TABLE OF CONTENTS

	Page
TABLE OF CONTENTS.	i
LIST OF TABLES	ii
LIST OF FIGURES	iv
LIST OF ABBREVIATIONS	viii
INTRODUCTION	1
LITERATURE REVIEW	6
MATERIALS AND METHODS	11
Density Functional Theory	11
ONIOM Method	14
ONIOM energy	14
Treatment of link atoms	15
ONIOM gradients	18
(UFF) Universal Force Field	18
Details of Calculations	20
RESULTS AND DISCUSSION	25
Part I. Adsorption of H ₂ O ₂ on the Ti- substituted active site	25
Part II. Oxidative active site formation	32
Part III. Stability of oxidative active species	37
Part IV Epoxidation of unsaturated hydrocarbons	49
CONCLUSION	65
I ITERATURE CITED	67

LIST OF TABLES

able	
1	Selected optimized structural parameters of TS-1 active site models
	using the 9T/65T ONIOM2(B3LYP/6-31G(d,p):UFF) scheme and
	the 9T B3LYP/6-31G(d,p) cluster
2	Selected optimized geometrical parameters of the adsorption
	complex (Ads_1), transition states (ts_1 and ts_2), and Int_4 using
	the 9T B3LYP/6-31G(d,p) cluster and the 9T/65T
	ONIOM2(B3LYP/6-31G(d,p):UFF) scheme
3	Relative energies (kcal/mol) with respect to the isolated TS-1 model
	and H_2O_2 gas of the adsorption complex (Ads_1), activation energies
	of ts_1 and ts_2 transition states, and oxidative active species of TS-
	1 calculated at the 30T/65T ONIOM2(B3LYP/6-31G(d,p):UFF)
	method and at the 9T B3LYP/6-31G(d,p) cluster approach. The
	values in parentheses are the activation energies with respect to the
	Ads_1 complex
4	Selected optimized geometrical parameters of oxidative active
	species generated along the creation of oxidative active site using the
	9T B3LYP/6-31G(d,p) cluster and the 9T/65T ONIOM2(B3LYP/6-
	31G(d,p):UFF) scheme. Geometries are shown in Figures 5-7
5	Selected optimized geometrical parameters of the oxidative active
	species (Int_4), ethylene epoxidation transition states (ts_EO), and
	adsorption complex of TS-1/ethylene oxide ($\mathbf{Ads_EO}$) using the 9T
	$B3LYP/6\text{-}31G(d,p) \hspace{0.2cm} cluster \hspace{0.2cm} and \hspace{0.2cm} the \hspace{0.2cm} 9T/65T \hspace{0.2cm} ONIOM2(B3LYP/6\text{-}$
	31G(d,p):UFF) scheme. Energies are the single point calculations of
	the optimized 9T/65T ONIOM2(B3LYP/6-31G(d,p):UFF) structures
	using the 30T/65T ONIOM2 scheme. E_{app} is the apparent energies
	with respect to the isolated reactants and E_a is activation energy with
	respect to the Int 4 complex

LIST OF TABLES (Cont'd)

Table		Page
6	Selected optimized geometrical parameters of the oxidative active	
	species (Int_4), ethylene epoxidation transition states (ts_EO), and	
	adsorption complex of TS-1/ethylene oxide (Ads_EO) using the 9T	
	B3LYP/6-31G(d,p) cluster and the 9T/65T ONIOM2(B3LYP/6-	
	31G(d,p):UFF) scheme. Energies are the single point calculations of	
	the optimized 9T/65T ONIOM2(B3LYP/6-31G(d,p):UFF) structures	
	using the 30T/65T ONIOM2 scheme. E_{app} is the apparent energies	
	with respect to the isolated reactants and E_a is activation energy with	
	respect to the Int_4 complex	62
7	Selected optimized geometrical parameters of the oxidative active	
	species (Int_4), trans-2-butylene epoxidation transition states	
	(ts_BO), and adsorption complex of TS-1/trans-2-butylene oxide	
	(Ads_BO) using the 9T B3LYP/6-31G(d,p) cluster and the 9T/65T	
	ONIOM2(B3LYP/6-31G(d,p):UFF) scheme. Energies are the single	
	point calculations of the optimized 9T/65T ONIOM2(B3LYP/6-	
	31G(d,p):UFF) structures using the 30T/65T ONIOM2 scheme. E_{app}	
	is the apparent energies with respect to the isolated reactants and E_a	
	is activation energy with respect to the Int_4 complex	63

LIST OF FIGURES

Figure		Page
1	Proposed oxidative active species in the catalytic epoxidation reaction	
	of unsaturated hydrocarbons with H_2O_2 over TS-1. The arrow	
	represents the coordinative interaction	2
2	Schematic representation of the two-layered ONIOM extrapolation	
	scheme	15
3	Definition of different atom within the ONIOM scheme	17
4	Showing (a) two tetrahedral sites (T5 and T6) of nondefect active site	
	and optimized structures of defect active site models using (b) the	
	9T/65T ONIOM2(B3LYP/6-31G(d,p):UFF) scheme and (c) the	
	9T B3LYP/6-31G(d,p) cluster. The high level region is displayed	
	with balls and sticks whereas the low level region is demonstrated by	
	lines	24
5	Showing the optimized structures of adsorption complex (Ads_1) of	
	TS-1 and H_2O_2 calculated at the 9T/65T ONIOM2(B3LYP/6-	
	31G(d,p):UFF) method.	27
6	Showing (a) the optimized structures of adsorption complex (\mathbf{Ads}_1) of	
	TS-1 and H_2O_2 calculated at the 9T/65T ONIOM2(B3LYP/6-	
	31G(d,p):UFF) method and (b) at the 9T B3LYP/6-31G(d,p) cluster.	
	Some of the quantum region (balls and sticks) and the rest UFF region	
	(lines) are omitted for clarity	28
7	Showing distorted octahedral conformation of adsorption complex	
	(Ads_1) by close-up Figure 5. Some of the quantum region (balls and	•
	sticks) and the rest UFF region (lines) are omitted for clarity	29

LIST OF FIGURES (Cont'd)

Figur	e	Page
8	Showing optimized geometrical structures of the single proton	
	mechanisms using the 9T/65T ONIOM2(B3LYP/6-31G(d,p):UFF)	34
9	Showing optimized geometrical structures of the double proton	
	mechanisms using the 9T/65T ONIOM2(B3LYP/6-31G(d,p):UFF)	35
10	Optimized geometrical structures of (a)-(b) the single proton transfer	
	and (c)-(d) the double proton transfer mechanisms using the 9T/65T	
	ONIOM2(B3LYP/6-31G(d,p):UFF) scheme and the 9T B3LYP/6-	
	31G(d,p) cluster	36
11	Showing optimized geometrical structures of Ti-hydroperoxo	
	complexes of Int_1 calculated at the 9T/65T ONIOM2(B3LYP/6-	
	31G(d,p):UFF) level of theory	42
12	Showing optimized geometrical structures of Ti-hydroperoxo	
	complexes of Int_2 calculated at the 9T/65T ONIOM2(B3LYP/6-	
	31G(d,p):UFF) level of theory	43
13	Showing optimized geometrical structures of Ti-hydroperoxo	
	complexes of Int_3 calculated at the 9T/65T ONIOM2(B3LYP/6-	
	31G(d,p):UFF) level of theory	44
14	Showing optimized geometrical structures of Ti-hydroperoxo	
	complexes of Int_4 calculated at the 9T/65T ONIOM2(B3LYP/6-	
	31G(d,p):UFF) level of theory	45
15	Optimized geometrical structures of Ti-hydroperoxo complexes in	
	different conformations calculated at the 9T/65T ONIOM2(B3LYP/6-	
	31G(d,p):UFF) level of theory. The conformations obtained from the	
	9T B3LYP/6-31G(d,p) cluster calculations are very similar to the	1.0
1.0	ONIOM2 results, and thus are omitted	46
16	Showing distorted octahedral conformation of adsorption complex	
	(Int_1) by close-up Figure 11. Some of the quantum region (balls and	47
	sticks) and the rest UFF region (lines) are omitted for clarity	47

LIST OF FIGURES (Cont'd)

igure	
17	Showing optimized geometrical structures of Ti-hydroperoxo
	complexes of Int_5 calculated at the 9T/65T ONIOM2(B3LYP/6-
	31G(d,p):UFF) level of theory
18	Showing optimized transition state structures of the ethylene
	epoxidation located at the cross section channel calculated at the
	ONIOM2(B3LYP/6-31G(d,p):UFF) level of theory
19	Showing optimized transition state structures of the ethylene
	epoxidation located at the straight channel calculated at the
	ONIOM2(B3LYP/6-31G(d,p):UFF) level of theory
20	Comparision of optimized transition state structures of the ethylene
	epoxidation located at (a) the cross section and (b) the straight channel.
	All optimized parameters are obtained from the energy minimization at
	the $ONIOM2(B3LYP/6-31G(d,p):UFF)$ level of theory. Some parts of
	the quantum region (balls and sticks) and of MM region (lines) are
	omitted for clarity. The conformations obtained from the 9T B3LYP/6-
	31G(d,p) cluster are similar to the ONIOM2 results, and thus are
	omitted
21	Schematic energy profile of the overall epoxidation reaction of
	ethylene, propylene, and trans-2-butylene with H_2O_2 over TS-1
	calculated at the ONIOM2(B3LYP/6-31G(d,p):UFF) using the
	30T/65T ONIOM cluster scheme
22	Showing optimized transition state structures of the propylene
	epoxidation located at the cross section channel calculated at the
	ONIOM2(B3LYP/6-31G(d,p):UFF) level of theory
23	Showing optimized transition state structures of the trans-2-butylene
	epoxidation located at the cross section channel calculated at the
	ONIOM2(B3LYP/6-31G(d,p):UFF) level of theory

LIST OF FIGURES (Cont'd)

Figure	Page
24 Comparision of optimized transition state complexes of (a) propyler	ne
and (b) trans-2-butylene epoxidation with H ₂ O ₂ over TS-1 calculated a	at
the ONIOM2(B3LYP/6-31G(d,p):UFF) method level of theory. The	ne
conformations obtained from the 9T B3LYP/6-31G(d,p) cluster and	re
similar to the ONIOM2 results, and thus are omitted	61
25 Optimized gas phase transition state complexes of (a) ethylene (b)	o)
propylene, and (c) trans-2-butylene epoxidation with H ₂ O ₂ calculate	ed
at the B3LYP/6-31G(d,p) level of theory	64

LIST OF ABBREVIATIONS

B3LYP = Becke's three parameter hybrid functional using the LYP

correlation functional

BLYP = Beck-Lee-Yang-Parr functional

EXAFS = Extended X-ray Adsorption Fine Structure

DFT = Density Functional Theory

K = kelvin

kcal/mol = kilocalorie per mol

LANL2DZ = Los Alamos National Laboratory 2-Double-Zeta

LDA = Local Density Approximation

LSD = Local Spin Density approximation

MAS NMR = Magic Angle Spinning Nuclear Magnetic Resonance

MFI = Mobile Five framework type code

MM = Molecular Mechanics

MO = Molecular Orbital

ONIOM = Our own N-layered Integrated molecular Orbital and molecular

Mechanics

ONIOM2 = Our own two-layered Integrated molecular Orbital and

molecular Mechanics

PND = Powder Neutron Diffraction

QM = Quantum Mechanics

QM/MM = Quantum Mechanics/Molecular Mechanics

SCF = Self-Consistent Field

SCREEP = Surface Charge Representation of External Embedded Potential

Method

LIST OF ABBREVIATIONS (Cont'd)

STO-3G = Slater Type Orbital approximated by 3 Gaussian type orbitals

Universal Force Field

TMP = Trimethyl Phosphene TS-1 = Titanium Silicalite-1

VDW = van der Waals

=

UFF

XRD = X-ray Diffraction

ZSM-5 = Zeolite Socony Mobil 5