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ABSTRACT
Turkey reported the first case of COVID-19 on 11March 2020 since the outbreak of the

deadly coronavirus pandemic. COVID-19 spread rapidly in Turkey, where about a total of
3,208,173 cases of infected persons were registered by 29 March 2021 with 2,957,093 cases
of recovered persons and 31,076 reported deaths. A new mathematical COVID-19 model
containing six classes is presented. Also, the positive invariant region of the solutions, basic
reproductive number, disease-free equilibrium, and its stability are highlighted. Afterward,
the disease-free equilibrium is locally asymptotically stable when R0 < 1. Moreover, the
proposed model was further generalized to the fractional-order derivative in the Atangana-
Baleanu (ABC) context for a more successful realization. Besides, the existence and unique-
ness of solutions via techniques of Schaefer’s and Banach fixed point theorems were estab-
lished. Based on the publicly recorded number of infected people from 1-31 July 2020 in
Turkey and least-squares curve fitting techniques with fminsearch function the fractional-
order model has been validated and can better fit the data compared with the integer-order
model. Also, using the Atangana-Toufik scheme, numerical solutions, as well as simulations,
are presented for different values of fractional order.

Keywords: ABC-fractional operator; Coronavirus; Existence and uniqueness; Mathemati-
cal Model
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1. Introduction
Since the outbreak of the deadly

COVID-19 inWuhan, China, coronaviruses
(CoVs) have become a major class of RNA
viruses that induces respiratory, gastroin-
testinal, hepatic, and neurological diseases
in humans and can also infect animals [1].
They were first identified in human embry-
onic tracheal organ cultures acquired from
the respiratory tract of an adult with a com-
mon cold, in the mid-1960s [2]. In Decem-
ber 2019, a collection of local health author-
ities recorded batches of patients with the
unclear cause of pneumonia that was related
to the seafood market in Wuhan Province
of Hubei, China [3]. The new pathogen, a
novel coronavirus (SARS-CoV-2) was later
identified using a mechanism of surveil-
lance for ”pneumonia of unknown etiology”
[4].

There are currently no established
antiviral medications or vaccinations, mak-
ing it a critical threat to both persons and the
economy. A thorough understanding of the
nature of the pandemic is crucial to limiting
infection. Numerous researchers have de-
velopedmathematicalmodels for the spread
of SARS-CoV-2 to gain insight into the dis-
ease’s transmission dynamics, which may
lead to its eradication. The majority of
the models are based on classical differen-
tial equations. However, fractional-order
differential equations outperform standard
mathematical modeling [5]. It has achieved
significancemainly because its applications
can be found in various fields of science, en-
gineering, finance, and epidemiology; see
for example the recent results [6–9] and ref-
erences cited therein.

The fractional-order differential
equations (FODEs) models appear to be
more reliable with real-world problems
than the integer-order models. The frac-
tional derivative concept was first proposed

by Riemann-Liouville. After that Caputo-
Fabrizio in [10] proposed a new fractional
derivative using the exponential kernel.
This derivative has a few problems related
to the locality of the kernel. The newly
updated version of a fractional derivative
was proposed by Atangana and Baleanu
(AB) in [11] with the support of the Mittag-
Leffler function (MLF) as nonsingular
kernel and nonlocal. Several experiments
on mathematical models via functional
derivative were presented see [12,13]. Mo-
hammed et al. [14] have studied fourteen
nonlinear FDEs applying the fractional
Adams Bashforth (AB) method and later
introduced the fractional nonlocal operator
Atangana-Baleanu (AB) to understand
more easily. The findings obtained by
Mohammed et al. [14] play an important
role in the formulation of the theory of
fractional analytical dynamic for the on-
going pandemic due to COVID-19, which
has seriously affected the whole world.
Zizhen in [15] presented the approach
of fractional differentiation to capture
different memories including power law,
decay and crossover behaviors. COVID-19
models using fractional derivatives were
also considered in [16–19] and references
therein. Figs. 1-5 shows the total number
of cases, daily new cases, active cases, total
deaths, and daily deaths due to COVID-19
as of 29 March, 2021 in Turkey [20]. In

Fig. 1. Total COVID-19 Cases in Turkey as of
29 March, 2021.

this paper, we developed a mathematical
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Fig. 2. Daily New Cases in Turkey as of 29
March, 2021.

Fig. 3. Active Cases in Turkey as of 29 March,
2021.

Fig. 4. Total Coronavirus Deaths in Turkey as
of 29 March, 2021.

Fig. 5. Daily New Deaths in Turkey as of 29
March, 2021.

model including quarantine and asymp-
tomatic compartment and later generalized
to the fractional-order derivative in the
Atangana-Baleanu context (ABC) and our
findings lead to a deeper understanding
of the COCID-19 pandemic transmission
dynamics and provide valuable advice for
the future design of control strategies.

The paper is structured as follows.

We formulate the model and study its sta-
bility analysis in Section 2. In Section 3,
we transform the proposed model into the
fractional-order differential equations in the
setting of ABC-fractional operators and es-
tablish its existence and uniqueness of so-
lutions using fixed point theorems. In Sec-
tion 4, based on the real data of Turkey, we
validate the proposed model and obtain the
best parameters. Besides, using the Toefik-
Atangana numerical scheme, we present the
numerical results. In Section 5, we con-
clude the paper and present some discus-
sion.

2. Model Formulation
Before building the model, let us pre-

sume that the population of humans de-
noted by 𝑁 (𝑡) may be divided into six sub-
classes: individuals who are susceptible
𝑆(𝑡), described as the group of humans,
whomight be infected by COVID-19. They
can either be infected through direct, in-
direct (through infected items or surfaces)
or close contact with infected people via
mouth and nose secretions. Exposed indi-
viduals 𝐸 (𝑡), asymptotically infected indi-
viduals 𝐴(𝑡), described as the group of hu-
mans who are already infected by COVID-
19, while still at a non-harmful level. Hu-
mans may also perform everyday tasks like
susceptible humans in this group. Trans-
mission between asymptomatically infected
individuals with health could take place in
the form of 𝜂𝜉𝑠𝑎𝑆𝐴, in which 𝜂 is the in-
fection probability and 𝜂 ∈ [0, 1]. Quar-
antined individuals 𝑄(𝑡), symptomatic in-
fectious individuals (confirmed with infec-
tious capacity) 𝐼 (𝑡), and recovered cases
(immune) 𝑅(𝑡). Thus, the total population
𝑁 (𝑡) = 𝑆(𝑡)+𝐸 (𝑡)+𝐴(𝑡)+𝑄(𝑡)+𝐼 (𝑡)+𝑅(𝑡).

The transmission mechanism involv-
ing the six compartments above is seen in
the diagram below. The recruitment rate
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only exists in susceptible humans 𝑆(𝑡) with
a constant rate 𝛬. Each compartment drops
due to the normal death rate 𝜇 except for the
infected human compartment 𝐼 (𝑡) where
mortality caused by COVID-19 has a rate
of 𝛿. Susceptible humans might be infected
by direct contact with infected humans with
the probability of infection 𝜉𝑠𝑖 if they are
infected by 𝐼 (𝑡) compartment, 𝜉𝑠𝑎 and 𝜉𝑠𝑒
if they are infected by 𝐴(𝑡) and 𝐸 (𝑡) com-
partments respectively. The incubation pe-
riod was defined as 𝜏1. Quarantined per-
sons can be moved to the class of infected
individuals with symptoms that develop at
the rate of 𝛼2 and proportion of 𝜎3. The
parameter 𝑟1, 𝑟2, 𝑟3 indicates the recovery
rate of infected individuals without symp-
toms (asymptomatic), quarantined individ-
uals, and infected individuals with symp-
toms (symptomatic) to be shifted to recov-
ered individuals class 𝑅.

Fig. 6, shows the illustrative trans-
mission pattern of the COVID-19 proposed
model while the meaning of each state vari-
able, as well as the parameters associated
with the proposed model, are given in Ta-
bles 1-2. Based on Fig. 6, we generate the
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Fig. 6. Transmission of COVID-19 diagram.

following system of nonlinear differential
equations given by:
𝑑𝑆

𝑑𝑡
= 𝛬 − 𝜂𝜅𝑆 − 𝜇𝑆,

𝑑𝐸

𝑑𝑡
= 𝜂𝜅𝑆 − (𝜎1𝜏2 + 𝜎2𝛼1 + 𝜇 + 𝜏1 − 𝜎1𝜏1 − 𝜎2𝜏1)𝐸,

𝑑𝐴

𝑑𝑡
= 𝜎1𝜏2𝐸 − (𝑟1 + 𝜇)𝐴,

𝑑𝑄

𝑑𝑡
= 𝜎2𝛼1𝐸 − (𝜎3𝛼2 + 𝑟2 − 𝑟2𝜎3 + 𝜇)𝑄,

𝑑𝐼

𝑑𝑡
= (1 − 𝜎1 − 𝜎2)𝜏1𝐸 + 𝜎3𝛼2𝑄 − (𝑟3 + 𝜇 + 𝛿)𝐼,

𝑑𝑅

𝑑𝑡
= 𝑟1𝐴 + (1 − 𝜎3)𝑟2𝑄 + 𝑟3𝐼 − 𝜇𝑅,

(2.1)

where 𝜅 = 𝜉𝑠𝑒𝐸+𝜉𝑠𝑖 𝐼+𝜉𝑠𝑎𝐴
𝑁 and the initial condition:

𝑆(0) = 𝑆0 ≥ 0, 𝐸 (0) = 𝐸0 ≥ 0, 𝐴(0) = 𝐴0 ≥ 0,

𝑄(0) = 𝑄0 ≥ 0, 𝐼 (0) = 𝐼0 ≥ 0, 𝑅(0) = 𝑅0 ≥ 0.

(2.2)

Table 1. Description of the state variables.

Variables Description
𝑆 Susceptible individuals
𝐸 Exposed individuals
𝐴 Asymptomatic infected

individuals
𝑄 Quarantine individuals
𝐼 Symptomatic infected in-

dividuals
𝑅 Recovery individuals

Table 2. Description of the parameters.

Parameters Description
𝛬 Recruitment of suscepti-

ble individuals
𝜇 Natural mortality rate
𝜂 Rate of transmission dur-

ing contact
𝜉𝑠𝑒 Contact rate between sus-

ceptible and exposed indi-
viduals

𝜉𝑠𝑎 Contact rate between
susceptible and asymp-
tomatic infections indi-
viduals.

𝜉𝑠𝑖 Contact rate between sus-
ceptible and symptomatic
infectious individuals
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𝜎1 Proportion of asymptoti-
cally infected individuals

𝜎2 Proportion of quarantined
exposed individuals

𝛼1 Movement rate of ex-
posed individuals to
quarantined individuals

𝜏1 Rate of transmission
after incubation period
and transferred to symp-
tomatic infected class

𝜏2 Rate of transmission after
incubation period and
transferred to asymp-
tomatic infected class

𝛼2 Movement rate of quaran-
tined individual to symp-
tomatic infected individu-
als

𝜎3 Proportion of quarantined
symptomatic infected in-
dividuals

𝑟1 Recovery rate of asymp-
totically infected individ-
uals and transferred to R
class

𝑟2 Recovery rate of persons
in quarantine and moved
to the R class

𝑟3 Recovery rate of symp-
tomatic infected individ-
uals and transferred to R
class

𝛿 Mortality rate due to
COVID-19

In general, population dynamics are obtained by sum-
ming up the five equations in the model (2.1) result-
ing in:

𝑑𝑁

𝑑𝑡
= 𝛬 − 𝜇𝑁 − 𝛿𝐼.

The positive area of invariants that matches themodel
(2.1) is given by

Ω =

{
(𝑆 (𝑡) , 𝐸 (𝑡) , 𝐴(𝑡) , 𝑄 (𝑡) , 𝐼 (𝑡) , 𝑅 (𝑡)) ∈ R6+ : 𝑁 (𝑡) ≤ 𝛬

𝜇

}
.

2.1 Stability analysis
The present section explores the stability for

the model (2.1) by considering first the disease free
equilibrium and the basic reproduction number de-
noted by R0. The equilibrium point is acquired at

𝑑𝑆

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝑑𝐴

𝑑𝑡
=

𝑑𝑄

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0. (2.3)

Thus, from system (2.1), the disease-free equilib-
rium (DFE) point represented by 𝐸𝑑 𝑓 𝑒, is given by

𝐸𝑑 𝑓 𝑒 = (𝑆0, 0, 0, 0, 0, 0) =
(
𝛬

𝜇
, 0, 0, 0, 0, 0

)
. (2.4)

The basic reproduction number denoted byR0 is the
predicted infection rate value per time unit. The in-
fection is caused by an infectious person in a suscep-
tible population. Hence, R0 is computed using the
next generation matrix technique proposed in [21].
In view of system (2.1), the equation for R0 is given
by

R0 = 𝑜(FV−1) = R1 +R2, (2.5)
where

R1 =
𝜂𝜉𝑠𝑒 (𝑟1 + 𝜇) + 𝜂𝜉𝑠𝑎𝜎1𝜏2

(𝑟1 + 𝜇) (𝜇 + 𝜏1 + 𝜎1𝜏2 + 𝜎2𝛼1 − 𝜎1𝜏1 − 𝜎2𝜏1)
,

R2 =
𝜉𝑠𝑖𝜂𝜎3𝛼2𝛼1𝜎2 + 𝑞1 𝜉𝑠𝑖𝜂 (𝜏1 − 𝜎2𝜏1 − 𝜎1𝜏1)

𝑞2 (𝜇 + 𝛿 + 𝑟3) (𝜇 + 𝑟2 − 𝑟2𝜎3 + 𝜎3𝛼2)
,

and 𝑞1 = 𝜇+𝑟2−𝑟2𝜎3 +𝜎3𝛼2, 𝑞2 = 𝜇+𝜏1 +𝜎1𝜏2 +
𝛼1𝜎2 − 𝜎1𝜏1 − 𝜎2𝜏1.

Theorem 2.1. The disease-free equilibrium 𝐸𝑑 𝑓 𝑒,
of the system (2.1) is locally asymptotically stable if
R0 < 1.

3. Fractional-Order Coronavirus
Model

The extension of integer order differential
equations is fractional-order differential equations.
At the end of the sixteenth century (1695), the con-
cept of fractional calculus was introduced. Fractional
derivatives are exceptional techniques for describing
the general properties of various materials and pro-
cesses due to nonlocal and memory behavior. Fur-
thermore, fractional derivatives were considered to
be effective and more reliable than classical deriva-
tives in modeling various mechanical and electrical
properties of real materials. There are different types
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of fractional operators that are proposed by Riemann-
Liouville, Caputo, Hadamard, Caputo-Fabrizio and
so on. Recently, Atangana-Baleanu [22] introduced
an interesting fractional operator called Atangana-
Baleanu Caputo fractional operator (ABC). The op-
erator is used as a global operator for the model-
ing of various processes and physical systems, which
emerged in subjects like physics, dynamics, fluid me-
chanics, control theory, chemistry, mathematical bi-
ology, etc., the reader is recommended to [23, 24]. It
is discovered that the operator can more effectively
model real-world problems than integer-order cases.
This operator has piqued the interest of many math-
ematicians and researchers due to its relevance and
wide variety of applications.

Motivated by the aforementioned advan-
tages, we generalize nonlinear differential equations
(2.1) to nonlinear fractional differential equations in
the form of the ABC fractional derivative. Further-
more, we have some fundamental facts and concepts.
Based on these facts, we elaborate on our proposed
fractional model.

Definition 3.1 ([22]). The ABC-fractional integral
of order 𝜐 with the lower limit 0+ for a function 𝑔 is
defined by

𝐴𝐵𝐶I𝜐
0+𝑔 (𝑡) =

1 − 𝜐

N(𝜐) +
𝜐

N(𝜐)
1

Γ(𝜐)

∫ 𝑡

0
(𝑡−𝑥)𝜐−1𝑔 (𝑥)𝑑𝑥,

where 𝑡, 𝜐 > 0 and Γ(·) denotes the gamma func-
tion.

Definition 3.2 ([22]). TheABC-fractional derivative
of order 0 < 𝜐 ≤ 1 with the lower limit 0+ for a
function 𝑔 is defined by

𝐴𝐵𝐶D𝜐
0+𝑔 (𝑡) =

N(𝜐)
(1 − 𝜐)

∫ 𝑡

0
E𝜐

( −𝜐
1 − 𝜐

(𝑡 − 𝑥)𝜐
)
𝑔′ (𝑥)𝑑𝑥,

provided the function 𝑔 differentiable on [0, +∞),
where Γ(·) denotes the gamma function. Here the
normalization function N(𝜐) is given by N(𝜐) = 1 −
𝜐 + 𝜐

N(𝜐) and N(0) = N(1) = 1, where

E𝜐 (𝑥) =
∞∑
𝑟=0

𝑥𝑟

Γ(1 + 𝑟𝜐) , 𝑥, 𝜐 ∈ C, R(𝜐) > 0.

Remark 3.3. Note that, when the fractional-order
𝜐 = 1, Definitions 3.1 and 3.2 reduce to the classical
Definitions of integral and differential.

So, the generalized model (2.1) in the setting

of ABC-fractional derivative is of the form
𝐴𝐵𝐶D𝜐

0+𝑆(𝑡) = H1 (𝑡, 𝑆(𝑡)),
𝐴𝐵𝐶D𝜐

0+𝐸 (𝑡) = H2 (𝑡, 𝐸 (𝑡)),
𝐴𝐵𝐶D𝜐

0+ 𝐴(𝑡) = H3 (𝑡, 𝐴(𝑡)),
𝐴𝐵𝐶D𝜐

0+𝑄(𝑡) = H4 (𝑡, 𝑄(𝑡)),
𝐴𝐵𝐶D𝜐

0+ 𝐼 (𝑡) = H5 (𝑡, 𝐼 (𝑡)),
𝐴𝐵𝐶D𝜐

0+𝑅(𝑡) = H6 (𝑡, 𝑅(𝑡)),

(3.1)

where the kernels are given by

H1 (𝑡, 𝑆(𝑡)) = 𝛬 − 𝜂𝜅𝑆 − 𝜇𝑆,

H2 (𝑡, 𝐸 (𝑡)) = 𝜂𝜅𝑆 − (𝜎1𝜏2 + 𝜎2𝛼1 + 𝜇 + 𝜏1

− 𝜎1𝜏1 − 𝜎2𝜏1)𝐸,
H3 (𝑡, 𝐴(𝑡)) = 𝜎1𝜏2𝐸 − (𝑟1 + 𝜇)𝐴,
H4 (𝑡, 𝑄(𝑡)) = 𝜎2𝛼1𝐸 − (𝜎3𝛼2 + 𝑟2 − 𝑟2𝜎3 + 𝜇)𝑄,

H5 (𝑡, 𝐼 (𝑡)) = (1 − 𝜎1 − 𝜎2)𝜏1𝐸 + 𝜎3𝛼2𝑄

− (𝑟3 + 𝜇 + 𝛿)𝐼,
H6 (𝑡, 𝑅(𝑡)) = 𝑟1𝐴 + (1 − 𝜎3)𝑟2𝑄 + 𝑟3𝐼 − 𝜇𝑅,

(3.2)
where 𝐴𝐵𝐶D𝜐

0+ (·) is the ABC-fractional derivative
of order (0 < 𝜐 ≤ 1) with nonnegative variables and
subjected to suitable initial conditions.

Applying the fractional operator 𝐴𝐵𝐶I𝜐
0+ , to

both sides of system (3.1), we have a system of an
integral equation given by

𝑆(𝑡) − 𝑆(0) = 𝐴𝐵𝐶I𝜐
0+H1 (𝑡, 𝑆(𝑡)),

𝐸 (𝑡) − 𝐸 (0) = 𝐴𝐵𝐶I𝜐
0+H2 (𝑡, 𝐸 (𝑡)),

𝐴(𝑡) − 𝐴(0) = 𝐴𝐵𝐶I𝜐
0+H3 (𝑡, 𝐴(𝑡)),

𝑄(𝑡) −𝑄(0) = 𝐴𝐵𝐶I𝜐
0+H4 (𝑡, 𝑄(𝑡)),

𝐼 (𝑡) − 𝐼 (0) = 𝐴𝐵𝐶I𝜐
0+H5 (𝑡, 𝐼 (𝑡)),

𝑅(𝑡) − 𝑅(0) = 𝐴𝐵𝐶I𝜐
0+H6 (𝑡, 𝑅(𝑡)),

(3.3)

upon simplification yields

𝑆(𝑡) =𝑆(0) +Ψ(𝜐)H1 (𝑡, 𝑆(𝑡))

+Φ(𝜐)
∫ 𝑡

0
(𝑡 − 𝑥)𝜐−1H1 (𝑥, 𝑆(𝑥))𝑑𝑥,

𝐸 (𝑡) =𝐸 (0) +Ψ(𝜐)H2 (𝑡, 𝐸 (𝑡))

+Φ(𝜐)
∫ 𝑡

0
(𝑡 − 𝑥)𝜐−1H2 (𝑥, 𝐸 (𝑥))𝑑𝑥,

𝐴(𝑡) =𝐴(0) +Ψ(𝜐)H3 (𝑡, 𝐴(𝑡))

+Φ(𝜐)
∫ 𝑡

0
(𝑡 − 𝑥)𝜐−1H3 (𝑥, 𝐴(𝑥))𝑑𝑥,
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𝑄(𝑡) =𝑄(0) +Ψ(𝜐)H4 (𝑡, 𝑄(𝑡))

+Φ(𝜐)
∫ 𝑡

0
(𝑡 − 𝑥)𝜐−1H4 (𝑥, 𝑄(𝑥))𝑑𝑥,

𝐼 (𝑡) =𝐼 (0) +Ψ(𝜐)H5 (𝑡, 𝐼 (𝑡))

+Φ(𝜐)
∫ 𝑡

0
(𝑡 − 𝑥)𝜐−1H5 (𝑥, 𝐼 (𝑥))𝑑𝑥,

𝑅(𝑡) =𝑅(0) +Ψ(𝜐)H6 (𝑡, 𝑅(𝑡))

+Φ(𝜐)
∫ 𝑡

0
(𝑡 − 𝑥)𝜐−1H6 (𝑥, 𝑅(𝑥))𝑑𝑥,

(3.4)
where

Ψ(𝜐) = 1 − 𝜐

N(𝜐) , Φ(𝜐) = 𝜐

N(𝜐)
1

Γ(𝜐) .

3.1 Existence and uniqueness results
Fixed point theorems play a vital role in es-

tablishing the existence and uniqueness of solutions
of the nonlinear fractional differential equation. In
this subsection, utilizing the techniques of Schaefer’s
and Banach’s fixed point theorem, we establish the
existence and uniqueness of solutions of the frac-
tional model (3.1). Re-writing the model (3.1) as:{

𝐴𝐵𝐶D𝜐Θ(𝑡) = H(𝑡,Θ(𝑡)),
Θ(0) = Θ0, 0 < 𝑡 < 𝑇 < ∞.

(3.5)

The vector Θ(𝑢) = (𝑆, 𝐸, 𝐴, 𝑄, 𝐼, 𝑅)𝑇 and H(·) in
(3.5) represent the state variables and a continuous
vector function respectively defined as follows:

H = (H1,H2,H3,H4,H5,H6)𝑇 , (3.6)

with initial conditions

Θ0 (𝑡) = (𝑆(0), 𝐸 (0), 𝐴(0), 𝑄(0), 𝐼 (0), 𝑅(0)).
Corresponding to (3.5), the integral equation is given
by

Θ(𝑡) =Θ0 +Ψ(𝜐)H (𝑡,Θ(𝑡))

+Φ(𝜐)
∫ 𝑡

0
H(𝑥,Θ(𝑥)) (𝑡 − 𝑥)𝜐−1𝑑𝑥.

(3.7)

3.1.1 Existence results
Consider A = [0, 𝑇], M = C(A,R6) and

the Picard operator F : M → M be given by

F [Θ(𝑡)] =Θ0 +Ψ(𝜐)H (𝑡,Θ(𝑡))

+Φ(𝜐)
∫ 𝑡

0
H(𝑥,Θ(𝑥)) (𝑡 − 𝑥)𝜐−1𝑑𝑥.

(3.8)

Together with the supremum norm ∥ · ∥C , on Θ is
defined by

∥Θ(𝑡)∥M = sup
𝑡 ∈𝐴

∥Θ(𝑡)∥, Θ(𝑡) ∈ M, (3.9)

M defines a Banach space. Assume the following

B1. LetH : 𝐴 × R6 → R6 is continuous.
B2. There exists CH > 0 such that |H (𝑡,Θ) −

H (𝑡,Θ′) | ≤ CH |Θ − Θ′ |, for all Θ,Θ′ ∈ R6.
B3. There exists a constant 𝐿 > 0 such that

|H (𝑥,Θ) | ≤ 𝐿 (1 + |Θ|) for each 𝑥 ∈ 𝐴 and
all Θ ∈ R6.

Now, we use Schaefer’s fixed point theorem to prove
the existence of at least one solutions of the problem
(3.5).

Theorem 3.4. Assume the hypotheses [B1]-[B3] to-
gether with 1 − Ψ(𝜐)𝐿 > 0, holds. Then the exits at
least one solution of problem (3.5) which is equiva-
lent with the fractional model (3.1).

3.1.2 Uniqueness Result
We now show by using Banach contraction

principle that the solution of (3.5) is unique.

Theorem 3.5. Assuming B1 − B2 together with(
Ψ(𝜐) + Φ(𝜐)𝑇 𝜐

𝜐

)
CH < 1,

then there exists a unique solution of (3.5) which is
equivalent with the fractional model (3.1).

4. Model Fitting and Base Line Pa-
rameters

Validation of a newly established epidemio-
logical model is one of the important mechanisms
for the study of disease transmission dynamics. The
availability of real data on the underlying disease
greatly contributes to the completion of this mission.
And the actual data gives us an insight into how to
assess the best values of such unknown biological
parameters involved in the model. To this purpose,
nonlinear least-squares curve fitting method with the
help of the ”fminsearch” function from the MAT-
LAB Optimization Toolbox were employed to do the
job. This approach states that, if a theoretical model
𝑡 ↦→ Ξ(𝑡, 𝑞1, 𝑞2, . . . , 𝑞𝑛) is attained and depends on
a few unknown parameters 𝑞1, 𝑞2, . . . , 𝑞𝑛 and a se-
quence of actual data points (𝑡0, 𝑦0), . . . , (𝑡 𝑗 , 𝑦 𝑗 ) is
also at hand then the aim is to obtain values of the
parameters so that the error calculated can,

𝐸 :=

√√√ 𝑗∑
𝑖=0

(
Ξ(𝑡, 𝑞1, 𝑞2, . . . , 𝑞𝑛) − 𝑦𝑖

)2
, (3.5)

attain a minimum. The following parameters
𝜇, 𝜂, 𝜉𝑠𝑒, 𝜉𝑠𝑎 , 𝜉𝑠𝑎 , 𝛼2, 𝜎3, 𝑟1, 𝑟2, 𝑟3 and 𝛿 have been
best fitted, while the parameters 𝛬, 𝜎1, 𝜎2, 𝛼1, 𝜏1 and

254



I. Ahmed et al. | Science & Technology Asia | Vol.27 No.4 October - December 2022

𝜏2 have been assumed as displayed in Table 3 and Fig.
7, respectively. The initial conditions for the state
variables are 𝑆(0) = 26690, 𝐸 (0) = 4820, 𝐴(0) =
9398, 𝑄(0) = 1321, 𝐼 (0) = 1795 and 𝑅(0) = 793.
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Fig. 7. The daily COVID-19 cumulative cases
time series in Turkey from 1 July to July 31,
2020 with the best fitted curve from simulations
of the proposed model and (b) the residuals for
the best fitted curve.

Table 3. Estimation of the parameters values.

Parameters Value Source
𝜇 0.0056 Fitted
𝜂 0.60107 Fitted
𝜉𝑠𝑒 0.18566 Fitted
𝜉𝑠𝑎 0.51428 Fitted
𝜉𝑠𝑖 0.41136 Fitted
𝜎1 0.2 [25]
𝜎2 0.1496 [25]
𝛼1 0.0998 [25]
𝜏1 0.2 [25]
𝜏2 0.1496 [25]
𝛼2 0.65200 Fitted
𝜎3 0.40822 Fitted
𝑟1 0.09823 Fitted
𝑟2 1.24484 Fitted
𝑟3 0.14835 Fitted
𝛿 0.00367 Fitted

4.1 Iterative scheme and graphical anal-
ysis

Here, we used the recent and effective nu-
merical scheme proposed by Toufik and Atangana in
[26]. For the detailed analysis of the convergence,
accuracy, and stability of the method, see [26]. Us-
ing the baseline values of the parameters as displayed
in Table 3, we simulate the proposed COVID-19
model for both classical and fractional order deriva-

tives which shows the dynamic trajectories of each of
the compartment.
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Fig. 8. Profiles for behavior of each state vari-
able for the classical version of the model.
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Fig. 9. Profiles for behavior of each state
variable for the ABC version of the fractional
model.

In Figs. 8-9, we present the dynamics trajecto-
ries of the state variables for classical and ABC
version respectively, which shows strong correla-
tions between the integer and non-integer case. To
push the epidemic investigation one step further, we
vary the fractional-order for different values of 𝜐 =
1, 0.95, 0.85, 0.75, 0.65, which shows clearly the ef-
fect of the fractional-order as shown in Fig. 10. The
impacts of 𝜐 are even more pronounced for example;
in Figure 10(a), a decrease of the fractional-order 𝜐
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(b) Exposed individ-
uals
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(c) Asymptomatic
infected
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(d) Quarantine indi-
viduals
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(e) Symptomatic in-
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Fig. 10. Comparison of each state variables for
classical and fractional order.

leads to the decrease and increase of the number of
the susceptible individual in the populations. Simi-
larly, from 0-10 days, the number of exposed indi-
viduals increases and then starts decreasing and be-
comes stable as displayed in Fig. 10(b). An inter-
esting scenario occurs in the asymptomatic infected
and quarantined compartment which shows the de-
crease of the fractional-order leads to the decrease of
each of the compartments as shown in Figs. 10(c)-
10(d). Furthermore, we observe the significant re-
duction in the number of recovered infected individu-
als who are symptomatic and the increase of the num-
ber of recovered individuals for smaller fractional or-
ders as shown in Figs. 10(e)-10(f). In this regard, it
will be interesting to see various properties of the dy-
namic pattern of the COVID-19 model with different
fractional-order (0 < 𝜐 < 1) compared with the inte-
ger case 𝜐 = 1.

5. Conclusions
In this paper, we study a mathematical model

to analyze the transmission patterns of the novel
Coronavirus (COVID-19) using publically available
data. We show that the disease free equilibrium is lo-
cally asymptotically stable when R0 < 1. Besides,

for more accurate, realistic, and precise short-term
predictions, we generalized the model to fractional-
order derivative in the sense of the ABC fractional
operator. We provided a computational scheme for
the solution of the fractional model and reported dif-
ferent graphical results. Decreasing the fractional-
order parameters leads to a decrease in infection
in the infected compartments. The analysis result
suggests that quarantine is the most powerful non-
pharmaceutical measure to monitor the mechanisms
of the spread of the emerging coronavirus disease
(COVID-19), which has badly affected the world as a
whole. The findings presented can be useful in iden-
tifying the ongoing pandemic more comprehensively
and may help to reduce the outbreak to a minimum
by taking precautionary steps.
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