

1

Bug reports identification using
multiclassification method

Jantima Polpinij1, Khanista Namee2* and Bancha Luaphol3

1 Intellect Laboratory, Faculty of Informatics, Mahasarakham University, Mahasarakham 44150,
Thailand
2* Faculty of Industrial Technology and Management, King Mongkut’s University of Technology
North Bangkok, Bangkok 10800, Thailand
3 Department of Digital Technology, Faculty of Administrative Science, Kalasin University, Kalasin
46230, Thailand

*Corresponding author:
Khanista Namee

khanista.N@fitm.kmutnb.ac.th

Received: 28 September 2022
Revised: 17 November 2022

Accepted: 14 December 2022
Published: 27 December 2022

Citation:
Polpinij, J., Namee, K., and

Luaphol, B. (2022). Bug reports
identification using

multiclassification method.
Science, Engineering and

Health Studies, 16, 22020009.

ABSTRACT

Whenever software defects (or bugs) are detected, they must be fixed immediately
to allow the software to perform properly. The classification task for bug reports
includes not only binary classification but also multiclassification. Therefore,
multiclassification for bug reports was chosen as the challenge in this study. The
proposed method aimed to classify bug reports into three classes, namely real-bug,
enhancement, and task. The method began with bug report pre-processing, and
then the vector of bug reports was used to develop the multiclassifier models. Eight
machine learning algorithms namely multinomial naïve Bayes, logistic regression,
random forest, support vector machines, k-nearest neighbor, extreme gradient
boosting, neural networks and decision trees were compared. Finally, the classifier was
chosen as the best model for the proposed method, and compared with the baseline.
The Matthews correlation coefficient, area under the curve, F1 and accuracy scores of
the best classifier from the proposed method showed improvement from the baseline
at 4.09%, 2.71%, 1.83% and 1.69%, respectively.

Keywords: bug reports; multiclassification; supervised learning algorithms; natural language
processing; Firefox; Bugzilla

1. INTRODUCTION

Today, many examples of large open-source software have
been developed to promote the free distribution of
information. Unfortunately, no software is free from errors
and defects, also known as bugs. Reports detailing errors
and information defects, called bug reports are essential
for software maintenance (Ramay et al., 2019). Numerous
projects utilize bug reports as guidelines for maintaining
and improving software quality and efficiency. Software
end-users are primary sources for gathering and reporting
bugs as software defects. Bug reports can easily be
collected from global software users through a bug
tracking system (BTS) (Bhattacharya and Neamtiu, 2011;

Jalbert and Weimer, 2008). Consequently, many BTSs such
as Mantis, Bugzilla, Trace, Jira, Backlog and FogBugz have
been developed to manage bug reporting and bug triaging.
Many reports relating to software problems are continually
generated and uploaded by software end-users to BTSs.
However, some of these relate to non-bug reports (Polpinij,
2021). Therefore, all the reports must be analyzed to identify
real-bug reports before utilization for software quality
improvement or maintenance (Antoniol et al., 2008; Polpinij,
2021; Limsettho et al., 2014; Terdchanakul et al., 2017).
 Traditionally, software experts called bug triagers
manually analyze and filter non-bug reports from the bug
report repository (Bhattacharya and Neamtiu, 2011;
Jalbert and Weimer, 2008). By doing this, ninety days were

Science, Engineering and Health Studies
https://li01.tci-thaijo.org/index.php/sehs

ISSN (Online): 2630-0087

 Research Article

Bug reports identification using multiclassification method

2

required to manually classify more than 7,000 bug reports
(Antoniol et al., 2008; Herzig et al., 2013; Limsettho, et al.,
2014; Pingclasai, et al., 2013). As a result, hand-crafted
analysis takes time, escalates costs and can also introduce
bias. Furthermore, after manually analyzing and
classifying bug reports, 39% of the bug reports initially
marked as defective never had a defect or bug (Herzig et
al., 2013). This was called misclassification issue between
real-bug and non-bug reports (Antoniol, et al., 2008; Herzig
et al., 2013). Therefore, an automatic process of identifying
and filtering out non-bug reports is required to reduce
software cost and bias analysis. Several methods have been
proposed for filtering out non-bug reports from the
repositories before analysis (Antoniol et al., 2008; Polpinij,
2021; Limsettho et al., 2014; Pingclasai et al., 2013;
Terdchanakul et al., 2017). Nowadays, studies to
automatically identify real-bug reports are generally
performed using binary classification. This may be because
information in real-bug reports can be used to fix bug,
where bug fixing is an urgent and more important task
than other issues involving software maintenance.
Therefore, a system to identify real-bug (defect) reports is
urgently required to solve or fix software bugs. Reports
that are not considered as real-bug or defect reports are
often overlooked.
 However, bug reports submitted to the system can also
include enhancement and task bug reports. Enhancement
bug reports describe new software features or user
interface (UI) software performance that should be
improved (Firefox, 2016; Mozilla, 2015). Therefore,
information concerning enhancement bug reports can be
utilized to improve software products without engineering
change. Task bug reports consider refactoring, removal,
replacement, enabling or disabling of functionality and any
other engineering tasks (Firefox, 2016; Mozilla, 2015).
These bug report types have been defined as useful for
software quality improvement and maintenance but they
have not yet been fully utilized and are considered as non-
bug reports. When a bug is detected in software, bug fixing
is an urgent and more important task than software quality
improvement and maintenance. Furthermore, although
binary classification to identify real-bug and non-bug
reports has long been studied (Antoniol et al., 2008;
Polpinij, 2021; Limsettho et al., 2014; Pingclasai et al.,
2013; Terdchanakul et al., 2017, previously proposed
methods did not optimally classify data for every dataset
(Polpinij, 2021), and this problem remains understudied
seriously. Furthermore, Limsettho et al. (2016) mentioned
that software projects with insufficiently labeled data
encounter difficulties in training classification models to
predict bug types, and classifying bug reports into many
classes (or types) has not yet been seriously studied. In
general, it can be found multiclassification in other study
domains of bug reports namely severity and priority
analysis (Chaturvedi and Singh, 2012; Kukkar et al., 2019;
Kumar and Singla, 2021; Menzies and Marcus, 2008).
There are a few studies for identifying types of bug reports
based on multiclassification problem domain (Kaewnoo
and Senivongse, 2019). This aspect was taken up as the
challenge for this study. Even after completely fixing bugs
in the software, quality improvement and maintenance are
still required, with the added necessity of enhancement
and task reports.
 In this study, a multiclassification method was used to
classify bug reports into three classes: defect,

enhancement, and task reports. Our method used unigram
together with CamelCase words as bug report features, and
compared two term weightings, namely term frequency
(tf) and term frequency-inverse gravity moment (tf-igm).
Eight machine learning algorithms, namely logistic
regression (LR), multinomial naïve Bayes (MNB), support
vector machines (SVM), decision trees (DT), k-nearest
neighbor (k-NN), random forest (RF), extreme gradient
boosting (XGBoost, XGB), and neural networks (NN), were
compared in order to get the most appropriate classifier
model. The best model from our proposed method was
compared with the baseline method proposed by Kukkar
et al. (2019) who presented a multiclass classification
method to identify the severity level of bugs mentioned
in reports.

2. MATERIALS AND METHODS

2.1 Dataset
The dataset was downloaded from the Bugzilla system. It
was related to the open source FireFox. An example is
shown in Figure 1 and Figure 2. Bug reports stored in bug
repositories of Bugzilla include predefined fields, free-
form text, attachments and dependencies. The predefined
fields provide a variety of categorical data about the bug
report. They also include product component, operating
system, version, priority and severity. The free-form text
includes the title of the report, a full description of the bug
and additional comments, while attachments refer to non-
textual additional information (e.g., a screenshot of erroneous
behavior). The bug repository tracks which bugs block the
resolution of other bugs. In this study used the title of the
report (also known as the ‘summary’ part) for the free-form
text.
 The dataset was downloaded on 30 September 2021,
and the bug reports were uploaded to the Bugzilla system
between 1 October 2018 and 30 September 2021. The
dataset consisted of 21,920 reports split into three classes
as defect, enhancement, and task, and contained 14,849
reports in the defect class, 4,242 reports in the
enhancement class and 2,829 reports in the task class. The
first stage, known as the bug report classifier modeling
stage, used 2,500 bug reports per class to reduce the
impact of imbalanced data resulting from the severely
skewed class distribution. The remaining reports in each
class were used as test sets for the second stage, called
the experiment stage. After obtaining the best
multiclassification model, the test sets were used to evaluate
classifiers in the second stage.

2.2 The proposed method
Bug report classifiers were modeled based on
multiclassification. A 10-fold cross-validation was applied
when developing and validating the classification models.
Figure 3 provides a general overview of the proposed
method and each step of the proposed method was
described below.

2.2.1 Bug report pre-processing
A bug report typically consists of three parts: title (or
summary), description, and discussion. A bug report's
summary is in the title, while description part details
specific information of each report. The discussion
contains an information detail about other end-users’

Polpinij, J., et al.

3

references or/and comments on that bug report. Each step
of bug report pre-processing can be detailed as follows.

 Spelling corrections, to reduce language ambiguity.
 Tokenization, to separate text as “words”.
 Stop-word removal, to remove uninformative

words such as so, and, or and the from the bug
report.

 Word inflection and lemmatization, to convert a
unigram word into a singular form. Inflections
create a variety of word forms and generate
ambiguity during automatic language processing.

 Unigram features together with CamelCase were used in
this study. Unigram refers to single words, while CamelCase
writes a word combining two words or abbreviations to yield
a new word, without any punctuation and intervening spaces
(e.g., browser views, UrlBar). CamelCase indicates the
specificity of the software (Antoniol et al., 2008; Luaphol et
al., 2021). To reduce the problem of short text expanded
CamelCase features by splitting them into single words,
and then both the original CamelCase words and their
single words are used as features.

Figure 1. An example of Firefox bug report on the Bugzilla system

Figure 2. Example of Firefox bug report formatted as XML

Bug reports identification using multiclassification method

4

Figure 3. The proposed method overview

2.2.2 Bug report representation and term
weighting
After pre-processing step, the pre-processed bug reports
were represented in vector space model format (VSM), and
then each bug report feature (or word) was assigned its
weight using term weighting scheme. This study compared
two term weighting schemes, tf and tf-igm

(,)i jtf t d = (,)i jtf t d (1)

Meanwhile, tf-igm is a supervised term weighting scheme
that may be able to accurately calculate a word’s
distinguishing class, especially in multiclass cases as per
the following equations.

(,)i jtf igm t d− = (,) (1 ())i j itf t d igm tλ× + × (2)

()iigm t =
1

1

i
M

irr

f
f r

=
×∑

 (3)

where (,)i jtf t d indicates how many times a specific term-
word t appears in bug report d. In igm, fir (r = 1, 2, ..., M)
represents the total number of bug reports in the r-th class
that contain the term ti. These bug reports are sorted in
descending order. Thus, fi1 represents the frequency of ti in
the class in which it appears the most frequently, while λ is
an adjustable coefficient used to maintain the relative
balance between the global factor igm and local factor tf in
the weight of a term. In this study, the coefficient’s default
value (λ) used was 7.0, but this can be changed to a value
between 5.0 and 9.0 (Chen et al., 2016).

2.2.3 Bug report classifier modeling and algorithm
setting
After obtaining the training set of bug reports in the VSM
format, this vector was used to model bug report classifiers
based on multiclassification. Eight supervised machine
learning algorithms were applied to create the bug report

classifier models and these algorithms are described as
follows:
Logistic regression (LR): This algorithm can be used to solve
classification issues by setting thresholds for the probability
predicted for each class. LR classifiers use the weighted
combination of the input features and pass them through a
sigmoid function. Any real number can be transformed to a
number between 0 and 1 using the sigmoid function.

Multinomial naïve Bayes (MNB): MNB considers a feature
vector where a given term-word represents the number of
times that it appears. To develop the classifier model, MNB
first calculates the fraction of documents in each class,
denoted as P(c), and then calculates the probability of each
word for a given class, denoted as 𝑃𝑃

∧
(𝑤𝑤|𝑐𝑐). Finally, Bayes’ rule is

applied to estimate P(c|d) for the test documents. To develop
classifier models, MNB can be represented using the following
equations.

()P c = cN
N

 (4)

where Nc represents the total number of bug reports found
in each class, while N is the total number of bug reports in
the training set, and

(|)P w c
∧

=
(,)

() | | 1
count w c

count c V
α+

+ +
 (5)

where count(w, c) represents the number of times that the
term-word w appears in class c. Meanwhile, count(c) refers
to the total number of classes in the training set, and |V| is
the total number of distinct words in the training set. Since
some words have zero counts, Laplace smoothing is
performed with a low value of α = 0.001.

Support vector machines (SVM): This algorithm calculates
the distance between a line and the support vectors, called
the margin, and identifies the points closest to the
hyperplane that are termed support vectors. The goal is to
maximize the margin as much as possible. A hyperplane
with maximal margin is called the optimal hyperplane. The

Polpinij, J., et al.

5

decision boundary used to distinguish classes is as wide as
possible when the maximal margin is obtained, allowing
classes to be more clearly distinguished. The radial basis
function (RBF) kernel was employed for the SVM method
in this study because numerous investigations showed that
this kernel function yielded adequate results.

Random forest (RF): To develop each tree, RF employs
bagging and feature randomization to produce an
uncorrelated forest of trees that makes the prediction
more accurate than using a single tree. This algorithm may
be useful in preventing the problem of overfitting. It created
100 decision trees for our forest in this investigation.

XGBoost (XGB): This algorithm is similar to RF but the XGB
also utilizes a gradient boosting algorithm to enhance
performance. XGB has proven to be highly efficient,
adaptable, and portable. This algorithm may be useful in
preventing the problem of overfitting. It generated 100
decision trees for XGB.

k-nearest neighbor (k-NN): This algorithm is the simplest
algorithm that calculates the approximate distances
between vectors, and then assigns data instances that are
not yet labeled to the class by ranking and considering the
nearest k neighbors. In this study, closer neighbors in the
same class were predicted with higher confidence. After
experimenting with k = 3, k = 4 and k = 5, the trend of
performance returned to upward when k = 5. Therefore, it
used k = 5 for this study.

Decision trees (DT): In this study, the C4.5 algorithm used
the concept of information entropy to create decision trees
from a set of training data. Features with the largest
normalized information gain were chosen to determine the
decision. The training data was a set of bug reports = br1,
br2,…, bri that were already assigned class labels. Each bug
report bri consisted of a p-dimensional vector (w1,i, w2,i, …,
wp,i), where wi represents feature values of the training set.
The C4.5 algorithm selected the data feature that most
successfully divided its training set into subsets enriched
in one class or the other at each node of the tree.
Normalized information gain was used as the splitting
criterion.

Neural network (NN): In general, NN consists of three
main layers as an input layer, one or more hidden layers,
and an output layer. Each neuron connects to another and
has an associated weight and threshold. If any individual
node's output exceeds the specified threshold value, that
node is activated, sending data to the next layer of the
network. Otherwise, no data is passed to the next layer. In
this study, the Adam algorithm was used for adaptive
learning rate optimization.

2.3 Measurement metrics
This study applied the metrics of accuracy (Acc), F1, the
area under curve (AUC) and the Matthews correlation
coefficient (MCC) to measure the performance of the
proposed method. The formulae of accuracy and F1 are
presented below as:

Acc = TP TN
TP TN FP FN

+
+ + +

 (6)

1F = 2 recall precision
recall precision

××
+

 (7)

recall = TP
TP FN+

 (8)

precision = TP
TP FP+

 (9)

where TP is the number of bug reports correctly identified
as defect, TN is the number of bug reports correctly
identified as other, FN is the number of bug reports
incorrectly identified as defect and FP is the number of bug
reports incorrectly identified as other.
 AUC was used to measure the quality of classification
by analyzing the area under the receiver operating
characteristic (ROC) curve. The ROC curve was plotted
with the true positive rate (TPR) value against the false
positive rate (FPR), where the TPR is plotted on the y-axis
and the FPR is plotted on the x-axis.
 The MCC was used to measure the quality of the
classifier model (Ramay et al., 2019). In general, the MCC is
suitable for binary classes but many studies have applied
MCC for multiclassification. The MCC formula can be
presented as:

MCC = (*) (*)
()()()()

TP TN FP FN
TP FP TP FN TN FP TN FN

−
+ + + +

 (10)

A value of MCC close to 1 means that all classes are well
anticipated, even if some are disproportionately
underrepresented (or overrepresented).

3. RESULTS AND DISCUSSION

3.1 The experimental results
To reduce the problem of short text expanded CamelCase
features, they were split them into single words, and then
both the original CamelCase words and their single words
were used as features. Table 1 shows an example of pre-
processing for a bug report title. The experimental results of
the proposed method are presented in Table 2. Our testing
consisted of 12,347 reports for the defect class, 1,742 reports
for the enhancement class and 329 reports for the task class.
Results in Table 2 showed that using the tf-igm term
weighting scheme with every algorithm returned better
results than the tf term weighting scheme because the tf-
igm was a supervised term weighting (STW) scheme. The
distinctive characteristic of the STW scheme is the ability
to create class distinguishing power by determining the
word importance in a bug report of a specific class. Simply
speaking, the STW scheme indicates differences between
word weights for words in different classes, although rare
words occur in a few documents. This is the main reason
why tf-igm returned better results than tf.
 When considering all the algorithms used for modeling
multi-classifiers for bug reports, the experimental results
in Table 2 showed that the SVM multi-classifier with the tf-
igm term weighting scheme returned the best results for
accuracy, F1, AUC and MCC at 0.722, 0.723, 0.797 and
0.585, respectively while LR, MNB, RF, XGB, k-NN, DT and
NN classifiers returned poorer results than the SVM
classifier. This occurred because using only the title part of
the bug report reduced the number of features. The SVM
algorithm performed well for smaller datasets and outliers

Bug reports identification using multiclassification method

6

had less impact, while NN required large training set data.
Therefore, if the training set is small, the NN classifiers
often produce poorer results. However, when using more
data, the performance of the NN classifier improves but
it still performs worse than the SVM classifier.
 The LR classifiers returned lower results than SVM
(Table 2). This is because the number of our features was
quite small, but maybe still too many for LR. This caused
the LR classifier models to over-fit on the training set,
overstating the accuracy of predictions and reducing
model accuracy in predicting results on the test set. Simply
speaking, when the number of features exceeds the
number of data points, the LR classifier model becomes
underdetermined.
 If considering performance of the MNB classifiers, they
also returned lower results than SVM. This is because the
main concept of MNB is to maintain a minimum error
rate based on the assumption of class conditional
independence. Unfortunately, this is not always true in
reality and performances of MNB classifiers are often poor.
The graphical representation of accuracy, F1, AUC, and
MCC scores can be seen in Figure 4.
 The RF and XGB algorithms consist of many decision
trees and this may impact irrelevant features. Meanwhile,
k-NN classifiers are very sensitive to the scale of the data
and irrelevant features impact their accuracy that depends
on the quality of the data. If considering for the DT
classifiers, the DT algorithm is unstable, and a slight change
in data often results in a significant change in the structure

of the best decision tree. As a result, DT classifiers
frequently yield inaccurate results.
 The RF, XGB and NN multiclassifier models require
longer computational time for modeling and testing than
the other models. Finally, the SVM multiclassifier model
with the tf-igm term weighting scheme was chosen as the
best bug report classifier from the proposed method and
compared against the baseline method proposed by
Kukkar et al. (2019).

3.2 Comparing the proposed method with the
baseline method
In the baseline method, all parts of bug reports (i.e., title,
description and summary) were used as input data for
developing classifier models. However, to ensure that the
dataset used was the same in our domain, it used only the
title of bug reports as the input data to compare both
methods. Pre-processing of the baseline model performed
tokenization, stop-word removal and stemming. During
feature extraction, the content of the bug report was
represented as a vector of feature (word) counts. However,
the baseline method also expanded bug report content using
several sets of n-gram data (i.e., unigram, bigram and
trigram) extracted by convolutional neural networks (CNN)
Methods. Lastly, to classify multiple bug report classes, RF
with boosting was used. Results are shown in Table 3.

Table 1. Example results of pre-processing bug report

Processing step Results

Original bug report Staff cannot use the AutoComplete function. Its work is wong.

After tokenizing text Staff / cannot / use / the / AutoComplete / function / Its /
work / is / wong

After removing stop-words Staff / cannot / use / AutoComplete / function / work / wong

After spelling correction, performing word inflection and
lemmatization

Staff / cannot / use / AutoComplete / function / work /
wrong

After expanding word features by using words separated from
CamelCase

Staff / cannot / use / AutoComplete / Auto / Complete /
function / work / wrong

Table 2. The experimental results for proposed method

Algorithm tf tf-igm

Acc F1 AUC MCC Acc F1 AUC MCC

LR 0.709 0.709 0.781 0.563 0.712 0.713 0.784 0.568

MNB 0.687 0.688 0.765 0.531 0.711 0.712 0.783 0.567

SVM 0.709 0.709 0.782 0.564 0.722 0.723 0.797 0.585

RF 0.690 0.691 0.768 0.536 0.689 0.690 0.767 0.543

XGB 0.628 0.632 0.721 0.448 0.626 0.630 0.719 0.445

k-NN 0.601 0.586 0.701 0.409 0.661 0.662 0.745 0.492

DT 0.616 0.616 0.712 0.425 0.623 0.623 0.717 0.435

NN 0.655 0.654 0.741 0.482 0.677 0.676 0.757 0.515

MNB 0.687 0.688 0.765 0.531 0.711 0.712 0.783 0.567

Polpinij, J., et al.

7

Figure 4. Graphical representation of accuracy, F1, AUC, and MCC scores

Table 3. Comparing the proposed method with the baseline
method

Method Acc F1 AUC MCC

Proposed
method

0.722 0.723 0.797 0.585

Baseline (Kukkar et
al., 2019)

0.710 0.710 0.776 0.562

 In Table 3, the average accuracy, F1, AUC and MCC scores
of the proposed method slightly outperformed the baseline
method, with improved scores of accuracy, F1, AUC and MCC
at 1.69%, 1.83%, 2.71% and 4.09%, respectively. This
occurred for two reasons. Firstly, our proposed method also
employed CamelCase as a feature to indicate the specificity of
problem domains. Using CamelCase as a feature also helped
to increase class distinguishing power. Secondly, the
classification method of the baseline model used RF with
boosting. The RF algorithm with boosting consists of many
decision trees that may impact irrelevant features, while also
lacking interpretability because the ensemble of decision
trees may fail to evaluate the significance of each feature. The
computational time of modeling multi-classifiers and model
testing was also compared. The baseline method using the RF
algorithm for modeling multi-classifiers required more
training time, compared to our proposed method using the
SVM algorithm. The RF algorithm generated a lot of trees and
made decisions on the majority of votes. This required more
computational power, with increased training time.

4. CONCLUSION

From this study, 21,920 bug reports related to the Firefox
opensource were used as the dataset. Our dataset contained
14,849 reports in the real-bug class, 4,242 reports in the

enhancement class and 2,829 reports in the task class. The
proposed method consisted of four main processing steps as
pre-processing, bug report representation and term
weighting, modeling multi-classifiers and evaluation. After
evaluating the multi-classifier models by MCC, AUC, F1, and
accuracy, the classifier model developed by SVM with RBF
provided the best results. Therefore, SVM with the RBF
classifier model was chosen to be compared to the baseline
method. The MCC, AUC, F1, and accuracy scores of the best
multiclassifier model obtained from the proposed method
was marginally superior to the baseline method, with
improved MCC, AUC, F1, and accuracy scores at 4.09%,
2.71%, 1.83% and 1.69%, respectively.

ACKNOWLEDGMENT

This research project was financially supported by
Mahasarakham University.

REFERENCES

Antoniol, G., Ayari, K., Di Penta, M., Khomh, F., and

Guéhéneuc, Y. G. (2008). Is it a bug or an enhancement?
a text-based approach to classify change requests. In
Proceedings of the 2008 Conference of the Center for
Advanced Studies on Collaborative Research: Meeting of
Minds, pp. 304-318. Ontario, Canada.

Bhattacharya, P., and Neamtiu, I. (2011). Bug-fix time
prediction models: can we do better? In Proceedings of
the 8th Working Conference on Mining Software
Repositories, pp. 207-210. Honolulu HI, USA.

Chaturvedi, K., and Singh, V. (2012). Determining bug
severity using machine learning techniques. In
Proceedings of the 2012 CSI Sixth International
Conference on Software Engineering, pp. 1-6. Indore, India.

(a) Accuracy score consideration (b) F1 Score consideration

(c) AUC Score consideration (d) MCC Score consideration

Bug reports identification using multiclassification method

8

Chen, K., Zhang, Z., Long, J., and Zhang, H. (2016). Turning
from tf-idf to tf-igm for term weighting in text
classification. Expert Systems with Applications, 66,
245-260.

Firefox. (2016). Bug types. [Online URL: https://firefox-
source-docs.mozilla.org/bug-mgmt/guides/bug-types.
html] accessed on October 25, 2021.

Herzig, K., Just, S., and Zeller, A. (2013). It’s not a bug, it’s a
feature: how misclassification impacts bug prediction.
In Proceedings of the 35th International Conference on
Software Engineering, pp. 392-401. San Francisco, CA,
USA.

Jalbert, N., and Weimer, W. (2008). Automated duplicate
detection for bug tracking systems. In Proceedings of
the 2008 IEEE International Conference on Dependable
Systems and Networks with FTCS and DCC, pp. 52-61.
Anchorage, AK, USA.

Kaewnoo, P., and Senivongse, T. (2019). Identification of
software problem report types using multiclass
classification. In Proceedings of the 2019 3rd
International Conference on Software and e-Business,
pp. 104-109. Tokyo, Japan.

Kibriya, A. M., Frank, E., Pfahringer, B., and Holmes, G.
(2004). Multinomial naive Bayes for text categorization
revisited. In Proceedings of the Australasian Joint
Conference on Artificial Intelligence, pp. 488-499.
Cairns, Australia.

Kukkar, A., Mohana, R., Nayyar, A., Kim, J., Kang, B. G., and
Chilamkurti, N. (2019). A novel deep-learning-based
bug severity classification technique using
convolutional neural networks and random forest with
boosting. Sensors, 19(13), 2964.

Kumar, R., and Singla, S. (2021). Multiclass software bug
severity classification using decision tree, naive band
bagging. Turkish Journal of Computer and Mathematics
Education, 12(2), 1859-1865.

Limsettho, N., Hata, H., Monden, A., and Matsumoto, K.
(2014). Automatic unsupervised bug report
categorization. In Proceedings of the 6th International
Workshop on Empirical Software Engineering in
Practice, pp. 7-12. Osaka, Japan.

Limsettho, N., Hata, H., and Monden, A. (2016).
Unsupervised bug report categorization using
clustering and labeling algorithm. International Journal
of Software Engineering and Knowledge Engineering,
26(07), 1027-1053.

Luaphol, B., Polpinij, J., and Kaenampornpan, M. (2021).
Mining bug report repositories to identify significant
information for software bug fixing. Applied Science and
Engineering Progress, 15(3), 1-14.

Menzies, T., and Marcus, A. (2008). Automated severity
assessment of software defect reports. In Proceedings
of the 2008 IEEE International Conference on Software
Maintenance, pp. 346-355. Beijing, China.

Mozilla. (2015). Bugzilla field descriptions. [Online URL:
https://wiki.mozilla.org/BMO/UserGuide/BugFields?fb
clid=IwAR2OZBRIwIn-wereb2r6C4-KhZwYtD1lPhnW0k
QZeEJyrk4P3_fqHzXcNBw#bug_type] accessed on
October 25, 2021.

Pandey, N., Hudait, A., Sanyal, D. K., and Sen, A. (2017).
Automated classification of issue reports from a
software issue tracker. In Proceedings of the Progress in
Intelligent Computing Techniques: Theory, Practice, and
Applications, pp. 423-430. Singapore.

Pingclasai, N., Hata, H., and Matsumoto, K. (2013).
Classifying bug reports to bugs and other requests
using topic modeling. In Proceedings of the 20th Asia-
Pacific Software Engineering Conference, pp. 13-18.
Bangkok, Thailand.

Polpinij, J. (2021). A method of non-bug report
identification from bug report repository. Artificial Life
and Robotics, 26, 318-328.

Ramay, W. Y., Umer, Q., Yin, X. C., Zhu, C., and Illahi, I.
(2019). Deep neural network-based severity prediction
of bug reports. IEEE Access, 7, 46846-46857.

Terdchanakul, P., Hata, H., Phannachitta, P., and
Matsumoto, K. (2017). Bug or not? Bug report
classification using N-gram IDF. In Proceedings of the
IEEE International Conference on Software Maintenance
and Evolution, pp. 534-538. Shanghai, China.

	2.2.1 Bug report pre-processing
	2.2.3 Bug report classifier modeling and algorithm setting

