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ABSTRACT
For a positive integer 𝑛, let 𝑃(𝑛) and 𝑃′ (𝑛) be the products of all elements in the finite

sets {𝑥 : 1 ≤ 𝑥 ≤ 𝑛, (𝑥, 𝑛) = 1} and {𝑥 : 1 ≤ 𝑥 ≤ 𝑛/2, (𝑥, 𝑛) = 1}, respectively. In this
article, we verify the formula for 𝑃(𝑛) and use it to establish the formula for 𝑃′ (𝑛). Explicit
formulae for both 𝑃 (𝑝𝑎) and 𝑃

′ (𝑝𝑎), where 𝑝𝑎 is a prime power, are also derived.

Keywords: arithmetic function; Euler phi-function; Möbius function; product form of the
Möbius inversion formula

1. Introduction
As usual (𝑚, 𝑛) denotes the greatest

common divisor of integers𝑚 and 𝑛 and |𝐴|
is the number of elements in a finite set 𝐴.
By an arithmetic function, we mean a map-
ping 𝑓 from the set of positive integers N
into the field of complex numbers C. There
are many interesting examples of arithmetic
functions. Two of them are the Euler phi-
function,

𝜙(𝑛) = |{𝑥 : 1 ≤ 𝑥 ≤ 𝑛, (𝑥, 𝑛) = 1}|

and the Möbius function,

𝜇(𝑛) =


1 if 𝑛 = 1,

0 if 𝑝2 |𝑛 for some prime 𝑝,

(−1)𝑟 if 𝑛 = 𝑝1𝑝2 · · · 𝑝𝑟 , where
all 𝑝𝑖 are distinct primes.

For positive integers 𝑛 and 𝑘 , define
finite sets of positive integers as follows:

𝑅𝑘 (𝑛) = {𝑥𝑘 : 1 ≤ 𝑥 ≤ 𝑛, (𝑥, 𝑛) = 1},

𝑅
′
𝑘 (𝑛) = {𝑥𝑘 : 1 ≤ 𝑥 ≤ 𝑛

2
, (𝑥, 𝑛) = 1}.

Note that

|𝑅1(𝑛) | = 𝜙 (𝑛) (𝑛 ≥ 1) (1.1)

Let 𝑆𝑘 (𝑛) =
∑

𝑅𝑘 (𝑛) and 𝑆
′
𝑘 (𝑛) =∑

𝑅
′
𝑘 (𝑛), where

∑
𝐴 denotes the sum of all

elements in a finite set 𝐴 of positive inte-
gers. It is well-known [3] that

𝑆1 (𝑛) =
𝑛𝜙 (𝑛)

2
(𝑛 > 1)

and there is an exercise in [2] that

𝑆2 (𝑛) =
2𝑛2𝜙 (𝑛) + 𝑛𝜓 (𝑛)

6
(𝑛 > 1),
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where 𝜓 is an arithmetic function defined
by 𝜓 (1) = 1 and 𝜓 (𝑛) = ∏

𝑝 |𝑛 (1 − 𝑝) for
𝑛 > 1, the product is over the prime divisors
of 𝑛.

In another direction, Baum [2] pro-
vided the formula for 𝑆′

1 (𝑛) and he advised
the reader to prove 𝑆

′
2 (𝑛) as an exercise.

The formulae for both 𝑆
′
1(𝑛) and 𝑆

′
2(𝑛) are

as follows:

𝑆
′
1 (𝑛) =

1

8
(𝑛𝜙 (𝑛) − |𝑟 |𝜓 (𝑛)) (𝑛 > 2) ,

where 𝑛 ≡ 𝑟 (mod 4) with 𝑟 ∈
{−1, 0, 1, 2} and

𝑆
′
2 (𝑛) =


𝑛2𝜙 (𝑛)+2𝑛𝜓 (𝑛)

24 if 𝑛 ≡ 0 (mod 4)
𝑛2𝜙 (𝑛)−𝑛𝜓 (𝑛)

24 if 𝑛 ≡ ±1 (mod 4)
𝑛2𝜙 (𝑛)−4𝑛𝜓 (𝑛)

24 if 𝑛 ≡ 2 (mod 4)

for all 𝑛 > 2.
In 2019, Kanasri, Pornsurat, and

Tongron [4] established the general formu-
lae for both 𝑆𝑘 (𝑛) and 𝑆

′
𝑘 (𝑛) for all positive

integers 𝑛 and 𝑘 by the use of theMöbius in-
version formula. They also confirmed that
the known results for 𝑘 = 1, 2, as mentioned
above, follow from these general formulae.

Theorem 1.1. Möbius inversion formula
Let 𝐹 and 𝑓 be two arithmetic functions re-
lated by the formula

𝐹 (𝑛) =
∑
𝑑 |𝑛

𝑓 (𝑑) .

Then

𝑓 (𝑛) =
∑
𝑑 |𝑛

𝜇 (𝑑) 𝐹
( 𝑛
𝑑

)
.

Note that the converse of the Möbius inver-
sion formula is also true [5], [6]. The for-
mulae for 𝑆𝑘 (𝑛) and 𝑆

′
𝑘 (𝑛) are as follows:

For any positive integer 𝑘 , we have

𝑆𝑘 (𝑛) =
∑
𝑑 |𝑛

𝜇 (𝑑)𝑑𝑘𝑔𝑘

( 𝑛
𝑑

)
(𝑛 ≥ 1)

and for 𝑛 > 2, 𝑆′
𝑘 (𝑛) =

∑
𝑑 | (𝑛/2) 𝜇(𝑑)𝑑𝑘𝑔𝑘

(
𝑛
2𝑑

)
if 𝑛 ≡ 0 (mod 4)∑

𝑑 |𝑛 𝜇(𝑑)𝑑𝑘𝑔𝑘

(
𝑛/𝑑−1

2

)
if 𝑛 ≡ ±1 (mod 4)∑

𝑑 | (𝑛/2) 𝜇(𝑑)𝑑𝑘
(
𝑔𝑘

(
𝑛
2𝑑

)
− 2𝑘𝑔𝑘

(
𝑛/2𝑑−1

2

))
if 𝑛 ≡ 2 (mod 4),

where 𝑔𝑘 (𝑛) = 1𝑘 + 2𝑘 + · · · + 𝑛𝑘 .
Recently, the authors [8] established

a generalization of 𝑆𝑘 (𝑛) and 𝑆
′
𝑘 (𝑛) by the

use ofMöbius inversion formula as follows:
For positive integers 𝑘, 𝑚, and 𝑛 with 𝑛 >
𝑚, let 𝑆𝑚𝑘 (𝑛) be the sum of all elements in
the finite set {𝑥𝑘 : 1 ≤ 𝑥 ≤ 𝑛/𝑚, (𝑥, 𝑛) =
1}. Then

𝑆𝑚𝑘 (𝑛) =
∑
𝑑 |𝑛

𝜇(𝑑)𝑑𝑘𝑔𝑘 (⌊𝑛/𝑑𝑚⌋) , (1.2)

where ⌊𝑥⌋ is the largest integer less than or
equal to a real number 𝑥 and let 𝑔𝑘 (0) = 0
for 𝑛 < 𝑑𝑚.We also verified that the formu-
lae for 𝑆𝑘 (𝑛) and 𝑆

′
𝑘 (𝑛) in [4] follow from

Eq. (1.2) by letting 𝑚 = 1 and 𝑚 = 2, re-
spectively.

We observe that all of the results
mentioned above are verified by using the
useful theorem, Möbius inversion formula.
However, there is a product form of the
Möbius inversion formula as an exercise in
[1] and [6]. This form motivates us to study
the products of all elements in 𝑅𝑘 (𝑛) and
𝑅

′
𝑘 (𝑛).

For positive integers 𝑛 and 𝑘 , we now
let

𝑃𝑘 (𝑛) =
∏

𝑅𝑘 (𝑛)
and

𝑃
′
𝑘 (𝑛) =

∏
𝑅

′
𝑘 (𝑛),

where
∏

𝐴 denotes the product of all ele-
ments in a finite set 𝐴 of positive integers.
In this work, we are interested in establish-
ing the formulae for both 𝑃𝑘 (𝑛) and 𝑃

′
𝑘 (𝑛).

Since

𝑃𝑘 (𝑛) = (𝑃1(𝑛))𝑘 and 𝑃
′
𝑘 (𝑛) = (𝑃′

1(𝑛))𝑘 ,
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it suffices to establish the formulae for
𝑃(𝑛) := 𝑃1(𝑛) and 𝑃

′ (𝑛) := 𝑃
′
1(𝑛). How-

ever, there is an exercise in [1] and [6] to
verify the formula for 𝑃(𝑛) by using the
product form of the Möbius inversion for-
mula.

In this article, we first verify the
product form of the Möbius inversion for-
mula and use it to verify the formula for
𝑃(𝑛). We then establish a formula for 𝑃′ (𝑛)
by using both results mentioned above.
Moreover, explicit formulae for 𝑃(𝑝𝑎) and
𝑃

′ (𝑝𝑎), where 𝑝𝑎 is a prime power, are also
derived.

2. Main results
Several well-known facts that we

shall use in this article are collected in the
following lemma [3], [7].

Lemma 2.1. For each positive integer 𝑛 ≥
1, we have

(i)
∑

𝑑 |𝑛 𝜇(𝑑) =
{
1 if 𝑛 = 1

0 if 𝑛 > 1.

(ii)
∑

𝑑 |𝑛 𝜙 (𝑑) = 𝑛,
the sums being extended over all pos-
itive divisors of 𝑛.

(iii) 𝜙 (𝑛) = 𝑛
∏

𝑝 |𝑛

(
1 − 1

𝑝

)
,

the product being taken over all
primes which divide 𝑛.

By Lemma 2.1(iii), we have that

𝜙 (𝑝𝑎) = 𝑝𝑎 − 𝑝𝑎−1 (2.1)

for all primes 𝑝 and 𝑎 ∈ N.
Before proceeding to our main re-

sults, we start with the following useful
lemmas, the first one is the product form of
the Möbius inversion formula.

Lemma 2.2. Let 𝑓 and 𝑔 be two arithmetic
functions such that 𝑔 (𝑛) ≠ 0 for all 𝑛 ∈ N.
Then

𝑓 (𝑛) =
∏
𝑑 |𝑛

𝑔 (𝑑)

if and only if

𝑔 (𝑛) =
∏
𝑑 |𝑛

𝑓 (𝑑)𝜇 (𝑛/𝑑) ,

where 𝑑 runs through the positive divisors
of 𝑛.

Proof. Assume that 𝑓 (𝑛) =
∏

𝑑 |𝑛 𝑔 (𝑑).
Using the fact that

{𝑑 ∈ N : 𝑑 | 𝑛} = {𝑛/𝑑 : 𝑑 ∈ N, 𝑑 | 𝑛},
(2.2)

we have∏
𝑑 |𝑛

𝑓 (𝑑)𝜇 (𝑛/𝑑) =
∏
𝑑 |𝑛

𝑓
( 𝑛
𝑑

)𝜇 (𝑑)
=

∏
𝑑 |𝑛

∏
𝑒 | (𝑛/𝑑)

𝑔 (𝑒)𝜇 (𝑑) .

Since 𝑑 |𝑛 and 𝑒 | (𝑛/𝑑) if and only if 𝑒 |𝑛 and
𝑑 | (𝑛/𝑒), the last equation becomes∏
𝑑 |𝑛

∏
𝑒 | (𝑛/𝑑)

𝑔 (𝑒)𝜇 (𝑑) =
∏
𝑒 |𝑛

∏
𝑑 | (𝑛/𝑒)

𝑔 (𝑒)𝜇 (𝑑)

=
∏
𝑒 |𝑛

𝑔 (𝑒)
∑

𝑑 | (𝑛/𝑒) 𝜇 (𝑑)

= 𝑔 (𝑛)𝜇 (1)
∏
𝑒 |𝑛
𝑒<𝑛

𝑔 (𝑒)
∑

𝑑 | (𝑛/𝑒) 𝜇 (𝑑) .

By Lemma 2.1(i), we have
∑

𝑑 | (𝑛/𝑒) 𝜇 (𝑑) =
0 for 𝑒 |𝑛 with 𝑒 < 𝑛. It follows that∏

𝑑 |𝑛 𝑓 (𝑑)𝜇 (𝑛/𝑑) = 𝑔 (𝑛).

On the other hand, we suppose that
𝑔 (𝑛) =

∏
𝑑 |𝑛 𝑓 (𝑑)𝜇 (𝑛/𝑑) . Again by (2.2),

we have

∏
𝑑 |𝑛

𝑔 (𝑑) =
∏
𝑑 |𝑛

𝑔
( 𝑛
𝑑

)
=

∏
𝑑 |𝑛

∏
𝑒 | (𝑛/𝑑)

𝑓 (𝑒)
𝜇

(
𝑛/𝑑
𝑒

)
.
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Since 𝑑 |𝑛 and 𝑒 | (𝑛/𝑑) if and only if 𝑒 |𝑛 and
𝑑 | (𝑛/𝑒), the last equation becomes

∏
𝑑 |𝑛

∏
𝑒 | (𝑛/𝑑)

𝑓 (𝑒)
𝜇

(
𝑛/𝑑
𝑒

)
=

∏
𝑒 |𝑛

∏
𝑑 | (𝑛/𝑒)

𝑓 (𝑒)𝜇 (𝑛/𝑑𝑒)

=
∏
𝑒 |𝑛

𝑓 (𝑒)
∑

𝑑 | (𝑛/𝑒) 𝜇

(
𝑛/𝑒
𝑑

)

=
∏
𝑒 |𝑛

𝑓 (𝑒)
∑

𝑑 | (𝑛/𝑒) 𝜇 (𝑑) , by (2.2)

= 𝑓 (𝑛)𝜇 (1)
∏
𝑒 |𝑛
𝑒<𝑛

𝑓 (𝑒)
∑

𝑑 | (𝑛/𝑒) 𝜇 (𝑑)

= 𝑓 (𝑛) ,

by Lemma 2.1(i). Hence,
∏

𝑑 |𝑛 𝑔 (𝑑) =
𝑓 (𝑛), as desired. □

Lemma 2.3. For an odd integer 𝑛 > 1, we
have����{𝑥 : 1 ≤ 𝑥 ≤ 𝑛 − 1

2
, (𝑥, 𝑛) = 1

}���� = 𝜙 (𝑛)
2

.

Proof. Let 𝑛 > 1 be an odd integer and let

𝐴 =

{
𝑥 : 1 ≤ 𝑥 ≤ 𝑛 − 1

2
, (𝑥, 𝑛) = 1

}
,

𝐵 =

{
𝑥 : −𝑛 − 1

2
≤ 𝑥 ≤ 𝑛 − 1

2
, (𝑥, 𝑛) = 1

}
.

For 𝑖 ∈ {0, 1, 2, . . . , (𝑛 − 1)/2}, we have

𝑖 ≡ 𝑖 (mod 𝑛) and − 𝑖 ≡ 𝑛 − 𝑖 (mod 𝑛).

By the fact that for 𝑎, 𝑏 ∈ Z, if 𝑎 ≡ 𝑏 (mod
𝑛), then (𝑎, 𝑛) = (𝑏, 𝑛), we obtain

|𝐵| = | {𝑥 : 1 ≤ 𝑥 ≤ 𝑛, (𝑘, 𝑛) = 1} | = 𝜙 (𝑛) .

Since (−𝑥, 𝑛) = (𝑥, 𝑛) = 1 for all 𝑥 ∈ 𝐴, we
conclude that

|𝐴| = |𝐵|
2

=
𝜙 (𝑛)
2

,

as desired. □

We are now ready to verify the for-
mula for 𝑃(𝑛) as the following.

Theorem 2.4. For each positive integer
𝑛 ≥ 1, we have

𝑃 (𝑛) = 𝑛𝜙 (𝑛)
∏
𝑑 |𝑛

(
𝑑!

𝑑𝑑

)𝜇 (𝑛/𝑑)
.

Proof. For a positive divisor 𝑑 of 𝑛, we de-
fine

𝐴𝑑 = {𝑥 : 1 ≤ 𝑥 ≤ 𝑛, (𝑥, 𝑛) = 𝑑}.
Note that 𝐴𝑑 ≠ ∅ since 𝑑 ∈ 𝐴𝑑 . Clearly,⋃

𝑑 |𝑛 𝐴𝑑 = {1, 2, . . . , 𝑛} and 𝐴𝑑1 ∩ 𝐴𝑑2 = ∅
for 𝑑1 ≠ 𝑑2. It follows that

𝑛∏
𝑖=1

𝑖 = 𝑛! =
∏
𝑑 |𝑛

∏
𝐴𝑑 . (2.3)

We next show that

𝐴𝑑 = 𝑑𝑅1

( 𝑛
𝑑

)
. (2.4)

If 𝑥 ∈ 𝐴𝑑 , then 1 ≤ 𝑥 ≤ 𝑛 and (𝑥, 𝑛) = 𝑑.
It follows that 𝑥/𝑑 ∈ N, 1 ≤ 𝑥/𝑑 ≤ 𝑛/𝑑,
and (𝑥/𝑑, 𝑛/𝑑) = 1. We consequently have
𝑥/𝑑 ∈ 𝑅1 (𝑛/𝑑) and so 𝑥 ∈ 𝑑𝑅1 (𝑛/𝑑).
If 𝑦 ∈ 𝑅1 (𝑛/𝑑), then 1 ≤ 𝑦 ≤ 𝑛/𝑑
and (𝑦, 𝑛/𝑑) = 1. It follows that
1 ≤ 𝑑 ≤ 𝑑𝑦 ≤ 𝑛 and (𝑑𝑦, 𝑛) = 𝑑.
This shows that 𝑑𝑦 ∈ 𝐴𝑑 .

For 𝑑 |𝑛, we obtain by (1.1) and (2.4)
that ∏

𝐴𝑑 =
∏

𝑑𝑅1

( 𝑛
𝑑

)
= 𝑑𝜙 (𝑛/𝑑)

∏
𝑅1

( 𝑛
𝑑

)
= 𝑑𝜙 (𝑛/𝑑)𝑃

( 𝑛
𝑑

)
.

It follows from Lemma 2.1(ii), (2.2), and
(2.3) that

𝑛! =
∏
𝑑 |𝑛

𝑑𝜙 (𝑛/𝑑)𝑃
( 𝑛
𝑑

)
231
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=
∏
𝑑 |𝑛

( 𝑛
𝑑

) 𝜙 (𝑑)
𝑃 (𝑑)

=
∏
𝑑 |𝑛

𝑛𝜙 (𝑑)
∏
𝑑 |𝑛

𝑃 (𝑑)
𝑑𝜙 (𝑑)

= 𝑛
∑

𝑑 |𝑛 𝜙 (𝑑)
∏
𝑑 |𝑛

𝑃 (𝑑)
𝑑𝜙 (𝑑)

= 𝑛𝑛
∏
𝑑 |𝑛

𝑃 (𝑑)
𝑑𝜙 (𝑑) ,

yielding
𝑛!

𝑛𝑛
=

∏
𝑑 |𝑛

𝑃 (𝑑)
𝑑𝜙 (𝑑) .

Using Lemma 2.2 with 𝑓 (𝑛) =
𝑛!

𝑛𝑛
and

𝑔 (𝑛) = 𝑃 (𝑛)
𝑛𝜙 (𝑛)

for all 𝑛 ∈ N, we get

𝑃 (𝑛)
𝑛𝜙 (𝑛)

=
∏
𝑑 |𝑛

(
𝑑!

𝑑𝑑

)𝜇 (𝑛/𝑑)
,

yielding the desired result. □

Using Lemma 2.2, Lemma 2.3, and
Theorem 2.4, we obtain the formula for
𝑃

′ (𝑛) as the following.

Theorem 2.5. For each positive integer
𝑛 > 2, we have 𝑃′ (𝑛) =

(𝑛
2

) 𝜙 (𝑛/2) ∏
𝑑 | (𝑛/2)

(
𝑑!

𝑑𝑑

)𝜇 (𝑛/2𝑑)
if 𝑛 ≡ 0 (mod 4)

𝑛𝜙 (𝑛)/2
∏

𝑑 |𝑛

©­­­­«
(
𝑑 − 1

2

)
!

𝑑 (𝑑−1)/2

ª®®®®¬
𝜇 (𝑛/𝑑)

if 𝑛 ≡ ±1 (mod 4)(𝑛
2

) 𝜙 (𝑛/2)
2

(
1

2

) 𝜙 (𝑛/2)
2 ·

∏
𝑑 | (𝑛/2)

©­­­­«
𝑑 (𝑑 − 1) · · ·

(
𝑑 + 1

2

)
𝑑 (𝑑+1)/2

ª®®®®¬
𝜇 (𝑛/2𝑑)

if 𝑛 ≡ 2 (mod 4).

Proof. We prove this formula by consider-
ing three possible cases.
Case I: 𝑛 ≡ 0 (mod 4). Then 𝑛 and 𝑛/2 are
even. It follows that (𝑥, 𝑛) = 1 if and only
if (𝑥, 𝑛/2) = 1 for any positive integer 𝑥.
From Theorem 2.4, we have

𝑃
′ (𝑛) =

∏ {
𝑥 : 1 ≤ 𝑥 ≤ 𝑛

2
, (𝑥, 𝑛) = 1

}
=

∏ {
𝑥 : 1 ≤ 𝑥 ≤ 𝑛

2
,
(
𝑥,

𝑛

2

)
= 1

}
= 𝑃

(𝑛
2

)
=

(𝑛
2

) 𝜙 (𝑛/2) ∏
𝑑 | (𝑛/2)

(
𝑑!

𝑑𝑑

)𝜇 (𝑛/2𝑑)
.

Case II: 𝑛 ≡ ±1 (mod 4). Then 𝑛 is odd.
For 𝑑 |𝑛, we define

𝐵𝑑 = {𝑥 : 1 ≤ 𝑥 ≤ 𝑛

2
, (𝑥, 𝑛) = 𝑑}.

Note that 𝐵𝑑 = ∅ if and only if 𝑑 = 𝑛, so we
let

∏
𝐵𝑛 = 1. Clearly,⋃

𝑑 |𝑛
𝐵𝑑 =

{
1, 2, . . . ,

𝑛 − 1

2

}
and

𝐵𝑑1 ∩ 𝐵𝑑2 = ∅
for 𝑑1 ≠ 𝑑2. It follows that

(𝑛−1)/2∏
𝑖=1

𝑖 =

(
𝑛 − 1

2

)
! =

∏
𝑑 |𝑛

∏
𝐵𝑑 . (2.5)

Next, we show that

𝐵𝑑 = 𝑑𝑅
′
1

( 𝑛
𝑑

)
. (2.6)

Observe that 𝑅′
1 (𝑛/𝑑) = ∅ if and only if

𝑑 = 𝑛, so we let 𝑃′ (1) = 1. If 𝑥 ∈ 𝐵𝑑 , then
1 ≤ 𝑥 ≤ 𝑛/2 and (𝑥, 𝑛) = 𝑑. It follows
that 1 ≤ 𝑥/𝑑 ≤ 𝑛/2𝑑 and (𝑥/𝑑, 𝑛/𝑑) = 1.
Consequently, 𝑥/𝑑 ∈ 𝑅

′
1 (𝑛/𝑑) and so

𝑥 ∈ 𝑑𝑅
′
1 (𝑛/𝑑). If 𝑦 ∈ 𝑅

′
1 (𝑛/𝑑), then

1 ≤ 𝑦 ≤ 𝑛/2𝑑 and (𝑦, 𝑛/𝑑) = 1. It follows
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that 1 ≤ 𝑑 ≤ 𝑑𝑦 ≤ 𝑛/2 and (𝑑𝑦, 𝑛) = 𝑑.
This implies that 𝑑𝑦 ∈ 𝐵𝑑 .

For 𝑑 |𝑛with 𝑑 ≠ 𝑛, we get 𝑛/𝑑 is odd
and 𝑛/𝑑 > 1. Using Lemma 2.3, we have���𝑅′

1

( 𝑛
𝑑

)��� = ���{𝑥 : 1 ≤ 𝑥 ≤ 𝑛

2𝑑
,
(
𝑥,

𝑛

𝑑

)
= 1

}���
=

����{𝑥 : 1 ≤ 𝑥 ≤ 𝑛/𝑑 − 1

2
,
(
𝑥,

𝑛

𝑑

)
= 1

}����
=

𝜙 (𝑛/𝑑)
2

.

Form (2.6), we obtain∏
𝐵𝑑 =

∏
𝑑𝑅

′
1

( 𝑛
𝑑

)
= 𝑑

𝜙 (𝑛/𝑑)
2

∏
𝑅

′
1

( 𝑛
𝑑

)
= 𝑑

𝜙 (𝑛/𝑑)
2 𝑃

′
( 𝑛
𝑑

)
.

It follows from (2.5) that(
𝑛 − 1

2

)
! =

∏
𝐵𝑛

∏
𝑑 |𝑛
𝑑<𝑛

∏
𝐵𝑑

=
∏
𝑑 |𝑛
𝑑<𝑛

𝑑

𝜙 (𝑛/𝑑)
2 𝑃

′
( 𝑛
𝑑

)

=

∏
𝑑 |𝑛 𝑑

𝜙 (𝑛/𝑑)
2 𝑃

′
( 𝑛
𝑑

)
𝑛1/2𝑃′ (1)

=

∏
𝑑 |𝑛

( 𝑛
𝑑

) 𝜙 (𝑑)/2
𝑃

′ (𝑑)

𝑛1/2
,

by Eq. (2.2) and so

𝑛1/2
(
𝑛 − 1

2

)
! =

∏
𝑑 |𝑛

( 𝑛
𝑑

) 𝜙 (𝑑)/2
𝑃

′ (𝑑)

=
∏
𝑑 |𝑛

𝑛𝜙 (𝑑)/2
∏
𝑑 |𝑛

𝑃
′ (𝑑)

𝑑𝜙 (𝑑)/2

= 𝑛
1
2

∑
𝑑 |𝑛 𝜙 (𝑑)

∏
𝑑 |𝑛

𝑃
′ (𝑑)

𝑑𝜙 (𝑑)/2

= 𝑛𝑛/2
∏
𝑑 |𝑛

𝑃
′ (𝑑)

𝑑𝜙 (𝑑)/2 ,

by Lemma 2.1(ii). This shows that(
𝑛 − 1

2

)
!

𝑛(𝑛−1)/2
=

∏
𝑑 |𝑛

𝑃
′ (𝑑)

𝑑𝜙 (𝑑)/2 .

By Lemma 2.2 with 𝑓 (𝑛) =

(
𝑛 − 1

2

)
!

𝑛(𝑛−1)/2
and

𝑔 (𝑛) = 𝑃
′ (𝑛)

𝑛𝜙 (𝑛)/2
for all 𝑛 ∈ N, we get

𝑃
′ (𝑛)

𝑛𝜙 (𝑛)/2
=

∏
𝑑 |𝑛

©­­­­«
(
𝑑 − 1

2

)
!

𝑑 (𝑑−1)/2

ª®®®®¬
𝜇 (𝑛/𝑑)

as desired.
Case III: 𝑛 ≡ 2 (mod 4). Then we can
write 𝑛 = 2𝑚 for some odd integer𝑚. Thus,
for any positive integer 𝑥, we have (𝑥, 𝑛) =
1 if and only if (𝑥, 𝑚) = 1 and 𝑥 is odd. We
also observe that (2𝑦, 𝑚) = 1 if and only if
(𝑦, 𝑚) = 1 for any positive integer 𝑦. Using
Lemma 2.2, Lemma 2.3, Theorem 2.4, and
Case II, we obtain

𝑃
′ (𝑛) =

∏
{𝑥 : 1 ≤ 𝑥 ≤ 𝑛

2
, (𝑥, 𝑛) = 1}

=
∏

{𝑥 : 1 ≤ 𝑥 ≤ 𝑚, (𝑥, 𝑚) = 1, 𝑥 is odd }

=
∏ (

{𝑥 : 1 ≤ 𝑥 ≤ 𝑚, (𝑥, 𝑚) = 1}\
{𝑥 | 1 ≤ 𝑥 ≤ 𝑚, (𝑥, 𝑚) = 1, 𝑥 is even}

)
=

∏ (
{𝑥 : 1 ≤ 𝑥 ≤ 𝑚, (𝑥, 𝑚) = 1}\

{2𝑦 | 1 ≤ 2𝑦 ≤ 𝑚, (2𝑦, 𝑚) = 1}
)

=
∏ (

{𝑥 : 1 ≤ 𝑥 ≤ 𝑚, (𝑥, 𝑚) = 1}\

{2𝑦 | 1 ≤ 𝑦 ≤ 𝑚

2
, (𝑦, 𝑚) = 1}

)
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=
∏{𝑥 : 1 ≤ 𝑥 ≤ 𝑚, (𝑥, 𝑚) = 1}∏{2𝑦 : 1 ≤ 𝑦 ≤ 𝑚

2
, (𝑦, 𝑚) = 1}

=
𝑃 (𝑚)

2𝜙 (𝑚)/2𝑃′ (𝑚)

=

𝑚𝜙 (𝑚) ∏
𝑑 |𝑚

(
𝑑!

𝑑𝑑

)𝜇 (𝑚/𝑑)

2𝜙 (𝑚)/2𝑚𝜙 (𝑚)/2 ∏
𝑑 |𝑚

©­­­­«
(
𝑑 − 1

2

)
!

𝑑 (𝑑−1)/2

ª®®®®¬
𝜇 (𝑚/𝑑)

=
(𝑚
2

) 𝜙 (𝑚)
2

∏
𝑑 |𝑚

©­­­­«
𝑑 (𝑑 − 1) · · ·

(
𝑑 + 1

2

)
𝑑 (𝑑+1)/2

ª®®®®¬
𝜇 (𝑚/𝑑)

=
(𝑛
2

) 𝜙 (𝑛/2)
2

(
1

2

) 𝜙 (𝑛/2)
2 ·

∏
𝑑 | (𝑛/2)

©­­­­«
𝑑 (𝑑 − 1) · · ·

(
𝑑 + 1

2

)
𝑑 (𝑑+1)/2

ª®®®®¬
𝜇 (𝑛/2𝑑)

,

which completes the proof. □

3. Explicit formulae
We now proceed to the last section.

In this section, we provide explicit formulae
for 𝑃 (𝑝𝑎) and 𝑃′ (𝑝𝑎), where 𝑝𝑎 is a prime
power, as in the following propositions.

Proposition 3.1. Let 𝑝 be a prime and 𝑎 be
a positive integer. Then

𝑃 (𝑝𝑎) =
𝑝𝑎 (𝑝𝑎 − 1) · · ·

(
𝑝𝑎−1 + 1

)
𝑝𝑝𝑎−1 .

Proof. Let 𝑝 be a prime and 𝑎 be a positive
integer. By Theorem 2.4 and (2.1), we ob-
tain

𝑃 (𝑝𝑎) = 𝑝𝑎𝜙 (𝑝
𝑎)

∏
𝑑 |𝑝𝑎

(
𝑑!

𝑑𝑑

)𝜇 (𝑝𝑎/𝑑)

= 𝑝𝑎(𝑝𝑎−𝑝𝑎−1)
(

𝑝𝑎−1!

𝑝 (𝑎−1) 𝑝𝑎−1

)𝜇 (𝑝) (
𝑝𝑎!

𝑝𝑎𝑝
𝑎

)𝜇 (1)
=

𝑝𝑎(𝑝𝑎−𝑝𝑎−1) · 𝑝 (𝑎−1) 𝑝𝑎−1 · 𝑝𝑎!
𝑝𝑎−1! · 𝑝𝑎𝑝𝑎

=
𝑝𝑎 (𝑝𝑎 − 1) · · ·

(
𝑝𝑎−1 + 1

)
𝑝𝑝𝑎−1 .

□

Proposition 3.2. Let 𝑝 be an odd prime and
𝑎 be a positive integer. Then

(i) 𝑃
′ (2𝑎) =

2𝑎−1
(
2𝑎−1 − 1

)
· · ·

(
2𝑎−2 + 1

)
22

𝑎−2

for all 𝑎 ≥ 2.

(ii) 𝑃
′ (𝑝𝑎) =(
𝑝𝑎 − 1

2

) (
𝑝𝑎 − 3

2

)
· · ·

(
𝑝𝑎−1 + 1

2

)
𝑝(𝑝𝑎−1−1)/2 .

Proof. Let 𝑝 be an odd prime and 𝑎 be a
positive integer.
(i) If 𝑎 ≥ 2, then by Theorem 2.5, we obtain

𝑃
′ (2𝑎) =

(
2𝑎−1

) 𝜙(2𝑎−1) ∏
𝑑 |2𝑎−1

(
𝑑!

𝑑𝑑

)𝜇(2𝑎−1/𝑑)
= 2(𝑎−1)𝜙(2𝑎−1)

(
2𝑎−2!

2(𝑎−2)2𝑎−2

)𝜇 (2) (
2𝑎−1!

2(𝑎−1)2𝑎−1

)𝜇 (1)
=
2(𝑎−1) (2𝑎−1−2𝑎−2) · 2(𝑎−2)2𝑎−2 · 2𝑎−1!

2𝑎−2! · 2(𝑎−1)2𝑎−1

=
2𝑎−1

(
2𝑎−1 − 1

)
· · ·

(
2𝑎−2 + 1

)
22

𝑎−2 .

(ii) By Theorem 2.5 and (2.1), we obtain

𝑃
′ (𝑝𝑎) = 𝑝𝑎𝜙 (𝑝

𝑎)/2
∏
𝑑 |𝑝𝑎

©­­­­«
(
𝑑 − 1

2

)
!

𝑑 (𝑑−1)/2

ª®®®®¬
𝜇 (𝑝𝑎/𝑑)

= 𝑝𝑎(𝑝𝑎−𝑝𝑎−1)/2
©­­­­«

(
𝑝𝑎−1 − 1

2

)
!

𝑝 (𝑎−1) (𝑝𝑎−1−1)/2

ª®®®®¬
𝜇 (𝑝)

·
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©­­­­«
(
𝑝𝑎 − 1

2

)
!

𝑝𝑎 (𝑝𝑎−1)/2

ª®®®®¬
𝜇 (1)

=

𝑝𝑎(𝑝𝑎−𝑝𝑎−1)/2 · 𝑝 (𝑎−1) (𝑝𝑎−1−1)/2 ·
(
𝑝𝑎 − 1

2

)
!(

𝑝𝑎−1 − 1

2

)
! · 𝑝𝑎 (𝑝𝑎−1)/2

=

(
𝑝𝑎 − 1

2

) (
𝑝𝑎 − 3

2

)
· · ·

(
𝑝𝑎−1 + 1

2

)
𝑝 (𝑝𝑎−1−1)/2 ,

which finishes the proof. □

Finally, we note by Proposition 3.1
and Proposition 3.2 (ii) that

𝑃(𝑝) = (𝑝 − 1)!

for all primes 𝑝 and

𝑃
′ (𝑝) =

(
𝑝 − 1

2

)
!

for all odd primes 𝑝, respectively.

4. Conclusion
For positive integers 𝑛 and 𝑘 , let

𝑅𝑘 (𝑛) = {𝑥𝑘 : 1 ≤ 𝑥 ≤ 𝑛, (𝑥, 𝑛) = 1}
and 𝑅′

𝑘 (𝑛) = {𝑥𝑘 : 1 ≤ 𝑥 ≤ 𝑛/2, (𝑥, 𝑛) =
1}. Let 𝑆𝑘 (𝑛) and 𝑆′𝑘 (𝑛) be the sums of
all elements in 𝑅𝑘 (𝑛) and 𝑅′

𝑘 (𝑛), respec-
tively. In the earlier work of Kanasri, Porn-
surat, and Tongron, the formulae for both
𝑆𝑘 (𝑛) and 𝑆′𝑘 (𝑛) were established, which
yield generalized versions of the formulae
for 𝑆1(𝑛), 𝑆2(𝑛) and 𝑆′1(𝑛), 𝑆′2(𝑛), respec-
tively. In this work, we are interested in
studying the products of all elements in
𝑅𝑘 (𝑛) and 𝑅′

𝑘 (𝑛), denoted by 𝑃𝑘 (𝑛) and
𝑃′
𝑘 (𝑛), respectively. We obtain the formu-

lae for both 𝑃𝑘 (𝑛) and 𝑃′
𝑘 (𝑛). Moreover,

explicit formulae for 𝑃𝑘 (𝑝𝑎) and 𝑃′
𝑘 (𝑝𝑎),

where 𝑝𝑎 is a prime power, are also derived.
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