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ABSTRACT 

We employ the concept of disturbance observer to obtain an auxiliary linear controller 
that can be augmented to existing linear controllers for the primary purpose of disturbance 
rejection in DC motor trajectory control systems.  Our development is all in state space and 
does not require feedback of current in motor coils.  Uncertain time-varying parameters in the 
system matrix and the input matrix are allowed, and a simple sufficient condition for asserting 
robust input-to-state stability of the resulting control system is provided. It appears in 
numerical simulations that the proposed auxiliary control can reduce magnitude of tracking 
error and output oscillation due to persistent high-frequency disturbance by approximately 
40%.  Primarily, it achieves this by reacting quickly to changes in disturbance, not by 
increasing magnitude of the control signal.  This allows its application in existing control 
systems without need to enlarge capacity of the associated amplifiers. 

 
Keywords: DC motor; trajectory, disturbance; observer; stability  

 

1. Introduction 
Brush DC Motors have been actuators 

of choice in trajectory control systems 
because of their economical price, hardware 
simplicity, and strong torque delivery.  
Additionally, their simple dynamical 
characteristics facilitate design of drives and 
controllers.  The armature of these motors 

could be skewed, and be designed to house 
sufficiently many lapping coils so that the 
resulting torque ripple due to mechanical 
commutation is insignificant. However, 
their principle of operation is associated 
with a few arch disadvantages.  One of these 
is that the commutation employs mechanical 
brushes. These crucial parts wear out over 
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time due to sliding contact they make with 
the commutator. This dictates that they are 
not suitable for high-speed applications in 
which periodical services are inconvenient.  
This disadvantage has been removed by 
introducing electronic commutation for 
brushless DC (BLDC) motors. A BLDC 
motor with trapezoidal back EMF usually 
has 3 phases. To gain simplicity and cost 
effectiveness, the motor is usually driven by 
using 6 steps of electronic commutation [1, 
2] for which relevant hardware is generally 
enclosed separately from the motor.  In each 
of these steps, 2 out of 3 sets of stator coils 
are to be driven sequentially by square-wave 
current. In practice, this yields a large 
torque ripple due to strong stepwise rotating 
magnetic field and nonideal current 
waveform [2-5]. The ripple occurs very 
rapidly in every step of commutation and 
depends on rotor angle. When the motor 
operates at low speed, adverse effects of this 
ripple could hinder smooth rotation of the 
rotor because filtering due to mechanical 
inertia is small [6]. It is possible to reduce 
the ripple, but this requires dedicated 
electronic hardware, which could be 
expensive to get or time-consuming to 
implement. Commutation and magnetic 
cogging produce periodic disturbance within 
the above DC motors. Accordingly, their 
effects on a motor shaft cannot be 
attenuated using mechanical gears.  This 
usually makes it troublesome to employ the 
motors in high-precision trajectory control 
systems. However, such motors and the 
corresponding drives could be significantly 
more economical than AC alternatives. 

A disturbance observer can be 
employed to estimate total disturbances due 
to loading torques applied at the motor shaft 
and modelling errors effectively [7-9]. This 
estimation requires knowledge of rotor 
angular acceleration. For trajectory control 
systems, the observer could take position 
feedback, and then use differentiators 
coupled with low-pass filters to estimate the 
acceleration. Preferably, the filters should 

be designed to have appropriate bandwidths 
so that satisfactory estimation of angular 
acceleration could be achieved. If the 
bandwidth of the filters is too high, 
undesirable noises could appear at the 
output, spoiling the estimation. Indeed, 
considering the fact that the acceleration 
signal is very active and noisy in general, 
designing such a filter could be challenging. 
To accommodate this, accurate velocity 
measurement could be a preferable solution 
to position measurement [10]. The quality 
of the signal can also be promoted by using 
high sampling frequency when the observer 
is implemented in a digital controller. 
Reducing modelling errors could attenuate 
the magnitude of disturbances and facilitate 
filter design, but this usually does not 
suppress noises significantly. When using a 
disturbance observer, the resulting 
estimation is always delayed by the use of 
low-pass filters, and thus produces 
estimation error. For practical cases in 
which the disturbances depend on time, the 
error is ultimately uniformly bounded by a 
positive number that depends on the time 
derivative of the disturbances [11]. Because 
of this, stability and performance of the 
resulting control system should be examined 
carefully [11, 12]. When a disturbance 
observer is used in DC motor motion 
control systems, classical linear control 
techniques relating to the concept of transfer 
function are usually adequate for stability 
and performance analysis. The analysis is 
generally conducted in the frequency 
domain because it allows effects of time 
delay to be shown clearly and conveniently.   

When using a disturbance observer, 
one usually separates disturbance estimation 
from controller design of the associated 
nominal plant. The use of a disturbance 
observer allows independent investigation 
of the two components, although they both 
affect stability of the resulting control 
system [12]. In this paper, we make use of 
the above desirable characteristic. We 
propose an auxiliary linear control that can 
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be combined with existing linear controls in 
DC motor trajectory control systems to 
improve disturbance rejection.   

Our controller design technique 
primarily differs from existing ones in two 
beneficial aspects. The first is that our 
development, which is all in state space, 
facilitates the use of existing results on 
robust stability to handle time-varying 
uncertainties in mass moment of inertia of 
the system.  This feature greatly simplifies 
controller design and stability analysis.  
Secondly, our technique does not require 
feedback of electrical current in motor coils, 
which is mandatory for existing techniques.  
This reduces cost and complexity of the 
resulting control system.  This also allows 
immediate use of our technique for 
improving disturbance rejection of existing 
trajectory control systems that do not have 
current feedback.   

 
2. Mathematical Model 

In this paper, we are interested in 
suppressing effects of rapidly fluctuating 
disturbance torque and parameter 
uncertainty on responses of existing DC-
motor trajectory control systems. These 
include mechanically commutated brushed 
DC motors and electronically commutated 
3-phase BLDC motors with trapezoidal 
back EMF. With commutation included, 
dynamical models of these 
electromechanical devices have the same 
structure [13-15] 

 
  (2.1) 

  (2.2) 

where  is the rotational angle of the motor 
rotor, i is the electrical current in the 
energized coils of the motor, V is the input 
voltage to the motor, and  is the 
disturbance torque applied to the rotor. Note 
that  represents both external loading 
torque and internal torque due to motor 

commutation and magnetic cogging. For 
brushed DC motors, torque ripple due to 
mechanical commutation could be 
insignificant when the number of rotor poles 
is large. For the above type of BLDC 
motors, we extensively employ a 6-step 
electronic commutation to energize two 
phases of the motor in certain sequences.  
This generally yields a large torque ripple as 
shown analytically in [4, 5], and also 
experimentally in [5].  This ripple is caused 
by phase switching, and its dynamic is very 
fast.  It causes rough rotor rotation, which is 
clearly displayed when the angular speed is 
low. Handling this ripple involves electronic 
commutation design and is beyond our 
scope of discussion. All the physical 
parameters in the model are shown in Table 
1. These must be determined specifically for 
the type of motor of interest.  When the 
motor is coupled with  mechanical 
transmission, the combined dynamic can be 
modeled by Eqs. (2.1)-(2.2) with a 
corresponding set of reflective parameters 
determined at output shaft of the 
transmission.           

 
Table 1. Relevant parameters of DC motor.  

Symbol Meaning 
J mass moment of inertia (kg.m2) 

 coefficient of viscous moment  
(N.m.s/rad) 

 torque constant (N.m/A) 

 speed constant (V.s/rad) 
R coil resistance (Ohm) 
L coil inductance (Henry) 
 
In DC-motor motion control systems, 

parameters such as R, L, , and  could 
be estimated or measured accurately using 
an appropriate group of basic measuring 
devices. However, this is not the case for the 
reflective mass moment of inertia J. This is 
partially because measuring J requires a 
specialized device. It could also be that the 
motor of interest is used to drive an object 
whose mass and shape can change 
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unpredictably with time, making J an 
uncertain time-varying function.       

It can be shown that a state space 
description of the motor system in Eqs. 
(2.1)-(2.2) is 

   (2.3) 
where , , , and 

. Note that  is included to allow 
applications of integration when designing 
controllers. The relevant dynamical 
variables that can be measured for feedback 
control are , , and i. The variable i can 
vary very quickly when compared to , and 

. Accurate reconstruction of i(t) then 
requires correspondingly fast hardware, 
which could be inconvenient to acquire.  
Because existing control systems may not 
be equipped with such hardware, we want to 
avoid measuring i for feedback to broaden 
our scope of applications without significant 
loss of performance. For this, we recall that 
motor torque is proportional to i. To build 
torque quickly, servo motors are generally 
designed such that L is very small when 
compared to R and . As an example, a 
Maxxon DC motor model RE65 with part 
number 353297 has nominal parameters L = 

 H, R = 0.365 Ohm, and 
 V.s/rad [16].  Because of this, it 

is reasonable to reduce Eq. (2.2) to: 
 
   (2.4) 
 
We obtain from the above equation that 

 and substitute this in 
Eq. (2.1) to produce 

  (2.5) 

 
Recalling the three state variables 

, , , we now model 
the dynamic of the motor using the reduced-
order model 
 
  (2.6) 
 
where , , 

, 
and 

. Notice that i is not a state 

variable in the above reduced-order model. 
Our objective is to drive  to track a 

given reference signal  using an 
appropriate control input u. For this, a 
model representing the error dynamic of the 
control system is required. We now define 
three reference signals for the state variables 

 and  as , and 
 respectively. The corresponding 

reference vector is . Now, let 
 and substitute  and 

 in the above equation to obtain the 
reduced-order error dynamics 

 
  (2.7) 
 
where  and 

. When using the 
above error dynamical model for controller 
design, we do not need to measure i for 
feedback. Only relatively slow  signals , 

 and  are needed, allowing 
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applications of relatively slow measuring 
hardware.  

In many situations, parameters in A 
and B are uncertain constants.  However, 
they could also be uncertain time-varying 
functions in some situations.  To 
accommodate these, we let  
and , where n and  denotes 
nominal and uncertain matrices 
respectively. Notice that the relevant 
matrices have the structures 

 

 , ,  

, , 

,        
 
The parameters , and  are nominal 
values of A(3, 3), and  respectively.  
In order to address the above general 
situations, the combined parameters , 
and  are allowed to be uncertain time-
varying.  It is reasonable to impose that we 
know nominal values, upper bounds, and 
lower bounds of all the parameters.  This is 
equivalent to knowing , , as well as 
upper bounds and lower bounds on , and 

. When all the uncertain matrices are 
zero, the resulting model is said to be 
nominal. 

 
3. Controller Design 

Consider applying the following two-
part control law: 

 
   (3.1) 
 
where  is the nominal control 

with , and  is the 
auxiliary control law that is intended to 

handle the disturbances and uncertainty.  
With the above control law, the error 
dynamical model now becomes 
 
    
 
To display uncertainty, the above equation 
can be written as   
 

  (3.2) 

 
where the gain matrix  is to be 
determined such that  is strictly 
stable.  This can be achieved by applying an 
existing linear controller design technique to 
the nominal model .   The 
third state equation in Eq. (3.2) can be 
arranged as 
 
  
  
In which , and 

. By definition of , we 
know that  and thus we should have 
that . We define the nominal dynamic 
term  and the total disturbance term   
as 
 

 
  
where we note that  represents model 
uncertainty, and disturbance torque. It is 
desirable that  at all time because this 
implies nominal error dynamics for the 
system, in which the state vector e 
converges asymptotically to the origin by a 
selected stabilizing choice of . If  is 
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using . In practice, we cannot measure 

 directly because the parameters  and 
 are uncertain and  is unknown. 
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However, notice that  when , 
and it is technically possible to estimate .  
This allows us to estimate  indirectly, 
and then try to force that  by using 

. This concept is central to the 
disturbance observer pioneered by Ohnishi 
[17] for speed control of DC motors. It has 
been applied and extended in many 
researches with good results [9]. A distinct 
advantage of this approach is that it 
separates controller design of the nominal 
system from total disturbance rejection. In 
particular, it can compensate quickly for 
sudden changes in loading torque when 
accurate angular acceleration of the rotor is 
available. This paper utilizes the above 
concept of disturbance observer to improve 
total disturbance rejection of existing DC 
motor trajectory control systems. Our 
approach differs from existing ones in that 
our development is all in state space, and i is 
not required for feedback. In addition, all 
parameters are allowed to be time-varying, 
and a sufficient condition for input-to-state 
stability of the resulting control system is 
clearly stated.  In this paper, we propose to 
reduce the magnitude of  by using the 
auxiliary control input: 
 

  (3.3) 

 
in which ,  is the output of 
a Low-Pass Differentiator (LPD) whose 
input is the measured angular velocity 

 of the rotor, and  is a design 
parameter. A large value for  represents 
strong effort of compensation for total 
disturbance.  When the bandwidth of LPD is 
very high, this could cause state oscillation.  
Our investigation reveals that a simple LPD 
could yield satisfactory results with 

. 
Because of the previously imposed 

structure of , the resultant control law 

 is a linear state-feedback law in 
which four feedback signals, namely , 

, and , are used. Out of these four, 

we need to measure only , and  because 
the other two can be readily obtained from 
them. This control can be written in vector-
matrix form as shown: 

  (3.4) 

 
in which , 

, and 

. Our control input u 

is obtained from  and , without using i, 
as desired. However, using  to 
implement the control input actually 
introduces additional dynamic to the 
feedback loop. This dynamic will be 
augmented to the full-order model in Eq. 
(2.3) such that the resulting model could be 
useful for examining stability of the 
resulting control system.   

Our LPD is a differentiator cascaded 
with a low-pass filter. The input of the LPD 
is the angular velocity , and the 
output is . For simplicity, we use a 
first-order low-pass filter and propose the 
following transfer function for this LPD: 

 

  (3.5) 

 
where  is a design parameter, 

 is the Laplace transform of filter 
input , and  is the Laplace 
transform of filter output . The parameter 

 simultaneously affects bandwidth and 
gain of the LPD, performance of 
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resulting control system. Primarily, the 
parameter should be chosen so that the 
bandwidth of the LPD contains frequency of 
the disturbance torque to be rejected. Noting 
that the above transfer function is not 
strictly proper, it is straightforward to show 
that a state-space representation of the LPD 
is: 
  

  
 
where  is the only state variable of the 
LPD. Dynamics of the LPD can be 
augmented to the full-order model in Eq. 
(2.3) to produce the following expanded 
model: 
 
  (3.6) 
 
where 

 

 

 

 
We now rewrite the control law u to 
accommodate the increased dimension of 
the system.  Let us denote the i-th element 
of  by , i = 1, 2,…, 4.  With this, it 
can be shown that  can be 
written as 
    (3.7) 
where 

and 

  

By defining  and 
, error dynamic of the 

expanded system can be written as 
 
  (3.8) 
 
where , 

and  Now, let 
 and , 

where n and  denote nominal values and 
uncertain time-varying functions 
respectively. Using these, the above error 
dynamical model can be written as 
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that is suitable for examining stability:  
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the control system. These include cases in 
which mass or shape of an object driven by 
the motor changes rapidly, making the 
reflective mass moment of inertia J an 
uncertain time-varying function. To handle 
all these cases simultaneously, we view p(t) 
as a bounded perturbation vector entering 
the time-varying system . Then 
we apply an existing robust stability 
theorem to determine if the origin of the 
system is uniformly globally exponentially 
stable when p(t) = 0. When this type of 
stability is confirmed, it can be shown that 
the origin of the perturbed system is input-
to-state stable [18], guaranteeing that all 
trajectories converge to a neighborhood 
about the origin. The extent of this 
neighborhood depends on the magnitude of 
p(t), which is a reasonable outcome. We 
provide the following robust stability 
theorem and a corollary for convenience of 
the readers. 

 
Theorem 1. If a dynamical system can be 
represented by Eq. (3.9) with p(t) = 0, and 
the right-hand side of the equation is 
uniformly globally Lipschitz with  
being Hurwitz, then the equilibrium point at 
the origin is uniformly globally 
exponentially stable when all the real 
eigenvalues of the matrix  
are negative.  The matrix Z is obtained by 
1) Specified Q > 0 to compute P from the 

Lyapunov equation: 
       

2) Compute  and 

 
3) Compute . 
4) Compute 

  
 Where 

 is the set of n 

orthogonal unit (orthonormal) 
eigenvectors of , and 

 is the corresponding set 

of n real eigenvalues of  . 
5) Set all negative elements of  to zero 

to get . 

6) Compute . 

7) Compute . 
 
Proof. See [19]. 
 
Corollary 1. If Theorem 1 is satisfied, then 
trajectories of Eq. (3.9) with  
converge to a neighborhood about the 
origin. The extent of this neighborhood is 
defined by 
   

where V(x) = (1/2) ,  is 
obtained from Theorem 1,  is the set of 
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, and  is a 
bound on p(t).   
 
Proof. See [20]. 
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disturbance rejection simultaneously. 
Combining the two control components, we 
obtain the resultant control input 

 and the gain matrix . Using 
 and uncertainty specifications 

associated with  and , we employ 
Theorem 1 to determine if the resultant 
control input guarantees input-to-state 
stability of the control system. According to 
this development, our controller design 
procedure is shown in the next section. 

 
4. Examples 

In our control system, a brushed DC 
motor is coupled with a multi-stage 
mechanical transmission system, whose 
output shaft is used to rotate an object along 
prescribed trajectories. Our measurement 
indicates that  and 

 With  being the 
rotational angle of the output shaft in 
radians, we have verified that reflective 
values of the parameters at the output shaft 
are and   

 . Due to changes in 
mass and shape of the object mounted on 
the output shaft, the reflective mass moment 
of inertia is an uncertain time-varying 
function.  It appears that the nominal value 
J(t) is , and the 
variation of J(t) is .  The 
25% uncertain time-varying increase of J(t) 
from  translates to 20% of time-varying 
uncertainty in two elements of , namely 

, and : 

    

   

Let the uncertain time-varying functions 
 and  correspond to , and 

. It follows that  

  
The associated matrices  and  belong 

to . All of their elements are zero 
except , and .  The 
control system is subjected to loading torque 

, in which  is the cogging 
torque at the rotor, and  is the loading 
torque at the output shaft. When the object 
is rotated along a normal trajectory, we 
approximate that  
and , where 

 and rad/s. Note 
that  and  depend on rotor angle and 
time, respectively, and that the magnitude of 
cogging torque is as high as 25% of . 
Using the above data, our controller design 
procedure can be conducted as shown in the 
following. 

Without i as a feedback signal, our 
nominal control is obtained by using the 
reduced-order error dynamic modeled by 
Eq. (2.7) with . For this, note 
that the values of , and b are 
given previously, while J is set to , not 
considering uncertainty at this point. The 
well-known LQR is employed to minimize 
the cost function 

 
 

 
where , and R = [1]. This 
yields  

 
The above gain matrix locates the 
eigenvalues of  at , 
and , implying that that 
reduced-order model is strictly stable.  Next, 
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with availability of  and the nominal 
values  and  defined previously, 
selecting  yields the resultant 
control input  in which 

   
and we select the LPD parameter  
to obtain the last element of . The value 
of this parameter is chosen so that the LPD 
bandwidth contains frequency of the 
cogging torque when the magnitude of  is 
greater than 0.2 rad/s. 

Now that the resultant control input is 
already obtained, we examine stability of 
the resulting control system. For this, we 
write the resultant control input as 

 in which  

   

   
The above form of resultant control leads to 
the full-order model of error dynamic shown 
in Eq. (3.9). The five eigenvalues of 

 are  
, and ,  

implying that the full-order nominal model 
is strictly stable. It now remains to show 
that the control system is stable in presence 
of the uncertain time varying mass moment 
of inertia J(t). Given the above upper and 
lower bounds on  and  and 

, it can be shown that the maximum 
eigenvalue of Z in Theorem 1 is 

 Accordingly, the 
resulting control system is input-to-state 
stable by Theorem 1.  This corresponds to 
the following symmetric matrices.   

 

  

 
We now employ numerical simulations 

to investigate performance of the control 
system using the full-order model in Eq. 
(3.6). For this, the reference trajectory of the 
output shaft is , and the 
reflective mass moment of inertia is 
approximated by 
  

 
 
where rad/s. This exact expression 
of J(t) is not required for our controller 
design procedure. In all simulations, the 
initial condition is set to 

. The simulation 
results in Figs. 1-2 are trajectories of output 
shaft rotational angle  for the cases in 
which the auxiliary control is absent and 
present. Figs. 3-4 show trajectories of output 
shaft angular velocity , Fig. 5 shows the 
disturbance torque , and Figs. 6-7  
show the control input u(t) for both cases.  It 
appears in Figs. 1-2 that the two trajectories 
converge to the reference trajectory .  
Tracking error in the case with auxiliary 
control is approximately 40% less than that 
in the case without auxiliary control for 
most of the time. Figs. 3-4 display clearly a 
very undesirable effect of the cogging 
torque, which causes oscillation of the 
angular velocity about its reference 
trajectory. However, the auxiliary control 
can suppress the magnitude of oscillation by 
approximately 40% for most of the time.   
As the frequency of oscillation increases, 
the suppression gets better. We can see from 
Fig. 5 that the magnitudes of disturbance 
torque  in both cases are approximately 
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the same during the course of simulation.  
Notice that the torque comprises cogging 
torque with high frequency and low 
magnitude and loading torque with low 
frequency and high magnitude. 

 

 
Fig. 1. Reference trajectory  (-), Simulated 
Trajectory  with  (.-), and without  (--). 

 

 
Fig. 2. Reference trajectory  (-), Simulated 
Trajectory  with  (.-), and without  (--). 

 

 
Fig. 3. Reference trajectory  (-), Simulated 

Trajectory  with  (.-), and without  (--). 
 

The resultant control inputs with and 
without the auxiliary control are shown in 
Figs. 6-7. We see from these figures that the 
magnitudes of the two signals are about the 
same, except that the control input with 

auxiliary control reacts to the disturbance 
torque much faster than the other control 
input does. This characteristic is very 
beneficial for handling high-frequency 
disturbance torque that constantly occurs. It 
then appears that the auxiliary control can 
reduce both tracking error and output 
oscillation by its superior responding speed. 
It does so without using a large magnitude 
of control input, which is desirable when 
considering cost of implementation. It 
appears in our investigation that the tracking 
error could be made smaller than that shown 
in Figs. 1-2 by using a stronger nominal 
control or a larger . However, we do not 
pursue this because the present result is 
already sufficient to display the benefit of 
our auxiliary control. 

 

 
Fig. 4. Reference trajectory  (-), Simulated 

Trajectory  with  (.-), and without  (--). 
 

 
Fig. 5. Disturbance Torque  with  (.-), and 
without  (--). 
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Fig. 6. Control with  (.-), and without (--). 

  

 
Fig. 7. Control with  (.-), and without (--).  
 
5. Conclusion 

DC motors are usually used as 
driving actuators in trajectory control 
systems where a large magnitude of torque 
is required at economical cost. In some 
situations, the systems are supposed to 
handle external loading torque and uncertain 
time-varying mass moment of inertia 
associated with their operations. When 
implementation cost is of great concern, the 
control systems are to handle cogging 
torque normally found in economical DC 
motors. These torques are primary causes of 
tracking errors and output oscillation, and it 
is particularly important that the control 
systems can reject these undesirable effects 
efficaciously. Also, they must be robustly 
stable when subjected to time-varying 
uncertainty of reflective mass moment of 
inertia in some situations. 

Our strategy for rejecting tracking error 
and output oscillation due to disturbance 
torques is to augment an auxiliary linear 
control to existing linear robust controls.  
Our auxiliary control is motivated by the 
known concept of disturbance observer. 

When the concept is applied to motion 
control of DC motors, it usually appears that 
coil current is used as a feedback signal and 
transfer function is the analytical tool of 
choice. However, our implementation does 
not require coil current as a feedback signal. 
Our development is all conducted in state 
space and allows writing error dynamic of 
the control system in a form that facilitates 
assertion of stability. It is the essence of the 
auxiliary control that an estimation of 
angular acceleration is required in order to 
response quickly to disturbances. This 
signal is obtained as the output of a low-
pass differentiator whose input is the 
available angular velocity. In here, the 
differentiator is cascaded with a first-order 
low-pass filter for simplicity. Stability of the 
resulting control system can be theoretically 
confirmed by using an existing robust 
stability theorem. 

We investigate performance of the 
control systems with and without the 
auxiliary control by means of numerical 
simulations. It appears that the output of the 
control system with our auxiliary control 
converges to the reference trajectory as 
indicated by the provided robust stability 
theorem. The auxiliary control affects speed 
of convergence only slightly. However, it 
can reduce satisfactorily the magnitude of 
tracking error and oscillation of the output 
due to disturbance torque as formulated.  It 
primarily accomplishes these by reacting 
swiftly, not by increasing the magnitude of 
the control signal. This desirable 
characteristic allows its uses in existing 
control systems without need to increase 
capacity of the associated amplifiers.   
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