Page: [259-264]

Science & Technology Asia

Vol.27 No.4 October - December 2022

Original research article

On Ordered Semigroups Containing Covered Bi-Ideals

Wichayaporn Jantanan¹, Natee Raikham¹, Ronnason Chinram ^{2,*}

¹Department of Mathematics, Faculty of Science, Buriram Rajabhat University, Buriram 31000, Thailand ²Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand

> Received 1 April 2022; Received in revised form 4 August 2022 Accepted 17 August 2022; Available online 31 December 2022

ABSTRACT

In this paper, we characterize ordered semigroups containing covered bi-ideals and study some results based on covered bi-ideals. Moreover, in a regular ordered semigroup, we show that, under some conditions, a proper bi-ideal of an ordered semigroup is also a covered bi-ideal.

Keywords: Bi-ideal; Covered bi-ideal; Maximal bi-ideal; Ordered semigroup

1. Introduction and Preliminaries

Ideal theory is the main research in many algebraic structures, for example, rings, semirings, semigroups and ordered semigroups. Given a semigroup S, a proper ideal A of S is called a covered ideal of S if it satisfies $A \subseteq S(S - A)S$ where S - A denote the set of all elements x in S such that $x \notin A$. This notion was introduced and studied by Fabrici in [1, 2]. An ordered semigroup is one of generalizations of semigroups. Later, Changphas and Summaprab discussed the structure of ordered semigroups containing covered ideals in [3] and the structure of ordered semigroups containing covered one-sided ideals

in [4]. A bi-ideal of semigroups is one of generalizations of ideals. These are motivated to research in this paper. In this paper, we introduce the concepts of covered bi-ideals of ordered semigroups. We investigate some results based on covered biideals of ordered semigroups. Moreover, in a regular ordered semigroup, we show that a proper bi-ideal of an ordered semigroup, under some conditions, is also a covered biideal

Now, we include here some basic definitions of ordered semigroups that are necessary for the subsequent results and for more details on ordered semigroups we refer to [2, 5–9].

By an ordered semigroup we mean a partially ordered set (S, \leq) and at the same time a semigroup (S, \cdot) such that for all $a, b, x \in S$,

 $a \le b$ implies $xa \le xb$ and $ax \le bx$.

It is denoted by (S, \cdot, \leq) . Every semigroup (S, \cdot) can be considered an ordered semigroup (S, \cdot, \leq) where $\leq := id_S = \{(x, x) \mid x \in S\}$. Throughout this paper, we will denote the ordered semigroup (S, \cdot, \leq) by S unless otherwise stated.

Let A, B be non-empty subsets of an ordered semigroup S. The set product AB is defined as follows:

$$AB = \{ab \mid a \in A, b \in B\}$$

and we define (A] by:

$$(A] = \{x \in S \mid x \le a \text{ for some } a \in A\}.$$

In particular, if $A = \{a\}$, we write aB for $\{a\}B$, similarly for $B = \{b\}$, and we write (a] for $(\{a\}]$. It was observed in [9] that the following conditions hold:

- $(1) A \subseteq (A];$
- $(2) A \subseteq B \Rightarrow (A] \subseteq (B];$
- $(3) (A](B] \subseteq (AB];$
- $(4) (A] \cup (B] = (A \cup B];$
- (5)((A]] = (A].

Then A is called a subsemigroup of S if $AA \subseteq A$. The concept of bi-ideals in an ordered semigroup has been introduced in [7] as follows: a subsemigroup B of an ordered semigroup S is called a bi-ideal of S if it satisfies the following conditions:

- (1) $BSB \subseteq B$;
- (2) B = (B], that is, for any $x \in B$ and $y \in S$, $y \le x$ implies $y \in B$.

A bi-ideal B of S is called a proper if $B \subset S$. The symbol \subset stands for proper subset of sets. A proper bi-ideal B of S is said to be maximal if for any bi-ideal A of S such that $B \subseteq A \subseteq S$, then B = A or A = S. It is well-known that the intersection of all bi-ideals of S, if it is non-empty, is also a bi-ideal of S. The bi-ideal of S generated by a non-empty set A of S is of the form

$$(A)_B = (A \cup AA \cup ASA).$$

In particular, we write $(\{a\})_B$ as $(a)_B$, and $(a)_B = (a \cup aa \cup aSa]$ which is called the principal bi-ideal [6] of S generated by a.

Finally, in [7, 8], an ordered semigroup S is regular if $a \in (aSa]$ for every $a \in S$, i.e., if for any $a \in S$, $a \le axa$ for some $x \in S$. An element a of an ordered semigroup S is called an idempotent [10] if $a \le a^2$. An ordered semigroup S is called bi-simple [6] if S has no proper bi-ideal.

2. Main Results

In this section, the structure of ordered semigroups containing covered biideals will be discussed.

Definition 2.1. Let *S* be an ordered semigroup. A proper bi-ideal *B* of *S* is called a covered bi-ideal (*CB*-ideal) of *S* if

$$B \subseteq ((S-B)S(S-B)].$$

Example 2.2. Let $S = \{a, b, c, d, e\}$ and the multiplication and the partial order on S are defined by

$$\leq = \{(a, a), (a, b), (a, c), (a, d), (a, e), (b, b), (c, c), (d, d), (e, e)\}.$$

In [8], we have that S is an ordered semigroup. We obtain that the

proper bi-ideals of S are $\{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, e\}, \{a, b, d\}, \{a, b, e\}, \{a, c, d\}$ and $\{a, c, e\}$. Moreover, we can deduce that the CB-ideals of S are $\{a\}, \{a, b\}, \{a, c\}, \{a, d\}$ and $\{a, e\}$.

First, we characterize when a proper bi-ideal of an ordered semigroup is not a *CB*-ideal.

Theorem 2.3. Let S be an ordered semi-group. If S contains two different proper bi-ideals B_1 and B_2 such that $B_1 \cup B_2 = S$, then B_1 and B_2 are not CB-ideals of S.

Proof. Assume that S contains two different proper bi-ideals B_1 and B_2 such that $B_1 \cup B_2 = S$. Since $B_1 \cup B_2 = S$, it implies that $S - B_1 \subseteq B_2$ and $S - B_2 \subseteq B_1$. Suppose that B_1 is a CB-ideal of S. Then

$$B_1 \subseteq ((S - B_1)S(S - B_1)]$$

$$\subseteq (B_2SB_2]$$

$$\subseteq (B_2] = B_2.$$

Since $B_1 \cup B_2 = S$, it follows that $S = B_2$, which is a contradiction. Similarly, if B_2 is a *CB*-ideal of *S*, then

$$B_2 \subseteq ((S - B_2)S(S - B_2)]$$

$$\subseteq (B_1SB_1]$$

$$\subseteq (B_1] = B_1.$$

Thus, $S = B_1$, which is a contradiction. Hence, the assertion holds.

Corollary 2.4. If an ordered semigroup S contains two different maximal proper biideals such that union of two different maximal bi-ideals is a bi-ideal, then maximal biideals are not CB-ideals.

Proof. Assume that S contains two different maximal proper bi-ideals B_1 and B_2 such that $B_1 \cup B_2$ is a bi-ideal of S. Then $B_1 \subset B_1 \cup B_2$. Since B_1 is a maximal proper

bi-ideal of S, we obtain $B_1 \cup B_2 = S$. Hence, by Theorem 2.3, neither B_1 nor B_2 is a CB-ideal of S.

Theorem 2.5. Let B_1 be a CB-ideal of an ordered semigroup S and B_2 be a bi-ideal of S. If $B_1 \cap B_2$ is a non-empty, then $B_1 \cap B_2$ is a CB-ideal of S.

Proof. Let B_1 be a CB-ideal of an ordered semigroup S and B_2 be a bi-ideal of S. Suppose that $B_1 \cap B_2 \neq \emptyset$. Clearly, $B_1 \cap B_2$ is a bi-ideal of S. Since B_1 is a CB-ideal of S, we have $B_1 \subseteq ((S - B_1)S(S - B_1)]$ and $B_1 \cap B_2$ is a proper bi-ideal of S. Hence,

$$B_1 \cap B_2 \subseteq B_1 \subseteq ((S - B_1)S(S - B_1)]$$

 $\subseteq ((S - (B_1 \cap B_2))S(S - (B_1 \cap B_2))].$

This implies that $B_1 \cap B_2$ is a *CB*-ideal of *S*. \square

The following corollary follows directly from Theorem 2.5.

Corollary 2.6. If B_1 and B_2 are CB-ideals of an ordered semigroup S such that $B_1 \cap B_2$ is a non-empty, then $B_1 \cap B_2$ is a CB-ideal of S.

Theorem 2.7. Let S be an ordered semigroup. If S is not bi-simple such that there are not any two proper bi-ideals in which their intersection is empty, then S contains a CB-ideal.

Proof. Assume that S is not bi-simple such that there are not any two proper bi-ideals in which their intersection is empty. Then S contains a proper bi-ideal B. Now, we show that ((S-B)S(S-B)] is a bi-ideal of S. Let $B_1 = ((S-B)S(S-B)]$. Consider

$$B_{1}B_{1}$$
= $((S - B)S(S - B)]((S - B)S(S - B)]$
 $\subseteq ((S - B)(S(S - B))((S - B)S)(S - B)]$
 $\subseteq ((S - B)SS(S - B)]$
 $\subseteq ((S - B)S(S - B)] = B_{1}.$

Thus, $B_1B_1 \subseteq B_1$, and so B_1 is a subsemigroup of S. And, we consider

$$B_{1}SB_{1}$$
= $((S - B)S(S - B)]S((S - B)S(S - B)]$
 $\subseteq ((S - B)S](S](S(S - B)]$
 $\subseteq ((S - B)SS](S(S - B)]$
 $\subseteq ((S - B)SS(S - B)]$
 $\subseteq ((S - B)S(S - B)] = B_{1}.$

So, we obtain that $B_1SB_1 \subseteq B_1$. Since $B_1 = ((S - B)S(S - B)]$, it implies that

$$(B_1] = (((S - B)S(S - B))]$$

= ((S - B)S(S - B)] = B₁.

Hence, B_1 is a bi-ideal of S. By assumption, $B \cap B_1 \neq \emptyset$. Let $B' = B \cap B_1$. Then B' is a proper bi-ideal of S. Since $B' \subseteq B$, we have $S - B \subseteq S - B'$. Since $B' \subseteq B_1$, it implies that

$$B' \subseteq B_1 = ((S - B)S(S - B)]$$

$$\subseteq ((S - B')S(S - B')].$$

This shows that B' is a CB-ideal of S. \square

The following theorem gives necessary and sufficient conditions for every proper bi-ideal of a regular ordered semigroup is a *CB*-ideal.

Theorem 2.8. Let S be a regular ordered semigroup. If for any proper bi-ideal B of S such that for any $a \in B$, $(a)_B \subseteq (b)_B$ for some $b \in S - B$, then B is a CB-ideal of S.

Proof. Assume that B is a proper bi-ideal of S such that $a \in B$, $(a)_B \subseteq (b)_B$ for some $b \in S - B$. Since S is regular, there exists $x \in S$ such that $b \leq bxb$. Since $b \in S - B$, we obtain $b \leq bxb \in (S - B)S(S - B)$. It implies that $b \in ((S - B)S(S - B)]$. By the proof of Theorem 2.7, ((S - B)S(S - B)] is a bi-ideal of S. So, we have

$$bb \in ((S-B)S(S-B)]((S-B)S(S-B)]$$

$$\subseteq ((S-B)S(S-B)]$$

and

$$bSb$$

$$\subseteq ((S-B)S(S-B)]S((S-B)S(S-B)]$$

$$\subseteq ((S-B)S(S-B)].$$

Thus,

$$(b)_B = (b \cup bb \cup bSb]$$

$$= (b] \cup (bb] \cup (bSb]$$

$$\subseteq (((S - B)S(S - B)]]$$

$$= ((S - B)S(S - B)].$$

Hence,

$$a \in (a)_B \subseteq (b)_B \subseteq ((S-B)S(S-B)].$$

This shows that $B \subseteq ((S - B)S(S - B)]$. Therefore, B is a CB-ideal of S. \square

Example 2.9. Let $S = \{a, b, c, d, f, 1\}$ and the multiplication and the partial order of S are defined by

$$\leq = \{(a, a), (a, b), (a, c), (a, d), (a, f), (b, b), (c, c), (d, d), (f, f), (1, 1)\}.$$

In [11], we have that S is an ordered semigroup. Clearly, $x \le xxx$ where $x \in \{a, b, c, d, 1\}$, and we have $f \le fdf = f$. Thus, S is a regular ordered semigroup. We can obtain that the proper bi-ideals of S are $B_1 = \{a\}, B_2 = \{a, b\}, B_3 = \{a, c\}, B_4 = \{a, d\}, B_5 = \{a, f\}, B_6 = \{a, b, d\}, B_7 = \{a, b, f\}, B_8 = \{a, c, d\}, B_9 = \{a, c, f\}$ and $B_{10} = \{a, b, c, d, f\}$. One may easily verify that for every principal bi-ideal $(x)_B \subseteq B_i$ for all $x \in B_i$ and $i = \{a, b, c, d, f\}$ $1, 2, \ldots, 10$, and we have $1 \in S - B_i$ where $i = 1, 2, \ldots, 10$ such that $(x)_B \subseteq (1)_B$. By Theorem 2.8, B_i is a CB-ideal of S for all $i = 1, 2, \ldots, 10$.

Theorem 2.10. Let S be a regular ordered semigroup. If B is a bi-ideal of S such that for any element of B is an idempotent, then any CB-ideal B_1 of B is also a CB-ideal of S.

Proof. Assume that B is a bi-ideal of S such that for any element of B is an idempotent. Now, we will show that B is a regular subsemigroup of S. Obviously, B is a subsemigroup of S. Let $a \in B \subseteq S$. By assumption, we have $a \le a^2$. Since S is a regular, then there exists $b \in S$ such that

$$a \le aba \le a^2ba^2 = a(aba)a$$

 $\in a(BSB)a$
 $\subseteq aBa$.

Thus, $a \in (aBa]$. This implies that B is a regular subsemigroup of S. Next, let B_1 be a CB-ideal of B. We claim that B_1 is a bi-ideal of S. Obviously, B_1 is a subsemigroup of S. Let $b_1, b_2 \in B_1 \subseteq B$ and $s \in S$. By assumption, we have $b_1 \leq b_1^2$ and $b_2 \leq b_2^2$. Also, $b_1sb_2 \in B_1SB_1 \subseteq BSB \subseteq B$. Suppose that $b' = b_1sb_2 \in B_1SB_1 \subseteq B$. Since B is a regular subsemigroup of S, then there exists $b_3 \in B$ such that

$$b' \leq b'b_3b' = (b_1sb_2)b_3(b_1sb_2)$$

$$\leq (b_1^2sb_2^2)b_3(b_1^2sb_2^2)$$

$$\in (B_1^2SB_1^2)B(B_1^2SB_1^2)$$

$$\subseteq B_1^2SBSB_1^2$$

$$\subseteq B_1^2SB_1B_1$$

$$\subseteq B_1(BSB)B_1$$

$$\subseteq B_1BB_1 \subseteq B_1.$$

So, we obtain $b' \in (B_1] = B_1$. Thus, $B_1SB_1 \subseteq B_1$. Suppose that $x \in B_1 \subseteq B$

and $y \in S$ such that $y \in x$. Since B is a bi-ideal of S, it implies that $y \in (B] = B$. Since $y \in B$, $y \in x$ and B_1 is a bi-ideal of B, it follows that $y \in B_1$. Hence, B_1 is a bi-ideal of S. Since B_1 is a CB-ideal of B, we have $B_1 \subseteq ((B - B_1)B(B - B_1)]$ and $B_1 \subset B \subseteq S$. Thus, $\emptyset \neq B - B_1 \subseteq S - B_1$, and so

$$B_1 \subseteq ((B - B_1)B(B - B_1)]$$

 $\subseteq ((S - B_1)S(S - B_1)].$

This shows that B_1 is a CB-ideal of S. \square

Finally, we give the example description for any *CB*-ideal of bi-ideal is also a *CB*-ideal of an ordered semigroup.

Example 2.11. Let $S = \{a, b, c, d, e\}$ and the multiplication and the partial order on S are defined by

$$\leq = \{(a, a), (a, b), (b, b), (c, a), (c, b), (c, c), (d, a), (d, b), (d, d), (e, e)\}.$$

In [8], we have that S is an ordered semigroup. One can check that S is a regular ordered semigroup. We have $B = \{a, b, c, d\}$ is a proper bi-ideal of S and for every element of B is an idempotent. Moreover, we have $B_1 = \{a, c, d\}$ is a proper bi-ideal of B. One can also check that B_1 is a CB-ideal of both B and S.

3. Conclusion

From this paper, the results of covered bi-ideals in ordered semigroups are proved. In Theorem 2.8, we give the condition for a proper bi-ideal of an ordered

semigroup is a covered bi-ideal. Moreover, we show the remarkable results of covered bi-ideals of an ordered semigroup in Theorems 2.3, 2.5, 2.7 and 2.10. In the future work, we can extend these results to algebraic hyperstructures, for example semihypergroups, ordered semihypergroups, etc.

References

- [1] Fabrici, I. Semigroups containing covered one-sided ideals. Math. Slovaca. 1981; 31: 225-31.
- [2] Fabrici, I. Semigroups containing covered two-sided ideals. Math. Slovaca. 1984; 34: 355-63.
- [3] Changphas, T. and Summaprab, P. On ordered semigroups containing covered ideals. Comm. Algebra. 2016; 44: 4104-13.
- [4] Changphas, T. and Summaprab, P. On ordered semigroups containing covered one-sided ideals. Quasigroups Related Syst. 2017; 25: 201-10.

- [5] Gu, Z. On bi-ideals of ordered semigroups. Quasigroups Related Syst. 2018; 26: 149-54.
- [6] Hansda, K. Minimal bi-ideals in regular and completely regular ordered semigroups. arXiv:1701.07192v1.
- [7] Kehayopulu, N. On completely regular poe-semigroups. Math. Japonica. 1992; 37: 123-30.
- [8] Kehayopulu, N. On regular, intra-regular ordered semigroups. Pure Math. Appl. 1993; 4: 447-61.
- [9] Sanborisoot, J. and Changphas, T. Ordered semigroups in which the radical of every quasi-ideal is a subsemigroup. Int. J. Math. Comput. Sci. 2021; 16: 1385-96.
- [10] Bhuniya, A.K. and Hansda, K. Complete semilattice of ordered semigroups. arXiv:1701.01282v1.
- [11] Wu, M.F. and Xie, X.Y. On *C*-ideals of ordered semigroups. J. Wuyi University (in Chinese). 1995; 9: 43-6.