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ABSTRACT 
 
Foot strike pattern has a massive effect on the knee joint of the runner. An incorrect 
pattern while running can hurt the runner and significantly decrease running 
performance. The strike index is the most popular approach used to detect the strike 
pattern of a runner. However, this method requires expensive equipment in a 
laboratory environment, which creates difficulty for the experiment and significant 
costs. The purpose of this study paper was to develop a system to detect foot strike 
patterns during running using an inexpensive wireless wearable sensor system 
using hybrid center of pressure and principal component analysis for feature 
generation and machine learning for pattern classification. Furthermore, different 
classifiers were compared, to determine the optimal classifier. As a result, the 
proposed method improved performance in machine learning for foot strike pattern 
classification; the best classifier was support vector machine (radial basis function), 
which offered accuracy of 98.68%. This recognition system was thus established 
and able to successfully detect foot strike patterns. With this system, runners can 
adjust their foot strike pattern to achieve optimal results. 
 
Keywords: foot strike pattern recognition; machine learning; smart wireless wearable sensor 
system 
 
 

1. INTRODUCTION                                    
 
Running is the most popular form of exercise, as it does not 
require equipment, and is a basic human movement. 
Normally, running techniques, known as foot strike 
patterns, can be classified into three categories: rearfoot 
strike (RFS), where the heel of the foot first strikes the 
ground; midfoot strike (MFS), where the ball and heel hit 
the ground at similar times; and forefoot strike (FFS), 
where the ball of the foot first strikes the ground. About 
75% of runners use RFS, 24% use MFS, and the remaining 
1% use FFS (Hasegawa et al., 2007; Kerr et al., 1983). RFS 
has a higher impact load than FFS, which leads to more 
knee injuries. However, FFS causes greater strain on the 

calf and hamstring compared to RFS, which may cause 
Achilles tendinopathy. Therefore, one way to avoid injury 
is, for runners, to frequently change their foot strike 
patterns (Kulmala et al., 2013), which is not an easy task 
(Almeida et al., 2015). 
       Currently, foot strike patterns use the strike index (SI) 
for detection. The SI involves calculation of the center of 
pressure (CoP) on the plantar during an initial touch to the 
ground. The location of the CoP is then calculated along the 
longitudinal axis of the foot as a percentage of total foot 
length. The SI in the range of 0-33% is defined as RFS, 
34%-66% is MFS, and 67%-100% is FFS (Cavanagh and 
Lafortune, 1980). The SI method requires a force plate or 
force treadmill in a laboratory setting. Therefore, foot 
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strike pattern detection outside of a laboratory is  
difficult and costly (Cheung et al., 2017). Furthermore, the 
occurrence of noise on a force plate can reduce the efficiency 
of CoP calculation accuracy (Altman and Davis, 2012). 
       Altman and Davis (2012) used an 8-camera Nexus 
system with a high framerate to achieve the kinematic 
measurement of a foot strike angle (FSA). The FSA was 
measured from the angle of the foot at foot strike, 
subtracting the angle of the foot while standing. In an 
experiment, SI and FSA measurements were concurrently 
collected. The relationship between SI and FSA was then 
established using linear regression. Experimental results 
showed that FSA can be represented by the SI. Giandolini 
et al. (2014) identified foot strike patterns during running 
by using the measurement of time between the heel and 
metatarsal acceleration peaks (THM) (Giandolini et al., 
2014). THM was measured from two accelerometer 
sensors mounted on the shoes. The first sensor was affixed 
at the heel, and one more was affixed at the metatarsal. 
THM measurements were concurrently collected along 
with the FSA. Bravais-Pearson and Spearman correlation 
coefficients were used for the relationship analysis 
between THM and FSA in foot strike classification. Cheung 
et al. (2017) used low-cost force sensors for foot strike 
pattern detection to measure the onset time difference 
(OTD) (Cheung et al., 2017). OTD used two force sensing 
resistor (FSR) sensors mounted on the insole. The first 
sensor was affixed at the toe, and the other was affixed at 
the heel. The OTD measurement referred to the timing and 
location of FSR sensors at the point of contact. In a previous 
experiment, SI and OTD were measured and analyzed via 
linear regression. The experimental results indicated that 
OTD measurements can be provided along with a 
surrogate measure of SI. Eskofier et al. (2013) proposed a 
method to classify foot strike patterns by using the 
measurement of an accelerometer sensor installed in the 
laces of the right shoe (Eskofier et al., 2013). Acceleration 
in the three axes was continuously recorded along with a 
high-speed video, which created the labels of the foot strike 
pattern classes. A support vector machine (SVM) was then 
used to classify foot strike patterns. Experimental results 
showed that the SVM classifier could classify foot strike 
patterns with 95.3% accuracy. Hegde and Sazonov (2014, 
2015) proposed the use of SmartStep, which is a wearable 
sensor device consisting of a 3D accelerometer, 3D 
gyroscope, and resistive pressure sensor. SmartStep can be 
wirelessly connected to an android smartphone application 
with data recording and visualization capabilities. The 
authors also presented SmartStep 2.0, a versatile insole 
monitor that can wirelessly charge, which allows for the 
insole system to be used in different application scenarios.  
       Several studies developed a wireless wearable sensor 
system that uses insole sensors and an inertial measurement 
unit (IMU) to measure foot pressure along with a three-axis 
accelerometer and gyroscope. Measured data were used for 
posture and activity analysis via machine learning (Ramirez-
Bautista et al., 2017). Sazonov et al. (2011) proposed a shoe-
based wearable sensor device and pattern recognition 
methodology for six different postures and activities 
(Sazonov et al., 2011). The authors designed a wearable 
sensor device that integrated a pressure-sensitive insole and 
accelerometers. Acquired data were used for recognition 
with SVMs, and the results provided accuracy of 95% in 
posture and activity recognition. Furthermore, Antwi-Afari 
et al. (2018) proposed a method applying a wearable  

sensor system for the fall risk detection of construction  
workers. The data of 10 volunteers were collected from 
wearable insole pressure sensors (Antwi-Afari et al., 2018). 
Afterwards, machine-learning algorithms were used to  
learn the unique patterns of four loss-of-balance events  
(slip, trip, unexpected step-down, and twisted ankle). The  
study compared classification performance under various  
window sizes, feature groups, and types of classifiers. The 
experimental results showed that the best classification 
accuracy was achieved when using the random forest 
classifier. Ohnishi et al. (2019) proposed a method for 
recognizing 22 kinds of daily postures and gestures using 
foot pressure sensors. Furthermore, optimal positions for 
pressure sensors on the soles were investigated from the 
perspective of motion recognition accuracy, and the optimal 
measurement points for high recognition accuracy were 
examined by evaluating combinations of two and three foot 
pressure measurement areas on a round-robin basis. The 
experimental results showed that, in all areas, the best 
classifier was random forest with a classification accuracy of 
99.7%. Random forest was used in cases of two and three 
optimal areas. When selecting the two optimal points for all 
subjects, recognition accuracy was about 91.9% on average, 
and average recognition accuracy in a three-point evaluation 
was 98.4%. Zhao et al. (2019) proposed gait detection based 
on foot-mounted inertial sensors, which detected the 
following gait patterns: heel strike, foot flat, midstance, heel 
off, toe off, and midswing (Zhao et al., 2019). The hidden 
Markov model and a neural network were used in solving 
the problem of gait detection. Mei et al. (2020) classified foot 
types into normal feet, cavus feet, and planus feet using 
sensor insoles combined with 1D-convolutional neural 
networks (1D-CNNs). Experimental results showed that the 
highest classification accuracy was 99.26%. 
       This paper aimed to optimize foot strike pattern 
recognition via novel feature extraction. A novel and 
inexpensive smart wireless wearable sensor system was 
designed and installed inside running shoes for the real-time 
collection of foot strike patterns. The foot strike pattern data 
were pre-processed with a hybrid CoP and principal 
component analysis (PCA) for feature extractions before 
classifying the running pattern via machine learning. The 
different classifiers were compared and consisted of k-
nearest neighbor (KNN), SVM (linear kernel function), SVM 
(polynomial kernel function), SVM (radial basis function 
(RBF) kernel function), artificial neural network (ANN), and 
random forest (RF) to find the best classifier.  
 
 
2. MATERIALS AND METHODS    
 
2.1 Hardware description 
Figure 1 shows the hardware components. Twelve FSR 
sensors are illustrated in Figure 2a. Each FSR sensor 
consisted of a conductive polymer that predictably changed 
its resistance after applying a force to its surface. The greater 
the force, the lower the resistance. When no force was 
applied to the FSR, its resistance was larger than 1 MΩ. The 
FSRs used here had a round 20 mm diameter sensing area 
(Interlink Electronics, 2019). Twelve FSR sensors were 
placed onto each insole: one sensor was located at the hallux 
(toe); three sensors were located at the forefoot (first, third, 
and fifth metatarsals); five sensors were located at the paw; 
and three sensors were located at the heel. The 12 FSR sensors 
were connected with a CD74HC4067 multiplexer module.
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Figure 1. Hardware components 
 
       Figure 2c illustrates the prototype. The ESP32 
microcontroller and CD74HC4067 multiplexer module 
were encapsulated inside a plastic box, which was 
attached to the lateral side of the tibia. A 3.7 V lithium-ion 
rechargeable battery was used to power the circuit board 

(Figure 2b), which was firmly affixed to the lateral side of 
the plastic box. The 10 DOF IMU, GY86, is a small board 
and was attached to the laces of the running shoes (Figure 
2c). GY86 was used in Euler angle calculations and could 
connect to the ESP32 module through the I2Cprotocol. 
There were four sensors on the GY86: an accelerometer 
(MPU6050), a gyroscope (MPU6050), a magnetometer 

(HMC5883L), and a barometer and temperature sensor 
(MS5611). The ESP32 Wi-Fi of the left shoe acted as an 
access point for the system to create its own Wi-Fi 
network, to which the nearby ESP32 Wi-Fi of the right 
shoe and the Wi-Fi of the smartphone could be connected. 
       The signals from the FSR and IMU of both shoes were 
processed by the ESP32 microcontroller and packaged to 
be sent to the smartphone via the ESP32 Wi-Fi. The 
sensor data from both shoes were sent to the application 
on the smartphone with a sampling rate of 25 Hz for 
running monitoring, which was achieved on the Android 
platform.

 
 
 
 
 
 
 
 
 
      
 
 
 
 
 
 
 
 

Figure 2. (a) Placement of twelve FSR sensors underneath the insole, (b) circuit board, and (c) prototype and Euler angle in the 
left foot 
 
2.2 Data collection 
A total of 16 participants (14 males and 2 females; age 
range = 19–33 years; mean age = 20.9±2.6 years; height = 
172.5±5.6 cm; weight = 64.4±8.0 kg; exercise 2-5 
times/week) were recruited for data collection. The shoe 
size (US) of adult males ranged from 8 to 10, and that of 
adult females ranged from 5 to 7. All participants signed 
an informed consent form, and the experiment was 

approved by the Center for Ethics in Human Research, 
Khon Kaen University (HE632050). All participants were 
asked to run on an instrumented treadmill with a running 
speed of 6.5-7 km/h. Each participant ran under three 
conditions, RFS, MFS, and FFS, with instruction from the 
expert to assist MFS and FFS running by correcting the 
participant’s body posture. Each running condition lasted 
for 2 min 30 s with a 2-min break between conditions.  

(a) 

(b) (c) 
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2.3 Foot strike pattern recognition using machine 
learning 
In this article, foot strike patterns during running were 
grouped into one of three classes: RFS, MFS, and FFS. 
The proposed foot strike pattern recognition shown in 

Figure 3 was based on three steps: 1) CoP feature 
extraction; 2) feature selection (PCA algorithm);  
and 3) classification of foot strike patterns (where the 
multiclassifier algorithms of KNN, SVM, ANN, and RF 
were compared.

 

 
 
Figure 3. Proposed foot strike pattern recognition algorithm 

 
2.3.1 CoP feature extraction 
Raw data from the wireless wearable sensor system 
included FSR values and Euler angles and were transformed 
into CoP feature vectors. FSR values were calculated as the 
CoP (Cavanagh and Lafortune, 1980), and Euler angles were 
normalized. CoP feature vectors represented the CoP 

trajectories of the foot strike pattern. CoP feature extraction 
consisted of the following three steps. 
       First, sensor data were normalized to the scale of [0,1]. 
The placement coordinates of 12 FSR sensors were then 
configured by a physician (Figure 4), and Euler angles in the 
dataset were normalized.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Placement of 12 FSR sensors and corresponding coordinates 
 
       Second, FSR values in the dataset were calculated as  
the CoP with the previously normalized placement 
coordinates of 12 FSRs. Equations (1) and (2) show the CoP 
calculations: 

 CoPx = ∑ Fixi
M
i=1
∑ Fi

M
i=1

                    (1) 

 CoPy = 
∑ Fiyi

M
i=1

∑ Fi
M
i=1

                   (2) 
 

where CoPx represents the CoP location along the 
transverse axis of the foot, CoPy represents the CoP 
location along the longitudinal axis of the foot, M = 12 is the 
number of FSR sensors, Fi is the i output of FSR sensors, xi 
is the normalized i transverse axis coordinates of the  
FSR sensors, and yi is the normalized i longitudinal axis 
coordinates of the FSR sensors. Lastly, the CoP values and 
Euler angle time series were transformed into CoP  
feature vectors with a time interval of 1 s. The data  
sample of a single shoe was represented by vector 
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S = {CoPx,CoPy,∅,θ,φ} where CoPx, CoPy represent the CoP 
location along the transverse and longitudinal axis of the 
foot, respectively;  ∅ is roll; θ is pitch; and  φ is yaw. The 
time series of the data from both shoes were then 
integrated as fj  =  {SL, SR}j, j =  {1,2,3, … , K}, where SL, SR 
are the data samples of the left and right shoe, respectively, 
and K is the number of samples in 1 s at a 25 Hz sampling 
frequency. Here, the CoP feature vector of the data samples 
in 1 s at the 25 Hz sampling frequency was 
V = {f1,f2,f3,…,fK}. Due to transformation, the size of the CoP 
feature vectors was 250 elements (2 shoes × (2 coordinates 
of CoP + 3 axes of Euler angles) × 25 samples/s × 1 s = 250 
elements). A 1 s duration was chosen for the samples, as 
this time interval was sufficient to characterize the foot 
strike patterns. 
 
2.3.2 Feature selection: PCA for dimension 
reduction 

CoP feature extraction generated high-dimensional 
features (size of CoP feature vectors = 250 dimensions), 
which significantly reduced system performance. Feature 
selection was used to filter irrelevant or redundant 
features from the dataset to improve model accuracy and 
achieve faster training of algorithms. PCA was used in this 
work for feature selection because of its low noise 
sensitivity and decreased requirements for capacity and 
memory. PCA projects the entire dataset onto a different 
feature subspace through the following steps (Smith, 
2002). The first step involved computing the mean values 
in each dimension with Equation (3): 

 A� = 1
N
∑ ai

N
i=1                   (3) 

where A� is the mean of the data, ai is the i sample of the 
dataset, and N is the total number of samples of the dataset. 
       The second step was to compute the covariance matrix 
with Equation (4): 

 cov = 1
N–1

∑ (ai – A�)(ai – A� )TN
i=1                  (4) 

       The third step was to compute the eigenvectors and 
eigenvalues from the covariance matrix with Equation (5): 

 �Cov – λjI�zj = 0                 (5) 

where j = {1,2,3, …, D}, D = 250 is the size of the CoP feature 
vectors, I is the identity matrix, λj is the eigenvalues, and zj 
is the eigenvectors. Eigenvectors represent the variance 
directions, and eigenvalues represent the magnitude of 
variance. 
       The next step was to select components form a feature 
vector. Eigenvalues were sorted in descending order, and 
d eigenvectors that corresponded to the d largest 
eigenvalues were selected, where d is the number of 
components of the new feature subspace (d<250). The 
approach was to select the number of components by using 
the explained variance calculated from the eigenvalues 
(Smith, 2002). The explained variance was calculated for 
the components to generate a cumulative summation of 
the explained variance plot in which the number of 
components selected from a cumulative summation of the 
explained variance at d components was slightly different. 
Furthermore, the projection matrix (W) was constructed 
from the d selected eigenvectors. 
       Lastly, for projection onto the new feature space, the 
CoP feature dataset was transformed into the new d-

dimensional subspace by multiplying the transpose of W as 
shown in Equation (6): 
 P = WTa                  (6) 
where P is the d-dimensional matrix of the transformed 
CoP feature dataset. 
 
2.3.3 Pattern recognition models of foot strike 
patterns 
To classify different types of foot strike patterns, machine-
learning classifiers were used to learn unique sensor data 
patterns from foot plantar pressure data and Euler angles 
based on CoP feature extraction. We investigated the  
best classification methods, including KNN, SVM, RF, and 
ANN. Furthermore, for SVM, the kernel function was 
modified to include three kernels: linear kernel (SVM 
linear function), polynomial kernel (SVM poly function), 
and radial basis function kernel (SVM RBF function). 
       KNN is a lazy learning algorithm. When an unknown 
data class is received, the algorithm compares similarities 
with the closest k number of instances, and the unknown 
data class is assigned a class label based on the most 
classes of k instances. KNN is performed selecting 
parameter k, calculating the distance metric between a 
new data point and the entire sample dataset, sorting the 
sample dataset in ascending order by distance and 
choosing the lowest-distance k data samples. In this work, 
Euclidean distance was used as the distance metric 
(Kataria and Singh, 2013). 
       RF is an ensemble classifier that generates a model 
from several decision trees, each of which is trained using 
a different subset of the entire dataset. Afterwards, each 
decision tree model calculates the prediction results to 
choose the decision tree with the best prediction. RF is 
performed by feeding the input dataset into each tree in the 
RF, to training each tree, and aggregating the prediction 
results of each tree with voting and selecting the tree with 
the highest number of votes (Mushtaq and Mellouk, 2017). 
       SVM is a classification technique used in pattern 
recognition. The principle of SVM is to separate the best 
hyperplanes between the data points of different classes. 
The training principle of SVM is to map a set of training data 
D = �xi,yi�, i = 1, 2, 3,…, N where xi =(xi1, xi2, …, xim) ϵ Rm, 
yiϵ{1,–1}, and N is the total number of samples in the 
training set. The optimization problem for SVM is outlined 
in Equations (7)-(9) (Hu et al., 2004):  

      minw,ξ,b J(w,ξ)  = 1
2
‖w‖2 + C∑ ξi

N
i=1                 (7) 

Thus, 

                   yi(wTφ(xi) + b) + ξi – 1 ≥ 0, i = 1, …, N               (8) 
                                            ξi ≥ 0 i = 1,…, N                                 (9) 

where C is a parameter selected by users that is a positive 
constant, w is the weight vector, ξi is a positive slack 
variable that represents the distance between xi and the 
decision boundary, φ is a nonlinear function used to map 
input data point xi into a higher dimensional space, and b is 
a bias value. However, Lagrange multipliers (β) are used in 
Equation (8). This model can be rewritten as Equation (10): 

                           f(x) = ∑ βiyiK(x,xi) + bxi∈SV               (10) 

where K(x,xi) is the kernel function. In this work, we used the 
polynomial and RBF kernels, defined as K(x,xi) = (γ𝑥𝑥𝑇𝑇𝑥𝑥𝑖𝑖+r)𝑑𝑑 
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and K(x,xi) = exp(–γ‖𝑥𝑥 − 𝑥𝑥𝑖𝑖‖2), respectively, where γ, r, 
and d are the kernel parameters. The SVM classifier 
implemented for the multiclassification problem was one-
against-one. 
      ANN is a popular machine-learning technique that  
is widely used for pattern recognition. The most  
popular neural network algorithm is the multilayer 
backpropagation neural network, which consists of three 
layers: an input layer, a hidden layer, and an output layer. 
In this work, a multilayer backpropagation neural network 
was used, with an input layer containing the number of 
input nodes according to the size of the CoP feature 
vectors, an output layer with three output nodes, and a 
hidden layer to control parameters ranging from 3 to 250 
nodes. The activation functions of the hidden and an output 
layer were ReLU and softmax, respectively. 
       For performance assessment, sensor data were used to 
divide the sample data into training and testing sets. In 
total, 80% of the sample sensor data from 2-min trials of all 
subjects and running conditions were used for tenfold 
cross-validation to find the optimal parameters and build 
the classifier. Twenty percent of the sample sensor data 
from 30-s trials of all subjects and running conditions were 
reserved for validation testing. Tenfold cross-validation 
was applied to divide the data into ten sections. Nine 
sections were used as the training set, and one section was 
used as the testing set. This process was repeated until 
each of the ten sections was used as the testing set. 

Accuracy was calculated from the average accuracy across 
tenfold cross-validation. 
       A grid search approach was used to find the optimal 
parameters of classifiers. The k parameter of KNN was 
tuned for k ∈ {3, 4, 5, …, 15}. The number of trees in the RF 
was tuned for N_estimators ∈ {100, 300, 500, 800, 1200,  
1500, 2000}. The maximum depth of the RF tree was tuned 
for MaxDepth ∈ {5, 8, 15, 25, 30, 40}. The C parameter of 
the SVM was tuned for C ∈ {2–5,2–4,2–3, …, 215}. The degree 
parameter of the polynomial kernel was tuned for 
d ∈ {2, 3, 4, 5}. The gamma parameter of the RBF kernel 
was tuned for γ ∈ {2–15,2–14,2–13,…, 23}. The hidden size 
parameter of ANN was tuned for hidden sizes ∈ {3, 4, 5,  
…, 250}. 
 
 
3. RESULTS AND DISCUSSION 
 
In total, 180,000 samples were collected. Due to the 
decimation of CoP feature extraction, the number of the 
feature vectors totaled 7,200 samples that were used in 
the comparison experiments between CoP and the 
hybrid of CoP and PCA. Furthermore, all CoP feature 
vectors were calculated to generate a cumulative 
summation of the explained variance plot, as shown in 
Figure 5.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 5. Relationship plot between number of components and explained variance of the CoP feature dataset 

 
       Figure 5 shows that 92 components were selected, 
since the explained variance of the 92 components was 
slightly different. 
       In this paper, the experiment was divided into two 
phases. First, the training set experiment with tenfold 
cross-validation was used to find the parameter that gave 
the best average accuracy for each classifier (KNN, SVM 

(linear function), SVM (poly function), and SVM (RBF 
function), ANN, and RF), as shown in Table 1. Second, for 
the testing set for validation testing with the five different 
classifiers, a model was built from the training set using the 
optimal parameters. A confusion matrix of the six different 
classifier models from validation testing is presented in 
Table 2.
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Table 1. Comparison performance of the six classification models 
 

Classifier Optimal parameter Feature Number of  
features 

Accuracy (%) Time (s) 

KNN k : 3 COP 250 72.11±10.0 1.4199 
COP + PCA 92 72.15±10.0 0.3276 

SVM linear 
function 

C : 0.0625 COP 250 66.78±13.3 7.6297 
COP + PCA 92 66.90±13.1 2.9655 

SVM poly 
function 

{C, degree}: {32768, 5}  COP 250 82.23±11.1 3.1608 
COP + PCA 92 78.54±9.9 1.5329 

SVM RBF function {C,γ}:{8, 0.125} COP 250 85.03±8.9 3.2255 
COP + PCA 92 85.89±9.1 1.1884 

ANN hidden sizes: 236 COP 250 84.27±10.3 14.9785 
COP + PCA 92 85.03±8.5 5.6793 

RF �N_estimators
MaxDepth �: �300

30 � COP 250 83.76±9.0 12.2358 
COP + PCA 92 75.78±10.3 10.5513 

 
       Table 1 presents the accuracy and time of the training set 
with tenfold cross-validation to find the optimal parameters. 
The best average accuracy for the parameter of classifiers 
was obtained with the following parameters: k = 3 in KNN, C 
= 0.0625 in SVM (linear function), C = 32,768 and d = 5 in 

SVM (poly function), C = 8 and γ = 0.125 in SVM (RBF kernel 
function), hidden sizes = 236 in ANN, and N_estimators = 
300 and MaxDepth = 30 in RF. The best method was found 
to be the SVM (RBF function) and CoP + PCA feature 
extraction, with an average accuracy of 85.89±9.1%.

Table 2. Confusion matrix of six different classifiers with CoP + PCA feature extraction 
 

Classifier Actual Predicted 
FFS RFS MFS Total of 

predicted 
Recall 

KNN FFS 467 6 7 480 0.9729 
RFS 5 445 30 480 0.9271 
MFS 9 32 439 480 0.9146 
Total of actual 481 483 476   
Precision 0.9709 0.9213 0.9223  0.9382 

SVM linear function FFS 451 7 22 480 0.9396 
 RFS 21 351 108 480 0.7313 
 MFS 89 65 326 480 0.6792 
 Total of actual 561 423 456   
 Precision 0.839 0.8298 0.7149  0.7833 
SVM poly function FFS 471 2 7 480 0.9813 
 RFS 15 448 17 480 0.9333 
 MFS 17 8 455 480 0.9479 
 Total of actual 503 458 479   
 Precision 0.9364 0.9782 0.9499  0.9542 
SVM RBF function FFS 475 2 3 480 0.9896 
 RFS 1 474 5 480 0.9875 
 MFS 5 3 472 480 0.9833 
 Total of actual 481 479 480   
 Precision 0.9875 0.9896 0.9833  0.9868 
ANN FFS 472 2 6 480 0.9833 
 RFS 0 472 8 480 0.9833 
 MFS 7 15 458 480 0.542 
 Total of actual 479 489 472   
 Precision 0.9854 0.9652 0.9703  0.9736 
RF FFS 464 6 10 480 0.9667 
 RFS 3 454 23 480 0.9458 
 MFS 17 25 438 480 0.9125 
 Total of actual 484 485 471   
 Precision 0.9587 0.9361 0.9299  0.9417 

3.1 Convergence test 
Table 2 presents the confusion matrix, showing the 
classification accuracy of KNN, SVM (linear function), SVM 

(poly function), SVM (RBF function), ANN, and RF with 
hybrid CoP + PCA feature extraction based on validation 
testing. The numbers in italics show how much of the 
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predicted class was correct. Recall is the ratio of the correctly 
predicted classes, compared to the actual classes, and the 
sum of all predicted classes in a row. Precision is the ratio 
between the correctly predicted classes, compared to the 

actual classes, and the sum of all predicted classes in a 
column. The confusion matrix in Table 2 showed that the 
lowest overall misclassification was achieved through the 
SVM (RBF function).

 
Table 3. Accuracy and time of validation testing 
 

Classifier Feature Accuracy (%) Time (s) 

KNN COP 93.75 1.3962 
COP + PCA 93.82 0.3051 

SVM linear function COP 77.77 1.1319 
COP + PCA 78.33 0.3411 

SVM poly function COP 97.77 0.4737 
COP + PCA 95.42 0.2303 

SVM RBF function COP 97.77 0.7619 
COP + PCA 98.68 0.2553 

ANN COP 97.15 0.0179 
COP + PCA 97.36 0.0069 

RF COP 96.66 0.0867 
COP + PCA 94.17 0.0787 

       Table 3 presents the accuracy and time of the testing 
set with six different classifier models built from the 
training set using optimal parameters. The best method 
was the SVM (RBF function) and CoP + PCA feature 
extraction with an accuracy rate of 98.68%. 
       The acquisition system in this paper consisted of 12 FSR 
sensors underneath the insole and IMU mounted onto the 
instep. The classification system distinguished between 
different foot strike patterns with a classification rate of 
98.68%. The results showed that applying CoP feature 
extraction and PCA for new feature generation helped 
improve the efficiency of classifiers in solving the problem of 
foot strike pattern recognition. CoP feature extraction was 
based on CoP trajectory measurements under the plantar 
with Euler angle measurements on the instep over a given 
time period. These data were used to distinguish between 
the characteristics of various foot strike patterns. 
Furthermore, the dataset was decimated via CoP feature 
extraction, which generated high-dimensional features. 
Thereafter, PCA was applied for dimensional reduction, 
which reduced the number of dimensional features from 
250 to 92. PCA helped filter irrelevant and redundant 
features from the dataset, resulting in classifier accuracy 
improvements, a smaller size, and faster training. 
       In addition, we compared the results in Table 1 for six 
different classifiers with hybrid CoP–PCA feature extraction. 
Tenfold cross-validation was used to find the optimal 
parameters and showed that the SVM (RBF function) 
provided the best average accuracy of 85.89±9.1%, followed 
by ANN, the SVM (poly function), RF, KNN, and  
the SVM (linear function), which provided average  
accuracy values of 85.03±8.5%, 78.54±9.9%, 75.78±10.3%, 
72.15±10.0%, and 66.90± 13.1%, respectively. Table 3 
shows the case of validation testing, indicating that SVM 
(RBF function) provided the best accuracy with 98.68%, 
followed by ANN, SVM (poly function), RF, KNN, and SVM 
(linear function), with accuracy of 97.36%, 95.42%, 94.17%, 
93.82%, and 78.33%, respectively. In both cases, the results 
showed that SVM (RBF function) was the best classifier. 
Furthermore, the results showed that hybrid CoP-PCA 
feature extraction was more accurate than CoP feature 
extraction for the SVM (RBF function), ANN, SVM (linear 

function), and KNN. The accuracy of the RF and SVM (poly 
function) classifiers was lower. 
       The results in Table 2 showed that the proposed 
method achieved good precision and recall in the 
classification of foot strike patterns, while the SVM (RBF 
function) provided the lowest overall misclassification. 
       Overall, the proposed approach was able to classify the 
3 types of foot strike patterns with good accuracy. In the 
comparison of the six different classifiers, SVM (RBF 
function) was the optimal classifier for foot strike pattern 
classification. This system is compact, wireless, and 
inexpensive and can be applied to several tasks, such as the 
real-time detection of foot strike patterns during running 
to adjust the foot strike pattern of the runner. 
 
 
4. CONCLUSION 
 
In this study, we developed and evaluated a novel 
optimization method using a hybrid of CoP and PCA in the 
feature extraction process for foot strike pattern recognition. 
A smart wireless wearable sensor system was designed using 
FSRs and IMU to collect the real time foot strike patterns, and 
these data were then sent to be classified using a machine 
learning model. The six machine learning models of KNN, SVM 
(linear function), SVM (poly function), SVM (RBF function), 
ANN, and RF were also examined to find the best classifier. 
The proposed model outperformed the unoptimized model, 
resulting in better accuracy and robustness. These promising 
results could help runners reduce injuries caused by using 
repetitive foot strike patterns over a long period of time while 
running. However, the measurement of foot strike patterns 
across various sizes, numbers, allocations of FSR sensors, 
and surface inclinations may afford different results, thus 
presenting a challenge for accurate recognition. This 
limitation could be studied in the future.  
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