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ABSTRACT

For a positive integer n, let P(n) and P’ (n) be the products of all elements in the finite

sets {x : 1 <x <mn, (x,n) =1} and {x :

1 <x < n/2, (x,n) = 1}, respectively. In this

article, we verify the formula for P(n) and use it to establish the formula for P’ (n). Explicit
formulae for both P (p?) and P’ (p®), where p® is a prime power, are also derived.

Keywords: arithmetic function; Euler phi-function; Mobius function; product form of the

Mobius inversion formula

1. Introduction

As usual (m, n) denotes the greatest
common divisor of integers m and n and |A|
is the number of elements in a finite set A.
By an arithmetic function, we mean a map-
ping f from the set of positive integers N
into the field of complex numbers C. There
are many interesting examples of arithmetic
functions. Two of them are the Euler phi-
function,

¢p(n) =[{x:1<x<n, (x,n) =1}

and the Mobius function,

1 ifn=1,
() 0 if p?|n for some prime p,
n) =
g (=1)" ifn=pips---pr, where

all p; are distinct primes.

For positive integers n and k, define
finite sets of positive integers as follows:

Ri(n)={xk:1<x<n, (x,n) =1},

R;((n) ={xk:1<x< g, (x,n) =1}.
Note that
IRi(n)|=¢(n) (n=1) (1.1)
Let Sg(n) = XY Ri(n) and S, (n) =

> R;{ (n), where > A denotes the sum of all
elements in a finite set A of positive inte-
gers. It is well-known [B] that

n¢ (n)
2
and there is an exercise in [2] that

2n°¢ (n) +ny (n)
6

Sy (n) =

(n>1)

Sy (n) =

(l’l > 1)a
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where ¢ is an arithmetic function defined
by (1) = Land § (n) = [1,, (1= p) for
n > 1, the product is over the prime divisors
of n.

In another direction, Baum [2] pro-
vided the formula for S'1 (n) and he advised
the reader to prove S’2 (n) as an exercise.
The formulae for both S'1 (n) and S'2 (n) are
as follows:

SL(n) = S g () = Irly () (n>2).

where n r (mod 4) with r €

{-1,0,1,2} and
w if n.= 0 (mod 4)

n? ¢ (n)—4ny (n)

o7 if n =2 (mod 4)

foralln > 2.

In 2019, Kanasri, Pornsurat, and
Tongron [4] established the general formu-
lae for both Si (n) and S k (n) for all positive
integers n and k by the use of the Mobius in-
version formula. They also confirmed that
the known results for k£ = 1, 2, as mentioned
above, follow from these general formulae.

Theorem 1.1. Mébius inversion formula
Let F and f be two arithmetic functions re-
lated by the formula

F(n)=) f(d).

d|n

Then

fy=Y n@F|(3).

din

Note that the converse of the Mobius inver-
sion formula is also true [5], [6]. The for-
mulae for Sy (n) and S;< (n) are as follows:
For any positive integer k, we have

Sk = 3 p(d)a g (%

) 5) (nz1)

if n = +1 (mod 4)
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and forn > 2, S/k (n) =

Sdl(nj2) 1(d)d* gi
S u(d)d* gy (n/Q_

dny2) H(d)d* (gk (

) - 21 (25
if n =2 (mod 4),

where gy (n) = 1% + 2% 4 4 0.

Recently, the authors [§] established
a generalization of S (n) and S'k (n) by the
use of Mobius inversion formula as follows:
For positive integers k,m, and n with n >
m, let §7"(n) be the sum of all elements in
the finite set {x* : 1 < x < n/m, (x,n) =
1}. Then

Sy (n) = Z p(d)d gy (Ln/dm]), (1.2)
d|n

where | x] is the largest integer less than or
equal to a real number x and let g (0) = 0
forn < dm. We also verified that the formu-
lae for Si(n) and S'k (n) in [4] follow from
Eq. (.2) by letting m = 1 and m = 2, re-
spectively.

We observe that all of the results
mentioned above are verified by using the
useful theorem, Mobius inversion formula.
However, there is a product form of the
Mobius inversion formula as an exercise in
[[I] and [6]. This form motivates us to study
the products of all elements in Ry (n) and
R'k (n).

For positive integers n and k, we now
let

Pie(n) = [ | Ri(n)
and

Pe(n) = | Re(),
where [] A denotes the product of all ele-
ments in a finite set A of positive integers.
In this work, we are interested in establish-
ing the formulae for both Py (n) and P’k (n).
Since

Pi(n) = (P1(n))* and P (n) = (P ()",
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it suffices to establish the formulae for
P(n) := Pi(n) and P'(n) := P’l(n). How-
ever, there is an exercise in []1]] and [6] to
verify the formula for P(n) by using the
product form of the Mdbius inversion for-
mula.

In this article, we first verify the
product form of the Mdbius inversion for-
mula and use it to verify the formula for
P(n). We then establish a formula for P’ (n)
by using both results mentioned above.
Moreover, explicit formulae for P(p¢) and
P’ (p?), where p? is a prime power, are also
derived.

2. Main results

Several well-known facts that we
shall use in this article are collected in the
following lemma [3], [[7].

Lemma 2.1. For each positive integer n >
1, we have

1
0

ifn=1

i d) =

() Xaju(d) { ifn> 1.

(i) Xapn ¢ (d) =n,
the sums being extended over all pos-
itive divisors of n.

1

(iit) ¢ (n) =nll,n (1 - 1_?)
the product being taken over all
primes which divide n.

By Lemma R.1|(iii), we have that

¢ (p®) = p* - p! 2.1)
for all primes p and a € N.

Before proceeding to our main re-
sults, we start with the following useful
lemmas, the first one is the product form of
the Mébius inversion formula.
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Lemma 2.2. Let f and g be two arithmetic
functions such that g (n) # 0 for alln € N.
Then

Fm=]]g@
din
if and only if
g =] [ £ @y,
dln

where d runs through the positive divisors

of n.

Proof. Assume that f(n) = [y, g (d).
Using the fact that

{deN:d|n}={n/d:deN,d| n},

2.2)
we have
l_[f (d)/.l(n/d) — l_[f (ﬁ).u(d)
d
d|n dln
=[] [] ster?.
dln e|(n/d)

Since d|n and e| (n/d) if and only if e|n and
d| (n/e), the last equation becomes

l_l l_l g(e)u(d):l_[ 1—[ g(e)'“(d)

d|n e|(n/d) eln d|(n/e)

— 1_[ g (e)zdl(n/e) u(d)

eln

=g (n)#(l) l—[ g (e)2d|(n/e)/~l(d) ‘

eln
e<n

By Lemma R.1|(i), we have 2d|(nje) M (d) =
0 for e|n with e < n. It follows that

apn f (D =g (n).

On the other hand, we suppose that

g (n) = Tap f (9. Again by (2.2,
we have

[Te@=1s(5)=IT 1 f(e)”(

dln d|n d|n e|(n/d)

n/d

e
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Since d|n and e| (n/d) if and only if e|n and

d| (n/e), the last equation becomes

n/d
ul —
[T]] rote
d|n e|(n/d) eln dl(n/e)
nje
Yd|(nje) B 7
=] ]r¢
eln
_ l_l f (e)Zd\(n/e)#(d) , by ()
eln

=f (n).u(l) l—[ f (e)Zd\(n/e)ﬂ(d)

eln
e<n

=fn),

by Lemma P.1(i). Hence, [lang(d) =
f (n), as desired. O

Lemma 2.3. For an odd integer n > 1, we
have

n—1

A
. =22

2

{x:leS

=)

Proof. Letn > 1 be an odd integer and let

n

A:{x:lﬁxﬁ

B=foi-

Fori € {0,1,2,...,(n—1)/2}, we have

;1,(x,n)=1},

n-—1

n21,(x,n)=1}.

<x<

i=i(modn) and —i=n-1i(mod n).

By the fact that fora, b € Z,ifa = b (mod
n), then (a,n) = (b, n), we obtain

[Bl=|{x:1<x<n,(k,n)=1}|=¢(n).

Since (—x,n) = (x,n) = 1 forall x € A, we
conclude that

|B|

PRLII0

2 bl

as desired.
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We are now ready to verify the for-
mula for P(n) as the following.

Theorem 2.4. For each positive integer

d! pu(n/d)
(@)

Proof. For a positive divisor d of n, we de-
fine

= l_l l_l £ (e)p(n/den 2 1, we have

P (n) = n?™ l_[

dln

Ag={x:1<x<n,(x,n) =d}.

Note that A; # 0 since d € Ay. Clearly,
Ud|nAd ={1,2,...,n} aIldAd1 NAg, = 0
for dy # ds. It follows that

n

]_[i —nl= l_”_IAd. (2.3)
i=1 din
We next show that
Ag=dR, (S) (2.4)

Ifx € Ag,then1 < x < mand (x,n) =d.
It follows that x/d € N, 1 < x/d < n/d,
and (x/d,n/d) = 1. We consequently have
x/d € Ri(n/d) and so x € dRy (n/d).
If y € Ri(n/d), then1 < y < n/d
and (y,n/d) 1. It follows that
1 < d < dy £ nand (dy,n) = d.
This shows that dy € Ag.

For d|n, we obtain by ([L.1}) and (2.4)

[Tas= o (3
— o(n/d) I_IRI (g)

- d"’(”/d)P(g).

that

It follows from Lemma R.1|(ii), (2.2), and
(2.3) that

= [Tavor ()

d|n
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=£]()¢()
_ld—lnl ¢<d)ld—|n[

— pldn 9(d)
]

P (d)
d|n

4de@d’
[
din

Using Lemma R.2 with f (n)

P (d)
A

P (d)
d¢d

yielding
n! P (d)

FTICIR

o
n!

— and
nn

P
g(n)= n¢((’2 for all n € N, we get
P (n) ! \H D
ndm — [ (d_d) :
dln

yielding the desired result. O

Using Lemma 2.2, Lemma P.3, and
Theorem R.4, we obtain the formula for
P’ (n) as the following.

Theorem 2.5. For each positive integer
n > 2, we have P (n) =

n\ ¢(n/2) d! u(n/2d)
(5) dln/2) | 7a
ifn =0 (mod 4)
(d_l u(n/d)
—
)
¢(n)/2 A= 7
n [Lajn Jd-1/2
ifn = +1 (mod 4)
o(n/2) /2
(E) 2 (2] 2
2 2
1 u(n/2d)
d(d—l)--~(d+ )
[Lai(n/2) 2@D)3
ifn =2 (mod 4).
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Proof. We prove this formula by consider-
ing three possible cases.

Casel:n =0 (mod 4). Thenn and n/2 are
even. It follows that (x,n) = 1 if and only
if (x,n/2) = 1 for any positive integer x.
From Theorem @, we have

P(n)=l_Hx:1<x£g,(x,n)= }
n n
_ l<x< ,—):1}
{x =0y
=7 (3)
2
(n)¢(”/2) (d! )M(”/Zd)
AV —d
2 d|(n/2)

Case II: n = +1 (mod 4). Then n is odd.
For d|n, we define

de{x:1$x§g,(x,n)=d}.

Note that B; = 0 if and only if d = n, so we
let [T B, = 1. Clearly,

U3d={1,2,...,

d|n
Bd1 N Bd2 =0

n—1
2

and

for dy # ds. It follows that

(2
i=( ) [ 11184 @5
i=1 d|n
Next, we show that
F (R
By = dR, (3). (2.6)

Observe that R/1 (n/d) = 0 if and only if
d =n,sowelet P (1) = 1. If x € By, then
1 < x < n/2and (x,n) = d. It follows
that 1 < x/d < n/2d and (x/d,n/d) = 1.
Consequently, x/d € R,1 (n/d) and so
x € dR|(n/d). Ify € R|(n/d), then
1<y <n/2dand (y,n/d) = 1. It follows
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that 1 < d < dy < n/2and (dy,n) = d.

This implies that dy € By.

Ford|nwith d # n, we getn/d is odd
and n/d > 1. Using Lemma 2.3, we have

oot 2 fu2) o
- B

i (G-

I/\

I/\

(n/d)

Form (R.6), we obtain
52Tt 2
¢ (n/d) o
[1(3)
¢ (n/d)
E ()

It follows from (R.3) that

(“57) =TT T 11T 2
din
¢ (n/d)
[lo 2 # (Y
¢ (n/d)

dln
d<n
/ n
Mawd 2 P(3)
nl/2pP’ (1)

Maw (2)" P (@

nl/2 ’

by Eq. (2.2) and so

s B TR

din
P (d)
_ p@ 21 L4
=[ [ [ FTACIE
dln dln

233

= nh Zan 6@ ] P (d)
L Lget@r
n

P’ (d)
— ,n/2
=] | 492’
dln
by Lemma R.1|(ii). This shows that

)

_ 1—[ P (d)
d)/2°
a de(d/

n(n-1)/2
(n - 1)!
, 2
By Lemma R.2 with f (n) = D)3 and
P’ (n)
g(n)= PITSYE for all n € N, we get
d—1\ \Kn/d
= h
P'(n) l_l ( 2 )
né(m/2 dd-1/2
d|n
as desired.
Case III: n = 2 (mod 4). Then we can

write n = 2m for some odd integer m. Thus,
for any positive integer x, we have (x,n) =
1 if'and only if (x,m) = 1 and x is odd. We
also observe that (2y, m) = 1 if and only if
(y, m) = 1 for any positive integer y. Using
Lemma .2, Lemma P.3, Theorem P.4, and
Case II, we obtain

P’(n)=]_[{x:13xsg,(x,n)=1}
:l_l{x;lngm,(x,m):l,xisodd}
:H({x:lﬁxﬁm,(X,m)zl}\

{x|1<x<m, (x,m)=1,xiseven})
=l_l({x:1$x3m,(x,m)=1}\

{2y |1 <2y <m,(2y,m) = 1})
=l_[({x:1§xSm,(x,m):1}\

{2yl1<y< %,(y,m)ﬂ})
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_ [[{x:1<x<m,(x,m)=1}
M2y:l<y< 2. (om =1

a-1) a)

pal (1)
p“"“)

P

_ a(pu_pufl) -
P ( plaDpeT

N

_ P(m) pa(pa_Pu_l) . p((l—l)pa71 . pu'
~ 26(m)/2p’ (m) B pa-11. par®
om) dv\Himid =1 (ph )
m [Tam 7d = P .
B ( Pl 1) /D) T
bl [
2B (m) /2,y & (m) 2 M., 2 Propositioin. 3.2.. Let p be an odd prime and
Im 1" 4(d-1)/2 a be a positive integer. Then
(i) P (29) =
d+1 u(m/d) 2a—1 (2a—1 _ 1) . (2a—2 + 1)
" ¢(2m) d(d—l)---( ; ) =
= (5) ! FTEEVE foralla > 2.
m ’
(i) P (p?) = .
a _ a _ a—
6(nj2) ¢ (n/2) (P 1)(P 3)”.(19 +1)
~ (f) 5 1 5 2 2 2 .
- \2 2 (P12
d+1)\M2 Proof Let p be an odd prime and a b
dd-1)--- roof. Let p be an odd prime and a be a
positive integer.
diinf2) d(d+1)/2 ’ (i) Ifa > 2, then by Theorem R.3, we obtain
, b(20-1 d! u(2971/d)
) P (29) = (2“‘1) ) [ (ﬁ)
which completes the proof. O dJ2a-1
-2 u(2) -1 u(1)
3. Explicit formulae _ ola-1)p(247) ( 2477 ) ( 24771 )
— a-2 _ a-1
We now proceed to the last section. 2(a-2)2 2(a-1)2

In this section, we provide explicit formulae
for P (p?) and P (p?), where p is a prime
power, as in the following propositions.

Proposition 3.1. Let p be a prime and a be
a positive integer. Then

p(p*=1)---
pPe

P (p?) =

Proof. Let p be a prime and a be a positive
integer. By Theorem .4 and (2.1]), we ob-
tain

P(p*)=p*) [ ]

d|p*

d!

&

)#(P“/d)

234

2(a—1)(2“_1—2“_2) . 9(a=2)297% ga-1)
- 9a-2| . 9(a-1)241
2a—1 (Qa—l _ 1) . (2a—2 + 1)

22u72
(ii) By Theorem 2.9 and (2.1)), we obtain
(d -1 u(p?/d)
pa—
’ 2 )
ay — ,a¢(p®)/2
P () =r l_[ dd-1)/2
d|p¢
-1 u(p)
p -1 !
2

_ pa(p“—p“’l)/2 Y
D (pa-1)/2
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For positive integers n and k, let
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