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Abstract  
Intuitionistic fuzzy soft sets (IFSSs) can effectively represent and simulate the uncertainty and diversity of 

judgment information offered by decision makers.  In comparison to fuzzy soft sets (FSSs), IFSSs are highly beneficial 

for expressing vagueness and uncertainty more accurately.  As a result, in this paper, we offer an approach for solving 

real-life group decision making problems (DMPs) with fuzzy parameterized intuitionistic fuzzy soft multisets (p-sets) by 

extending the fuzzy soft multiset (FSMS) based decision-making method (DMM).  FSMS is a fantastic and useful tool to 

deal with DMPs and all the existing FSMS-based DMMs are good for solving DMPs, but in their methods, they used 

FSMS evaluated by only one decision maker, and the importance of membership degrees of parameters are not 

considered, so these methods are may not be useful in the modelling of group-DMPs, but the constructed method in this 

paper is very advantageous for solving real-life group-DMPs.  To demonstrate the applicability of our DMM in helpful 

applications, certain real-life examples are used. 
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1.  Introduction 

Soft set (SS) was first proposed by 

Molodtsov (1999) as a fundamental and useful 

mathematical method for dealing with complexity, 

unclear definitions, and unknown objects 

(elements).  Since there are no limitations to the 

description of elements in SST, researchers may 

choose the type of parameters that they need, 

significantly simplifying DMPs and making it 

easier to make decisions in the absence of partial 

knowledge, it is more effective.  While several 

mathematical tools for modeling uncertainties are 

available, such as operations analysis, probability 

theory, game theory, fuzzy set (FS), rough set (RS), 

and interval valued fuzzy set (IVFS), intuitionistic 

fuzzy set (IFS), each of these theories has inherent 

difficulties.  Furthermore, all of these theories lack 

parameterization of the tools, which means they 

can't be used to solve problems, especially in the 

economic, environmental, and social realms. In the 

sense that it is clear of the aforementioned 

difficulties, SS (Molodtsov, 1999) stands out. 

The SS (Molodtsov, 1999) is extremely 

useful in a variety of situations.  Molodtsov (1999) 

developed the basic results of SS and successfully 

applied it to a variety of fields, including the 

smoothness of functions, operations analysis, 

Riemann integrations, game theory, probability, 

and so on.  Maji, Biswas, and Roy (2003) went on 

to present several new concepts on SS, such as 

intersection, union, complements, and subset, etc. 

as well as a detailed discussion of the use of SS in 

DMPs.  Ali, Feng, Liu, Min, and Shabir (2009) 

presented several operations on SSs and shown that 

certain De Morgan's rules hold in SSs to these new 

definitions.  Thereafter, several researchers doing 
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their innovative research work in this theory and 

applied in various field.  Rajput, Thakur, and Dubey 

(2020) defined soft almost ββ-continuity in soft 

topological spaces.  Dalkılıç (2021) introduced a 

novel approach to SS based DM under uncertainty. 

Since Zadeh (1965) introduced the idea of 

FSs, several new approaches and theories for 

dealing with imprecision and ambiguity have been 

proposed.  Maji, Biswas, and Roy (2001a; 2001b) 

described FSSs by combining SSs and FSs, which 

have a lot of potential for solving DMPs.  The 

applications of FSS theory have been gradually 

concentrated by using these concepts.  

Lathamaheswari, Nagarajan, Kavikumar, & 

Broumi (2020) introduced the concept of triangular 

interval type-2 FSS and also, shown its 

applications. Petchimuthu, Garg, Kamacı, and 

Atagün (2020) defined generalized products of 

fuzzy soft matrices and the mean operators, as well 

as the applications of these concepts in MCGDM.  

Paik and Mondal, (2020) introduced a distance-

similarity technique to solve FSs and FSSs based 

DMPs.  Paik and Mondal (2021) had shown the 

representation and applications of FSSs in a type-2 

environment.  Močkoř and Hurtik (2021) used the 

concept FSSs in image processing applications.  

Gao and Wu (2021) defined filter and its 

applications in fuzzy soft topological spaces.  

Dalkılıç and Demirtaş (2021) introduced the idea of 

bipolar fuzzy soft D-metric spaces.  Bhardwaj and 

Sharma (2021) described an advanced uncertainty 

measure using FSSs and shown its application in 

DMPs. 

In some circumstances, generalizations of 

FS such as IFS (Atanassov, 1986) and IVIFS 

(Atanassov & Gargov, 1989) make representations 

of the objective world more convincing, functional, 

and exact, making it very promising.  Many 

scholars have recently concentrated on both 

theoretical and applied research relating to the idea 

of IFS and IVIFS see (Iqbal, & Rizwan, 2019; Joshi, 

2020; Lathamaheswari et al., 2020; Liu, & Jiang, 

2020).  As a generalization of FSs, Atanassov 

(1986) proposed the idea of IFSs.  Maji, Biswas, 

and Roy (2001a; 2001b) developed the concept of 

IFSS as an important mathematical method for 

solving DMPs in an uncertain situation by 

combining SS with IFS, and Jiang, Tang, and Chen 

(2011) proposed an adjustable approach to IFSS 

dependent DMPs.  Many scholars have recently 

concentrated on both theoretical and applied studies 

relating to the principle of IFSS.  Wan, Wang, and 

Dong (2019) presented intuitionistic fuzzy 

preference relation and group DMM, thereafter, 

Wan, Xu, and Dong (2020) proposed an Atanassov 

IF programming approach for solving group DMPs 

with interval-valued Atanassov IF preference 

relations. Dong (2020) developed some theories 

and DMMs based on IVIFS.  Wan and Dong (2021) 

introduced a new best-worst method extension 

based on intuitionistic fuzzy reference comparisons.  

Liu, Wan, and Dong (2021) proposed an axiomatic 

design-based mathematical programming tool for 

heterogeneous MCGDM with linguistic fuzzy truth 

degrees.  Athira, John, and Garg (2020) presented a 

novel entropy measure of Pythagorean FSSs.  Garg 

and Arora (2018, 2020a; 2020b) introduced the idea 

of bonferroni mean aggregation operators under 

IFSS environment with their applications in DMPs 

and also, proposed TOPSIS technique based on 

correlation coefficient for solving DMPs with IFSS 

information.  Based on the Archimedean t-norm of 

the IFSS information, Garg and Arora (2021) 

proposed generalized Maclaurin symmetric mean 

aggregation operators.  Garg (2021a; 2021b)/ 

introduced several novel exponential operation 

rules and operators for interval-valued q-rung 

orthopair FSs in group DMPs, as well as the idea of 

connection number based q-rung orthopair FSs and 

their application in DMPs. 

A multiset (bag) (Yager, 1986) is a series 

of items in which there is a lot of repetition of 

elements. Yager (1986) discusses the bag structure's 

utility in relational databases and examples of bag 

applications in practice.  Several authors have since 

looked into the wider range of properties and uses 

of bags.  As a generalization of SS and bag, 

Alkhazaleh and others (Alkhazaleh, Salleh, & 

Hassan, 2011; Balami & Ibrahim 2013) introduced 

the idea of soft multiset (SMS) and its fundamental 

operations such as union, complement, and 

intersection, etc., and thereafter, Mukherjee and 

others (Tokat, & Osmanoglu, 2013; Mukherjee & 

Das, 2014) introduced the idea of topological space 

and investigated its connectedness and compactness 

of SMS. Recently, Riaz, Karaaslan, Nawaz, & 

Sohail. (2021) presented the idea of soft multi-RS 

topology as well as its applications in multi-criteria 

DMPs.  Alkhazaleh and Salleh (2012) initiated the 

FSMS theory as speculation of SMS and focused on 

the use of FSMS-based DMPs.  Mukherjee and Das 

(2015a; 2015b; 2015c) pointed out that the 

Alkhazaleh and Salleh (2012) methodology is 

insufficient for comprehending FSMS-based 

DMPs, and they introduced a new DMM to solve 
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FSMS based DMPs.  Recently, Das (2018) 

introduced the theory of weighted-FSMS, and 

studied its applications in DMPs.  Akin (2020) 

proposed an application of FSMSs to algebra.  As a 

generalization of FSMS, Mukherjee and Das (2014; 

2015a; 2015b; 2015c; 2016) introduced the idea of 

IFSMS theory.  There were also some more articles 

devoted to this topic, such as Mukherjee & Das 

(2013; 2015a; 2015b; 2015c). 

 

Related works 

Alkhazaleh and Salleh (2012) initiated the 

FSMS theory as speculation of SMS (Alkhazaleh et 

al., 2011) and focused on the use of FSMS-based 

DMPs.  Mukherjee and Das (2015a; 2015b; 2015c) 

pointed out that the Alkhazaleh-Salleh 

methodology (Alkhazaleh & Salleh, 2012) is 

insufficient for comprehending FSMS-based 

DMPs, and they introduced a new DMM to solve 

FSMS based DMPs. Recently, Das (2018) 

introduced the theory of weighted-FSMS, and 

studied its applications in DMPs.  Balami, Gwary, 

and Terkimbir (2018) proposed an FSMS approach 

to DMPs and Akin (2020) proposed an application 

of FSMSs to algebra.  As a generalization of FSMS, 

Mukherjee and Das (2014) introduced the idea of 

IFSMS and studied some topological properties on 

IFSMSs.  There were also some more articles 

devoted to this topic, such as Mukherjee and Das 

(2015a; 2015b; 2015c) introduced the idea of 

relations on IFSMSs.  Thereafter, Mukherjee and 

Das (2016) studied more results on IFSMSs and 

shown their applications in information systems.  

All the existing DMMs given in (Alkhazaleh, & 

Salleh, 2012; Mukherjee, & Das, 2015a; 2015b; 

2015c; Balami et al., 2018; Das, 2018; Akin, 2020) 

are good for solving DMPs based on FSMS, but 

there have some limitations.  IFSSs can effectively 

represent and simulate the uncertainty and diversity 

of judgment information offered by decision 

makers.  In comparison to FSSs, IFSSs are highly 

beneficial for expressing vagueness and uncertainty 

more accurately.  As a result, we offer an approach 

for solving group-DMPs with p-sets by extending 

the FSMS-based DMM.  All the methods given in 

(Alkhazaleh, & Salleh, 2012; Mukherjee, & Das, 

2015a; 2015b; 2015c; Balami et al., 2018; Das, 

2018; Akin, 2020) are good for solving DMPs, but 

in their methods they used FSMS evaluated by only 

one decision maker and importance of membership 

degrees of parameters are not considered, so these 

methods are may not be useful in the modelling of 

group-DMPs, but the constructed method in this 

paper is very advantageous for group-DMPs.  A 

real-life example is given to show how our DMM 

can be used in practical applications.  First, we'll go 

over some definitions and outcomes that will assist 

us to continue our discussion (Section 2).  The 

concept of a p-set has been introduced in section 3, 

and its basic qualities are being investigated.  Next, 

we have characterized the aggregate FS and defined 

several forms of t-norm product (TNP) and t-

conorm product (TCP) of p-sets (Section 4).  In 

section 5, we provide an adjustable DMM to solve 

p-set based DMPs using these products, and some 

real-life examples demonstrate the practicality of 

our proposed p-set based DMM in practice (Section 

6).  In section 7, we compare our DMM to other 

FSMS-based DMMs that are already available. 

 

2.  Preliminary  

First, we'll go over some definitions and 

outcomes that will assist us to continue our 

discussion.  Let VU stand for the initial universe, EV 

for the parameter arrangement, P(VU)
 
for the power 

set of VU and also, let AE, BE, CE ⊆ EV 

 

Definition 2.1 (Zadeh, 1965) An FS  on 𝑉𝑈 is a 

set having the form ψ= {(v,μ
ψ
(v)) :v∈VU},

 
where 

the function μ
ψ
:VU→[0,1] is said to be the 

membership function and μ
ψ
(v)

 
means the degree 

of membership of each member v∈VU. 
If μ

ψ
(v)=1,∀v∈VU, then  becomes a crisp 

(ordinary) set. We represent the collection of all FSs 

over VU by FS(VU). 
 

Definition 2.2 (Zadeh, 1965) L e t ψ,ϕ∈FS(VU).  
Then the FS-union of  and φ is an FS denoted by 

ψ∪ϕ and defined as 

ψ∪ϕ= {(v, max { μ
ψ
(v),μ

ϕ
(v)}) :v∈VU}. 

 

Definition 2.3 (Zadeh, 1965) L e t ψ,ϕ∈FS(VU).  
Then FS-intersection of   and φ is an FS, denoted 

by ψ∩ϕ
 
and defined as 

ψ∩ϕ= {(v, min { μ
ψ
(v),μ

ϕ
(v)}) :v∈VU}.                

 

Definition 2.4 (Zadeh, 1965) L e t ψ∈FS(VU).  
Then complement of  is denoted by ψC and 

defined asψC= {(v,1-μ
ψ
(v)) :v∈VU}. 
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Definition 2.5 (Zadeh, 1965) L e t ψ,ϕ∈FS(VU).  
Then  is said to be a fuzzy subset of φ, denoted by 

ψ⊆ϕ if μ
ψ
(v)≤μ

ϕ
(v), ∀v∈VU. 

 

Definition 2.6 (Atanassov, 1986) An IFS  is the 

structure ψ= {⟨v,μ
ψ
(v), νψ(v)⟩ :v ∈ VU},

 
where μ

ψ
: 

VU→[0,1] . and  νψ: VU→[0,1] are real valued 

functions satisfying the condition 0 ≤ μ
ψ
(v)+ 

νψ(v)≤1,  ∀v ∈ VU.
  

We represent the class of all 

IFSs on VU by IFS(VU). 
 

Definition 2.7 (Molodtsov, 1999) A soft set on VU 

refers to a couple (ψ
S
,AE), where ψ

S
:AE→P(VU) is 

a mapping. 

 

Definition 2.8 (Maji, Biswas, & Roy, 2001a; 

2001b) A pair (ψ
S
,AE)

 
is called an IFSS over VU, 

where ψ
S
 is a function given by ψ

S
:AE→IFS(VU).  

We represent the class of all IFSSs on VU by 
𝐼FSS(VU). 
 

Definition 2.9 (Maji, Biswas, & Roy, 2001a; 

2001b) L e t (ψ
S
,AE), (ϕ

S
,BE)∈IFSS(VU) Then 

(ψ
S
,AE) is said to be a sub-IFSS of (ϕ

S
,BE), denoted 

by (ψ
S
,AE)⊆(ϕ

S
,BE) if 

 
(i).  A

E⊆B
E  

(ii). ∀r∈AE, μ
ψS
(r)
(v) ≤ μ

φs
(r)

 and vφs
(r)(v) ≥ 

Vφs
(r)(v),∀v∈VU  

 
 

Definition 2.10 (Maji, Biswas, & Roy, 2001a; 

2001b b) The union of two IFSSs 

(ψ
S
,AE), (ϕ

S
,BE)∈IFSS(VU)

 
is an IFSS (σS,CE), 

where
 
CE=AE∪BE and ∀r∈CE, v∈VU,

  
 

μ
σS(r)

(v)=  

{

μ
ψS(r)

(v),                          if r∈AE-BE

μ
ϕS(r)

(v),                           if r∈BE-AE

max { μ
ψS(r)

(v),μ
ϕS(r)

(v)},   if r∈AE∩BE,

      

  

νσS(r)(v)=   

{

νψS(r)(v),                          if r∈AE-BE

νϕS(r)(v),                           if r∈BE-AE

min { νψS(r)(v),νϕS(r)(v)},   if r∈AE∩BE.
 

We write (ψ
S
,AE)∪(ϕ

S
,BE)=(σS,CE). 

 

Definition 2.11 (Maji, Biswas, & Roy, 2001a; 

2001b) The intersection of two IFSSs(ψ
S
, AE), (ϕ

S
, 

BE) ∈ IFSS(VU) 
is an IFSS (σS,CE), where

 
CE=AE∪BE and ∀r∈CE, v∈VU, 

μ
σS(r)

(v)=  

{

μ
ψS(r)

(v),                          if r∈AE-BE

μ
ϕS(r)

(v),                           if r∈BE-AE

min { μ
ψS(r)

(v),μ
ϕS(r)

(v)},   if r∈AE∩BE,

    

   

νσS(r)(v)=   

{

νψS(r)(v),                          if r∈AE-BE

νϕS(r)(v),                           if r∈BE-AE

max { νψS(r)(v),νϕS(r)(v)},   if r∈AE∩BE.
 

We write (ψ
S
,AE)∩(ϕ

S
,BE)=(σS,CE).

 
 

Definition 2.12 (Maji, Biswas, & Roy, 2001a; 

2001b) L e t (ψ
S
,AE)∈IFSS(VU).  Then 

Complement of (ψ
S
,AE), denoted by (ψ

S
,AE)

C
 and 

defined as (ψ
S
,AE)

C
=(ψ

S
C,AE), where 

ψ
S
C(r)=(ψ

S
(r))

C
, for r∈AE. 

 

Definition 2.13 (Mukherjee & Das, 2014) 

Suppose {Vi:i∈Λ}
 

represent a collection of 

nonempty universes and {SVi
:i∈Λ} represent a 

collection of nonempty sets of parameters, such that 

∩i∈ΛVi=φ. Let VU=∏
i∈Λ

IFS(Vi), where IFS(Vi)
 

denote the arrangement of all the sub-IFSs of Vi, 

EV=∏
i∈Λ

EVi
 and AE⊆EV.  Then an IFSMS on VU 

refers to a couple (F,AE), where F:AE→VU 
is a 

mapping defined by 

F(e)= ({v
(μF(e)(v),νF(e)(v))

:v∈Vλ} :λ∈Λ). Thus an 

IFSMS (F,AE) over VU can be represented by 

(F,AE)= {(e, ({v(μF(e)
(v),νF(e)(v))

:v∈Vλ} :λ∈Λ)) :e∈AE}. 

We represent the class of all IFSMSs on VU by 

IFSMS(VU,AE), where the parameter set AE is 

fixed. 

 

Definition 2.14 (Mukherjee & Das, 2014) For 

any IFSMS (F,AE)∈IFSMS(VU,AE), a pair 

(Fλ,AE) is said to be a Vλ-IFSMS-part (IFSMSP) 

of (F,AE), where Fλ:AE→Vλ 
is a mapping defined 

by  F(e)= {v
(μF(e)(v),νF(e)(v))

:v∈Vλ}  for  e∈AE.

  

Thus 

an IFSMSP (Fλ,AE) over VU can be represented by 

(Fλ,AE)= {(e, {v
(μF(e)(v),νF(e)(v))

:v∈Vλ}) :e∈AE}. 
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Definition 2.15 (Mukherjee & Das, 2014) An 

IFSMS (F,AE)∈ IFSMS(VU,AE) is called a null 

IFSMS, denoted by ΦA, if  for all e∈AE. μ
F(e)

(v)=0 

and νF(e)(v)=1, ∀v∈Vλ, λ∈Λ,
 

i.e. ΦA= {(e,({v(0,1):v∈Vλ}:λ∈Λ)) :e∈AE}. 

Definition 2.16 (Mukherjee & Das, 2014) Let 

(F,AE)∈IFSMS(VU,AE).  If for every e ∈ AE, 
μ

F(e)
(v)=1 and νF(e)(v)=0, ∀v∈Vλ, λ∈Λ, then 

(F,AE) is called an absolute IFSMS, denoted by 

VA,i.e. VA= {(e,({v(1,0):v∈Vλ}:λ∈Λ)) :e∈AE} .  

Definition 2.17 (Mukherjee & Das, 2014) For two 

IFSMSs (F,AE),(G,AE)∈IFSMS(VU,AE), we say 

that (F,AE) is an IFSM-subset of (G,AE) if ∀e∈AE,

 

 

μ
F(e)
(v)≤μ

G(e)
(v) and 

νF(e)(v)≥νG(e)(v), ∀v∈Vλ, λ∈Λ.We write 

(F,AE
)⊆̃(G,AE

). 
  

Definition 2.18 (Mukherjee & Das, 2014) Union between two IFSMSs (F,AE),(G,AE)∈IFSMS(VU,AE) 
is 

denoted by (F,AE)∪(G,AE) and defined as  

(F,AE)∪(G,AE)    = {(e, ({v
(max{μF(e)(v),μG(e)(v)}, min{νF(e)(v),νG(e)(v)})

:v∈Vλ} :λ∈Λ)) :e∈AE}. 

Definition 2.19 (Mukherjee & Das, 2014) Intersection between two IFSMSs (F,AE),(G,AE)∈IFSMS(VU,AE) 
is denoted by (F,AE)∩(G,AE) and defined as  

(F,AE)∩(G,AE) = {(e, ({v
(min{μF(e)(v),μG(e)(v)}, max{νF(e)(v),νG(e)(v)})

:v∈Vλ} :λ∈Λ)) :e∈AE}. 

 

Definition 2.20 (Mukherjee & Das, 2014) The complement of an IFSMSs (F,AE)∈IFSMS(VU,AE) 
can be 

represented by  

(F,AE)
C

= {(e, ({v
(νF(e)(v),μF(e)(v))

:v∈Vλ} :λ∈Λ)) :e∈AE}. 

 

3. p-set and its properties 

In this present section, we have proposed 

the idea of a p-set, as well as its basic qualities are 

now being investigated. Let {Vλ:λ∈Λ}
 

be a 

collection of nonempty universes, such that 

∩λ∈ΛVλ=φ
 
and {EVλ

:λ∈Λ} be a set of nonempty 

collections of parameters. Let VU=∏
λ∈Λ

IFS(Vλ), 

where IFS(Vλ)
 
signifies the arrangement of every 

single IF subsets of ,V
EV=∏

λ∈Λ
EVλ

  and  AE⊆EV. 

X={eμX(e):e∈AE}, be an FS overAE. 

 

Definition 3.1 A p-set FX over VU is a mapping 

FX: AE→VU, defined by  

 

FX(e)= ({u
(μFX(e)(u),νFX(e)(u))

:u∈Vλ} :λ∈Λ)  for e∈AE. 

 

Thus a p-set FX over VU can be represented by 

 

FX= {(eμ
X

(e), ({u
(μ

FX(e)
(u),νFX(e)(u))

:u∈Vλ} :λ∈Λ)) :e∈AE} 

                               𝑂𝑟 

FX={(eμ
X

(e),({u
(

μ
FX(e)

(u)

νFX(e)(u)
)

:u∈Vλ} :λ∈Λ)) :e∈AE} , 

If μ
X

(e)=1, ∀e∈AE, then X will be 

generated as a regular FS, and FX will be generated 

as a traditional IFSMS. Simply, we denote the 

collection of all p-sets over VU by p
S
(VU,AE), 

where the parameter set AE is fixed. 

 

Example 3.2 We assume that there are 

three universes V1= {o1, o2, o3}, V2= {p1, p2} and 

V3= {r1, r2}, each of which contains a collection of 

flats, vehicles, and inns. Suppose that Dr. Roy has a 

budget for buying a flat, a vehicle and renting a 

location for a wedding festival. Consider a p-set 𝐹𝑋 

that shows some flats, vehicles, and inns that Dr. 

Roy is considering for settlement, transportation, 

and a wedding festival location, respectively. Let 

{SV1
,SV2

,SV3
}
 

be a set of collections of decision 

parameters associated with the universes mentioned 

above, where 
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SV1
={sV1,1=Price,  sV1,2=Carpet area,  sV1,3=Location, sV1,4=Parking space}, 

SV2
={sV2,1=Safety rating,  sV2,2=Model,  sV2,3=Creature comfort,  sV2,4=Ownership cost}, 

SV3
={sV3,1=Expensive, sV3,2=Available transport options, sV3,3=Near to place of stay, sV3,4=Parking space}. 

 

Let V=∏
i=1

3
IFS(Vi), 𝑆=∏

i=1

3
SVi

and A⊆S, such that  

 

𝐴 =

{
 
 

 
 a=(sV1,1,sV2,1,sV3,1) = (Price, Safety rating, Expensive),

b=(sV1,3,sV2,2,sV3,1) = (Location, Model, Expensive),

c=(sV1,2,sV2,3,sV3,2) = (Carpet area, Creature comfort, Available transport options),

d=(sV1,3,sV2,2,sV3,1) = (Location, Model, Expensive) }
 
 

 
 

  

 

Suppose Dr. Roy is tasked with selecting objects from the arrangements of given objects based on the 

arrangements of choice parameters. If we chose X be an FS over A with membership values for the parameters 

in A as  

a=(sV1,1,sV2,1,sV3,1) = (Price, Safety rating, Expensive), μ
X

(a)=0.4; 

b=(sV1,3,sV2,2,sV3,1)=(Location, Model, Expensive), μ
X

(b)=0.5; 

c=(sV1,2,sV2,3,sV3,2)=(Carpet area, Creature comfort, Available transport options),μ
X

(c)=0.6; 

𝑑=(sV1,3,sV2,2,sV3,1)=(Location, Model, Expensive) μ
X

(d)=0.4; 

 

i.e. if we chose X be an FS over A as 𝑋={a0.4,b
0.5

,c0.6,d
0.4}. Then we have a p-set  

FX= {(a0.4,({o1
(0.2,0.5),o2

(0.4,0.5),o3
(0.2,0.3)},{p

1
(0.1,0.2),p

2
(0.5,0.7)},{r1

(0.6,0.8),r2
(0.2,0.4)})) , 

(b
0.5

,({o1
(0.5,0.6),o2

(0.2,0.3),o3
(0.3,0.5)},{p

1
(0.2,0.5),p

2
(0.6,0.7)},{r1

(0.1,0.4),r2
(0.2,0.3)})) , 

(c0.6,({o1
(0.1,0.3),o2

(0.3,0.5),o3
(0.2,0.4)},{p

1
(0.1,0.5),p

2
(0.2,0.3)},{r1

(0.2,0.4),r2
(0.1,0.3)})) , 

(d
0.4

,({o1
(0.3,0.4),o2

(0.2,0.5),o3
(0.2,0.5)},{p

1
(0.2,0.3),p

2
(0.4,0.6)},{r1

(0.2,0.5),r2
(0.2,0.3)})) , 

The tabular form of the p-set 𝐹𝑋
 
can be represented as in Table 1.  

 

Table 1  The p-set FX 

 

Definition 3.3 For any p-set FX∈p
S
(VU,AE), a Vλ-part (or -part) FX

λ  over VU is the 

structure FX
λ = {(eμX(e), {u

(μFX(e)(u),νFX(e)(u))
:u∈Vλ}) :e∈AE} , where ∀e∈AE, FX

λ (e)= {u
(μFX(e)(u),νFX(e)(u))

:u∈Vλ}. 

 

Example 3.4 If we consider the p-set 𝐹𝑋 as in Example 3.2, then the V1-part, V2-part, and V3-part are as 

follows

 

 

Vλ  
a 

0.4 

b 

0.5 

c 

0.6 

d 

0.4 

V1 

o1 (0.2,0.5) (0.5,0.6) (0.1,0.3) (0.3,0.4) 

o2 (0.4,0.5) (0.2,0.3) (0.3,0.5) (0.2,0.5) 

o3 (0.2,0.3) (0.3,0.5) (0.2,0.4) (0.2,0.5) 

V2 
p1 (0.1,0.2) (0.2,0.5) (0.1,0.5) (0.2,0.3) 

p2 (0.5,0.7) (0.6,0.7) (0.2,0.3) (0.4,0.6) 

V3 
r1 (0.6,0.8) (0.1,0.4) (0.2,0.4) (0.2,0.5) 

r2 (0.2,0.4) (0.2,0.3) (0.1,0.3) (0.2,0.3) 
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FX
1  = {(a0.4,{o1

(0.2,0.5),o2
(0.4,0.5),o3

(0.2,0.3)}),(b0.5
,{o1

(0.5,0.6),o2
(0.2,0.3),o3

(0.3,0.5)}), 

(c0.6,{o1
(0.1,0.3),o2

(0.3,0.5),o3
(0.2,0.4)}),(d0.4

,{o1
(0.3,0.4),o2

(0.2,0.5),o3
(0.2,0.5)})}, 

FX
2  = {(a0.4,{p

1
(0.1,0.2),p

2
(0.5,0.7)}),(b0.5

,{p
1

(0.2,0.5),p
3

(0.6,0.7)}), 

(c0.6,{p
1

(0.1,0.5),p
2

(0.2,0.3)}),(d0.4
,{p

1
(0.2,0.3),p

3
(0.4,0.6)})}, 

FX 
3 = {(a0.4,{r1

(0.6,0.8),r2
(0.2,0.4)}),(b0.5

,{r1
(0.1,0.4),r2

(0.2,0.3)}), 

(c0.6,{r1
(0.2,0.4),r2

(0.1,0.3)}),(d0.4
,{r1

(0.2,0.5),r2
(0.2,0.3)})} 

 

and their tabular representation as shown in Tables 2, 3, and 4 respectively 

Table 2 V1-part FX
1  of Fx 

V1 
a 

0.4 

b 

0.5 

c 

0.6 

d 

0.4 

o1 (0.2,0.5) (0.5,0.6) (0.1,0.3) (0.3,0.4) 

o2 (0.4,0.5) (0.2,0.3) (0.3,0.5) (0.2,0.5) 

o3 (0.2,0.3) (0.3,0.5) (0.2,0.4) (0.2,0.5) 

 

Table 3 V2-part FX
2  of Fx 

V1 
a 

0.4 

b 

0.5 

c 

0.6 

d 

0.4 
o1 (0.1,0.2) (0.2,0.5) (0.1,0.5) (0.2,0.3) 

o2 (0.5,0.7) (0.6,0.7) (0.2,0.3) (0.4,0.6) 

 

Table 4 The V3-part FX
3  of Fx 

V1 
a 

0.4 

b 

0.5 

c 

0.6 

d 

0.4 

r1 (0.6,0.8) (0.1,0.4) (0.2,0.4) (0.2,0.5) 

r2 (0.2,0.4) (0.2,0.3) (0.1,0.3) (0.2,0.3) 

 

Definition 3.5 For two p-sets FX,FY∈p
S
(VU,AE), 

FX is a p-subset of FY if  

(i). X is a fuzzy subset of Y, i.e. 

∀e ∈ AE, μ
X
(e)≤ μ

Y
(e) 

(ii). ∀e∈AE, μ
FY(e)

 (u)≤μ
FY(e)

 and 

(u)≤μ
FY(e)

, ∀u∈Vλ, λ∈Ʌ 

We write FX⊆̃FY 

 

Definition 3.6 A p-set FX∈p
S
(VU,AE) is said to be a 

null p-set, denoted by ΦA, if  ,Ee A  μ
X

(e)=0, 

μ
FX(e)

(u) = 0 and νFX(e)(u)=1, ∀u∈Vλ, λ∈Λ,
 

i.e. ΦA= {(e0,({u(0,1):u∈Vλ}:λ∈Λ)) :e ∈ AE}. 

 

Definition 3.7 Let FX∈p
S
(VU,AE). If for every e ∈ 

AE, μ
FX(e)

(u)=0 and νFX(e)(u)=1, ∀u∈Vλ, λ ∈ Λ, 

then FX is called an X-null p-set, denoted by XΦ,i.e. 

XΦ= {(eμX(e),({u(0,1):u∈Vλ}:λ ∈ Λ)) :e∈AE} . 

 

Definition 3.8 Let FX∈p
S
(VU,AE). If for every e ∈ 

AE, μ
X

(e)=1, μ
FX(e)

(u)=1 and 

νFX(e)(u)=0, ∀u∈Vλ, λ ∈ Λ, then 𝐹𝑋 is said to be an 

absolute p-set, denoted by VA, i.e. 

VA= {(e1,({u(1,0):u∈Vλ}:λ ∈ Λ)) :e∈AE} .  

 

Definition 3.9 Let FX∈p
S
(VU,AE). If for every e ∈ 

AE, μ
FX(e)

(u)=1 and νFX(e)(u)=0, ∀u∈Vλ, λ∈Λ,
 
 then 

FX is said to be an X-absolute p-set, denoted by 

XV,i.e. 

XV= {(eμX(e),({u(1,0):u∈Vλ}:λ∈Λ)) :e∈AE} . 

 

Example 3.10 Let us consider Example 3.2 and if 

we chose X is an FS over A as 
 

X={a0.4,b
0.5

,c0.6,d
0}. Then we have a p-set 
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FX={(a0.4,({o1
(0.2,0.5),o2

(0.4,0.5),o3
(0.2,0.3)},{p

1
(0.1,0.2),p

2
(0.5,0.7)}, {r1

(0.6,0.8),r2
(0.2,0.4)})) , 

      (b
0.5

,(φ,φ,φ)) , (c0.6,(V1,V2,V3)), (d
0
,(φ,φ,φ))} . 

 

If  Y={a0,b
0
,c0,d

0} and FY(a)=(φ,φ,φ), FY(b)=(φ,φ,φ), FY(c)=(φ,φ,φ),FY(d)=(φ,φ,φ), then the p-set FYis a 

null p-set.
  

If W={a0.4,b
0.5

,c0.6,d
0.5} and FW(a)=(φ,φ,φ), FW(b)=(φ,φ,φ),FW(c)=(φ,φ,φ),FW(d)=(φ,φ,φ),  then the p-set 

FW
 
is a W-null p-set.

  

If  Z={a1,b
1
,c1,d

1} and FZ(a)=(V1,V2,V3), FZ(b)=(V1,V2,V3), FZ(c)=(V1,V2,V3),FZ(d)=(V1,V2,V3), then 

the p-set FZ
 
is an absolute p-set.

  

If  K={a0.4,b
0.5

,c0.6,d
0.5} and FK(a)=(V1,V2,V3), FK(b)=(V1,V2,V3), FK(c)=(V1,V2,V3),FK(d)=(V1,V2,V3),

 
then the p-set FK

 
is a K-absolute p-set. 

 

Proposition 3.11 Let FX,FY∈p
S
(VU,AE). Then 

[i]. FX⊆̃FX;
 

  [ii]. ΦA⊆̃XΦ⊆̃FX;
 

  [iii]. FX⊆̃XU⊆̃UA.
 

 

Definition 3.12 Let FX,FY∈p
S
(VU,AE). Then FX and FY are equal-set, denoted by FX=FY, if and only if  ∀e ∈ 

AE, 

[𝑖] 𝜇𝑋(𝑒) = 𝜇𝑌(𝑒);   

[ii] FX(e) = FY(e)⇔  μ
FX(e)

(u) = μ
FY(e)

(u) and νFX(e)(u) = νFY(e)(u), ∀u∈Vλ, λ∈Λ. 

  

Proposition 3.13 Let FX,FY,FZ∈p
S
(VU,AE). Then 

  [i]. FX=FY and FY=FZ ⇒ FX=FZ;
 

  [ii]. FX⊆̃FY and FY⊆̃FX ⇔ FX=FY;
 

[iii]. FX⊆̃FY and FY⊆̃FZ ⇒ FX=FZ.
 

 

Definition 3.14 The complement of a p-set FX∈p
S
(VU,AE) can be represented by  

  FX
C= {(e1-μX(e), ({u

(νFX(e)(u),μFX(e)(u))
:u∈Vλ} :λ∈Λ)) :e∈AE} 

 

Proposition 3.15 For a p-set FX∈p
S
(VU,AE), 

  (a) (FX
C)

C
= FX, 

  (b) ΦA
C= VA 

  (C) UA
C= ΦA 

 

Proof. (c) From the definition of an absolute p-set VA= {(e1,({u(1,0):u∈Vλ}:λ∈Λ)) :e∈AE} ,  

Then VA
C= {(e0,({u(0,1):u∈Vλ}:λ∈Λ)) :e∈AE}=ΦA 

Similarly, (a) and (b) easily can be made.  

Remark 3.16 In general, XV
C≠XΦ and XΦ

C≠XV. For example, we consider the FSX={a0.4,b
0.5

,c0.6,d
0} as in 

example 3.10. If 

XΦ= {(a0.4,(φ,φ,φ)), (b
0.5

,(φ,φ,φ)) ,(c0.6,(φ,φ,φ)), (d
0
,(φ,φ,φ))} and  
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XV= {(a0.4,(V1,V2,V3)), (b
0.5

,(V1,V2,V3)) ,(c0.6,(V1,V2,V3)), (d
0
,(V1,V2,V3))}, then 

XΦ
C= {(a0.6,(V1,V2,V3)), (b

0.5
,(V1,V2,V3)) ,(c0.4,(V1,V2,V3)), (d

1
,(V1,V2,V3))} ≠XV and  

XV
C= {(a0.6,(φ,φ,φ)), (b

0.5
,(φ,φ,φ)) ,(c0.4,(φ,φ,φ)),} (d

1
,(φ,φ,φ)) ≠XΦ. 

 

Definition 3.17 Union between two p-sets FX,FY ∈ pS
(VU, AE) is denoted by FX ∪ ̃FY and defined as 

FX ∪ ̃FY = FZ, where Z = X∪Y, and ∪ denotes the fuzzy union and FZ can be represented as  

 

FZ=

{
 
 

 
 

(

 
 

emax{μX(e),μY(e)},

(

 

{
 

 

u

(
max{μFX(e)(u),μFY(e)(u)}

min{νFX(e)(u),νFY(e)(u)}
)

:u∈Vλ

}
 

 

:λ∈Λ

)

 

)

 
 

:e∈AE

}
 
 

 
 

. 

 

Proposition 3.18 If FX ∈ pS
(VU, AE), then 

(a) F
X
∪̃FX=FX, 

(b) FX∪̃ΦA=FX, 
(𝑐)𝐹𝑋 ∪̃ 𝑉𝐴 = 𝑉𝐴. 
 

Definition 3.19 Intersection between two p-sets FX,FY ∈ pS
(VU, AE) is denoted by FX ∩̃ FY and defined as 

FX ∩̃ FY = FZ, where Z = X ∩ Y, where ∩ denotes the fuzzy intersection and FZ can be represented as  

FZ=

{
 
 

 
 

(

 
 

emin{μX(e),μY(e)},

(

 

{
 

 

u

(
min{μFX(e)(u),μFY(e)(u)}

max{νFX(e)(u),νFY(e)(u)}
)

:u∈Vλ

}
 

 

:λ∈Λ

)

 

)

 
 

:e∈AE

}
 
 

 
 

.

 

 

Proposition 3.20 If FX ∈ pS
(VU, AE), then 

(a) FX∩̃FX=FX, 

(b) FX∩̃ΦA=ΦA, 

(c) FX∩̃VA=FX. 

 

Proposition 3.21 Let FX,FY,FZ ∈ pS
(VU, AE), then: 

1. Associative Laws 

  FX∪̃(FY∪̃FZ)=(FX∪̃FY)∪̃FZ 

  FX∩̃(FY∩̃FZ)=(FX∩̃FY)∩̃FZ 

2. Distributive Laws 

   FX∩̃(FY∪̃FZ)=(FX∩̃FY)∪̃(FX∩̃FZ) 

  FX∪̃(FY∩̃FZ)=(FX∪̃FY)∩̃(FX∪̃FZ) 

 

Proposition 3.22 Let FX,FY∈p
S
(VU,AE), then: 

  (FX∩̃FY)
C

=FX
C∪̃FY

C

 
  (FX∪̃FY)

C=FX
C∩̃FY

C  

 

Proof. Let FX,FY∈p
S
(VU,AE).  

Then  
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 FX∩̃ FY = FZ=

{
 
 

 
 

(

 
 

emin{μX(e),μY(e)},

(

 

{
 

 

u

(
min{μFX(e)(u),μFY(e)(u)}

max{νFX(e)(u),νFY(e)(u)} 
)

:u∈Vλ

}
 

 

:λ∈Λ

)

 

)

 
 

:e∈AE

}
 
 

 
 

. 

 Therefore,  

 (FX∩̃FY)
C

=FZ
C=

{
 
 

 
 

(

 
 

e1- min{μX(e),μY(e)},

(

 

{
 

 

u

(
max{νFX(e)(u),νFY(e)(u)}

min{μFX(e)(u),μFY(e)(u)}
)

:u∈Vλ

}
 

 

:λ∈Λ

)

 

)

 
 

:e∈AE

}
 
 

 
 

.
 

Now 

 FX
C∪̃FY

C=FW= {(eμW(e), ({u
(μFW(e)(u),νFW(e)(u))

:u∈Vλ} :λ∈Λ)) :e∈AE},  

where ∀e∈AE,
 
μ

W
(e)= max { 1-μ

X
(e),1-μ

Y
(e)} 

=1- min { μ
X

(e),μ
Y

(e)}=μ
Z
C(e)

 
and 

  μ
FW(e)(u) = max {vF

X
(e)
(u), vF

Y
(e)

(u)} = vF
Z
(e)

(u)

   vFW(e)(u) = min {μ
F

X
(e)
(u), μ

F
Y
(e)

(u)} = μ
F

Z
(e)

(u) 

 

Thus (FX ∩̃ FY)
C

= FX
C  ∪̃ FY

C . 

[ii] has proof that is similar to [i].  

 

Definition 3.23 Let FX,FY∈p
S
(VU,AE). Then min-union of 𝐹𝑋 and 𝐹𝑌 is denoted by FX∪̃YZmin

 and defined 

as   

FZ=

{
 
 

 
 

(

 
 

emin{μX(e),μY(e)},

(

 

{
 

 

u

(
max{μFX(e)(u),μFY(e)(u)}

min{νFX(e)(u),νFY(e)(u)}
)

:u∈Vλ

}
 

 

:λ∈Λ

)

 

)

 
 

:e∈AE

}
 
 

 
 

. 

 

Definition 3.24 Let FX,FY∈p
S
(VU,AE). Then max-intersection of FX and FY is denoted by FX∩̃YZmax

 and 

defined as   

FZ=

{
 
 

 
 

(

 
 

emax{μX(e),μY(e)},

(

 

{
 

 

u

(
min{μFX(e)(u),μFY(e)(u)}

max{νFX(e)(u),νFY(e)(u)}
)

:u∈Vλ

}
 

 

:λ∈Λ

)

 

)

 
 

:e∈AE

}
 
 

 
 

. 

Proposition 3.25 Let FX,FY∈p
S
(VU,AE). Then 

min

max

min

max

min

min min

max

max

[ ] ;

[ ] ;

[ ] ;

[ ] ;

[ ] ;

[ ] ;

[ ] .

X X X

X X X

X A A

X

X A U

X Y Y X

X Y Y X

i F F F

ii F F F

iii F

iv F X X

v F V X

vi F F F F

vii F F F F
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Proposition 3.26 Let FX,FY∈p
S
(VU,AE). Then 

[i] VX∪̃minYVY⊆̃ VX ∪̃ VY  

[ii] VX∩̃VY⊆̃VX∩̃max VY 

 

ARemark 3.27 Let FX∈p
S
(VU,AE). Then in general FX∩̃maxVA= FX   and FX∪̃minVA=VA  are not true. For 

example, we consider X={a0.4,b
0.5

,c0.6,d
0} as shown in example 3.10, then we have a p-set  

  FX={(a0.4,({o1
(0.2,0.5),o2

(0.4,0.5),o3
(0.2,0.3)}, {p

1
(0.1,0.2),p

2
(0.5,0.7)}, {r1

(0.6,0.8),r2
(0.2,0.4)})) , 

(b
0.5

,(φ,φ,φ)) , (c0.6,(V1,V2,V3)), (d
0
,(φ,φ,φ))} ,

 

Then 

 

FX ∩̃maxVA={(a1,({o1
(0.2,0.5),o2

(0.4,0.5),o3
(0.2,0.3)},{p

1
(0.1,0.2),p

2
(0.5,0.7)}, {r1

(0.6,0.8),r2
(0.2,0.4)})) 

(b
1
,(φ,φ,φ)) , (c1,(V1,V2,V3)), (d

0
,(φ,φ,φ))} ≠VX  and  

FX ∪̃minVA= {(a0.4,(V1,V2,V3)) (b
0.5

,(V1,V2,V3)) (c0.6,(V1,V2,V3)) (d
0
,(V1,V2,V3))} 

 

Proposition 3.28 Let FX,FY,FZ∈p
S
(VU,AE). Then 

  [i] FX∪̃min (FY∪̃minFZ)=(FX∪̃minFY) ∪̃minFZ  

  [ii] FX∩̃max (FY∩̃maxZ)=(FX∩̃maxFY)∪̃maxFZ 
 

  [iii] FX∪̃min(FY∩̃maxUZ)=(FX∪̃minFY) ∩̃max(FX∪̃minFZ)
 

  [iv] FX∩̃max (FY∪̃minFZ)=(FX∩̃maxFY) ∪̃min(FX∩̃maxFZ) 

 

Proposition 3.29 Let FX,FY∈p
S
(VU,AE). Then  

  [i] (FX∩̃maxFY)
C

= FX
C∪̃minFY

C

 
  [ii] (FX∪̃minFY)

C= FX
C∩̃maxFY

C

  

Definition 3.30 Let FX,FY∈p
S
(VU,AE). Then the AND operation between

 
FX and FY is the p-set denoted by 

FX∧FY and defined as 

FX∧FY=

{
 
 

 
 

(

 
 

emin{μX(β),μY(β)},

(

 

{
 

 

u

(
min{μFX(α)(u),μFY(β)(u)},

max{νFX(α)(u),νFY(β)(u)}
)

:u∈Vλ

}
 

 

:λ∈Λ

)

 

)

 
 

:α,β∈AE

}
 
 

 
 

. 

 

Definition 3.31 Let FX,FY∈p
S
(VU,AE). Then the OR operation between

 
FX and FY is the p-set denoted by 

FX∨FY and defined as 

FX∨FY=

{
 
 

 
 

(

 
 

emax{μX(β),μY(β)},

(

 

{
 

 

u

(
max{μFX(α)(u),μFY(β)(u)},

min{νFX(α)(u),νFY(β)(u)}
)

:u∈Vλ

}
 

 

:λ∈Λ

)

 

)

 
 

:α,β∈AE

}
 
 

 
 

. 

 

Proposition 3.32 Let FX,FY∈p
S
(VU,AE) then 

(1). (FX∧FY)
C=FX

C∨FY
C  

(2). (FX∨FY)
C=FX

C∧FY
C  

 

Proof. (1). Let FX,FY∈p
S
(VU,AE), then
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 FX∧FY=

{
 
 

 
 

(

 
 

emin{μX(β),μY(β)},

(

 

{
 

 

u

(
min{μFX(α)(u),μFY(β)(u)},

max{νFX(α)(u),νFY(β)(u)}
)

:u∈Vλ

}
 

 

:λ∈Λ

)

 

)

 
 

:α,β∈AE

}
 
 

 
 

.

 

Thus  

 (FX∧FY)
C=

{
 
 

 
 

(

 
 

e1- min{μX(β),μY(β)},

(

 

{
 

 

u

(
max{νFX(α)(u),νFY(β)(u)},

min{μFX(α)(u),μFY(β)(u)}
)

:u∈Vλ

}
 

 

:λ∈Λ

)

 

)

 
 

:α,β∈AE

}
 
 

 
 

.  

Again,  

 FX
C∨FY

C=

{
 
 

 
 

(

 
 

emax{1-μX(β),1-μY(β)},,

(

 

{
 

 

u

(
max{νFX(α)(u),νFY(β)(u)},

min{μFX(α)(u),μFY(β)(u)}
)

:u∈Vλ

}
 

 

:λ∈Λ

)

 

)

 
 

:α,β∈AE

}
 
 

 
 

 

  =

{
 
 

 
 

(

 
 

e1- min{μX(β),μY(β)},,

(

 

{
 

 

u

(
max{νFX(α)(u),νFY(β)(u)},

min{μFX(α)(u),μFY(β)(u)}
)

:u∈Vλ

}
 

 

:λ∈Λ

)

 

)

 
 

:α,β∈AE

}
 
 

 
 

 

  = (𝐹𝑋 ∧ 𝐹𝑌)
𝐶 .,  

Hence proved. 

 

Proposition 3.33 Let FX,FY,FZ∈p
S
(VU,AE). Then 

  [i] FX∨(FY∨FZ)=(FX∨FY)∨FZ 

  [ii] FX∧(FY∧FZ)=(FX∧FY)∧FZ
 

  [iii] FX∨(FY∧UZ)=(FX∨FY)∧(FX∨FZ)
 

  [iv] FX∧(FY∨FZ)=(FX∧FY)∨(FX∧FZ) 
 

4.  TNP and TCP of p-sets 

In this part, we have characterized the aggregate FS and define several forms of TNP and TCP of p-

sets, such as AND-TNP, AND-TCP, OR-TNP, and OR-TCP.  

 

Definition 4.1 Let FX,FY∈p
S
(VU,AE). Then the AND−TNP of FX and FY is the p-set denoted by FX⊗FY and 

defined as FX⊗FY=FZ= {(eμZ(e), ({u
(μFZ(e)(u),νFZ(e)(u))

:u∈Vλ} :λ∈Λ)) :e∈AE} , where for all 𝑒 ∈ 𝐴𝐸 , 𝜇𝑍(𝑒) =

𝜇𝑋(𝑒).𝜇𝑌(𝑒)

2−[𝜇𝑋(𝑒)+𝜇𝑌(𝑒)−𝜇𝑋(𝑒).𝜇𝑌(𝑒)]
 and  

𝜇𝐹𝑍(𝑒)(𝑢) = 𝑚𝑖𝑛{𝜇𝐹𝑋(𝑒)(𝑢), 𝜇𝐹𝑌(𝑒)(𝑢)} , 𝜈𝐹𝑍(𝑒)(𝑢) = 𝑚𝑎𝑥{𝜈𝐹𝑋(𝑒)(𝑢), 𝜈𝐹𝑌(𝑒)(𝑢)} , ∀𝑢 ∈ 𝑉𝜆, 𝜆 ∈ 𝛬. 

 

Definition 4.2 Let 𝐹𝑋, 𝐹𝑌 ∈ 𝑝𝑆(𝑉𝑈, 𝐴𝐸). Then the AND−TCP of 𝐹𝑋 and 𝐹𝑌 is the p-set denoted by 𝐹𝑋⊕𝐹𝑌 

and defined as 𝐹𝑋⊕𝐹𝑌 = 𝐹𝑍 = {(𝑒
𝜇𝑍(𝑒), ({𝑢(𝜇𝐹𝑍(𝑒)(𝑢),𝜈𝐹𝑍(𝑒)(𝑢)): 𝑢 ∈ 𝑉𝜆} : 𝜆 ∈ 𝛬)) : 𝑒 ∈ 𝐴𝐸}, where for all 

,Ee A 𝜇𝑍(𝑒) =
𝜇𝑋(𝑒)+𝜇𝑌(𝑒)

1+𝜇𝑋(𝑒).𝜇𝑌(𝑒)
 and  

𝜇𝐹𝑍(𝑒)(𝑢) = 𝑚𝑖𝑛{𝜇𝐹𝑋(𝑒)(𝑢), 𝜇𝐹𝑌(𝑒)(𝑢)} , 𝜈𝐹𝑍(𝑒)(𝑢) = 𝑚𝑎𝑥{𝜈𝐹𝑋(𝑒)(𝑢), 𝜈𝐹𝑌(𝑒)(𝑢)} , ∀𝑢 ∈ 𝑉𝜆, 𝜆 ∈ 𝛬. 

 

Definition 4.3 Let 𝐹𝑋, 𝐹𝑌 ∈ 𝑝𝑆(𝑉𝑈, 𝐴𝐸). Then the OR−TNP of 𝐹𝑋 and 𝐹𝑌 is the p-set denoted by 𝐹𝑋 ⊗̄ 𝐹𝑌 and 

defined as 𝐹𝑋 ⊗̄ 𝐹𝑌 = 𝐹𝑍 = {(𝑒𝜇𝑍(𝑒), ({𝑢(𝜇𝐹𝑍(𝑒)(𝑢),𝜈𝐹𝑍(𝑒)(𝑢)): 𝑢 ∈ 𝑉𝜆} : 𝜆 ∈ 𝛬)) : 𝑒 ∈ 𝐴𝐸}, 
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where for all 𝑒 ∈ 𝐴𝐸 , 𝜇𝑍(𝑒) =
𝜇𝑋(𝑒).𝜇𝑌(𝑒)

2−[𝜇𝑋(𝑒)+𝜇𝑌(𝑒)−𝜇𝑋(𝑒).𝜇𝑌(𝑒)]
 and  

𝜇𝐹𝑍(𝑒)(𝑢) = 𝑚𝑎𝑥{𝜇𝐹𝑋(𝑒)(𝑢), 𝜇𝐹𝑌(𝑒)(𝑢)} , 𝜈𝐹𝑍(𝑒)(𝑢) = 𝑚𝑖𝑛{𝜈𝐹𝑋(𝑒)(𝑢), 𝜈𝐹𝑌(𝑒)(𝑢)} , ∀𝑢 ∈ 𝑉𝜆, 𝜆 ∈ 𝛬. 

 

Definition 4.4 Let 𝐹𝑋, 𝐹𝑌 ∈ 𝑝𝑆(𝑉𝑈, 𝐴𝐸). Then the OR−TCP of 𝐹𝑋 and 𝐹𝑌 is the p-set denoted by 𝐹𝑋 ⊕̄ 𝐹𝑌 =

𝐹𝑍 and defined as𝐹𝑋 ⊕̄ 𝐹𝑌 = 𝐹𝑍 = {(𝑒𝜇𝑍(𝑒), ({𝑢(𝜇𝐹𝑍(𝑒)(𝑢),𝜈𝐹𝑍(𝑒)(𝑢)): 𝑢 ∈ 𝑉𝜆} : 𝜆 ∈ 𝛬)) : 𝑒 ∈ 𝐴𝐸}, 

where for all 𝑒 ∈ 𝐴,  𝜇𝑍(𝑒) =
𝜇𝑋(𝑒)+𝜇𝑌(𝑒)

1+𝜇𝑋(𝑒).𝜇𝑌(𝑒)
 and  

𝜇𝐹𝑍(𝑒)(𝑢) = 𝑚𝑎𝑥{𝜇𝐹𝑋(𝑒)(𝑢), 𝜇𝐹𝑌(𝑒)(𝑢)} , 𝜈𝐹𝑍(𝑒)(𝑢) = 𝑚𝑖𝑛{𝜈𝐹𝑋(𝑒)(𝑢), 𝜈𝐹𝑌(𝑒)(𝑢)} , ∀𝑢 ∈ 𝑉𝜆, 𝜆 ∈ 𝛬. 

 

Definition 4.5 Let  𝐹𝑋 ∈ 𝑝𝑆(𝑉𝑈, 𝐴𝐸) and 𝛼, 𝛽 ∈ [0,1]. Then a soft fuzzification operator 𝑆(𝛼,𝛽) on  𝐹𝑋, denoted 

by 𝑆(𝛼,𝛽)(𝐹𝑋) and defined as 

𝑆(𝛼,𝛽)(𝐹𝑋) = {(𝑢, 𝜇𝑆(𝛼,𝛽)(𝑋)(𝑢)): 𝑢 ∈ ∪
𝑒∈𝐴𝐸

(𝐹𝑋(𝑒))(𝛼,𝛽), 𝛼, 𝛽 ∈ [0,1]} ,where 

𝜇𝑆(𝛼,𝛽)(𝑋)(𝑢) =
1

|𝐴𝐸|
∑ 𝜇𝑋(𝑒).

𝑒∈𝐴𝐸

𝜇(𝐹𝑋(𝑒))(𝛼,𝛽)(𝑢), 

(𝐹𝑋(𝑒))(𝛼,𝛽) = {𝑢 ∈ 𝑉𝜆: 𝜇𝐹𝑋(𝑒)(𝑢) ≥ 𝛼, 𝜈𝐹𝑋(𝑒)(𝑢) ≤ 𝛽, 𝜆 ∈ 𝛬}, 𝛼, 𝛽 ∈ [0,1]. 

 

5. Applications of p-sets in DMPs 

In this present section, we have introduced 

a new machine learning algorithm to solve p-set 

dependent DMIs using aggregate FS and our newly 

defined operations (TNP and TCP). 

 

5.1. p-sets based DMM  

 

The steps of our new DMM are listed 

below: 

 

Algorithm 1. 

 

Step1. Enter the group of experts (decision makers) 

{M1, M2,...,Mn} and their corresponding 

opinions (p-sets)𝐹𝑋1 , 𝐹𝑋2 , . . . , 𝐹𝑋3 ∈

𝑝𝑆(𝑉𝑈, 𝐴𝐸) 
Step2. Compute the resultant p-set 𝐹𝑍 using any p-

set operation (union or intersection or any 

TNP or TCP). 

Step3. Input the fixed values of 𝛼, 𝛽 ∈ [0,1]. 
Step4. Compute aggregate FS 𝑆(𝛼,𝛽)(𝐹𝑍) and 

present in tabular form.   

Step5. For each 𝑘 ∈ 𝛬, if the associated value 

𝜇𝑆(𝛼,𝛽)(𝑋)(𝑢) is maximized from 𝑉𝑘, then the 

decision zk
 
is to choose u from 𝑉𝑘 .  

Step6. If u has many values, the decision-maker can 

be chosen from any of them. 

Step7. The final optimal decision is
 
(𝒛𝒌: 𝒌 ∈ 𝜦). 

 

Remark 5.2 If there are lots of ideal choices to be 

selected in the 7th step, we can return to the 2nd and 

3rd steps and adjust the operation or values of𝛼, 𝛽 ∈
[0,1], so that we can find few optimal choices. 

 

6.  Results and discussions  

 

In this present part, we adopt some real-

life examples to demonstrate the proposed 

algorithm to solve p-sets based DMPs. 

Example 6.1 We assume that there are three 

universes V1= {o1, o2, o3, o4}, V2= {p1, p2, p3} and 

V3= {r1, r2, r3}, which are the collections of some 

flats, vehicles, and inns. Suppose that Dr. Roy has a 

budget for buying a flat, a vehicle, and renting a 

location for a wedding festival. Consider a p-set 𝐹𝑋 

that shows some flats, vehicles and inns that Dr. 

Roy is considering for settlement, transportation, 

and a wedding festival location, respectively. 

Assume {𝑆𝑉1 , 𝑆𝑉2 , 𝑆𝑉3}
 

be a set of collections of 

decision parameters associated with the universes 

mentioned above, where

SV1
={sV1,1=Price,  sV1,2=Carpet area,  sV1,3=Location, sV1,4=Parking space}, 

SV2
={sV2,1=Safety rating,  sV2,2=Model,  sV2,3=Creature comfort,  sV2,4=Ownership cost}, 

SV3
={sV3,1=Expensive, sV3,2=Available transport options, sV3,3=Near to place of stay, sV3,4=Parking space}.     
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Let V=∏
i=1

3
IFS(Vi), S=∏

i=1

3
SVi

and A⊆S, such that  

𝐴 =

{
  
 

  
 

aA=(sV1,1,sV2,1,sV3,1)=(Price, Safety rating, Expensive),

bA=(sV1,3,sV2,2,sV3,1)=(Location, Model, Expensive),

cA=(sV1,2,sV2,3,sV3,2)=(Carpet area, Creature comfort, Available transport options),

dA=(sV1,4,sV2,2,sV3,1)=(Parking space, Model, Expensive),

eA=(sV1,1,sV2,4,sV3,3)=(Price, Ownership cost, Near to place of stay),

fA=(sV1,3,sV2,3,sV3,4)=(Location, Creature comfort, Parking space) }
  
 

  
 

  

Suppose Dr. Roy is tasked with selecting objects from the arrangements of given objects based on the 

arrangements of choice parameters. If two experts chose X and Y are two FSs over A with membership values 

for the parameters in A as  

μ
X

(Price, Safety rating, Expensive)=0.7; 

μ
X

(Location, Model, Expensive)=0.8; 

μ
X

(Carpet area, Creature comfort, Available transport options)=0.7; 

μ
X

(Parking space, Model, Expensive)=0.5; 

μ
X

(Price, Ownership cost, Near to place of stay)=0.9; 

μ
X

(Location, Creature comfort, Parking space)=0.8;

 

and

  

μ
Y

(Price, Safety rating, Expensive)=0.5; 

μ
Y

(Location, Model, Expensive)=0.6; 

μ
Y

(Carpet area, Creature comfort, Available transport options)=0.9; 

μ
Y

(Parking space, Model, Expensive)=0.8; 

μ
Y

(Price, Ownership cost, Near to place of stay)=0.7; 

μ
Y

(Location, Creature comfort, Parking space)=0.5. 

We consider two expert’s observations (p-sets)FX and  FY regarding some flats, vehicles, and inns are as in 

Table 5 and Table 6 respectively. 
 

Table 5 p-set 𝑭𝒙  

Vi  
aA 

0.7 

bA 

0.8 

cA 

0.7 

dA 

0.5 

eA 

0.9 

fA 

0.8 

V1 

o1 (0.3,0.5) (0.8,0.2) (0.7,0.2) (0.8,0.2) (0.3,0.5) (0.7,0.2) 

o2 (0.4,0.4) (0.9,0.1) (0.8,0.1) (0.9,0.1) (0.4,0.4) (0.6,0.3) 

o3 (0.9,0.1) (0.3,0.5) (1,0) (0.3,0.5) (0.9,0.1) (0.9,0.1) 

o4 (0.7,0.2) (0.8,0.1) (0,1) (0.8,0.1) (0.7,0.2) (0.5,0.4) 

V2 

p1 (0.8,0.2) (0.8,0.1) (0.6,0.3) (0.8,0.1) (0.9,0.1) (0.6,0.3) 

p2 (0.6,0.2) (0.8,0.2) (0.8,0.2) (0.8,0.2) (1,0) (0.8,0.2) 

p3 (0.6,0.3) (0.5,0.2) (0.3,0.4) (0.5,0.2) (0.9,0.1) (0.3,0.4) 

V3 

r1 (0.9,0.1) (0.9,0.1) (0.5,0.4) (0.9,0.1) (0.8,0.1) (0.9,0.1) 

r2 (0.7,0.2) (0.7,0.2) (0.5,0.3) (0.7,0.2) (0.5,0.4) (0.8,0.2) 

r3 (0.9,0) (0.9,0) (0.7,0.2) (0.9,0) (0.4,0.3) (1,0) 

 
Table 6 p-set 𝑭𝒀  

Vi  
aA 

0.7 

bA 

0.8 

cA 

0.7 

dA 

0.5 

eA 

0.9 

fA 

0.8 

V1 

o1 (0.7,0.2) (0.7,0.2) (0.8,0.2) (0.7,0.2) (0.7,0.2) (0.3,0.5) 

o2 (0.6,0.3) (0.8,0.1) (0.9,0.1) (0.8,0.1) (0.6,0.3) (0.4,0.4) 

o3 (0.9,0.1) (1,0) (0.3,0.5) (1,0) (0.9,0.1) (0.9,0.1) 

o4 (0.5,0.4) (0,1) (0.8,0.1) (0,1) (0.5,0.4) (0.7,0.2) 

V2 p1 (0.8,0.1) (0.5,0.4) (0.9,0.1) (0.5,0.4) (0.9,0.1) (0.9,0.1) 
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Vi  
aA 

0.7 

bA 

0.8 

cA 

0.7 

dA 

0.5 

eA 

0.9 

fA 

0.8 

p2 (0.5,0.4) (0.5,0.3) (0.7,0.2) (0.5,0.3) (0.8,0.2) (0.7,0.2) 

p3 (0.4,0.3) (0.7,0.2) (0.9,0) (0.7,0.2) (1,0) (0.9,0) 

V3 

r1 (0.6,0.3) (0.6,0.3) (0.9,0.1) (0.6,0.3) (0.8,0.1) (0.6,0.3) 

r2 (0.8,0.2) (0.8,0.2) (0.7,0.2) (0.8,0.2) (0.8,0.2) (0.8,0.2) 

r3 (0.3,0.4) (0.3,0.4) (0.9,0) (0.3,0.4) (0.5,0.2) (0.3,0.4) 

 

We consider the resultant p-set FX⊗FY using AND−TNP as shown in Table 7. Now, we chose 

α=0.7 and β=0.2, then we find S(α,β)(FX⊗FY) as in Table 8.  

 
Table 7 p-set 𝑭𝒙  ⊗ 𝑭𝒀  

Vi  
aA 

0.7 

bA 

0.8 

cA 

0.7 

dA 

0.5 

eA 

0.9 

fA 

0.8 

V1 

o1 (0.3,0.5) (0.7,0.2) (0.7,0.2) (0.7,0.2) (0.3,0.5) (0.3,0.5) 

o2 (0.4,0.4) (0.8,0.1) (0.8,0.1) (0.8,0.1) (0.4,0.4) (0.4,0.4) 

o3 (0.9,0.1) (0.3,0.5) (0.3,0.5) (0.3,0.5) (0.9,0.1) (0.9,0.1) 

o4 (0.5,0.4) (0,1) (0,1) (0,1) (0.5,0.4) (0.5,0.4) 

V2 

p1 (0.8,0.2) (0.5,0.4) (0.6,0.3) (0.5,0.4) (0.9,0.1) (0.6,0.3) 

p2 (0.5,0.4) (0.5,0.3) (0.7,0.2) (0.5,0.3) (0.8,0.2) (0.7,0.2) 

p3 (0.4,0.3) (0.5,0.2) (0.3,0.4) (0.5,0.2) (0.9,0.1) (0.3,0.4) 

V3 

r1 (0.6,0.3) (0.6,0.3) (0.5,0.4) (0.6,0.3) (0.8,0.1) (0.6,0.3) 

r2 (0.7,0.2) (0.7,0.2) (0.5,0.3) (0.7,0.2) (0.5,0.4) (0.8,0.2) 

r3 (0.3,0.4) (0.3,0.4) (0.5,0.2) (0.3,0.4) (0.4,0.3) (0.3,0.4) 

 

Table 8 S(a, β)(FX ⊗ FY), α=0.7, β=0.2      

Vi  
aA 

0.304 

bA 

0.444 

cA 

0.612 

dA 

0.364 

eA 

0.612 

fA 

0.364 
𝝁𝑺(𝟎.𝟕,𝟎.𝟐)(𝑿⊗𝒀)(𝒖) 

V1 

o1 0 1 1 1 0 0 0.237 

o2 0 1 1 1 0 0 0.237 

o3 1 0 0 0 1 1 0.213 

o4 0 0 0 0 0 0 0 

V2 

p1 1 0 0 0 1 0 0.153 

p2 0 0 1 0 1 1 0.265 

p3 0 0 0 0 1 0 0.102 

V3 

r1 0 0 0 0 1 0 0.102 

r2 1 1 0 1 0 1 0.264 

r3 0 0 0 0 0 0 0 

 

From Table 8, we see that for the V1-part of 

FX⊗FY, flats o1 and o2 have the largest value 

μ
S(0.7,0.2)(X⊗Y)

(o1)=μ
S(0.7,0.2)(X⊗Y)

(o2) =0.237; hence 

Dr. Roy can be selected o1 flat or o2 flat. For the V2-

part of FX⊗FY, vehicle p2 has the largest value 

μ
S(0.7,0.2)(X⊗Y)

(p
2
) =0.265; hence vehicle p2 is the 

best suit. Also, for the V3-part of FX⊗FY, inn r2 has 

the largest value μ
S(0.7,0.2)(X⊗Y)

(r2) =0.264; hence r2 

inn is the best suit. As a result, the best option for 

Dr. Roy is (o1, p2, r2) or (o2, p2, r2).
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Table 9 Table forS(α,β)(FX⊗FY), α=0.8, β=0.2 

Vi  
aA 

0.304 

bA 

0.444 

cA 

0.612 

dA 

0.364 

eA 

0.612 

fA 

0.364 
𝝁𝑺(𝟎.𝟕,𝟎.𝟐)(𝑿⊗𝒀)(𝒖) 

V1 

o1 0 0 0 0 0 0 0 

o2 0 1 1 1 0 0 0.237 

o3 1 0 0 0 1 1 0.213 

o4 0 0 0 0 0 0 0 

V2 

p1 1 0 0 0 1 0 0.153 

p2 0 0 0 0 1 0 0.102 

p3 0 0 0 0 1 0 0.102 

V3 

r1 0 0 0 0 1 0 0.102 

r2 0 0 0 0 0 1 0.061 

r3 0 0 0 0 0 0 0 

 

From Table 9, we see that for the V1-part of 

FX⊗FY, flat o2 has the largest value 

μ
S(0.8,0.2)(X⊗Y)

(o2) =0.237; hence flat o3 is the best 

suit. For the V2- part of FX⊗FY, vehicle p1 has the 

largest value μ
S(0.8,0.2)(X⊗Y)

(p
1
) =0.153; hence 

vehicle p1 is the best suit. Also, for the V3-part of 

FX⊗FY, inn r1 has the largest value 

μ
S(0.8,0.2)(X⊗Y)

(r1) =0.102; hence r1 is the best suit. As 

a result, the best option for Dr. Roy is (o2, p1, r1). 

 

Example 6.2 Now, let us consider the p-sets as in 

Table 5 and Table 6, then the resultant p-set FX⊕̄FY 

using OR−TCP as shown in Table 10 and we chose 

α=0.8 and β=0.1, we find S(α,β)(FX⊕̄FY) as shown 

in Table 11. From Table 11, we can see that for the 

V1- part of FX⊕̄FY, flat o3 has the largest value 

μ
S(0.8,0.1)(X⊗Y)

(o3) =0.943; hence flat o3 is the best 

suit. For the V2- part of 𝐹𝑋 ⊕̄ 𝐹𝑌, vehicle p1 has the 

largest value μ
S(0.8,0.1)(X⊗Y)

(p
1
) =0.943; hence 

vehicle p1 is the best suit. Also, for the V3- part of 

FX⊕̄FY, inn r1 has the largest value 

μ
S(0.8,0.1)(X⊗Y)

(r1) =0.943; hence r1 inn is the best 

suit. Therefore the final optimal decision for Dr. 

Roy is (o3, p1, r1).

 

Table 10  p-set FX⊕̄FY 

Vi  
aA 

0.889 

bA 

0.946 

cA 

0.982 

dA 

0.929 

eA 

0.982 

fA 

0.929 

V1 

o1 (0.7,0.2) (0.8,0.2) (0.8,0.2) (0.8,0.2) (0.7,0.2) (0.7,0.2) 

o2 (0.6,0.3) (0.9,0.1) (0.9,0.1) (0.9,0.1) (0.6,0.3) (0.6,0.3) 

o3 (0.9,0.1) (1,0) (1,0) (1,0) (0.9,0.1) (0.9,0.1) 

o4 (0.7,0.2) (0.8,0.1) (0.8,0.1) (0.8,0.1) (0.7,0.2) (0.7,0.2) 

V2 

p1 (0.8,0.1) (0.8,0.1) (0.9,0.1) (0.8,0.1) (0.9,0.1) (0.9,0.1) 

p2 (0.6,0.2) (0.8,0.2) (0.8,0.2) (0.8,0.2) (1,0) (0.8,0.2) 

p3 (0.6,0.3) (0.7,0.2) (0.9,0) (0.7,0.2) (1,0) (0.9,0) 

V3 

r1 (0.9,0.1) (0.9,0.1) (0.9,0.1) (0.9,0.1) (0.8,0.1) (0.9,0.1) 

r2 (0.8,0.2) (0.8,0.2) (0.7,0.2) (0.8,0.2) (0.8,0.2) (0.8,0.2) 

r3 (0.9,0) (0.9,0) (0.9,0) (0.9,0) (0.5,0.2) (1,0) 

 

Table 11  S(α,β)(FX⊕̄FY), α=0.8 and β=0.1 

Vi  
aA 

0.889 

bA 

0.946 

cA 

0.982 

dA 

0.929 

eA 

0.982 

fA 

0.929 
𝝁𝑺(𝟎.𝟖,𝟎.𝟏)(𝑿⊕̄𝒀)(𝒖) 

V1 

o1 0 0 0 0 0 0 0 

o2 0 1 1 1 0 0 0.476 

o3 1 1 1 1 1 1 0.943 

o4 0 1 1 1 0 0 0.476 

V2 
p1 1 1 1 1 1 1 0.943 

p2 0 0 0 0 1 0 0.164 
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Vi  
aA 

0.889 

bA 

0.946 

cA 

0.982 

dA 

0.929 

eA 

0.982 

fA 

0.929 
𝝁𝑺(𝟎.𝟖,𝟎.𝟏)(𝑿⊕̄𝒀)(𝒖) 

p3 0 0 1 0 1 1 0.482 

V3 

r1 1 1 1 1 1 1 0.943 

r2 0 0 0 0 0 0 0 

r3 1 1 1 1 0 1 0.779 

Remark 6.3 From Example 6.1, we can see that 

applying AND−TNP and for α=0.7 and β=0.2, we 

have the final optimal decision for Dr. Roy is (o1, p2, 

r2) or (o2, p2, r2), but if we chose α=0.8 and β=0.2, 

then the final optimal decision for Dr. Roy is (o2, p1, 

r1), which is unique. Also, in Example 6.2, applying 

the OR−TCP and choosing α=0.8 and β=0.1, we 

have flat o3, vehicle p1, and inn r1 are the best suits. 

Thus, we can obtain a unique solution by changing 

operations on p-sets and the values of α and β.  

 

Advantages 6.4 When we use Algorithm1, we get 

fewer object choices, which makes it easier for us 

to make a decision. However, by using Algorithm1, 

we can obtain more detailed data, which will assist 

leaders in making decisions. If there are lots of 

"ideal choices" to be selected in the 7th step, we can 

return to the 2nd and 3rd steps and adjust the 

operation or the values of α,β∈[0,1], that he once 

utilized in order to confirm the last ideal choice, 

particularly when there are too much "optimal 

decisions" to be selected.  

 

7.  Comparison analysis  
IFSSs can effectively represent and 

simulate the uncertainty and diversity of judgment 

information offered by decision makers. In 

comparison to FSSs, IFSSs are highly beneficial for 

expressing vagueness and uncertainty more 

accurately. As a result, in this paper, we offer an 

approach for solving group DMPs with p-sets by 

extending the FSMS based DMM. FSMS is a 

fantastic and a helpful tool for dealing with decision 

making and all the existing FSMS-based DMMs 

given in (Alkhazaleh, & Salleh, 2012; Mukherjee, 

& Das, 2015a; 2015b; 2015c; Balami et al., 2018; 

Das, 2018; Akin, 2020) are good for solving DMPs, 

but in their methods, they used FSMS evaluated by 

only one decision maker, so these methods are may 

not be useful in the modeling of group-DMPs, but 

the constructed method in this paper is very 

advantageous for group-DMPs.  Also, the 

importance of membership degrees of parameters 

are not considered in (Alkhazaleh, & Salleh, 2012; 

Mukherjee, & Das, 2015a, b or c; Balami et al., 

2018; Das, 2018; Akin, 2020), but we allow the 

importance of membership degrees with the 

parameters so that every decision makers can give 

the importance of parameter selections according to 

their choice. 

 

8.  Conclusion and future work 
In this study, we offer an approach for solving 

group DMPs with p-sets by extending the FSMS based 

DMM. FSMS is a fantastic and useful tool to deal with 

DMPs and all the existing FSMS-based DMMs are good 

for solving DMPs, but in their methods, they used FSMS 

evaluated by only one decision maker and the importance 

of membership degrees of parameters are not considered, 

so these methods are may not be useful in the modelling 

of group-DMPs, but the constructed method in this paper 

is very advantageous for solving group-DMPs. Some 

real-life examples are utilized to demonstrate the 

attainability of our DMM in helpful applications. 

However, we can see that by utilising 

Algorithm1, we can get an empty set of alternatives 

for items, which is horrible for our decision. 

Furthermore, we recognize that determining the 

value of 𝛼, 𝛽 ∈ [0,1] is critical in making a better 

decision. If we choose the estimates of 𝛼 ∈ [0,1] is 

too little and 𝛽 ∈ [0,1] is too substantial in the 

Definition 4.5 formula, we may receive a lot of 

various possibilities to choose from. However, this 

is frequently bad for our decision because the 

decision-maker has a tendency to look over fewer 

options. The more options available, the more 

difficult it is to choose. As a result, the choices we 

make should not be too important. However, if we 

choose 's estimations to be too large and 's to be 

too small, we may end up with fewer alternatives, 

and in some cases, we may end up with an empty 

set of object options, indicating that our judgments 

were unsuccessful. We need the new selection to 

provide us with the 𝛼, 𝛽 ∈ [0,1] estimations so that 

we can choose.  

In a future study, we will use q-ROFS (Garg 

& Aurora, 2021a; 2021b) to extend this proposed 

DMM to other real-life applications in the field of 

pattern recognition and medical diagnostics. 

 

Abbreviations: 

DMM Decision making method 

DMP Decision making problem 
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FS  Fuzzy set  

FSMS Fuzzy soft multi set 

FSS Fuzzy soft set  

IFS  Intuitionistic fuzzy set 

IFSMS Intuitionistic fuzzy soft multiset 

IFSMSP Intuitionistic fuzzy soft multi set 

part 

IFSS Intuitionistic fuzzy soft set  

IVFS Interval-valued fuzzy set 

IVIFS Interval-valued intuitionistic fuzzy 

set 

SS  Soft set  

p-set Fuzzy parametrized intuitionistic 

fuzzy soft multiset 

RS  Rough set 

TNP t-norm product 

TCP t-conorm product 
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