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ABSTRACT 
  This research aimed to study the use of Bayesian estimation for the zero-inflated and 
hurdle discrete Weibull regression models. Moreover, this study compared the performance of 
the Bayesian estimation with uniform noninformative priors and informative priors using the 
random walk Metropolis algorithm and the maximum likelihood estimation. A simulation 
study was conducted to compare the performance of three different estimation methods by 
using mean square error with three cases of a simple explanatory variable. A real dataset was 
analyzed to see how the model works in practice. The results from the simulation study 
showed that the Bayesian estimation with informative priors is more appropriate for the zero-
inflated and hurdle discrete Weibull regression models than other methods. Moreover, the 
results from a real data application revealed that the Bayes estimators with informative priors 
for the zero-inflated and hurdle discrete Weibull regression models are the best fitting models. 
 

Keywords: Bayesian estimation; Discrete count data; Hurdle model; Random walk 
Metropolis algorithm; Zero-inflated model  
 
1. Introduction 

In experimental and observational 
studies in many fields, including social 
sciences, industrial, economy, and public 
health, regression model is demonstrated to 
count response variables. For such counts, 
the number of times cardiac arrest happens 
over a fixed period of time, aside from the 
number of postoperative complications over 
a fixed period of time, the number of 
epileptic seizures experienced over a fixed 

period of time, the number of claims in an 
insurance company over a fixed period of 
time, and the number of recurrent circuit 
breaker failures over a fixed period of time. 
A Poisson regression model is commonly 
used to evaluate the relationship between 
the count response variable and explanatory 
variables, e.g., [1-4]. However, its use is 
limited of the equality of the mean and 
Variance assumption with real data. A 
negative binomial regression and the
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Poisson-inverse Gaussian model are used to 
account for over-dispersion, e.g., [5-7]. 
However, these models may be unable to fit 
with data that is excessive zero or high 
skewed data. On the other hand, Conway-
Maxwell Poisson model is used to deal for 
under-dispersion, e.g., [8-10]. One of the 
count models examined to handle for under-
dispersion and over-dispersion is a discrete 
Weibull model, e.g., [11-15].  

A discrete Weibull regression model 
was proposed by Kalktawi [11]. The 
cumulative distribution function and the 
probability mass function of a discrete 
Weibull random variable  are given by 

 

      (1.1) 

and  

 

(1.2) 
 

respectively, where  and  are 
the shape parameters. Moreover, the 
parameter  , which is the 
probability of  being more than zero. 
Kalktawi showed how a discrete Weibull 
regression model can be adapted to address 
over-dispersion and under-dispersion via the 
log-log link function under the parameter 

. 
The over-dispersion data may be 

caused by count data with excessive zeros 
that are common in many application areas. 
Several models have been proposed to 
handle count data with excessive zeros; the 
zero-inflated Poisson (ZIP) regression 
model and the hurdle Poisson (HP) 
regression model, e.g., [17-20], the zero-
inflated negative binomial (ZINB) 
regression model and the hurdle negative 

binomial (HNB) regression model, e.g., [21-
25], the zero-inflated discrete Weibull 
(ZIDW) regression model and the hurdle 
discrete Weibull (HDW) regression model, 
e.g., [11]. Zero counts can be classified into 
two types: structural zeros and sampling 
zeros. Structural zeros are zero responses 
that count response variables are always 
zero counts. In contrast, sampling zeros or 
random zeros occur to count response 
variables that can be greater than zero, but it 
appears to be zero counts, due to the 
sampling variability [26]. The excess zero 
counts models include the zero-inflated 
model and the hurdle model; the difference 
between these two models is zero counts in 
the zero-inflated model that can come from 
both types that is structural zeros and 
sampling zeros, whereas in the hurdle model 
can come from only structural zeros. 

Methods to estimate the regression 
model parameters precisely and efficiently 
are very important. The maximum 
likelihood estimation is valid for an 
asymptotically large sample size of data. 
Additionally, the maximum likelihood 
estimation is used for only empirical 
knowledge from the likelihood function.  
Alternatively, the Bayesian estimation is an 
interesting method because it uses 
information from both prior knowledge 
about the parameters from the prior 
probability distribution and empirical 
knowledge from the likelihood function. 
Hence, the performance of the Bayesian 
estimation depends upon the prior 
distribution that defined. According to 
determining the prior distribution, it is very 
important in the Bayesian estimation, if the 
researchers have no prior knowledge of the 
parameters; then they can use the 
noninformative prior distribution. 
Contrastingly, the researchers use the 
informative prior distribution when knowing 
about prior knowledge of the parameters. 

Y

( )
( )1 ; 0,1,1; ,

;otherwise0

y

Y
yqF y q

b

b
+ì =ï -= í

ïî

!

( )
( )1 ; 0,1,

; ,
;otherwise0

yy
Y

yq qp y q
bb

b
+ì =ï -= í

ïî

!

0 1q< < 0b >

( )1 0; ,Yq p q b= -

Y

q



D. Chaiprasithikul and M. Duangsaphon | Science & Technology Asia | Vol.27 No.4 October – December 2022 

154 

Furthermore, the Bayesian estimation is 
offered for small sample problems, e.g., 
[27]. However, the disadvantage of the 
Bayesian estimation is that it takes a long 
time to compute. 

Kalktawi [11] performed the 
maximum likelihood for estimation of 
parameter based on the standard model, 
censoring model, and excessive zero 
models. Moreover, there are many paper 
works considering the Bayesian inference 
for estimation in discrete regression model 
with excess zeros, such as [13, 28]. 
Unfortunately, there are no conjugate priors 
in the context of discrete Weibull 
regression.  Haselimashhadi et al. [13] had 
recently proposed the Bayesian 
implementation of the discrete Weibull 
regression model under a uniform 
noninformative prior. They showed the 
effectiveness of the Bayesian estimation 
procedure via a simulation study both in the 
case of data drawing a discrete Weibull 
regression model and in case of model 
misspecification; Poisson and negative 
binomial. In addition, the applicability of 
Bayesian discrete Weibull regression model 
to health data.  It is often more natural to 
express prior information directly in term of 
the parameters, the regression coefficients 
that can be a real number which correspond 
to the possible values of a normal 
distribution.  There are papers selecting the 
prior distribution of the regression 
coefficients as a normal distribution [29-31]. 
The parameter   from the discrete Weibull 
distribution is equivalent to the shape 
parameter  from the continuous Weibull 
distribution that  corresponds to the 
possible values of a Gamma distribution. 
There are papers selecting the prior 
distribution of  as a Gamma distribution 
[32, 33]. 

The main objective of this paper is to 
perform the Bayesian inference for the 
ZIDW and HDW regression models under 
uniform noninformative and informative 
prior distributions. This study constructed 
the estimators of the parameters under 
squared error loss function which is the 
expected value of the joint posterior density 
function.  The main problem faced when 
dealing with the Bayesian estimation that 
comes from the integral of the posterior 
probability distribution without a closed 
form. Therefore, in this case, it chose a one 
of the Markov chain Monte Carlo (MCMC) 
methods which is the random walk 
Metropolis algorithm in order to estimate 
the parameters. 

The remainder of this paper is 
organized as follows. In Section 2, it 
introduces the discrete Weibull regression, 
and present the Bayesian estimation via the 
random walk Metropolis algorithm for 
discrete Weibull regression with excess zero 
counts; the ZIDW and HDW regression 
models. In Section 3, it investigates the 
performance of the estimations through a 
simulation study and applies the 
computational methods to a real dataset. 
Finally, the findings are concluded in 
Section 4. 

 
2. Materials and Methods 
2.1 Discrete Weibull regression  

Regression analysis for count data is a 
statistical process to measure the relationship 
between a count variable and one or more 
explanatory variables. The discrete Weibull 
regression can link the independent variables 
via the shape parameters  and .  In this 
paper, it linked the explanatory variables 
only via the shape parameter .  
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This study determines  as a count 
response variable which takes only the non-
negative integer values with the  
explanatory variables.  Assume that the 
parameter  is related to  explanatory 
variables  via the log-log link function: 

 
 

            (2.1) 
 

where , , 

and . 
The conditional probability mass 

function of  given  can be written as 
 

 

(2.2) 
 
Given  observations  and 

, , from Eq. 

(2.2) for the count response variable  and 
 explanatory variables, respectively, the 

likelihood function and the log-likelihood 
function of the discrete Weibull regression 
model are given by 

 

 (2.3) 

and 

  (2.4) 

respectively. 
 

2.2 Bayesian estimation for discrete 
Weibull regression with excess zero 
counts  

In this section, it presents the Bayesian 
inference for the ZIDW and HDW regression 
models and defines the random walk 
Metropolis algorithm.  

 
2.2.1 Zero-inflated discrete Weibull 

regression 
The zero-inflated distribution can be 

expressed as two-component mixture 
distributions where there are one component 
degenerate distribution at zero and a regular 
discrete Weibull distribution. The mixing 
parameter  of these two distributions is 
thought to be completely unknown. Thus, 
the probability mass function of the ZIDW 
is 
   

 

(2.5) 
 
where . The parameter  in Eq. 
(2.5), also known as the probability or 
proportion of a structural zero [34]. 

In the zero-inflated regression model, 
the proportion parameter  is related to  
explanatory variables via any link function. 
This paper assumes the logit link function 
for the parameter  (Lambert, 1992). Let 

 be  explanatory variables and 

 represents the 
associated regression parameters vector. 
Hence, the parameter  can be related to 

 explanatory variables as follows: 
 

  

  (2.6) 
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where . 

The count response variable, , is 
determined to have a discrete Weibull 
distribution, where the parameter  is 
related to  explanatory variables via the 
log-log link function in Eq. (2.1). Thus, the 
conditional probability mass function of  
given  and  can be written as 

  

(2.7) 

 
Given  independent observations 

, , and , , 

from Eq. (2.7) where  be the zero 
indicator that can be specified as 

 

      (2.8) 

 
The likelihood function and the log-

likelihood function of the ZIDW regression 
model are given by  

 

  (2.9) 
and 

   

     (2.10) 

respectively, where  
,  

and . 

  
2.2.2 Hurdle discrete Weibull 

regression 
The hurdle model was first used by 

[35] and the hurdle model as a modified 
count data model was proposed by [36]. 
This model was developed to deal with 
count data that has excessive zeros, as 
another option of the zero-inflated model. 
The hurdle model is two-part models that 
state a process for the zero counts and the 
positive counts. The basic idea of the hurdle 
model is the zero counts that are generated 
by some binary process, , and the non-
zero positive counts are observed with a 
probability based on a truncated parent 

count model  that 

needs to be multiplied by  to ensure 
probabilities sum to one. 

The count response variable, , is 
given to have a discrete Weibull 
distribution, where the parameter  is 
related to  explanatory variables via the 
log-log link function in Eq. (2.1), and the 
parameter  to model the binary outcome 

 versus  is related to  
explanatory variables via the logit link 
function in Eq. (2.6).  

Thus, the conditional probability mass 
function of  given  and  can be 
written as 

 (2.11) 
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Given  independent observations , 
, and ; , 

from Eq. (2.11) where  be the zero 
indicator that can be specified as 

      (2.12) 

The likelihood function and the log-
likelihood function of the HDW regression 
model are given by  

  (2.13) 
and 

 

(2.14) 
respectively where  

. 
Moreover, the explanatory variables 

that affect the parameter  may or may not 
be the same as the explanatory variables that 
affect the parameter . 

 
2.2.3 Bayesian inference  
This study investigates the 

performance of the estimation through both 
noninformative and informative prior 
distributions. Firstly, if no prior information 
is available, we can resort to a default flat 
prior then it’s easy to focus on the uniform 
noninformative prior distribution, i.e. 

, proposed by [13].  On the other 

hand, if prior information is available, we 

can perform to the informative prior 
distribution. Typically, the prior distribution 
should include all possible values of 
parameter. The possible values of  and 

 are real number which correspond to the 

possible values of a normal distribution. 
This study selected the prior distribution of  

 and  as a normal distribution with the 

hyperparameters are  and 

, , respectively and 

the prior distribution of , that  
corresponds to the possible values of a 
Gamma distribution, as a Gamma 
distribution with the hyperparameters are 

. The joint prior distribution of the 

parameters , , and  under the 
independence assumption is 

 
 

(2.15) 
 
The choice of the hyperparameters’ 

values will generally be modified by 
available information of dataset to improve 
the Bayes estimators.  At this moment, they 
are left unspecified. 

The joint posterior density function of 
the parameters , , and  can be written 
as: 
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The Bayes estimator of function  

of the parameters , , and  under 
squared error loss function is the expected 
value of function  under the joint 
posterior density function.  Therefore, the 
Bayes estimator of function  is given 
by 

 

  (2.17) 
 
Since the integral in Eq. (2.17) does 

not have a closed form, this study chose the 
Metropolis-Hastings algorithm to estimate 
the Bayes estimators. 

The Metropolis-Hastings algorithm is 
a MCMC method for simulating a sample 
from a probability distribution that is the 
target distribution from which direct 
sampling is difficult.  This algorithm is 
similar to acceptance-rejection method; the 
proposal (candidate) value can be generated 
from the proposal distribution.  Then, the 
proposal value is accepted with an 
acceptance probability.  Moreover, the 
Metropolis-Hastings algorithm is 
converging to the target distribution itself. 
In this paper, it chose a random walk 
Metropolis algorithm, which is a special 
case of a Metropolis-Hastings algorithm. 

This study determines the joint 
posterior density function of the 
parameters , , and , , in 

Eq. (2.16) as the target distribution, while  

is the current state value, and  is the 
proposal value generated from the proposal 

distribution .  Then, the proposal 

value  is accepted with the probability 
, where  

 

 (2.18) 

 
In the random walk Metropolis 

algorithm, the proposal distribution is 
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proposal value. Then, the proposal value  
is accepted with probability , 

where  

       (2.19) 
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c.  Generate  from a uniform 
distribution; . 

If , accept  and set  
with probability . 

If , reject  and set  
with probability . 

Step 3:  Remove  of the chain for 
burn-in.  

Step 4: Calculate the estimated values 
of the Bayes estimators of the parameters 

, , and  from the average of the 
generated values given by 

        (2.20) 

where  is a parameter in vector 
. 

 
3. Results and Discussion  
3.1 Simulation study 

In this section, a Monte Carlo 
simulation is conducted to assess and 
compare the performance of the maximum 
likelihood estimation and the Bayesian 
estimation for the ZIDW and HDW 
regression models with various selected 
sample sizes  are 60, 90, 120, 150, and 
180. The three cases of a simple explanatory 
variable are considered: a Bernoulli 
distribution with probability of success 0.4 

, a uniform distribution that 

lies between 0 and 3 , and a 

normal distribution with mean 2 and 
variance 1 .  Moreover, the 

explanatory variable that affects the 
parameter  is the same as the explanatory 

variable that affects the parameter ; 
. In particular, this study selected 

 for 

,  

for  and . 

It also fixed the hyperparameters’ values of  
 and , , as the maximum 

likelihood estimators and the variance of the 
maximum likelihood estimators. Also, this 
study fixed the hyperparameters’ values of  

 as 1 and the maximum likelihood 
estimator. It also computed  and  for 
each type of data from the log-log link 
function in Eq. (2.1) and the logit link 
function in Eq. (2.6), respectively. Then this 
study generated the count response variables 

 for the ZIDW regression model 

from Eq. (2.7) and the HDW regression 
model from Eq. (2.11) as follows: 

a. the ZIDW regression model 
Generate  from a uniform 
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u
( )0,1u U!

u p£ *θ ( ) *l =θ θ
p

u p> *θ ( ) ( )1l l-=θ θ
1 p-

B

α γ b

( )

1

1ˆ
L

l
Bayes

l BL B
q q

= +
=

- å
q

( ), ,b=θ α γ

( )n

( )( )0.4x Ber!

( )( )0,3x U!

( )( )2,1x N!

iq

ip
z x=

( )0 1 0 1, , , ,a a g g b = ( )2, 1.7,1.5, 1.7,2.2- - -

( )0.4x Ber! ( )0 1 0 1, , , ,a a g g b = ( 2, 1.7,- -

)1.5, 0.9,2.2- ( )0,3x U! ( )2,1x N!

ja jg 0,1j =

b

iq ip

1 2, , , nY Y Y!

u
( )0,1u U!

iu p£ 0iy =

ip

iu p> iy
( )rdw DWreg

Bery

( )1Ber iy Ber p-!

0Bery = 0iy =

ip

1Bery = try

( )rdw

DWreg



D. Chaiprasithikul and M. Duangsaphon | Science & Technology Asia | Vol.27 No.4 October – December 2022 

160 

Then, this study received the response 
variables  as observed data for 

the ZIDW regression model from Eq. (2.7) 
and the HDW regression model from Eq. 
(2.11) and the indicator  is the 
zero indicator for the ZIDW regression 
model from Eq. (2.8) and the HDW 
regression model from Eq. (2.12). 

This study calculated the maximum 
likelihood estimators of the parameters , 

, and  by minimizing the negative log-
likelihood function of the ZIDW regression 
model in Eq. (2.10)  and the HDW 
regression model in Eq. (2.14). Then, it got 

 using function  from 
package  in R.  Next, this study 
calculated the Bayes estimators of the 
parameters , , and  with uniform 
noninformative priors and informative 
priors under the squared error loss function 
by using the random walk Metropolis 
algorithm with  replicates and 

10%  of the chain for burn-in; . 
Finally, the Bayes estimators is obtained, 

resulting in  and  from Eq. 

(2.20) . Moreover, it was found that  in 
Step 2(b.) for uniform noninformative priors 

becomes .  

This study performed the parameter 
estimates (Est.) and the mean squared error 
( ) of estimators based on  
from the MLE and the Bayesian estimation 
with uniform noninformative priors 
(Bayes(Uniform))  and informative priors 
(Bayes(Informative))  which are reported in 
Table 1 to Table 3 for the ZIDW regression 
model when , , and 

, respectively. Moreover, Table 4 
to Table 6 for the HDW regression model 
show , , and 

 respectively. 
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Table 1. Est. and  for ZIDW;  and . 
 

(% zeros) 
parameter 

MLE Bayes(Uniform) Bayes(Informative) 
Est.  Est.  Est.  

60 
(68.72%) 

 -2.1387 1.1820 -1.1790 207.8896 -2.1262 1.0881 
 -2.0605 1.0013 -2.4038 206.3418 -1.9794 0.8409 
 1.4501 0.4504 -1.1389 64.8343 1.4111 0.7812 
 -1.6981 0.7052 -3.0575 45.7127 -1.6970 0.8483 
 2.5058 0.5812 1.9865 3.2538 2.4334 0.5508 

90 
(68.90%) 

 -2.2065 0.6695 -2.1108 1.1356 -2.1888 0.6585 
 -1.9178 0.4531 -1.8432 0.6561 -1.8898 0.4242 
 1.5286 0.2075 1.0682 5.3707 1.5232 0.2233 
 -1.7453 0.3230 -2.0282 5.3475 -1.7570 0.3429 
 2.4454 0.3289 2.3120 0.8115 2.4061 0.3135 

120 
(68.82%) 

 -2.1203 0.4276 -2.2024 0.5056 -2.1070 0.4069 
 -1.8334 0.2950 -1.8401 0.3213 -1.8078 0.2648 
 1.5155 0.1515 1.4890 0.4629 1.5138 0.1337 
 -1.7332 0.2439 -1.8266 0.8740 -1.7421 0.2285 
 2.3509 0.2174 2.3804 0.2585 2.3186 0.2032 

150 
(69.07%) 

 -2.0780 0.3292 -2.0964 0.3369 -2.0696 0.3096 
 -1.8242 0.2097 -1.7970 0.2211 -1.8039 0.2027 
 1.4981 0.2945 1.4913 0.1771 1.5075 0.1015 
 -1.7030 0.1823 -1.7673 0.3190 -1.7099 0.1703 
 2.3200 0.1580 2.3072 0.1655 2.2961 0.1492 

180 
(69.09%) 

 -2.0430 0.2310 -2.1138 0.2780 -2.0341 0.2180 
 -1.7843 0.1701 -1.7884 0.1612 -1.7694 0.1655 
 1.5200 0.1076 1.5249 0.1258 1.5219 0.0831 
 -1.7286 0.1470 -1.7522 0.1722 -1.7361 0.1368 
 2.2735 0.1093 2.3117 0.1257 2.2532 0.1035 

Note: the boldface identifies the smallest  for each cases. 
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Table 2. Est. and  for ZIDW;  and . 
 

(% zeros) 
parameter 

MLE Bayes(Uniform) Bayes(Informative) 
Est.  Est.  Est.  

60 
(53.61%) 

 -2.1335 0.6213 -2.2379 0.7035 -2.1278 0.6074 
 -1.8567 0.2310 -1.8799 0.2545 -1.8422 0.2265 
 1.5617 0.4791 1.6120 1.0144 1.5684 0.4819 
 -0.9456 0.1542 -0.9946 0.1947 -0.9562 0.1576 
 2.3842 0.2299 2.4257 0.2639 2.3592 0.2194 

90 
(53.84%) 

 -2.0680 0.3580 -2.1432 0.3743 -2.0668 0.3483 
 -1.8111 0.1305 -1.8280 0.1405 -1.8017 0.1268 
 1.5422 0.3052 1.5940 0.3366 1.5474 0.3011 
 -0.9332 0.1000 -0.9678 0.1132 -0.9404 0.1000 
 2.3232 0.1286 2.3542 0.1433 2.3075 0.1231 

120 
(54.35%) 

 -2.0779 0.2803 -2.1367 0.2841 -2.0780 0.2678 
 -1.7796 0.0850 -1.7876 0.0863 -1.7704 0.0816 
 1.5440 0.2130 1.5787 0.2163 1.5478 0.2042 
 -0.9187 0.0655 -0.9428 0.0698 -0.9241 0.0644 
 2.2996 0.0908 2.3200 0.0952 2.2866 0.0866 

150 
(54.01%) 

 -2.0422 0.2183 -2.0954 0.2044 -2.0474 0.2005 
 -1.7574 0.0623 -1.7641 0.0643 -1.7503 0.0608 
 1.5068 0.1660 1.5361 0.1630 1.5100 0.1556 
 -0.9070 0.0507 -0.9265 0.0514 -0.9112 0.0487 
 2.2657 0.0686 2.2852 0.0704 2.2582 0.0654 

180 
(53.96%) 

 -2.0389 0.1776 -2.0754 0.1642 -2.0396 0.1613 
 -1.7464 0.0495 -1.7537 0.0513 -1.7376 0.0473 
 1.5062 0.1484 1.5554 0.1556 1.5084 0.1354 
 -0.9065 0.0473 -0.9368 0.0494 -0.9079 0.0451 
 2.2559 0.0509 2.2681 0.0551 2.2447 0.0467 

Note: the boldface identifies the smallest  for each cases. 
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Table 3. Est. and  for ZIDW;  and . 
 

(% zeros) 
parameter 

MLE Bayes(Uniform) Bayes(Informative) 
Est.  Est.  Est.  

60 
(44.28%) 

 -2.0926 0.4969 -2.1905 0.5296 -2.1009 0.4813 
 -1.8359 0.1514 -1.8664 0.1682 -1.8289 0.1470 
 1.6613 0.6351 1.7533 0.7675 1.6607 0.6196 
 -0.9860 0.1564 -1.0444 0.1942 -0.9952 0.1555 
 2.3566 0.1677 2.4024 0.1921 2.3445 0.1610 

90 
(44.30%) 

 -2.0447 0.2984 -2.1143 0.2967 -2.0520 0.2816 
 -1.7739 0.0779 -1.7926 0.0834 -1.7681 0.0756 
 1.6252 0.5011 1.6706 0.5275 1.6218 0.4744 
 -0.9634 0.1121 -0.9946 0.1225 -0.9683 0.1087 
 2.2854 0.0853 2.3154 0.0929 2.2769 0.0820 

120 
(44.07%) 

 -1.9942 0.2392 -2.0657 0.2265 -2.0091 0.2200 
 -1.7498 0.0561 -1.7677 0.0589 -1.7485 0.0543 
 1.6026 0.3738 1.6071 0.3545 1.5869 0.3385 
 -0.9516 0.0840 -0.9622 0.0822 -0.9507 0.0786 
 2.2471 0.0618 2.2794 0.0654 2.2465 0.0586 

150 
(44.10%) 

 -2.0005 0.1649 -2.0594 0.1544 -2.0134 0.1486 
 -1.7368 0.0396 -1.7512 0.0411 -1.7349 0.0383 
 1.5753 0.2646 1.5778 0.2392 1.5650 0.2348 
 -0.9390 0.0593 -0.9463 0.0553 -0.9383 0.0544 
 2.2349 0.0426 2.2616 0.0439 2.2345 0.0399 

180 
(44.09%) 

 -1.9942 0.1470 -2.0529 0.1314 -2.0078 0.1308 
 -1.7385 0.0371 -1.7499 0.0370 -1.7370 0.0354 
 1.5882 0.2514 1.5696 0.2027 1.5708 0.2113 
 -0.9441 0.0541 -0.9421 0.0464 -0.9411 0.0480 
 2.2334 0.0400 2.2580 0.0393 2.2337 0.0368 

Note: the boldface identifies the smallest  for each cases. 
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Table 4. Est. and  for HDW;  and . 
 

(% zeros) 
parameter 

MLE Bayes(Uniform) Bayes(Informative) 
Est.  Est.  Est.  

60 
(67.05%) 

 -2.2587 1.0396 -2.0905 1.0826 -2.2464 0.8719 
 -2.0509 0.9532 -1.7306 0.7430 -1.9340 0.7049 
 1.5674 0.2292 1.3376 0.2398 1.5366 0.2176 
 -1.7854 0.4210 -1.5302 0.4118 -1.7519 0.4052 
 2.5596 0.5525 2.2297 0.6516 2.4652 0.5141 

90 
(66.85%) 

 -2.1468 0.4844 -2.2407 0.5488 -2.1302 0.4522 
 -1.9053 0.3983 -1.8761 0.3943 -1.8799 0.3583 
 1.5587 0.1534 1.5410 0.1530 1.5584 0.1543 
 -1.7839 0.2792 -1.7631 0.2730 -1.7849 0.2860 
 2.4032 0.2530 2.4216 0.3208 2.3660 0.2401 

120 
(67.14%) 

 -2.1121 0.3829 -2.1772 0.3563 -2.0978 0.3676 
 -1.8281 0.2464 -1.8305 0.2612 -1.8091 0.2223 
 1.5441 0.1107 1.5644 0.1260 1.5467 0.1104 
 -1.7507 0.1970 -1.7690 0.2272 -1.7558 0.1992 
 2.3428 0.1821 2.3650 0.1927 2.3141 0.1750 

150 
(67.05%) 

 -2.0979 0.2745 -2.1454 0.2788 -2.0847 0.2741 
 -1.7914 0.1796 -1.8166 0.2021 -1.7807 0.1775 
 1.5215 0.0785 1.5415 0.0852 1.5254 0.0792 
 -1.7302 0.1451 -1.7397 0.1547 -1.7343 0.1450 
 2.3160 0.1450 2.3404 0.1505 2.2950 0.1412 

180 
(67.02%) 

 -2.0882 0.2161 -2.1320 0.2341 -2.0763 0.2139 
 -1.7903 0.1470 -1.7986 0.1543 -1.7821 0.1449 
 1.5122 0.0686 1.5320 0.0726 1.5154 0.0688 
 -1.7123 0.1298 -1.7350 0.1342 -1.7159 0.1310 
 2.3061 0.1124 2.3256 0.1217 2.2880 0.1088 

Note: the boldface identifies the smallest  for each cases. 
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Table 5. Est. and  for HDW;  and . 
 

(% zeros) 
parameter 

MLE Bayes(Uniform) Bayes(Informative) 
Est.  Est.  Est.  

60 
(53.42%) 

 -2.1534 0.6747 -2.2884 0.7586 -2.1564 0.6553 
 -1.8188 0.1783 -1.8519 0.1956 -1.8059 0.1706 
 1.6103 0.4467 1.6887 0.5288 1.6180 0.4433 
 -0.9604 0.1508 -1.0091 0.1793 -0.9682 0.1507 
 2.3663 0.2098 2.4265 0.2405 2.3452 0.1963 

90 
(53.43%) 

 -2.0686 0.3550 -2.1541 0.3741 -2.0696 0.3410 
 -1.8069 0.1207 -1.8263 0.1302 -1.7978 0.1170 
 1.5864 0.2832 1.6548 0.3075 1.5958 0.2733 
 -0.9508 0.0909 -0.9920 0.0999 -0.9581 0.0895 
 2.3158 0.1257 2.3524 0.1404 2.3016 0.1202 

120 
(53.27%) 

 -2.0397 0.2501 -2.1192 0.2549 -2.0474 0.2376 
 -1.7726 0.0870 -1.7877 0.0899 -1.7659 0.0835 
 1.5244 0.2315 1.5625 0.2339 1.5281 0.2235 
 -0.9099 0.0744 -0.9342 0.0758 -0.9143 0.0724 
 2.2788 0.0840 2.3127 0.0919 2.2713 0.0805 

150 
(53.34%) 

 -2.0515 0.2254 -2.1048 0.2188 -2.0540 0.2101 
 -1.7692 0.0658 -1.7746 0.0651 -1.7617 0.0627 
 1.5129 0.1544 1.5516 0.1547 1.5185 0.1468 
 -0.9062 0.0521 -0.9307 0.0531 -0.9116 0.0503 
 2.2784 0.0684 2.2967 0.0689 2.2692 0.0638 

180 
(53.39%) 

 -2.0234 0.1520 -2.0732 0.1531 -2.0275 0.1433 
 -1.7525 0.0529 -1.7576 0.0527 -1.7473 0.0507 
 1.5246 0.1343 1.5494 0.1351 1.5267 0.1276 
 -0.9108 0.0425 -0.9272 0.0436 -0.9145 0.0415 
 2.2531 0.0513 2.2703 0.0531 2.2467 0.0486 

Note: the boldface identifies the smallest  for each cases. 
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Table 6. Est. and  for HDW;  and . 
 

(% zeros) 
parameter MLE Bayes(Uniform) Bayes(Informative) 

 Est.  Est.  Est.  

60 
(43.81%) 

 -2.0745 0.5337 -2.1820 0.5512 -2.0829 0.4981 
 -1.8169 0.1451 -1.8543 0.1586 -1.8106 0.1404 
 1.6538 0.5772 1.7737 0.7278 1.6640 0.5714 
 -0.9805 0.1384 -1.0466 0.1773 -0.9911 0.1389 
 2.3378 0.1624 2.3931 0.1865 2.3270 0.1562 

90 
(43.88%) 

 -2.0397 0.3163 -2.1181 0.3023 -2.0486 0.2889 
 -1.7666 0.0791 -1.7920 0.0839 -1.7649 0.0772 
 1.6136 0.4164 1.6599 0.4298 1.6060 0.3763 
 -0.9529 0.0945 -0.9821 0.0976 -0.9544 0.0862 
 2.2770 0.0886 2.3167 0.0958 2.2737 0.0842 

120 
(43.74%) 

 -2.0437 0.2414 -2.1204 0.2322 -2.0591 0.2211 
 -1.7443 0.0542 -1.7631 0.0556 -1.7410 0.0519 
 1.5769 0.3045 1.6121 0.2869 1.5739 0.2743 
 -0.9385 0.0716 -0.9605 0.0693 -0.9409 0.0665 
 2.2560 0.0599 2.2912 0.0636 2.2544 0.0567 

150 
(43.81%) 

 -1.9851 0.1874 -2.0526 0.1597 -2.0006 0.1602 
 -1.7394 0.0456 -1.7569 0.0460 -1.7389 0.0430 
 1.5882 0.2516 1.6053 0.2340 1.5799 0.2238 
 -0.9410 0.0561 -0.9543 0.0530 -0.9410 0.0512 
 2.2347 0.0493 2.2664 0.0485 2.2360 0.0445 

180 
(43.74%) 

 -1.9872 0.1527 -2.0484 0.1326 -2.0028 0.1317 
 -1.7234 0.0381 -1.7371 0.0376 -1.7231 0.0362 
 1.5648 0.2176 1.5714 0.1744 1.5558 0.1771 
 -0.9311 0.0489 -0.9384 0.0398 -0.9301 0.0412 
 2.2217 0.0429 2.2490 0.0414 2.2237 0.0392 

Note: the boldface identifies the smallest  for each cases. 

The results of these simulation studies 
show that all of estimators have monotonic 
behaviors according to the , namely, 
when  increases, the estimated  
values decrease. Almost all cases of the 
Bayes estimators with informative priors 
show the best performance in terms of the 

 except: Table 1 to Table 3 for the 
ZIDW regression model when , 
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parameters  at , and the 
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tive priors shows the best performance for 
parameter  at , when , 
the MLE shows the best performance for 
parameters  at , and the MLE 
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priors shows the best performance for 
parameter  at , and when 

, the Bayes estimators with 
uniform noninformative priors shows the 
best performance for parameter  at 

. Additionally, Table 4 to Table 6 
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for the HDW regression model when 
appearing , the MLE shows the 
best performance for parameters  at 

  and  at , and 
the Bayes estimator with uniform 
noninformative priors shows the best 
performance for parameters  at  
and  at , and when concerning 

, the MLE shows the best 
performance for parameter  at , 
and the Bayes estimator with uniform 
noninformative priors shows the best 
performance for parameters  at  
and  at . Moreover, it can be 
observed that the performance of the 
coefficient estimators from a uniform 
noninformative priors provided better than 
the MLE when showing the large sample 
sizes in cases of . Note that the 
performance of estimators has high 
sensitivity to small sample size and type of 
explanatory variable.  

 
3.2 Application to real dataset  

In this section, a real dataset is applied 
to show the performance of the Bayes 
estimators with informative priors for the 
ZIDW and HDW regression models and is 
compared with the two popular models for 
zero-inflated and hurdle models, the ZIP 
and ZINB regression models, and the HP 
and HNB regression models respectively. 
For the Poisson and negative binomial, the 
zero-inflated and hurdle models are applied 
by using the same configuration as with the 
certain approach. The state wildlife 
biologists gathered how many fish are being 
caught by fishermen at a state park; the 
dataset is available at https://stats.idre.ucla. 
edu/stat/data/fish.dat.  This dataset has 250 
groups of visitors that went to the park, and 
each group was questioned before leaving 

the park. The response variable is the 
number of fish that they caught and the 
three explanatory variables are whether or 
not they brought a camper to the park 
(camper), the number of people in the group 
(persons), and the number of children in the 
group (child). Moreover, the explanatory 
variable that affects the parameter  is the 
same as the explanatory variable that affects 
the parameter , which is . The 
response variable has 56.80% of zeros, 
which is in the case of excessive zeros data.  

To confirms simulation study, this 
study calculated the parameter estimates 

(Est.) and the standard error ( ) of 
estimators from the MLE and the Bayesian 
estimation with uniform noninformative 
priors (Bayes(Uniform))  and informative 
priors ( Bayes( Informative) )  for the ZIDW 
and HDW regression models for each of the 
three cases of a simple explanatory variable 
camper, persons, and child which are 
reported in Table 7 and Table 8. 

To demonstrate how the proposed 
Bayesian method under the informative 
priors can be used in practice, this study 
constructed the model in the simple 
regression model. It calculated the 
parameter estimates and the 95% highest 
posterior density (HPD) interval of the 
parameters with informative priors under 
the squared error loss function using the 
random walk Metropolis algorithm with 

 replicates and 10%  of the chain 
for burn-in;  for the ZIP, ZINB, 
ZIDW and the HP, HNB, HDW regression 
models for each of the three cases of a 
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Table 9 and Table 10 respectively. 
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Akaike information criterion (AIC), the 
Bayesian information criterion (BIC), and 
the deviance information criterion (DIC), 
are reported in these tables. 

The results from Table 7 and Table 8 
show that all of the three cases of a simple 
explanatory variable camper, persons, and 
child, the performance of the Bayes 
estimators with informative priors for the 
ZIDW and HDW regression models is better 
than other methods in terms of the  of 
the estimators. Besides, the result of the 
application to the fish data from the state 

wildlife biologists is close to the simulation 
results. 

In addition, the results from Table 9 
and Table 10 show that all of the three cases 
of a simple explanatory variable camper, 
persons, and child, the Bayes estimators 
with informative priors for the ZIDW and 
HDW regression models provided better 
fitting than both ZIP and ZINB models and 
HP and HNB models respectively, 
according to the lowest AIC, BIC and DIC 
values.  

 
Table 7. Est. and  for the ZIDW regression model.  

Parameters MLE Bayes(Uniform) Bayes(Informative) 
Est.  Est.  Est.  

camper       
 0.0748 0.1505 0.1062 0.1113 0.0658 0.0934 
 -0.4449 0.1621 -0.4469 0.1364 -0.4187 0.0985 
 -2.2571 1.5754 -124.1471 49.1528 -2.9509 1.2348 
 -2.9996 11.1311 -711.6784 171.9149 -9.8507 7.1804 
 0.4767 0.0380 0.4705 0.0334 0.4753 0.0325 

persons       
 0.6225 0.1906 0.5638 0.1866 0.6364 0.1326 
 -0.4538 0.1042 -0.3281 0.0915 -0.4622 0.0778 
 -2.8735 1.6923 -12.7508 12.3856 -3.2492 1.1151 
 0.5097 0.4092 -2.5387 3.3328 0.5600 0.2663 
 0.6240 0.0791 0.5348 0.0552 0.6237 0.0710 

child       
 -0.5514 0.1192 -0.5506 0.1084 -0.5550 0.0825 
 0.5379 0.1301 0.6193 0.0965 0.5061 0.0979 
 -4.8773 1.6887 -113.3016 52.3060 -5.9873 1.3262 
 3.7376 1.4286 5.9349 22.0883 2.9412 0.8752 
 0.5252 0.0382 0.5114 0.0353 0.5195 0.0336 

Note: the boldface identifies the smallest  for each cases. 
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Table 8. Est. and  for the HDW regression model.  

Parameters 
MLE Bayes(Uniform) Bayes(Informative) 

Est.  Est.  Est.  
camper       

 0.5118 0.4043 0.5739 0.4084 0.5761 0.2811 
 -0.3333 0.2129 -0.3531 0.2357 -0.3794 0.1369 
 0.7086 0.2096 0.6866 0.2384 0.7117 0.1363 
 -0.7234 0.2667 -0.7130 0.2916 -0.7209 0.1661 
 0.3555 0.0917 0.3459 0.0980 0.3505 0.0673 

persons       
 1.1286 0.3354 1.0990 0.3527 1.1155 0.2436 
 -0.5145 0.0973 -0.5118 0.0972 -0.5167 0.0639 
 0.7767 0.3239 0.7526 0.3322 0.7838 0.1902 
 -0.1978 0.1161 -0.1868 0.1216 -0.2026 0.0674 
 0.5314 0.1019 0.5388 0.1021 0.5350 0.0880 

child       
 0.1480 0.4175 0.2712 0.5904 0.1722 0.2912 
 0.4341 0.1873 0.3148 0.2310 0.3831 0.1332 
 -0.3842 0.1704 -0.3666 0.2265 -0.3843 0.1139 
 1.1218 0.2060 1.0457 0.3555 1.1185 0.1317 
 0.3538 0.0924 0.3155 0.1890 0.3547 0.0662 

Note: the boldface identifies the smallest  for each cases. 
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Table 9. Parameter estimates and the 95% HPD intervals (in parentheses) for the ZIP, ZINB, 
ZIDW regression models.  

Parameters ZIP ZINB ZIDW 
camper    

 1.5139 
(1.4188,1.6132) 

0.4852 
(0.1131,0.8760) 

0.0658 
(-0.1121,0.2451) 

 0.6858 
(0.5803,0.7837) 

1.0588 
(0.6458,1.5008) 

-0.4187* 
(-0.6203,-0.2234) 

 0.7056 
(0.4516,0.9825) 

-3.4486 
(-7.0760,-0.9232) 

-2.9509* 
(-5.6694,-0.9952) 

 -0.7139 
(-1.0531,-0.3656) 

-2.7336 
(-7.0549,1.3302) 

-9.8507 
(-26.9134,0.8346) 

/   0.2058 
(0.1550,0.2673) 

0.4753* 
(0.4160,0.5395) 

AIC 2189.2686 927.2019 918.3932 
BIC 2203.3544 944.8092 936.0005 
DIC 2186.1540 922.7372 913.7076 

persons    
 -0.2607 

(-0.4349,-0.0888) 
-0.9956 

(-1.3866,-0.5700) 
0.6364* 

(0.3722,0.8837) 
 0.7410 

(0.6893,0.7887) 
0.8300 

(0.6785,0.9835) 
-0.4622* 

(-0.5992,-0.2927) 
 0.4183 

(-0.0482,0.8501) 
-1.7332 

(-2.8408,-0.6516) 
-3.2492* 

(-5.8750,-1.6104) 
 -0.0952 

(-0.2589,0.0535) 
0.1971 

(-0.1017,0.4987) 
0.5600* 

(0.0544,1.1445) 
/   0.3964 

(0.2371,0.6025) 
0.6237* 

(0.4935,0.7726) 
AIC 1858.6155 903.1250 901.7890 
BIC 1872.7014 920.7323 919.3963 
DIC 1856.1870 899.2652 898.7913 

child    
 2.2001 

(2.1462,2.2555) 
1.6436 

(1.3943,1.8834) 
-0.5550* 

(-0.7151,-0.3999) 
 -0.7116 

(-0.8345,-0.5958) 
-1.0413 

(-1.4411,-0.6313) 
0.5061* 

(0.2856,0.6884) 
 -0.3764 

(-0.5942,-0.1434) 
-7.0574 

(-12.7304,-3.5041) 
-5.9873* 

(-8.9239,-3.6940) 
 1.0508 

(0.7554,1.3298) 
3.5659 

(1.5300,6.2092) 
2.9412* 

(1.0978,4.5625) 
/   0.2512 

(0.1915,0.3229) 
0.5195* 

(0.4528,0.5859) 
AIC 2146.1583 893.7935 885.6576 
BIC 2160.2442 911.4008 903.2649 
DIC 2142.5286 889.5677 881.2140 

Note: (*) denotes the 95% HPD interval for the ZIDW regression model does not contain zero (statistically significant). 
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Table 10. Parameter estimates and the 95% HPD intervals (in parentheses) for the HP, HNB, 
HDW regression models. 

Parameters HIP HNB HDW 
camper    

 1.5204 
(1.4195,1.6117) 

-2.9015 
(-4.1737,-1.9316) 

0.5761* 
(0.0105,1.0883) 

 0.6796 
(0.5716,0.7869) 

0.5078 
(-0.3629,1.2973) 

-0.3794* 
(-0.6689,-0.0890) 

 0.7184 
(0.4752,0.9793) 

0.7459 
(0.4986,1.0152) 

0.7117* 
(0.4412,1.0073) 

 -0.7334 
(-1.0693,-0.3637) 

-0.7672 
(-1.1261,-0.4569) 

-0.7209* 
(-1.0449,-0.4411) 

/   0.0037 
(0.0007,0.0071) 

0.3505* 
(0.2345,0.5019) 

AIC 2189.2618 921.7569 916.2778 
BIC 2203.3476 939.3642 933.8851 
DIC 2186.1235 917.2394 912.3456 

persons    
 -0.2933 

(-0.4822,-0.1000) 
-2.0637 

(-2.9861,-1.2358) 
1.1155* 

(0.6555,1.5650) 
 0.7494 

(0.6962,0.8020) 
0.9647 

(0.7706,1.1492) 
-0.5167* 

(-0.6423,-0.3817) 
 0.8252 

(0.5066,1.2221) 
0.7819 

(0.4213,1.1880) 
0.7838* 

(0.3985,1.1525) 
 -0.2170 

(-0.3612,-0.0863) 
-0.2026 

(-0.3331,-0.0529) 
-0.2026* 

(-0.3230,-0.0611) 
/   0.1687 

(0.0339,0.4146) 
0.5350* 

(0.3780,0.6912) 
AIC 1858.3974 899.5903 896.4451 
BIC 1872.4832 917.1976 914.0524 
DIC 1855.6746 895.5030 892.9249 

child    
 2.1986 

(2.1495,2.2506) 
-1.9529 

(-3.4576,-0.6980) 
0.1722 

(-0.3874,0.7834) 
 -0.7063 

(-0.8313,-0.5889) 
-0.9898 

(-1.5293,-0.4536) 
0.3831* 

(0.1309,0.6472) 
 -0.3861 

(-0.6141,-0.1512) 
-0.3978 

(-0.6237,-0.1646) 
-0.3843* 

(-0.6231,-0.1694) 
 1.1193 

(0.8561,1.3904) 
1.1408 

(0.8730,1.4269) 
1.1185* 

(0.8865,1.3792) 
/   0.0058 

(0.0008,0.0177) 
0.3547* 

(0.2339,0.4880) 
AIC 2146.8047 889.1705 884.7411 
BIC 2160.8905 906.7778 902.3485 
DIC 2143.0773 882.4158 880.6896 

Note: (*) denotes the 95% HPD interval for the ZIDW regression model does not contain zero (statistically significant). 
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4. Conclusion 
In this article, it considers the 

classical and Bayesian inference for the 
ZIDW and HDW regression models where 
the parameters  and  are related to 
explanatory variables via the log-log and 
logit links respectively.  

Moreover, this study chooses the 
random walk Metropolis algorithm to 
estimate the Bayes estimators with uniform 
noninformative priors and informative 
priors. 

The results of the simulation showed 
that as  increases the  decreases for 
all methods, indicating that the estimators 
are consistent.  The Bayes estimators with 
informative priors for the parameters , , 
and  are more appropriate for both the 
ZIDW and HDW regression models than 
other methods in terms of the . 
Moreover, the results of an application to 
the fish data from the state wildlife 
biologists revealed that the Bayes estimators 
with informative priors for parameters , 

, and  for the ZIDW and HDW 
regression models show the best fitting 
model in terms of the AIC, BIC, and DIC. 
These results confirm that using the 
Bayesian method under informative prior 
distributions for the ZIDW and HDW 
regression models work alternatively better 
than the Poisson and negative binomial. 

Hence, it was recommended that the 
Bayesian regression model be under this 
informative prior where the data is fitted 
ZIDW and HDW. However, there are some 
computational challenges to be faced while 
implementing the Bayesian approach which 
is the selection of hyperparameters’ values 
that may affect the parameter estimates. 
Future research will explore other link 
functions on parameters and construct the 

censored response with too many zero 
counts. 
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