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Dealing with a large amount of available data becomes a major challenge in 

data mining and machine learning. Feature selection is a significant preprocessing 

step for selecting the most informative features by removing irrelevant and redundant 

features, especially for large datasets. These selected features play an important role 

in information searching and enhancing the performance of machine learning models 

such as classification and prediction. There have been several strategies proposed in 

the past few decades. 

In this dissertation, we propose a new technique called An Adaptive Multi-

level Sequential Floating Feature Selection (AMFFS). AMFFS consists of three 

proposed algorithms, which are One Level Forward Inclusion (OLFI), One-level 

Forward Multi-level Backward Selection (OFMB) and Multi-level Forward Inclusion 

(MLFI). Our proposed methods are considered to be deterministic algorithms related 

to sequential feature selection under the supervised learning model. 

The OFMB algorithm consists of two parts. The first part aims to create 

preliminarily selected subsets. These subsets have similar performance to the 

Improved Forward Floating Selection (IFFS). This part contains the same procedure 

as the OLFI algorithm. The second part provides an improvement on the previous 

result using the multi-level backward searching technique. The idea is to apply an 

improved step during the feature addition and the adaptive search method on the 

backtracking step. However, we need to limit the level of backwards-searching to 

maintain lower execution time by introducing an adaptive variable called the 

generalization limit. 

The MLFI algorithm also consists of two parts. The first part aims to search 

for the maximum classification accuracy by applying the multi-level forward-
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searching technique. The second part provides an improvement on the previous result 

by replacing the week feature technique. The idea is to apply an adaptive multi-level 

forward search method with the replacement step during the feature addition without 

any backtracking search. Similar to OFMB, we also need to limit the level of forward-

searching by the generalization limit. 

In the experiments, we applied KNN, Naive Bayes, and Decision Tree for our 

criterion functions. We tested our algorithms on fourteen standard UCI datasets and 

compared their classification accuracy with other popular methods. Our proposed 

algorithms showed better results than the other sequential feature selection techniques 

for the majority of the tested datasets. The OFMB and MLFI algorithms spend more 

computational time than the other methods due to the complexity of the program. 
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 CHAPTER 1

 

INTRODUCTION 

In the past few decades, the available data is growing extremely large due to 

modern technology and internet applications. Dealing with a large amount of data is 

the major challenge these days. In the data analysis task, a large amount of data can be 

a high dimensional dataset which directly affects performance because some 

irrelevant and redundant features also make some contribution to the analysis. To 

overcome the problem, those irrelevant and redundant features should be eliminated 

which lead to more effective dimensions. This data preprocessing step is called 

feature selection. Generally, the goal of feature selection is to determine the best 

subsets of features  for conducting statistical analysis or building a machine learning 

model (Huang, 2015). Feature selection assists in selecting the minimum features 

from the whole dataset. These features are useful for finding accurate data models. To 

ensure the optimal feature subset, a feature selection method has to evaluate a total of 

2
n
 – 1 subsets, where n is the total number of features in the dataset. Even though an 

exhaustive search for optimal feature subset results in an optimal solution, but it is not 

practical especially for a moderately large n. This type of problem is said to be an NP-

hard problem, as a result, many search strategies have been proposed in the literature 

for suboptimal solutions. 

Feature selection is interesting research areas that deal with data mining and 

machine learning since it provides more accuracy, faster computational time, and is 

also cost-effective. The accuracy of the classifier depends not only on the 

classification algorithm but also on the feature selection method used. Irrelevant 

features may affect the classifier and lead to incorrect results, therefore feature 

selection is necessary in order to improve the efficiency and accuracy of the 

classifier.  
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Feature selection offers advantages such as reducing storage requirements, 

avoiding overfitting, facilitating data visualization, speeding up the execution of 

mining algorithms and reducing the training times. For example, a data set named 

“DOROTHEA” use for drug discovery (Sutha & Tamilselvi, 2015) contains 1,950 

instances and 100,000 features. Many of these relevant features are useful for 

information discovery, but they also contain a lot of irrelevant features in the dataset. 

This is where the feature selection steps in to improve the computational efficiency. 

 

1.1 Data Representation 

In machine learning and pattern recognition, a feature is referred to as an 

individual measurable property or characteristic of a phenomenon being observed. To 

improve the learning performance we need to select an informative, discriminating 

and independent feature using an effective algorithm. Features are usually numeric, 

but structural features also occur sometimes. These features are represented as an n-

dimensional vector of numeric features that indicate some object. Many machine 

learning algorithms require a numerical representation of objects for further 

processing and statistical analysis. Some types of data such as images can be 

represented by the pixel, while text features might be represented by the frequencies 

of occurrence of the textual terms. These feature vectors are similar to the variables 

used in statistical analysis such as linear regression. They are normally combined with 

weights using dot product as a preliminary result for making a prediction. To reduce 

the dimensionality of the feature space, various dimensionality reduction techniques 

are applied. 

 

1.2 Feature Selection 

Feature selection is one of the most important preprocessing techniques in 

data mining. This technique uses to eliminate the irrelevant and redundant features 

from the dataset. The goal of feature selection for classification tasks is to maximize 

classification accuracy. Therefore, the computational time of the classifier to process 

data will decrease whereas the classification accuracy will increase since the 
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irrelevant features are removed. Feature selection is also known as attributes selection 

or variable selection (Beniwal & Arora, 2012). 

 

1.2.1 Feature Selection Process 

The process of finding the feature subset consists of four basic steps (Liu & 

Yu, 2005): 

1) Subset generation 

2) Subset evaluation 

3) Stopping criterion 

4) Validation of the results 

 

Feature 

Subset 

Generation

Subset 

Evaluation

Stopping 

Criterion

Result 

Validation

Subset Goodness 

of subset

Yes

No

Original 

set

 

 

Figure 1.1  Feature Selection Process 

 

From figure 1.1, begins with an original dataset by inserting features into the 

process. Feature subset generation produces candidate feature subsets for evaluation 

based on searching strategies. These searching strategies are used to preselect subsets 

for further evaluation. Subset evaluation is aimed to evaluate the subset generated 

from the previous procedure. At this step, the classifiers such as K-Nearest Neighbor, 

Naïve Bayes or Random Forest are applied to calculate the classification accuracy. 

Continue selecting or removing features that yield the highest accuracy until the 

process reaches the stopping criterion. Finally, the result validation is the selection of 

the best results for all subset sizes. 
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Stopping criteria could be any of the following: 

1) Selected subset with number of features equal to the predefined 

value 

2) New subset of the feature does not yield a better result 

3) Number of iteration is reached 

Cai, Chang and He (Cai, Zhang, & He, 2010) stated that “Various data mining 

and machine learning tasks, such as classification and clustering, that are analytically 

or computationally manageable in low dimensional spaces may become completely 

intractable in spaces of several hundred or thousand dimensions”. High dimensional 

space leads to low performance in machine learning algorithms particularly when the 

samples are small. This difficulty is known as the curse of dimensionality. Feature 

selection or dimensionality reduction plays an important role to solve this kind of 

problem. 

 

1.2.2 Search Strategies 

There are four usual search strategies (Jovic, Brkic, & Bogunovic, 2015): 

1) Forward selection 

2) Backward elimination 

3) Bidirectional selection 

4) Heuristic feature subset selection 

Forward selection starts with an empty set and then adding one or more 

features to the set. Oppositely, backward elimination is removing one or more features 

from the set that start with all the features. Bidirectional selection starts from both 

sides. Heuristic selection uses a heuristic search such as a genetic algorithm to explore 

the feature subset. 

 

1.2.3 Types of Feature Selection Algorithm 

Feature selection algorithms can be classified in many different ways. The 

most common one can be categorized into three types (Pavya & B.Srinivasan, 2017): 
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1) Filter approach 

2) Wrapper approach 

3) Embedded approach 

 

Set of all 

Features

Selecting the 

Best Subset

Learning 

Algorithms
Performance

 

Figure 1.2  Filter Approach 

 

The filter approach or filter method (Figure 1.2) uses an independent criterion 

function to select the feature without depending upon the type of classifier used which 

leads to the simplicity of the method, whereas the interactions with classifier and 

feature dependencies are ignored. The filter method ranks each individual feature 

according to the measurement such as information, distance, or similarity. It only 

considers the association between the feature and the class label. The nature of this 

method results in a drawback that each feature is considered separately. 

 

Set of all 

Features

Generate a 

Subset

Learning 

Algorithm
Performance

Selecting the Best Subset

 

Figure 1.3  Wrapper Approach 

 

The wrapper approach or wrapper method (Figure 1.3) uses the result of the 

classifier to determine the goodness of the given feature, therefore the selected 

features are dependent on the classification algorithm. This method removes the 
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disadvantage of the filter approach by the consideration of feature dependency 

whereas it is more time consuming than the filter approach. The quality of the feature 

is directly related to the performance of the classifier. 

 

Set of all 

Features

Generate a 

Subset

Learning 

Algorithm + 

Performance

Selecting the Best Subset

 

 

Figure 1.4  Embedded Approach 

 

The embedded approach or embedded method (Figure 1.4) searches for an 

optimal feature subset during the model training that is built into the classifier 

construction. It returns both the learned model and selected features simultaneously. 

The benefit of this method is that it takes less computational time than the wrapper 

approach. This method is also called the hybrid model. It incorporates a learning 

algorithm and is optimized for higher accuracy. The embedded approach utilizes a 

filter-based technique to select highly representative features and then apply a 

wrapper-based technique to add candidate features. The candidate subsets are 

evaluated for selecting the best ones. It does not only reduce the dimensionality of the 

dataset but also decreases the computational time and improves the performance. 

Somol, Novovicova, and Pudil (Somol, Novovicova, & Pudil, 2006) proposed a 

flexible hybrid sequential forward floating selection (hSFFS) by employing an 

evaluation function to filter some features and using a wrapper criterion to identify the 

optimal feature subset. The main benefit of this method is the ability to trade off the 

resulting quality with the computational cost in order to enable the wrapper-based 

selection in high dimensional datasets. Their experimental results show promising 

classification accuracy. 
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1.3 Feature Learning Methods 

Feature selection methods can also be divided into a supervised, unsupervised 

and semi-supervised model. Figure 1.5 shows a framework for feature selection. 

 

Original data

UnsupervisedSupervised
Semi-

supervised

Subset generated by search strategy
Data 

reconstruction

Subset evaluation

Stopping 
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Feature 

selection result

Result 

verification

        No

          Yes

                                  Irrelevant and 

                             Redundant 

                                     feature deletion

 

 

Figure 1.5  Feature Selection Framework 

 

According to Mwadulo (Mwadulo, 2016), supervised feature selection is 

normally used in the classification problem by calculating the correlation between the 

feature and the class label. The supervised model aims to find an optimal feature 

subset that maximizes the classification accuracy. In the filter method, to analyze the 
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relevance and redundancy of feature-class and feature-feature respectively, we need to 

use a model such as Euclidean distance, information measures, and Pearson 

correlation. A classical criterion for feature selection is MRMR (Max-Relevance and 

Min-Redundancy), which uses mutual information as the evaluation measure. For 

wrapper models, the classification error or accuracy rate is used as the feature 

evaluation. The wrapper model tends to have higher classification accuracy than the 

filter model. 

Unsupervised feature selection is dealing with how to arrange the objects into 

natural classes whose members are similar to each other. This procedure is 

particularly difficult due to the absence of class labels for feature relevance 

estimation. Normally, unsupervised feature selection applies to the clustering 

processes which aim to maximize intra-cluster similarity and minimize inter-cluster 

similarity. The problem of selecting features in unsupervised learning scenarios is 

considered to be a much harder problem due to the absence of class labels that would 

guide the search for relevant information. Both filter and wrapper approach can be 

useful in unsupervised feature selection. 

For the semi-supervised feature selection, the dataset (D) is divided into two 

groups where the first group is the sample set with class labels that use to train the 

learning model. The second group is the sample set without class labels that use to 

improve the learning performance of the learning model trained by the first sample 

group. The semi-supervised feature selection method is mainly based on the filter 

approach using score functions such as variance score, Laplacian score, Fisher score, 

and Constraint score (Cai, Luo, Wang, & Yang, 2018). 

 

1.4 Performance Validation 

The performance of the feature selection method is usually evaluated by the 

machine learning model. The commonly used machine learning models include Naïve 

Bayes, K-Nearest Neighbor, C4.5, Support Vector Machine, Decision Tree, Random 

Forest, Artificial Neural Network and K-means. A good feature selection method 

should have high learning accuracy but less computational time. The model should 

also avoid overfitting and underfitting. Overfitting occurs when the model results in 
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good accuracy for the training data set but has a poor result on the new data set. 

Underfitting occurs when a machine learning model cannot capture the underlying 

trend of data that is it does not fit the data well enough. To solve these problems we 

need to apply the cross-validation technique, which is introduced in the next section. 

 

1.5 Cross Validation 

In machine learning, cross-validation is a statistical method used for model 

generation on a limited data sample. The idea is to separate the sample into 2 groups 

called the training set and the test set. The training set used to train the model, while 

the test set is for model evaluation. The most common procedure uses a single 

parameter called k which refers to the number of groups that a given data sample is 

spitted into and is often called k-fold cross-validation. This method is quite popular 

due to the simplicity of understanding and less biased than other methods. The general 

procedure starts by shuffle the dataset randomly then split the dataset into k groups 

and then takes one group as a hold out for testing data. The remaining groups are 

assigned to be the training datasets. Fit a model on the training set and evaluate it on 

the testing set. Retain the evaluation score for each observation and find the average. 

Each sample is allowed to be used in the holdout set once and used to train the model 

(k – 1) times. 

 

1.6 Overview 

In this dissertation, we explored an adaptive sequential feature selection 

algorithm, which was used under supervised learning for classification problems. The 

paper was organized into five chapters. Some background introduction on feature 

selection explained in chapter 1. In chapter 2, related works in the literature were 

reviewed. In chapter 3, we discussed the proposed method which improved sequential 

feature selection using an adaptive multi-level backwards selection. In chapter 4, we 

introduced an adaptive multi-level forward inclusion technique with replaced the 

weak feature to select more effective features and improved the classification 

performance. Conclusions and recommendation for future works are concluded in 

chapter 5. 
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 CHAPTER 2

 

LITERATURE REVIEW 

 Due to the increase in features domain from tens to thousands of variables 

used in the application, several techniques are developed to extract only those relevant 

and non-redundant variables which help in understanding data, lower computational 

time, and improve performance. This is not similar to other dimension reduction 

methods such as Principal Component Analysis (PCA) because good features are 

independent of the rest of the data. The exhaustive evaluation results in an NP-hard 

problem, therefore a suboptimal procedure can be used for an exceptional reason.  

 Feature selection becomes a necessary step in the data mining process because 

the high dimensionality and vast amount of data give rises to a challenge to the 

learning task. Many irrelevant features do not add much value during the learning 

process, hence learning models tend to become highly complicated and decrease 

learning accuracy. Feature selection is one effective way to identify relevant features 

for dimensionality reduction. However, the benefit of feature selection comes with an 

extra effort by trying to get an optimal subset that represents the original dataset.  

 Jovic, et al. (Jovic et al., 2015) categorized feature selection methods into 

three common search strategies. Exponential algorithms evaluate subsets that grow 

exponentially with the feature space size, for example, Exhaustive search and Branch-

and-bound. Sequential algorithms such as Sequential Forward Floating Selection 

(SFFS) (Pudil, Novovicova, & Kittler, 1994) include or exclude features from the 

active subset sequentially. Random algorithms incorporate randomness into the search 

process to optimize the solution. An example of a random algorithm is Evolutionary 

computation algorithms using genetic or ant colony optimization. This research 

focuses on sequential feature selection regarding deterministic algorithms.  

 Since from the utilized training data, the feature selection method can be 

divided into supervised, unsupervised, and semi-supervised learning, while in this 

research, we focus on feature selection methods using supervised learning. According 

to their relationship with learning methods, feature selection methods can be 
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categorized into the filter, wrapper, and embedded models which are reviewed in the 

following section. 

 

2.1 Type of Feature Selection 

2.1.1 Filter Method 

Filter methods use variable ranking techniques by ordering features according 

to the principle criteria such as correlation criteria, mutual information, or information 

distance. After the ranking, a threshold is used to remove a feature that has a score 

below the threshold. The name filter method comes from the nature of the method 

since the process of filtering out the less relevant features is applied before the 

classification step. Therefore, the filter method consists of the selection algorithm and 

a criterion function. For the selection algorithm, all features are ranked by an 

ascending order regarding the criterion value, meanwhile, the searching strategy will 

be applied to generate subsets until the process meets the stopping criterion. The filter 

method is more preferable for real-world problems due to its characteristics in terms 

of time and space over the wrapper and embedded method, while the performance is 

compatible with the other two. The advantages of filter methods are that they easily 

scale to high-dimensional datasets, are computationally simple, and also are 

independent of data mining. The subset of features selected is presented as input to 

the classification algorithm. Therefore, the accuracy of this method heavily depends 

on the quality measure. 

The basis of the filter method is relevance and redundancy. Relevance is the 

relationship between feature and class, whereas redundancy is the relationship 

between feature and feature. Features can be divided from the original set into four 

groups (Liu & Yu, 2005): 1) completely irrelevant and noisy features, 2) weakly 

relevant and redundant features, 3) weakly relevant and non-redundant features, and 

4) strongly relevant features. Supervised feature selection results should include 

groups 3) and 4). 

A classical criterion for feature selection based on relevance and redundancy 

analysis is Max-Relevance and Min-Redundancy (MRMR), which uses mutual 

information as the quality measure. This technique (Peng, Long, & Ding, 2005) 
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studied how to select good features according to the maximal statistical dependency 

criterion based on mutual information. The experiments on many datasets 

(handwritten digits, arrhythmia, NCI cancer cell lines, and lymphoma tissues) showed 

that MRMR leads to improvement in feature selection and classification accuracy. 

However, mutual information only minimizes feature-feature mutual information and 

ignored the classification performance of candidate features. To overcome this 

problem, conditional mutual information was introduced. 

 

2.1.2 Wrapper Method 

 Wrapper methods use the result of the data mining algorithm to determine how 

good a given subset is. During the search process, the space of possible feature 

subsets is defined to generate and evaluate until we get the satisfied subset for the 

preprocessing step. The main advantage is that the quality of the generated subset is 

directly measured by the performance of the data mining algorithm. As a result, 

wrapper methods seem to be much slower than the filter methods as the data mining 

algorithm is applied to each attribute subset considered by the search. The application 

of several different data mining algorithms leads to the wrapper method becoming 

even more computationally expensive. 

 Since the evaluation of all the possible subsets is an NP-hard problem, 

suboptimal subsets become more focused and are found by employing search 

algorithms that find a subset heuristically. Various algorithms either sequential search 

or evolutionary algorithms such as genetic algorithm (GA) and particle swarm 

optimization (PSO) are studied thoroughly which produce local optimum results. 

These results are exceptional in many applications and are computationally feasible. 

Wrapper methods can be classified into sequential selection algorithms and heuristic 

search algorithms. 

 

2.1.3 Embedded Method 

 Embedded methods can also be called hybrid methods. The aim is to reduce 

the computational time on the classification step of the wrapper methods. They try to 

combine the advantages of both filter and wrapper methods. One example is the 

Hybrid Floating Sequential Search (hSFFS) (Somol et al., 2006), by applying a filter 
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criterion function to filter some features and generate a candidate set before applying 

a wrapper criterion function to select the best one from the candidate set. This 

technique also consists of the forward and backward phases. The forward phase 

allows the current subset to add one feature at a time by first using the filter-based 

technique to pre-select several candidate features. Secondly, apply the wrapper-based 

technique to identify the best feature among those candidate features. The backward 

phase removes one feature conditionally by pre-select several candidate features in the 

current subset using the filter approach, then identifying the best one to remove using 

the wrapper approach. This hybrid scheme uses only a fraction of the full wrapper 

computing time to obtain the results. The advantage of hSFFS is the possibility to deal 

with the quality of results versus the computational time trade-off. The results showed 

that it was possible to trade a significant reduction in search time for a little decrease 

in classification accuracy. 

 

2.2 Sequential Forward Search (SFS) 

A.W. Whitney (Whitney, 1971) introduced a Sequential Forward Search (SFS) 

by starting with an empty set and adding one feature at a time to the selected subset so 

that the new subset maximizes the criterion function value. During each iteration 

process, the remaining features are added individually to the current subset and a new 

subset is evaluated. After the number of features is satisfied, the selection process will 

be terminated. 

The SFS process in a forward direction and is essential for constructing other 

more complex algorithms. Large datasets normally contain a lot of features whereas 

only some of them are significant for model training. The idea is to select a feature 

that gives the highest learning accuracy. Assume we have a set Y = {y1, y2,…, yD}, 

where D is the number of input dimensions. We want to find a subset Xk = {xj | j = 1, 

2,…, k; xj  Y}, where k = (0, 1, 2,…, D), and d is the required subset size. 

Initialize X0 = {} and k = 0, and x+ is an included feature where x  Y – Xk.  

 

 

 



14 

 

The algorithm is described below: 

Step 1:  Inclusion step. 

x
+
 = arg max J(xk = x), where x  Y – Xk 

Xk+1 = Xk + x
+ 

k = k + 1 

(Add a selected feature x
+
 to the subset Xk, where x

+
 is a feature that 

maximizes the criterion function (J).) 

Step 2:  Continue step 1 until d features are selected. 

 

2.3 Sequential Backward Search (SBS) 

T. Marill and D. Green (Marill & Green, 1961) have presented a Sequential 

Backward Search (SBS) which processes in an opposite direction with the SFS. This 

method begins with all input features and keeps removing one feature at a time from 

the current subset until the resulted subset maximizes the criterion function value. The 

idea is to remove the feature whose removal gives the lowest decrease in predictor 

performance. These two techniques combined to form a generalized version of the 

SFS and SBS by adding or removing several features in each sequential step. These 

methods have one major drawback, for example when the best five features subset is 

selected it must contain the best four features subset, but in practice, the best four 

features subset does not necessarily be part of the best five features subset. This 

problem is called the „nesting effect‟. As a result of not being allowed to add or to 

remove later, they are sensitive to feature interaction, hence they can easily be trapped 

into local minima. 

 

2.4 Sequential Forward Floating Search (SFFS) 

One of the most significant innovations of sequential feature selection is the 

Sequential Forward Floating Search (SFFS) algorithm (Pudil et al., 1994). This 

method combines the concept of SFS and SBS giving it more flexibility and effective 

than SFS by introducing a backtracking step. The simplified flowchart of the SFFS 
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algorithm is given in figure 2.1 where k is the current subset size and d is the required 

dimension. 

 

Yes

Initialize Xk

Let k = 0

Apply SFS algorithm to 

add one feature to Xk

Let k = k + 1

k = d + D ?

Conditionally exclude one 

feature from Xk by applying 

one step of SBS algorithm

Is this 

the best (k – 1) subset 

so far ?

Return the 

conditionally 

excluded feature back

Leave out the 

conditionally 

excluded feature

Let k = k – 1 

Terminate

        No

YesNo

 

 

Figure 2.1  Structure of the SFFS Algorithm 

 

SFFS algorithm consists of two parts, forward search and backward search. 

The forward search selects the best-unselected feature according to a criterion 

function (J) to form a new subset. This step is the same as the SFS algorithm. The 
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SBS method starts with a full feature subset and eliminates a feature in each iteration 

until a predetermined criterion is satisfied. The backtracking step is the conditional 

step where improvement can be made during the search process. As mentioned 

earlier, the best four features do not necessarily lead to the best five features because 

the forward step is unconditional. Therefore, SFFS is suffering from the nesting 

problem as well. However, SFFS is said to be a state-of-the-art method that is widely 

used in several applications. Researchers in sequential feature selection normally 

extend their method using SFFS as the standard method to compare their results. To 

describe the SFFS algorithm below, let x
–
 be an excluded feature where x  Xk: 

Step 1:  Inclusion step. (Apply SFS algorithm.) 

Step 2: Conditional exclusion step. (This step is similar to the SBS 

algorithm.) 

 x
–
 = arg max J(xk = x), where x  Xk 

 If J(xk – x
–
) > J(xk–1): 

  Xk–1 = Xk – x
–
 

  k = k – 1 

 (Remove a feature if the resulting subset improves the performance. 

If k  2 or there is no improvement on Xk–1 then go to step 1, or else, 

repeat step 2.) 

Step 3: Continue steps 1 and 2 until d features are selected. 

 

2.5 Adaptive Sequential Forward Floating Search (ASFFS) 

After the introduction of SFFS, several improved versions have been proposed 

to obtain better performance. An adaptive version of the floating search method 

(Somol, Pudil, Novovicova, & Paclik, 1999) was presented to improve the 

performance of the SFFS algorithm. The idea behind Adaptive SFFS (ASFFS) is 

selecting features to add or remove more than one feature in each sequential step in 

order to search for a better subset. The number of search features in each step can be 

varied depending on the remaining features in the dataset. The result is a more 

thorough search with a better chance to find an optimal solution by setting a higher 

generalization level. The algorithm of ASFFS can be illustrated in figure 2.2. 
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Figure 2.2  Structure of the ASFFS Algorithm 
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The ASFFS method attempts to obtain a less redundant subset than the SFFS 

algorithm. The forward step can lead to finding a subset that is worse than the best 

one of a given dimension that has been found so far. If this occurs, the current one is 

forgotten and the best one so far becomes the current one. The two free parameters, 

rmax and b, in the ASFFS specify the generalization limit and range of the adaptive 

search. The parameter r specifies the number of features to be added in the forward 

phase or inclusion phase which is calculated adaptively. In the backward phase or 

exclusion phase, remove o features if it increased the performance. With rmax = 1, the 

ASFFS is identical to SFFS. The suggestions for the two values are 4 and 3, 

respectively. The nearer the current subset size to d, the higher is the generalization 

limit (Figure 2.3). The reason behind this characteristic is to save the computing time 

by limiting the generalization level while the current subset is still far from the 

desired one. The generalization level (r) increases when the number of features (k) in 

the current subset gets close to d until it reaches rmax. ASFFS has shown better 

results than SFFS due to a more thorough search. Theoretically, better results are 

also depending on the criterion function and distribution of the data. 

 

 

Figure 2.3  An Adaptive Determination of r-values for ASFFS 

 

The calculation of the r-value occurs at the beginning of every forward and 

backward phase using the following conditions: 

1) If |k – d| < b, let r = rmax 

2) Else if |k – d| < b + rmax, let r = rmax + b – |k – d| 

3) Else let r = 1 

While the number of features k is far from the required subset size (d), r is 

assigned a value of 1, which is exactly the same as SFFS‟s procedure. When k gets 

closer to d, the value for r increases but no more than rmax. Even though ASFFS has 
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shown slightly better results than SFFS, it takes more computational time due to the 

complexity of the algorithm. The adaptive step leads to additional work to the SFFS 

structure in both in the forward and the backward direction. Elements of the current 

feature subset can be increased or decreased along the searching process, which is 

another reason for the longer time required. The backtracking step explores features 

within the current subset without considering the unselected features that are located 

outside the boundary. The generalization level can be helpful during the search only 

when k in the current subset is getting close to the target size, thus the detailed search 

concept works only when k almost reaches the end of the process. An adaptive 

calculation of r can be illustrated by an example. Assume we specify rmax = 4 and b = 

3, then the value of r is shown in Table 2.1. 

 

Table 2.1  Example of r-values from ASFFS 
 

|k – d|  1 2 3 4 5 6 7 8 

r 4 4 4 3 2 1 1 1 

 

2.6 Improved Forward Floating Search (IFFS) 

One of the most remarkable improvements on SFFS was the IFFS algorithm 

(Nakariyakul & Casasent, 2009), which had successfully removed the weakness of 

SFFS by adding an additional step to improve the criterion function value. Based on 

the fact that it is not necessary that the best k-subset contains all features from the 

best (k–1)-subset, IFFS was introduced to solve this nesting problem. This improved 

step is called „replacing the weak feature‟ which is to check whether removing any 

feature in the currently selected feature subset and adding a new one at each 

sequential step can improve the current feature subset. IFFS can impressively 

prevent the nesting effect of SFFS and the algorithm is simpler than ASFFS with 

exceptionally short computing time. IFFS yields better performance than both SFFS 

and ASFFS with a little more process time than SFFS. Figure 2.4 demonstrates the 

IFFS algorithm using a flowchart. 
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Figure 2.4  Structure of the IFFS Algorithm 
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 The IFFS algorithm is described below: 

Step 1: Inclusion step. (Apply SFS algorithm.) 

Step 2: Conditional exclusion step. (Apply SBS algorithm.) 

Step 3: Check if replacing the weak feature helps. 

 For xi in Xk : 

  Xk–1 = Xk – xi 

  For xj in Y  Xk–1 : 

   xj = arg max J(xj) 

   If J(Xk–1 + xj) > J(Xk): 

    Xk = Xk–1 + xj 

 (Generate k new subsets of k features by removing one feature and 

adding one feature using SFS. Calculate the J-values of k subsets. If 

the subset with the largest J-value gives an improvement, then 

replace the new subset with the current subset, and go to step 2. 

Otherwise, go to step 1.) 

Step 4: Continue steps 1, 2 and 3 until d features are selected. 

 

2.7 Sequential Deep Floating Forward Search (SDFFS) 

Another recent sequential search algorithm in this field is the Sequential 

Deep Floating Forward Search (SDFFS) (Lv, Peng, & Sun, 2015). This algorithm 

also tries to improve the state-of-the-art SFFS algorithm. The deep searching step 

aims to confirm whether there exists a subset with k features being better than the 

current one that has been found so far using the SFS step which cannot be found in 

the SFFS algorithm. In the experiment, SDFFS uses eight datasets by pre-selecting 

100 features from each subset. Those 100 features are filtered out using MRMR as a 

criterion function. The criterion function value used in this paper is the classification 

accuracy computed from the KNN classifier where K = 5. The SDFFS algorithm 

shows in figure 2.5. 
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Figure 2.5  Structure of the SDFFS Algorithm 
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The SDFFS algorithm is described below: 

Step 1:  Adding a feature to the selected subset using the basic SFS method by 

selecting the most significant feature concerning Xk and include it in 

Xk, k = k + 1. 

Step 2:  Deep searching step. For each iteration, remove one feature except 

the previous feature added to get the new (k–1)-subset for k–1 

subsets. To every new (k–1)-subset, select N features from the 

candidate set and each time add one into the new (k–1)-subset, which 

leads to N new k-subsets. Calculate all the new potential k-subsets‟ 

criterion function values and select the one with the highest criterion 

function value. If the selected k-subset is better than the current k-

subset, replace it with the current one. Repeat step 2. Otherwise, go to 

step 3. 

Step 3:  Check if backtracking helps. Remove the least significant feature k in 

Xk. If the backtracking step results in an improvement, then decrease k 

by 1 and repeat step 3. Otherwise, go to step 1. 

The experimental results show that SDFFS does not perform the best all the 

time for all feature‟s sizes. However, the results are relatively high accuracy and more 

stable. This led to the overall performance being quite remarkable. Moreover, one 

major drawback for SDFFS is the computational time that is far greater than those 

previous methods. SDFFS searches through the first 100 features with only slight 

chances to gain accuracy especially those with low criterion function value, and thus 

modification of the algorithm should be concerned to make it more effective. 

 

2.8 Other Related Works 

Chaiyakarn proposed (Chaiyakarn, 2013) a Filter-Based Feature Selection 

Using Two Criterion. The algorithm relies on a criterion function by applying CMI as 

the first criterion and selects one of the information measures; which are mutual 

information, Bhattacharyya distance, Jeffreys-Matusita distance bound to the Bayes 

error, and Mahalanobis distance, as a second criterion. The two functions can 

complement different characteristics of data together for selecting features more 
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effectively. The evaluation is independent of the data mining algorithm. The 

experimental results show that this technique takes less time to select a significant 

features subset, particularly on high-dimensional data, whereas an optimal feature set 

cannot guarantee. 

The two criteria filter-based approach provides an option for users to select 

two suitable criterion functions since each function has a unique characteristic and it 

has shown that Jeffreys-Matusita distance bound to the Bayes error as the second 

criterion function yields the best result. This method outperforms the original filter-

based approach with one criterion function and also provides more opportunity to get 

higher accuracy. Due to the same structure as the original filter-based method, this 

technique also suffered from the nesting problem. 

A recent study from Homsapaya and Sornil (Homsapaya & Sornil, 2017) 

introduced a floating search technique employing a genetic algorithm (GA) to 

improve the quality of the selected feature subset. The results showed that GA 

improved the performance for the majority of sample datasets. Kadhum, et al. 

(Kadhum, manaseer, & Dalhoum, 2021) have proposed a new model for evolutionary 

wrapper feature selection by applying GA to explore the space of feature 

combinations from a set of features that already has its priorities assigned. Extreme 

Learning Machines (ELM) and Support Vector Machine (SVM) was used as the 

classifiers based on the Chronic Kidney Disease dataset (CKD) from the UCI 

repository (Dheeru & Efi, 2017). The application of the proposed model affected the 

classification performance by improving the accuracy rate while also reducing the 

computing time. 

Other recent works in the feature selection domain focused on the application 

of feature selection techniques to other areas of work such as face recognition, text 

classification and medical science (Bolon-Canedo & Alonso-Betanzos, 2019), 

(Cisotto, Capuzzo, Guglielmi, & Zanella, 2020) and (Raj et al., 2020). The 

improvement of sequential feature selection tends to focus on non-deterministic 

algorithms like particle swarm optimization, genetic algorithms or deep neural 

networks (Liu & Wang, 2019) and (Huda & Banka, 2019), while our study concerned 

a deterministic algorithm. 



 

 

 CHAPTER 3

 

ONE LEVEL FORWARD/MULTI-LEVEL BACKWARD 

SELECTION (OFMB) 

 Feature selection using wrapper approach is more of interest due to the high 

classification accuracy when compared with other approaches. From the past 

researches, several methods applied the wrapper approach to sequential feature 

selection. One of the most popular sequential search algorithms is Sequential Forward 

Floating Selection (SFFS), which represents the state-of-the-art method. Other 

techniques were usually developed from SFFS in order to improve classification 

accuracy with a reasonable time complexity and also overcome the effect of the 

nesting problem. The development of Adaptive Sequential Forward Floating Selection 

(ASFFS) and an Improved Forward Floating Selection (IFFS) has been shown to be 

superior to the standard SFFS. In this dissertation, we attempted to take advantages of 

ASFFS and IFFS to combine them together to form new sequential floating feature 

selection algorithms that produced better results than the earlier works. We improved 

our algorithm based on the IFFS by removing the backtracking step and inserting an 

adaptive step to give the higher chances for discovering better solutions with less 

computational time. 

 In the first half of this research, we present One-level Forward Multi-level 

Backward Selection (OFMB), which is a sequential forward selection that explores 

possible subsets several levels deeper in order to maximize the classification accuracy 

of the learning dataset. The idea is to explore backward after feature inclusion since 

newly included features may affect smaller subsets. This backward search can 

examine many levels by excluding more than one feature in each iteration. This 

method considers a wider range of features when searching backwards deeper. OFMB 

is similar to the backtracking step of SFFS but it can explore feature subsets to much 

greater depth. Subsequently, a new, smaller subset with a higher criterion function can 



26 

 

be discovered, whereas the standard SFFS or even the IFFS are not capable of finding 

such subsets. 

The first part of OFMB is a result of our proposed technique called One Level 

Forward Inclusion (OLFI). The idea of OLFI is to relocate the „replacing the weak 

feature‟ step from the last part of the IFFS algorithm at the beginning of our selection 

process. As a result, improvement can be made during the operation and the 

backtracking phase can be ignored because if no improvement occurs, the backward 

step cannot proceed further than (k–1) feature anyway. Therefore OLFI is the 

construction of feature subsets that have relatively high classification accuracy close 

to the IFFS algorithm. The second part is to explore the recently selected subset 

deeper backwards up to some specified point. After the inclusion and improvement 

steps from the OLFI technique, we remove one or more features from the currently 

selected subset to form many subsets of size (k–s), where s refers to the number of 

removed features range from 1 to r, and r is the generalization limit. The searching 

target is a subset with a higher J-value for a particular subset size. We propose the 

conditions used to calculate the value of r in the following subsection. As a result of 

applying the OFMB algorithm, there are higher chances to find a better feature subset 

of size (k–s). 

 

3.1 One Level Forward Inclusion (OLFI) 

 Most sequential search techniques consist of two parts which are the forward 

phase and the backward phase. Related to this combination, the number of features 

keeps increasing or decreasing throughout the searching process as long as an 

improvement of the criterion function value (J-value) can be made. While the number 

of features almost reaches the required subset size (d) but it may decrease during the 

backtracking part. Our work comes up with an idea of whether it would be possible to 

remove the backtracking step and determine the improvement only on the forward 

step. Consequently, our first proposed algorithm tries to manage this idea into reality. 

This is the motivation of the OLFI algorithm which seems to give the algorithm to 

perform better than the standard SFFS. 
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 Normally, most sequential search algorithms start with an empty set. First we 

add features using SFS until we get more than two features and then the process can 

continue to exclude or include features according to which direction can give a 

higher J-value for a subset of size k. As opposed to the other sequential search 

algorithms, OLFI allows the number of features to be either increased or remain the 

same without a backtracking step. The insertion of „replacing the weak feature‟ during 

the forward phase makes it possible to improve the feature subset. While using SFS to 

include one feature, we try to find a better feature subset by removing one feature in 

that subset for every element except the one that just has been added. If an 

improvement can be made, replace a new subset with the current one. If there is no 

improvement, we keep on adding a feature for the next iteration. This is a feature 

improvement step applying a technique from the IFFS algorithm. The OLFI algorithm 

is explained below with the flowchart in figure 3.1.  

 

 

 

Figure 3.1  Structure of the OLFI Algorithm 
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The OLFI algorithm is described below: 

Step 1:  Apply SFS to select one feature from the remaining feature set. Add 

this feature to the selected feature subset. Continue step 2 with the 

feature subset Xk where k = k + 1. 

Step 2: From the selected feature subset size k, remove 1 feature iteratively 

we have Xk–1, and use SFS to select a new feature from the remaining 

feature set (Y  Xk–1) for adding to each feature subset. Then calculate 

whether there is an improvement. If there is an improvement, replace 

that previous feature subset with the newly selected feature subset and 

repeat step 2. Otherwise, continue step 3 with the feature subset Xk. 

Step 3: Continue steps 1 and 2 until d features are selected. 

 

3.1.1 An Example using Wine Dataset 

To demonstrate the OFMB algorithm, we selected the Wine dataset from the 

UCI repository based on the KNN classifier. First, assume we have a dataset Y = {0, 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} with 13 features; the required subset size (d) is 13 

features.   

3.1.1.1 Feature Inclusion 

At the beginning, assume we apply SFS for the first 3 features, thus 

for k = 1, 2 and 3 we have X1 = {6}, X2 = {6, 10} and X3 = {6, 10, 2} respectively. 

Now, the current subset of k = 3 is X3 = {6, 10, 2}. This subset is the best 3-subset that 

has been found so far. 

3.1.1.2 Feature Improvement 

Assume we continue the process up to k = 4. We have X4 = {6, 10, 2, 

7} with 90.09% classification accuracy. Remove one feature except x4 = 7 and we 

have {6, 10, 7}, {6, 2, 7} and {10, 2, 7}. Then, select one feature from the remaining 

set that produces the best J value with those 3 subsets. Now we have new subsets of 

size 4 for consideration. After calculation we find that J({10, 6, 7, 9}) produces the 

highest J value with 92.84% accuracy. Therefore, replace {6, 10, 2, 7} with {10, 6, 7, 

9} as the best subset of size 4 that has been found so far. Repeat the same process for 

X4 = {10, 6, 7, 9} and we cannot find any better subset of size 4. Then return to step 1, 

continue adding the next best feature for k = 5 to get X5 = {10, 6, 7, 9, x5} where x5 is 
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the newly selected feature from the remaining feature set (Y  Xk). This process 

produces similar solutions with the IFFS algorithm. 

3.1.1.3 Termination Condition 

The OLFI algorithm processes sequentially until the subset size k 

reaches the required subset size (d). The best of all feature subsets are copied into Xk 

and then terminate the program. 

 We can see that the subset is increasing in size along with an improvement 

across the process until it reaches the required number of d. This method also solves 

the nesting problem that occurs in SFFS and produces a result similar to IFFS without 

backtracking step, which performs better than the SFFS algorithm that was known as 

the state-of-the-art method. 

 

3.2 Multi-level Backward Selection 

 This section is the explanation of the proposed OFMB algorithm on the second 

part of our method after we already have preliminary results from the OLFI algorithm. 

This second part applies the multi-level backward tracking to improve the 

performance on the classification accuracy. A flowchart of the OFMB algorithm has 

shown in figure 3.2 followed by a pseudo-code. 
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Figure 3.2  Structure of OFMB Algorithm 
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Algorithm: One-level Forward Multi-level Backward Selection (OFMB) 

Input: A set of feature Y = {y1, y2,…, yD}, where D is the number of input dimension; 

J is a criterion function; d is the required subset size;  r is the generalization level 

which is limited by rmax;  

Output: A feature subset Xk = {xj | j = 1, 2,…, k; xj  Y}, where k = (0, 1, 2,…, d). 

Initialize: Initialize X0 = {}; k = 0; s = 1; r = rmax; z = 0. 

(1) Feature Inclusion  

     #Find the best feature and update Xk 

x
+
 = arg max J(xk = x), where x  Y – Xk 

Xk+1 = Xk + x
+
 

k = k + 1 

max(Xk) = Xk+1 

(2) Feature Improvement 

      #Replace a weak feature by trying to remove one feature and added one feature 

Repeat  

For xj in Xk : #where  j = 1, 2,…, k 

Xk–1 = Xk – xi 

For xi in Y  Xk–1 : #where  i = 1, 2,…, d  (k–1) 

xi = arg max J(xi) 

If J(Xk–1 + xi) > J(Xk): 

Xk = Xk–1 + xi 

max(Xk) = Xk 

Until J(Xk–1 + xi)  J(Xk) 

(3) Multi-level Backward Selection 

     #Searching for better subsets by multiple backtracking step 

Repeat  

xs in Xk : #where  s = 1,…, r and xs are the features from 1 to r 

Xk–s = Xk – xs 
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If J(Xk–s) > J(max(Xk–s)): 

max(Xk–s) = Xk–s 

z = z + 1 

s = s + 1  

Until s > r 

(4) Compute r-value 

If z < rmax : 

r = rmax – z 

Else : 

r = 1 

z = 0 

s = 1 

(5) Termination Condition 

     #Terminate when k > d 

If k  d 

Go to step 1 

Xk = max(Xk) #for all k 

 Return the best individual subset Xk 

 

 This is a description of the OFMB Algorithm: 

Step 1:  Apply SFS to select one feature from the remaining feature set. Add 

this feature to the selected feature subset. Continue step 2 with the 

feature subset Xk where k = k + 1. 

Step 2: From the selected feature subset size k, remove 1 feature iteratively 

we have Xk–1, and use SFS to select a new feature from the remaining 

feature set (Y  Xk–1) for adding to each feature subset. Then calculate 

whether there is an improvement. If there is an improvement, replace 

that previous feature subset with the newly selected feature subset and 

repeat step 2. Otherwise, continue step 3 with the feature subset Xk. 
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Step 3: From the selected feature subset (Xk), remove s features iteratively 

from 1 to r. Then, searching for the best (k–s)-subset. If there is a 

better subset Xk–s, replace it to the previous Xk–s. Repeat steps 3 until s 

> r, then continue step 4. 

Step 4: Compute the r-value, then continue step 5. 

Step 5: Continue steps 1, 2, 3 and 4 until d features are selected. 

 

3.2.1 Computation of r-value 

 The generalization limit (r) needs to be carefully specified since a larger value 

of r results in a more thorough search and also increases the time complexity. We 

introduce a user-defined parametric limit rmax to restricting the maximum 

generalization level. This number can be any integer depending on how deep we need 

to search but normally it is only a small integer. The suggestion of rmax from Somol et 

al. (Somol et al., 1999) is 4. In our experiments, we assigned the value of rmax to be 5 

for all tested datasets. The level s is similar to the level o in ASFFS but s is 

determined dynamically according to the r calculation technique we have proposed. 

 The generalization limit can be changing adaptively depending on the number 

of times we have found better k-subsets. If we have found a few better subsets in the 

previous iteration, the next iteration we should try a deeper search and that will 

increase the value of r. On the other hand, if the previous iteration has found many 

better subsets, the next iteration may not need to go too deep that will decrease the 

value of r. This adaptive nature by adjusting the generalization limit automatically is 

aimed to save computing time. Therefore, the search should go deeper when the 

algorithm cannot find a better subset. The application of this calculation technique 

leads to better performance than the previous techniques via our algorithm. We have 

selected the first 20 features from the whole dataset for the experiments. OFMB 

considers a wider range of features that lead to a thorough search. As a result, there 

are higher chances to improve the current feature subset. 

 Assume rmax = 5, thus 1  r  5. Let z be the number of times the algorithm has 

found a better subset for that particular iteration. We have assigned the relationship of 

z and r by rmax – z. Adaptive determination of r is defined as follows: 
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1) If z < rmax, let r = rmax – z 

2) Else, let r = 1 

 From the condition above, we can build the following graph (Figure 3.3) that 

shows the value of r for the first 20 features based on the values from the Ionosphere 

dataset in table 3.1. The value for r decreases while z increases. 

 

Table 3.1  The r-values and the z-values from the Ionosphere Dataset 

 

No. of 

features (k) 
z-values r-values 

1 0 5 

2 0 5 

3 2 5 

4 0 3 

5 3 5 

6 0 2 

7 2 5 

8 0 3 

9 0 5 

10 0 5 

11 3 5 

12 0 2 

13 2 5 

14 1 3 

15 0 4 

16 0 5 

17 3 5 

18 0 2 

19 4 5 

20 0 1 
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Figure 3.3  Graph of the r-values from the Ionosphere Dataset 

 

3.2.2 An Example using Wine Dataset 

 To demonstrate the OFMB algorithm, we selected the Wine dataset from the 

UCI repository based on the KNN classifier. First, assume we have a dataset Y = {0, 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} with 13 features; the required subset size (d) is 20 

features, and we assign rmax = 5. Since the Wine dataset contains only 13 features, we 

need to process until d = 13, and we have z = {0, 0, 0, 0, 0, 2, 0, 1, 2, 0, 0, 0, 0}. 

3.2.2.1 Feature Inclusion 

At the beginning, assume we apply SFS for the first 3 features, thus 

for k = 1, 2 and 3 we have X1 = {6}, X2 = {6, 10} and X3 = {6, 10, 2} respectively. 

Now, the current subset of k = 3 is X3 = {6, 10, 2}. This subset is the best 3-subset that 

has been found so far. 

3.2.2.2 Feature Improvement 

Assume we continue the process up to k = 4. We have X4 = {6, 10, 2, 

7} with 90.09% classification accuracy. Remove one feature except x4 = 7 and we 

have {6, 10, 7}, {6, 2, 7} and {10, 2, 7}. Then, select one feature from the remaining 

set that produces the best J value with those 3 subsets. Now we have new subsets of 

size 4 for consideration. After calculation we find that J({10, 6, 7, 9}) produces the 

highest J value with 92.84% accuracy. Therefore, replace {6, 10, 2, 7} with {10, 6, 7, 

9} as the best subset of size 4 that has been found so far. Repeat the same process for 

X4 = {10, 6, 7, 9} and we cannot find any better subset, thus we continue to the next 

step with X4 = {10, 6, 7, 9}. The next step will be an optimization of this solution. 
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3.2.2.3 Multi-level Backward Selection 

Assume we continue the process until we reach k = 9 and we have X9 

= {0, 1, 2, 5, 6, 9, 10, 7, 8} with 92.25% accuracy. After the feature improvement step 

we have X9 = {0, 1, 2, 5, 6, 7, 8, 9, 11} with 92.82% accuracy that is the best 9-subset 

that has been found so far. For Multi-level Backward Selection, starting with s = 1, 

remove one feature to find a better 8-subset. Now we consider only subsets containing 

the feature x9 = {8}, which are {0, 1, 2, 5, 6, 7, 8, 11}, {0, 1, 2, 6, 7, 8, 9, 11}, {0, 1, 2, 

5, 6, 7, 8, 9}, {1, 2, 5, 6, 7, 8, 9, 11}, {0, 1, 2, 5, 7, 8, 9, 11}, {0, 1, 2, 5, 6, 8, 9, 11}, 

{0, 2, 5, 6, 7, 8, 9, 11}, {0, 1, 5, 6, 7, 8, 9, 11}. We calculate the J values for all the 

combinations of 8-subset but cannot find a better 8-subset. The process continues to 

the next inner loop for s = 2. Remove two features from X9 = {0, 1, 2, 5, 6, 7, 8, 9, 11} 

and we have {0, 2, 5, 6, 8, 9, 11}, {2, 5, 6, 7, 8, 9, 11}, {0, 2, 5, 7, 8, 9, 11},…, {0, 5, 

6, 7, 8, 9, 11} for 28 subsets of size 7 to be considered. The calculation has shown no 

better result, thus continue to the next inner loop for s = 3. Remove three features 

from X9 = {0, 1, 2, 5, 6, 7, 8, 9, 11} and we have {1, 2, 6, 7, 8, 11}, {0, 1, 2, 6, 8, 11}, 

{1, 2, 5, 6, 8, 11},…, {2, 5, 6, 7, 8, 11}. There are 56 subsets of size 6 to be 

considered. At this point, we can find a better 6-subset, which is {0, 6, 7, 8, 9, 11} 

with 93.36% accuracy. Replace X6 with {0, 6, 7, 8, 9, 11} as the best 6-subset that has 

been found so far. A subset X6 now has the highest accuracy, which cannot be found 

by other sequential searching techniques. 

3.2.2.4 Compute r-value 

An adaptive determination of r is applied to find the value of r for 

the next iteration. There are two input variables: one is the maximum value of r (rmax), 

which is 5 for this particular example. The other one is z, which has recently been 

acquired from the multi-level backward selection step. If k = 6, the value of z would 

be 2. Apply an adaptive determination of r that matches with the first condition, 

which is „If z < rmax, let r = rmax – z‟. Thus we have r = 5 – 2 = 3. Now, r = 3 will be 

applied to the algorithm for k = 7. The value of r can vary from 1 to 5 depending on 

the value of z. Therefore, r changes adaptively in different iterations. 
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3.2.2.5 Termination Condition 

The OFMB algorithm processes sequentially until the subset size (k) 

reaches the required subset size (d). The best of all feature subsets are copied into Xk 

and then the program is terminated. This method applies the idea of adaptive search in 

order to explore the potential subset thoroughly, in other words, it provides a better 

chance of finding the optimal solution via a more detailed search by adjusting the 

generalization limit adaptively. 

The OFMB algorithm gives a chance to explore smaller subsets similar to the 

backtracking step in SFFS but it also takes a look at some more subsets that have not 

come across before. There are possibilities that we may find a better subset that 

increases the classification accuracy from what we previously received from the OLFI 

step. The results from OFMB lead to even closer to the optimal solutions. 

This proposed method is classified as the sequential floating selection methods 

which are considered to be data-dependent with the other data and as a result of their 

heuristic behavior they cannot jump across to a new solution regardless of the 

previous searching steps.  Even though these searching techniques cannot guarantee 

the optimal solution since they are focusing on the suboptimal solutions but they 

provide similar results with those exhaustive searches in most cases (Somol et al., 

1999). 

 

3.3 The Classifiers 

There are several classifiers used for data mining and machine learning. One 

of the simplest and most popular classifiers is K-Nearest-Neighbors (KNN). The other 

ones that we interest in for our application include the Naive Bayes and Decision Tree 

classifiers. To compare the performance of our algorithms against other searching 

algorithms, we calculate the criterion function (J) for each subset that is chosen by 

each algorithm for the different number of selected features subset sized (k). 

 

3.3.1 K-Nearest-Neighbors (KNN) 

Due to the robustness and versatility, KNN is often used in various 

applications such as economic forecasting, data compression and genetics which can 
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outperform other more powerful classifiers. KNN falls in the supervised learning 

family and is selected to calculate the classification accuracy in both IFFS and 

SDFFS. Therefore, we have decided to use KNN to compare our performance on 

different sequential floating feature selection algorithms. We have applied 5-fold 

cross-validation for all tested datasets. 

The algorithm of KNN is described below: 

1) Load the training and test data 

2) Choose the value of k 

3) For each point in the test data 

(1) find the distance to all training data points 

(2) store the distances in a list and sort it 

(3) choose the first k points 

(4) assign a class to the test point based on the majority of classes 

present in the chosen points 

 There are many different ways to compute distances. The two popular ones are 

Euclidean distance and Cosine similarity. Euclidean distance is probably seemed to be 

more familiar with and is the default measurement in the python library for the KNN 

classifier. 

 

3.3.2 Naïve Bayes (NB) 

The NB Classifier is a classification model based on probability theory by 

applying Bayes theorem. It was widely used in machine learning research since the 

1950s because of its effectiveness and ease of implementation without complicated 

iterative parameter estimation. Frequently, the NB classifier outperforms those more 

sophisticated classification methods. Bayes theorem provides a way of calculating 

posterior probability P(c|x) from P(c), P(x) and P(x|c). See the equation below: 

 

 P(c|x)  =  
          

    
 

 P(c|X) = P(x1|c) × P(x2|c) × … × P(xn|c) × P(c) 
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where 

P(c|x) is the posterior probability of class (target) given predictor 

(feature or attribute) 

 P(c) is the prior probability of class 

 P(x|c) is the likelihood which is the probability of predictor given class 

 P(x) is the prior probability of predictor 

In our experiments, regarding the Scikit learn which is a python library, we 

have decided to use the Gaussian Naïve Bayes for the classification task due to the 

simplicity and it is the most popular one. 

 

3.3.3 Decision Tree (DT) 

 DT algorithm belongs to the family of supervised learning algorithms. It can 

be used for solving classification and regression problems. The goal of DT is to create 

a training model that can be used to predict the class or value of the target variable by 

learning simple decision rules inferred from the training data. There are two types of 

DT based on the target variable. The first one is the categorical variable DT that has a 

categorical target variable. The second one is the continuous variable DT that has a 

continuous target variable. DT is an effective machine learning model. The model is 

defined by a series of questions that lead to a class label when applying to any 

observation. In the trees, each leaf node represents class labels while the branches 

represent conjunctions of features leading to class labels.  

 One example of the application of DT is for a bank to decide whether or not to 

offer someone a loan by asking a series of questions to figure out if it is safe to allow 

a load to an individual. These questions are like the income of a person, how long 

they occupy this job, what is their credit card payment behavior and so on. The final 

decision can be either yes or no which represent the class label for the leaf nodes. DT 

is also our selected classifier for the experiments. 
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3.4 Datasets 

The datasets used in the experiments are 14 standard datasets with various 

sizes from the UCI machine learning repository  (Dheeru & Efi, 2017). Some of 

these datasets are also used in earlier works for sequential floating search. Detail of 

all data sets is shown in table 3.2. 

 

Table 3.2  Datasets Used in the Experiments 

 

Name Feature  

Type 

No. of 

instances 

No. of 

features 

No. of 

classes 

Wine Integer, Real 178 13 3 

Thoracic Surgery Integer, Real 470 17 2 

Online Shoppers Integer, Real 12330 17 2 

Lymphography Categorical 148 18 2 

Image Segmentation Real 2310 19 7 

Crowdsourced Real 10546 29 6 

Breast Cancer Real 569 32 2 

Ionosphere Integer, Real 351 34 2 

Soybean Categorical 307 35 15 

Waveform 2 Real 5000 40 3 

Spectf Heart Integer 267 44 2 

Spambase Integer, Real 4601 57 2 

Sonar Real 208 60 2 

Urban Land Cover Real 675 147 9 
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3.5 Experimental Setup 

 To compare our method with other algorithms we developed an experimental 

environment similar to the previous works. The performance of the feature selection 

methods is usually evaluated by a machine learning model. Some popular models 

include Naïve Bayes, C4.5, SVM, Decision Tree and K-means clustering. One of the 

most popular classifiers is K-Nearest-Neighbors (KNN). We applied KNN to compare 

our performance on different algorithms based on 5-fold cross-validation. The other 

two classifiers that also used in these experiments are NB and DT. Data normalization 

is preferred as a preprocessing step. We selected Python as the programming 

language, using the Jupyter notebook editor for program development. We randomly 

selected some instances for a large dataset and also eliminated some missing values if 

necessary. We applied the same randomly selected instances to all techniques to 

ensure that they received the same input. 

 

3.6 Results and Discussion 

 In this section, we discuss our results for the OFMB algorithm compared with 

popular suboptimal methods, which are SFS, SFFS and IFFS. This research aimed to 

increase the classification accuracy rather than reducing the time complexity. 

Normally, the improvement of the earlier technique requires a more complicated 

algorithm which also requires higher computing time unavoidably. The size of the 

dataset does not affect the algorithm. We considered only the first 20 features for all 

datasets in order to limit the operation cost. There were some datasets with less than 

20 features, therefore we considered the whole dataset sizes for these small datasets.  

 We studied the effectiveness of the proposed sequential feature selection 

algorithm based on the three classification methods which were KNN, NB and DT on 

14 standard UCI machine learning repositories. The performances were evaluated by 

classification accuracy and the minimum number of selected features that produced 

the maximum accuracy. The classification accuracy was the first priority for the best 

performance. If the results on accuracy for different algorithms were equal, then the 

smaller number of selected features would be in consideration. 
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 Table 3.3  The Comparison of Maximum Accuracy Using KNN 

 

Dataset 

Previous Methods 

(KNN) 

Proposed Method 

(KNN) 

SFS SFFS IFFS OFMB 

Wine (13) 92.82 (10) 93.38 (7) 93.38 (7) 93.38 (7) 

Thoracic Surgery (17) 84.89 (5) 85.96 (9) 85.96 (10) 86.96 (10) 

Online Shopper (17) 90.43 (7) 90.59 (7) 90.67 (5) 90.67 (5) 

Lymphography (18) 88.00 (15) 88.76 (13) 90.14 (11) 90.81 (10) 

Image Segmentation (19) 80.95 (10) 80.95 (7) 81.43 (8) 81.43 (7) 

Crowdsourced (29) 89.46 (20) 88.98 (20) 90.13 (19) 90.42 (20) 

Breast Cancer (32) 95.44 (18) 95.44 (12) 95.44 (16) 95.44 (13) 

Ionosphere (34) 93.45 (5) 94.02 (12) 94.59 (12) 94.89 (11) 

Soybean (35)  89.1 (18) 90.23 (18) 90.23 (19) 90.23 (17) 

Waveform 2 (40) 85.22 (14) 86.8 (18) 85.39 (13) 86.17 (17) 

Spectf Heart (44) 81.65 (11) 98.33 (9) 98.33 (9) 85.37 (12) 

Spambase (57) 90.43 (12) 90.43 (12) 93.04 (19) 93.04 (19) 

Sonar (60) 78.56 (11) 77.44 (6) 80.88 (20) 81.76 (19) 

Urban land cover (147) 60.49 (9) 60.48 (9) 61.37 (6) 61.37 (6) 

 

 The results in table 3.3 were the comparison of maximum classification 

accuracy (%) and resulted number of selected features in parenthesis using KNN from 

different feature selection algorithms where the highest accuracy for each dataset was 

in bold. It shows that the classification accuracy was noticeably enhanced by the 

proposed algorithm compared to the previous works using KNN as performance 

validation method. OFMB had the best performance in the majority of the datasets 

because it produced either the highest accuracy and/or a lower number of features. 

With the Wine dataset, OFMB achieved the same optimal solutions as SFFS and IFFS 

due to the size of the dataset being small. With the Breast Cancer dataset, SFFS was 

the best method among the other three with the same maximum accuracy, but with a 

lower number of selected features. SFFS was also the best method for the Waveform 

2 dataset. With the Spectf Heart dataset, both SFFS and IFFS produced the best 
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solutions. For the rest of the resulted datasets, the OFMB algorithm showed the best 

performance among the other techniques. Only for the Online Shopper, Spambase and 

Urban Land Cover datasets, IFFS had equal solutions to the OFMB algorithm. 

 

Table 3.4  The Comparison of Maximum Accuracy Using NB 

 

Dataset 

Previous Methods 

(NB) 

Proposed Method 

(NB) 

SFS SFFS IFFS OFMB 

Wine (13) 93.35 (5) 93.35 (5) 93.35 (5) 93.35 (5) 

Thoracic Surgery (17) 85.11 (1) 85.11 (1) 85.11 (1) 85.32 (5) 

Online Shopper (17) 90.67 (2) 90.67 (2) 90.67 (2) 90.67 (2) 

Lymphography (18) 86.48 (7) 86.52 (10) 87.33 (9) 88.05 (8) 

Image Segmentation (19) 81.91 (5) 81.91 (5) 82.86 (5) 82.86 (5) 

Crowdsourced (29) 82.92 (18) 83.01 (16) 83.4 (19) 83.4 (19) 

Breast Cancer (32) 95.44 (8) 95.44 (8) 96.14 (6) 96.14 (6) 

Ionosphere (34) 92.58 (14) 93.44 (11) 93.72 (14) 93.72 (11) 

Soybean (35)  83.86 (20) 84.61 (15) 91.73 (12) 91.73 (12) 

Waveform 2 (40) 85.2 (18) 85.61 (15) 85.81 (17) 86 (20) 

Spectf Heart (44) 79.4 (1) 80.12 (6) 79.4 (1) 80.15 (3) 

Spambase (57) 79.89 (15) 80.65 (18) 81.84 (12) 82.29 (18) 

Sonar (60) 81.4 (7) 81.4 (7) 81.45 (13) 81.45 (13) 

Urban land cover (147) 71.48 (12) 75.24 (16) 76.14 (15) 76.14 (15) 

 

 The results in table 3.4 also show that the classification accuracy was 

enhanced by the OFMB algorithm compared to the previous works using the NB 

classifier. Only the Wine and Online Shopper datasets had equal results for all 

techniques. Apart from the two datasets mentioned above, IFFS produced the same 

maximum accuracy as OFMB with the Image Segmentation, Crowdsourced, Breast 

Cancer, Soybean, Sonar and Urban Land Cover datasets. The rest of the tested 

datasets provide the best results obtained by the proposed algorithm. Therefore, 

OFMB had the best performance with all datasets because it produced the highest 
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classification accuracy with the smallest number of selected features equal to or better 

than the other methods. 

 

Table 3.5  The Comparison of Maximum Accuracy Using DT 

 

Dataset 

Previous Methods 

(DT) 

Proposed Method 

(DT) 

SFS SFFS IFFS OFMB 

Wine (13) 91.66 (10) 92.27 (6) 93.95 (5) 93.98 (8) 

Thoracic Surgery (17) 80.43 (3) 80.64 (6) 80.85 (6) 81.06 (3) 

Online Shopper (17) 88.81 (2) 89.05 (2) 89.13 (10) 89.3 (11) 

Lymphography (18) 85.14 (6) 86.05 (10) 87.29 (5) 87.29 (6) 

Image Segmentation (19) 84.76 (11) 86.19 (12) 85.71 (7) 88.57 (9) 

Crowdsourced (29) 80.84 (12) 82.16 (13) 82.16 (10) 83.22 (16) 

Breast Cancer (32) 95.61 (5) 96.32 (6) 96.67 (8) 96.5 (14) 

Ionosphere (34) 92.3 (20) 92.89 (18) 93.72 (19) 94.3 (20) 

Soybean (35)  90.22 (20) 91.75 (17) 92.11 (18) 91.36 (19) 

Waveform 2 (40) 77.61 (18) 78.39 (16) 78.39 (16) 78 (18) 

Spectf Heart (44) 80.55 (10) 80.17 (11) 86.9 (15) 83.54 (20) 

Spambase (57) 90.32 (20) 90.65 (17) 90.43 (20) 90.65 (16) 

Sonar (60) 83.27 (17) 86.6 (13) 86.18 (19) 84.3 (13) 

Urban land cover (147) 78.07 (14) 77.33 (12) 80.42 (20) 81.31 (20) 

 

 As shown in table 3.5, the majority of the best results obtained by the OFMB 

algorithm using the DT classifier. SFFS gave the best solution only for Waveform 2 

and Sonar datasets whereas SFS did not perform well for all datasets. IFFS produced 

the best accuracy with the smallest subset sizes for Lymphography, Breast Cancer, 

Soybean, Waveform 2 and Spectf Heart datasets. Even though IFFS gave the highest 

accuracy for the Lymphography dataset, but this solution was also equal to OFMB 

with only one feature less than from the IFFS for the selected subset. However, 

OFMB provided the maximum classification accuracy for the other eight datasets in 

the result table. 
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Table 3.6  The Comparison of Maximum Accuracy From the Three Different 

Classifiers for the OFMB Algorithm 

 

Dataset 
Proposed Method (OFMB) 

KNN NB DT 

Wine (13) 93.38 (7) 93.35 (5) 93.98 (8) 

Thoracic Surgery (17) 86.96 (10) 85.32 (5) 81.06 (3) 

Online Shopper (17) 90.67 (5) 90.67 (2) 89.3 (11) 

Lymphography (18) 90.81 (10) 88.05 (8) 87.29 (6) 

Image Segmentation (19) 81.43 (7) 82.86 (5) 88.57 (9) 

Crowdsourced (29) 90.42 (20) 83.4 (19) 83.22 (16) 

Breast Cancer (32) 95.44 (13) 96.14 (6) 96.5 (14) 

Ionosphere (34) 94.89 (11) 93.72 (11) 94.3 (20) 

Soybean (35)  90.23 (17) 91.73 (12) 91.36 (19) 

Waveform 2 (40) 86.17 (17) 86 (20) 78 (18) 

Spectf Heart (44) 85.37 (12) 80.15 (3) 83.54 (20) 

Spambase (57) 93.04 (19) 82.29 (18) 90.65 (16) 

Sonar (60) 81.76 (19) 81.45 (13) 84.3 (13) 

Urban land cover (147) 61.37 (6) 76.14 (15) 81.31 (20) 

 

 Table 3.6 shows the comparison of the results from the OFMB algorithm 

using different criterion functions. The performances were validated by KNN, NB and 

DT classifiers. The majority of the best performances were from KNN with eight 

sample datasets, whereas NB provided the best results with only two datasets which 

are Online Shopper and Soybean. The other four tested datasets with maximum 

classification accuracy were from the DT classifier. Different criterion functions 

yielded different results because each function has a unique character and we can see 

that KNN as the criterion function yielded the best result followed by DT and NB 

respectively. Thus, KNN is the most preferable classifier for getting the best solutions 

since it provides more opportunity to get the highest accuracy. 
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 The proposed algorithm based on a sequential feature selection algorithm 

produced effective feature subsets with higher classification accuracy with several 

different datasets. Our proposed algorithm can extract a more relevant and effective 

feature subset from the source dataset using multi-level backward tracking selection 

with an adaptive generalization level technique. From the experiments, the maximum 

accuracies with the smallest subsets produced by our proposed method on most of the 

tested datasets. This improvement was the result of the multi-level backwards tracking 

technique that leads to a more thorough search on the smaller feature subsets. Some 

smaller subsets with higher accuracy were discovered by our in-depth searching 

method. 

            In this chapter, we proposed an algorithm called One-level Forward Multi-

level Backward Selection (OFMB) algorithm. We aimed to develop a feature 

selection method that surpasses previous works in terms of accuracy. We proposed a 

feature selection algorithm based on the sequential searching technique by improving 

the performance of the SFFS algorithm. Incorporating a feature improvement step in 

our method produces similar results with the IFFS algorithm. The addition of multi-

level backtracking was done to discover relevant subsets that cannot be discovered by 

SFFS or IFFS. The algorithm employs an adaptive generalization limit to indicate the 

level of backward searching. A higher limit leads to a better chance of finding a better 

subset. In the experiments, we compared our method with SFS, SFFS and IFFS. 

Results on the 14 standard datasets showed that OFMB performed better than the 

other suboptimal sequential feature selection algorithms for most of the tested 

datasets. Some results from previous methods might be better than from our proposed 

method due to the relationship between smaller subsets with larger subsets. Higher 

accuracy in the smaller subset might lead to a trap in the local optimum solution. 

Therefore, while the subset size increased, there was a chance that the searching 

process could not gain maximum accuracy. In the next chapter, we proposed another 

sequential searching technique that focused on looking ahead in the forward direction 

rather than looking backwards by applying adaptive generalization limit and also 

introduced two new methods to calculate the value of the generalization limit. 

 Related to the time complexity of the OFMB algorithm, we can derive from 

the two main steps. Firstly, a feature improvement step where it computes n subsets 



47 

 

after removing one feature from the selected subset and add one feature from the 

remaining set. This operation continues no greater than n loop, therefore the feature 

improvement step requires no greater than n
2
 for the time complexity. Secondly, a 

multi-level backward selection step processes up to rmax for the inner loop. The 

selected subsets of size k are considered and s is a constant from 1 to rmax. For each 

inner loop, the total subsets that need to be calculated are C(k, s) minus the subsets 

that do not contain the newly selected feature. This operation repeats no greater than n 

times, which is the total number of features in the dataset. Therefore, the number of 

subsets that need to be evaluated for the inner loop can be described by an expression 

below:  
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,  

 where k is the number of features in the subset and s is the generalization level 

for that particular iteration. 

 For s = 1, the number of subsets that need to evaluate is; 
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 For s = 3, the number of subsets that need to evaluate is; 
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 Repeat this calculation for s = 4 and 5, so we have the computing time of k
4
 

and k
5
 respectively. We can see that the time complexity for this second part is 

n ∑    
   . Other steps are constant time so they can be ignored. Combine the two 

steps we have n
2
 + n ∑    

    time complexity for the OFMB algorithm. We can 

conclude that OFMB requires higher computational time than IFFS for which IFFS 

bounded by O(n
2
), moreover, SFS and SFFS are bounded by O(n). 



 

 

 CHAPTER 4

 

MULTI-LEVEL FORWARD INCLUSION (MLFI) 

The Multi-level Forward Inclusion (MLFI) algorithm is similar to the One-

Level Forward Inclusion (OLFI) with the addition of an adaptive floating search 

concept. Instead of adding one feature, we use SFS to add more than one feature but 

to some specified point called the generalization limit, which is denoted by r. The 

value of r is varying using the condition we proposed in section 3.3.3. From the r 

value calculation method, we can add features ranging from 1 to rmax, where rmax is the 

maximum value of r, which is needed to be defined. The higher value of r leads to 

more computational time, therefore we need to keep r as a small number such as 4 or 

5. The level of r in each loop uses s as a variable. The level s is similar to the level o 

in ASFFS where s is determined dynamically according to the previous searching 

situation. This method considers a wider range of feature subset for consideration. As 

a result, there are higher chances to improve the current feature subset. Next, we will 

discuss the MLFI algorithm in more detail. 
 In our study, we focused on the wrapper approach based on a sequential 

selection algorithm. It used the result of a data mining algorithm to determine the 

goodness of a given feature subset. During the search process, the space of possible 

feature subsets is defined to generate and evaluate features until we get the satisfied 

subset. For the sequential floating search methods, the number of features 

dynamically increases and decreases until we reached the desired target. The variables 

allow floating forward or backwards so that they can be flexibly changed without pre-

setting any parameters. For this reason, a floating search is possible to be trapped at a 

local optimum since the best k-subset does not necessarily contain the best (k–1)-

subset. Therefore, we present an alternative improvement to the floating search 

algorithm to remove some of its drawbacks and try to find a solution as much closer 

to the optimal solution as possible. 
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 Our study attempted to explore a new sequential feature selection algorithm 

that produced better results than the earlier works. We proposed a Multi-level 

Forward Inclusion (MLFI) algorithm where the idea is to remove the backtracking 

step and modify the „replacing a weak feature‟ step from the IFFS method with an 

addition of the adaptive floating search technique. Instead of adding one feature, we 

can add more than one feature to a defined point using the generalization limit (r). 

The appropriate value of r depends on the specified conditions described in section 

4.1. MLFI considers a wider range of features that lead to a more thorough search. As 

a result, it has higher chances to maximize the current feature subset according to the 

classification accuracy. The MLFI algorithm can be described below with the 

flowchart in figure 4.1 follow by the pseudo code. 

 This is a description of the MLFI Algorithm: 

Step 1: Apply SFS to select one feature from the remaining feature set. Add 

this feature to the selected feature subset. Continue step 2 with the 

feature subset Xk where k = k + 1. 

Step 2: From the selected feature subset (Xk), remove s features iteratively 

from 1 to r. Search for the best (k–s)-subset. If there is a better subset 

(Xk–s), replace the previous subset with the new subset for Xk–s. Repeat 

steps 1 and 2 until s > r, then continue step 3. 

Step 3: From the selected feature subset size k, remove 1 feature iteratively 

then we have Xk–1, and use SFS to select a new feature from the 

remaining feature set (Y  Xk–1) to add to each feature subset. Then 

calculate whether there is an improvement. If there is an 

improvement, replace that previous feature subset with the newly 

selected feature subset and repeat step 3. Otherwise, continue step 4 

with the feature subset Xk. 

Step 4: Compute the r-value, then continue step 5. 

Step 5: Continue steps 1, 2, 3 and 4 until d features are selected. 
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Figure 4.1  Structure of the MLFI Algorithm 
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Algorithm: Multi-level Forward Inclusion (MLFI) 

Input: A set of features Y = {y1, y2,…, yD}, where D is the number of input 

dimensions; J is a criterion function; d is the required subset size; r is the 

generalization level which is limited by rmax. 

Output: A feature subset Xk = {xj | j = 1, 2,…, k; xj  Y}, where k = (0, 1, 2,…, d). 

Initialize: Initialize X0 = {}; k = 0; s = 1; r = rmax; z = 0. 

(1) Feature Inclusion 

     #Find the best feature and update Xk 

x
+
 = arg max J(xk = x), where x  Y – Xk 

Xk+1 = Xk + x
+
 

k = k + 1 

max(Xk) = Xk+1 

(2) Multi-level Forward Inclusion 

     #Searching for better k-subset by multi-level forward searching step 

Repeat 

xs in Xk : #where  s = 1,…, r  

Xk–s = Xk – xs 

If J(Xk–s) > J(max(Xk–s)): 

max(Xk–s) = Xk–s 

z = z + 1 

Else 

s = s + 1 

Go to step 1 

Until s > r 

(3) Feature Replacement 

     #Replace a weak feature by removing one feature and adding one feature that 

maximizes the criterion function 

Repeat  

For xj in Xk : #where  j = 1, 2,…, k 

Xk–1 = Xk – xi 
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For xi in Y  Xk–1 : #where  i = 1, 2,…, d  (k–1) 

xi = arg max J(xi) 

If J(Xk–1 + xi) > J(Xk): 

Xk = Xk–1 + xi 

max(Xk) = Xk 

Until  J(Xk–1 + xi)  J(Xk) 

x
+
 = arg max J(xk = x), where x  Y – Xk 

Xk+1 = Xk + x
+
 

k = k + 1 

max(Xk) = Xk+1 

(4) Compute the r-value 

If z < rmax : 

r = rmax – z 

Else : 

r = 1 

z = 0 

s = 1 

(5) Termination Condition 

      #Terminate when k > d 

If k  d 

Go to step 1 

Xk = max(Xk) #for all k 

 Return the best individual subset Xk 
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4.1 Computation of the r-value 

 The generalization limit (r) needs to be carefully specified because a larger 

value of r results in a more thorough search and also increases the time complexity. 

We introduced a user-defined parametric limit rmax to restricting the maximum 

generalization level. This number can be any integer depending on how deep we need 

to search through. Normally, rmax is a small integer while the suggestion of rmax from 

ASFFS is 4. In our experiments, we assigned the value of rmax to be 5 for all tested 

datasets. The level s is determined dynamically according to the r calculation 

technique we proposed. 

 

4.1.1 Method I 

 The generalization limit can change adaptively depending on the number of 

times we found a better k-subset. In our experiments, we selected the first 20 features 

from the whole dataset. MLFI considers a wider range of features that lead to a 

thorough search. Seeing that, there are higher chances to improve the current feature 

subset. We applied the same calculation method for the r-value as in chapter 3 and 

called it method I. 

 Assume rmax = 5, thus 1  r  5. Let z be the number of times the algorithm has 

found a better subset for that particular iteration. Thus, z is related to r by rmax – z. 

Adaptive determination of r is defined as follows: 

1) If z < rmax , r = rmax – z 

2) Else , r = 1 

 

4.1.2 Method II 

 The generalization limit increases step by step starting from 1 to rmax along 

with the feature subset sizes. The calculation defined by the equation below: 

1) r = k / d/rmax   

 For example, if we let d = 20 and rmax = 5, thus r = k/4. Now, the value for r 

from the Ionosphere dataset shows in table 4.1 and figure 4.2 for all subset size k, 

where 1  k  20. 
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Table 4.1  The r-values and the z-values from the Ionosphere Dataset 

 

No. of 

features (k) 
r-values 

1 1 

2 1 

3 1 

4 1 

5 2 

6 2 

7 2 

8 2 

9 3 

10 3 

11 3 

12 3 

13 4 

14 4 

15 4 

16 4 

17 5 

18 5 

19 5 

20 5 
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Figure 4.2  r-values for Method II 

 

4.1.3 Method III 

 The idea of the third method is to avoid the solution being trapped by local 

optima since MLFI starting with a similar subset to IFFS for the first half of the k-

subsets where we have r = 1. For the second half, we increase the r-value until it 

reaches the maximum generalization limit. Then the process continues by applying 

rmax through the end of the required subset sizes. The calculation of method III is 

described below: 

1) If k <= d / 2 , r = 1 

2) Else if d / 2 < k < d / 2 + rmax , r = r + 1 

3) Else , r = rmax 

 For example, let assume d = 20 and rmax = 5, then we have; if k <= 10: r = 1, 

elif 10 < k < 15: r = r + 1, else: r = 5. Table 4.2 and figure 4.3 show an example of r-

value for method III. 

 

Table 4.2  The r-values and the z-values from the Ionosphere Dataset 

 

No. of 

features (k) 
r-values 

1 1 

2 1 
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No. of 

features (k) 
r-values 

3 1 

4 1 

5 1 

6 1 

7 1 

8 1 

9 1 

10 1 

11 2 

12 3 

13 4 

14 5 

15 5 

16 5 

17 5 

18 5 

19 5 

20 5 

 

 

 

Figure 4.3  r-values for Method III 
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4.2 An Example using Wine Dataset 

 To demonstrate the MLFI algorithm, we selected the Wine dataset from the 

UCI repository based on the KNN classifier. First, assume we have a dataset Y = {0, 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} with 13 features; the required subset size (d) is 20 

features, and we assign rmax = 5. Since the Wine dataset contains only 13 features, we 

need to process until d = 13, and we have z = {0, 0, 0, 0, 0, 2, 0, 1, 2, 0, 0, 0, 0}. 

 

4.2.1 Feature Inclusion 

 At the beginning, assume we apply SFS for the first 3 features, thus for k = 1, 

2 and 3 we have X1 = {6}, X2 = {6, 10} and X3 = {6, 10, 2} respectively. Now, the 

current subset of k = 3 is X3 = {6, 10, 2}. This subset is the best 3-subset that has been 

found so far. 

 

4.2.2 Multi-level Forward Inclusion 

 Assume we continue the process up to k = 4, we have X4 = {6, 10, 2, 7} with 

90.09% classification accuracy. For k = 4, s = 1, remove one feature except x4 = 7 to 

find a better 3-subset, now we have ({10, 6, 7}, {2, 6, 7} and {2, 10, 7}). After 

calculate the criterion function values (J), we have found that J({10, 6, 7}), J({2, 6, 

7}) and J({2, 10, 7}) are not greater than J({6, 10, 2}), therefore we continue to the 

next inner loop for s = 2 with J({6, 10, 2}) = 90.04% as the best 3-subset that has 

been found so far. 

 For k = 5, s = 2, we add the forth and the fifth features into X5 we get {6, 10, 2, 

7, 5}. Remove two features to find a better 3-subset, now consider only subsets 

containing the feature x5 = {5} which are ({5, 6, 7}, {2, 10, 5}, {10, 5, 6}, {10, 5, 7}, 

{2, 5, 6}, {2, 5, 7}). We calculate the J values for all the combinations of 3-subset by 

removing any two features except x5. We cannot find a better 3-subset, the process 

continues to the next inner loop for s = 3 with the same J({6, 10, 2}) as the best 3-

subset that has been found so far. 

 For k = 6, s = 3, we add the forth, the fifth and the sixth features into X6 we get 

{6, 10, 2, 7, 5, 11}. Remove three features to find a better 3-subset, now consider only 

subsets containing the feature x6 = {11} which are ({11, 6, 7}, {10, 11, 5}, {10, 11, 



58 

6}, {10, 11, 7}, {11, 5, 7}, {2, 11, 5}, {11, 5, 6}, {2, 11, 6}, {11, 10, 2}, {2, 11, 7}). 

We calculate the J values for all the combinations of 3-subset by removing any three 

features except x6. From the current feature subsets, we cannot find a better 3-subset, 

continue to the next inner loop for s = 4 with the same J({6, 10, 2}) as the best 3-

subset that has been found so far. 

 For k = 7, s = 4, we add the forth, the fifth, the sixth, and the seventh features 

into X7 we get {6, 10, 2, 7, 5, 11, 0}. Remove four features to find a better 3-subset, 

now consider only subsets containing the feature x7 = {0} which are ({0, 5, 6}, {0, 10, 

7}, {0, 5, 7}, {0, 10, 6}, {0, 11, 6}, {0, 11, 7}, {0, 10, 11}, {0, 6, 7}, {0, 11, 5}, {0, 2, 

5}, {0, 2, 7}, {0, 2, 6}, {0, 2, 10}, {0, 2, 11}, {0, 10, 2}, {0, 10, 5}). We calculate the 

J values for all the combinations of 3-subset by removing any four features except x7. 

From the current feature subsets, we can find a better 3-subset, which is J({0, 11, 6}) 

= 90.06%. Therefore, continue the next iteration for k = 4 and s = 1 with J({0, 11, 6}) 

as the best 3-subset that has been found so far. 

 The process repeats by exploring further until an improvement cannot be 

made. After the adaptive search meets the condition s > r, the best 3-subset that we 

have found so far would be X3 = {0, 11, 6}. Continue the next step in order to 

maximize this solution. 

 

4.2.3 Feature Replacement 

 We are now continue onto the feature replacement step by removing one 

feature iteratively we have {11, 6}, {0, 6} and {0, 11}, then select one feature from 

the remaining set using SFS we have {11, 6, 0}, {0, 6, 9} and {0, 11, 6}. The J values 

for each subset are 90.06%, 91.17% and 90.06% respectively. At this point, we have 

found J({0, 6, 9}) = 91.17% as the new best 3-subset. Replace {0, 11, 6} with {0, 6, 

9} thus X3 = {0, 6, 9} is the best subset of size 3 features that we have found so far. 

Continue the next outer loop with k = 4 for J({0, 6, 9, 11}) = 92.27% as the best 4-

subset. We can see that the number of features in the subset either increases or 

remains the same throughout the whole process. When the process continues up to 5-

subset we get X5 = {0, 6, 8, 9, 11} which is the highest accuracy that cannot be found 

by other sequential searching techniques. 
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4.2.4 Compute the r-value 

 An adaptive determination of r is applied to find the value of r for the next 

iteration. In the method I, there are two input variables, one is the maximum value 

of r (rmax), which is 5. The other one is z, which is recently acquired from the multi-

level forward inclusion step. The value of r can be varying from 1 to 5 depending on 

the value of z. Therefore, r is changing adaptively on different iteration. Method II 

and III do not require a variable z, while they can lead to better accuracy than method 

I for some datasets. 

 

4.2.5 Termination Condition 

 The MLFI algorithm processes sequentially until the selected subset size (k) 

reaches the required subset size (d). The best of all feature subsets are copied into Xk 

and then the program is terminated. This method applies the idea of adaptive search in 

order to explore the potential subset thoroughly, in other words, it provides a better 

chance to find the optimal solution via a more detailed search by adjusting the 

generalization limit adaptively. 

 

4.3 The Classifiers 

 The classifiers used in the experiments were KNN, NB and DT, which was the 

same as in chapter 3. To compare the performance of our algorithm against the other 

sequential searching algorithms, we calculated the criterion function (J) according to 

those classifiers for every subset sizes from the different algorithms. 

 

4.4 Datasets 

The datasets used in the experiments were the 14 standard datasets with 

various sizes from the UCI machine learning repository. Some of these data sets 

were also used in the earlier works, therefore we can compare our results with the 

other methods. The detail of all datasets shows in Table 4.3. 

 



60 

Table 4.3  Datasets Used in the Experiments 

 

Name Feature  

Type 

No. of 

instances 

No. of 

features 

No. of 

classes 

Wine Integer, Real 178 13 3 

Thoracic Surgery Integer, Real 470 17 2 

Online Shoppers Integer, Real 12330 17 2 

Lymphography Categorical 148 18 2 

Image Segmentation Real 2310 19 7 

Crowdsourced Real 10546 29 6 

Breast Cancer Real 569 32 2 

Ionosphere Integer, Real 351 34 2 

Soybean Categorical 307 35 15 

Waveform 2 Real 5000 40 3 

Spectf Heart Integer 267 44 2 

Spambase Integer, Real 4601 57 2 

Sonar Real 208 60 2 

Urban Land Cover Real 675 147 9 

 

4.5 Experimental Setup 

 To compare our proposed method with other algorithms, we developed an 

experimental environment similar to the previous works and in chapter 3. We used 

KNN, NB and DT classifiers to compare our performances on different algorithms 

based on 5-fold cross-validation. We randomly selected some instances for a large 

dataset and also eliminated some missing values if necessary. We applied the same 
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randomly selected instances to all techniques to ensure that they received the same 

input. 

 

4.6 Results and Discussion 

 In this section, we discussed our results on the MLFI algorithm compared with 

popular suboptimal methods, which were SFS, SFFS and IFFS. The MLFI algorithm 

was also aiming to increase the classification accuracy rather than to reduce the time 

complexity. We considered only the first 20 features for all datasets to limit the 

operation cost. Datasets with less than 20 features were considered for the whole 

dataset sizes. 

           We studied the effectiveness of the proposed sequential feature selection 

algorithm based on the three classification methods, which were KNN, NB and DT on 

14 standard UCI machine learning repositories. We evaluated their performances by 

classification accuracy and the minimum number of selected features that produced 

the maximum accuracy. To compare our method with the previous method we used 

classification accuracy as the first priority for the best performance. If the results on 

accuracy for different algorithms are equal, then the smallest number of selected 

features was considered. In this chapter, we introduced three methods for the r-value 

calculation. The results of MLFI were selected from the r-value calculation methods 

that produced the best performance among the three methods. 

The results in Table 4.4 was the comparison of maximum classification 

accuracy (%) and resulted number of selected features in parenthesis using KNN from 

different feature selection algorithms where the highest accuracy for each dataset was 

in the bold font. The classification accuracy from the MLFI technique produced the 

best solutions for most of the tested datasets when compared with the previous works 

using KNN as a performance validation method. SFS could not produce the highest 

solution at all. The results from MLFI were either the highest in accuracy and/or had 

the lowest number of features in the subset. For the Wine dataset, MLFI achieved the 

same optimal solutions as SFFS and IFFS due to the size of the dataset. In the 

Waveform 2 dataset, SFFS was the best method among the other three algorithms. 

IFFS had the best performance on the Spectf Heart dataset with equal solutions to the 
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SFFS method. Apart from Waveform 2 and Spectf Heart datasets, MLFI performed 

the best for all other datasets. There were only Wine, Image Segmentation, Spambase 

and Urban Land Cover datasets where IFFS produced maximum accuracy equal to the 

MILF algorithm. 

 

Table 4.4  The Comparison of Maximum Accuracy Using KNN 

 

Dataset 

Previous Methods 

(KNN) 

Proposed Method 

(KNN) 

SFS SFFS IFFS MLFI 

Wine (13) 92.82 (10) 93.38 (7) 93.38 (7) 93.38 (7) 

Thoracic Surgery (17) 84.89 (5) 85.96 (9) 85.96 (10) 85.96 (9) 
Online Shopper (17) 90.43 (7) 90.59 (7) 90.67 (5) 90.67 (4) 

Lymphography (18) 88.00 (15) 88.76 (13) 90.14 (11) 90.81 (10) 

Image Segmentation (19) 80.95 (10) 80.95 (7) 81.43 (8) 81.43(8) 

Crowdsourced (29) 89.46 (20) 88.98 (20) 90.13 (19) 90.42 (20) 

Breast Cancer (32) 95.44 (18) 95.44 (12) 95.44 (16) 95.44 (10) 

Ionosphere (34) 93.45 (5) 94.02 (12) 94.59 (12) 94.87 (8) 

Soybean (35)  89.1 (18) 90.23 (18) 90.23 (19) 91.73 (20) 

Waveform 2 (40) 85.22 (14) 86.8 (18) 85.39 (13) 86.38 (18) 

Spectf Heart (44) 81.65 (11) 98.33 (9) 98.33 (9) 86.53 (15) 

Spambase (57) 90.43 (12) 90.43 (12) 93.04 (19) 93.04 (19) 

Sonar (60) 78.56 (11) 77.44 (6) 80.88 (20) 81.76 (19) 

Urban land cover (147) 60.49 (9) 60.48 (9) 61.37 (6) 61.37 (6) 

 

The results in Table 4.5 also show that the classification accuracy was 

enhanced by the MLFI algorithm compared to the previous works using the NB 

classifier. Only for Wine and Online Shopper datasets that had equal results for all 

techniques. Apart from the two datasets mentioned earlier, IFFS produced the same 

maximum accuracy as MLFI on Image Segmentation, Crowdsourced, Breast Cancer, 

Ionosphere, Soybean and Urban Land Cover datasets. Regardless of equal solutions 

with the IFFS, the MLFI yielded the highest classification accuracy for 13 datasets 
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from all 14 tested datasets. Therefore, MLFI had the best performance for almost all 

the tested datasets because it produced the highest classification accuracy with the 

smallest number of selected features equal to or better than the other methods. 

 

Table 4.5  The Comparison of Maximum Accuracy Using NB 

 

Dataset 

Previous Methods 

(NB) 

Proposed Method 

(NB) 

SFS SFFS IFFS MLFI 

Wine (13) 93.35 (5) 93.35 (5) 93.35 (5) 93.35 (5) 

Thoracic Surgery (17) 85.11 (1) 85.11 (1) 85.11 (1) 85.32 (5) 

Online Shopper (17) 90.67 (2) 90.67 (2) 90.67 (2) 90.67 (2) 

Lymphography (18) 86.48 (7) 86.52 (10) 87.33 (9) 87.33 (7) 

Image Segmentation (19) 81.91 (5) 81.91 (5) 82.86 (5) 82.86 (5) 

Crowdsourced (29) 82.92 (18) 83.01 (16) 83.4 (19) 83.4 (19) 

Breast Cancer (32) 95.44 (8) 95.44 (8) 96.14 (6) 96.14 (6) 

Ionosphere (34) 92.58 (14) 93.44 (11) 93.72 (14) 93.73 (14) 

Soybean (35)  83.86 (20) 84.61 (15) 91.73 (12) 91.73 (12) 

Waveform 2 (40) 85.2 (18) 85.61 (15) 85.81 (17) 86.01 (19) 

Spectf Heart (44) 79.4 (1) 80.12 (6) 79.4 (1) 80.15 (2) 

Spambase (57) 79.89 (15) 80.65 (18) 81.84 (12) 82.94 (15) 

Sonar (60) 81.4 (7) 81.4 (7) 81.45 (13) 82.35 (9) 

Urban land cover (147) 71.48 (12) 75.24 (16) 76.14 (15) 76.13 (13) 

 

 As shown in Table 4.6, the majority of the best results were produced by the 

MLFI algorithm. SFS and SFFS could not give the highest solution for all datasets. 

IFFS produced the best accuracy with the smallest subset sizes for Wine and 

Lymphography datasets. Even though IFFS gave the highest accuracy for the 

Lymphography dataset, but this solution was also equal to MLFI with two features 

less than from MLFI for the selected subset. However, the MLFI algorithm provided 

the maximum classification accuracy for the other twelve datasets. Seeing that, our 
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proposed method was more preferable for feature selection than the other methods 

using the DT classifier. 

 

Table 4.6  The Comparison of Maximum Accuracy Using DT 

 

Dataset 

Previous Methods 

(DT) 

Proposed Method 

(DT) 

SFS SFFS IFFS MLFI 

Wine (13) 91.66 (10) 92.27 (6) 93.95 (5) 93.93 (7) 

Thoracic Surgery (17) 80.43 (3) 80.64 (6) 80.85 (6) 81.28 (6) 

Online Shopper (17) 88.81 (2) 89.05 (2) 89.13 (10) 89.38 (6) 

Lymphography (18) 85.14 (6) 86.05 (10) 87.29 (5) 87.29 (7) 

Image Segmentation (19) 84.76 (11) 86.19 (12) 85.71 (7) 86.67 (8) 

Crowdsourced (29) 80.84 (12) 82.16 (13) 82.16 (10) 83.4 (15) 

Breast Cancer (32) 95.61 (5) 96.32 (6) 96.67 (8) 96.84 (13) 

Ionosphere (34) 92.3 (20) 92.89 (18) 93.72 (19) 94.88 (18) 

Soybean (35)  90.22 (20) 91.75 (17) 92.11 (18) 92.11 (16) 

Waveform 2 (40) 77.61 (18) 78.39 (16) 78.39 (16) 78.97 (17) 

Spectf Heart (44) 80.55 (10) 80.17 (11) 86.9 (15) 89.13 (19) 

Spambase (57) 90.32 (20) 90.65 (17) 90.43 (20) 92.39 (17) 

Sonar (60) 83.27 (17) 86.6 (13) 86.18 (19) 88.98 (18) 

Urban land cover (147) 78.07 (14) 77.33 (12) 80.42 (20) 81.76 (17) 

 

 Table 4.7 shows the comparison of the results from the MLFI algorithm using 

different criterion functions. The performance validations included KNN, NB and DT 

classifiers. The majority of the best performances were from DT with seven sample 

datasets whereas NB provided the best results on only one dataset, which was the 

Online Shopper dataset. The other six tested datasets with maximum classification 

accuracy were from the KNN classifier. Therefore different criterion functions 

affected the performance of the MLFI algorithm. DT classifier as a criterion function 

yielded the best result followed by KNN and NB respectively. Thus, both KNN and 
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DT are more favorable classifiers for getting the best solutions since they provide 

more opportunity to get the highest accuracy. 

 

Table 4.7 The Comparison of Maximum Accuracy From the Three Different 

Classifiers for the MLFI Algorithm 

 

Dataset 
Proposed Method (MLFI) 

KNN NB DT 

Wine (13) 93.38 (7) 93.35 (5) 93.93 (7) 

Thoracic Surgery (17) 85.96 (9) 85.32 (5) 81.28 (6) 

Online Shopper (17) 90.67 (4) 90.67 (2) 89.38 (6) 

Lymphography (18) 90.81 (10) 87.33 (7) 87.29 (7) 

Image Segmentation (19) 81.43(8) 82.86 (5) 86.67 (8) 

Crowdsourced (29) 90.42 (20) 83.4 (19) 83.4 (15) 

Breast Cancer (32) 95.44 (10) 96.14 (6) 96.84 (13) 

Ionosphere (34) 94.87 (8) 93.73 (14) 94.88 (18) 

Soybean (35)  91.73 (20) 91.73 (12) 92.11 (16) 

Waveform 2 (40) 86.38 (18) 86.01 (19) 78.97 (17) 

Spectf Heart (44) 86.53 (15) 80.15 (2) 89.13 (19) 

Spambase (57) 93.04 (19) 82.94 (15) 92.39 (17) 

Sonar (60) 81.76 (19) 82.35 (9) 88.98 (18) 

Urban land cover (147) 61.37 (6) 76.13 (13) 81.76 (17) 

  

 The proposed algorithm based on a sequential feature selection algorithm 

produced effective feature subsets with higher classification accuracy on several 

different datasets. Our proposed algorithm can extract a more relevant and effective 

feature subset from the source dataset using a multi-level forward-searching technique 

with the application of the adaptive generalization level. The experimental results 

showed that our method produced the maximum accuracy with the smallest subsets on 

the majority of the tested datasets. This improvement is the result of the multi-level 

forward looks ahead technique that leads to a more thorough search with better 

chances to discover the smaller feature subsets. Several smaller subsets with higher 
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accuracy are found by our in-depth searching method. Similar to the OFMB 

algorithm, a trap in the local optimum is also possible for some tested datasets. 

 To evaluate the time complexity of the MLFI algorithm, we can derive from 

the two main steps similar to OFMB. The first one is the multi-level forward inclusion 

step, which computes for s loops where s is 1 to rmax and the selected subsets of size k 

are considered. For each loop, the total subsets that need to be calculated are C(k, s) 

minus the subsets that do not contain the newly selected feature. This operation 

repeats at most n times. Therefore, the number of subsets that need to be evaluated 

describe by the same expression as OFMB, which results in the time complexity for 

this step is n ∑    
   . The second step is the feature replacement step, which 

consists of k subsets. We remove one feature from the selected subset and add one 

feature from the remaining set. This operation continues no greater than n loop. Thus, 

the feature replacement step requires no more than n
2
 of time complexity. Other steps 

are constant time so they can be ignored. Combine the two steps together we have 

n ∑    
    + n

2
 time complexity for the MLFI algorithm. We can conclude that MLFI 

requires higher computational time than IFFS for which IFFS bounded by O(n
2
), 

moreover, SFS and SFFS are bounded by O(n). 
           

4.7 The Comparison between the OFMB and MLFI Algorithms 

 Table 4.8 shows the comparison of the results from the OFMB and MLFI 

algorithms using different criterion functions. The performance validations were 

KNN, NB and DT classifiers where the highest accuracy for each method and the 

dataset was in bold; the higher accuracy between the two proposed methods was 

underlined. There were four datasets from OFMB that produced the highest accuracy 

with less number of selected features in the subset. These four datasets included 

Wine, Thoracic Surgery, Image Segmentation and Ionosphere which were the results 

from KNN and DT classifiers. The majority of the best performances were from the 

MLFI method with six tested datasets. These datasets were Breast Cancer, Soybean, 

Waveform 2, Spectf Heart, Sonar and Urban Land Cover. Five of them provided the 

best accuracy using the DT classifier. Only Waveform 2 was a result of the KNN 

classifier. The application of NB produced a poor result among the three classifiers 
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for both the OFMB and MLFI methods. The remaining datasets had equal maximum 

accuracy with the same classifier from the two proposed methods. According to the 

size of the dataset, OFMB provided a better solution for small datasets, while MLFI 

yielded the best performance for large datasets. Therefore we can conclude that the 

MLFI method performs better than the OFMB method in general. 

 

Table 4.8 The Comparison of Maximum Accuracy From the Three Different 

Classifiers for the OFMB and MLFI Algorithms 

 

Dataset 

Proposed Method 

(OFMB) 

Proposed Method 

(MLFI) 

KNN NB DT KNN NB DT 

Wine (13) 
93.38 

(7) 

93.35 

(5) 

93.98 

(8) 

93.38 

(7) 

93.35 

(5) 

93.93 

(7) 

Thoracic Surgery (17) 
86.96 

(10) 

85.32 

(5) 

81.06 

(3) 

85.96 

(9) 
85.32 

(5) 

81.28 

(6) 

Online Shopper (17) 
90.67 

(5) 

90.67 

(2) 

89.3 

(11) 

90.67 

(4) 

90.67 

(2) 

89.38 

(6) 

Lymphography (18) 
90.81 

(10) 

88.05 

(8) 

87.29 

(6) 

90.81 

(10) 

87.33 

(7) 

87.29 

(7) 

Image Segmentation (19) 
81.43 

(7) 

82.86 

(5) 

88.57 

(9) 

81.43 

(8) 

82.86 

(5) 

86.67 

(8) 

Crowdsourced (29) 
90.42 

(20) 

83.4 

(19) 

83.22 

(16) 

90.42 

(20) 

83.4 

(19) 

83.4 

(15) 

Breast Cancer (32) 
95.44 

(13) 

96.14 

(6) 

96.5 

(14) 

95.44 

(10) 

96.14 

(6) 

96.84 

(13) 

Ionosphere (34) 
94.89 

(11) 

93.72 

(11) 

94.3 

(20) 

94.87 

(8) 

93.73 

(14) 

94.88 

(18) 

Soybean (35) 
90.23 

(17) 

91.73 

(12) 

91.36 

(19) 

91.73 

(20) 

91.73 

(12) 

92.11 

(16) 
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Dataset 

Proposed Method 

(OFMB) 

Proposed Method 

(MLFI) 

KNN NB DT KNN NB DT 

Waveform 2 (40) 
86.17 

(17) 

86 

(20) 

78 

(18) 

86.38 

(18) 

86.01 

(19) 

78.97 

(17) 

Spectf Heart (44) 
85.37 

(12) 

80.15 

(3) 

83.54 

(20) 

86.53 

(15) 

80.15 

(2) 

89.13 

(19) 

Spambase (57) 
93.04 

(19) 

82.29 

(18) 

90.65 

(16) 

93.04 

(19) 

82.94 

(15) 

92.39 

(17) 

Sonar (60) 
81.76 

(19) 

81.45 

(13) 

84.3 

(13) 

81.76 

(19) 

82.35 

(9) 

88.98 

(18) 

Urban land cover (147) 
61.37 

(6) 

76.14 

(15) 

81.31 

(20) 

61.37 

(6) 

76.13 

(13) 

81.76 

(17) 

 

 In this chapter, we proposed an algorithm called Multi-level Forward 

Inclusion (MLFI) algorithm. We aimed to develop a feature selection method that 

overcomes the previous works in terms of classification accuracy. We proposed a 

feature selection algorithm based on the sequential searching technique by improving 

the performance of SFFS. The application of an adaptive multi-level forward search 

assisted the maximization of classification accuracy for the feature subset selection. 

With the addition of a feature replacement step, the nesting problem was solved. 

MLFI was able to discover important subsets that did not find by SFFS or IFFS.  The 

algorithm employed an adaptive generalization limit to indicate the level of 

forwarding search. The higher the limit led to a higher chance of finding a better 

subset. There are three proposed methods for calculating the generalization limit and 

the best one was selected for our results. In the experiments, we compared our method 

with SFS, SFFS and IFFS. Results on the 14 standard UCI datasets showed that MLFI 

performed better than the other suboptimal sequential feature selection algorithms for 

the majority of the tested datasets. At the end of the chapter, we compared our two 

proposed methods under the same condition. The results showed that the MLFI 

method overcomes the OFMB method for large datasets, particularly on the DT 

classifier.



 

 

 CHAPTER 5

 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

WORK 

5.1 Conclusions 

 Feature selection is very important for the performance of classification in the 

data mining process. This dissertation focused on an improvement of the early 

sequential feature selections. We developed feature selection methods that overcome 

the previous works in terms of classification accuracy. Our feature selection 

algorithms based on the sequential searching technique by improving the performance 

of the standard SFFS. We proposed two new algorithms that search for undiscovered 

subsets. Our proposed algorithms are the One-level Forward Multi-level Backward 

Selection (OFMB) and the Multi-level Forward Inclusion (MLFI). The improvement 

of feature selection also assists the effectiveness of the data mining algorithm. Our 

objective was to enhance the feature selection performances while maintaining the 

computational time as small as possible for the application on a large dataset. The 

concept of the two proposed algorithms is summarized below. 

 The OFMB algorithm divided into two parts. The first part is to explore 

feature subsets by incorporating a feature improvement step that produces a similar 

result to the IFFS. This part can be considered as another algorithm and we named it 

the One Level Forward Inclusion (OLFI). The second part is the addition of a multi-

level backtracking step and is designed to discover important subsets that cannot be 

discovered by the SFFS or IFFS methods. The algorithm employs an adaptive 

generalization limit to indicate the level of backward searching. The higher the limit 

leads to a higher chance of finding a better subset. 

 The MLFI algorithm is also an improvement on the standard SFFS method. 

With the application of an adaptive multi-level forward search, MLFI maximizes the 

classification accuracy of the feature subset. An addition of a feature replacement step 
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helps to solve the nesting problem. MLFI is able to discover important subsets that 

cannot be discovered by past methods. Similar to OFMB, the MLFI algorithm also 

uses an adaptive generalization limit to indicate the level of forwarding search.  

 In the experiments, we compared our proposed methods with SFS, SFFS and 

IFFS on various criterion functions including KNN, NB and DT classifiers. The 

results on the fourteen standard UCI datasets showed that our methods outperform the 

other suboptimal sequential feature selection algorithms for the majority of the tested 

datasets. 

 The time complexity of OFMB and MLFI is greater than the other methods, 

which is n ∑    
    + n

2
. Whereas the IFFS bounded by O(n

2
), moreover, SFS and 

SFFS are bounded by O(n). 

 

5.2 Future Work 

 An adaptive multi-level sequential feature selection using a wrapper approach 

improves the classification performance for various well-known classifiers. Even 

though the level of the backward and forward-searching can explore more potential 

feature subsets, but it is limited by the generalization limit. This limitation leads to a 

reduction in the algorithms‟ effectiveness. The application of a deeper search can 

increase the classification accuracy closer to the optimal solution. However, the 

higher numbers of generalization limit result in the growth of the computing time. To 

keep this computing time as low as possible, we need to explore several techniques 

further, which may help with the time reduction. 

 One technique can be an addition of a filter approach by using some 

measurement such as information gain or distance measures to filter out features that 

are less likely to be significant for feature-class correlation. Applying our methods to 

the pre-selected features and ignoring the unlikely important features can greatly 

reduce the computational time. 

 Another issue for further studies is the prediction of the generalization limit 

(r). The number of the best r-value for each iteration is unknown. If we can find a 

connection of the suitable r-value for a particular iteration of the process, it will 

improve the performance and can also help on the time reduction since we can spend 
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less time searching for subsets that do not gain high accuracy. A genetic algorithm or 

neural network may be a good choice for studying this issue.  

 According to our results on the comparison among different classifiers, we can 

see that they produce different classification accuracies. Therefore other criterion 

functions apart from the ones that we mentioned in the previous chapters may lead to 

better solutions on the same datasets. 
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