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ABSTRACT
This research presents a new non-monotone adaptive step size for Tseng’s type method

to solve the monotone inclusion problem. The results were applied to the problem of con-
vex minimization and signal processing, using a basic assumption, numerical testing, and
comparisons with other operations to show that the recommended operation was weakly and
strongly convergent.
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1. Introduction
The topic of inclusion problems and

fixed point issues has piqued the interest
of many mathematicians. This is because
comparable challenges can be applied to
a range of other problems. Convex pro-
gramming, the minimization problem, vari-
ational inequalities, and the split feasibil-
ity problem, for example, can all be solved
using these concerns. As a result, ma-
chine learning, signal processing, image
restoration, computerized tomography sen-
sor networks, data compression, and inten-
sity modulated radiation therapy treatment
planning can all be considered now (see
[1–15]).

AllowH to be a real Hilbert with the
inner product ⟨·, ·⟩ and the induced norm
∥·∥. Let K : H → H and B : H → 2H

be, respectively, single-valued and multi-
valued operators. In this paper, we study
the so-called monotone inclusion problem:

find 𝑧∗ ∈ H such that 0 ∈ (K +B)𝑧∗.
(1.1)

The set of solutions of the problem (1.1) is
denoted by Ω := (K + B)−1(0). This prob-
lem (1.1) has a lot of interest because it is at
the heart of many mathematical problems,
such as split feasibility problem, e.g., let
H1 and H2 be the real Hilbert spaces, K is
bounded linear operator and S : H1 → H2
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which S∗ is the inverse of S. C ⊂ H1 and
Q ⊂ H2 are not empty, closed and convex.
The convex split feasibility problem [2], has
a pattern as follows:

find 𝑧∗ ∈ C such that S𝑧∗ ∈ Q. (1.2)

Let K𝑧∗ = ∇( 1
2
∥S𝑧∗ − PQS𝑧

∗∥2) = S∗(I −
PQ)S𝑧∗, where PQ is a metric projection
onto Q and ∇ is a gradient and B = 𝜕𝑖C is
the sub-differential 𝜕𝑖C of 𝑖C and a maximal
monotone operator defined by

𝜕𝑖C(𝑥) = {𝑧∗ ∈ H : 𝑖C(𝑥) ≤ ⟨𝑧∗, 𝑥−𝑦⟩+𝑖C(𝑦)},

for all 𝑦 ∈ H. Therefore, the convex split
feasibility problem has the same structure
as (1.1).

The forward-backward splitting al-
gorithm (FBSA) [4,16] is a classicalmethod
for addressing the problem (1.1) in Hilbert
spaceH. This uses the following procedure
to build an iterative sequence {𝑥𝑛} :{

𝑥1 ∈ H,

𝑥𝑛+1 = 𝐽B𝜂 (I − 𝜂K)𝑥𝑛, ∀ 𝑛 ≥ 1,
(1.3)

where 𝐽B𝜂 := (I + 𝜂B)−1 is the resolvent
operator of an operatorB and I denotes the
identity operator on H. It was proved that
the sequence generated by (1.3) converges
weakly to an element inΩ := (K+B)−1(0)
under the assumption of the 𝛼-cocoercivity
of the operator K, that is,

⟨K𝑥 −K𝑦, 𝑥 − 𝑦⟩ ≥ 𝛼∥K𝑥 −K𝑦∥2,

for all 𝑥, 𝑦 ∈ H and 𝜂 is chosen in (0, 2𝛼).
Moudafi and Oliny [17] investigated

the monotone inclusion problem (1.1).
They developed the inertial proximal point
algorithm, which combines the heavy ball
method and the proximal point algorithm.

The inertial proximal point algorithm is de-
fined as follows:

𝑥0, 𝑥1 ∈ H,

𝑧𝑛 = 𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1),
𝑥𝑛+1 = 𝐽B𝜂𝑛 (I − 𝜂𝑛K)𝑥𝑛, ∀ 𝑛 ≥ 1,

(1.4)
where {𝜃𝑛} ⊂ [0, 1) such that

∞∑
𝑛=1

𝜃𝑛∥𝑥𝑛 − 𝑥𝑛−1∥ < ∞ (1.5)

which K : H → H and B : H → 2H are
single and multi-valued mappings, respec-
tively. It was proven that if 𝜂𝑛 < 2/L with
the Lipschitz constant L of the monotone
operator K and the condition (1.5) holds,
then the sequence {𝑥𝑛} generated by the al-
gorithm (1.4) converges weakly to a solu-
tion of the inclusion problem (1.1).

In recent years, many authors in a va-
riety of settings have studied and modified
the FBSA for solving the monotone inclu-
sion problem (1.1) whenK is 𝛼-cocoercive
(see [18–23]). It is worth noting that the 𝛼-
cocoercivity of the operatorK is a strong as-
sumption. Tseng [24] proposed the Tseng’s
splitting method to alleviate this assump-
tion:
𝑥1 ∈ H,

𝑧𝑛 = 𝐽B𝜂𝑛 (I − 𝜂𝑛K)𝑥𝑛,
𝑥𝑛+1 = 𝑧𝑛 − 𝜂𝑛 (K𝑧𝑛 −K𝑥𝑛), 𝑛 ≥ 1,

(1.6)
whereK is monotone and L-Lipschitz con-
tinuous with L > 0. It was proved that
the sequence {𝑥𝑛} generated by (1.5) con-
verges weakly to an element in Ω := (K +
B)−1(0) provided the step size 𝜂𝑛 is chosen
in (0, 1/L) . It’s worth noting that Tseng’s
splitting method necessitates knowledge of
the Lipschitz constant for the mapping. Un-
fortunately, Lipschitz constants are gener-
ally unknown or difficult to approximate.
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Then problem (1.1) becomes the fol-
lowing minimization problem:

min
𝑥∈H

S(𝑥) + T(𝑥). (1.7)

Methods for solving the problem (1.7), in
case F = ∇S without the Lipschitz continu-
ity of F often use a linesearch procedure,
which runs in each iteration of the algo-
rithm until a stopping criterion is satisfied.
Because linesearch methods require several
computations of F values as well as pro-
jections onto a feasible set, they are time-
consuming. In addition, complexity calcu-
lations in linesearch algorithms become less
useful. This is clear because they only show
the number of outside iterations required to
achieve the required accuracy, but not the
number of inner linesearch iterations.

In this paper, we propose two mod-
ifications of Tseng’s splitting method with
monotone adaptive step sizes for solving the
problems (1.1) and (1.7) in the framework
of Hilbert spaces, inspired by Shehu [25].
Step size in our methods does not require
prior knowledge of the operator’s Lipschitz
constant, nor does it require any linesearch
procedure.

2. Preliminaries
Lemma 2.1 ([26]). LetH be a real Hilbert
space and K : H → H be a single-valued
mapping.

(a) K is called nonexpansive mapping if

∥K𝑥 −K𝑦∥ ≤ ∥𝑥 − 𝑦∥,

for all 𝑥, 𝑦 ∈ H.

(b) K is called firmly nonexpansive map-
ping if

∥K𝑥 −K𝑦∥2 + ∥(I −K)𝑥 − (I −K)𝑦∥2

≤ ∥𝑥 − 𝑦∥2,

for all 𝑥, 𝑦 ∈ H.

(c) K is called monotone mapping if

⟨K𝑥 −K𝑦, 𝑦 − 𝑥⟩ ≥ 0.

(d) K is called L-Lipschitz continuous
mapping if

∥K𝑥 −K𝑦∥ ≤ L∥𝑥 − 𝑦∥,

for all L > 0.

Example 2.2. Define a mapping K on
[0,∞) by K𝑥 = −𝑥. Then

(a) K is a nonexpansive mapping.

(b) K is not a firmly nonexpansive map-
ping.

(c) K is a monotone mapping.

Consider, for all 𝑥, 𝑦 ∈ [0,∞)

(a)
∥K𝑥 −K𝑦∥ = ∥ − 𝑥 + 𝑦∥

= ∥𝑥 − 𝑦∥.
Thus, K is a nonexpansive mapping.

(b)

∥K𝑥 −K𝑦∥2 + ∥(I −K)𝑥 − (I −K)𝑦∥2

= ∥ − 𝑥 + 𝑦∥2 + ∥𝑥 + 𝑥 − (𝑦 + 𝑦)∥2

= ∥𝑥 − 𝑦∥2 + ∥2𝑥 − 2𝑦∥2

= ∥𝑥 − 𝑦∥2 + ∥2(𝑥 − 𝑦)∥2

= ∥𝑥 − 𝑦∥2 + 4∥𝑥 − 𝑦∥2

= 5∥𝑥 − 𝑦∥2 > ∥𝑥 − 𝑦∥2.

Thus,K is not a firmly nonexpansive
mapping.

(c)

⟨K𝑥 −K𝑦, 𝑦 − 𝑥⟩ = ⟨−𝑥 + 𝑦, 𝑦 − 𝑥⟩
= ⟨𝑦 − 𝑥, 𝑦 − 𝑥⟩
= ∥𝑦 − 𝑥∥2

≥ 0.
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Thus, K is a monotone mapping.

In fact, every firmly nonexpansive
mapping is nonexpansive, but the inverse is
not always true. Moreover, if L = 1, L-
Lipschitz continuous mapping is nonexpan-
sive.

Lemma 2.3 ([26]). Let K : H → H be
a mapping. Then, the following items are
equivalent:

(a) K is firmly nonexpansive;

(b) (I −K) is firmly nonexpansive;

(c) ∥K𝑥 −K𝑦∥2 ≤ ⟨𝑥 − 𝑦,K𝑥 −K𝑦⟩,
for all 𝑥, 𝑦 ∈ K.

Let C be a nonempty convex subset
ofH. A subset C ⊂ H is said to be proxim-
inal if, for each 𝑥 ∈ H, there exists 𝑦 ∈ C

such that

∥𝑥 − 𝑦∥ = 𝑑 (𝑥,C) = inf{∥𝑥 − 𝑤∥ : 𝑤 ∈ C}.

We denote by CB(C) the collection
of all nonempty closed bounded subsets of
C. The Hausdorff metric on CB(C) is de-
fined by

H(P,Q) = max

{
sup
𝑥∈P

𝑑 (𝑥,Q), sup
𝑦∈Q

𝑑 (𝑦,P)
}

for all P,Q ∈ CB(C), where 𝑑 (𝑥,Q) =
inf𝑞∈Q ∥𝑥− 𝑞∥. Amultivalued mappingB :
C → CB(C) is said to be nonexpansive if

H(B𝑥,B𝑦) ≤ ∥𝑥 − 𝑦∥

for all 𝑥, 𝑦 ∈ C.

Definition 2.4 ([26]). A set-valued opera-
tor B : H → 2H is called maximal mono-
tone if B is monotone, i.e.,

⟨𝑥 − 𝑦, 𝑢 − 𝑣⟩ ≥ 0,

for all 𝑥, 𝑦 ∈ H, 𝑢 ∈ B𝑥 and 𝑣 ∈ B𝑦. The
graph G(B) defined by

G(B) = {(𝑥, 𝑦) ∈ H ×H : 𝑦 ∈ B(𝑥)}

is not properly contained in the graph of any
other monotone operator.

Example 2.5. Define a mapping B on
[0, 4] by

B𝑥 =

{
[0, 𝑥4 ], if 𝑥 ∈ [0, 3],
{0}, if 𝑥 ∈ (3, 4] .

Then B is monotone mapping.
Indeed, if 𝑥 ≥ 𝑦 for 𝑥 ∈ (3, 4] and

𝑦 ∈ [0, 3], then for 𝑢𝑥 ∈ B𝑥 = {0}, there
exists 𝑢𝑦 = 0 ∈ B𝑦 such that 𝑢𝑥 ≥ 𝑢𝑦 .
Thus, K is a monotone mapping.

Example 2.6 ([27]). Let A be an 𝑛 × 𝑛 ma-
trix with real entries. Consider the operator
T : R𝑛 → R𝑛 defined by T𝑥 = A𝑥. Then T

is maximal monotone if T is a positive lin-
ear operator.

Lemma 2.7 ([28]). LetB : H → 2H be any
set-valued operator and 𝐽B𝜂 be the resolvent
of B with parameter 𝜂 > 0. Then we have
the following:

(a) ifB is a maximal monotone operator,
then a point 𝑥∗ ∈ H is a fixed point of
𝐽B𝜂 if and only if 𝑥∗ ∈ B−1(0) = {𝑥 ∈
H : 0 ∈ B𝑥};

(b) B is monotone if and only if the re-
solvent 𝐽B𝜂 is single-valued and firmly
nonexpansive;

(c) B is maximal monotone if and only if
𝐽B𝜂 is single-valued, firmly nonexpan-
sive and D(𝐽B𝜂 ) = H, where D(𝐽B𝜂 )
is a domain of the operator 𝐽B𝜂 .
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Lemma 2.8 ([29]). Let K : H → H be
a Lipschitz continuous and monotone map-
ping andB : H → 2H be a maximal mono-
tone mapping, then the mappingK +B is a
maximal monotone mapping.

Lemma 2.9 ([31]). Let 𝛼 ∈ (0, 1) for 𝑥, 𝑦 ∈
H, we have the following statements:

(a) |⟨𝑥, 𝑦⟩| ≤ ∥𝑥∥∥𝑦∥;

(b) ∥𝑥 + 𝑦∥2 ≤ ∥𝑥∥2 + 2⟨𝑦, 𝑥 + 𝑦⟩;

(c) ∥𝑥 + 𝑦∥2 = ∥𝑥∥2 + 2⟨𝑥, 𝑦⟩ + ∥𝑦∥2;

(d) ∥𝛼𝑥 + (1 − 𝛼)𝑦∥2 = 𝛼∥𝑥∥2 + (1 −
𝛼)∥𝑦∥2 − 𝛼(1 − 𝛼)∥𝑥 − 𝑦∥2.

Lemma 2.10 ([32]). Assume that {𝜂𝑛} and
{𝜑𝑛} are two nonnegative real sequences
such that

𝜂𝑛+1 ≤ 𝜂𝑛 + 𝜑𝑛, ∀ 𝑛 ≥ 1.

If
∑∞

𝑛=1 𝜑𝑛 < ∞, then lim𝑛→∞ 𝜂𝑛 exists.

Lemma2.11 ([33]). Let {𝑎𝑛} be a sequence
of nonnegative real numbers, {𝛼𝑛} be a
sequence of real numbers in (0, 1) with∑∞

𝑛=1 𝛼𝑛 = ∞ and {𝑏𝑛} be a sequence of
real numbers. Assume that

𝑎𝑛+1 ≤ (1 − 𝛼𝑛)𝑎𝑛 + 𝛼𝑛𝑏𝑛, ∀𝑛 ≥ 1,

If lim sup𝑘→∞ 𝑏𝑛𝑘 ≤ 0 for every sub-
sequence {𝑎𝑛𝑘 } of {𝑎𝑛} satisfying
lim inf 𝑘→∞(𝑎𝑛𝑘+1 − 𝑎𝑛𝑘 ) ≥ 0 then
lim𝑛→∞ 𝑎𝑛 = 0.

3. Main Results
Assumption 1.

(A1) The feasible set of (1.1) is a
nonempty closed and convex subset
ofH.

(A2) The solution set Ω of (1.1) is
nonempty.

(A3) K : H → H is monotone, L-
Lipschitz continuous on H, and B :
H → 2H maximally monotone.

Algorithm 1. Adaptive Tseng’s type
method for inclusion problem
initialization: Given 𝑥0, 𝑥1 ∈ H, 𝜇 ∈
(0, 1), 𝛼 > 0, 𝜂1 > 0 and select a non-
negative real sequence {𝜑𝑛} such that∑∞

𝑛=1 𝜑𝑛 < ∞. Moreover, select a sequence
{𝜓𝑛} ⊂ (0, 1) satisfies the following
conditions:

lim
𝑛→∞

𝜓𝑛 = 0 and
∞∑
𝑛=1

𝜓𝑛 = ∞.

Step 1: Compute

𝑧𝑛 = (1 − 𝜓𝑛) (𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1)),

where {𝜃𝑛} is a sequence such that
0 ≤ 𝜃𝑛 ≤ 𝜃𝑛 and

𝜃𝑛 =


min

{
𝑛 − 1

𝑛 + 𝛼 − 1
, 𝜀𝑛

∥𝑥𝑛−𝑥𝑛−1 ∥

}
, if 𝑥𝑛 ≠ 𝑥𝑛−1 ,

𝑛 − 1

𝑛 + 𝛼 − 1
, otherwise.

Step 2: Compute

𝑠𝑛 = 𝐽B𝜂𝑛 (I − 𝜂𝑛K)𝑧𝑛.

If 𝑠𝑛 = 𝑧𝑛, then stop and 𝑠𝑛 is a solution of
(1.1). Else, go to Step 3.
Step 3: Compute

𝑥𝑛+1 = 𝑠𝑛 − 𝜂𝑛 (K𝑠𝑛 −K𝑧𝑛)

where the sizes are adaptively updated as
follows:

𝜂𝑛+1 =


min

{
𝜇 ∥𝑠𝑛 − 𝑧𝑛 ∥

∥K𝑠𝑛 −K𝑧𝑛 ∥
, 𝜂𝑛 + 𝜑𝑛

}
, ifK𝑠𝑛 ≠ K𝑧𝑛 ,

𝜂𝑛 + 𝜑𝑛 , otherwise.
(3.1)

Set 𝑛 := 𝑛 + 1 and go back to Step 1.

Lemma 3.1. The sequence {𝜂𝑛} generated
by Eq. (3.1) is monotonically decreasing
and bounded from below by min

{ 𝜇
L
, 𝜂1

}
.
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Proof. It is clear that the sequence {𝜂𝑛}
is monotonically decreasing. Since K is a
Lipschitz function with Lipschitz’s constant
L, for K𝑠𝑛 ≠ K𝑧𝑛, we have

𝜇∥𝑠𝑛 − 𝑧𝑛∥
∥K𝑠𝑛 −K𝑧𝑛∥

≥ 𝜇∥𝑠𝑛 − 𝑧𝑛∥
L∥𝑠𝑛 − 𝑧𝑛∥

=
𝜇

L
. (3.2)

Therefore, it follows that 𝜂𝑛 ≥
min

{ 𝜇
L
, 𝜂1

}
. □

Lemma 3.2. The sequence {𝜂𝑛} gener-
ated by Eq. (3.1) and lim𝑛→∞ 𝜂𝑛 = 𝜂 ∈
[min

{ 𝜇
L
, 𝜂1

}
, 𝜂1+𝜑], where 𝜑 =

∑∞
𝑛=1 𝜑𝑛.

Then

∥K𝑠𝑛 −K𝑧𝑛∥ ≤ 𝜇

𝜂𝑛+1
∥𝑠𝑛 − 𝑧𝑛∥. (3.3)

Proof. Using Eq. (3.1) and mathematical
induction, we have the sequence {𝜂𝑛} has
upper bound 𝜂1 + 𝜑 and lower bound
min{ 𝜇

L
, 𝜂1}. Using Lemma 2.10, we have

lim𝑛→∞ 𝜂𝑛 exists and we denote 𝜂 =
lim𝑛→∞ 𝜂𝑛. It is obvious something which
𝜂 ∈ [min

{ 𝜇
L
, 𝜂1

}
, 𝜂1 + 𝜑]. By the defini-

tion of {𝜂𝑛}, we have

𝜂𝑛+1 = min

{
𝜇∥𝑠𝑛 − 𝑧𝑛∥

∥K𝑠𝑛 −K𝑧𝑛∥
, 𝜂𝑛 + 𝜑𝑛

}
≤ 𝜇∥𝑠𝑛 − 𝑧𝑛∥

∥K𝑠𝑛 −K𝑧𝑛∥
.

This means that

∥K𝑠𝑛 −K𝑧𝑛∥ ≤ 𝜇

𝜂𝑛+1
∥𝑠𝑛 − 𝑧𝑛∥, ∀ 𝑛 ≥ 1.

(3.4)
□

Lemma 3.3. LetK : H → H be amapping
that satisfies Assumption 1 and a sequence
{𝑥𝑛} generated by Algorithm 1. Then, we
have

∥𝑥𝑛+1 − 𝑧∥2

≤ ∥𝑧𝑛 − 𝑧∥2 −
(
1 − 𝜇2

𝜂2𝑛
𝜂2𝑛+1

)
∥𝑧𝑛 − 𝑠𝑛∥2,

for each 𝑧 ∈ Ω.

Proof. Let 𝑧 ∈ Ω. Then, by the definition
of {𝑥𝑛+1} and using Lemma 2.9, we obtain

∥𝑥𝑛+1 − 𝑧∥2

= ∥𝑠𝑛 + 𝜂𝑛 (K𝑧𝑛 −K𝑠𝑛) − 𝑧∥2

= ∥𝑠𝑛 − 𝑧∥2 + 𝜂2𝑛∥K𝑧𝑛 −K𝑠𝑛∥2

+ 2𝜂𝑛⟨𝑠𝑛 − 𝑧,K𝑧𝑛 −K𝑠𝑛⟩
= ∥𝑠𝑛 + 𝑧𝑛 − 𝑧𝑛 − 𝑧∥2

+ 𝜂2𝑛∥K𝑧𝑛 −K𝑠𝑛∥2

+ 2𝜂𝑛⟨𝑠𝑛 − 𝑧,K𝑧𝑛 −K𝑠𝑛⟩
= ∥𝑠𝑛 − 𝑧𝑛∥2 + ∥𝑧𝑛 − 𝑧∥2

+ 2⟨𝑠𝑛 − 𝑧𝑛, 𝑧𝑛 − 𝑧⟩
+ 𝜂2𝑛∥K𝑧𝑛 −K𝑠𝑛∥2

+ 2𝜂𝑛⟨𝑠𝑛 − 𝑧,K𝑧𝑛 −K𝑠𝑛⟩
= ∥𝑧𝑛 − 𝑧∥2 + ∥𝑠𝑛 − 𝑧𝑛∥2

+ 𝜂2𝑛∥K𝑧𝑛 −K𝑠𝑛∥2

+ 2⟨𝑠𝑛 − 𝑧𝑛, 𝑠𝑛 − 𝑧⟩
+ 2⟨𝑠𝑛 − 𝑧𝑛, 𝑧𝑛 − 𝑠𝑛⟩
+ 2𝜂𝑛⟨𝑠𝑛 − 𝑧,K𝑧𝑛 −K𝑠𝑛⟩

= ∥𝑧𝑛 − 𝑧∥2 + ∥𝑠𝑛 − 𝑧𝑛∥2

+ 𝜂2𝑛∥K𝑧𝑛 −K𝑠𝑛∥2

+ 2⟨𝑠𝑛 − 𝑧𝑛, 𝑠𝑛 − 𝑧⟩
− 2⟨𝑠𝑛 − 𝑧𝑛, 𝑠𝑛 − 𝑧𝑛⟩
− 2𝜂𝑛⟨K𝑧𝑛 −K𝑠𝑛, 𝑧 − 𝑠𝑛⟩

= ∥𝑧𝑛 − 𝑧∥2 + ∥𝑠𝑛 − 𝑧𝑛∥2

+ 𝜂2𝑛∥K𝑧𝑛 −K𝑠𝑛∥2

− 2⟨𝑠𝑛 − 𝑧𝑛, 𝑧 − 𝑠𝑛⟩
− 2∥𝑠𝑛 − 𝑧𝑛∥
− 2𝜂𝑛⟨K𝑧𝑛 −K𝑠𝑛, 𝑧 − 𝑠𝑛⟩

= ∥𝑧𝑛 − 𝑧∥2 − ∥𝑠𝑛 − 𝑧𝑛∥2

+ 𝜂2𝑛∥K𝑧𝑛 −K𝑠𝑛∥2

− 2⟨𝑧𝑛 − 𝑠𝑛 − 𝜂𝑛 (K𝑧𝑛 −K𝑠𝑛), 𝑠𝑛 − 𝑧⟩.
(3.5)

By combining (3.4) and (3.5), we obtain

∥𝑥𝑛+1 − 𝑧∥2
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≤ ∥𝑧𝑛 − 𝑧∥2 − ∥𝑠𝑛 − 𝑧𝑛∥2

+ 𝜇2
𝜂2𝑛
𝜂2𝑛+1

∥𝑧𝑛 − 𝑠𝑛∥2

− 2⟨𝑧𝑛 − 𝑠𝑛 − 𝜂𝑛 (K𝑧𝑛 −K𝑠𝑛), 𝑠𝑛 − 𝑧⟩.
(3.6)

In fact, the resolvent 𝐽B𝜂𝑛 is firmly nonex-
pansive and 𝑠𝑛 = 𝐽𝐵𝜂𝑛 (I − 𝜂𝑛K)𝑧𝑛 = (I +
𝜂𝑛B)−1(I − 𝜂𝑛K)𝑧𝑛, since B is maximal
monotone, there exists 𝜌𝑛 ∈ B𝑧𝑛 such that

(I + 𝜂𝑛K)𝑧𝑛 = 𝑠𝑛 + 𝜂𝑛𝜌𝑛.

This means that

𝜌𝑛 =
1

𝜂𝑛
(𝑧𝑛 − 𝑠𝑛 − 𝜂𝑛K𝑧𝑛). (3.7)

However, we have 0 ∈ (K+B)𝑧 andK𝑠𝑛 +
𝜌𝑛 ∈ (K + B)𝑧𝑛. From K + B is maximal
monotone, we have

⟨K𝑠𝑛 + 𝜌𝑛, 𝑠𝑛 − 𝑧⟩ ≥ 0. (3.8)

Using (3.7) and (3.8), we have

1

𝜂𝑛
⟨𝑧𝑛 − 𝑠𝑛 − 𝜂𝑛 (K𝑧𝑛 −K𝑠𝑛), 𝑠𝑛 − 𝑧⟩ ≥ 0.

This means that

⟨𝑧𝑛−𝑠𝑛−𝜂𝑛 (K𝑧𝑛−K𝑠𝑛), 𝑠𝑛−𝑧⟩ ≥ 0. (3.9)

From (3.6) and (3.9), we have

∥𝑥𝑛+1 − 𝑧∥2

≤ ∥𝑧𝑛 − 𝑧∥2 −
(
1 − 𝜇2

𝜂2𝑛
𝜂2𝑛+1

)
∥𝑧𝑛 − 𝑠𝑛∥2.

(3.10)

□

Theorem 3.4. Let K : H → H be a
mapping that satisfies Assumption 1 and a
sequence {𝑧𝑛} generated by Algorithm 1.
If there exists a subsequence {𝑧𝑛𝑘 } weakly
convergent to 𝑧 ∈ H with lim𝑛→∞ ∥𝑧𝑛 −
𝑠𝑛∥ = 0, then 𝑧 ∈ Ω.

Proof. From lim𝑛→∞ 𝜂𝑛 exists and 𝜇 ∈
(0, 1), it follows that

lim
𝑛→∞

(
1 − 𝜇2

𝜂2𝑛
𝜂2𝑛+1

)
= 1 − 𝜇2 > 0.

From the above explanation there exists a
fixed number 𝑛0 ∈ N such that

1 − 𝜇2
𝜂2𝑛
𝜂2𝑛+1

> 0, ∀ 𝑛 ≥ 𝑛0. (3.11)

Combining (3.10) and (3.11), we have

∥𝑥𝑛+1 − 𝑧∥2 ≤ ∥𝑧𝑛 − 𝑧∥2, ∀ 𝑛 ≥ 𝑛0.
(3.12)

This means that lim𝑛→∞ ∥𝑧𝑛− 𝑧∥ exists and
so {∥𝑧𝑛 − 𝑧∥} is bounded. From (3.10), we
have (

1 − 𝜇2
𝜂2𝑛
𝜂2𝑛+1

)
∥𝑧𝑛 − 𝑠𝑛∥2

≤ ∥𝑧𝑛 − 𝑧∥2 − ∥𝑥𝑛+1 − 𝑧∥2.
(3.13)

Therefore,

lim
𝑛→∞

∥𝑧𝑛 − 𝑠𝑛∥2 = 0. (3.14)

Also,

lim
𝑛→∞

∥𝑧𝑛 − 𝑠𝑛∥ = 0. (3.15)

Using the fact that K is Lipschitz continu-
ous, we have

lim
𝑛→∞

∥K𝑧𝑛 −K𝑠𝑛∥ = 0. (3.16)

From the boundedness of {𝑧𝑛}, there ex-
ists a subsequence {𝑧𝑛𝑘 } of {𝑧𝑛} such that
𝑧𝑛𝑘 ⇀ 𝑧 ∈ H. From Eq. (3.15), we have
𝑠𝑛𝑘 ⇀ 𝑧. Let (𝑤, 𝑣) ∈ G(K + B), we have
𝑣 − K𝑤 ∈ B𝑤. Since 𝑠𝑛𝑘 = 𝐽B𝜂𝑛𝑘

(I −
𝜂𝑛𝑘K)𝑧𝑛𝑘 = (I + 𝜂𝑛𝑘B)−1(I − 𝜂𝑛𝑘K)𝑧𝑛𝑘 ,
we obtain

(I − 𝜂𝑛𝑘K)𝑧𝑛𝑘 ∈ (I + 𝜂𝑛𝑘B)𝑠𝑛𝑘 .
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This means that

1

𝜂𝑛𝑘
(𝑧𝑛𝑘 − 𝑠𝑛𝑘 − 𝜂𝑛𝑘K𝑧𝑛𝑘 ) ∈ B𝑠𝑛𝑘 .

Using the maximal monotonicity of B, we
have

⟨𝑤 − 𝑧𝑛𝑘 , 𝑣 −K𝑤 − 1

𝜂𝑛𝑘
(𝑧𝑛𝑘 − 𝑠𝑛𝑘 − 𝜂𝑛𝑘K𝑧𝑛𝑘 )⟩ ≥ 0.

and using the monotonicity of K, we have

⟨𝑤 − 𝑠𝑛𝑘 , 𝑣⟩

≥ ⟨𝑤 − 𝑠𝑛𝑘 ,K𝑤 + 1

𝜂𝑛𝑘
(𝑧𝑛𝑘 − 𝑠𝑛𝑘 − 𝜂𝑛𝑘K𝑧𝑛𝑘 )⟩

= ⟨𝑤 − 𝑠𝑛𝑘 ,K𝑤 −K𝑧𝑛𝑘 ⟩

+ 1

𝜂𝑛𝑘
⟨𝑤 − 𝑠𝑛𝑘 , 𝑧𝑛𝑘 − 𝑠𝑛𝑘 ⟩

= ⟨𝑤 − 𝑠𝑛𝑘 ,K𝑤 −K𝑠𝑛𝑘 ⟩
+ ⟨𝑤 − 𝑠𝑛𝑘 ,K𝑠𝑛𝑘 −K𝑧𝑛𝑘 ⟩

+ 1

𝜂𝑛𝑘
⟨𝑤 − 𝑠𝑛𝑘 , 𝑧𝑛𝑘 − 𝑠𝑛𝑘 ⟩

≥ ⟨𝑤 − 𝑠𝑛𝑘 ,K𝑠𝑛𝑘 −K𝑧𝑛𝑘 ⟩

+ 1

𝜂𝑛𝑘
⟨𝑤 − 𝑠𝑛𝑘 , 𝑧𝑛𝑘 − 𝑠𝑛𝑘 ⟩.

In fact, the K is Lipschitz continuous
and lim𝑛→∞ ∥𝑧𝑛 − 𝑠𝑛∥ = 0, it follows
that lim𝑛→∞ ∥K𝑧𝑛 − K𝑠𝑛∥ = 0. From
lim𝑛→∞ 𝜂𝑛 exists, we obtain

⟨𝑤 − 𝑧, 𝑣⟩ = lim
𝑘→∞

⟨𝑤 − 𝑠𝑛𝑘 , 𝑣⟩ ≥ 0.

The preceding inequality, together with the
maximal monotonicity ofK+B implies that
0 ∈ (K +B)𝑧 that is 𝑧 ∈ Ω. □

Algorithm 2. Adaptive Tseng’s type
method for inclusion problem
initialization: Given 𝑥0, 𝑥1 ∈ H, 𝜀𝑛 ∈
(0, 1), 𝜇 ∈ (0, 1), 𝛼 > 0, 𝜂1 > 0 and
select a nonnegative real sequence {𝜑𝑛}
such that

∑∞
𝑛=1 𝜑𝑛 < ∞. Moreover, select

a sequence {𝜓𝑛} ⊂ (0, 1) satisfies the
following conditions:

lim
𝑛→∞

𝜓𝑛 = 0 and
∞∑
𝑛=1

𝜓𝑛 = ∞.

Step 1: Compute

𝑧𝑛 = (1 − 𝜓𝑛) (𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1)),
(3.17)

where {𝜃𝑛} is a sequence such that
0 ≤ 𝜃𝑛 ≤ 𝜃𝑛 and

𝜃𝑛 =


min

{
𝑛 − 1

𝑛 + 𝛼 − 1
, 𝜀𝑛

∥𝑥𝑛−𝑥𝑛−1 ∥

}
, if 𝑥𝑛 ≠ 𝑥𝑛−1 ,

𝑛 − 1

𝑛 + 𝛼 − 1
, otherwise.

Step 2: Compute

𝑠𝑛 = 𝐽B𝜂𝑛 (I − 𝜂𝑛K)𝑧𝑛. (3.18)

If 𝑠𝑛 = 𝑧𝑛, then stop and 𝑠𝑛 is a solution of
(1.1). Else, go to Step 3.
Step 3: Compute

𝑥𝑛+1 = 𝜓𝑛 𝑓 (𝑥)+(1−𝜓𝑛) (𝑠𝑛−𝜂𝑛 (K𝑠𝑛−K𝑧𝑛))
(3.19)

where the sizes are adaptively updated as
follows:

𝜂𝑛+1 =


min

{
𝜇 ∥𝑠𝑛 − 𝑧𝑛 ∥

∥K𝑠𝑛 −K𝑧𝑛 ∥
, 𝜂𝑛 + 𝜑𝑛

}
, ifK𝑠𝑛 ≠ K𝑧𝑛 ,

𝜂𝑛 + 𝜑𝑛 , otherwise.
(3.20)

Set 𝑛 := 𝑛 + 1 and go back to Step 1.

Theorem 3.5. Let K : H → H be a
mapping that satisfies Assumption 1 and a
sequence {𝑥𝑛} generated by Algorithm 2.
Then {𝑥𝑛} converges strongly to 𝑧, where
𝑧 = 𝑃Ω ◦ 𝑓 (𝑧).

Proof. Let

𝑡𝑛 = 𝑠𝑛 − 𝜂𝑛 (K𝑠𝑛 −K𝑧𝑛).

Claim 1. {𝑥𝑛} is bounded. Indeed, let 𝑧 ∈
Ω. Using the same arguments as in the proof
of Lemma 3.1, we can show that

∥𝑡𝑛 − 𝑧∥2
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≤ ∥𝑧𝑛 − 𝑧∥2 −
(
1 − 𝜇2

𝜂2𝑛
𝜂2𝑛+1

)
∥𝑧𝑛 − 𝑠𝑛∥2.

(3.21)

From lim𝑛→∞ 𝜂𝑛 exists and 𝜇 ∈ (0, 1), it

follows that lim𝑛→∞

(
1 − 𝜇2

𝜂2𝑛
𝜂2𝑛+1

)
= 1 −

𝜇 > 0. This mean that

∥𝑡𝑛 − 𝑧∥ ≤ ∥𝑧𝑛 − 𝑧∥. (3.22)

From the definition of {𝑧𝑛}, we obtain

∥𝑧𝑛 − 𝑧∥
= ∥(1 − 𝜓𝑛)(𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1)) − 𝑧∥
= ∥(1 − 𝜓𝑛)(𝑥𝑛 − 𝑧)
+ (1 − 𝜓𝑛)𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1) − 𝜓𝑛𝑧∥

≤ (1 − 𝜓𝑛)∥𝑥𝑛 − 𝑧∥
+ (1 − 𝜓𝑛)𝜃𝑛∥𝑥𝑛 − 𝑥𝑛−1∥ + 𝜓𝑛∥𝑧∥.

Let

M1 = (1 − 𝜓𝑛)
𝜃𝑛
𝜓𝑛

∥𝑥𝑛 − 𝑥𝑛−1∥ + ∥𝑧∥.

The above expression obtained from the fol-
lowing inequality

lim
𝑛→∞

𝜃𝑛
𝜓𝑛

∥𝑥𝑛 − 𝑥𝑛−1∥ ≤ lim
𝑛→∞

𝜀𝑛
𝜓𝑛

= 0.

(3.23)
Hence,

∥𝑧𝑛 − 𝑧∥ ≤ (1 − 𝜓𝑛)∥𝑥𝑛 − 𝑧∥ + 𝜓𝑛M1.
(3.24)

Therefore, combining (3.22) and (3.24), we
have

∥𝑡𝑛 − 𝑧∥ ≤ ∥𝑧𝑛 − 𝑧∥
≤ (1 − 𝜓𝑛)∥𝑥𝑛 − 𝑧∥ + 𝜓𝑛M1

≤ ∥𝑥𝑛 − 𝑧∥ + 𝜓𝑛M1. (3.25)

From the definition of {𝑥𝑛}, we obtain

∥𝑥𝑛+1 − 𝑧∥

= ∥𝜓𝑛 𝑓 (𝑥𝑛) + (1 − 𝜓𝑛)𝑡𝑛 − 𝑧∥
= ∥𝜓𝑛 ( 𝑓 (𝑥𝑛) − 𝑧) + (1 − 𝜓𝑛) (𝑡𝑛 − 𝑧)∥
≤ 𝜓𝑛∥ 𝑓 (𝑥𝑛) − 𝑧∥ + (1 − 𝜓𝑛)∥𝑡𝑛 − 𝑧∥
≤ 𝜓𝑛∥ 𝑓 (𝑥𝑛) − 𝑓 (𝑧)∥ + 𝜓𝑛∥ 𝑓 (𝑧) − 𝑧∥
+ (1 − 𝜓𝑛)∥𝑡𝑛 − 𝑧∥

≤ 𝜓𝑛𝛿∥𝑥𝑛 − 𝑧∥ + 𝜓𝑛∥ 𝑓 (𝑧) − 𝑧∥
+ (1 − 𝜓𝑛)∥𝑡𝑛 − 𝑧∥. (3.26)

Substituting (3.24) into (3.26), we obtain

∥𝑥𝑛+1 − 𝑧∥
≤ 𝜓𝑛𝛿∥𝑥𝑛 − 𝑧∥ + 𝜓𝑛∥ 𝑓 (𝑧) − 𝑧∥
+ (1 − 𝜓𝑛)∥𝑥𝑛 − 𝑧∥ + (1 − 𝜓𝑛)𝜓𝑛M1

≤ (1 − (1 − 𝛿)𝜓𝑛)∥𝑥𝑛 − 𝑧∥ + 𝜓𝑛M1

+ 𝜓𝑛∥ 𝑓 (𝑧) − 𝑧∥
= (1 − (1 − 𝛿)𝜓𝑛)∥𝑥𝑛 − 𝑧∥

+ (1 − 𝛿)𝜓𝑛
M1 + ∥ 𝑓 (𝑧) − 𝑧∥

1 − 𝛿

≤ max

{
∥𝑥𝑛 − 𝑧∥, M1 + ∥ 𝑓 (𝑧) − 𝑧∥

1 − 𝛿

}
...

≤ max

{
∥𝑥0 − 𝑝∥, M1 + ∥ 𝑓 (𝑝) − 𝑝∥

1 − 𝛿

}
.

This mean that {𝑥𝑛} is bounded.
Claim 2.

(1 − 𝜓𝑛) (1 − 𝜇2
𝜂2𝑛
𝜂2𝑛+1

)∥𝑠𝑛 − 𝑧𝑛∥2

≤ ∥𝑥𝑛 − 𝑧∥2 − ∥𝑥𝑛+1 − 𝑧∥2 + 𝜓𝑛M4.

Indeed, we have

∥𝑥𝑛+1 − 𝑧∥2 (3.27)
≤ 𝜓𝑛∥ 𝑓 (𝑥𝑛) − 𝑧∥2 + (1 − 𝜓𝑛)∥𝑡𝑛 − 𝑧∥2

≤ 𝜓𝑛 (∥ 𝑓 (𝑥𝑛) − 𝑓 (𝑧)∥ + ∥ 𝑓 (𝑧) − 𝑧∥)2

+ (1 − 𝜓𝑛)∥𝑡𝑛 − 𝑧∥2

≤ 𝜓𝑛 (𝜅∥𝑥𝑛 − 𝑧∥ + ∥ 𝑓 (𝑧) − 𝑧∥)2

+ (1 − 𝜓𝑛)∥𝑡𝑛 − 𝑧∥2

≤ 𝜓𝑛 (∥𝑥𝑛 − 𝑧∥ + ∥ 𝑓 (𝑧) − 𝑧∥)2
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+ (1 − 𝜓𝑛)∥𝑡𝑛 − 𝑧∥2

= 𝜓𝑛∥𝑥𝑛 − 𝑧∥2 + 𝜓𝑛 (2∥𝑥𝑛 − 𝑧∥ · ∥ 𝑓 (𝑧) − 𝑧∥
+ ∥ 𝑓 (𝑧) − 𝑧∥2) + (1 − 𝜓𝑛)∥𝑡𝑛 − 𝑧∥2

≤ 𝜓𝑛∥𝑥𝑛 − 𝑧∥2 + (1 − 𝜓𝑛)∥𝑡𝑛 − 𝑧∥2 + 𝜓𝑛M2

(3.28)

for someM2 > 0. By Lemma 3.3, we have

∥𝑥𝑛+1 − 𝑧∥2

≤ ∥𝑧𝑛 − 𝑧∥2 −
(
1 − 𝜇2

𝜂2𝑛
𝜂2𝑛+1

)
∥𝑧𝑛 − 𝑠𝑛∥2.

(3.29)

Substituting (3.29) into (3.28), we obtain

∥𝑥𝑛+1 − 𝑧∥2

≤ 𝜓𝑛∥𝑥𝑛 − 𝑧∥2 + (1 − 𝜓𝑛)∥𝑧𝑛 − 𝑧∥2

− (1 − 𝜓𝑛)
(
1 − 𝜇2

𝜂2𝑛
𝜂2𝑛+1

)
∥𝑠𝑛 − 𝑧𝑛∥2

+ 𝜓𝑛M2, (3.30)

which implies from (3.25) that

∥𝑧𝑛 − 𝑧∥2

≤ (∥𝑥𝑛 − 𝑧∥ + 𝜓𝑛M1)2

= ∥𝑥𝑛 − 𝑧∥2 + 𝜓𝑛 (2M1∥𝑥𝑛 − 𝑧∥ + 𝜓𝑛M
2
1)

≤ ∥𝑥𝑛 − 𝑧∥2 + 𝜓𝑛M3, (3.31)

for some M3 > 0. Combining (3.30) and
(3.31), we obtain

∥𝑥𝑛+1 − 𝑧∥2

≤ 𝜓𝑛∥𝑥𝑛 − 𝑧∥2 + (1 − 𝜓𝑛)∥𝑥𝑛 − 𝑧∥2 + 𝜓𝑛M3

− (1 − 𝜓𝑛)
(
1 − 𝜇2

𝜂2𝑛
𝜂2𝑛+1

)
∥𝑠𝑛 − 𝑧𝑛∥2

+ 𝜓𝑛M2

= ∥𝑥𝑛 − 𝑧∥2 + 𝜓𝑛M3

− (1 − 𝜓𝑛)
(
1 − 𝜇2

𝜂2𝑛
𝜂2𝑛+1

)
∥𝑠𝑛 − 𝑧𝑛∥2

+ 𝜓𝑛M2.

This implies that

(1 − 𝜓𝑛)
(
1 − 𝜇2

𝜂2𝑛
𝜂2𝑛+1

)
∥𝑠𝑛 − 𝑧𝑛∥2

≤ ∥𝑥𝑛 − 𝑧∥2 − ∥𝑥𝑛+1 − 𝑧∥2 + 𝜓𝑛M4,

whereM4 := M2 +M3.

Claim 3.

∥𝑥𝑛+1 − 𝑧∥2

≤ (1 − (1 − 𝛿)𝜓𝑛)∥𝑥𝑛 − 𝑧∥2

+ (1 − 𝛿)𝜓𝑛

[
𝜃𝑛

𝜓𝑛 (1 − 𝛿) ∥𝑥𝑛 − 𝑥𝑛−1∥2

+ 𝜓𝑛M5 + 2⟨ 𝑓 (𝑧) − 𝑧, 𝑥𝑛+1 − 𝑧⟩
1 − 𝛿

]
,

for some M5 > 0. Indeed, using Lemma
2.9, we have

∥𝑥𝑛+1 − 𝑧∥2

= ∥𝜓𝑛 𝑓 (𝑥𝑛) + (1 − 𝜓𝑛)𝑡𝑛 − 𝑧∥2

= ∥𝜓𝑛 ( 𝑓 (𝑥𝑛) − 𝑓 (𝑧)) + (1 − 𝜓𝑛) (𝑡𝑛 − 𝑧)
+ 𝜓𝑛 ( 𝑓 (𝑧) − 𝑧)∥2

≤ ∥𝜓𝑛 ( 𝑓 (𝑥𝑛) − 𝑓 (𝑧)) + (1 − 𝜓𝑛)(𝑡𝑛 − 𝑧)∥2

+ 2𝜓𝑛⟨ 𝑓 (𝑧) − 𝑧, 𝑥𝑛+1 − 𝑧⟩
≤ 𝜓𝑛∥ 𝑓 (𝑥𝑛) − 𝑓 (𝑧)∥2 + (1 − 𝜓𝑛)∥𝑡𝑛 − 𝑧∥2

+ 2𝜓𝑛⟨ 𝑓 (𝑧) − 𝑧, 𝑥𝑛+1 − 𝑧⟩
≤ 𝜓𝑛𝛿

2∥𝑥𝑛 − 𝑧∥2 + (1 − 𝜓𝑛)∥𝑡𝑛 − 𝑧∥2

+ 2𝜓𝑛⟨ 𝑓 (𝑧) − 𝑧, 𝑥𝑛+1 − 𝑧⟩
≤ 𝜓𝑛𝛿∥𝑥𝑛 − 𝑧∥2 + (1 − 𝜓𝑛)∥𝑡𝑛 − 𝑧∥2

+ 2𝜓𝑛⟨ 𝑓 (𝑧) − 𝑧, 𝑥𝑛+1 − 𝑧⟩
≤ 𝜓𝑛𝛿∥𝑥𝑛 − 𝑧∥2 + (1 − 𝜓𝑛)∥𝑧𝑛 − 𝑧∥2

+ 2𝜓𝑛⟨ 𝑓 (𝑧) − 𝑧, 𝑥𝑛+1 − 𝑧⟩. (3.32)

From (3.24), we have

∥𝑧𝑛 − 𝑧∥2

= ∥(1 − 𝜓𝑛)(𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1)) − 𝑧∥2

= ∥(1 − 𝜓𝑛)(𝑥𝑛 − 𝑧)
+ (1 − 𝜓𝑛)𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1) − 𝜓𝑛𝑧∥2
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= ∥(1 − 𝜓𝑛) (𝑥𝑛 − 𝑧)
+ (1 − 𝜓𝑛)𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1)∥2

− 2𝜓⟨(1 − 𝜓𝑛) (𝑥𝑛 − 𝑧)
+ (1 − 𝜓𝑛)𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1), 𝑧⟩ + 𝜓2

𝑛∥𝑧∥2

≤ ∥(1 − 𝜓𝑛)(𝑥𝑛 − 𝑧)
+ (1 − 𝜓𝑛)𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1)∥2 + 𝜓2

𝑛∥𝑧∥2

= (1 − 𝜓𝑛)∥𝑥𝑛 − 𝑧∥2 + 𝜓2
𝑛∥𝑧∥2

+ (1 − 𝜓𝑛)𝜃𝑛∥𝑥𝑛 − 𝑥𝑛−1∥
− (1 − 𝜓𝑛)(1 − 𝜓𝑛)𝜃𝑛∥𝑥𝑛−1 − 𝑧∥2

≤ ∥𝑥𝑛 − 𝑧∥2 + 𝜃𝑛∥𝑥𝑛 − 𝑥𝑛−1∥2 + 𝜓2
𝑛∥𝑧∥2

= ∥𝑥𝑛 − 𝑧∥2 + 𝜃𝑛∥𝑥𝑛 − 𝑥𝑛−1∥2 + 𝜓2
𝑛M5,
(3.33)

for some M5 > 0. From (3.32) and (3.33)
we get

∥𝑥𝑛+1 − 𝑧∥2

≤ (1 − (1 − 𝛿)𝜓𝑛)∥𝑥𝑛 − 𝑧∥2 + 𝜃𝑛∥𝑥𝑛 − 𝑥𝑛−1∥2

+ 𝜓2
𝑛M5 + 2𝜓𝑛⟨ 𝑓 (𝑧) − 𝑧, 𝑥𝑛+1 − 𝑧⟩

≤ (1 − (1 − 𝛿)𝜓𝑛)∥𝑥𝑛 − 𝑧∥2

+ (1 − 𝛿)𝜓𝑛

[
𝜃𝑛

𝜓𝑛 (1 − 𝛿) ∥𝑥𝑛 − 𝑥𝑛−1∥2

+ 𝜓𝑛M5 + 2⟨ 𝑓 (𝑧) − 𝑧, 𝑥𝑛+1 − 𝑧⟩
1 − 𝛿

]
.

Claim 4. {∥𝑥𝑛 − 𝑧∥2} converges to zero.
Indeed, by Lemma 2.11 it suffices to show
that lim sup𝑘→∞⟨ 𝑓 (𝑧)−𝑧, 𝑥𝑛𝑘+1−𝑧⟩ ≤ 0 for
every subsequence {∥𝑥𝑛𝑘−𝑧∥} of {∥𝑥𝑛−𝑧∥}
satisfying

lim inf
𝑘→∞

(∥𝑥𝑛𝑘+1 − 𝑧∥ − ∥𝑥𝑛𝑘 − 𝑧∥) ≥ 0.

For this, suppose that {∥𝑥𝑛𝑘 − 𝑧∥}
is a subsequence of {∥𝑥𝑛 − 𝑧∥} such that
lim inf 𝑘→∞(∥𝑥𝑛𝑘+1 − 𝑧∥ − ∥𝑥𝑛𝑘 − 𝑧∥) ≥ 0.
Then

lim inf
𝑘→∞

(∥𝑥𝑛𝑘+1 − 𝑧∥2 − ∥𝑥𝑛𝑘 − 𝑧∥2)

= lim inf
𝑘→∞

[(∥𝑥𝑛𝑘+1 − 𝑧∥ − ∥𝑥𝑛𝑘 − 𝑧∥)

× (∥𝑥𝑛𝑘+1 − 𝑧∥ + ∥𝑥𝑛𝑘 − 𝑧∥)] ≥ 0.

By Claim 2 we obtain

lim sup
𝑘→∞

(1 − 𝜓𝑛𝑘 )
(
1 − 𝜇2

𝜂2𝑛𝑘
𝜂2𝑛𝑘+1

)
∥𝑠𝑛𝑘 − 𝑧𝑛𝑘 ∥2

≤ lim sup
𝑘→∞

[∥𝑥𝑛𝑘 − 𝑧∥2 − ∥𝑥𝑛𝑘+1 − 𝑧∥2

+ 𝜓𝑛𝑘M4]
≤ lim sup

𝑘→∞
[∥𝑥𝑛𝑘 − 𝑧∥2 − ∥𝑥𝑛𝑘+1 − 𝑧∥2]

+ lim sup
𝑘→∞

𝜃𝑛𝑘M4

= − lim inf
𝑘→∞

[∥𝑥𝑛𝑘+1 − 𝑧∥2 − ∥𝑥𝑛𝑘
− 𝑧∥2]

≤ 0.

This implies that

lim
𝑘→∞

∥𝑠𝑛𝑘 − 𝑧𝑛𝑘 ∥ = 0. (3.34)

Now, we show that

∥𝑥𝑛𝑘+1 − 𝑥𝑛𝑘 ∥ → 0 as 𝑛 → ∞. (3.35)

Indeed, from (3.34), it follows that

∥𝑡𝑛𝑘 − 𝑧𝑛𝑘 ∥ (3.36)
= ∥𝑠𝑛𝑘 − 𝜂𝑛𝑘 (K𝑠𝑛𝑘 −K𝑧𝑛𝑘 ) − 𝑧𝑛𝑘 ∥
≤ ∥𝑠𝑛𝑘 − 𝑧𝑛𝑘 ∥ + 𝜂𝑛𝑘 ∥K𝑠𝑛𝑘 −K𝑧𝑛𝑘 ∥

≤
(
1 − 𝜇2

𝜂2𝑛𝑘
𝜂2𝑛𝑘+1

)
∥𝑠𝑛𝑘 − 𝑧𝑛𝑘 ∥2 → 0.

(3.37)

Moreover, we have

∥𝑥𝑛𝑘+1 − 𝑡𝑛𝑘 ∥ = 𝜃𝑛𝑘 ∥𝑡𝑛𝑘 − 𝑓 (𝑥𝑛𝑘 )∥ → 0,
(3.38)

and

∥𝑧𝑛𝑘 − 𝑥𝑛𝑘 ∥
= ∥𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1)
− 𝜓𝑛 [𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1)] − 𝑥𝑛∥

≤ 𝜃𝑛∥𝑥𝑛 − 𝑥𝑛−1∥ + 𝜓𝑛∥𝑥𝑛∥
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+ 𝜃𝑛𝜓𝑛∥𝑥𝑛 − 𝑥𝑛−1∥

= 𝜓𝑛
𝜃𝑛
𝜓𝑛

∥𝑥𝑛 − 𝑥𝑛−1∥ + 𝜓𝑛∥𝑥𝑛∥

+ 𝜓2
𝑛

𝜃𝑛
𝜓𝑛

∥𝑥𝑛 − 𝑥𝑛−1∥ → 0. (3.39)

From (3.36), (3.38) and (3.39), we get

∥𝑥𝑛𝑘+1 − 𝑥𝑛𝑘 ∥
≤ ∥𝑥𝑛𝑘+1 − 𝑡𝑛𝑘 ∥ + ∥𝑡𝑛𝑘 − 𝑧𝑛𝑘 ∥
+ ∥𝑧𝑛𝑘 − 𝑥𝑛𝑘 ∥ → 0.

Since the sequence {𝑥𝑛𝑘 } is bounded, it fol-
lows that there exists a subsequence {𝑥𝑛𝑘 𝑗 }
of {𝑥𝑛𝑘 }, which converges weakly to some
𝑧∗ ∈ H, such that

lim sup
𝑘→∞

⟨ 𝑓 (𝑧) − 𝑧, 𝑥𝑛𝑘 − 𝑧⟩

= lim
𝑗→∞

⟨ 𝑓 (𝑧) − 𝑧, 𝑥𝑛𝑘 𝑗 − 𝑧⟩

= ⟨ 𝑓 (𝑧) − 𝑥, 𝑧∗ − 𝑧⟩. (3.40)

From (3.34) and Lemma 3.3, we have 𝑧∗ ∈
Ω and, from (3.40) and the definition of 𝑧 =
𝑃Ω ◦ 𝑓 (𝑧), we have

lim sup
𝑘→∞

⟨ 𝑓 (𝑧) − 𝑧, 𝑥𝑛𝑘 − 𝑧⟩

= ⟨ 𝑓 (𝑧) − 𝑧, 𝑧∗ − 𝑧⟩ ≤ 0. (3.41)

Combining (3.35) and (3.41), we have

lim sup
𝑘→∞

⟨ 𝑓 (𝑧) − 𝑧, 𝑥𝑛𝑘+1 − 𝑧⟩

≤ lim sup
𝑘→∞

⟨ 𝑓 (𝑧) − 𝑧, 𝑥𝑛𝑘 − 𝑧⟩

= ⟨ 𝑓 (𝑧) − 𝑧, 𝑧∗ − 𝑧⟩ ≤ 0. (3.42)

Hence, by (3.42), lim𝑛→∞
𝜃𝑛
𝜓𝑛

∥𝑥𝑛−𝑥𝑛−1∥ =
0, Claim 3 and Lemma 2.11, we have
lim𝑛→∞ ∥𝑥𝑛 − 𝑧∥ = 0. That is the desired
result. □

4. Convex minimization problem
Let S : H → R be a convex function

and T : H → R be a convex, lower semi-
continuous and non-smooth function. We
consider the following convex minimiza-
tion problem:

min
𝑥∈H

S(𝑥) + T(𝑥). (4.1)

By Fermat’s rule, we know that the above
problem is equivalent to the problem of
finding 𝑥 ∈ H such that

0 ∈ ∇S(𝑥) + 𝜕T(𝑥), (4.2)

where ∇S is the gradient of S and 𝜕T is the
sub-differential of T defined by

𝜕T(𝑥) = {𝑧 ∈ H : T(𝑥) ≤ ⟨𝑧, 𝑥−𝑦⟩+T(𝑦)}.

for all 𝑦 ∈ H. In this situation, we assume
that S is a convex and differentiable func-
tion with its gradient∇S isL-Lipschitz con-
tinuous. Further, ∇S is cocoercive with a
constant 1/L (see [34]). This implies that
∇S is monotone and Lipschitz continuous.
Moreover, 𝜕T is maximal monotone (see
[35]). In this point of view, we set K = ∇S
and B = 𝜕T, then we obtain the following
results regarding the problem (4.1).

Assumption 2.

(A1) The function S : H → R is con-
vex and differentiable and its gradi-
ent ∇S isL-Lipschitz continuous and
T : H → R is convex and lower
semi-continuous which S + T attains
a minimizer.

Algorithm 3. Adaptive Tseng’s type
method for convex minimization problem
initialization: Given 𝑥0, 𝑥1 ∈ H, 𝜀𝑛 ∈
(0, 1), 𝜇 ∈ (0, 1), 𝛼 > 0, 𝜂1 > 0 and
select a nonnegative real sequence {𝜑𝑛}
such that

∑∞
𝑛=1 𝜑𝑛 < ∞. Moreover, select
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a sequence {𝜓𝑛} ⊂ (0, 1) satisfies the
following conditions:

lim
𝑛→∞

𝜓𝑛 = 0 and
∞∑
𝑛=1

𝜓𝑛 = ∞.

Step 1: Compute

𝑧𝑛 = (1 − 𝜓𝑛)(𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1)),

where {𝜃𝑛} is a sequence such that
0 ≤ 𝜃𝑛 ≤ 𝜃𝑛 and

𝜃𝑛 =


min

{
𝑛 − 1

𝑛 + 𝛼 − 1
, 𝜀𝑛

∥𝑥𝑛−𝑥𝑛−1 ∥

}
, if 𝑥𝑛 ≠ 𝑥𝑛−1 ,

𝑛 − 1

𝑛 + 𝛼 − 1
, otherwise.

Step 2: Compute

𝑠𝑛 = 𝐽𝜕T𝜂𝑛 (I − 𝜂𝑛∇S)𝑧𝑛.

If 𝑠𝑛 = 𝑧𝑛, then stop and 𝑠𝑛 is a solution of
(4.1). Else, go to Step 3.
Step 3: Compute

𝑥𝑛+1 = 𝑠𝑛 − 𝜂𝑛 (∇S𝑠𝑛 − ∇S𝑧𝑛)

where the sizes are adaptively updated as
follows:

𝜂𝑛+1 =


min

{
𝜇 ∥𝑠𝑛 − 𝑧𝑛 ∥

∥∇S𝑠𝑛 − ∇S𝑧𝑛 ∥
, 𝜂𝑛 + 𝜑𝑛

}
, if ∇S𝑠𝑛 ≠ ∇S𝑧𝑛 ,

𝜂𝑛 + 𝜑𝑛 , otherwise.

Set 𝑛 := 𝑛 + 1 and go back to Step 1.

Theorem 4.1. Let K : H → H be a
mapping that satisfies Assumption 2 and a
sequence {𝑥𝑛} generated by Algorithm 3.
Then {𝑥𝑛} converges weakly to a minimizer
of S + T.

Algorithm 4. Adaptive Tseng’s type
method for inclusion problem
initialization: Given 𝑥0, 𝑥1 ∈ H, 𝜀𝑛 ∈
(0, 1), 𝜇 ∈ (0, 1), 𝛼 > 0, 𝜂1 > 0 and
select a nonnegative real sequence {𝜑𝑛}
such that

∑∞
𝑛=1 𝜑𝑛 < ∞. Moreover, select

a sequence {𝜓𝑛} ⊂ (0, 1) satisfies the
following conditions:

lim
𝑛→∞

𝜓𝑛 = 0 and
∞∑
𝑛=1

𝜓𝑛 = ∞.

Step 1: Compute

𝑧𝑛 = (1 − 𝜓𝑛) (𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1)),

where {𝜃𝑛} is a sequence such that
0 ≤ 𝜃𝑛 ≤ 𝜃𝑛 and

𝜃𝑛 =


min

{
𝑛 − 1

𝑛 + 𝛼 − 1
, 𝜀𝑛

∥𝑥𝑛−𝑥𝑛−1 ∥

}
, if 𝑥𝑛 ≠ 𝑥𝑛−1 ,

𝑛 − 1

𝑛 + 𝛼 − 1
, otherwise.

Step 2: Compute

𝑠𝑛 = 𝐽𝜕T𝜂𝑛 (I − 𝜂𝑛∇S)𝑧𝑛.

If 𝑠𝑛 = 𝑧𝑛, then stop and 𝑠𝑛 is a solution of
(4.1). Else, go to Step 3.
Step 3: Compute

𝑥𝑛+1 = 𝜓𝑛 𝑓 (𝑥𝑛)+(1−𝜓𝑛)(𝑠𝑛−𝜂𝑛 (∇S𝑠𝑛−∇S𝑧𝑛))

where the sizes are adaptively updated as
follows:

𝜂𝑛+1 =


min

{
𝜇 ∥𝑠𝑛 − 𝑧𝑛 ∥

∥∇S𝑠𝑛 − ∇S𝑧𝑛 ∥
, 𝜂𝑛 + 𝜑𝑛

}
, if ∇S𝑠𝑛 ≠ ∇S𝑧𝑛 ,

𝜂𝑛 + 𝜑𝑛 , otherwise.

Set 𝑛 := 𝑛 + 1 and go back to Step 1.

Theorem 4.2. Let K : H → H be a
mapping that satisfies Assumption 2 and a
sequence {𝑥𝑛} generated by Algorithm 4.
Then {𝑥𝑛} converges strongly to a mini-
mizer of S + T.

5. Numerical experiments
Example 5.1. Let H = [0, 4] . Define the
mappings K : H → H and B : H → 2H

by the following:

K𝑥 =
1

4
(𝑥 − 2) and B𝑥 = 4(𝑥 + 1

2
).
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We see that the proposed mappings satisfy
the assumptions in Theorem 3.4 and The-
orem 3.5. For each 𝜂 > 0, we obtain that
𝐽B𝜂 (I − 𝜂K)𝑥 =

4 − 𝜂

4 + 16𝜂
𝑥. In these exper-

iments, we compare our Algorithm 1 and
Algorithm 2 with Algorithm (1.6) of Tseng
[24]. The parameters are chosen as follows:

• Algorithm 1: 𝜓 = 1
(10000(𝑛+1))2 , 𝜀𝑛 =

𝜓2
𝑛, 𝛼 = 3, 𝜂1 = 0.09, 𝜑𝑛 = 1

(𝑛+1)2
and 𝜇 = 0.6;

• Algorithm 2: 𝑓 (𝑥) = 𝑥
99 , 𝜓 =

1
(10000(𝑛+1))2 , 𝜀𝑛 = 𝜓2

𝑛, 𝛼 = 3, 𝜂1 =

0.09, 𝜑𝑛 = 1
(𝑛+1)2 and 𝜇 = 0.6;

• Algorithm (1.6): 𝜂 = 0.09.

We perform numerical experiments with
four different point of view 𝑥1 cases and use
the stopping criterion ∥𝑥𝑛+1 − 𝑥𝑛∥ ≤ 10−10.
The numerical results are summarized in
Table 1.

Example 5.2. Consider the minimization
problem:

min
𝑥∈R3

∥𝑥∥1 + ∥𝑥∥22 + (−2, 1, 4)𝑥 + 9,

where 𝑥 = (𝑢1, 𝑢2, 𝑢3)𝑇 ∈ R3. Let S(𝑥) =
∥𝑥∥22 + (−2, 1, 4)𝑥 + 9 and T(𝑥) = ∥𝑥∥1. So,
we have ∇S(𝑥) = 2𝑥 + (2, 1, 4)𝑇 . It is easy
to check that S is a convex and differen-
tiable function and its gradient ∇S is Lips-
chitz continuous withL = 2.Moreover, T is
a convex and lower semi-continuous func-
tion but not differentiable onR3. From [36],
we know that

𝐽𝜕T𝜂 (𝑥) = (𝐼 + 𝜂𝜕T)−1(𝑥)
= (max{|𝑢1 | − 𝜂, 0}𝑠𝑔𝑛(𝑢1),
max{|𝑢2 | − 𝜂, 0}𝑠𝑔𝑛(𝑢2),
max{|𝑢3 | − 𝜂, 0}𝑠𝑔𝑛(𝑢3))𝑇

for 𝜂 > 0. In these experiments, we com-
pare our Algorithm 3 and Algorithm 4 with
Algorithm (1.6) of Tseng [24] in case K =
∇S andB = 𝜕T. The parameters are chosen
as follows:

• Algorithm 3: 𝜓 = 1
(10000(𝑛+1))2 , 𝜀𝑛 =

𝜓2
𝑛, 𝛼 = 3, 𝜂1 = 0.49, 𝜑𝑛 = 1

(𝑛+1)2
and 𝜇 = 0.5;

• Algorithm 4: 𝑓 (𝑥) = 𝑥
2 , 𝜓 =

1
(10000(𝑛+1))2 , 𝜀𝑛 = 𝜓2

𝑛, 𝛼 = 3, 𝜂1 =

0.49, 𝜑𝑛 = 1
(𝑛+1)2 and 𝜇 = 0.5;

• Algorithm (1.6): 𝜂 = 0.49.

We perform numerical experiments with
four different point of view 𝑥1 cases and use
the stopping criterion ∥𝑥𝑛+1 − 𝑥𝑛∥ ≤ 10−10.
The numerical results are summarized in
Table 2.

Example 5.3. In signal processing, com-
pressed sensing can be represented as the
under-determinated linear equation system
shown below:

𝑏 = F𝑥 + 𝑐, (5.1)

where 𝑥 ∈ R𝑁 is a vector with 𝑚 nonzero
components to be recovered, 𝑏 ∈ R𝑀 is the
observed or measured data with noisy 𝑐 and
F : R𝑁 → R𝑀 (𝑀 < 𝑁) is a bounded lin-
ear operator. It is known that to solve (5.1)
can be seen as solving the LASSO problem:

min
𝑥∈R𝑁

1

2
∥F𝑥 − 𝑏∥22 + 𝜂∥𝑥∥1, (5.2)

where 𝜂 > 0. Next, let K = ∇S be the gra-
dient of T and B = 𝜕T the sub-differential
of T, where S(𝑥) =

1

2
∥F𝑥 − 𝑏∥22 and

T(𝑥) = 𝜂∥𝑥∥1. Then ∇S(𝑥) = F𝑇 (F𝑥 − 𝑏)
and 𝜕T(𝑥) = 𝜕 (𝜂∥𝑥∥1). It is known that
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Table 1. Numerical results for Example 5.1.

𝑥0 = 𝑥1
Algorithm 1 Algorithm 2 Algorithm (1.6)
iter. time iter. time iter. time

0.5 25 0.01 25 0.01 68 0.02
1.5 25 0.01 25 0.01 70 0.02
2.5 25 0.01 25 0.01 72 0.02
3.5 26 0.01 26 0.01 73 0.02

Table 2. Numerical results for Example 5.2.

𝑥0 = 𝑥1
Algorithm 3 Algorithm 4 Algorithm (1.6)
iter. time iter. time iter. time

(2, 1, 3)𝑇 82 0.03 82 0.03 1046 0.11
(2,−5, 4)𝑇 85 0.03 85 0.04 1069 0.11

(−150, 150, 100)𝑇 95 0.03 95 0.04 1235 0.18
(−3000,−5000,−700)𝑇 108 0.03 108 0.04 1405 0.21

K is ∥F∥22-Lipschitz continuous and mono-
tone. Moreover, B is maximal monotone
(see [35]).

The sparse vector 𝑥 ∈ R𝑁 is created
in this experiment from a uniform distribu-
tion with 𝑚 nonzero entries in the interval
[−1, 1] . A normal distribution with mean
zero and one invariance yields the matrix
F ∈ R𝑀×𝑁 . Themean squared error (MSE)
is used to determine the restoration accu-
racy:

MSE =
1

𝑁
∥𝑥𝑛 − 𝑥∥22 < 10−4, (5.3)

where 𝑥 is the original signal.
We compare our Algorithm 3 and Al-

gorithm 4 with Algorithm (1.6) of Tseng
[24] in case K = ∇S and B = 𝜕T. The
parameters are chosen as follows:

• Algorithm 3: 𝜓 = 1
(10000(𝑛+1))2 , 𝜀𝑛 =

𝜓2
𝑛, 𝛼 = 3, 𝜂1 = 0.09, 𝜑𝑛 = 1

(𝑛+1)2
and 𝜇 = 0.6;

• Algorithm 4: 𝑓 (𝑥) = 𝑥
2 , 𝜓 =

1
(10000(𝑛+1))2 , 𝜀𝑛 = 𝜓2

𝑛, 𝛼 = 3, 𝜂1 =

0.09, 𝜑𝑛 = 1
(𝑛+1)2 and 𝜇 = 0.6;

• Algorithm (1.6): 𝜂 =
0.04

∥F∥22
.

The starting stances 𝑥1 of all methods are
chosen at random inR𝑁 . The numerical test
is done using the following two cases:
Case I: 𝑁 = 513, 𝑀 = 256 and 𝑚 = 20.
Case II: 𝑁 = 1024, 𝑀 = 512 and 𝑚 = 50.
The numerical results for all tests show in
Figs. 1, 2, 3 and 4.
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Fig. 1. Comparison of recovered signal by using different algorithms in Case I.

Fig. 2. The plotting of MSE versus number of iterations in Case I.

6. Conclusions
In this paper, we combined inertial

and viscosity techniques to propose a mod-

ified Tseng’s method for solving monotone
inclusion problems in real Hilbert spaces.
Furthermore, we established theweakly and
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Fig. 3. Comparison of recovered signal by using different algorithms in Case II.

Fig. 4. The plotting of MSE versus number of iterations in Case II.

strongly convergence theorems. Finally,
we compared our results with Algorithm
(1.6) of Tseng [24] in the convergence rate

and applied to signal processing by modi-
fied the algorithm 1 and the algorithm 2 in
case K = ∇S and B = 𝜕T, as in Exam-
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ple 5.1 and Example 5.2, we knew that our
algorithm is more efficient than Algorithm
(1.6) of Tseng (see Figs. 1, 2, 3 and 4).
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