

AN ADAPTIVE MULTI-LEVEL SEQUENTIAL FLOATING

FEATURE SELECTION

Knitchepon Chotchantarakun

A Dissertation Submitted in Partial

Fulfillment of the Requirements for the Degree of

Doctor of Philosophy (Computer Science and Information Systems)

School of Applied Statistics

National Institute of Development Administration

2020

AN ADAPTIVE MULTI-LEVEL SEQUENTIAL FLOATING

FEATURE SELECTION

Knitchepon Chotchantarakun

School of Applied Statistics

Major Advisor

 (Associate Professor Ohm Sornil, Ph.D.)

 The Examining Committee Approved This Dissertation Submitted in Partial

Fulfillment of Requirements for the Degree of Doctor of Philosophy (Computer

Science and Information Systems).

Committee Chairperson

 (Associate Professor Surapong Auwatanamongkol, Ph.D.)

 Committee

 (Associate Professor Ohm Sornil, Ph.D.)

 Committee

 (Assistant Professor Tanasai Sucontphunt, Ph.D.)

 Committee

 (Assistant Professor Orawan Chaowalit, Ph.D.)

 Dean

 (Assistant Professor Pramote Luenam, Ph.D.)

_____/_____/_____

 iii

ABSTRACT

ABSTRACT

Title of Dissertation AN ADAPTIVE MULTI-LEVEL SEQUENTIAL

FLOATING FEATURE SELECTION

Author Knitchepon Chotchantarakun

Degree Doctor of Philosophy (Computer Science and

Information Systems)

Year 2020

Dealing with a large amount of available data becomes a major challenge in

data mining and machine learning. Feature selection is a significant preprocessing

step for selecting the most informative features by removing irrelevant and redundant

features, especially for large datasets. These selected features play an important role

in information searching and enhancing the performance of machine learning models

such as classification and prediction. There have been several strategies proposed in

the past few decades.

In this dissertation, we propose a new technique called An Adaptive Multi-

level Sequential Floating Feature Selection (AMFFS). AMFFS consists of three

proposed algorithms, which are One Level Forward Inclusion (OLFI), One-level

Forward Multi-level Backward Selection (OFMB) and Multi-level Forward Inclusion

(MLFI). Our proposed methods are considered to be deterministic algorithms related

to sequential feature selection under the supervised learning model.

The OFMB algorithm consists of two parts. The first part aims to create

preliminarily selected subsets. These subsets have similar performance to the

Improved Forward Floating Selection (IFFS). This part contains the same procedure

as the OLFI algorithm. The second part provides an improvement on the previous

result using the multi-level backward searching technique. The idea is to apply an

improved step during the feature addition and the adaptive search method on the

backtracking step. However, we need to limit the level of backwards-searching to

maintain lower execution time by introducing an adaptive variable called the

generalization limit.

The MLFI algorithm also consists of two parts. The first part aims to search

for the maximum classification accuracy by applying the multi-level forward-

 iv

searching technique. The second part provides an improvement on the previous result

by replacing the week feature technique. The idea is to apply an adaptive multi-level

forward search method with the replacement step during the feature addition without

any backtracking search. Similar to OFMB, we also need to limit the level of forward-

searching by the generalization limit.

In the experiments, we applied KNN, Naive Bayes, and Decision Tree for our

criterion functions. We tested our algorithms on fourteen standard UCI datasets and

compared their classification accuracy with other popular methods. Our proposed

algorithms showed better results than the other sequential feature selection techniques

for the majority of the tested datasets. The OFMB and MLFI algorithms spend more

computational time than the other methods due to the complexity of the program.

 v

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

I would like to express my greatest appreciation to my advisor, Associate

Professor Dr Ohm Sornil, for all the very good advice and his guidance in finding a

good research topic. I have learnt many techniques for conducting good research and

how to write papers for submission. Without his generous support, this dissertation

would not be accomplished. I would also like to thank my committee chairperson,

Associate Professor Dr Surapong Auwantanamongkol for the valuable advice on various

aspects of the dissertation. Furthermore, many thanks to my dissertation committee,

Assistant Professor Dr Tanasai Sucontphunt and Assistant Professor Dr Orawan

Chaowalit for their advice and helpful suggestions. Last but not least, I would like to

express my special thanks to my family for all the help and continuous support

throughout the completion of my doctoral degree.

Knitchepon Chotchantarakun

July 2021

TABLE OF CONTENTS

 Page

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS .. vi

LIST OF TABLES .. ix

LIST OF FIGURES ... x

SYMBOLS AND ABBREVIATIONS ... xi

 INTRODUCTION ... 1 CHAPTER 1

1.1 Data Representation ... 2

1.2 Feature Selection ... 2

1.2.1 Feature Selection Process ... 3

1.2.2 Search Strategies .. 4

1.2.3 Types of Feature Selection Algorithm ... 4

1.3 Feature Learning Methods ... 7

1.4 Performance Validation ... 8

1.5 Cross Validation .. 9

1.6 Overview ... 9

 LITERATURE REVIEW .. 10 CHAPTER 2

2.1 Type of Feature Selection .. 11

2.1.1 Filter Method .. 11

2.1.2 Wrapper Method... 12

2.1.3 Embedded Method ... 12

2.2 Sequential Forward Search (SFS) ... 13

2.3 Sequential Backward Search (SBS) .. 14

2.4 Sequential Forward Floating Search (SFFS) ... 14

2.5 Adaptive Sequential Forward Floating Search (ASFFS) 16

 vii

2.6 Improved Forward Floating Search (IFFS) ... 19

2.7 Sequential Deep Floating Forward Search (SDFFS) ... 21

2.8 Other Related Works ... 23

 ONE LEVEL FORWARD/MULTI-LEVEL BACKWARD CHAPTER 3

SELECTION (OFMB) ... 25

3.1 One Level Forward Inclusion (OLFI) ... 26

3.1.1 An Example using Wine Dataset .. 28

3.1.1.1 Feature Inclusion .. 28

3.1.1.2 Feature Improvement .. 28

3.1.1.3 Termination Condition ... 29

3.2 Multi-level Backward Selection .. 29

3.2.1 Computation of r-value .. 33

3.2.2 An Example using Wine Dataset .. 35

3.2.2.1 Feature Inclusion .. 35

3.2.2.2 Feature Improvement .. 35

3.2.2.3 Multi-level Backward Selection ... 36

3.2.2.4 Compute r-value ... 36

3.2.2.5 Termination Condition ... 37

3.3 The Classifiers ... 37

3.3.1 K-Nearest-Neighbors (KNN) ... 37

3.3.2 Naïve Bayes (NB) .. 38

3.3.3 Decision Tree (DT) ... 39

3.4 Datasets .. 40

3.5 Experimental Setup ... 41

3.6 Results and Discussion .. 41

 MULTI-LEVEL FORWARD INCLUSION (MLFI) 48 CHAPTER 4

4.1 Computation of the r-value ... 53

4.1.1 Method I ... 53

4.1.2 Method II .. 53

 viii

4.1.3 Method III... 55

4.2 An Example using Wine Dataset ... 57

4.2.1 Feature Inclusion .. 57

4.2.2 Multi-level Forward Inclusion.. 57

4.2.3 Feature Replacement .. 58

4.2.4 Compute the r-value ... 59

4.2.5 Termination Condition ... 59

4.3 The Classifiers ... 59

4.4 Datasets .. 59

4.5 Experimental Setup ... 60

4.6 Results and Discussion .. 61

4.7 The Comparison between the OFMB and MLFI Algorithms 66

 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE CHAPTER 5

WORK ... 69

5.1 Conclusions ... 69

5.2 Future Work ... 70

BIBLIOGRAPHY .. 72

BIOGRAPHY .. 75

LIST OF TABLES

 Page

Table 2.1 Example of r-values from ASFFS .. 19

Table 3.1 The r-values and the z-values from the Ionosphere Dataset 34

Table 3.2 Datasets Used in the Experiments .. 40

Table 3.3 The Comparison of Maximum Accuracy Using KNN 42

Table 3.4 The Comparison of Maximum Accuracy Using NB 43

Table 3.5 The Comparison of Maximum Accuracy Using DT 44

Table 3.6 The Comparison of Maximum Accuracy From the Three Different

Classifiers for the OFMB Algorithm ... 45

Table 4.1 The r-values and the z-values from the Ionosphere Dataset 54

Table 4.2 The r-values and the z-values from the Ionosphere Dataset 55

Table 4.3 Datasets Used in the Experiments .. 60

Table 4.4 The Comparison of Maximum Accuracy Using KNN 62

Table 4.5 The Comparison of Maximum Accuracy Using NB 63

Table 4.6 The Comparison of Maximum Accuracy Using DT 64

Table 4.7 The Comparison of Maximum Accuracy From the Three Different

Classifiers for the MLFI Algorithm ... 65

Table 4.8 The Comparison of Maximum Accuracy From the Three Different

Classifiers for the OFMB and MLFI Algorithms .. 67

LIST OF FIGURES

 Page

Figure 1.1 Feature Selection Process .. 3

Figure 1.2 Filter Approach .. 5

Figure 1.3 Wrapper Approach .. 5

Figure 1.4 Embedded Approach ... 6

Figure 1.5 Feature Selection Framework .. 7

Figure 2.1 Structure of the SFFS Algorithm .. 15

Figure 2.2 Structure of the ASFFS Algorithm ... 17

Figure 2.3 An Adaptive Determination of r-values for ASFFS 18

Figure 2.4 Structure of the IFFS Algorithm ... 20

Figure 2.5 Structure of the SDFFS Algorithm ... 22

Figure 3.1 Structure of the OLFI Algorithm .. 27

Figure 3.2 Structure of OFMB Algorithm .. 30

Figure 3.3 Graph of the r-values from the Ionosphere Dataset 35

Figure 4.1 Structure of the MLFI Algorithm .. 50

Figure 4.2 r-values for Method II ... 55

Figure 4.3 r-values for Method III .. 56

SYMBOLS AND ABBREVIATIONS

 Symbols

J Criterion function

Y Original feature set

X Candidate set

k Number of features in X

d Predefined number of selected

 feature

D Total number of original features

x
+

Included feature

x
–

Excluded feature

r Generalization limit

rmax Maximum value of r

s Generalization level

 Abbreviations Equivalence

KNN K-Nearest Neighbour

NB Naïve Bayes

DT Decision Tree

CV Cross Validation

SFS Sequential Forward Search

SBS Sequential Backward Search

SFFS Sequential Forward Floating Search

xii

ASFFS Adaptive Sequential Forward

Floating Search

IFFS Improved Forward Floating Search

SDFFS Sequential Deep Floating Forward

 Search

 CHAPTER 1

INTRODUCTION

In the past few decades, the available data is growing extremely large due to

modern technology and internet applications. Dealing with a large amount of data is

the major challenge these days. In the data analysis task, a large amount of data can be

a high dimensional dataset which directly affects performance because some

irrelevant and redundant features also make some contribution to the analysis. To

overcome the problem, those irrelevant and redundant features should be eliminated

which lead to more effective dimensions. This data preprocessing step is called

feature selection. Generally, the goal of feature selection is to determine the best

subsets of features for conducting statistical analysis or building a machine learning

model (Huang, 2015). Feature selection assists in selecting the minimum features

from the whole dataset. These features are useful for finding accurate data models. To

ensure the optimal feature subset, a feature selection method has to evaluate a total of

2
n
 – 1 subsets, where n is the total number of features in the dataset. Even though an

exhaustive search for optimal feature subset results in an optimal solution, but it is not

practical especially for a moderately large n. This type of problem is said to be an NP-

hard problem, as a result, many search strategies have been proposed in the literature

for suboptimal solutions.

Feature selection is interesting research areas that deal with data mining and

machine learning since it provides more accuracy, faster computational time, and is

also cost-effective. The accuracy of the classifier depends not only on the

classification algorithm but also on the feature selection method used. Irrelevant

features may affect the classifier and lead to incorrect results, therefore feature

selection is necessary in order to improve the efficiency and accuracy of the

classifier.

2

Feature selection offers advantages such as reducing storage requirements,

avoiding overfitting, facilitating data visualization, speeding up the execution of

mining algorithms and reducing the training times. For example, a data set named

“DOROTHEA” use for drug discovery (Sutha & Tamilselvi, 2015) contains 1,950

instances and 100,000 features. Many of these relevant features are useful for

information discovery, but they also contain a lot of irrelevant features in the dataset.

This is where the feature selection steps in to improve the computational efficiency.

1.1 Data Representation

In machine learning and pattern recognition, a feature is referred to as an

individual measurable property or characteristic of a phenomenon being observed. To

improve the learning performance we need to select an informative, discriminating

and independent feature using an effective algorithm. Features are usually numeric,

but structural features also occur sometimes. These features are represented as an n-

dimensional vector of numeric features that indicate some object. Many machine

learning algorithms require a numerical representation of objects for further

processing and statistical analysis. Some types of data such as images can be

represented by the pixel, while text features might be represented by the frequencies

of occurrence of the textual terms. These feature vectors are similar to the variables

used in statistical analysis such as linear regression. They are normally combined with

weights using dot product as a preliminary result for making a prediction. To reduce

the dimensionality of the feature space, various dimensionality reduction techniques

are applied.

1.2 Feature Selection

Feature selection is one of the most important preprocessing techniques in

data mining. This technique uses to eliminate the irrelevant and redundant features

from the dataset. The goal of feature selection for classification tasks is to maximize

classification accuracy. Therefore, the computational time of the classifier to process

data will decrease whereas the classification accuracy will increase since the

3

irrelevant features are removed. Feature selection is also known as attributes selection

or variable selection (Beniwal & Arora, 2012).

1.2.1 Feature Selection Process

The process of finding the feature subset consists of four basic steps (Liu &

Yu, 2005):

1) Subset generation

2) Subset evaluation

3) Stopping criterion

4) Validation of the results

Feature

Subset

Generation

Subset

Evaluation

Stopping

Criterion

Result

Validation

Subset Goodness

of subset

Yes

No

Original

set

Figure 1.1 Feature Selection Process

From figure 1.1, begins with an original dataset by inserting features into the

process. Feature subset generation produces candidate feature subsets for evaluation

based on searching strategies. These searching strategies are used to preselect subsets

for further evaluation. Subset evaluation is aimed to evaluate the subset generated

from the previous procedure. At this step, the classifiers such as K-Nearest Neighbor,

Naïve Bayes or Random Forest are applied to calculate the classification accuracy.

Continue selecting or removing features that yield the highest accuracy until the

process reaches the stopping criterion. Finally, the result validation is the selection of

the best results for all subset sizes.

4

Stopping criteria could be any of the following:

1) Selected subset with number of features equal to the predefined

value

2) New subset of the feature does not yield a better result

3) Number of iteration is reached

Cai, Chang and He (Cai, Zhang, & He, 2010) stated that “Various data mining

and machine learning tasks, such as classification and clustering, that are analytically

or computationally manageable in low dimensional spaces may become completely

intractable in spaces of several hundred or thousand dimensions”. High dimensional

space leads to low performance in machine learning algorithms particularly when the

samples are small. This difficulty is known as the curse of dimensionality. Feature

selection or dimensionality reduction plays an important role to solve this kind of

problem.

1.2.2 Search Strategies

There are four usual search strategies (Jovic, Brkic, & Bogunovic, 2015):

1) Forward selection

2) Backward elimination

3) Bidirectional selection

4) Heuristic feature subset selection

Forward selection starts with an empty set and then adding one or more

features to the set. Oppositely, backward elimination is removing one or more features

from the set that start with all the features. Bidirectional selection starts from both

sides. Heuristic selection uses a heuristic search such as a genetic algorithm to explore

the feature subset.

1.2.3 Types of Feature Selection Algorithm

Feature selection algorithms can be classified in many different ways. The

most common one can be categorized into three types (Pavya & B.Srinivasan, 2017):

5

1) Filter approach

2) Wrapper approach

3) Embedded approach

Set of all

Features

Selecting the

Best Subset

Learning

Algorithms
Performance

Figure 1.2 Filter Approach

The filter approach or filter method (Figure 1.2) uses an independent criterion

function to select the feature without depending upon the type of classifier used which

leads to the simplicity of the method, whereas the interactions with classifier and

feature dependencies are ignored. The filter method ranks each individual feature

according to the measurement such as information, distance, or similarity. It only

considers the association between the feature and the class label. The nature of this

method results in a drawback that each feature is considered separately.

Set of all

Features

Generate a

Subset

Learning

Algorithm
Performance

Selecting the Best Subset

Figure 1.3 Wrapper Approach

The wrapper approach or wrapper method (Figure 1.3) uses the result of the

classifier to determine the goodness of the given feature, therefore the selected

features are dependent on the classification algorithm. This method removes the

6

disadvantage of the filter approach by the consideration of feature dependency

whereas it is more time consuming than the filter approach. The quality of the feature

is directly related to the performance of the classifier.

Set of all

Features

Generate a

Subset

Learning

Algorithm +

Performance

Selecting the Best Subset

Figure 1.4 Embedded Approach

The embedded approach or embedded method (Figure 1.4) searches for an

optimal feature subset during the model training that is built into the classifier

construction. It returns both the learned model and selected features simultaneously.

The benefit of this method is that it takes less computational time than the wrapper

approach. This method is also called the hybrid model. It incorporates a learning

algorithm and is optimized for higher accuracy. The embedded approach utilizes a

filter-based technique to select highly representative features and then apply a

wrapper-based technique to add candidate features. The candidate subsets are

evaluated for selecting the best ones. It does not only reduce the dimensionality of the

dataset but also decreases the computational time and improves the performance.

Somol, Novovicova, and Pudil (Somol, Novovicova, & Pudil, 2006) proposed a

flexible hybrid sequential forward floating selection (hSFFS) by employing an

evaluation function to filter some features and using a wrapper criterion to identify the

optimal feature subset. The main benefit of this method is the ability to trade off the

resulting quality with the computational cost in order to enable the wrapper-based

selection in high dimensional datasets. Their experimental results show promising

classification accuracy.

7

1.3 Feature Learning Methods

Feature selection methods can also be divided into a supervised, unsupervised

and semi-supervised model. Figure 1.5 shows a framework for feature selection.

Original data

UnsupervisedSupervised
Semi-

supervised

Subset generated by search strategy
Data

reconstruction

Subset evaluation

Stopping

criterion ?

Feature

selection result

Result

verification

 No

 Yes

 Irrelevant and

 Redundant

 feature deletion

Figure 1.5 Feature Selection Framework

According to Mwadulo (Mwadulo, 2016), supervised feature selection is

normally used in the classification problem by calculating the correlation between the

feature and the class label. The supervised model aims to find an optimal feature

subset that maximizes the classification accuracy. In the filter method, to analyze the

8

relevance and redundancy of feature-class and feature-feature respectively, we need to

use a model such as Euclidean distance, information measures, and Pearson

correlation. A classical criterion for feature selection is MRMR (Max-Relevance and

Min-Redundancy), which uses mutual information as the evaluation measure. For

wrapper models, the classification error or accuracy rate is used as the feature

evaluation. The wrapper model tends to have higher classification accuracy than the

filter model.

Unsupervised feature selection is dealing with how to arrange the objects into

natural classes whose members are similar to each other. This procedure is

particularly difficult due to the absence of class labels for feature relevance

estimation. Normally, unsupervised feature selection applies to the clustering

processes which aim to maximize intra-cluster similarity and minimize inter-cluster

similarity. The problem of selecting features in unsupervised learning scenarios is

considered to be a much harder problem due to the absence of class labels that would

guide the search for relevant information. Both filter and wrapper approach can be

useful in unsupervised feature selection.

For the semi-supervised feature selection, the dataset (D) is divided into two

groups where the first group is the sample set with class labels that use to train the

learning model. The second group is the sample set without class labels that use to

improve the learning performance of the learning model trained by the first sample

group. The semi-supervised feature selection method is mainly based on the filter

approach using score functions such as variance score, Laplacian score, Fisher score,

and Constraint score (Cai, Luo, Wang, & Yang, 2018).

1.4 Performance Validation

The performance of the feature selection method is usually evaluated by the

machine learning model. The commonly used machine learning models include Naïve

Bayes, K-Nearest Neighbor, C4.5, Support Vector Machine, Decision Tree, Random

Forest, Artificial Neural Network and K-means. A good feature selection method

should have high learning accuracy but less computational time. The model should

also avoid overfitting and underfitting. Overfitting occurs when the model results in

9

good accuracy for the training data set but has a poor result on the new data set.

Underfitting occurs when a machine learning model cannot capture the underlying

trend of data that is it does not fit the data well enough. To solve these problems we

need to apply the cross-validation technique, which is introduced in the next section.

1.5 Cross Validation

In machine learning, cross-validation is a statistical method used for model

generation on a limited data sample. The idea is to separate the sample into 2 groups

called the training set and the test set. The training set used to train the model, while

the test set is for model evaluation. The most common procedure uses a single

parameter called k which refers to the number of groups that a given data sample is

spitted into and is often called k-fold cross-validation. This method is quite popular

due to the simplicity of understanding and less biased than other methods. The general

procedure starts by shuffle the dataset randomly then split the dataset into k groups

and then takes one group as a hold out for testing data. The remaining groups are

assigned to be the training datasets. Fit a model on the training set and evaluate it on

the testing set. Retain the evaluation score for each observation and find the average.

Each sample is allowed to be used in the holdout set once and used to train the model

(k – 1) times.

1.6 Overview

In this dissertation, we explored an adaptive sequential feature selection

algorithm, which was used under supervised learning for classification problems. The

paper was organized into five chapters. Some background introduction on feature

selection explained in chapter 1. In chapter 2, related works in the literature were

reviewed. In chapter 3, we discussed the proposed method which improved sequential

feature selection using an adaptive multi-level backwards selection. In chapter 4, we

introduced an adaptive multi-level forward inclusion technique with replaced the

weak feature to select more effective features and improved the classification

performance. Conclusions and recommendation for future works are concluded in

chapter 5.

10

 CHAPTER 2

LITERATURE REVIEW

 Due to the increase in features domain from tens to thousands of variables

used in the application, several techniques are developed to extract only those relevant

and non-redundant variables which help in understanding data, lower computational

time, and improve performance. This is not similar to other dimension reduction

methods such as Principal Component Analysis (PCA) because good features are

independent of the rest of the data. The exhaustive evaluation results in an NP-hard

problem, therefore a suboptimal procedure can be used for an exceptional reason.

 Feature selection becomes a necessary step in the data mining process because

the high dimensionality and vast amount of data give rises to a challenge to the

learning task. Many irrelevant features do not add much value during the learning

process, hence learning models tend to become highly complicated and decrease

learning accuracy. Feature selection is one effective way to identify relevant features

for dimensionality reduction. However, the benefit of feature selection comes with an

extra effort by trying to get an optimal subset that represents the original dataset.

 Jovic, et al. (Jovic et al., 2015) categorized feature selection methods into

three common search strategies. Exponential algorithms evaluate subsets that grow

exponentially with the feature space size, for example, Exhaustive search and Branch-

and-bound. Sequential algorithms such as Sequential Forward Floating Selection

(SFFS) (Pudil, Novovicova, & Kittler, 1994) include or exclude features from the

active subset sequentially. Random algorithms incorporate randomness into the search

process to optimize the solution. An example of a random algorithm is Evolutionary

computation algorithms using genetic or ant colony optimization. This research

focuses on sequential feature selection regarding deterministic algorithms.

 Since from the utilized training data, the feature selection method can be

divided into supervised, unsupervised, and semi-supervised learning, while in this

research, we focus on feature selection methods using supervised learning. According

to their relationship with learning methods, feature selection methods can be

11

categorized into the filter, wrapper, and embedded models which are reviewed in the

following section.

2.1 Type of Feature Selection

2.1.1 Filter Method

Filter methods use variable ranking techniques by ordering features according

to the principle criteria such as correlation criteria, mutual information, or information

distance. After the ranking, a threshold is used to remove a feature that has a score

below the threshold. The name filter method comes from the nature of the method

since the process of filtering out the less relevant features is applied before the

classification step. Therefore, the filter method consists of the selection algorithm and

a criterion function. For the selection algorithm, all features are ranked by an

ascending order regarding the criterion value, meanwhile, the searching strategy will

be applied to generate subsets until the process meets the stopping criterion. The filter

method is more preferable for real-world problems due to its characteristics in terms

of time and space over the wrapper and embedded method, while the performance is

compatible with the other two. The advantages of filter methods are that they easily

scale to high-dimensional datasets, are computationally simple, and also are

independent of data mining. The subset of features selected is presented as input to

the classification algorithm. Therefore, the accuracy of this method heavily depends

on the quality measure.

The basis of the filter method is relevance and redundancy. Relevance is the

relationship between feature and class, whereas redundancy is the relationship

between feature and feature. Features can be divided from the original set into four

groups (Liu & Yu, 2005): 1) completely irrelevant and noisy features, 2) weakly

relevant and redundant features, 3) weakly relevant and non-redundant features, and

4) strongly relevant features. Supervised feature selection results should include

groups 3) and 4).

A classical criterion for feature selection based on relevance and redundancy

analysis is Max-Relevance and Min-Redundancy (MRMR), which uses mutual

information as the quality measure. This technique (Peng, Long, & Ding, 2005)

12

studied how to select good features according to the maximal statistical dependency

criterion based on mutual information. The experiments on many datasets

(handwritten digits, arrhythmia, NCI cancer cell lines, and lymphoma tissues) showed

that MRMR leads to improvement in feature selection and classification accuracy.

However, mutual information only minimizes feature-feature mutual information and

ignored the classification performance of candidate features. To overcome this

problem, conditional mutual information was introduced.

2.1.2 Wrapper Method

 Wrapper methods use the result of the data mining algorithm to determine how

good a given subset is. During the search process, the space of possible feature

subsets is defined to generate and evaluate until we get the satisfied subset for the

preprocessing step. The main advantage is that the quality of the generated subset is

directly measured by the performance of the data mining algorithm. As a result,

wrapper methods seem to be much slower than the filter methods as the data mining

algorithm is applied to each attribute subset considered by the search. The application

of several different data mining algorithms leads to the wrapper method becoming

even more computationally expensive.

 Since the evaluation of all the possible subsets is an NP-hard problem,

suboptimal subsets become more focused and are found by employing search

algorithms that find a subset heuristically. Various algorithms either sequential search

or evolutionary algorithms such as genetic algorithm (GA) and particle swarm

optimization (PSO) are studied thoroughly which produce local optimum results.

These results are exceptional in many applications and are computationally feasible.

Wrapper methods can be classified into sequential selection algorithms and heuristic

search algorithms.

2.1.3 Embedded Method

 Embedded methods can also be called hybrid methods. The aim is to reduce

the computational time on the classification step of the wrapper methods. They try to

combine the advantages of both filter and wrapper methods. One example is the

Hybrid Floating Sequential Search (hSFFS) (Somol et al., 2006), by applying a filter

13

criterion function to filter some features and generate a candidate set before applying

a wrapper criterion function to select the best one from the candidate set. This

technique also consists of the forward and backward phases. The forward phase

allows the current subset to add one feature at a time by first using the filter-based

technique to pre-select several candidate features. Secondly, apply the wrapper-based

technique to identify the best feature among those candidate features. The backward

phase removes one feature conditionally by pre-select several candidate features in the

current subset using the filter approach, then identifying the best one to remove using

the wrapper approach. This hybrid scheme uses only a fraction of the full wrapper

computing time to obtain the results. The advantage of hSFFS is the possibility to deal

with the quality of results versus the computational time trade-off. The results showed

that it was possible to trade a significant reduction in search time for a little decrease

in classification accuracy.

2.2 Sequential Forward Search (SFS)

A.W. Whitney (Whitney, 1971) introduced a Sequential Forward Search (SFS)

by starting with an empty set and adding one feature at a time to the selected subset so

that the new subset maximizes the criterion function value. During each iteration

process, the remaining features are added individually to the current subset and a new

subset is evaluated. After the number of features is satisfied, the selection process will

be terminated.

The SFS process in a forward direction and is essential for constructing other

more complex algorithms. Large datasets normally contain a lot of features whereas

only some of them are significant for model training. The idea is to select a feature

that gives the highest learning accuracy. Assume we have a set Y = {y1, y2,…, yD},

where D is the number of input dimensions. We want to find a subset Xk = {xj | j = 1,

2,…, k; xj  Y}, where k = (0, 1, 2,…, D), and d is the required subset size.

Initialize X0 = {} and k = 0, and x+ is an included feature where x  Y – Xk.

14

The algorithm is described below:

Step 1: Inclusion step.

x
+
 = arg max J(xk = x), where x  Y – Xk

Xk+1 = Xk + x
+

k = k + 1

(Add a selected feature x
+
 to the subset Xk, where x

+
 is a feature that

maximizes the criterion function (J).)

Step 2: Continue step 1 until d features are selected.

2.3 Sequential Backward Search (SBS)

T. Marill and D. Green (Marill & Green, 1961) have presented a Sequential

Backward Search (SBS) which processes in an opposite direction with the SFS. This

method begins with all input features and keeps removing one feature at a time from

the current subset until the resulted subset maximizes the criterion function value. The

idea is to remove the feature whose removal gives the lowest decrease in predictor

performance. These two techniques combined to form a generalized version of the

SFS and SBS by adding or removing several features in each sequential step. These

methods have one major drawback, for example when the best five features subset is

selected it must contain the best four features subset, but in practice, the best four

features subset does not necessarily be part of the best five features subset. This

problem is called the „nesting effect‟. As a result of not being allowed to add or to

remove later, they are sensitive to feature interaction, hence they can easily be trapped

into local minima.

2.4 Sequential Forward Floating Search (SFFS)

One of the most significant innovations of sequential feature selection is the

Sequential Forward Floating Search (SFFS) algorithm (Pudil et al., 1994). This

method combines the concept of SFS and SBS giving it more flexibility and effective

than SFS by introducing a backtracking step. The simplified flowchart of the SFFS

15

algorithm is given in figure 2.1 where k is the current subset size and d is the required

dimension.

Yes

Initialize Xk

Let k = 0

Apply SFS algorithm to

add one feature to Xk

Let k = k + 1

k = d + D ?

Conditionally exclude one

feature from Xk by applying

one step of SBS algorithm

Is this

the best (k – 1) subset

so far ?

Return the

conditionally

excluded feature back

Leave out the

conditionally

excluded feature

Let k = k – 1

Terminate

 No

YesNo

Figure 2.1 Structure of the SFFS Algorithm

SFFS algorithm consists of two parts, forward search and backward search.

The forward search selects the best-unselected feature according to a criterion

function (J) to form a new subset. This step is the same as the SFS algorithm. The

16

SBS method starts with a full feature subset and eliminates a feature in each iteration

until a predetermined criterion is satisfied. The backtracking step is the conditional

step where improvement can be made during the search process. As mentioned

earlier, the best four features do not necessarily lead to the best five features because

the forward step is unconditional. Therefore, SFFS is suffering from the nesting

problem as well. However, SFFS is said to be a state-of-the-art method that is widely

used in several applications. Researchers in sequential feature selection normally

extend their method using SFFS as the standard method to compare their results. To

describe the SFFS algorithm below, let x
–
 be an excluded feature where x  Xk:

Step 1: Inclusion step. (Apply SFS algorithm.)

Step 2: Conditional exclusion step. (This step is similar to the SBS

algorithm.)

 x
–
 = arg max J(xk = x), where x  Xk

 If J(xk – x
–
) > J(xk–1):

 Xk–1 = Xk – x
–

 k = k – 1

 (Remove a feature if the resulting subset improves the performance.

If k  2 or there is no improvement on Xk–1 then go to step 1, or else,

repeat step 2.)

Step 3: Continue steps 1 and 2 until d features are selected.

2.5 Adaptive Sequential Forward Floating Search (ASFFS)

After the introduction of SFFS, several improved versions have been proposed

to obtain better performance. An adaptive version of the floating search method

(Somol, Pudil, Novovicova, & Paclik, 1999) was presented to improve the

performance of the SFFS algorithm. The idea behind Adaptive SFFS (ASFFS) is

selecting features to add or remove more than one feature in each sequential step in

order to search for a better subset. The number of search features in each step can be

varied depending on the remaining features in the dataset. The result is a more

thorough search with a better chance to find an optimal solution by setting a higher

generalization level. The algorithm of ASFFS can be illustrated in figure 2.2.

17

No .

Initialize Xk

Let k = 0

Adaptively recalculate r:

If |k – d| < b, let r = rmax, else if |k – d| < rmax + b,

 let r = rmax + b - |k – d|, else let r = 1

Let o = 1

Is this the best (k + o)

subset so far ?

Leave in the conditionally

Included features

k ≥ d + D

Forget the current subset. Take the

so-far best subset of size k + 1

Let k = k + 1

Terminate

 Yes

 No

 Yes

Conditionally include o features

found by applying one step of

GSFS(o) algorithm

Let k = k + o

o < r ?

Take out the conditionally

included features

Let o = o + 1

 Yes

 No

Yes .

Adaptively recalculate r:

If |k – d| < b, let r = rmax, else if |k – d| < rmax + b,

 let r = rmax + b - |k – d|, else let r = 1

Let o = 1

Is this the best (k – o)

subset so far ?

Return the conditionally

excluded features back

 No

 No Yes

Conditionally exclude o features

found by applying one step of

GSBS(o) algorithm

Let o = o + 1

o < r ?

Leave out the conditionally

excluded features

Let k = k – o

Figure 2.2 Structure of the ASFFS Algorithm

18

The ASFFS method attempts to obtain a less redundant subset than the SFFS

algorithm. The forward step can lead to finding a subset that is worse than the best

one of a given dimension that has been found so far. If this occurs, the current one is

forgotten and the best one so far becomes the current one. The two free parameters,

rmax and b, in the ASFFS specify the generalization limit and range of the adaptive

search. The parameter r specifies the number of features to be added in the forward

phase or inclusion phase which is calculated adaptively. In the backward phase or

exclusion phase, remove o features if it increased the performance. With rmax = 1, the

ASFFS is identical to SFFS. The suggestions for the two values are 4 and 3,

respectively. The nearer the current subset size to d, the higher is the generalization

limit (Figure 2.3). The reason behind this characteristic is to save the computing time

by limiting the generalization level while the current subset is still far from the

desired one. The generalization level (r) increases when the number of features (k) in

the current subset gets close to d until it reaches rmax. ASFFS has shown better

results than SFFS due to a more thorough search. Theoretically, better results are

also depending on the criterion function and distribution of the data.

Figure 2.3 An Adaptive Determination of r-values for ASFFS

The calculation of the r-value occurs at the beginning of every forward and

backward phase using the following conditions:

1) If |k – d| < b, let r = rmax

2) Else if |k – d| < b + rmax, let r = rmax + b – |k – d|

3) Else let r = 1

While the number of features k is far from the required subset size (d), r is

assigned a value of 1, which is exactly the same as SFFS‟s procedure. When k gets

closer to d, the value for r increases but no more than rmax. Even though ASFFS has

19

shown slightly better results than SFFS, it takes more computational time due to the

complexity of the algorithm. The adaptive step leads to additional work to the SFFS

structure in both in the forward and the backward direction. Elements of the current

feature subset can be increased or decreased along the searching process, which is

another reason for the longer time required. The backtracking step explores features

within the current subset without considering the unselected features that are located

outside the boundary. The generalization level can be helpful during the search only

when k in the current subset is getting close to the target size, thus the detailed search

concept works only when k almost reaches the end of the process. An adaptive

calculation of r can be illustrated by an example. Assume we specify rmax = 4 and b =

3, then the value of r is shown in Table 2.1.

Table 2.1 Example of r-values from ASFFS

|k – d| 1 2 3 4 5 6 7 8

r 4 4 4 3 2 1 1 1

2.6 Improved Forward Floating Search (IFFS)

One of the most remarkable improvements on SFFS was the IFFS algorithm

(Nakariyakul & Casasent, 2009), which had successfully removed the weakness of

SFFS by adding an additional step to improve the criterion function value. Based on

the fact that it is not necessary that the best k-subset contains all features from the

best (k–1)-subset, IFFS was introduced to solve this nesting problem. This improved

step is called „replacing the weak feature‟ which is to check whether removing any

feature in the currently selected feature subset and adding a new one at each

sequential step can improve the current feature subset. IFFS can impressively

prevent the nesting effect of SFFS and the algorithm is simpler than ASFFS with

exceptionally short computing time. IFFS yields better performance than both SFFS

and ASFFS with a little more process time than SFFS. Figure 2.4 demonstrates the

IFFS algorithm using a flowchart.

20

Yes

Initialize Xk

Let k = 0

Apply SFS algorithm to

add one feature to Xk

Let k = k + 1

k = d + D?

Does

backtracking help ?

Remove one feature

from Xk by applying

SBS algorithm

Let k = k – 1

Terminate

 No

Yes

 No Does replacing the

weak feature help ?

Replace the weak

feature in Xk

Yes

 No

Figure 2.4 Structure of the IFFS Algorithm

21

 The IFFS algorithm is described below:

Step 1: Inclusion step. (Apply SFS algorithm.)

Step 2: Conditional exclusion step. (Apply SBS algorithm.)

Step 3: Check if replacing the weak feature helps.

 For xi in Xk :

 Xk–1 = Xk – xi

 For xj in Y  Xk–1 :

 xj = arg max J(xj)

 If J(Xk–1 + xj) > J(Xk):

 Xk = Xk–1 + xj

 (Generate k new subsets of k features by removing one feature and

adding one feature using SFS. Calculate the J-values of k subsets. If

the subset with the largest J-value gives an improvement, then

replace the new subset with the current subset, and go to step 2.

Otherwise, go to step 1.)

Step 4: Continue steps 1, 2 and 3 until d features are selected.

2.7 Sequential Deep Floating Forward Search (SDFFS)

Another recent sequential search algorithm in this field is the Sequential

Deep Floating Forward Search (SDFFS) (Lv, Peng, & Sun, 2015). This algorithm

also tries to improve the state-of-the-art SFFS algorithm. The deep searching step

aims to confirm whether there exists a subset with k features being better than the

current one that has been found so far using the SFS step which cannot be found in

the SFFS algorithm. In the experiment, SDFFS uses eight datasets by pre-selecting

100 features from each subset. Those 100 features are filtered out using MRMR as a

criterion function. The criterion function value used in this paper is the classification

accuracy computed from the KNN classifier where K = 5. The SDFFS algorithm

shows in figure 2.5.

22

Yes

Initialize Xk

Let k = 0

Do one step SFS

k = k + 1

k = d Let k = k – 1 Terminate

 No

 No
Better (k – 1)-subset

Replace the current

best (k – 1)

Yes .

No .

Save the best

current k-subset

Do one step deep

searching

Replace the current

best k-subset

Better k-subset

Do one step SBS

Yes .

Figure 2.5 Structure of the SDFFS Algorithm

23

The SDFFS algorithm is described below:

Step 1: Adding a feature to the selected subset using the basic SFS method by

selecting the most significant feature concerning Xk and include it in

Xk, k = k + 1.

Step 2: Deep searching step. For each iteration, remove one feature except

the previous feature added to get the new (k–1)-subset for k–1

subsets. To every new (k–1)-subset, select N features from the

candidate set and each time add one into the new (k–1)-subset, which

leads to N new k-subsets. Calculate all the new potential k-subsets‟

criterion function values and select the one with the highest criterion

function value. If the selected k-subset is better than the current k-

subset, replace it with the current one. Repeat step 2. Otherwise, go to

step 3.

Step 3: Check if backtracking helps. Remove the least significant feature k in

Xk. If the backtracking step results in an improvement, then decrease k

by 1 and repeat step 3. Otherwise, go to step 1.

The experimental results show that SDFFS does not perform the best all the

time for all feature‟s sizes. However, the results are relatively high accuracy and more

stable. This led to the overall performance being quite remarkable. Moreover, one

major drawback for SDFFS is the computational time that is far greater than those

previous methods. SDFFS searches through the first 100 features with only slight

chances to gain accuracy especially those with low criterion function value, and thus

modification of the algorithm should be concerned to make it more effective.

2.8 Other Related Works

Chaiyakarn proposed (Chaiyakarn, 2013) a Filter-Based Feature Selection

Using Two Criterion. The algorithm relies on a criterion function by applying CMI as

the first criterion and selects one of the information measures; which are mutual

information, Bhattacharyya distance, Jeffreys-Matusita distance bound to the Bayes

error, and Mahalanobis distance, as a second criterion. The two functions can

complement different characteristics of data together for selecting features more

24

effectively. The evaluation is independent of the data mining algorithm. The

experimental results show that this technique takes less time to select a significant

features subset, particularly on high-dimensional data, whereas an optimal feature set

cannot guarantee.

The two criteria filter-based approach provides an option for users to select

two suitable criterion functions since each function has a unique characteristic and it

has shown that Jeffreys-Matusita distance bound to the Bayes error as the second

criterion function yields the best result. This method outperforms the original filter-

based approach with one criterion function and also provides more opportunity to get

higher accuracy. Due to the same structure as the original filter-based method, this

technique also suffered from the nesting problem.

A recent study from Homsapaya and Sornil (Homsapaya & Sornil, 2017)

introduced a floating search technique employing a genetic algorithm (GA) to

improve the quality of the selected feature subset. The results showed that GA

improved the performance for the majority of sample datasets. Kadhum, et al.

(Kadhum, manaseer, & Dalhoum, 2021) have proposed a new model for evolutionary

wrapper feature selection by applying GA to explore the space of feature

combinations from a set of features that already has its priorities assigned. Extreme

Learning Machines (ELM) and Support Vector Machine (SVM) was used as the

classifiers based on the Chronic Kidney Disease dataset (CKD) from the UCI

repository (Dheeru & Efi, 2017). The application of the proposed model affected the

classification performance by improving the accuracy rate while also reducing the

computing time.

Other recent works in the feature selection domain focused on the application

of feature selection techniques to other areas of work such as face recognition, text

classification and medical science (Bolon-Canedo & Alonso-Betanzos, 2019),

(Cisotto, Capuzzo, Guglielmi, & Zanella, 2020) and (Raj et al., 2020). The

improvement of sequential feature selection tends to focus on non-deterministic

algorithms like particle swarm optimization, genetic algorithms or deep neural

networks (Liu & Wang, 2019) and (Huda & Banka, 2019), while our study concerned

a deterministic algorithm.

 CHAPTER 3

ONE LEVEL FORWARD/MULTI-LEVEL BACKWARD

SELECTION (OFMB)

 Feature selection using wrapper approach is more of interest due to the high

classification accuracy when compared with other approaches. From the past

researches, several methods applied the wrapper approach to sequential feature

selection. One of the most popular sequential search algorithms is Sequential Forward

Floating Selection (SFFS), which represents the state-of-the-art method. Other

techniques were usually developed from SFFS in order to improve classification

accuracy with a reasonable time complexity and also overcome the effect of the

nesting problem. The development of Adaptive Sequential Forward Floating Selection

(ASFFS) and an Improved Forward Floating Selection (IFFS) has been shown to be

superior to the standard SFFS. In this dissertation, we attempted to take advantages of

ASFFS and IFFS to combine them together to form new sequential floating feature

selection algorithms that produced better results than the earlier works. We improved

our algorithm based on the IFFS by removing the backtracking step and inserting an

adaptive step to give the higher chances for discovering better solutions with less

computational time.

 In the first half of this research, we present One-level Forward Multi-level

Backward Selection (OFMB), which is a sequential forward selection that explores

possible subsets several levels deeper in order to maximize the classification accuracy

of the learning dataset. The idea is to explore backward after feature inclusion since

newly included features may affect smaller subsets. This backward search can

examine many levels by excluding more than one feature in each iteration. This

method considers a wider range of features when searching backwards deeper. OFMB

is similar to the backtracking step of SFFS but it can explore feature subsets to much

greater depth. Subsequently, a new, smaller subset with a higher criterion function can

26

be discovered, whereas the standard SFFS or even the IFFS are not capable of finding

such subsets.

The first part of OFMB is a result of our proposed technique called One Level

Forward Inclusion (OLFI). The idea of OLFI is to relocate the „replacing the weak

feature‟ step from the last part of the IFFS algorithm at the beginning of our selection

process. As a result, improvement can be made during the operation and the

backtracking phase can be ignored because if no improvement occurs, the backward

step cannot proceed further than (k–1) feature anyway. Therefore OLFI is the

construction of feature subsets that have relatively high classification accuracy close

to the IFFS algorithm. The second part is to explore the recently selected subset

deeper backwards up to some specified point. After the inclusion and improvement

steps from the OLFI technique, we remove one or more features from the currently

selected subset to form many subsets of size (k–s), where s refers to the number of

removed features range from 1 to r, and r is the generalization limit. The searching

target is a subset with a higher J-value for a particular subset size. We propose the

conditions used to calculate the value of r in the following subsection. As a result of

applying the OFMB algorithm, there are higher chances to find a better feature subset

of size (k–s).

3.1 One Level Forward Inclusion (OLFI)

 Most sequential search techniques consist of two parts which are the forward

phase and the backward phase. Related to this combination, the number of features

keeps increasing or decreasing throughout the searching process as long as an

improvement of the criterion function value (J-value) can be made. While the number

of features almost reaches the required subset size (d) but it may decrease during the

backtracking part. Our work comes up with an idea of whether it would be possible to

remove the backtracking step and determine the improvement only on the forward

step. Consequently, our first proposed algorithm tries to manage this idea into reality.

This is the motivation of the OLFI algorithm which seems to give the algorithm to

perform better than the standard SFFS.

27

 Normally, most sequential search algorithms start with an empty set. First we

add features using SFS until we get more than two features and then the process can

continue to exclude or include features according to which direction can give a

higher J-value for a subset of size k. As opposed to the other sequential search

algorithms, OLFI allows the number of features to be either increased or remain the

same without a backtracking step. The insertion of „replacing the weak feature‟ during

the forward phase makes it possible to improve the feature subset. While using SFS to

include one feature, we try to find a better feature subset by removing one feature in

that subset for every element except the one that just has been added. If an

improvement can be made, replace a new subset with the current one. If there is no

improvement, we keep on adding a feature for the next iteration. This is a feature

improvement step applying a technique from the IFFS algorithm. The OLFI algorithm

is explained below with the flowchart in figure 3.1.

Figure 3.1 Structure of the OLFI Algorithm

28

The OLFI algorithm is described below:

Step 1: Apply SFS to select one feature from the remaining feature set. Add

this feature to the selected feature subset. Continue step 2 with the

feature subset Xk where k = k + 1.

Step 2: From the selected feature subset size k, remove 1 feature iteratively

we have Xk–1, and use SFS to select a new feature from the remaining

feature set (Y  Xk–1) for adding to each feature subset. Then calculate

whether there is an improvement. If there is an improvement, replace

that previous feature subset with the newly selected feature subset and

repeat step 2. Otherwise, continue step 3 with the feature subset Xk.

Step 3: Continue steps 1 and 2 until d features are selected.

3.1.1 An Example using Wine Dataset

To demonstrate the OFMB algorithm, we selected the Wine dataset from the

UCI repository based on the KNN classifier. First, assume we have a dataset Y = {0,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} with 13 features; the required subset size (d) is 13

features.

3.1.1.1 Feature Inclusion

At the beginning, assume we apply SFS for the first 3 features, thus

for k = 1, 2 and 3 we have X1 = {6}, X2 = {6, 10} and X3 = {6, 10, 2} respectively.

Now, the current subset of k = 3 is X3 = {6, 10, 2}. This subset is the best 3-subset that

has been found so far.

3.1.1.2 Feature Improvement

Assume we continue the process up to k = 4. We have X4 = {6, 10, 2,

7} with 90.09% classification accuracy. Remove one feature except x4 = 7 and we

have {6, 10, 7}, {6, 2, 7} and {10, 2, 7}. Then, select one feature from the remaining

set that produces the best J value with those 3 subsets. Now we have new subsets of

size 4 for consideration. After calculation we find that J({10, 6, 7, 9}) produces the

highest J value with 92.84% accuracy. Therefore, replace {6, 10, 2, 7} with {10, 6, 7,

9} as the best subset of size 4 that has been found so far. Repeat the same process for

X4 = {10, 6, 7, 9} and we cannot find any better subset of size 4. Then return to step 1,

continue adding the next best feature for k = 5 to get X5 = {10, 6, 7, 9, x5} where x5 is

29

the newly selected feature from the remaining feature set (Y  Xk). This process

produces similar solutions with the IFFS algorithm.

3.1.1.3 Termination Condition

The OLFI algorithm processes sequentially until the subset size k

reaches the required subset size (d). The best of all feature subsets are copied into Xk

and then terminate the program.

 We can see that the subset is increasing in size along with an improvement

across the process until it reaches the required number of d. This method also solves

the nesting problem that occurs in SFFS and produces a result similar to IFFS without

backtracking step, which performs better than the SFFS algorithm that was known as

the state-of-the-art method.

3.2 Multi-level Backward Selection

 This section is the explanation of the proposed OFMB algorithm on the second

part of our method after we already have preliminary results from the OLFI algorithm.

This second part applies the multi-level backward tracking to improve the

performance on the classification accuracy. A flowchart of the OFMB algorithm has

shown in figure 3.2 followed by a pseudo-code.

30

Figure 3.2 Structure of OFMB Algorithm

31

Algorithm: One-level Forward Multi-level Backward Selection (OFMB)

Input: A set of feature Y = {y1, y2,…, yD}, where D is the number of input dimension;

J is a criterion function; d is the required subset size; r is the generalization level

which is limited by rmax;

Output: A feature subset Xk = {xj | j = 1, 2,…, k; xj  Y}, where k = (0, 1, 2,…, d).

Initialize: Initialize X0 = {}; k = 0; s = 1; r = rmax; z = 0.

(1) Feature Inclusion

 #Find the best feature and update Xk

x
+
 = arg max J(xk = x), where x  Y – Xk

Xk+1 = Xk + x
+

k = k + 1

max(Xk) = Xk+1

(2) Feature Improvement

 #Replace a weak feature by trying to remove one feature and added one feature

Repeat

For xj in Xk : #where j = 1, 2,…, k

Xk–1 = Xk – xi

For xi in Y  Xk–1 : #where i = 1, 2,…, d  (k–1)

xi = arg max J(xi)

If J(Xk–1 + xi) > J(Xk):

Xk = Xk–1 + xi

max(Xk) = Xk

Until J(Xk–1 + xi)  J(Xk)

(3) Multi-level Backward Selection

 #Searching for better subsets by multiple backtracking step

Repeat

xs in Xk : #where s = 1,…, r and xs are the features from 1 to r

Xk–s = Xk – xs

32

If J(Xk–s) > J(max(Xk–s)):

max(Xk–s) = Xk–s

z = z + 1

s = s + 1

Until s > r

(4) Compute r-value

If z < rmax :

r = rmax – z

Else :

r = 1

z = 0

s = 1

(5) Termination Condition

 #Terminate when k > d

If k  d

Go to step 1

Xk = max(Xk) #for all k

 Return the best individual subset Xk

 This is a description of the OFMB Algorithm:

Step 1: Apply SFS to select one feature from the remaining feature set. Add

this feature to the selected feature subset. Continue step 2 with the

feature subset Xk where k = k + 1.

Step 2: From the selected feature subset size k, remove 1 feature iteratively

we have Xk–1, and use SFS to select a new feature from the remaining

feature set (Y  Xk–1) for adding to each feature subset. Then calculate

whether there is an improvement. If there is an improvement, replace

that previous feature subset with the newly selected feature subset and

repeat step 2. Otherwise, continue step 3 with the feature subset Xk.

33

Step 3: From the selected feature subset (Xk), remove s features iteratively

from 1 to r. Then, searching for the best (k–s)-subset. If there is a

better subset Xk–s, replace it to the previous Xk–s. Repeat steps 3 until s

> r, then continue step 4.

Step 4: Compute the r-value, then continue step 5.

Step 5: Continue steps 1, 2, 3 and 4 until d features are selected.

3.2.1 Computation of r-value

 The generalization limit (r) needs to be carefully specified since a larger value

of r results in a more thorough search and also increases the time complexity. We

introduce a user-defined parametric limit rmax to restricting the maximum

generalization level. This number can be any integer depending on how deep we need

to search but normally it is only a small integer. The suggestion of rmax from Somol et

al. (Somol et al., 1999) is 4. In our experiments, we assigned the value of rmax to be 5

for all tested datasets. The level s is similar to the level o in ASFFS but s is

determined dynamically according to the r calculation technique we have proposed.

 The generalization limit can be changing adaptively depending on the number

of times we have found better k-subsets. If we have found a few better subsets in the

previous iteration, the next iteration we should try a deeper search and that will

increase the value of r. On the other hand, if the previous iteration has found many

better subsets, the next iteration may not need to go too deep that will decrease the

value of r. This adaptive nature by adjusting the generalization limit automatically is

aimed to save computing time. Therefore, the search should go deeper when the

algorithm cannot find a better subset. The application of this calculation technique

leads to better performance than the previous techniques via our algorithm. We have

selected the first 20 features from the whole dataset for the experiments. OFMB

considers a wider range of features that lead to a thorough search. As a result, there

are higher chances to improve the current feature subset.

 Assume rmax = 5, thus 1  r  5. Let z be the number of times the algorithm has

found a better subset for that particular iteration. We have assigned the relationship of

z and r by rmax – z. Adaptive determination of r is defined as follows:

34

1) If z < rmax, let r = rmax – z

2) Else, let r = 1

 From the condition above, we can build the following graph (Figure 3.3) that

shows the value of r for the first 20 features based on the values from the Ionosphere

dataset in table 3.1. The value for r decreases while z increases.

Table 3.1 The r-values and the z-values from the Ionosphere Dataset

No. of

features (k)
z-values r-values

1 0 5

2 0 5

3 2 5

4 0 3

5 3 5

6 0 2

7 2 5

8 0 3

9 0 5

10 0 5

11 3 5

12 0 2

13 2 5

14 1 3

15 0 4

16 0 5

17 3 5

18 0 2

19 4 5

20 0 1

35

Figure 3.3 Graph of the r-values from the Ionosphere Dataset

3.2.2 An Example using Wine Dataset

 To demonstrate the OFMB algorithm, we selected the Wine dataset from the

UCI repository based on the KNN classifier. First, assume we have a dataset Y = {0,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} with 13 features; the required subset size (d) is 20

features, and we assign rmax = 5. Since the Wine dataset contains only 13 features, we

need to process until d = 13, and we have z = {0, 0, 0, 0, 0, 2, 0, 1, 2, 0, 0, 0, 0}.

3.2.2.1 Feature Inclusion

At the beginning, assume we apply SFS for the first 3 features, thus

for k = 1, 2 and 3 we have X1 = {6}, X2 = {6, 10} and X3 = {6, 10, 2} respectively.

Now, the current subset of k = 3 is X3 = {6, 10, 2}. This subset is the best 3-subset that

has been found so far.

3.2.2.2 Feature Improvement

Assume we continue the process up to k = 4. We have X4 = {6, 10, 2,

7} with 90.09% classification accuracy. Remove one feature except x4 = 7 and we

have {6, 10, 7}, {6, 2, 7} and {10, 2, 7}. Then, select one feature from the remaining

set that produces the best J value with those 3 subsets. Now we have new subsets of

size 4 for consideration. After calculation we find that J({10, 6, 7, 9}) produces the

highest J value with 92.84% accuracy. Therefore, replace {6, 10, 2, 7} with {10, 6, 7,

9} as the best subset of size 4 that has been found so far. Repeat the same process for

X4 = {10, 6, 7, 9} and we cannot find any better subset, thus we continue to the next

step with X4 = {10, 6, 7, 9}. The next step will be an optimization of this solution.

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

r-
v
a

lu
es

No. of features (k)

36

3.2.2.3 Multi-level Backward Selection

Assume we continue the process until we reach k = 9 and we have X9

= {0, 1, 2, 5, 6, 9, 10, 7, 8} with 92.25% accuracy. After the feature improvement step

we have X9 = {0, 1, 2, 5, 6, 7, 8, 9, 11} with 92.82% accuracy that is the best 9-subset

that has been found so far. For Multi-level Backward Selection, starting with s = 1,

remove one feature to find a better 8-subset. Now we consider only subsets containing

the feature x9 = {8}, which are {0, 1, 2, 5, 6, 7, 8, 11}, {0, 1, 2, 6, 7, 8, 9, 11}, {0, 1, 2,

5, 6, 7, 8, 9}, {1, 2, 5, 6, 7, 8, 9, 11}, {0, 1, 2, 5, 7, 8, 9, 11}, {0, 1, 2, 5, 6, 8, 9, 11},

{0, 2, 5, 6, 7, 8, 9, 11}, {0, 1, 5, 6, 7, 8, 9, 11}. We calculate the J values for all the

combinations of 8-subset but cannot find a better 8-subset. The process continues to

the next inner loop for s = 2. Remove two features from X9 = {0, 1, 2, 5, 6, 7, 8, 9, 11}

and we have {0, 2, 5, 6, 8, 9, 11}, {2, 5, 6, 7, 8, 9, 11}, {0, 2, 5, 7, 8, 9, 11},…, {0, 5,

6, 7, 8, 9, 11} for 28 subsets of size 7 to be considered. The calculation has shown no

better result, thus continue to the next inner loop for s = 3. Remove three features

from X9 = {0, 1, 2, 5, 6, 7, 8, 9, 11} and we have {1, 2, 6, 7, 8, 11}, {0, 1, 2, 6, 8, 11},

{1, 2, 5, 6, 8, 11},…, {2, 5, 6, 7, 8, 11}. There are 56 subsets of size 6 to be

considered. At this point, we can find a better 6-subset, which is {0, 6, 7, 8, 9, 11}

with 93.36% accuracy. Replace X6 with {0, 6, 7, 8, 9, 11} as the best 6-subset that has

been found so far. A subset X6 now has the highest accuracy, which cannot be found

by other sequential searching techniques.

3.2.2.4 Compute r-value

An adaptive determination of r is applied to find the value of r for

the next iteration. There are two input variables: one is the maximum value of r (rmax),

which is 5 for this particular example. The other one is z, which has recently been

acquired from the multi-level backward selection step. If k = 6, the value of z would

be 2. Apply an adaptive determination of r that matches with the first condition,

which is „If z < rmax, let r = rmax – z‟. Thus we have r = 5 – 2 = 3. Now, r = 3 will be

applied to the algorithm for k = 7. The value of r can vary from 1 to 5 depending on

the value of z. Therefore, r changes adaptively in different iterations.

37

3.2.2.5 Termination Condition

The OFMB algorithm processes sequentially until the subset size (k)

reaches the required subset size (d). The best of all feature subsets are copied into Xk

and then the program is terminated. This method applies the idea of adaptive search in

order to explore the potential subset thoroughly, in other words, it provides a better

chance of finding the optimal solution via a more detailed search by adjusting the

generalization limit adaptively.

The OFMB algorithm gives a chance to explore smaller subsets similar to the

backtracking step in SFFS but it also takes a look at some more subsets that have not

come across before. There are possibilities that we may find a better subset that

increases the classification accuracy from what we previously received from the OLFI

step. The results from OFMB lead to even closer to the optimal solutions.

This proposed method is classified as the sequential floating selection methods

which are considered to be data-dependent with the other data and as a result of their

heuristic behavior they cannot jump across to a new solution regardless of the

previous searching steps. Even though these searching techniques cannot guarantee

the optimal solution since they are focusing on the suboptimal solutions but they

provide similar results with those exhaustive searches in most cases (Somol et al.,

1999).

3.3 The Classifiers

There are several classifiers used for data mining and machine learning. One

of the simplest and most popular classifiers is K-Nearest-Neighbors (KNN). The other

ones that we interest in for our application include the Naive Bayes and Decision Tree

classifiers. To compare the performance of our algorithms against other searching

algorithms, we calculate the criterion function (J) for each subset that is chosen by

each algorithm for the different number of selected features subset sized (k).

3.3.1 K-Nearest-Neighbors (KNN)

Due to the robustness and versatility, KNN is often used in various

applications such as economic forecasting, data compression and genetics which can

38

outperform other more powerful classifiers. KNN falls in the supervised learning

family and is selected to calculate the classification accuracy in both IFFS and

SDFFS. Therefore, we have decided to use KNN to compare our performance on

different sequential floating feature selection algorithms. We have applied 5-fold

cross-validation for all tested datasets.

The algorithm of KNN is described below:

1) Load the training and test data

2) Choose the value of k

3) For each point in the test data

(1) find the distance to all training data points

(2) store the distances in a list and sort it

(3) choose the first k points

(4) assign a class to the test point based on the majority of classes

present in the chosen points

 There are many different ways to compute distances. The two popular ones are

Euclidean distance and Cosine similarity. Euclidean distance is probably seemed to be

more familiar with and is the default measurement in the python library for the KNN

classifier.

3.3.2 Naïve Bayes (NB)

The NB Classifier is a classification model based on probability theory by

applying Bayes theorem. It was widely used in machine learning research since the

1950s because of its effectiveness and ease of implementation without complicated

iterative parameter estimation. Frequently, the NB classifier outperforms those more

sophisticated classification methods. Bayes theorem provides a way of calculating

posterior probability P(c|x) from P(c), P(x) and P(x|c). See the equation below:

 P(c|x) =

 P(c|X) = P(x1|c) × P(x2|c) × … × P(xn|c) × P(c)

39

where

P(c|x) is the posterior probability of class (target) given predictor

(feature or attribute)

 P(c) is the prior probability of class

 P(x|c) is the likelihood which is the probability of predictor given class

 P(x) is the prior probability of predictor

In our experiments, regarding the Scikit learn which is a python library, we

have decided to use the Gaussian Naïve Bayes for the classification task due to the

simplicity and it is the most popular one.

3.3.3 Decision Tree (DT)

 DT algorithm belongs to the family of supervised learning algorithms. It can

be used for solving classification and regression problems. The goal of DT is to create

a training model that can be used to predict the class or value of the target variable by

learning simple decision rules inferred from the training data. There are two types of

DT based on the target variable. The first one is the categorical variable DT that has a

categorical target variable. The second one is the continuous variable DT that has a

continuous target variable. DT is an effective machine learning model. The model is

defined by a series of questions that lead to a class label when applying to any

observation. In the trees, each leaf node represents class labels while the branches

represent conjunctions of features leading to class labels.

 One example of the application of DT is for a bank to decide whether or not to

offer someone a loan by asking a series of questions to figure out if it is safe to allow

a load to an individual. These questions are like the income of a person, how long

they occupy this job, what is their credit card payment behavior and so on. The final

decision can be either yes or no which represent the class label for the leaf nodes. DT

is also our selected classifier for the experiments.

40

3.4 Datasets

The datasets used in the experiments are 14 standard datasets with various

sizes from the UCI machine learning repository (Dheeru & Efi, 2017). Some of

these datasets are also used in earlier works for sequential floating search. Detail of

all data sets is shown in table 3.2.

Table 3.2 Datasets Used in the Experiments

Name Feature

Type

No. of

instances

No. of

features

No. of

classes

Wine Integer, Real 178 13 3

Thoracic Surgery Integer, Real 470 17 2

Online Shoppers Integer, Real 12330 17 2

Lymphography Categorical 148 18 2

Image Segmentation Real 2310 19 7

Crowdsourced Real 10546 29 6

Breast Cancer Real 569 32 2

Ionosphere Integer, Real 351 34 2

Soybean Categorical 307 35 15

Waveform 2 Real 5000 40 3

Spectf Heart Integer 267 44 2

Spambase Integer, Real 4601 57 2

Sonar Real 208 60 2

Urban Land Cover Real 675 147 9

41

3.5 Experimental Setup

 To compare our method with other algorithms we developed an experimental

environment similar to the previous works. The performance of the feature selection

methods is usually evaluated by a machine learning model. Some popular models

include Naïve Bayes, C4.5, SVM, Decision Tree and K-means clustering. One of the

most popular classifiers is K-Nearest-Neighbors (KNN). We applied KNN to compare

our performance on different algorithms based on 5-fold cross-validation. The other

two classifiers that also used in these experiments are NB and DT. Data normalization

is preferred as a preprocessing step. We selected Python as the programming

language, using the Jupyter notebook editor for program development. We randomly

selected some instances for a large dataset and also eliminated some missing values if

necessary. We applied the same randomly selected instances to all techniques to

ensure that they received the same input.

3.6 Results and Discussion

 In this section, we discuss our results for the OFMB algorithm compared with

popular suboptimal methods, which are SFS, SFFS and IFFS. This research aimed to

increase the classification accuracy rather than reducing the time complexity.

Normally, the improvement of the earlier technique requires a more complicated

algorithm which also requires higher computing time unavoidably. The size of the

dataset does not affect the algorithm. We considered only the first 20 features for all

datasets in order to limit the operation cost. There were some datasets with less than

20 features, therefore we considered the whole dataset sizes for these small datasets.

 We studied the effectiveness of the proposed sequential feature selection

algorithm based on the three classification methods which were KNN, NB and DT on

14 standard UCI machine learning repositories. The performances were evaluated by

classification accuracy and the minimum number of selected features that produced

the maximum accuracy. The classification accuracy was the first priority for the best

performance. If the results on accuracy for different algorithms were equal, then the

smaller number of selected features would be in consideration.

42

 Table 3.3 The Comparison of Maximum Accuracy Using KNN

Dataset

Previous Methods

(KNN)

Proposed Method

(KNN)

SFS SFFS IFFS OFMB

Wine (13) 92.82 (10) 93.38 (7) 93.38 (7) 93.38 (7)

Thoracic Surgery (17) 84.89 (5) 85.96 (9) 85.96 (10) 86.96 (10)

Online Shopper (17) 90.43 (7) 90.59 (7) 90.67 (5) 90.67 (5)

Lymphography (18) 88.00 (15) 88.76 (13) 90.14 (11) 90.81 (10)

Image Segmentation (19) 80.95 (10) 80.95 (7) 81.43 (8) 81.43 (7)

Crowdsourced (29) 89.46 (20) 88.98 (20) 90.13 (19) 90.42 (20)

Breast Cancer (32) 95.44 (18) 95.44 (12) 95.44 (16) 95.44 (13)

Ionosphere (34) 93.45 (5) 94.02 (12) 94.59 (12) 94.89 (11)

Soybean (35) 89.1 (18) 90.23 (18) 90.23 (19) 90.23 (17)

Waveform 2 (40) 85.22 (14) 86.8 (18) 85.39 (13) 86.17 (17)

Spectf Heart (44) 81.65 (11) 98.33 (9) 98.33 (9) 85.37 (12)

Spambase (57) 90.43 (12) 90.43 (12) 93.04 (19) 93.04 (19)

Sonar (60) 78.56 (11) 77.44 (6) 80.88 (20) 81.76 (19)

Urban land cover (147) 60.49 (9) 60.48 (9) 61.37 (6) 61.37 (6)

 The results in table 3.3 were the comparison of maximum classification

accuracy (%) and resulted number of selected features in parenthesis using KNN from

different feature selection algorithms where the highest accuracy for each dataset was

in bold. It shows that the classification accuracy was noticeably enhanced by the

proposed algorithm compared to the previous works using KNN as performance

validation method. OFMB had the best performance in the majority of the datasets

because it produced either the highest accuracy and/or a lower number of features.

With the Wine dataset, OFMB achieved the same optimal solutions as SFFS and IFFS

due to the size of the dataset being small. With the Breast Cancer dataset, SFFS was

the best method among the other three with the same maximum accuracy, but with a

lower number of selected features. SFFS was also the best method for the Waveform

2 dataset. With the Spectf Heart dataset, both SFFS and IFFS produced the best

43

solutions. For the rest of the resulted datasets, the OFMB algorithm showed the best

performance among the other techniques. Only for the Online Shopper, Spambase and

Urban Land Cover datasets, IFFS had equal solutions to the OFMB algorithm.

Table 3.4 The Comparison of Maximum Accuracy Using NB

Dataset

Previous Methods

(NB)

Proposed Method

(NB)

SFS SFFS IFFS OFMB

Wine (13) 93.35 (5) 93.35 (5) 93.35 (5) 93.35 (5)

Thoracic Surgery (17) 85.11 (1) 85.11 (1) 85.11 (1) 85.32 (5)

Online Shopper (17) 90.67 (2) 90.67 (2) 90.67 (2) 90.67 (2)

Lymphography (18) 86.48 (7) 86.52 (10) 87.33 (9) 88.05 (8)

Image Segmentation (19) 81.91 (5) 81.91 (5) 82.86 (5) 82.86 (5)

Crowdsourced (29) 82.92 (18) 83.01 (16) 83.4 (19) 83.4 (19)

Breast Cancer (32) 95.44 (8) 95.44 (8) 96.14 (6) 96.14 (6)

Ionosphere (34) 92.58 (14) 93.44 (11) 93.72 (14) 93.72 (11)

Soybean (35) 83.86 (20) 84.61 (15) 91.73 (12) 91.73 (12)

Waveform 2 (40) 85.2 (18) 85.61 (15) 85.81 (17) 86 (20)

Spectf Heart (44) 79.4 (1) 80.12 (6) 79.4 (1) 80.15 (3)

Spambase (57) 79.89 (15) 80.65 (18) 81.84 (12) 82.29 (18)

Sonar (60) 81.4 (7) 81.4 (7) 81.45 (13) 81.45 (13)

Urban land cover (147) 71.48 (12) 75.24 (16) 76.14 (15) 76.14 (15)

 The results in table 3.4 also show that the classification accuracy was

enhanced by the OFMB algorithm compared to the previous works using the NB

classifier. Only the Wine and Online Shopper datasets had equal results for all

techniques. Apart from the two datasets mentioned above, IFFS produced the same

maximum accuracy as OFMB with the Image Segmentation, Crowdsourced, Breast

Cancer, Soybean, Sonar and Urban Land Cover datasets. The rest of the tested

datasets provide the best results obtained by the proposed algorithm. Therefore,

OFMB had the best performance with all datasets because it produced the highest

44

classification accuracy with the smallest number of selected features equal to or better

than the other methods.

Table 3.5 The Comparison of Maximum Accuracy Using DT

Dataset

Previous Methods

(DT)

Proposed Method

(DT)

SFS SFFS IFFS OFMB

Wine (13) 91.66 (10) 92.27 (6) 93.95 (5) 93.98 (8)

Thoracic Surgery (17) 80.43 (3) 80.64 (6) 80.85 (6) 81.06 (3)

Online Shopper (17) 88.81 (2) 89.05 (2) 89.13 (10) 89.3 (11)

Lymphography (18) 85.14 (6) 86.05 (10) 87.29 (5) 87.29 (6)

Image Segmentation (19) 84.76 (11) 86.19 (12) 85.71 (7) 88.57 (9)

Crowdsourced (29) 80.84 (12) 82.16 (13) 82.16 (10) 83.22 (16)

Breast Cancer (32) 95.61 (5) 96.32 (6) 96.67 (8) 96.5 (14)

Ionosphere (34) 92.3 (20) 92.89 (18) 93.72 (19) 94.3 (20)

Soybean (35) 90.22 (20) 91.75 (17) 92.11 (18) 91.36 (19)

Waveform 2 (40) 77.61 (18) 78.39 (16) 78.39 (16) 78 (18)

Spectf Heart (44) 80.55 (10) 80.17 (11) 86.9 (15) 83.54 (20)

Spambase (57) 90.32 (20) 90.65 (17) 90.43 (20) 90.65 (16)

Sonar (60) 83.27 (17) 86.6 (13) 86.18 (19) 84.3 (13)

Urban land cover (147) 78.07 (14) 77.33 (12) 80.42 (20) 81.31 (20)

 As shown in table 3.5, the majority of the best results obtained by the OFMB

algorithm using the DT classifier. SFFS gave the best solution only for Waveform 2

and Sonar datasets whereas SFS did not perform well for all datasets. IFFS produced

the best accuracy with the smallest subset sizes for Lymphography, Breast Cancer,

Soybean, Waveform 2 and Spectf Heart datasets. Even though IFFS gave the highest

accuracy for the Lymphography dataset, but this solution was also equal to OFMB

with only one feature less than from the IFFS for the selected subset. However,

OFMB provided the maximum classification accuracy for the other eight datasets in

the result table.

45

Table 3.6 The Comparison of Maximum Accuracy From the Three Different

Classifiers for the OFMB Algorithm

Dataset
Proposed Method (OFMB)

KNN NB DT

Wine (13) 93.38 (7) 93.35 (5) 93.98 (8)

Thoracic Surgery (17) 86.96 (10) 85.32 (5) 81.06 (3)

Online Shopper (17) 90.67 (5) 90.67 (2) 89.3 (11)

Lymphography (18) 90.81 (10) 88.05 (8) 87.29 (6)

Image Segmentation (19) 81.43 (7) 82.86 (5) 88.57 (9)

Crowdsourced (29) 90.42 (20) 83.4 (19) 83.22 (16)

Breast Cancer (32) 95.44 (13) 96.14 (6) 96.5 (14)

Ionosphere (34) 94.89 (11) 93.72 (11) 94.3 (20)

Soybean (35) 90.23 (17) 91.73 (12) 91.36 (19)

Waveform 2 (40) 86.17 (17) 86 (20) 78 (18)

Spectf Heart (44) 85.37 (12) 80.15 (3) 83.54 (20)

Spambase (57) 93.04 (19) 82.29 (18) 90.65 (16)

Sonar (60) 81.76 (19) 81.45 (13) 84.3 (13)

Urban land cover (147) 61.37 (6) 76.14 (15) 81.31 (20)

 Table 3.6 shows the comparison of the results from the OFMB algorithm

using different criterion functions. The performances were validated by KNN, NB and

DT classifiers. The majority of the best performances were from KNN with eight

sample datasets, whereas NB provided the best results with only two datasets which

are Online Shopper and Soybean. The other four tested datasets with maximum

classification accuracy were from the DT classifier. Different criterion functions

yielded different results because each function has a unique character and we can see

that KNN as the criterion function yielded the best result followed by DT and NB

respectively. Thus, KNN is the most preferable classifier for getting the best solutions

since it provides more opportunity to get the highest accuracy.

46

 The proposed algorithm based on a sequential feature selection algorithm

produced effective feature subsets with higher classification accuracy with several

different datasets. Our proposed algorithm can extract a more relevant and effective

feature subset from the source dataset using multi-level backward tracking selection

with an adaptive generalization level technique. From the experiments, the maximum

accuracies with the smallest subsets produced by our proposed method on most of the

tested datasets. This improvement was the result of the multi-level backwards tracking

technique that leads to a more thorough search on the smaller feature subsets. Some

smaller subsets with higher accuracy were discovered by our in-depth searching

method.

 In this chapter, we proposed an algorithm called One-level Forward Multi-

level Backward Selection (OFMB) algorithm. We aimed to develop a feature

selection method that surpasses previous works in terms of accuracy. We proposed a

feature selection algorithm based on the sequential searching technique by improving

the performance of the SFFS algorithm. Incorporating a feature improvement step in

our method produces similar results with the IFFS algorithm. The addition of multi-

level backtracking was done to discover relevant subsets that cannot be discovered by

SFFS or IFFS. The algorithm employs an adaptive generalization limit to indicate the

level of backward searching. A higher limit leads to a better chance of finding a better

subset. In the experiments, we compared our method with SFS, SFFS and IFFS.

Results on the 14 standard datasets showed that OFMB performed better than the

other suboptimal sequential feature selection algorithms for most of the tested

datasets. Some results from previous methods might be better than from our proposed

method due to the relationship between smaller subsets with larger subsets. Higher

accuracy in the smaller subset might lead to a trap in the local optimum solution.

Therefore, while the subset size increased, there was a chance that the searching

process could not gain maximum accuracy. In the next chapter, we proposed another

sequential searching technique that focused on looking ahead in the forward direction

rather than looking backwards by applying adaptive generalization limit and also

introduced two new methods to calculate the value of the generalization limit.

 Related to the time complexity of the OFMB algorithm, we can derive from

the two main steps. Firstly, a feature improvement step where it computes n subsets

47

after removing one feature from the selected subset and add one feature from the

remaining set. This operation continues no greater than n loop, therefore the feature

improvement step requires no greater than n
2
 for the time complexity. Secondly, a

multi-level backward selection step processes up to rmax for the inner loop. The

selected subsets of size k are considered and s is a constant from 1 to rmax. For each

inner loop, the total subsets that need to be calculated are C(k, s) minus the subsets

that do not contain the newly selected feature. This operation repeats no greater than n

times, which is the total number of features in the dataset. Therefore, the number of

subsets that need to be evaluated for the inner loop can be described by an expression

below:

 –

,

 where k is the number of features in the subset and s is the generalization level

for that particular iteration.

 For s = 1, the number of subsets that need to evaluate is;

 –

 = k – 1  k

 For s = 2, the number of subsets that need to evaluate is;

 –

 =

 – (k–1)  k

2

 For s = 3, the number of subsets that need to evaluate is;

 –

 =

 –

  k

3

 Repeat this calculation for s = 4 and 5, so we have the computing time of k
4

and k
5
 respectively. We can see that the time complexity for this second part is

n ∑
 . Other steps are constant time so they can be ignored. Combine the two

steps we have n
2
 + n ∑

 time complexity for the OFMB algorithm. We can

conclude that OFMB requires higher computational time than IFFS for which IFFS

bounded by O(n
2
), moreover, SFS and SFFS are bounded by O(n).

 CHAPTER 4

MULTI-LEVEL FORWARD INCLUSION (MLFI)

The Multi-level Forward Inclusion (MLFI) algorithm is similar to the One-

Level Forward Inclusion (OLFI) with the addition of an adaptive floating search

concept. Instead of adding one feature, we use SFS to add more than one feature but

to some specified point called the generalization limit, which is denoted by r. The

value of r is varying using the condition we proposed in section 3.3.3. From the r

value calculation method, we can add features ranging from 1 to rmax, where rmax is the

maximum value of r, which is needed to be defined. The higher value of r leads to

more computational time, therefore we need to keep r as a small number such as 4 or

5. The level of r in each loop uses s as a variable. The level s is similar to the level o

in ASFFS where s is determined dynamically according to the previous searching

situation. This method considers a wider range of feature subset for consideration. As

a result, there are higher chances to improve the current feature subset. Next, we will

discuss the MLFI algorithm in more detail.
 In our study, we focused on the wrapper approach based on a sequential

selection algorithm. It used the result of a data mining algorithm to determine the

goodness of a given feature subset. During the search process, the space of possible

feature subsets is defined to generate and evaluate features until we get the satisfied

subset. For the sequential floating search methods, the number of features

dynamically increases and decreases until we reached the desired target. The variables

allow floating forward or backwards so that they can be flexibly changed without pre-

setting any parameters. For this reason, a floating search is possible to be trapped at a

local optimum since the best k-subset does not necessarily contain the best (k–1)-

subset. Therefore, we present an alternative improvement to the floating search

algorithm to remove some of its drawbacks and try to find a solution as much closer

to the optimal solution as possible.

49

 Our study attempted to explore a new sequential feature selection algorithm

that produced better results than the earlier works. We proposed a Multi-level

Forward Inclusion (MLFI) algorithm where the idea is to remove the backtracking

step and modify the „replacing a weak feature‟ step from the IFFS method with an

addition of the adaptive floating search technique. Instead of adding one feature, we

can add more than one feature to a defined point using the generalization limit (r).

The appropriate value of r depends on the specified conditions described in section

4.1. MLFI considers a wider range of features that lead to a more thorough search. As

a result, it has higher chances to maximize the current feature subset according to the

classification accuracy. The MLFI algorithm can be described below with the

flowchart in figure 4.1 follow by the pseudo code.

 This is a description of the MLFI Algorithm:

Step 1: Apply SFS to select one feature from the remaining feature set. Add

this feature to the selected feature subset. Continue step 2 with the

feature subset Xk where k = k + 1.

Step 2: From the selected feature subset (Xk), remove s features iteratively

from 1 to r. Search for the best (k–s)-subset. If there is a better subset

(Xk–s), replace the previous subset with the new subset for Xk–s. Repeat

steps 1 and 2 until s > r, then continue step 3.

Step 3: From the selected feature subset size k, remove 1 feature iteratively

then we have Xk–1, and use SFS to select a new feature from the

remaining feature set (Y  Xk–1) to add to each feature subset. Then

calculate whether there is an improvement. If there is an

improvement, replace that previous feature subset with the newly

selected feature subset and repeat step 3. Otherwise, continue step 4

with the feature subset Xk.

Step 4: Compute the r-value, then continue step 5.

Step 5: Continue steps 1, 2, 3 and 4 until d features are selected.

50

Figure 4.1 Structure of the MLFI Algorithm

51

Algorithm: Multi-level Forward Inclusion (MLFI)

Input: A set of features Y = {y1, y2,…, yD}, where D is the number of input

dimensions; J is a criterion function; d is the required subset size; r is the

generalization level which is limited by rmax.

Output: A feature subset Xk = {xj | j = 1, 2,…, k; xj  Y}, where k = (0, 1, 2,…, d).

Initialize: Initialize X0 = {}; k = 0; s = 1; r = rmax; z = 0.

(1) Feature Inclusion

 #Find the best feature and update Xk

x
+
 = arg max J(xk = x), where x  Y – Xk

Xk+1 = Xk + x
+

k = k + 1

max(Xk) = Xk+1

(2) Multi-level Forward Inclusion

 #Searching for better k-subset by multi-level forward searching step

Repeat

xs in Xk : #where s = 1,…, r

Xk–s = Xk – xs

If J(Xk–s) > J(max(Xk–s)):

max(Xk–s) = Xk–s

z = z + 1

Else

s = s + 1

Go to step 1

Until s > r

(3) Feature Replacement

 #Replace a weak feature by removing one feature and adding one feature that

maximizes the criterion function

Repeat

For xj in Xk : #where j = 1, 2,…, k

Xk–1 = Xk – xi

52

For xi in Y  Xk–1 : #where i = 1, 2,…, d  (k–1)

xi = arg max J(xi)

If J(Xk–1 + xi) > J(Xk):

Xk = Xk–1 + xi

max(Xk) = Xk

Until J(Xk–1 + xi)  J(Xk)

x
+
 = arg max J(xk = x), where x  Y – Xk

Xk+1 = Xk + x
+

k = k + 1

max(Xk) = Xk+1

(4) Compute the r-value

If z < rmax :

r = rmax – z

Else :

r = 1

z = 0

s = 1

(5) Termination Condition

 #Terminate when k > d

If k  d

Go to step 1

Xk = max(Xk) #for all k

 Return the best individual subset Xk

53

4.1 Computation of the r-value

 The generalization limit (r) needs to be carefully specified because a larger

value of r results in a more thorough search and also increases the time complexity.

We introduced a user-defined parametric limit rmax to restricting the maximum

generalization level. This number can be any integer depending on how deep we need

to search through. Normally, rmax is a small integer while the suggestion of rmax from

ASFFS is 4. In our experiments, we assigned the value of rmax to be 5 for all tested

datasets. The level s is determined dynamically according to the r calculation

technique we proposed.

4.1.1 Method I

 The generalization limit can change adaptively depending on the number of

times we found a better k-subset. In our experiments, we selected the first 20 features

from the whole dataset. MLFI considers a wider range of features that lead to a

thorough search. Seeing that, there are higher chances to improve the current feature

subset. We applied the same calculation method for the r-value as in chapter 3 and

called it method I.

 Assume rmax = 5, thus 1  r  5. Let z be the number of times the algorithm has

found a better subset for that particular iteration. Thus, z is related to r by rmax – z.

Adaptive determination of r is defined as follows:

1) If z < rmax , r = rmax – z

2) Else , r = 1

4.1.2 Method II

 The generalization limit increases step by step starting from 1 to rmax along

with the feature subset sizes. The calculation defined by the equation below:

1) r = k / d/rmax  

 For example, if we let d = 20 and rmax = 5, thus r = k/4. Now, the value for r

from the Ionosphere dataset shows in table 4.1 and figure 4.2 for all subset size k,

where 1  k  20.

54

Table 4.1 The r-values and the z-values from the Ionosphere Dataset

No. of

features (k)
r-values

1 1

2 1

3 1

4 1

5 2

6 2

7 2

8 2

9 3

10 3

11 3

12 3

13 4

14 4

15 4

16 4

17 5

18 5

19 5

20 5

55

Figure 4.2 r-values for Method II

4.1.3 Method III

 The idea of the third method is to avoid the solution being trapped by local

optima since MLFI starting with a similar subset to IFFS for the first half of the k-

subsets where we have r = 1. For the second half, we increase the r-value until it

reaches the maximum generalization limit. Then the process continues by applying

rmax through the end of the required subset sizes. The calculation of method III is

described below:

1) If k <= d / 2 , r = 1

2) Else if d / 2 < k < d / 2 + rmax , r = r + 1

3) Else , r = rmax

 For example, let assume d = 20 and rmax = 5, then we have; if k <= 10: r = 1,

elif 10 < k < 15: r = r + 1, else: r = 5. Table 4.2 and figure 4.3 show an example of r-

value for method III.

Table 4.2 The r-values and the z-values from the Ionosphere Dataset

No. of

features (k)
r-values

1 1

2 1

56

No. of

features (k)
r-values

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1

11 2

12 3

13 4

14 5

15 5

16 5

17 5

18 5

19 5

20 5

Figure 4.3 r-values for Method III

57

4.2 An Example using Wine Dataset

 To demonstrate the MLFI algorithm, we selected the Wine dataset from the

UCI repository based on the KNN classifier. First, assume we have a dataset Y = {0,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} with 13 features; the required subset size (d) is 20

features, and we assign rmax = 5. Since the Wine dataset contains only 13 features, we

need to process until d = 13, and we have z = {0, 0, 0, 0, 0, 2, 0, 1, 2, 0, 0, 0, 0}.

4.2.1 Feature Inclusion

 At the beginning, assume we apply SFS for the first 3 features, thus for k = 1,

2 and 3 we have X1 = {6}, X2 = {6, 10} and X3 = {6, 10, 2} respectively. Now, the

current subset of k = 3 is X3 = {6, 10, 2}. This subset is the best 3-subset that has been

found so far.

4.2.2 Multi-level Forward Inclusion

 Assume we continue the process up to k = 4, we have X4 = {6, 10, 2, 7} with

90.09% classification accuracy. For k = 4, s = 1, remove one feature except x4 = 7 to

find a better 3-subset, now we have ({10, 6, 7}, {2, 6, 7} and {2, 10, 7}). After

calculate the criterion function values (J), we have found that J({10, 6, 7}), J({2, 6,

7}) and J({2, 10, 7}) are not greater than J({6, 10, 2}), therefore we continue to the

next inner loop for s = 2 with J({6, 10, 2}) = 90.04% as the best 3-subset that has

been found so far.

 For k = 5, s = 2, we add the forth and the fifth features into X5 we get {6, 10, 2,

7, 5}. Remove two features to find a better 3-subset, now consider only subsets

containing the feature x5 = {5} which are ({5, 6, 7}, {2, 10, 5}, {10, 5, 6}, {10, 5, 7},

{2, 5, 6}, {2, 5, 7}). We calculate the J values for all the combinations of 3-subset by

removing any two features except x5. We cannot find a better 3-subset, the process

continues to the next inner loop for s = 3 with the same J({6, 10, 2}) as the best 3-

subset that has been found so far.

 For k = 6, s = 3, we add the forth, the fifth and the sixth features into X6 we get

{6, 10, 2, 7, 5, 11}. Remove three features to find a better 3-subset, now consider only

subsets containing the feature x6 = {11} which are ({11, 6, 7}, {10, 11, 5}, {10, 11,

58

6}, {10, 11, 7}, {11, 5, 7}, {2, 11, 5}, {11, 5, 6}, {2, 11, 6}, {11, 10, 2}, {2, 11, 7}).

We calculate the J values for all the combinations of 3-subset by removing any three

features except x6. From the current feature subsets, we cannot find a better 3-subset,

continue to the next inner loop for s = 4 with the same J({6, 10, 2}) as the best 3-

subset that has been found so far.

 For k = 7, s = 4, we add the forth, the fifth, the sixth, and the seventh features

into X7 we get {6, 10, 2, 7, 5, 11, 0}. Remove four features to find a better 3-subset,

now consider only subsets containing the feature x7 = {0} which are ({0, 5, 6}, {0, 10,

7}, {0, 5, 7}, {0, 10, 6}, {0, 11, 6}, {0, 11, 7}, {0, 10, 11}, {0, 6, 7}, {0, 11, 5}, {0, 2,

5}, {0, 2, 7}, {0, 2, 6}, {0, 2, 10}, {0, 2, 11}, {0, 10, 2}, {0, 10, 5}). We calculate the

J values for all the combinations of 3-subset by removing any four features except x7.

From the current feature subsets, we can find a better 3-subset, which is J({0, 11, 6})

= 90.06%. Therefore, continue the next iteration for k = 4 and s = 1 with J({0, 11, 6})

as the best 3-subset that has been found so far.

 The process repeats by exploring further until an improvement cannot be

made. After the adaptive search meets the condition s > r, the best 3-subset that we

have found so far would be X3 = {0, 11, 6}. Continue the next step in order to

maximize this solution.

4.2.3 Feature Replacement

 We are now continue onto the feature replacement step by removing one

feature iteratively we have {11, 6}, {0, 6} and {0, 11}, then select one feature from

the remaining set using SFS we have {11, 6, 0}, {0, 6, 9} and {0, 11, 6}. The J values

for each subset are 90.06%, 91.17% and 90.06% respectively. At this point, we have

found J({0, 6, 9}) = 91.17% as the new best 3-subset. Replace {0, 11, 6} with {0, 6,

9} thus X3 = {0, 6, 9} is the best subset of size 3 features that we have found so far.

Continue the next outer loop with k = 4 for J({0, 6, 9, 11}) = 92.27% as the best 4-

subset. We can see that the number of features in the subset either increases or

remains the same throughout the whole process. When the process continues up to 5-

subset we get X5 = {0, 6, 8, 9, 11} which is the highest accuracy that cannot be found

by other sequential searching techniques.

59

4.2.4 Compute the r-value

 An adaptive determination of r is applied to find the value of r for the next

iteration. In the method I, there are two input variables, one is the maximum value

of r (rmax), which is 5. The other one is z, which is recently acquired from the multi-

level forward inclusion step. The value of r can be varying from 1 to 5 depending on

the value of z. Therefore, r is changing adaptively on different iteration. Method II

and III do not require a variable z, while they can lead to better accuracy than method

I for some datasets.

4.2.5 Termination Condition

 The MLFI algorithm processes sequentially until the selected subset size (k)

reaches the required subset size (d). The best of all feature subsets are copied into Xk

and then the program is terminated. This method applies the idea of adaptive search in

order to explore the potential subset thoroughly, in other words, it provides a better

chance to find the optimal solution via a more detailed search by adjusting the

generalization limit adaptively.

4.3 The Classifiers

 The classifiers used in the experiments were KNN, NB and DT, which was the

same as in chapter 3. To compare the performance of our algorithm against the other

sequential searching algorithms, we calculated the criterion function (J) according to

those classifiers for every subset sizes from the different algorithms.

4.4 Datasets

The datasets used in the experiments were the 14 standard datasets with

various sizes from the UCI machine learning repository. Some of these data sets

were also used in the earlier works, therefore we can compare our results with the

other methods. The detail of all datasets shows in Table 4.3.

60

Table 4.3 Datasets Used in the Experiments

Name Feature

Type

No. of

instances

No. of

features

No. of

classes

Wine Integer, Real 178 13 3

Thoracic Surgery Integer, Real 470 17 2

Online Shoppers Integer, Real 12330 17 2

Lymphography Categorical 148 18 2

Image Segmentation Real 2310 19 7

Crowdsourced Real 10546 29 6

Breast Cancer Real 569 32 2

Ionosphere Integer, Real 351 34 2

Soybean Categorical 307 35 15

Waveform 2 Real 5000 40 3

Spectf Heart Integer 267 44 2

Spambase Integer, Real 4601 57 2

Sonar Real 208 60 2

Urban Land Cover Real 675 147 9

4.5 Experimental Setup

 To compare our proposed method with other algorithms, we developed an

experimental environment similar to the previous works and in chapter 3. We used

KNN, NB and DT classifiers to compare our performances on different algorithms

based on 5-fold cross-validation. We randomly selected some instances for a large

dataset and also eliminated some missing values if necessary. We applied the same

61

randomly selected instances to all techniques to ensure that they received the same

input.

4.6 Results and Discussion

 In this section, we discussed our results on the MLFI algorithm compared with

popular suboptimal methods, which were SFS, SFFS and IFFS. The MLFI algorithm

was also aiming to increase the classification accuracy rather than to reduce the time

complexity. We considered only the first 20 features for all datasets to limit the

operation cost. Datasets with less than 20 features were considered for the whole

dataset sizes.

 We studied the effectiveness of the proposed sequential feature selection

algorithm based on the three classification methods, which were KNN, NB and DT on

14 standard UCI machine learning repositories. We evaluated their performances by

classification accuracy and the minimum number of selected features that produced

the maximum accuracy. To compare our method with the previous method we used

classification accuracy as the first priority for the best performance. If the results on

accuracy for different algorithms are equal, then the smallest number of selected

features was considered. In this chapter, we introduced three methods for the r-value

calculation. The results of MLFI were selected from the r-value calculation methods

that produced the best performance among the three methods.

The results in Table 4.4 was the comparison of maximum classification

accuracy (%) and resulted number of selected features in parenthesis using KNN from

different feature selection algorithms where the highest accuracy for each dataset was

in the bold font. The classification accuracy from the MLFI technique produced the

best solutions for most of the tested datasets when compared with the previous works

using KNN as a performance validation method. SFS could not produce the highest

solution at all. The results from MLFI were either the highest in accuracy and/or had

the lowest number of features in the subset. For the Wine dataset, MLFI achieved the

same optimal solutions as SFFS and IFFS due to the size of the dataset. In the

Waveform 2 dataset, SFFS was the best method among the other three algorithms.

IFFS had the best performance on the Spectf Heart dataset with equal solutions to the

62

SFFS method. Apart from Waveform 2 and Spectf Heart datasets, MLFI performed

the best for all other datasets. There were only Wine, Image Segmentation, Spambase

and Urban Land Cover datasets where IFFS produced maximum accuracy equal to the

MILF algorithm.

Table 4.4 The Comparison of Maximum Accuracy Using KNN

Dataset

Previous Methods

(KNN)

Proposed Method

(KNN)

SFS SFFS IFFS MLFI

Wine (13) 92.82 (10) 93.38 (7) 93.38 (7) 93.38 (7)

Thoracic Surgery (17) 84.89 (5) 85.96 (9) 85.96 (10) 85.96 (9)
Online Shopper (17) 90.43 (7) 90.59 (7) 90.67 (5) 90.67 (4)

Lymphography (18) 88.00 (15) 88.76 (13) 90.14 (11) 90.81 (10)

Image Segmentation (19) 80.95 (10) 80.95 (7) 81.43 (8) 81.43(8)

Crowdsourced (29) 89.46 (20) 88.98 (20) 90.13 (19) 90.42 (20)

Breast Cancer (32) 95.44 (18) 95.44 (12) 95.44 (16) 95.44 (10)

Ionosphere (34) 93.45 (5) 94.02 (12) 94.59 (12) 94.87 (8)

Soybean (35) 89.1 (18) 90.23 (18) 90.23 (19) 91.73 (20)

Waveform 2 (40) 85.22 (14) 86.8 (18) 85.39 (13) 86.38 (18)

Spectf Heart (44) 81.65 (11) 98.33 (9) 98.33 (9) 86.53 (15)

Spambase (57) 90.43 (12) 90.43 (12) 93.04 (19) 93.04 (19)

Sonar (60) 78.56 (11) 77.44 (6) 80.88 (20) 81.76 (19)

Urban land cover (147) 60.49 (9) 60.48 (9) 61.37 (6) 61.37 (6)

The results in Table 4.5 also show that the classification accuracy was

enhanced by the MLFI algorithm compared to the previous works using the NB

classifier. Only for Wine and Online Shopper datasets that had equal results for all

techniques. Apart from the two datasets mentioned earlier, IFFS produced the same

maximum accuracy as MLFI on Image Segmentation, Crowdsourced, Breast Cancer,

Ionosphere, Soybean and Urban Land Cover datasets. Regardless of equal solutions

with the IFFS, the MLFI yielded the highest classification accuracy for 13 datasets

63

from all 14 tested datasets. Therefore, MLFI had the best performance for almost all

the tested datasets because it produced the highest classification accuracy with the

smallest number of selected features equal to or better than the other methods.

Table 4.5 The Comparison of Maximum Accuracy Using NB

Dataset

Previous Methods

(NB)

Proposed Method

(NB)

SFS SFFS IFFS MLFI

Wine (13) 93.35 (5) 93.35 (5) 93.35 (5) 93.35 (5)

Thoracic Surgery (17) 85.11 (1) 85.11 (1) 85.11 (1) 85.32 (5)

Online Shopper (17) 90.67 (2) 90.67 (2) 90.67 (2) 90.67 (2)

Lymphography (18) 86.48 (7) 86.52 (10) 87.33 (9) 87.33 (7)

Image Segmentation (19) 81.91 (5) 81.91 (5) 82.86 (5) 82.86 (5)

Crowdsourced (29) 82.92 (18) 83.01 (16) 83.4 (19) 83.4 (19)

Breast Cancer (32) 95.44 (8) 95.44 (8) 96.14 (6) 96.14 (6)

Ionosphere (34) 92.58 (14) 93.44 (11) 93.72 (14) 93.73 (14)

Soybean (35) 83.86 (20) 84.61 (15) 91.73 (12) 91.73 (12)

Waveform 2 (40) 85.2 (18) 85.61 (15) 85.81 (17) 86.01 (19)

Spectf Heart (44) 79.4 (1) 80.12 (6) 79.4 (1) 80.15 (2)

Spambase (57) 79.89 (15) 80.65 (18) 81.84 (12) 82.94 (15)

Sonar (60) 81.4 (7) 81.4 (7) 81.45 (13) 82.35 (9)

Urban land cover (147) 71.48 (12) 75.24 (16) 76.14 (15) 76.13 (13)

 As shown in Table 4.6, the majority of the best results were produced by the

MLFI algorithm. SFS and SFFS could not give the highest solution for all datasets.

IFFS produced the best accuracy with the smallest subset sizes for Wine and

Lymphography datasets. Even though IFFS gave the highest accuracy for the

Lymphography dataset, but this solution was also equal to MLFI with two features

less than from MLFI for the selected subset. However, the MLFI algorithm provided

the maximum classification accuracy for the other twelve datasets. Seeing that, our

64

proposed method was more preferable for feature selection than the other methods

using the DT classifier.

Table 4.6 The Comparison of Maximum Accuracy Using DT

Dataset

Previous Methods

(DT)

Proposed Method

(DT)

SFS SFFS IFFS MLFI

Wine (13) 91.66 (10) 92.27 (6) 93.95 (5) 93.93 (7)

Thoracic Surgery (17) 80.43 (3) 80.64 (6) 80.85 (6) 81.28 (6)

Online Shopper (17) 88.81 (2) 89.05 (2) 89.13 (10) 89.38 (6)

Lymphography (18) 85.14 (6) 86.05 (10) 87.29 (5) 87.29 (7)

Image Segmentation (19) 84.76 (11) 86.19 (12) 85.71 (7) 86.67 (8)

Crowdsourced (29) 80.84 (12) 82.16 (13) 82.16 (10) 83.4 (15)

Breast Cancer (32) 95.61 (5) 96.32 (6) 96.67 (8) 96.84 (13)

Ionosphere (34) 92.3 (20) 92.89 (18) 93.72 (19) 94.88 (18)

Soybean (35) 90.22 (20) 91.75 (17) 92.11 (18) 92.11 (16)

Waveform 2 (40) 77.61 (18) 78.39 (16) 78.39 (16) 78.97 (17)

Spectf Heart (44) 80.55 (10) 80.17 (11) 86.9 (15) 89.13 (19)

Spambase (57) 90.32 (20) 90.65 (17) 90.43 (20) 92.39 (17)

Sonar (60) 83.27 (17) 86.6 (13) 86.18 (19) 88.98 (18)

Urban land cover (147) 78.07 (14) 77.33 (12) 80.42 (20) 81.76 (17)

 Table 4.7 shows the comparison of the results from the MLFI algorithm using

different criterion functions. The performance validations included KNN, NB and DT

classifiers. The majority of the best performances were from DT with seven sample

datasets whereas NB provided the best results on only one dataset, which was the

Online Shopper dataset. The other six tested datasets with maximum classification

accuracy were from the KNN classifier. Therefore different criterion functions

affected the performance of the MLFI algorithm. DT classifier as a criterion function

yielded the best result followed by KNN and NB respectively. Thus, both KNN and

65

DT are more favorable classifiers for getting the best solutions since they provide

more opportunity to get the highest accuracy.

Table 4.7 The Comparison of Maximum Accuracy From the Three Different

Classifiers for the MLFI Algorithm

Dataset
Proposed Method (MLFI)

KNN NB DT

Wine (13) 93.38 (7) 93.35 (5) 93.93 (7)

Thoracic Surgery (17) 85.96 (9) 85.32 (5) 81.28 (6)

Online Shopper (17) 90.67 (4) 90.67 (2) 89.38 (6)

Lymphography (18) 90.81 (10) 87.33 (7) 87.29 (7)

Image Segmentation (19) 81.43(8) 82.86 (5) 86.67 (8)

Crowdsourced (29) 90.42 (20) 83.4 (19) 83.4 (15)

Breast Cancer (32) 95.44 (10) 96.14 (6) 96.84 (13)

Ionosphere (34) 94.87 (8) 93.73 (14) 94.88 (18)

Soybean (35) 91.73 (20) 91.73 (12) 92.11 (16)

Waveform 2 (40) 86.38 (18) 86.01 (19) 78.97 (17)

Spectf Heart (44) 86.53 (15) 80.15 (2) 89.13 (19)

Spambase (57) 93.04 (19) 82.94 (15) 92.39 (17)

Sonar (60) 81.76 (19) 82.35 (9) 88.98 (18)

Urban land cover (147) 61.37 (6) 76.13 (13) 81.76 (17)

 The proposed algorithm based on a sequential feature selection algorithm

produced effective feature subsets with higher classification accuracy on several

different datasets. Our proposed algorithm can extract a more relevant and effective

feature subset from the source dataset using a multi-level forward-searching technique

with the application of the adaptive generalization level. The experimental results

showed that our method produced the maximum accuracy with the smallest subsets on

the majority of the tested datasets. This improvement is the result of the multi-level

forward looks ahead technique that leads to a more thorough search with better

chances to discover the smaller feature subsets. Several smaller subsets with higher

66

accuracy are found by our in-depth searching method. Similar to the OFMB

algorithm, a trap in the local optimum is also possible for some tested datasets.

 To evaluate the time complexity of the MLFI algorithm, we can derive from

the two main steps similar to OFMB. The first one is the multi-level forward inclusion

step, which computes for s loops where s is 1 to rmax and the selected subsets of size k

are considered. For each loop, the total subsets that need to be calculated are C(k, s)

minus the subsets that do not contain the newly selected feature. This operation

repeats at most n times. Therefore, the number of subsets that need to be evaluated

describe by the same expression as OFMB, which results in the time complexity for

this step is n ∑
 . The second step is the feature replacement step, which

consists of k subsets. We remove one feature from the selected subset and add one

feature from the remaining set. This operation continues no greater than n loop. Thus,

the feature replacement step requires no more than n
2
 of time complexity. Other steps

are constant time so they can be ignored. Combine the two steps together we have

n ∑
 + n

2
 time complexity for the MLFI algorithm. We can conclude that MLFI

requires higher computational time than IFFS for which IFFS bounded by O(n
2
),

moreover, SFS and SFFS are bounded by O(n).

4.7 The Comparison between the OFMB and MLFI Algorithms

 Table 4.8 shows the comparison of the results from the OFMB and MLFI

algorithms using different criterion functions. The performance validations were

KNN, NB and DT classifiers where the highest accuracy for each method and the

dataset was in bold; the higher accuracy between the two proposed methods was

underlined. There were four datasets from OFMB that produced the highest accuracy

with less number of selected features in the subset. These four datasets included

Wine, Thoracic Surgery, Image Segmentation and Ionosphere which were the results

from KNN and DT classifiers. The majority of the best performances were from the

MLFI method with six tested datasets. These datasets were Breast Cancer, Soybean,

Waveform 2, Spectf Heart, Sonar and Urban Land Cover. Five of them provided the

best accuracy using the DT classifier. Only Waveform 2 was a result of the KNN

classifier. The application of NB produced a poor result among the three classifiers

67

for both the OFMB and MLFI methods. The remaining datasets had equal maximum

accuracy with the same classifier from the two proposed methods. According to the

size of the dataset, OFMB provided a better solution for small datasets, while MLFI

yielded the best performance for large datasets. Therefore we can conclude that the

MLFI method performs better than the OFMB method in general.

Table 4.8 The Comparison of Maximum Accuracy From the Three Different

Classifiers for the OFMB and MLFI Algorithms

Dataset

Proposed Method

(OFMB)

Proposed Method

(MLFI)

KNN NB DT KNN NB DT

Wine (13)
93.38

(7)

93.35

(5)

93.98

(8)

93.38

(7)

93.35

(5)

93.93

(7)

Thoracic Surgery (17)
86.96

(10)

85.32

(5)

81.06

(3)

85.96

(9)
85.32

(5)

81.28

(6)

Online Shopper (17)
90.67

(5)

90.67

(2)

89.3

(11)

90.67

(4)

90.67

(2)

89.38

(6)

Lymphography (18)
90.81

(10)

88.05

(8)

87.29

(6)

90.81

(10)

87.33

(7)

87.29

(7)

Image Segmentation (19)
81.43

(7)

82.86

(5)

88.57

(9)

81.43

(8)

82.86

(5)

86.67

(8)

Crowdsourced (29)
90.42

(20)

83.4

(19)

83.22

(16)

90.42

(20)

83.4

(19)

83.4

(15)

Breast Cancer (32)
95.44

(13)

96.14

(6)

96.5

(14)

95.44

(10)

96.14

(6)

96.84

(13)

Ionosphere (34)
94.89

(11)

93.72

(11)

94.3

(20)

94.87

(8)

93.73

(14)

94.88

(18)

Soybean (35)
90.23

(17)

91.73

(12)

91.36

(19)

91.73

(20)

91.73

(12)

92.11

(16)

68

Dataset

Proposed Method

(OFMB)

Proposed Method

(MLFI)

KNN NB DT KNN NB DT

Waveform 2 (40)
86.17

(17)

86

(20)

78

(18)

86.38

(18)

86.01

(19)

78.97

(17)

Spectf Heart (44)
85.37

(12)

80.15

(3)

83.54

(20)

86.53

(15)

80.15

(2)

89.13

(19)

Spambase (57)
93.04

(19)

82.29

(18)

90.65

(16)

93.04

(19)

82.94

(15)

92.39

(17)

Sonar (60)
81.76

(19)

81.45

(13)

84.3

(13)

81.76

(19)

82.35

(9)

88.98

(18)

Urban land cover (147)
61.37

(6)

76.14

(15)

81.31

(20)

61.37

(6)

76.13

(13)

81.76

(17)

 In this chapter, we proposed an algorithm called Multi-level Forward

Inclusion (MLFI) algorithm. We aimed to develop a feature selection method that

overcomes the previous works in terms of classification accuracy. We proposed a

feature selection algorithm based on the sequential searching technique by improving

the performance of SFFS. The application of an adaptive multi-level forward search

assisted the maximization of classification accuracy for the feature subset selection.

With the addition of a feature replacement step, the nesting problem was solved.

MLFI was able to discover important subsets that did not find by SFFS or IFFS. The

algorithm employed an adaptive generalization limit to indicate the level of

forwarding search. The higher the limit led to a higher chance of finding a better

subset. There are three proposed methods for calculating the generalization limit and

the best one was selected for our results. In the experiments, we compared our method

with SFS, SFFS and IFFS. Results on the 14 standard UCI datasets showed that MLFI

performed better than the other suboptimal sequential feature selection algorithms for

the majority of the tested datasets. At the end of the chapter, we compared our two

proposed methods under the same condition. The results showed that the MLFI

method overcomes the OFMB method for large datasets, particularly on the DT

classifier.

 CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE

WORK

5.1 Conclusions

 Feature selection is very important for the performance of classification in the

data mining process. This dissertation focused on an improvement of the early

sequential feature selections. We developed feature selection methods that overcome

the previous works in terms of classification accuracy. Our feature selection

algorithms based on the sequential searching technique by improving the performance

of the standard SFFS. We proposed two new algorithms that search for undiscovered

subsets. Our proposed algorithms are the One-level Forward Multi-level Backward

Selection (OFMB) and the Multi-level Forward Inclusion (MLFI). The improvement

of feature selection also assists the effectiveness of the data mining algorithm. Our

objective was to enhance the feature selection performances while maintaining the

computational time as small as possible for the application on a large dataset. The

concept of the two proposed algorithms is summarized below.

 The OFMB algorithm divided into two parts. The first part is to explore

feature subsets by incorporating a feature improvement step that produces a similar

result to the IFFS. This part can be considered as another algorithm and we named it

the One Level Forward Inclusion (OLFI). The second part is the addition of a multi-

level backtracking step and is designed to discover important subsets that cannot be

discovered by the SFFS or IFFS methods. The algorithm employs an adaptive

generalization limit to indicate the level of backward searching. The higher the limit

leads to a higher chance of finding a better subset.

 The MLFI algorithm is also an improvement on the standard SFFS method.

With the application of an adaptive multi-level forward search, MLFI maximizes the

classification accuracy of the feature subset. An addition of a feature replacement step

70

helps to solve the nesting problem. MLFI is able to discover important subsets that

cannot be discovered by past methods. Similar to OFMB, the MLFI algorithm also

uses an adaptive generalization limit to indicate the level of forwarding search.

 In the experiments, we compared our proposed methods with SFS, SFFS and

IFFS on various criterion functions including KNN, NB and DT classifiers. The

results on the fourteen standard UCI datasets showed that our methods outperform the

other suboptimal sequential feature selection algorithms for the majority of the tested

datasets.

 The time complexity of OFMB and MLFI is greater than the other methods,

which is n ∑
 + n

2
. Whereas the IFFS bounded by O(n

2
), moreover, SFS and

SFFS are bounded by O(n).

5.2 Future Work

 An adaptive multi-level sequential feature selection using a wrapper approach

improves the classification performance for various well-known classifiers. Even

though the level of the backward and forward-searching can explore more potential

feature subsets, but it is limited by the generalization limit. This limitation leads to a

reduction in the algorithms‟ effectiveness. The application of a deeper search can

increase the classification accuracy closer to the optimal solution. However, the

higher numbers of generalization limit result in the growth of the computing time. To

keep this computing time as low as possible, we need to explore several techniques

further, which may help with the time reduction.

 One technique can be an addition of a filter approach by using some

measurement such as information gain or distance measures to filter out features that

are less likely to be significant for feature-class correlation. Applying our methods to

the pre-selected features and ignoring the unlikely important features can greatly

reduce the computational time.

 Another issue for further studies is the prediction of the generalization limit

(r). The number of the best r-value for each iteration is unknown. If we can find a

connection of the suitable r-value for a particular iteration of the process, it will

improve the performance and can also help on the time reduction since we can spend

71

less time searching for subsets that do not gain high accuracy. A genetic algorithm or

neural network may be a good choice for studying this issue.

 According to our results on the comparison among different classifiers, we can

see that they produce different classification accuracies. Therefore other criterion

functions apart from the ones that we mentioned in the previous chapters may lead to

better solutions on the same datasets.

BIBLIOGRAPHY

BIBLIOGRAPHY

Beniwal, S., & Arora, J. (2012). Classification and feature selection techniques in data

mining. International Journal of Engineering Research & Technology (IJERT),

1(6).

Bolon-Canedo, V., & Alonso-Betanzos, A. (2019). Ensembles for feature selection: A

review and future trends. Information Fusion, 52, 1-12.

Cai, D., Zhang, C., & He, X. (2010). Unsupervised feature selection for multi-cluster

data. International Conference on Knowledge discovery and data mining, 333-

342.

Cai, J., Luo, J., Wang, S., & Yang, S. (2018). Feature selection in machine learning: A

new perspective. Neurocomputing, 70-79.

Chaiyakarn, J. (2013). A filter-Based feature selection using two criterion functions and

evolutionary fuzzification. (Doctoral dissertation), National Institute of

Development Administration, Bangkok.

Cisotto, G., Capuzzo, M., Guglielmi, A. V., & Zanella, A. (2020). Feature selection for

gesture recognition in Internet-of-Things for healthcare. IEEE Xplore.

Dheeru, D., & Efi, K. T. (2017). UCI machine learning repository. Retrieved from

http://archive.ics.uci.edu/ml

Homsapaya, K., & Sornil, O. (2017). Improving floating search feature selection using

genetic algorithm. Journal of ICT, 11(3), 299-317.

Huang, S. H. (2015). Supervised feature selection: A tutorial. Artificial Intelligence

Research, 4, 22-37.

Huda, R. K., & Banka, H. (2019). New efficient initialization and updating mechanisms

in PSO for feature selection and classification. Neural Computing and

Applications, 32, 3283-3294.

Jovic, A., Brkic, K., & Bogunovic, N. (2015). A review of feature selection methods

with applications. International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO).

Kadhum, M., Manaseer, S., & Dalhoum, A. L. A. (2021). Evaluation feature selection

technique on classification by using evolutionary ELM wrapper method with

features priorities. Journal of Advances in Information Technology, 12(1), 21-28.

73

Liu, H., & Yu, L. (2005). Toward integrating feature selection algorithms for

classification and clustering. IEEE Transactions on Knowledge and Data

Engineering, 17(4), 491-502.

Liu, W., & Wang, J. (2019). A brief survey on nature-inspired metaheuristics for feature

selection in classification in this decade. Proceedings of the 2019 IEEE 16th

International Conference on Networking, Sensing and Control, 424-429.

Lv, J., Peng, Q., & Sun, Z. (2015). A modified sequential deep floating search algorithm

for feature selection. International Conference on Information and Automation,

2988-2933.

Marill, T., & Green, D. M. (1961). On the effectiveness of receptors in recognition

systems. IEEE Transactions on Information Theory, 11-17.

Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.

International Journal of Computer Applications Technology and Research, 5(6),

395-402.

Nakariyakul, S., & Casasent, D. P. (2009). An improvement on floating search

algorithms for feature subset selection. Pattern Recognition, 1932-1940.

Pavya, K., & Srinivasan, B. (2017). Feature selection techniques in data mining: a study.

International Journal of Scientific Development and Research (IJSDR), 2(6),

594-598.

Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information:

criteria of max-dependency, max-relevance, and min-redundancy.

IEEETransactions on Pattern Analysis and Machine Intelligence, 27, 1226-

1238.

Pudil, P., Novovicova, J., & Kittler, J. (1994). Floating search methods in feature

selection. Pattern Recognition Letters, 1119-1125.

Raj, R. J. S., Shobana, S. J., Pustokhina, I. V., Pustokhin, D. A., Gupta, D., & Shankar,

K. (2020). Optimal feature selection-based medical image classification using

deep learning model in internet of medical things. IEEE Access, 8, 58006-58017.

Somol, P., Novovicova, J., & Pudil, P. (2006). Flexible-hybrid sequential floating search

in statistical feature selection. Structural, Syntactic, and Statistical Pattern

Recognition, 632-639.

74

Somol, P., Pudil, P., Novovicova, J., & Paclik, P. (1999). Adaptive floating search

methods in feature selection. Pattern Recognition Letters, 1157-1163.

Sutha, K., & Tamilselvi, D. J. J. (2015). A review of feature selection algorithms for

data mining techniques. International Journal on Computer Science and

Engineering (IJCSE), 63-67.

Whitney, A. W. (1971). A direct method of nonparametric measurement selection. IEEE

Transactions on Computers, 1100-1103.

BIOGRAPHY

BIOGRAPHY

Name-Surname Mr. Knitchepon Chotchantarakun

Academic Background Bachelor of Science (Computer Science)

Mahidol University International College

Year of Graduation: 2003

Master of Science (Computer Science)

Chulalongkorn University

Year of Graduation: 2006

Experience Year 2006

Project Supervisor

International System House Danube

Year 2007 - 2012

Lecturer

Faculty of Information Technology

Siam University

Year 2013 - Present

Lecturer

Faculty of Humanities and Social Sciences

Burapha University

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	SYMBOLS AND ABBREVIATIONS
	CHAPTER 1 INTRODUCTION
	1.1 Data Representation
	1.2 Feature Selection
	1.2.1 Feature Selection Process
	1.2.2 Search Strategies
	1.2.3 Types of Feature Selection Algorithm

	1.3 Feature Learning Methods
	1.4 Performance Validation
	1.5 Cross Validation
	1.6 Overview

	CHAPTER 2 LITERATURE REVIEW
	2.1 Type of Feature Selection
	2.1.1 Filter Method
	2.1.2 Wrapper Method
	2.1.3 Embedded Method

	2.2 Sequential Forward Search (SFS)
	2.3 Sequential Backward Search (SBS)
	2.4 Sequential Forward Floating Search (SFFS)
	2.5 Adaptive Sequential Forward Floating Search (ASFFS)
	2.6 Improved Forward Floating Search (IFFS)
	2.7 Sequential Deep Floating Forward Search (SDFFS)
	2.8 Other Related Works

	CHAPTER 3 ONE LEVEL FORWARD/MULTI-LEVEL BACKWARD SELECTION (OFMB)
	3.1 One Level Forward Inclusion (OLFI)
	3.1.1 An Example using Wine Dataset
	3.1.1.1 Feature Inclusion
	3.1.1.2 Feature Improvement
	3.1.1.3 Termination Condition

	3.2 Multi-level Backward Selection
	3.2.1 Computation of r-value
	3.2.2 An Example using Wine Dataset
	3.2.2.1 Feature Inclusion
	3.2.2.2 Feature Improvement
	3.2.2.3 Multi-level Backward Selection
	3.2.2.4 Compute r-value
	3.2.2.5 Termination Condition

	3.3 The Classifiers
	3.3.1 K-Nearest-Neighbors (KNN)
	3.3.2 Naïve Bayes (NB)
	3.3.3 Decision Tree (DT)

	3.4 Datasets
	3.5 Experimental Setup
	3.6 Results and Discussion

	CHAPTER 4 MULTI-LEVEL FORWARD INCLUSION (MLFI)
	4.1 Computation of the r-value
	4.1.1 Method I
	4.1.2 Method II
	4.1.3 Method III

	4.2 An Example using Wine Dataset
	4.2.1 Feature Inclusion
	4.2.2 Multi-level Forward Inclusion
	4.2.3 Feature Replacement
	4.2.4 Compute the r-value
	4.2.5 Termination Condition

	4.3 The Classifiers
	4.4 Datasets
	4.5 Experimental Setup
	4.6 Results and Discussion
	4.7 The Comparison between the OFMB and MLFI Algorithms

	CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK
	5.1 Conclusions
	5.2 Future Work

	BIBLIOGRAPHY
	BIOGRAPHY

