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ABSTRACT 
 
Whenever software defects (or bugs) are detected, they must be fixed immediately 
to allow the software to perform properly. The classification task for bug reports 
includes not only binary classification but also multiclassification. Therefore, 
multiclassification for bug reports was chosen as the challenge in this study. The 
proposed method aimed to classify bug reports into three classes, namely real-bug, 
enhancement, and task. The method began with bug report pre-processing, and 
then the vector of bug reports was used to develop the multiclassifier models. Eight 
machine learning algorithms namely multinomial naïve Bayes, logistic regression, 
random forest, support vector machines, k-nearest neighbor, extreme gradient 
boosting, neural networks and decision trees were compared. Finally, the classifier was 
chosen as the best model for the proposed method, and compared with the baseline. 
The Matthews correlation coefficient, area under the curve, F1 and accuracy scores of 
the best classifier from the proposed method showed improvement from the baseline 
at 4.09%, 2.71%, 1.83% and 1.69%, respectively.  
 
Keywords: bug reports; multiclassification; supervised learning algorithms; natural language 
processing; Firefox; Bugzilla 
 
 

1. INTRODUCTION                                    
 
Today, many examples of large open-source software have 
been developed to promote the free distribution of 
information. Unfortunately, no software is free from errors 
and defects, also known as bugs. Reports detailing errors 
and information defects, called bug reports are essential 
for software maintenance (Ramay et al., 2019). Numerous 
projects utilize bug reports as guidelines for maintaining 
and improving software quality and efficiency. Software 
end-users are primary sources for gathering and reporting 
bugs as software defects. Bug reports can easily be 
collected from global software users through a bug 
tracking system (BTS) (Bhattacharya and Neamtiu, 2011; 

Jalbert and Weimer, 2008). Consequently, many BTSs such 
as Mantis, Bugzilla, Trace, Jira, Backlog and FogBugz have 
been developed to manage bug reporting and bug triaging. 
Many reports relating to software problems are continually 
generated and uploaded by software end-users to BTSs. 
However, some of these relate to non-bug reports (Polpinij, 
2021). Therefore, all the reports must be analyzed to identify 
real-bug reports before utilization for software quality 
improvement or maintenance (Antoniol et al., 2008; Polpinij, 
2021; Limsettho et al., 2014; Terdchanakul et al., 2017).  
       Traditionally, software experts called bug triagers 
manually analyze and filter non-bug reports from the bug 
report repository (Bhattacharya and Neamtiu, 2011; 
Jalbert and Weimer, 2008). By doing this, ninety days were 

Science, Engineering and Health Studies 
https://li01.tci-thaijo.org/index.php/sehs   

ISSN (Online): 2630-0087 
  

 Research Article 



Bug reports identification using multiclassification method 

 
2 

required to manually classify more than 7,000 bug reports 
(Antoniol et al., 2008; Herzig et al., 2013; Limsettho, et al., 
2014; Pingclasai, et al., 2013). As a result, hand-crafted 
analysis takes time, escalates costs and can also introduce 
bias. Furthermore, after manually analyzing and 
classifying bug reports, 39% of the bug reports initially 
marked as defective never had a defect or bug (Herzig et 
al., 2013). This was called misclassification issue between 
real-bug and non-bug reports (Antoniol, et al., 2008; Herzig 
et al., 2013). Therefore, an automatic process of identifying 
and filtering out non-bug reports is required to reduce 
software cost and bias analysis. Several methods have been 
proposed for filtering out non-bug reports from the 
repositories before analysis (Antoniol et al., 2008; Polpinij, 
2021; Limsettho et al., 2014; Pingclasai et al., 2013; 
Terdchanakul et al., 2017). Nowadays, studies to 
automatically identify real-bug reports are generally 
performed using binary classification. This may be because 
information in real-bug reports can be used to fix bug, 
where bug fixing is an urgent and more important task 
than other issues involving software maintenance. 
Therefore, a system to identify real-bug (defect) reports is 
urgently required to solve or fix software bugs. Reports 
that are not considered as real-bug or defect reports are 
often overlooked. 
       However, bug reports submitted to the system can also 
include enhancement and task bug reports. Enhancement 
bug reports describe new software features or user 
interface (UI) software performance that should be 
improved (Firefox, 2016; Mozilla, 2015). Therefore, 
information concerning enhancement bug reports can be 
utilized to improve software products without engineering 
change. Task bug reports consider refactoring, removal, 
replacement, enabling or disabling of functionality and any 
other engineering tasks (Firefox, 2016; Mozilla, 2015). 
These bug report types have been defined as useful for 
software quality improvement and maintenance but they 
have not yet been fully utilized and are considered as non-
bug reports. When a bug is detected in software, bug fixing 
is an urgent and more important task than software quality 
improvement and maintenance. Furthermore, although 
binary classification to identify real-bug and non-bug 
reports has long been studied (Antoniol et al., 2008; 
Polpinij, 2021; Limsettho et al., 2014; Pingclasai et al., 
2013; Terdchanakul et al., 2017, previously proposed 
methods did not optimally classify data for every dataset 
(Polpinij, 2021), and this problem remains understudied 
seriously. Furthermore, Limsettho et al. (2016) mentioned 
that software projects with insufficiently labeled data 
encounter difficulties in training classification models to 
predict bug types, and classifying bug reports into many 
classes (or types) has not yet been seriously studied. In 
general, it can be found multiclassification in other study 
domains of bug reports namely severity and priority 
analysis (Chaturvedi and Singh, 2012; Kukkar et al., 2019; 
Kumar and Singla, 2021; Menzies and Marcus, 2008). 
There are a few studies for identifying types of bug reports 
based on multiclassification problem domain (Kaewnoo 
and Senivongse, 2019). This aspect was taken up as the 
challenge for this study. Even after completely fixing bugs 
in the software, quality improvement and maintenance are 
still required, with the added necessity of enhancement 
and task reports. 
       In this study, a multiclassification method was used to 
classify bug reports into three classes: defect, 

enhancement, and task reports. Our method used unigram 
together with CamelCase words as bug report features, and 
compared two term weightings, namely term frequency 
(tf) and term frequency-inverse gravity moment (tf-igm). 
Eight machine learning algorithms, namely logistic 
regression (LR), multinomial naïve Bayes (MNB), support 
vector machines (SVM), decision trees (DT), k-nearest 
neighbor (k-NN), random forest (RF), extreme gradient 
boosting (XGBoost, XGB), and neural networks (NN), were 
compared in order to get the most appropriate classifier 
model. The best model from our proposed method was 
compared with the baseline method proposed by Kukkar 
et al. (2019) who presented a multiclass classification 
method to identify the severity level of bugs mentioned 
in reports. 
 
  
2. MATERIALS AND METHODS    
 
2.1 Dataset  
The dataset was downloaded from the Bugzilla system. It 
was related to the open source FireFox. An example is 
shown in Figure 1 and Figure 2. Bug reports stored in bug 
repositories of Bugzilla include predefined fields, free-
form text, attachments and dependencies. The predefined 
fields provide a variety of categorical data about the bug 
report. They also include product component, operating 
system, version, priority and severity. The free-form text 
includes the title of the report, a full description of the bug 
and additional comments, while attachments refer to non-
textual additional information (e.g., a screenshot of erroneous 
behavior). The bug repository tracks which bugs block the 
resolution of other bugs. In this study used the title of the 
report (also known as the ‘summary’ part) for the free-form 
text. 
       The dataset was downloaded on 30 September 2021, 
and the bug reports were uploaded to the Bugzilla system 
between 1 October 2018 and 30 September 2021. The 
dataset consisted of 21,920 reports split into three classes 
as defect, enhancement, and task, and contained 14,849 
reports in the defect class, 4,242 reports in the 
enhancement class and 2,829 reports in the task class.  The 
first stage, known as the bug report classifier modeling 
stage, used 2,500 bug reports per class to reduce the 
impact of imbalanced data resulting from the severely 
skewed class distribution. The remaining reports in each 
class were used as test sets for the second stage, called 
the experiment stage. After obtaining the best 
multiclassification model, the test sets were used to evaluate 
classifiers in the second stage. 
 
2.2 The proposed method 
Bug report classifiers were modeled based on 
multiclassification. A 10-fold cross-validation was applied 
when developing and validating the classification models. 
Figure 3 provides a general overview of the proposed 
method and each step of the proposed method was 
described below. 
 
2.2.1 Bug report pre-processing 
A bug report typically consists of three parts: title (or 
summary), description, and discussion. A bug report's 
summary is in the title, while description part details 
specific information of each report. The discussion 
contains an information detail about other end-users’ 
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references or/and comments on that bug report. Each step 
of bug report pre-processing can be detailed as follows.  

 Spelling corrections, to reduce language ambiguity.  
 Tokenization, to separate text as “words”.  
 Stop-word removal, to remove uninformative 

words such as so, and, or and the from the bug 
report.  

 Word inflection and lemmatization, to convert a 
unigram word into a singular form. Inflections 
create a variety of word forms and generate 
ambiguity during automatic language processing.  

       Unigram features together with CamelCase were used in 
this study. Unigram refers to single words, while CamelCase 
writes a word combining two words or abbreviations to yield 
a new word, without any punctuation and intervening spaces 
(e.g., browser views, UrlBar). CamelCase indicates the 
specificity of the software (Antoniol et al., 2008; Luaphol et 
al., 2021). To reduce the problem of short text expanded 
CamelCase features by splitting them into single words, 
and then both the original CamelCase words and their 
single words are used as features. 
 
 

 
 
Figure 1.  An example of Firefox bug report on the Bugzilla system 
 

 
 
Figure 2.  Example of Firefox bug report formatted as XML 
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Figure 3.  The proposed method overview 
 
2.2.2 Bug report representation and term 
weighting 
After pre-processing step, the pre-processed bug reports 
were represented in vector space model format (VSM), and 
then each bug report feature (or word) was assigned its 
weight using term weighting scheme. This study compared 
two term weighting schemes, tf and tf-igm  

( , )i jtf t d =  ( , )i jtf t d  (1) 

Meanwhile, tf-igm is a supervised term weighting scheme 
that may be able to accurately calculate a word’s 
distinguishing class, especially in multiclass cases as per 
the following equations. 
 

( , )i jtf igm t d− =  ( , ) (1 ( ))i j itf t d igm tλ× + ×  (2) 

( )iigm t =  
1

1

i
M

irr

f
f r

=
×∑

 (3) 

 
where ( , )i jtf t d  indicates how many times a specific term-
word t appears in bug report d. In igm, fir (r = 1, 2, ..., M) 
represents the total number of bug reports in the r-th class 
that contain the term ti. These bug reports are sorted in 
descending order. Thus, fi1 represents the frequency of ti in 
the class in which it appears the most frequently, while λ is 
an adjustable coefficient used to maintain the relative 
balance between the global factor igm and local factor tf in 
the weight of a term. In this study, the coefficient’s default 
value (λ) used was 7.0, but this can be changed to a value 
between 5.0 and 9.0 (Chen et al., 2016).  
 
2.2.3 Bug report classifier modeling and algorithm 
setting 
After obtaining the training set of bug reports in the VSM 
format, this vector was used to model bug report classifiers 
based on multiclassification. Eight supervised machine 
learning algorithms were applied to create the bug report 

classifier models and these algorithms are described as 
follows: 
Logistic regression (LR): This algorithm can be used to solve 
classification issues by setting thresholds for the probability 
predicted for each class. LR classifiers use the weighted 
combination of the input features and pass them through a 
sigmoid function. Any real number can be transformed to a 
number between 0 and 1 using the sigmoid function.  
 
Multinomial naïve Bayes (MNB): MNB considers a feature 
vector where a given term-word represents the number of 
times that it appears. To develop the classifier model, MNB 
first calculates the fraction of documents in each class, 
denoted as P(c), and then calculates the probability of each 
word for a given class, denoted as 𝑃𝑃

∧
(𝑤𝑤|𝑐𝑐). Finally, Bayes’ rule is 

applied to estimate P(c|d) for the test documents. To develop 
classifier models, MNB can be represented using the following 
equations. 
 

( )P c =  cN
N

 (4) 

 
where Nc represents the total number of bug reports found 
in each class, while N is the total number of bug reports in 
the training set, and 

( | )P w c
∧

=  
( , )

( ) | | 1
count w c

count c V
α+

+ +
 (5) 

 
where count(w, c) represents the number of times that the 
term-word w appears in class c. Meanwhile, count(c) refers 
to the total number of classes in the training set, and |V| is 
the total number of distinct words in the training set. Since 
some words have zero counts, Laplace smoothing is 
performed with a low value of α = 0.001. 
 
Support vector machines (SVM): This algorithm calculates 
the distance between a line and the support vectors, called 
the margin, and identifies the points closest to the 
hyperplane that are termed support vectors. The goal is to 
maximize the margin as much as possible. A hyperplane 
with maximal margin is called the optimal hyperplane. The 
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decision boundary used to distinguish classes is as wide as 
possible when the maximal margin is obtained, allowing 
classes to be more clearly distinguished. The radial basis 
function (RBF) kernel was employed for the SVM method 
in this study because numerous investigations showed that 
this kernel function yielded adequate results. 
 
Random forest (RF): To develop each tree, RF employs 
bagging and feature randomization to produce an 
uncorrelated forest of trees that makes the prediction 
more accurate than using a single tree. This algorithm may 
be useful in preventing the problem of overfitting. It created 
100 decision trees for our forest in this investigation. 
 
XGBoost (XGB): This algorithm is similar to RF but the XGB 
also utilizes a gradient boosting algorithm to enhance 
performance. XGB has proven to be highly efficient, 
adaptable, and portable. This algorithm may be useful in 
preventing the problem of overfitting. It generated 100 
decision trees for XGB.  
 
k-nearest neighbor (k-NN): This algorithm is the simplest 
algorithm that calculates the approximate distances 
between vectors, and then assigns data instances that are 
not yet labeled to the class by ranking and considering the 
nearest k neighbors. In this study, closer neighbors in the 
same class were predicted with higher confidence. After 
experimenting with k = 3, k = 4 and k = 5, the trend of 
performance returned to upward when k = 5. Therefore, it 
used k = 5 for this study. 
 
Decision trees (DT): In this study, the C4.5 algorithm used 
the concept of information entropy to create decision trees 
from a set of training data. Features with the largest 
normalized information gain were chosen to determine the 
decision. The training data was a set of bug reports = br1, 
br2,…, bri that were already assigned class labels. Each bug 
report bri consisted of a p-dimensional vector (w1,i, w2,i, …, 
wp,i), where wi represents feature values of the training set. 
The C4.5 algorithm selected the data feature that most 
successfully divided its training set into subsets enriched 
in one class or the other at each node of the tree. 
Normalized information gain was used as the splitting 
criterion. 
 
Neural network (NN): In general, NN consists of three 
main layers as an input layer, one or more hidden layers, 
and an output layer. Each neuron connects to another and 
has an associated weight and threshold. If any individual 
node's output exceeds the specified threshold value, that 
node is activated, sending data to the next layer of the 
network. Otherwise, no data is passed to the next layer. In 
this study, the Adam algorithm was used for adaptive 
learning rate optimization. 
 
2.3 Measurement metrics 
This study applied the metrics of accuracy (Acc), F1, the 
area under curve (AUC) and the Matthews correlation 
coefficient (MCC) to measure the performance of the 
proposed method. The formulae of accuracy and F1 are 
presented below as: 

Acc =  TP TN
TP TN FP FN

+
+ + +

 (6) 

1F =  2 recall precision
recall precision

××
+

 (7) 

recall =  TP
TP FN+

 (8) 

precision =  TP
TP FP+

 (9) 
 
where TP is the number of bug reports correctly identified 
as defect, TN is the number of bug reports correctly 
identified as other, FN is the number of bug reports 
incorrectly identified as defect and FP is the number of bug 
reports incorrectly identified as other. 
       AUC was used to measure the quality of classification 
by analyzing the area under the receiver operating 
characteristic (ROC) curve. The ROC curve was plotted 
with the true positive rate (TPR) value against the false 
positive rate (FPR), where the TPR is plotted on the y-axis 
and the FPR is plotted on the x-axis. 
       The MCC was used to measure the quality of the 
classifier model (Ramay et al., 2019). In general, the MCC is 
suitable for binary classes but many studies have applied 
MCC for multiclassification. The MCC formula can be 
presented as: 

MCC =  ( * ) ( * )
( )( )( )( )

TP TN FP FN
TP FP TP FN TN FP TN FN

−
+ + + +

 
  (10) 

 
A value of MCC close to 1 means that all classes are well 
anticipated, even if some are disproportionately 
underrepresented (or overrepresented).  
 
 
3. RESULTS AND DISCUSSION 
 
3.1 The experimental results  
To reduce the problem of short text expanded CamelCase 
features, they were split them into single words, and then 
both the original CamelCase words and their single words 
were used as features. Table 1 shows an example of pre-
processing for a bug report title. The experimental results of 
the proposed method are presented in Table 2. Our testing 
consisted of 12,347 reports for the defect class, 1,742 reports 
for the enhancement class and 329 reports for the task class. 
Results in Table 2 showed that using the tf-igm term 
weighting scheme with every algorithm returned better 
results than the tf term weighting scheme because the tf-
igm was a supervised term weighting (STW) scheme. The 
distinctive characteristic of the STW scheme is the ability 
to create class distinguishing power by determining the 
word importance in a bug report of a specific class. Simply 
speaking, the STW scheme indicates differences between 
word weights for words in different classes, although rare 
words occur in a few documents. This is the main reason 
why tf-igm returned better results than tf.  
       When considering all the algorithms used for modeling 
multi-classifiers for bug reports, the experimental results 
in Table 2 showed that the SVM multi-classifier with the tf-
igm term weighting scheme returned the best results for 
accuracy, F1, AUC and MCC at 0.722, 0.723, 0.797 and 
0.585, respectively while LR, MNB, RF, XGB, k-NN, DT and 
NN classifiers returned poorer results than the SVM 
classifier. This occurred because using only the title part of 
the bug report reduced the number of features. The SVM 
algorithm performed well for smaller datasets and outliers 
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had less impact, while NN required large training set data. 
Therefore, if the training set is small, the NN classifiers 
often produce poorer results. However, when using more 
data, the performance of the NN classifier improves but 
it still performs worse than the SVM classifier. 
       The LR classifiers returned lower results than SVM 
(Table 2). This is because the number of our features was 
quite small, but maybe still too many for LR. This caused 
the LR classifier models to over-fit on the training set, 
overstating the accuracy of predictions and reducing 
model accuracy in predicting results on the test set. Simply 
speaking, when the number of features exceeds the 
number of data points, the LR classifier model becomes 
underdetermined. 
       If considering performance of the MNB classifiers, they 
also returned lower results than SVM. This is because the 
main concept of MNB is to maintain a minimum error 
rate based on the assumption of class conditional 
independence. Unfortunately, this is not always true in 
reality and performances of MNB classifiers are often poor. 
The graphical representation of accuracy, F1, AUC, and 
MCC scores can be seen in Figure 4. 
       The RF and XGB algorithms consist of many decision 
trees and this may impact irrelevant features. Meanwhile, 
k-NN classifiers are very sensitive to the scale of the data 
and irrelevant features impact their accuracy that depends 
on the quality of the data. If considering for the DT 
classifiers, the DT algorithm is unstable, and a slight change 
in data often results in a significant change in the structure 

of the best decision tree. As a result, DT classifiers 
frequently yield inaccurate results.  
       The RF, XGB and NN multiclassifier models require 
longer computational time for modeling and testing than 
the other models. Finally, the SVM multiclassifier model 
with the tf-igm term weighting scheme was chosen as the 
best bug report classifier from the proposed method and 
compared against the baseline method proposed by 
Kukkar et al. (2019). 
 
3.2 Comparing the proposed method with the 
baseline method 
In the baseline method, all parts of bug reports (i.e., title, 
description and summary) were used as input data for 
developing classifier models. However, to ensure that the 
dataset used was the same in our domain, it used only the 
title of bug reports as the input data to compare both 
methods. Pre-processing of the baseline model performed 
tokenization, stop-word removal and stemming. During 
feature extraction, the content of the bug report was 
represented as a vector of feature (word) counts. However, 
the baseline method also expanded bug report content using 
several sets of n-gram data (i.e., unigram, bigram and 
trigram) extracted by convolutional neural networks (CNN) 
Methods. Lastly, to classify multiple bug report classes, RF 
with boosting was used. Results are shown in Table 3. 

 
Table 1. Example results of pre-processing bug report 
 

Processing step Results 

Original bug report Staff cannot use the AutoComplete function. Its work is wong. 

After tokenizing text Staff / cannot / use / the / AutoComplete / function / Its / 
work / is / wong 

After removing stop-words Staff / cannot / use / AutoComplete / function / work / wong 

After spelling correction, performing word inflection and 
lemmatization 

Staff / cannot / use / AutoComplete / function / work / 
wrong 

After expanding word features by using words separated from 
CamelCase 

Staff / cannot / use / AutoComplete / Auto / Complete / 
function / work / wrong 

 
Table 2. The experimental results for proposed method 
 

Algorithm tf tf-igm 

Acc F1 AUC MCC Acc F1 AUC MCC 

LR 0.709 0.709 0.781 0.563 0.712 0.713 0.784 0.568 

MNB 0.687 0.688 0.765 0.531 0.711 0.712 0.783 0.567 

SVM  0.709 0.709 0.782 0.564 0.722 0.723 0.797 0.585 

RF 0.690 0.691 0.768 0.536 0.689 0.690 0.767 0.543 

XGB 0.628 0.632 0.721 0.448 0.626 0.630 0.719 0.445 

k-NN 0.601 0.586 0.701 0.409 0.661 0.662 0.745 0.492 

DT 0.616 0.616 0.712 0.425 0.623 0.623 0.717 0.435 

NN 0.655 0.654 0.741 0.482 0.677 0.676 0.757 0.515 

MNB 0.687 0.688 0.765 0.531 0.711 0.712 0.783 0.567 

 



Polpinij, J., et al.  

   
7 

  
 
 

 

  
  

Figure 4.  Graphical representation of accuracy, F1, AUC, and MCC scores  
 
Table 3. Comparing the proposed method with the baseline 
method 
 

Method Acc F1 AUC MCC 

Proposed 
method 

0.722 0.723 0.797 0.585 

Baseline (Kukkar et 
al., 2019) 

0.710 0.710 0.776 0.562 

 
       In Table 3, the average accuracy, F1, AUC and MCC scores 
of the proposed method slightly outperformed the baseline 
method, with improved scores of accuracy, F1, AUC and MCC 
at 1.69%, 1.83%, 2.71% and 4.09%, respectively. This 
occurred for two reasons. Firstly, our proposed method also 
employed CamelCase as a feature to indicate the specificity of 
problem domains. Using CamelCase as a feature also helped 
to increase class distinguishing power. Secondly, the 
classification method of the baseline model used RF with 
boosting. The RF algorithm with boosting consists of many 
decision trees that may impact irrelevant features, while also 
lacking interpretability because the ensemble of decision 
trees may fail to evaluate the significance of each feature. The 
computational time of modeling multi-classifiers and model 
testing was also compared. The baseline method using the RF 
algorithm for modeling multi-classifiers required more 
training time, compared to our proposed method using the 
SVM algorithm. The RF algorithm generated a lot of trees and 
made decisions on the majority of votes. This required more 
computational power, with increased training time.  

 
4. CONCLUSION 
 
From this study, 21,920 bug reports related to the Firefox 
opensource were used as the dataset. Our dataset contained 
14,849 reports in the real-bug class, 4,242 reports in the 

enhancement class and 2,829 reports in the task class. The 
proposed method consisted of four main processing steps as 
pre-processing, bug report representation and term 
weighting, modeling multi-classifiers and evaluation. After 
evaluating the multi-classifier models by MCC, AUC, F1, and 
accuracy, the classifier model developed by SVM with RBF 
provided the best results. Therefore, SVM with the RBF 
classifier model was chosen to be compared to the baseline 
method. The MCC, AUC, F1, and accuracy scores of the best 
multiclassifier model obtained from the proposed method 
was marginally superior to the baseline method, with 
improved MCC, AUC, F1, and accuracy scores at 4.09%, 
2.71%, 1.83% and 1.69%, respectively. 
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