedded development platform, which 
enabled autonomous driving and achieved 
good results. We used the Jetson Nano as a 

development board to build a smart car for 
autonomous driving experiments. The 
Jetson Nano is similar to a microcomputer 
and it can be used as a controller, a 
processor, and a deep learning platform.  

In addition, we have constructed three 
environments as driving simulation tracks 
for smart cars. Environment 1 is used for 
data collection and testing; Environment 2 
discusses the effects of noise on smart cars; 
and Environment 3 demonstrates that smart 
cars are capable of road tracking and traffic 
sign recognition. In addition, we discuss the 
impact of model, batch size and speed on 
automatic driving. 

  
2. Related Research  
2.1 Hardware 

Constructing a smart car platform 
takes into account the hardware 
configuration of the development board and 
sensors. Sumeth Yuyong and Jian Qu [7] 
chose Arduino as the development board 
and used reinforcement learning to 
implement path planning. Their smart car 
requires a Bluetooth connection between the 
Arduino and the PC, then transmits the 
decisions of PC to the Arduino, which 
controls the car. Therefore, it is not a stand-
alone agent. Moreover, Arduino is a 
hardware platform based on a 
microcontroller, and it can only execute 
programs that have been pre-programmed 
into the chip. Arduino can only be used in a 
few simple scenarios because of its limited 
performance, and the implementation of 
certain functions requires the assistance of a 
large number of external sensors. For 
instance, Ayesha Iqbal et al. [8] chose 
Arduino for their research, but they required 
cameras and infrared sensors to accomplish 
road tracking. Numerous previous studies 
[9-12] have used Raspberry Pi rather than 
Arduino. Raspberry Pi is a hardware 
platform based on a microprocessor capable 
of handling complex application scenarios 
such as network communication and image 
processing. For instance, Xinxin Du et al. 
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[13] used cameras and radar to achieve road 
tracking for smart cars in their study. While 
many studies use the Raspberry Pi as a 
development board, we found that most of 
these studies used CNN and RNN deep 
neural networks, which have few layers and 
simple structures. Although the Raspberry 
Pi has improved performance compared to 
the Arduino, it lacks in computing power 
and execution speed compared to the Jetson 
Nano, as the Raspberry Pi has no video 
memory. Therefore, we recommend using 
the Jetson Nano as a development board for 
smart cars. 

 
2.2 Deep neural networks 

A Convolutional Neural Network 
(CNN/ConvNet) is a deep learning model or 
a multilayer perceptron [14] that is similar 
to an artificial neural network. The 
multilayer perceptron is like a black box, 
including one input layer, multiple hidden 
layers, and one output layer (Fig. 1). 

 

 
Fig. 1. Schematic diagram of deep learning. 

 
A CNN is usually used to analyze 

visual images and is one of the critical 
algorithms for deep learning. The CNN was 
first proposed by Yann LeCun in 1989 [15-
16] and applied to handwritten font 
recognition (MINST). The role of CNN is to 
restore the image to a form that is easier to 
process without losing the features that are 
essential to obtain good predictions. 

Compared to other classification 
algorithms, CNNs require much less 
preprocessing. In the original method, the 
filter was designed manually. Furthermore, 

with adequate training, CNNs can learn 
these functions. 
 Convolutional networks typically 
consist of convolutional layers, pooling 
layers, and fully connected layers. CNN 
simulates feature differentiation through 
convolution, reduces the order of magnitude 
of network parameters through weight 
sharing and pooling of convolution, and 
finally accomplishes tasks such as 
classification through a fully connected 
layer [17]. 

Convolution: 
An example of a convolution 

operation shows in Fig. 2. 
 

 
Fig. 2. Example diagram of the convolution 
operation. 
 

These numbers are a  image with 
a  convolution kernel: 

1    0    1 
0    1    0 
1    0    1 

Use the convolution kernel to 
convolve the image. The convolution kernel 
traverses all the image pixels from left to 
right and top to bottom in the image. The 
convolution kernel and the corresponding 
image pixel values are multiplied and 
summed to obtain a  convolution result. 
We can understand it as using a filter 
(convolution kernel) to filter each small area 
of the image to get the feature value of these 
small areas. In the actual training process, 
the value of the convolution kernel is 
learned during the learning process. 

After the convolution operation, the 
image size can be relatively reduced, but the 
image is still large, so pooling is required to 
reduce the data dimension of the image [18]. 
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Pooling is down sampling. The 
pooling process is shown in Fig. 3. 

 

 
Fig. 3. Example diagram of the pooling 
operation. 
 

The original image is , we 
downsample it and the sampling window is 

, and finally, it is downsampled into a 
 feature map. In practical applications, 

pooling is divided into max pooling and 
average pooling according to the down-
sampling method. 

The key to automatic driving is deep 
neural networks, but most existing research 
has chosen simple CNN [19-21] neural 
networks. For instance, Viktor Rausch et al.  
[19] used a 6-layer CNN neural network in 
their study. Truong-Dong Do et al. [20] 
used a CNN neural network with nine 
layers. However, shallow layer neural 
networks have the potential to cause two 
issues. First, feature extraction is 
insufficient; second, tens of thousands of 
image datasets are required. Pranav Gupta et 
al. [22] used VGG to address these issues in 
their study. While the layers of this network 

are deep, they are also large, creating a 
latency issue. These neural networks were 
initially designed for deployment on 
desktop computers equipped with powerful 
GPUs rather than mobile, edge-based 
devices. To address this issue, we chose 
Resnet18. Kaiming He et al. proposed 
Resnet18 [23] in 2016. They proposed 
adding a residual network (Fig. 4) to the 
neural network, which significantly 
increases the number of layers in the 
network and alleviates the network's 
degradation problem. 

 
Fig. 4. Residual learning structure diagram. 

 
3. Experimental Setup 

In chapter 3, we focus on two factors: 
lane line detection (road tracking) and 
traffic sign detection (road tracking-based). 
Then, in Section 3.1, we introduce the 
environment construction; in Section 3.2, 
we describe the hardware; in Section 3.3, 
we screen the convolutional neural 
networks; and in Section 3.4, we 
demonstrate our experimental setup, which  

4 4´

2 2´
2 2´
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Fig. 5. Experimental framework diagram. 

 
focuses on three experiments. The specific 
experimental framework diagram is shown 
in Fig. 5. 
 
3.1 Environment construction 

In Section 3.1, we introduced three 
experimental environments built for 
different experiments. We present them in 
two ways: schematic diagrams and real 
pictures of the environment. 

 
3.1.1 Environment of Experiment 1 

(Road tracking in the original environ-
ment)  
 Environment 1 

Environment 1 is the scene of 
Experiment group 1, which has two main 
purposes: collecting data and verifying the 
road tracking of the smart car in the trained 
environment. Fig. 6 is the schematic 
diagram of Environment 1. 

 
 
 
 

 
 

Fig. 6. Schematic diagram of Environment 1. 
 

 
Fig. 7. Environment 1. 

 
Fig. 7 is the picture of Environment 1. 

It is an oval track, and the yellow and white 
lines are the lane lines. We set up straight 
roads and curves to restore realistic roads 
with complex road conditions. We collected 
data in Environment 1. The data were 
collected for Experiment 1. (Remarks: 
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Collect training data in the form of taking 
photos.) We trained the model with the data 
collected in Experiment 1. In Experiment 1, 
we will test the effect of different models 
and different speeds on road tracking. 

 
3.1.2 Environment of Experiment 2 

(Road tracking in the new environment)  
 Environment 2 

Environment 2 is the scene of 
Experiment group 2, which is used to verify 
the road tracking of the smart car in an 
environment without training. Fig. 8 is the 
schematic diagram of Environment 2. Fig. 9 
shows the photos of Environment 2. They 
are stitched shapes based on Environment 1 
and are used to test whether the car can 
achieve road tracking and adapt to 
unfamiliar environments. 

  
Fig. 8. Schematic diagram of Environment 2. 

 

 
Fig. 9. Environment 2. 

 
 

3.1.3 Environment of Experiment 3 
(Road tracking & traffic sign recognition)  
 Environment 3 

Environment 3 is the scene of 
Experiment group 3, which is used to verify 
that the smart car can achieve traffic sign 
recognition during road tracking. We used a 
circular track, which had two turn-offs, and 
we would randomly place left-turn or right-
turn signs at the turn-offs. Fig. 10 shows the 

schematic diagram of Environment 3, and 
Fig. 11 shows the photos of Environment 3. 

 

 
Fig. 10. Schematic diagram of Environment 3. 

 

 
Fig. 11. Environment 3. 

 
3.2 Hardware preparation 

3.2.1 Introduction to Jetson Nano 
motherboard 

The Jetson Nano is a product released 
by NVIDIA at the 2019 NVIDIA GPU 
Technology Conference. The specific 
information of the Jetson Nano is shown in 
Fig. 12. 

 
Fig. 12. Jetson Nano diagram. 

 
The Jetson Nano has four high-speed 

USB 3.0 ports, MIPI CSI-2 camera 
connector, HDMI 2.0 and DisplayPort 1.3, 
Gigabit Ethernet, M.2 Key-E module, 
MicroSD card slot, and 40-pin GPIO 
connector. The specific information on the 
Jetson Nano is shown in Table 1. 

 
 
 
 
 



S. Ding and J. Qu | Science & Technology Asia | Vol.27 No.4 October – December 2022 

349 

Table 1. Information table of Jetson Nano. 
 

Project NVIDIA Jetson Nano 

CPU Quad-Core ARM Cortex-A57 64-bit @ 
1.42Ghz 

GPU NVIDIA Maxwell w/128 CUDA cores @ 
921 Mhz 

Memory 4GB LPDDR4 
Networking Gigabit Ethernet/M.2 Key E(for Wifi 

support) 
Video Encode H.264/H.265(4Kp30) 

Camera MIPI CSI port 
USB 4 * USB3.0, USB2.0 Micro-B 

Display HDMI2.0 and eDP1.4 
Other 40-pin GPIO 

Storage Micro-SD 
 

The Jetson Nano can run a wide range 
of advanced frameworks, including full 
native versions of popular machine learning 
frameworks, such as TensorFlow, PyTorch, 
Caffe/Caffe2, Keras, and MXNet. In 
addition, these frameworks can be used to 
build automatic machines and complex 
artificial intelligence systems by 
implementing robust image recognition, 
object detection, localization, pose 
estimation, and intelligent analysis. 

This paper used the PyTorch 
framework for road tracking and traffic sign 
recognition, with the programming language 
Python. In addition, Torch, Torchvision, and 
OpenCV are also used for image processing 
and neural network deployment. 

 
3.2.2 Smart car platform 
We used a four-wheeled car as the 

platform; only a camera was used for the 
sensing part. This platform is equipped with 
a Jetson Nano development board, an 
aluminum alloy chassis, and four single-axis 
metal gear motors. 

The specific image of the completed 
smart car is shown in Fig. 13. 

 

 
Fig. 13. Smart car platform. 

 
3.3 Selection of convolutional neural 
networks 

In 2012, Krizhevsky and Hinton 
founded AlexNet, which kicked off the 
craze for deep learning. The VGG, ResNet, 
and DenseNet were proposed immediately 
afterward, and they all contributed to the 
development of computer vision. As a 
technique for image processing, 
convolutional neural networks have become 
the basis of automatic driving. This paper 
aims to discuss the task of smart cars 
tracking and recognizing traffic signs. The 
selection of a high-quality CNN for 
experimentation is also crucial to the 
success of this paper. Therefore, we 
examined several different types of neural 
networks and produced the following 
conclusions through training, as illustrated 
in Table 2.  

Nine neural networks were tested by 
loading them onto a Jetson Nano board, 
including the AlexNet, VGG, ResNet, and 
DenseNet series. According to the results, 
VGG, Resnet101, Resnet152, Resnext101-
32x8d, Densenet121, and Densenet169 all 
exhibit delays. Complex neural networks 
require sufficient GPU memory to keep the 
model running smoothly. However, the 
Jetson Nano, an embedded development 
board, only has 4GB of memory, which is 
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Table 2. Comparison of convolutional 
neural networks. 
 

Model Validation loss Remark 

AlexNet 0.026504 Normal 
VGG 0.018504 Delay 

Resnet18 0.009344 Normal 
Resnet34 0.007575 Normal 

Resnet101 0.013330 Delay 
Resnet152 0.013140 Delay 

Resnext101_32x8d 0.013070 Delay 
Densenet121 0.013070 Delay 
Densenet169 0.010492 Delay 

 
not enough to support smoothly running 
complex neural networks. Therefore, there 
are problems with delays during model 
testing. The delay is hazardous for smart 
cars, preventing them from predicting in 
real-time based on the road conditions. The 
delay increases the likelihood of accidents. 
Therefore, we chose Resnet18 and Resnet34 
for model training and model testing. In 
addition, we avoided AlexNet despite its 
lack of delay issues but high validation loss 
value. It means that AlexNet does not 
perform well in driving prediction and does 
not enable automatic driving. Resnet18 and 
Resnet34 are the two top-performing neural 
networks, exhibiting negligible latency and 
very low validation loss values. Finally, for 
the automatic driving trials, we chose 
Resnet18 and Resnet34. 

 
3.4 Experiments and methods 

In Section 3.4, we introduce three 
elements. First, we describe the method and 
operational details of data collection. 
Second, we describe how model training is 
performed. These two sections were the 
preliminaries for the start of the three 
experiments. Finally, we introduce our three 
experimental components. 

a. Experiment 1: Road tracking in a 
trained environment. In Experiment 1, we 
compared the two models, ResNet18 and 
ResNet34, and the different effects on the 
smart car when the batch size was equal to 
16 and 32. Moreover, we also tested the 

effect of different speeds on it. Therefore, 
we are able to find out the appropriate batch 
size and speed for each model. 

b. Experiment 2: Road tracking in a 
new environment without training. 
Experiment 2 used Environment 2 to test the 
smart car to verify whether the model 
trained from Experiment 1 can achieve road 
tracking in an unfamiliar environment. At 
the same time, we can also test the running 
effect of the four setups and pick the best 
model and the best speed. 

c. Experiment 3: Road tracking & 
traffic sign recognition. In Experiment 3, we 
used the best model and the corresponding 
speed derived from Experiment 2 and 
applied them in Environment 3. We verified 
whether smart cars can achieve road 
tracking along with traffic sign recognition. 

 
3.4.1 Data collection 
We collected images using the smart 

car by taking photographs. Therefore, it is 
critical to avoid excessive daylight noise. 
We closed curtains and doors to prevent 
daylight from influencing the environment. 
In addition, the room lights were switched 
on to provide stable light conditions. Data 
were collected and tested in environments 
with such light conditions. 

We used OpenCV to visualize and 
save images using tags. Libraries such as 
UUID and DATETIME are used for image 
naming; the IPython library is used for 
display and widgets, and the basic Python 
library for image tagging. 

The neural network in this paper uses 
an image of 224x224 pixels as input. The 
image is set to this size to minimize the 
network. Then, we created two sliders (Fig. 
14) to adjust the "x" and "y" values of the 
smart car. We moved the green dot and blue 
line of Fig. 14 by sliding the "x" and "y" 
sliders to get the position information of the 
smart car. As shown on the right of Fig. 14, 
this photo has an "x" value of 0.06 and a "y"  
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Fig. 14. Data collection diagram. 

 
value of 0.36. At the same time, we created 
several small windows to observe the 
number of saved photos. As shown on the 
left of Fig. 14, we have collected a total of 
1025 photos. 

Instead of using video to collect 
images in the simulated environment, we 
collect images by taking pictures manually. 
Therefore, there is no frame rate for the 
model training data. However, during the 
testing of autonomous driving, the frame 
rate was 34 FPS, and we captured images in 
the field of view of the smart car. In Fig. 15, 
we compare the collected training image 
with the test screenshot, and they are clear 
and similar in resolution. 
 

 Fig. 15. Comparison of the collected training 
image and the screenshot of tests. 
 

The specific steps of data collection 
are shown in Fig. 16. 

 

 
Fig. 16. Diagram of data collection steps. 

 
3.4.2 Model training 
Model training is the second and most 

important step in smart car research. First, 
we need to configure an environment that 
conforms to deep learning on the PC side 
and then use the dataset to train it. The 
specific steps are shown in Fig. 17. 

We divided the collected dataset into 
two parts; one part was the training set, and 
the other part was the test set. The training 
set, which is 90%, is used to train the model, 
and the test set, which is 10%, is used to 
verify the accuracy of our trained model.  

We performed a total of four setup 
training sessions. ResNet18 is the official  
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Fig. 17. Diagram of data training steps. 
 
Table 3. Models used in Environment 1. 
 

Setup Remark 

ResNet18_B16 Based on ResNet18, Batch_size is 16 
ResNet18_B32 Based on ResNet18, Batch_size is 32 

ResNet34_B16 Based on ResNet34, Batch_size is 16 
ResNet34_B32 Based on ResNet34, Batch_size is 32 
 
model provided by NVIDIA, while we 
chose ResNet34 to compare with it. To 
compare the effect of different Batch_size 
on the model, we chose Batch_size=16 and 
32. Four setups were trained in this 
experiment (Table 3). 

The size of Batch_size affects the 
degree of optimization of the model, and it 
directly affects the usage of GPU memory. 
We need to train the model as the setup 
shown in Table 3, and each round trains 70 
epochs and saves the best model. We found 
that the epoch to get the best model every 
time is always between 50-70, more often 
between 60-70. We do not get a better 
model when the epoch is greater than 70. 

 
 
 
 

3.4.3 Experiment 
We now describe the three 

experiments in detail. 
a. Experiment 1 (Road tracking in the 
original environment) 

Experiment 1 is a road tracking 
experiment in the original environment 
(trained environment 1). We collected data 
through environment 1 and trained the best 
model. Using environment 1, we compared 
the effects of speed, model, and Batch_size 
on the experiment. It is verified that the 
smart car can achieve road tracking and get 
the best speed matching the four setups. We 
chose the best model from the four setups 
we tested in Environment 1.  

 

 
Fig. 18. Measurement points of environment 1. 

 
In Experiment 1, we chose one curve of the 
track as the experimental object (because 
the smart car drove well on the straight 
lane), and the curve was preset with five 
points as the measurement points for 
measuring the distance (shown in Fig. 18). 
Angle (angle between the centerline of the 
smart car and the tangent line of the 
measurement point) and distance (distance 
between the center point of the smart car 
and the measurement point) are used to 
judge the degree of autonomy of a smart 
car. The smaller the angle and the smaller 
the distance, the smoother the smart car 
travels. The test data were collected by first 
taking videos; screenshots are taken and 
measured from such videos. We set up a 
tripod for the camera to collect the videos to 
ensure photo accuracy. We designed a 
standard rectangle (3cm in length and 2cm 
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in width), which is used as the scale length 
standard for the distance measurement later 
(shown in Fig. 18). Fig. 19 is a screenshot 

of the video we captured during Experiment 
1 for distance and angle measurements. 

 
Table 4. Experimental operation table of the curve. 

 

 
 
Fig. 19.  Some photos of the collection of 
Experiment 1. 
 

The specific demonstration steps are 
shown in Fig. 20. 

 

 
 
Fig. 20. Step-by-step diagram to demonstrate the 
model. 
 

We have selected four setups, each of 
which measures 11 speeds so that 44 videos 
will be obtained (see Table 4 for details). 
The range of the smart car speed is between 
0 and 1. As shown in Table 4, there is no 

speed of 0.1 due to ESC failing to start the 
motor with such speed; when the speed is 
over 0.70, the smart car is driven over the 
lines. Therefore, we chose a speed between 
0.2 and 0.7. 

We have two goals for Experiment 1: 
To verify that the smart car can execute road 
tracking in familiar environments, and to 
find out the four best setups and the corre-
sponding best speed from the experiment 
results. 
 
b. Experiment 2 (Road tracking in the 
new environment) 

Experiment 2 is a road tracking 
experiment in the new environment 
(untrained Environment 2). We used 
Environment 2 to verify whether road 
tracking can still be performed in 
Environment 2. It is difficult for automatic 
vehicles to collect data on all road 
conditions and trains. Therefore, a good 
model should be able to handle unseen 
environments. 

 

 
Fig. 21. Measurement points of Environment 2. 

 
As shown in Fig. 21, we selected five 

locations as data measurement points. As 
described in the previous section, we also 
chose the angle between the midline tangent 
line of the smart car and the measurement 

Test model

Load the trained model

Load weight

Create preprocessing 
function

Real-time display of 
camera images

Run the code to drive the 
motor

Weights are transferred 
from CPU to GPU

Preprocess camera images

Execute NN

Create call function

NN execution function 
attached to the camera

Model Speed 
Resnet18_B16 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 
Resnet18_B32 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 
Resnet34_B16 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 
Resnet34_B32 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 
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points and the distance between the center 
point of the smart car and the measurement 
points as the criteria for judging the 
goodness of smart cars for automatic 
driving. The smart car starts from the 
starting point, passes through 5 locations, 
and reaches the end. We applied the four 
setups with the optimal speed obtained in 
Experiment 1 to Experiment 2. Therefore, 
we performed four experiments to obtain 20 
angles and 20 distances. 

We have two goals for Experiment 2: 
To verify that smart cars can achieve road 
tracking in unfamiliar environments, and to 
filter the optimal settings and the 
corresponding optimal speed from the 
parameter settings. 

 
c. Experiment 3 (Road tracking & traffic 
sign recognition) 

The goal of Experiment 3 is to 
execute the recognition of traffic signs (turn 
left and right signs, as shown in Fig. 22) 
while carrying out road tracking (verified in 
Experiment 1 and Experiment 2). Therefore, 
we set up Environment 3 and added the 
traffic sign for turning left and right. We 
collected data from Environment 3 and 

conducted model training. In this 
experiment, we test whether the smart car 
can achieve the goal with the best model 
and corresponding speed obtained in 
Experiment 1. 

 
Fig. 22. Traffic signs for left turn and right turn. 
 

 
 
Fig.  23.  Explanatory diagram of the experi-
mental operation in Environment 3. 

 
Specific experimental operation: We 

let the smart car drive in a loop in 
Environment 3, a cyclic track (as shown in 
Fig. 23). It will start from the starting 
position; first, it will arrive at the Left fork 
(A). We will place a turn sign  

 
Table 5. Operation of Experiment 3. 

 
(left or right) over there beforehand. Then it 
will arrive at the Left fork(B), where we 
will place a random turn sign in advance. 
Furthermore, it will return to the starting 
point. Thus, it is the process of the smart car 
cycles once. The smart car completes three 
cycles in each set of five tests. Moreover, 
we randomly placed turn signs at the forks 
six times, as shown in Table 5. Finally, we 
judged whether the smart car has achieved 

its goal by turning correctly according to the 
traffic signs. 
 
4. Result 

In this chapter, we described the 
results of our three experiments. Videos of 
the experiments can be viewed at 
https://github.com/Bryantding/Automatic-
Driving-for-Road-Tracking-and-Traffic-
Sign-Recognition. 

Group 
Fork 

Left 
fork(A) 

Left 
fork(B) 

Left 
fork(A) 

Left 
fork(B) 

Left 
fork(A) 

Left 
fork(B) 

Group1 Left Left Right Left Right Right 
Group2 Left Right Right Right Left Right 
Group3 Right Left Left Right Right Left 
Group4 Left Left Left Left Left Left 
Group5 Right Right Right Right Right Right 
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4.1 Results and discussion of Experiment 
1 

In Experiment 1, to investigate the 
effects of models, Batch_size, and speed on 
smart car road tracking, we chose two 
ResNet models, two batch sizes, and 11 
speeds while ensuring other conditions, such 
as the dataset were the same. 

We chose Batch_size of 16 and 32 for 
ResNet18 and ResNet34, respectively, and 
performed three training sessions for each 
case. The training results are shown in Table 
6; Avg loss is the average loss value of the 
three training sessions. Table 6 shows that 
the size of ResNet18 is 42.6MB, which is 
smaller than the size of ResNet34 
(81.3MB). In addition, based solely on 
validation_loss values, ResNet18_B32 is a 
superior model to ResNet18_B16, and 
ResNet34_B32 is superior to 
ResNet34_B16. Although ResNet18_B32 
obtained the best result (0.0090) in one of 
the training, ResNet34_B32 had the best 
result in terms of the average loss of the 
three training sessions. Losses are the result 
of the Colab training of the model, which 
can only be used as one factor in evaluating 
the effectiveness of the model. Finally, we 
deployed the trained models on the smart 
car and used its actual performance as an 
important criterion for evaluating the 
models. 

 
 
 
 
 
 
 
 

Table 6. Table of Validation_loss and size 
for each model. 
Model Batch 

size 
Validation_loss Variance Size Losses Avg loss 

R
esN

et18 

B16 
0.0198 

0.0193 3.67×10-6 42.6MB 0.0167 
0.0215 

B32 
0.0090 

0.0137 1.12×10-5 42.6MB 0.0156 
0.0165 

R
esN

et34 

B16 
0.0157 

0.0151 1.65×10-6 81.3MB 0.0164 
0.0134 

B32 
0.0140 

0.0125 1.10×10-6 81.3MB 0.0120 
0.0116 

 
The results of Experiment 1 are shown in 
Table 7 and Fig. 24. What needs to be 
explained is that S0.20-S0.70 means speed 
from 0.20-0.70; L11-L15 means Location1-
5 in Environment 1; "✓" means the smart 
car does not touch the line, driving normal; 
S0.60D means the distance when the speed 
is 0.60; S0.60A means the turning angle 
when the speed is 0.60; BestD1 is the best 
distance of the smart car driving through 5 
locations in Environment 1; BestA1 is the 
best angle of the smart car driving through 5 
locations in Environment 1. In addition, the 
underlined data indicates the best result for 
each group. For Resnet18_B16, because the 
smart car's speeds are S0.20-S0.50 and 
S0.70, it would touch the line; we call this 
situation unqualified road conditions. 
Therefore, we do not count the results for 
these speeds in Table 7. For Resnet18_B32, 
the road conditions would be unqualified 
when the speeds are S0.20-S0.45 and S0.70. 
Similarly, for Resnet34_B16, the road 
conditions would be unqualified when the 
speeds are S0.20-S0.55 and S0.70. In the 
same way, for Resnet34_B32, the road 
conditions would be unqualified when the 
speeds are S0.20-S0.40 and S0.70. 
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Table 7. Experimental results for each model of Experiment 1. 

Speed 

M
odel  

Curve 

Remark 

L11 L12 L13 L14 L15 Average 

D
istance(cm

) 

A
ngle  

D
istance(cm

)  

A
ngle  

D
istance(cm

) 

A
ngle  

D
istance(cm

) 

A
ngle  

D
istance(cm

) 

A
ngle 

D
istance(cm

) 

A
ngle 

S0.55 R
esN

et18_
B

16 

7.22 27 9.87 10 11.39 2 7.72 6 2.86 25 7.81 14 ✓ 
S0.60 7.53 20 8.47 5 6.96 1 3.4 12 3.42 22 5.96 12 ✓ 
S0.65 7.14 22 6.66 6 5.21 5 5.69 9 6.39 19 6.22 12.2 ✓ 
S0.50 R

esN
et1

8_B
16 

3.93 36 8.28 15 10 1 6.76 6 4.81 23 6.77 16.2 ✓ 
S0.55 3.02 33 6.98 13 8.11 0 5.02 6 1.36 20 4.90 14.4 ✓ 
S0.60 3.78 24 4.78 11 5.00 0 2.60 14 3.65 22 3.96 14.2 ✓ 
S0.65 4.34 33 4.08 11 3.76 6 3.52 15 7.09 21 4.56 17.2 ✓ 

S0.60 

R
esN

et34_B
16 

8.54 31 11.85 8 11.16 7 4.78 20 3.13 30 7.89 19.2 ✓ 

S0.45 R
esN

et34_
B

32 

4.42 35 10.52 16 13.01 2 11.11 5 9.6 27 9.73 17 ✓ 
S0.50 4.46 28 7.46 14 10.08 0 7.84 7 5.55 22 7.08 14.2 ✓ 
S0.55 2.99 29 6.60 15 8.25 0 6.15 6 2.02 20 5.20 14 ✓ 
S0.60 3.61 27 4.28 10 4.89 1 3.79 9 2.36 18 3.79 13 ✓ 
S0.65 3.24 25 3.33 9 3.13 2 3.22 12 6.19 19 3.82 13.4 ✓ 

 
First, speed has a significant 

influence on the quality of driving. Using 
the ResNet34_B32 model as an example: 
when the speeds were between S0.20-S0.40, 
the smart car always touched the line, so it 
did not drive well at those speeds. When the 
speeds were between S0.45-S0.65, the 
distances decreased from 9.73cm (S0.45) to 
3.79cm (S0.60) and then increased to 

0.82cm (S0.65). Similarly, the angles 
decreased from 17°(S0.45) to 13°(S0.60) 
and then increased to 13.4°(S0.65). Finally, 
when the speeds were over S0.70, it started 
to touch the line again. In summary, as the 
speed increased, the driving condition of the 
smart car improved from poor to good and 
then deteriorated from good to gradually 
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Fig. 24. Experimental results on velocity in environment 1. 
 

 
 

Fig. 25. Comparison of averages for the first part of the experiment in Experiment 1. 
 

worse. The overall driving situation was the 
best when the speed was set at S0.60. Thus, 
S0.60 was the optimal speed for these 
models. 

Second, for the same ResNet model, 
the greater the Batch_size, the better the 
smart car performed. Using the ResNet34 
model as an example the distance of 
ResNet34_B16 compared with 
ResNet34_B32 was smaller (3.79 cm) than 
that of ResNet34_B16 (7.89 cm) at their 
optimal speed S0.60; the angle of 
ResNet34_B32 (13°) was smaller than that 
of the angle of ResNet34_B16 (19.2°). 

Third, the model ResNet34 performed 
better than ResNet18. In Fig. 25, it depicted 
the distance and angle comparison plots for 
the best velocities of the four setups, the 
combined distance, and angle of 

ResNet34_B32 were better than the two 
models of ResNet18. 
 
4.2 Results and discussion of Experiment 
2 

The results of Experiment 2 are 
shown in Fig. 26, Fig. 27, and Table 8. We 
applied the best velocity S0.60 of the four 
setups obtained from Experiment 1 to 
Environment 2, an unfamiliar and untrained 
environment. BestD2 was the best distance 
for the smart car driving through 5 locations 
in Environment 2; BestA2 was the best 
angle for the smart car driving through 5 
locations in Environment 2. L21- L25 meant 
Locations 1-5 in Environment 2, and the 
other markers were the same as in 
Experiment 1. 
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Fig. 26. Experimental results of the four setups in Environment 2. 

 

 
Fig. 27. Comparison of the four setups averages for Experiment 2. 

 
Table 8. Experiment 2 Experimental results for each model. 

M
od

el
 

Curve 
L21 L22 L23 L24 L25 Average 

D
is

ta
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e  
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is
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nc

e  

A
ng

le
 

D
is

ta
nc

e  

A
ng

le
 

D
is

ta
nc

e  

A
ng

le
 

Resnet18_B16 10.83 18 5.66 8 2.05 5 6.64 11 9.34 3 6.91 9 
Resnet18_B32 8.78 12 5.93 3 2.56 1 7.42 16 8.95 0 6.73 6.4 
Resnet34_B16 6.25 15 6.92 7 0.47 1 6.73 5 5.64 1 5.20 5.8 
Resnet34_B32 6.61 9 1.31 5 2.93 0 1.68 4 3.37 4 3.18 4.4 

 
It shows the following three results 

by combining Figs. 26-27, and Table 8. 
First, all four setups can achieve road 

tracking in unfamiliar environments and 
adapt to new environments that have not 
been trained. This means that the results of 

deep learning of the smart car had wide 
applicability and practicality. The result 
makes our study more meaningful because it 
is ordinary to achieve road tracking in a 
trained environment. More importantly, we 
have achieved normal driving of smart cars 
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in unknown environments. We can achieve 
safe driving of smart cars in more road 
environments through training in limited 
road environments. 

Second, when the smart car faced an 
unfamiliar environment, Resnet34_B32 
performed best among the four setups. The 
average distance of its five positions was 
3.18cm, and the average angle was 4.4°, 
which were both the smallest. It is worth 
noting that in the face of the new 
environment, the two models of Resnet34 
were better than the two models of 
Resnet18. This means that the Resnet34 
model has a stronger ability to predict 
unfamiliar environments and a stronger 
ability to adapt to the external environment 
and resist external noise. 

Third, even in the face of unfamiliar 
environments, the experimental results 
again proved that for the models of the 

Resnet series, the larger the Batch_size was, 
the better the model was and the better it 
was for prediction. Taking Resnet34 as an 
example, when the Batch_size increased 
from 16 to 32, the average distance of five 
points decreased from 5.20cm to 3.18cm, 
and the average angle decreased from 5.8° 
to 4.4°. 

 
4.3 Results and discussion of Experiment 
3 
 In Experiment 1 and Experiment 2, 
we proved that the smart car could track the 
road in trained and untrained environments. 
In Experiment 3, we proved that the smart 
car could execute the recognition of traffic 
signs while performing road tracking. We 
randomly measured five sets of 
experimental data, as shown in Table 9. 
"6/6" means that the smart car could make 
six smooth turns in 6 random forks. 

 
Table 9. Experimental results of Experiment 3. 

 

Left fork 

Left 

    

Right 

    

Right fork Left 

    

Group 
Fork 

Car performs Left 
fork(A) 

Left 
fork(B) 

Left 
fork(A) 

Left 
fork(B) 

Left 
fork(A) 

Left 
fork(B) 

Group1 Left Left Right Left Right Right 6/6 
Group2 Left Right Right Right Left Right 6/6 
Group3 Right Left Left Right Right Left 6/6 
Group4 Left Left Left Left Left Left 6/6 
Group5 Right Right Right Right Right Right 6/6 
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Right 

    
 

Fig. 28. Experiment 3 partial steering diagram. 
 

Fig. 28 illustrates the turning diagram 
of Experiment 3. From Fig. 28, we can see 
that when the smart car arrived at two forks, 
it would make a turn according to the left 
and right turn signs and continue to drive 
along the lane line. 

As we know from Table 9, all five 
sets of experimental data are 6/6. This 
means that when the smart car sees the left 
and right turn signs while road tracking, it 
can be recognize them and turn according to 
the direction without any problem. 
Furthermore, the accuracy rate is 100%. 
 
5. Conclusion 

The achievement of road tracking and 
traffic sign recognition are two key tasks for 
automatic driving and are the focus of our 
current experiments. In addition, we 
examined the effects of speed, model and 
Batch_size on automatic driving. We 
conducted three experiments and came up 
with the conclusions shown below. 

1. We found that speed, model and 
Batch_size are the key factors affecting 
automatic driving performance. For the two 
neural network models we studied, too fast 
or too slow speeds resulted in poor 
performance of automatic driving. Under 
different experimental settings, S0.6 is the 
optimal speed setting. In Experiments 1 and 
2, the results show ResNet34 to be superior 
to ResNet18. Furthermore, the larger the 
Batch_size is in the same model, the better 
the results will be. The complete 
experimental results show that ResNet34 
with Batch_size=32 is the best model, and it 
performs well in both Environment 1 and 
Environment 2. 

2. The smart car can perform road 
tracking in trained and untrained 
environments. In addition, in Environment 1 
and Environment 2, the smart car was able 
to complete its driving in good condition, 
driving smoothly without touching the line. 

3. With only one camera, the smart 
car can accomplish both road tracking and 
traffic sign recognition tasks. However, this 
is not completely driverless, and we will 
conduct more research in the future. 
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