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ABSTRACT
In this article, the authors introduce a mathematical model of the critical Coronavirus

Disease (Covid-19) situation in Thailand during March 2021 to August 2021. The work is
divided into three parts. Firstly, the model is formulated with a description of the parameters
defined in the model, the we compute the basic reproduction number (𝑅0) and study the lo-
cally asymptotically stability of its disease free equilibrium point, the existence of endemic
equilibrium point, and locally and globally asymptotically stability of its endemic equilib-
rium point. Secondly, we present a strategy using fixed point iterative methods for solving
a nonlinear dynamical problem in form of Green’s function for analysis of the parameters,
the existence and convergence theorems of solutions are shown by the fixed point theorem
techniques. Finally, the authors show the numerical to predict the future situation of coron-
avirus disease in Thailand contain 𝑅0 and give the conclusion of this work.

Keywords: Coronavirus; Equilibrium problem; Fixed point iteration; Green function

1. Introduction
A mathematical model is a descrip-

tion of real world functioning that uses

mathematical symbols, equations, and for-
mulas. Mathematical models are used in
numerous fields. In 1927 Kermack and
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Mckendrick [1] presented the epidemiolog-
ical models describing a virus or bacterial
agent that is directly transmissible to a close
population and comprising susceptible 𝑆,
invectives 𝐼, and recovers 𝑅. For certain
diseases, such as influenza and tuberculo-
sis, through adequate contact with an infec-
tious individual, a susceptible individual is
exposed for a certain time, in other words
infected but not contagious. Thus it is re-
alistic to introduce a latent compartment
usually denoted by 𝐸 , leading to an SEIR
model, a type of model that has been widely
discussed in recent decades [2, 3]. In De-
cember 2019, the fatal global coronavirus
pandemic, popularly known as COVID-19,
erupted in the ancient town ofWuhanHubei
Province, China and spread to several coun-
tries by 2020.

In January 2020 the coronavirus
(Covid-19) outbreak in Thailand has oc-
curred, as Thailand surveillance of people
traveling from China. And the virus epi-
demic has continued until now. Coron-
avirus disease 2019 is an emerging disease
that has a wide impact both in the econ-
omy and society. Studies and research to
develop the knowledge and innovations are
required in virus prevention and treatment
of coronavirus disease 2019.

In 2020, Chen et al [4] introduced
a mathematical model for simulating the
transmissibility of a coronavirus in Wuhan
and estimating the basic reproduction num-
ber. In 2021 Idris et al [5], introduced a
mathematical model of COVID-19 contain-
ing asymptomatic and symptomatic classes
in Nigeria. A mathematical model using
both the ordinary differential equation and
fractional differential equation to estimate
the basic reproduction number (See more
model A. Hussain et al. in [6]). Recently
Abukhaled and Khuri [7] and Muangchoo-
in et al [8], present a strategy based on fixed

point iterative methods to solve a nonlin-
ear dynamical problem in a form of Green’s
function with boundary value problems.

Motivated by these works, this arti-
cle is organized as follows: in Section 2,
we present our model and formulate the
model with a description of the parame-
ters identified in the model. In Section 3,
we obtain the invariant region. Moreover,
we calculate the basic reproduction number
𝑅0 and study the disease free equilibrium
(DFE), local stability, the existence of en-
demic equilibrium 𝐸1, local stability of the
endemic equilibrium, and global stability of
the endemic equilibrium. In Section 4, we
introduce a strategy based on fixed point it-
erativemethods to solve a nonlinear dynam-
ical problem in the form of Green’s func-
tion for analysis of the parameters; the ex-
istence and convergence theorems of solu-
tions are shown via the techniques of fixed
point theorems. In Section 5, we present the
numerical model by using real data of Thai-
land (March 2021 - August 2021) to predict
the future (1 September 2021 - 19 October
2021), all data calculate from Department
of Disease Control, Thailand.

2. Model formulation
In this article, the coronavirus

(COVID-19) model based on a simple
transmission rate is considered. Let 𝑁 (𝑡)
be the total population of humans, divided
into six classes: susceptible individuals
𝑆(𝑡), exposed individuals 𝐸 (𝑡), asymp-
totically infected but reported individuals
𝐼𝐴(𝑡), symptomatic infected and reported
individuals 𝐼 (𝑡), quarantined Infected
and reported individuals 𝑄(𝑡), and in-
dividuals that have recovered/remove
from COVID-19 𝑅(𝑡). According to
consideration, the total population is
𝑁 (𝑡) = 𝑆(𝑡)+𝐸 (𝑡)+𝐼𝐴(𝑡)+𝐼 (𝑡)+𝑄(𝑡)+𝑅(𝑡),
where 𝑡 ≥ 0.
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The natural human natality and mor-
tality rates are designated as∧ and 𝛿 respec-
tively. Susceptible individuals (𝑆) get in-
fected from enough contact with exposed
individuals (𝐸) at the rate of 𝜂. The ex-
posed individuals (𝐸) may get infected
without symptoms (asymptomatic) (𝐼𝐴) or
with symptoms (symptomatic) (𝐼) at the
rates of 𝜃, where 𝜉 is incubation rate of
exposed individuals. Also, those asymp-
tomatic infected (𝐼𝐴) may be confirmed in-
fected then move to quarantined individuals
(𝑄) at rate of 𝑚1 or show symptoms then
move to individuals (𝐼) at rate of 𝑚3 or re-
move to (𝑅) at rate of 𝑟1. Symptomatic in-
dividuals (𝐼) will move to quarantined in-
dividuals (𝑄) at rate of 𝑚2. When (𝐼) and
(𝐼𝐴) were confirmed infected then move
to quarantined individuals (𝑄) then it able
to recover at (𝑅) at rate of 𝑟2, where 𝜈 is
death rate due to COVID-19. Each class
may decrease as a result of natural mortal-
ity 𝛿, while the class of individuals infected
with symptoms (𝐼) and symptoms (asymp-
tomatic) (𝐼𝐴) may also decrease as a result
of death from the disease at the rate of 𝜈.
The possibility of reinfection after recovery
has not been considered in this model.

Fig. 1, below depicts the schematic
diagram showing the spread of COVID-19.

Fig. 1. Example how to insert figures.

The schematic diagram show in Fig.
1, a system of nonlinear differential equa-
tions is obtained and presented below (see
Table 1):



𝑑𝑆

𝑑 (𝑡) = ∧ − 𝜂𝑆𝐸 − 𝛿𝑆,

𝑑𝐸

𝑑𝑡
= 𝜂𝑆𝐸 − (𝛿 + 𝜉)𝐸,

𝑑𝐼𝐴
𝑑𝑡

= 𝜉𝜃𝐸 − (𝛿 + 𝜈 + 𝑚1 + 𝑚3 + 𝑟1)𝐼𝐴,
𝑑𝐼

𝑑𝑡
= 𝜉 (1 − 𝜃)𝐸 + 𝑚3𝐼𝐴 − (𝛿 + 𝜈 + 𝑚2)𝐼,

𝑑𝑄

𝑑𝑡
= 𝑚1𝐼𝐴 + 𝑚2𝐼 − (𝑟2 + 𝜈)𝑄,

𝑑𝑅

𝑑𝑡
= 𝑟1𝐼𝐴 + 𝑟2𝑄 − 𝛿𝑅,

(2.1)
subject to following initial condition :

𝑆(0) ≥ 0,𝐸 (0) ≥ 0, 𝐼𝐴(0) ≥ 0, 𝐼 (0) ≥ 0,

𝑄(0) ≥ 0, 𝑅(0) ≥ 0.
(2.2)

Table 1. Description of state variables.
Compartment and Parameter Description

𝑆 Susceptible Individuals
𝐸 Exposed Individuals
𝐼𝐴 Asymptomatic Infected Individuals
𝐼 symptomatic Infected Individuals
𝑄 Quarantine Infected, detected and reported Individuals
𝑅 Recovered Individuals
∧ Recruitment rate
𝛿 Natural death rate
𝜈 Death rate due to COVID-19
𝜂 Transmission probability during contact
𝜉 Incubation rate of an exposed individuals
𝜃 Fraction of exposed individuals that becomes asymptomatic infected
𝑚1 Rate of quarantine of asymptomatic infected individuals
𝑚2 Rate of quarantine of symptomatic infected individuals
𝑚3 Rate of transmission from asymptomatic to symptomatic infected individuals
𝑟1 Natural recovery rate of asymptomatic individuals
𝑟2 Recovery rate of quarantine individuals
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3. Analysis of the model
This section presents the computa-

tion and presentation of basic reproduction
number for the proposed model (2.1) and
studies the locally asymptotically stability
of disease free equilibrium (Theorem 3.1),
unique endemic equilibrium point (Theo-
rem 3.2), locally asymptotically stability
of unique endemic equilibrium point (The-
orem 3.3), globally asymptotically stable
(Theorem 3.4 and Theorem 3.5).

3.1 At invariant region
The model (2.1) state the parameters

𝑆(𝑡), 𝐸 (𝑡), 𝑄(𝑡), 𝐼𝐴(𝑡), 𝐼 (𝑡), 𝑅(𝑡) are non-
negative for all 𝑡 ≥ 0. Solution with posi-
tive initial data remains positive for all 𝑡 ≥ 0
and are bounded. Let start systems (2.1) get
𝑑𝑁
𝑑𝑡 = ∧−𝛿𝑁 (𝑡)−𝜈𝐼 (𝑡) and sup𝑡→∞ 𝑁 (𝑡) ≤
∧
𝛿 . So we study the system (2.1) in the fol-
lowing feasible region:

Ω ={(𝑆(𝑡), 𝐸 (𝑡), 𝐼𝐴(𝑡), 𝐼 (𝑡), 𝑄(𝑡), 𝑅(𝑡)) ∈ R6+
: 0 ≤ 𝑁 (𝑡) ≤ ∧

𝛿
}.

(3.1)
(3.1) is now positive invariant in rela-

tion to (2.1). Meaning the proposed model
(2.1) is epidemiologically well posed and
all solutions of the system with all param-
eters in Ω.

3.2 Disease free equilibriumpoint (DFE)
Set 𝐸 = 𝐼𝐴 = 𝐼 = 𝑄 = 𝑅 = 0 the

disease free equilibrium is obtained :

𝐷𝐹𝐸 = (𝑆0, 0, 0, 0, 0) = ( ∧
𝛿
, 0, 0, 0, 0, 0).

(3.2)
Next, the basic reproduction number (𝑅0) is
the expected value of infection rate per time
unit. The infection occurs in a susceptible
population. If, 𝑅0 < 1 implies that disease
will decline, 𝑅0 > 1 implies that disease
will persist and 𝑅0 = 1 requires further in-

vestigation. 𝑅0 is obtained using the next
generation matrix approach [9].

We use the next generation matrix
start from (2.1) only classes of 𝐸, 𝐼𝐴, 𝐼, 𝑄:



𝑑𝐸

𝑑𝑡
= 𝜂𝑆𝐸 − (𝛿 + 𝜉)𝐸,

𝑑𝐼𝐴
𝑑𝑡

= 𝜉𝜃𝐸 − (𝛿 + 𝜈 + 𝑚1 + 𝑚3 + 𝑟1)𝐼𝐴,
𝑑𝐼

𝑑𝑡
= 𝜉 (1 − 𝜃)𝐸 + 𝑚3𝐼𝐴 − (𝛿 + 𝜈 + 𝑚2)𝐼,

𝑑𝑄

𝑑𝑡
= 𝑚1𝐼𝐴 + 𝑚2𝐼 − (𝑟2 + 𝜈)𝑄.

(3.3)
From (3.3), the study generates ma-

trix F and V, i.e.

F =
©­­­«
𝜂𝑆(𝑡)𝐸 (𝑡)

0
0
0

ª®®®¬
and

V =
©­­­«

(𝛿 + 𝜉)𝐸 (𝑡)
(𝛿 + 𝜈 + 𝑚1 + 𝑚3)𝐼𝐴(𝑡) − 𝜉𝜃𝐸 (𝑡)

(𝛿 + 𝜈 + 𝑚2)𝐼 (𝑡) − 𝜉 (1 − 𝜃)𝐸 (𝑡) − 𝑚3𝐼𝐴(𝑡)
(𝜈 + 𝑟2)𝑄(𝑡) − 𝑚1𝐼𝐴(𝑡) − 𝑚2𝐼 (𝑡).

ª®®®¬
The Jacobian matrix of F and V at

DFE, denoted by F and V is given as fol-
lows

F =
©­­­«
𝜂 ∧
𝛿 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

ª®®®¬
and

V =
©­­­«
𝑉11 0 0 0
−𝜉𝜃 𝑉22 0 0
−𝑉31 −𝑚3 𝑉33 0
0 −𝑚1 −𝑚2 𝑉44

ª®®®¬
where, 𝑉11 = 𝛿 + 𝜉,𝑉22 = 𝛿 + 𝜈 + 𝑚1 +
𝑚3, 𝑉31 = 𝜉 (1 − 𝜃), 𝑉33 = 𝛿 + 𝜈 +𝑚2, 𝑉44 =
𝜈 + 𝑟2.
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Then

FV−1 =
©­­­«

𝜂∧
𝛿 (𝛿+𝜉 ) 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

ª®®®¬ .
Therefore, FV−1 is the next genera-

tion matrix of the model (3.3). So as de-
scribed in [9], 𝑅0 = 𝜌(FV−1) where 𝜌
stands for spectral radius of the next gen-
eration matrix FV−1. Thus,

𝜌(FV−1) = 𝑅0 =
𝜂∧

𝛿(𝛿 + 𝜉) > 0. (3.4)

3.3 Local stability analysis of disease
free equilibrium.
Theorem 3.1. if 𝑅0 < 1 then the disease
free equilibrium point is locally asymptoti-
cally stable.

Proof. The Jacobian matrix with respect to
the system (2.1) is given by

𝐽 =

©­­­­­­­«

𝐽11 −𝜂𝑆 0 0 0 0
𝜂𝐸 𝐽22 0 0 0 0
0 𝜉𝜃 −𝐽33 0 0 0
0 𝑉31 𝑚3 −𝑉33 0 0
0 0 𝑚1 𝑚2 −𝑉44 0
0 0 𝑟1 0 𝑟2 −𝛿

ª®®®®®®®¬
,

where 𝐽11 = −𝜂𝐸 − 𝛿, 𝐽22 = 𝜂𝑆 − (𝛿 +
𝜉), 𝐽33 = (𝛿 + 𝜈 + 𝑚1 + 𝑚3 + 𝑟1), which
implies at DFE

𝐽𝐷𝐹𝐸 =

©­­­­­­­«

−𝛿 −𝜂 ∧
𝛿 0 0 0 0

0 𝐽𝐽22 0 0 0 0
0 𝜉𝜃 −𝐽33 0 0 0
0 𝑉31 𝑚3 −𝑉33 0 0
0 0 𝑚1 𝑚2 −𝑉44 0
0 0 𝑟1 0 𝑟2 −𝛿

ª®®®®®®®¬
,

where, 𝐽𝐽22 = 𝜂 ∧
𝛿 (𝛿 + 𝜉).

The characteristic polynomial of the
Jacobian matrix at DFE is given by

𝑑𝑒𝑡 (𝐽𝐷𝐹𝐸 − 𝜆𝐼) = 0, where 𝜆 is the eigen-
value and I is a 6 × 6 identity matrix. Thus,
𝑑𝑒𝑡 (𝐽𝐷𝐹𝐸 − 𝜆𝐼) is������������

−𝛿 − 𝜆 −𝜂 ∧
𝛿 0 0 0 0

0 𝐷22 0 0 0 0
0 𝜉𝜃 𝐷33 0 0 0
0 𝑉31 𝑚3 𝐷44 0 0
0 0 𝑚1 𝑚2 𝐷55 0
0 0 𝑟1 0 𝑟2 −𝛿 − 𝜆

������������
,

where, 𝐷22 = 𝐽𝐽22 − 𝜆, 𝐷33 = −𝐽33 −
𝜆, 𝐷44 = −𝑉33 − 𝜆, 𝐷55 = −𝑉44 − 𝜆.

Simplifying and solving for 𝜆, gives

𝜆1 = −𝛿 < 0

𝜆2 = −𝐽33 = −(𝛿 + 𝜈 + 𝑚1 + 𝑚3 + 𝑟1) < 0

𝜆3 = −𝑉33 = (𝛿 + 𝜈 + 𝑚2) < 0

𝜆4 = −𝑉44 = −(𝑟2 + 𝜈) < 0

𝜆5 = −𝛿 < 0

𝜆6 = 𝑉11(𝑅0 − 1) = (𝛿 + 𝜉) (𝑅0 − 1) < 0.
(3.5)

Then 𝑅0 < 1 this completes the
proof.

□

3.4 Existence of endemic equilibrium
point.

We focus the existence of
endemic equilibrium point. Let
𝐸1 = (𝑆∗, 𝐸∗, 𝐼∗𝐴, 𝐼

∗, 𝑄∗, 𝑅∗) is the endemic
equilibrium point. For simplicity, 𝑆(𝑡) =
𝑆, 𝐸 (𝑡) = 𝐸, 𝐼𝐴(𝑡) = 𝐼𝐴, 𝐼 (𝑡), 𝐼, 𝑄(𝑡) = 𝑄
and 𝑅(𝑡) = 𝑅, then endemic equilibrium
satisfies



0 = ∧ − 𝜂𝑆∗𝐸∗ − 𝛿𝑆∗,
0 = 𝜂𝑆∗𝐸∗ − (𝛿 + 𝜉)𝐸∗,

0 = 𝜉𝜃𝐸∗ − (𝛿 + 𝜈 + 𝑚1 + 𝑚3 + 𝑟1)𝐼∗𝐴,
0 = 𝜉 (1 − 𝜃)𝐸∗ + 𝑚3𝐼

∗
𝐴 − (𝛿 + 𝜈 + 𝑚2)𝐼∗,

0 = 𝑚1𝐼
∗
𝐴 + 𝑚2𝐼

∗ − (𝑟2 + 𝜈)𝑄∗,

0 = 𝑟1𝐼
∗
𝐴 + 𝑟2𝑄∗ − 𝛿𝑅∗,

(3.6)
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From the first Equation of (3.6), we
obtain

𝑆∗ =
∧

𝜂𝐸∗ + 𝛿 . (3.7)

Inserting (3.7) in the second equation of
(3.6), we get

𝐸∗ =
𝛿

𝜂
(𝑅0 − 1), (3.8)

substituting 𝐸∗ in (3.7), yields

𝑆∗ =
𝑉11
𝜂
. (3.9)

Using (3.8) and (3.9) in the third equation
(3.6), gives

𝐼∗𝐴 =
𝜉𝜃𝛿

𝜂𝐽33
(𝑅0 − 1). (3.10)

Substituting (3.8) and (3.9) in the fourth
equation (3.6), gives

𝐼∗ =
𝜉𝛿((1 − 𝜃)𝐽33 + 𝑚3𝜃)

𝜂𝑉33𝐽33
(𝑅0 − 1).

(3.11)
Inserting equations (3.10), (3.11) in (3.6),
we get

𝑄∗ =
𝜉𝛿[𝑚1𝑉33 +𝑄1 +𝑄2𝐽33]

𝜂𝑉44𝐽33𝑉33
(𝑅0 − 1),

(3.12)
where 𝑄1 = 𝑚2𝑚3𝜃, 𝑄2 = 𝑚2(1 − 𝜃).

Bringing equations (3.10), (3.11) and
(3.12) into the last equation (3.6), yields

𝑅∗ = 𝜉
𝑟1𝜃𝑉44𝑉33
𝜂𝑉44𝐽33𝑉33

× 𝑟2{𝑚1𝑉33 +𝑄1 +𝑄2𝐽33}
𝜂𝑉44𝐽33𝑉33

× (𝑅0 − 1). (3.13)

Thus, we get a conclusion in the follwing
theorem.

Theorem 3.2. The system (2.1) has unique
endemic equilibrium point given by

𝐸1 =
( 𝛿 + 𝜉
𝜂

,
𝛿

𝜂
(𝑅0 − 1), 𝑎(𝑅0 − 1), 𝑏(𝑅0 − 1),(𝑎𝑚1 + 𝑏𝑚2

𝜈 + 𝑟2
)
(𝑅0 − 1),

(𝑟1𝑎 + 𝑟2𝑐
𝛿

)
(𝑅0 − 1)

)
,

where 𝑅0 > 1 and

𝑎 =
𝜉𝜃𝛿

𝜂(𝛿 + 𝜈 + 𝑚1 + 𝑚3 + 𝑟1)
,

𝑏 =
𝜉𝛿((1 − 𝜃) (𝛿 + 𝜈 + 𝑚1 + 𝑚3 + 𝑟1) + 𝑚3𝜃)
𝜂(𝛿 + 𝜈 + 𝑚2) (𝛿 + 𝜈 + 𝑚1 + 𝑚3 + 𝑟1)

,

𝑐 =
𝑎𝑚1 + 𝑏𝑚2

𝜈 + 𝑟2
.

3.5 Local stability analysis of the en-
demic equilibrium 𝐸1

Theorem 3.3. If 𝑅0 > 1, the endemic equi-
librium 𝐸1 is locally asymptotically stable.

Proof. The Jacobian matrix with respect to
the system (2.1) is

𝐽 =

©­­­­­­­«

𝐽11 −𝜂𝑆 0 0 0 0
𝜂𝐸 𝐽22 0 0 0 0
0 𝜉𝜃 −𝐽33 0 0 0
0 𝑉31 𝑚3 −𝑉33 0 0
0 0 𝑚1 𝑚2 −𝑉44 0
0 0 𝑟1 0 𝑟2 −𝛿

ª®®®®®®®¬
which implies at 𝐸1

𝐽𝐸1 =

©­­­­­­­«

−𝛿𝑅0 −𝑉11 0 0 0 0
𝐽𝐸21 0 0 0 0 0
0 𝜉𝜃 −𝐽33 0 0 0
0 𝑉31 𝑚3 −𝑉33 0 0
0 0 𝑚1 𝑚2 −𝑉44 0
0 0 𝑟1 0 𝑟2 −𝛿

ª®®®®®®®¬
where 𝐽𝐸21 = 𝛿(𝑅0 − 1).

The characteristic polynomial of the
Jacobian matrix at 𝐸1 is given by 𝑑𝑒𝑡 (𝐽𝐸1 −
𝜆𝐼) = 0, where 𝜆 is the eigenvalue and I is
6 × 6 identity matrix. Thus, 𝑑𝑒𝑡 (𝐽𝐸1 − 𝜆𝐼)
is

220



K. Muangchoo-in et al. | Science & Technology Asia | Vol.27 No.4 October - December 2022

=

������������

𝐸11 −𝑉11 0 0 0 0
𝐽𝐸21 −𝜆 0 0 0 0
0 𝜉𝜃 𝐸33 0 0 0
0 𝑉31 𝑚3 𝐸44 0 0
0 0 𝑚1 𝑚2 𝐸55 0
0 0 𝑟1 0 𝑟2 −𝛿 − 𝜆

������������
where 𝐸11 = −𝛿𝑅0 − 𝜆, 𝐸33 = −𝐽33 −
𝜆, 𝐸44 = −𝑉33 − 𝜆, 𝐸55 = −𝑉44 − 𝜆

=[𝜆2 + 𝜆𝛿(𝑅0 − 1) + 𝜆𝛿 + 𝛿(𝑅0 − 1)𝑉11]
[−𝐽33 − 𝜆]
[−𝑉33 − 𝜆] [−𝑉44 − 𝜆] [−𝛿 − 𝜆]

=[𝜆2 + 𝜆𝛿(𝑅0 − 1) + 𝜆𝛿 + 𝛿(𝑅0 − 1) (𝛿 + 𝜉)]
[−(𝛿 + 𝜈 + 𝑚1 + 𝑚3 + 𝑟1) − 𝜆]
[−(𝛿 + 𝜈 + 𝑚2) − 𝜆] [−(𝑟2 + 𝜈) − 𝜆] [−𝛿 − 𝜆] .

Simplifying the characteristic poly-
nomial and solving for 𝜆, gives

𝜆1 = −𝛿 < 0

𝜆2 = −(𝑟2 + 𝜈) < 0

𝜆3 = −(𝛿 + 𝜈 + 𝑚2) < 0

𝜆4 = −(𝛿 + 𝜈 + 𝑚1 + 𝑚3 + 𝑟1) < 0.

The quadratic 𝜆2 +𝜆𝛿(𝑅0 − 1) +𝜆𝛿 +
𝛿(𝑅0 − 1)(𝛿 + 𝜉) has all positive terms and
thus, its root must all be negative. Then 𝜆5,
𝜆6 < 0, completes the proof. □

3.6 Global stability analysis of the en-
demic equilibrium 𝐸1

Theorem 3.4. The endemic equilibrium 𝐸1

for the system (2.1) is globally asymptoti-
cally stable whenever 𝑅0 > 1.

Proof. To show global stability at 𝐸1 of the
system, consider the Lyapunov function,

𝑈 (𝑆, 𝐸, 𝐼𝐴, 𝐼, 𝑄, 𝑅) =
1

3
(𝑆 − 𝑆∗ + 𝐸 − 𝐸∗ + 𝐼𝐴

− 𝐼∗𝐴 +𝑄 −𝑄∗ + 𝑅 − 𝑅∗)3.

It easy to see that𝑈 is positive for any
point and equal to zero at the endemic equi-
librium 𝐸1 if 𝑆 = 𝑆∗, 𝐸 = 𝐸∗, 𝐼𝐴 = 𝐼∗𝐴, 𝐼 =
𝐼∗, 𝑄 = 𝑄∗ and 𝑅 = 𝑅∗. Then consider,

𝑑𝑈

𝑑𝑡
= (𝑆 − 𝑆∗ + 𝐸 − 𝐸∗ + 𝐼𝐴 − 𝐼∗𝐴 +𝑄 −𝑄∗

+ 𝑅 − 𝑅∗)2 (∧ − 𝛿𝑆 − 𝛿𝐸 − (𝛿 + 𝜈 + 𝑚3)𝐼𝐴
+ 𝑚2𝐼 − 𝜈𝑄 − 𝛿𝑅)

= −(𝑆 −∗ +𝐸 − 𝐸∗ + 𝐼𝐴 − 𝐼∗𝐴 +𝑄 −𝑄∗

+ 𝑅 − 𝑅∗)2 (𝑀 − 𝑁),

where𝑀 = 𝛿𝑆+𝛿𝐸+(𝛿+𝜈+𝑚3)𝐼𝐴+𝜈𝑄+𝛿𝑅
and 𝑁 = ∧ + 𝑚2𝐼 .

So 𝑑𝑈
𝑑𝑡 < 0 if and only if 𝑀 > 𝑁 and

𝑑𝑈
𝑑𝑡 = 0 if and only if 𝑆 = 𝑆∗, 𝐸 = 𝐸∗, 𝐼𝐴 =
𝐼∗𝐴, 𝐼 = 𝐼∗, 𝑄 = 𝑄∗ and 𝑅 = 𝑅∗. Then the
endemic equilibrium 𝐸1 is globally asymp-
totically stable.

□

3.7 Global stability analysis at disease
free equilibrium
Theorem 3.5. The disease free equilibrium
for the system (2.1) is globally asymptoti-
cally stable whenever 𝑅0 < 1.

Proof. To show global stability at DFE of
the system, consider the Lyapunov func-
tion,

𝑈 (𝑆, 𝐸, 𝐼𝐴, 𝐼, 𝑄, 𝑅) =
1

3
(𝑆 − 𝑆0 + 𝐸 − 𝐸0 + 𝐼𝐴

− 𝐼𝐴0
+𝑄 −𝑄0 + 𝑅 − 𝑅0)3.

It easy to see that𝑈 is positive for any point
and equal to zero at disease free equilibrium
point(𝑆 = 𝑆0, 𝐸 = 𝐼𝐴 = 𝐼 = 𝑄 = 𝑅 = 0).
Then consider,

𝑑𝑈

𝑑𝑡
= (𝑆 − 𝑆0 + 𝐸 − 𝐸0 + 𝐼𝐴 − 𝐼𝐴0

+𝑄 −𝑄0

+ 𝑅 − 𝑅0)2 (∧ − 𝛿𝑆 − 𝛿𝐸 − (𝛿 + 𝜈 + 𝑚3)𝐼𝐴
+ 𝑚2𝐼 − 𝜈𝑄 − 𝛿𝑅)

= −(𝑆 − 𝑆0 + 𝐸 − 𝐸0 + 𝐼𝐴 − 𝐼𝐴0
+𝑄 −𝑄0

+ 𝑅 − 𝑅0)2 (𝑀 − 𝑁)
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where𝑀 = 𝛿𝑆+𝛿𝐸+(𝛿+𝜈+𝑚3)𝐼𝐴+𝜈𝑄+𝛿𝑅
and 𝑁 = ∧ + 𝑚2𝐼 .

So 𝑑𝑈
𝑑𝑡 < 0 if and only if 𝑀 > 𝑁 and

𝑑𝑈
𝑑𝑡 = 0 if and only if 𝑆 = 𝑆0, 𝐸 = 𝐸0, 𝐼𝐴 =
𝐼𝐴0 , 𝐼 = 𝐼0, 𝑄 = 𝑄0 and 𝑅 = 𝑅0. Then, the
disease free equilibrium is globally asymp-
totically stable. □

4. Green’s Function of the Model
4.1 Overview of Green’s function for
first order differential equation

Consider the first order differential
equation decomposed into a linear term
𝐿 (𝑦) and a nonlinear(or linear) term 𝑓 (𝑡, 𝑦)
as follow

𝐿 [𝑦] ≡ 𝑦′ + 𝑝(𝑡)𝑦 = 𝑓 (𝑡, 𝑦), for 𝑡 > 𝑎,
(4.1)

subject to a homogeneous initial con-
dition, 𝐵[𝑦] ≡ 𝑦(𝑎) = 0.

The Green function𝐺 (𝑡 |𝑧) is defined
as the solution to

𝐿 [𝐺 (𝑡, 𝑧)] = 𝛿(𝑡−𝑧) subject to 𝐺 (𝑎, 𝑧) = 0.

A particular solution to
𝑦′ = 𝑓 (𝑡, 𝑦, 𝑦′) is expressed in terms
of𝐺 and is given by the following structure

𝑦(𝑡) =
∫ ∞

𝑎
𝐺 (𝑡, 𝑧) 𝑓 (𝑡, 𝑦(𝑡))𝑑𝑡. (4.2)

Now we consider the qualitiative be-
havior of the Green function. For 𝑡 ≠ 𝑧, the
Green function is simply a homogeneous
solution of the differential equation; how-
ever at 𝑡− 𝑧 we expect some singular behav-
ior. 𝐺 ′(𝑡, 𝑧) will have a Dirac delta function
type singularity. This means that 𝐺 (𝑡, 𝑧)
will have a jump discontinuity at 𝑡 = 𝑧.

𝐺 (𝑧+, 𝑧) − 𝐺 (𝑧−, 𝑧) = 1 (4.3)

The homogeneous solution of the dif-
ferential equation is

𝑦ℎ = 𝑒−
∫
𝑝 (𝑡)𝑑𝑡 .

Since the Green function satisfies the
homogeneous equation for 𝑡 ≠ 𝑧, it will be
a constant times this homogeneous solution
for 𝑡 < 𝑧 and 𝑡 > 𝑧.

𝐺 (𝑡, 𝑧) =
{
𝑐1𝑒

−
∫
𝑝 (𝑡)𝑑𝑡 for 𝑎 < 𝑡 < 𝑧,

𝑐2𝑒
−
∫
𝑝 (𝑡)𝑑𝑡 for 𝑧 < 𝑡,

where 𝑝(𝑡) coefficient function of 𝑦(𝑡). In
order to satisfy the homogeneous initial
condition 𝐺 (𝑎, 𝑧) = 0 and the jump con-
dition, gives us the constraint 𝐺 (𝑧+, 𝑧) = 1.
We can use the Green function in term

𝐺 (𝑡, 𝑧) = 𝑒−
∫ 𝑡

𝑧
𝑝 (𝑥)𝑑𝑥 . (4.4)

4.2 Construct Green’s Picard iteration
The Green’s function apply to Picard

iterative method, we recall the following
differential equation

𝐿 [𝑦] + 𝑁 [𝑦] = 𝑓 (𝑡, 𝑦), (4.5)

where 𝐿 [𝑦] is a linear operator in 𝑦, 𝑁 [𝑦]
is a nonlinear operator in 𝑦, and 𝑓 (𝑡, 𝑦) is
a linear or nonlinear function in 𝑦. Let 𝑦𝑝
be a particular solution of (4.5). We define
the linear integral operator in terms of the
Green’s function and the particular solution
𝑦𝑝 as

𝐾 [𝑦𝑝] =
∫ 𝑏

𝑎
𝐺 (𝑡, 𝑧)𝐿 [𝑦𝑝]𝑑𝑧. (4.6)

Here 𝐺 is the Green’s function correspond-
ing to the linear differential operator 𝐿 [𝑦] .
For convenience we set 𝑦𝑝 (𝑡) = 𝑣(𝑡).
Adding and subtracting 𝑁 [𝑣]− 𝑓 (𝑧, 𝑣) from
within the integral in (4.6) yields
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𝐾 [𝑣] =
∫ 𝑏

𝑎
𝐺 (𝑡, 𝑧)

(
𝐿 [𝑣] + 𝑁 [𝑣] − 𝑓 (𝑧, 𝑣)

)
𝑑𝑧

+
∫ 𝑏

𝑎
𝐺 (𝑡, 𝑧)

(
𝑓 (𝑧, 𝑣) − 𝑁 [𝑣]

)
𝑑𝑧,

= 𝑣 +
∫ 𝑏

𝑎
𝐺 (𝑡, 𝑧)

(
𝐿 [𝑣] + 𝑁 [𝑣]

− 𝑓 (𝑧, 𝑣)
)
𝑑𝑧.

(4.7)
We apply Picard iterative form

𝑣(𝑡𝑛+1) = 𝐾 [𝑣(𝑡𝑛)], (4.8)

where 𝑛 ≥ 0. That is,

𝐾 [𝑣(𝑡𝑛)] =
∫ 𝑏

𝑎
𝐺 (𝑡𝑛, 𝑧)

(
𝐿 [𝑣(𝑡𝑛)] + 𝑁 [𝑣(𝑡𝑛)]

− 𝑓 (𝑧, 𝑣(𝑡𝑛))
)
𝑑𝑧 +

∫ 𝑏

𝑎
𝐺 (𝑡𝑛, 𝑧)(

𝑓 (𝑧, 𝑣(𝑡𝑛)) − 𝑁 [𝑣(𝑡𝑛)]
)
𝑑𝑧,

= 𝑣(𝑡𝑛) +
∫ 𝑏

𝑎
𝐺 (𝑡𝑛, 𝑧)

(
𝐿 [𝑣(𝑡𝑛)]

+ 𝑁 [𝑣(𝑡𝑛)] − 𝑓 (𝑧, 𝑣(𝑡𝑛))
)
𝑑𝑧.
(4.9)

Next, we construct all parameter sequences
of (2.1) to Green’s Picard iteration

𝑆(𝑡𝑛+1) = 𝑆(𝑡𝑛) +
∫ ∞

𝑎
𝐺𝑆 (𝑡𝑛, 𝑧)

[
𝑆′𝑡𝑛 (𝑧)

+ (𝜂𝐸𝑡𝑛 (𝑧) + 𝛿)𝑆𝑡𝑛 (𝑧) − ∧
]
𝑑𝑧,

𝐸 (𝑡𝑛+1) = 𝐸 (𝑡𝑛) +
∫ ∞

𝑎
𝐺𝐸 (𝑡𝑛, 𝑧)

[
𝐸 ′
𝑡𝑛 (𝑧)

− (𝜂𝑆𝑡𝑛 (𝑧) − 𝛿 − 𝜉)𝐸𝑡𝑛 (𝑧)
]
𝑑𝑧,

𝐼𝐴(𝑡𝑛+1) = 𝐼𝐴(𝑡𝑛) +
∫ ∞

𝑎
𝐺 𝐼𝐴 (𝑡𝑛, 𝑧)

[
𝐼 ′𝐴𝑡𝑛

(𝑧)

+ (𝛿 + 𝜈 + 𝑚1 + 𝑚3 + 𝑟1)𝐼𝐴𝑡𝑛
(𝑧)

− 𝜉𝜃𝐸𝑡𝑛 (𝑧)
]
𝑑𝑧,

𝐼 (𝑡𝑛) = 𝐼 (𝑡𝑛) +
∫ ∞

𝑎
𝐺 𝐼 (𝑡𝑛, 𝑧)

[
𝐼 ′𝑡𝑛 (𝑧)

+ (𝛿 + 𝜈 + 𝑚2)𝐼𝑡𝑛 (𝑧) − 𝜉 (1 − 𝜃)𝐸𝑡𝑛 (𝑧)
− 𝑚3𝐼 𝐴𝑡𝑛 (𝑧)

]
𝑑𝑧,

𝑄(𝑡𝑛) = 𝑄(𝑡𝑛) +
∫ ∞

𝑎
𝐺𝑄 (𝑡𝑛, 𝑧)

[
𝑄 ′

𝑡𝑛 (𝑧)

+ (𝑟2 + 𝜈)𝑄𝑡𝑛 (𝑧) − 𝑚1𝐼𝐴𝑡𝑛
(𝑧)

− 𝑚2𝐼𝑡𝑛 (𝑧)
]
𝑑𝑧,

𝑅(𝑡𝑛+1) = 𝑅(𝑡𝑛) +
∫ ∞

𝑎
𝐺𝑅 (𝑡𝑛, 𝑧)

[
𝑅′
𝑡𝑛 (𝑧)

+ 𝛿𝑅𝑡𝑛 (𝑧) − 𝑟1𝐼𝐴𝑡𝑛
(𝑧) − 𝑟2𝑄𝑡𝑛 (𝑧)

]
𝑑𝑧.

(4.10)
For 𝑛 ≥ 0, and

𝐺𝑆 (𝑡𝑛, 𝑧) = 𝑒−
∫ 𝑡𝑛
𝑧

(𝜂𝐸𝑡𝑛 (𝑥)+𝛿)𝑑𝑥 ,

𝐺𝐸 (𝑡𝑛, 𝑧) = 𝑒−
∫ 𝑡𝑛
𝑧

(𝛿+𝜉−𝜂𝑆𝑡𝑛 (𝑥))𝑑𝑥 ,

𝐺 𝐼𝐴 (𝑡𝑛, 𝑧)) = 𝑒
−
∫ 𝑡𝑛
𝑧

(𝛿+𝜈+𝑚1+𝑚3+𝑟1)𝑑𝑥 ,

𝐺 𝐼 (𝑡𝑛, 𝑧) = 𝑒−
∫ 𝑡𝑛
𝑧

(𝛿+𝜈+𝑚2)𝑑𝑥 ,

𝐺𝑄 (𝑡𝑛, 𝑧) = 𝑒−
∫ 𝑡𝑛
𝑧

(𝑟2+𝜈)𝑑𝑥 ,

𝐺𝑅 (𝑡𝑛, 𝑧) = 𝑒−
∫ 𝑡𝑛
𝑧

𝛿𝑑𝑥 .
(4.11)

4.3 Existence and convergence theorems
for Green’s Picard iteration

In Theorem 4.1 we define and prove
that the operator 𝑃𝐺Ω is a contraction map-
ping. Then all sequences defined by Pi-
card iteration converge strongly to the fixed
point of 𝑃𝐺Ω . Now, we introduce the fol-
lowing continuous functions 𝑃𝐺Ω , defined
by

𝑃𝐺𝑆 (𝑡𝑛+1) = 𝑆(𝑡𝑛) +
∫ 𝑡𝑛

0
𝐺𝑆 (𝑡𝑛, 𝑧)

[
𝑆′𝑡𝑛 (𝑧)

− 𝑓 (𝑧, 𝑆𝑡𝑛)
]
𝑑𝑧,

𝑃𝐺𝐸 (𝑡𝑛+1) = 𝐸 (𝑡𝑛) +
∫ 𝑡𝑛

0
𝐺𝐸 (𝑡𝑛, 𝑧)

[
𝐸 ′
𝑡𝑛 (𝑧)

− 𝑓 (𝑧, 𝐸𝑡𝑛)
]
𝑑𝑧,
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𝑃𝐺𝐼𝐴
(𝑡𝑛+1) = 𝐼𝐴(𝑡𝑛) +

∫ 𝑡𝑛

0
𝐺 𝐼𝐴 (𝑡𝑛, 𝑧)

[
𝐼 ′𝐴𝑡𝑛

(𝑧)

− 𝑓 (𝑧, 𝐼𝐴𝑡𝑛
)
]
𝑑𝑧,

𝑃𝐺𝐼 (𝑡𝑛+1) = 𝐼 (𝑡𝑛) +
∫ 𝑡𝑛

0
𝐺 𝐼 (𝑡𝑛, 𝑧)

[
𝐼 ′𝑡𝑛 (𝑧)

− 𝑓 (𝑧, 𝐼𝑡𝑛)
]
𝑑𝑧,

𝑃𝐺𝑄 (𝑡𝑛+1) = 𝑄(𝑡𝑛) +
∫ 𝑡𝑛

0
𝐺𝑄 (𝑡𝑛, 𝑧)

[
𝑄 ′

𝑡𝑛 (𝑧)

− 𝑓 (𝑧, 𝑄𝑡𝑛)
]
𝑑𝑧,

𝑃𝐺𝑅 (𝑡𝑛+1) = 𝑅(𝑡𝑛) +
∫ 𝑡𝑛

0
𝐺𝑅 (𝑡𝑛, 𝑧)

[
𝑅′
𝑡𝑛 (𝑧)

− 𝑓 (𝑧, 𝑅𝑡𝑛)
]
𝑑𝑧.

(4.12)
Where 𝑡 = 𝑡𝑛 ∈ [0, 𝑇] and 𝑛 ≥ 0.
𝐵( [0, 𝑇],R) is the Banach space of all con-
tinuous real-valued function equipped with
the norm defined by

| (𝑆, 𝐸, 𝐼𝐴, 𝐼, 𝑄, 𝑅) | = |𝑆(𝑡) | + |𝐸 (𝑡) | + |𝐼𝐴(𝑡) |
+ |𝐼 (𝑡) | + |𝑄(𝑡) | + |𝑅(𝑡) |,

where

|𝑆(𝑡) | = sup
𝑡 ∈[0,𝑇 ]

|𝑆(𝑡) |, |𝐸 (𝑡) | = sup
𝑡 ∈[0,𝑇 ]

|𝐸 (𝑡) |,

|𝐼𝐴(𝑡) | = sup
𝑡 ∈[0,𝑇 ]

|𝐼𝐴(𝑡) |, |𝐼 (𝑡) | = sup
𝑡 ∈[0,𝑇 ]

|𝐼 (𝑡) |,

|𝑄(𝑡) | = sup
𝑡 ∈[0,𝑇 ]

|𝑄(𝑡) |, |𝑅(𝑡) | = sup
𝑡 ∈[0,𝑇 ]

|𝑅(𝑡) |.

Theorem 4.1. Assume 𝑓 is a function,
which appears in the definition of the op-
erator 𝑃𝐺Ω , is such that 𝐶 = 𝐾𝐺𝐶𝑐 < 1,
where 𝐾𝐺 = max𝑡 ∈[0,𝑇 ]

∫ 𝑡

0
|𝐺Ω(𝑡𝑛, 𝑧) |𝑑𝑧

and 𝐶𝑐 = max𝑡 ∈[0,𝑇 ] | 𝑓 ′(𝑢(𝑡)) |. Then 𝑃𝐺Ω

is a contraction and hence, the sequence
{𝑢𝑛} ∈ Ω defined by Picard iteration con-
verges to fixed point of 𝑃𝐺Ω .

Proof. We will prove all operator of the se-
quences 𝑆(𝑡), 𝐸 (𝑡), 𝐼𝐴(𝑡), 𝐼 (𝑡), 𝑄(𝑡), 𝑅(𝑡)
that they are contraction mapping.

Forming integration by part the Eqs.
(4.9) - (4.12) the product is

𝑃𝐺 (𝑆) = 𝑆 −
∫ 𝑡

0
𝐺𝑆 (𝑡, 𝑧) 𝑓 (𝑧, 𝑆)𝑑𝑧,

𝑃𝐺 (𝐸) = 𝐸 −
∫ 𝑡

0
𝐺𝐸 (𝑡, 𝑧) 𝑓 (𝑧, 𝐸)𝑑𝑧,

𝑃𝐺 (𝐼𝐴) = 𝐼𝐴 −
∫ 𝑡

0
𝐺 𝐼𝐴 (𝑡, 𝑧) 𝑓 (𝑧, 𝐼𝐴)𝑑𝑧,

𝑃𝐺 (𝐼) = 𝐼 −
∫ 𝑡

0
𝐺 𝐼 (𝑡, 𝑧) 𝑓 (𝑧, 𝐼)𝑑𝑧,

𝑃𝐺 (𝑄) = 𝑄 −
∫ 𝑡

0
𝐺𝑄 (𝑡, 𝑧) 𝑓 (𝑧, 𝑄)𝑑𝑧,

𝑃𝐺 (𝑅) = 𝑅 −
∫ 𝑡

0
𝐺𝑅 (𝑡, 𝑧) 𝑓 (𝑧, 𝑅)𝑑𝑧.

(4.13)
Direct calculations (4.11) imply that∫ 𝑡

0
𝐺𝑆 (𝑡𝑛, 𝑧)𝑑𝑧 =

[
1

𝜂𝐸 (𝑡) + 𝛿

]
,∫ 𝑡

0
𝐺𝐸 (𝑡𝑛, 𝑧)𝑑𝑧 =

[
1

𝛿 + 𝜉 − 𝜂𝑆(𝑡)

]
,∫ 𝑡

0
𝐺 𝐼 𝐴(𝑡𝑛, 𝑧))𝑑𝑧 =

[
1 − 𝑒−( 𝛿+𝜈+𝑚1+𝑚3+𝑟1)𝑡

𝛿 + 𝜈 + 𝑚1 + 𝑚3 + 𝑟1

]
,∫ 𝑡

0
𝐺 𝐼 (𝑡𝑛, 𝑧)𝑑𝑧 =

[
1 − 𝑒−( 𝛿+𝜈+𝑚2)𝑡

𝛿 + 𝜈 + 𝑚2

]
,∫ 𝑡

0
𝐺𝑄 (𝑡𝑛, 𝑧)𝑑𝑧 =

[
1 − 𝑒−(𝑟2+𝜈)𝑡
𝑟2 + 𝜈

]
,∫ 𝑡

0
𝐺𝑅 (𝑡𝑛, 𝑧)𝑑𝑧 =

[
1 − 𝑒−𝛿𝑡

𝛿

]
,

(4.14)
since (3.1) and (4.14), we get

max𝑡 ∈[0,𝑇 ]
∫ 𝑡

0
|𝐺Ω(𝑡𝑛, 𝑧) |𝑑𝑧 is 𝐾𝐺 , then

∫ 𝑡

0
|𝐺Ω(𝑡𝑛, 𝑧) |𝑑𝑧 ≤ 𝐾𝐺 .
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Let 𝑢, 𝑣 ∈ Ω thus

|𝑃𝐺Ω (𝑢) − 𝑃𝐺Ω (𝑣) | = |
∫ 𝑡

0
𝐺Ω (𝑡, 𝑧) [ 𝑓 (𝑧, 𝑢)

− 𝑓 (𝑧, 𝑣)]𝑑𝑧 |

≤
( ∫ 𝑡

0
|𝐺Ω (𝑡, 𝑧) |𝑑𝑧

)
( ∫ 𝑡

0
| 𝑓 (𝑧, 𝑢) − 𝑓 (𝑧, 𝑣) |𝑑𝑧

)
≤ 𝐾𝐺

∫ 𝑡

0
| 𝑓 (𝑧, 𝑢) − 𝑓 (𝑧, 𝑣) |𝑑𝑧.

By using the mean value theorem for
𝑓 (𝑢) and using the condition that 𝐶𝑐 =
max𝑡 ∈[0,𝑇 ] | 𝑓 ′(𝑢(𝑡)) |, we consider the last
inequality that

|𝑃𝐺Ω (𝑢) − 𝑃𝐺Ω (𝑣) | ≤ 𝐾𝐺 max
𝑡 ∈[0,𝑇 ]

| 𝑓 (𝑢(𝑡)) − 𝑓 (𝑣(𝑡)) |

≤ 𝐾𝐺𝐶𝑐 ∥𝑢 − 𝑣∥
≤ 𝐶∥𝑢 − 𝑣∥,

where ∥𝑢 − 𝑣∥ = max𝑡 ∈[0,𝑇 ] |𝑢(𝑡) − 𝑣(𝑡) | and 𝐶 =
𝐾𝐺𝐶𝑐 < 1. So we obtain the following

∥𝑃𝐺Ω (𝑢) − 𝑃𝐺Ω (𝑣)∥ ≤ 𝐶∥𝑢 − 𝑣∥,

such 0 ≤ 𝐶 < 1. Hence 𝑃𝐺Ω is a contraction map-
ping. □

5. Modeling estimation
Aim of this section is using real

data of Thailand (March 2021 - August
2021) to forecast the future (1 Septem-
ber 2021 - 19 October 2021) of this
model to study behavior of all sequences
𝑆(𝑡), 𝐸 (𝑡), 𝐼𝐴(𝑡), 𝐼 (𝑡), 𝑄(𝑡), 𝑅(𝑡). All data
in Table 2 calculate from Department of
Disease Control, Thailand.

Fig. 2. The daily report of Thailand Coron-
avirus (16 March - 31 August 2021).

Table 2. The value of the parameters used in the
model

Parameters Value Units
∧ 3.068𝑒−5 100,000 units
𝛿 1.89𝑒−5 100,000 units
𝜈 8.963𝑒−3 day−1
𝜂 0.271830 day−1
𝜉 0.200000 day−1
𝜃 0.700000 day−1
𝑚1 0.883876 day−1
𝑚2 0.990948 day−1
𝑚3 3.5714𝑒−3 day−1
𝑟1 0.071428 day−1
𝑟2 0.991037 day−1

For all parameters in Table 2, we
can calculate the basic reproduction num-
ber 𝑅0 = 2.2061 > 1; it explains that at this
time, Thailand is continue at infection pe-
riod. In the next part we will forecast the
future situation of Thailand.

5.1 Numerical simulation
The purpose of this section is to fore-

cast behavior of all compartments. Con-
sider the differential Eqs. (4.10)-(4.11).
Based on this consideration, let 𝑆 be number
of infection tests in (16 March - 31 August
2021) = 9,336,014 units and 𝐸 be number of
infection in (16 March - 31 August 2021)
= 1,153,837 units. Then the initial condi-
tion is 𝑆(0) = 1, 𝐸 (0) = 0.12359, 𝐼𝐴(0) =
𝐼 (0) = 𝑄(0) = 𝑅(0) = 0.
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Fig. 3. Prediction behavior of all compartments
of the model.

Fig. 3 shows the dynamic of all
compartments, and explains that all com-
partments will converge to normal situa-
tion at 𝑡 = 50 days. Infection will maxi-
mum spread at 𝐸 (9) = 0.166847 and de-
crease until normal situation, that is this
case number of infection will increase to be
1,557,685 units in 9 days after that number
of infection will decrease to 0.

Fig. 4. Prediction behavior and error compare
𝐸 (𝑡), 𝑄(𝑡), 𝑅(𝑡) with real data.

Fig. 4 explains the comparison be-

tween the dynamic of 𝐸 (𝑡), 𝑄(𝑡), 𝑅(𝑡) with
real data (1 September 2021 to 19 October
2021) to show the error value (Error = ap-
proximate value - real Value) of 𝐸 (𝑡), 𝑄(𝑡)
and 𝑅(𝑡). By the gray lines is real data and
the color lines is approximate value of each
compartment.

6. Conclusion
This paper presents a mathematical

model of the Coronavirus Disease (Covid-
19) of Thailand by using parameters from
real data (16 March 2021 to 31 August
2021). The authors compute the basic re-
production number 𝑅0 = 2.2061 > 1, it ex-
plain that at this time, Thailand is continue
at infection period and the disease free equi-
librium (DFE), local stability, the existence
of endemic equilibrium (𝐸1), local stabil-
ity, global stability of the endemic equi-
librium. Next the existence and conver-
gence theorems of solutions are shown via
the techniques of fixed point theorems in
from of Green’s function. Finally, the au-
thors show numerical to forecast the future
of the Coronavirus Disease (Covid-19) in
Thailand (1 September 2021 to 19 October
2021) in Figs. 3 and 4. Note that the au-
thors can not find minimum error value be-
cause this model fix the parameters in Table
2 all times and all system is closed condi-
tion. The author wants to develop a model
for open condition in the future.
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