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ABSTRACT 
 
Fluoride is widely used in dentistry to prevent dental caries by increasing the fluoride 
content in saliva and aiding enamel remineralization. Excessive fluoride in the blood 
can cause adverse health effects such as fluorosis, which alter cerebral function. 
The influence of fluoride on dopaminergic neurons however, remains largely unclear. 
The present study examined the effect of sodium fluoride toxicity on dopaminergic 
neurons in retinoic acid-induced differentiation in SH-SY5Y cells. Cell viability was 
reduced by fluoride in both time- and concentration-dependent manners. Moreover, 
immunoblot analysis showed that fluoride decreased neuronal marker microtubule-
associated protein-2 expression and levels of tyrosine hydroxylase, a rate-
determining step enzyme in dopamine synthesis, even at a nonlethal dose. These 
results suggest that fluorosis may adversely affect dopaminergic neurons and may 
have harmful effects in individuals with degenerative dopaminergic neuron 
conditions, such as Parkinson’s disease. 
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1. INTRODUCTION                                    
 
Fluoride is abundantly found in nature. Topical fluoride is 
frequently applied in dentistry as a means of caries 
prevention. Application of fluoride varnish has been 
proven to greatly reduce the occurrence of dental caries 
(Marinho et al., 2013). Fluoride can also be ingested 
systemically in the form of fluoridated water. Upon 
imbibition, fluoride is rapidly absorbed into the blood-
stream via the stomach and intestines (Whitford, 1994). 
Once the blood fluoride level rises, the fluoride level in 
secreted saliva also correspondingly increases (Ingram et 
al., 2005). Salivary flow brings fluoride ions in contact with 
tooth surfaces, where the ions incorporate into enamel 
and promote remineralization. Accordingly, water is 

commonly fluoridated worldwide and supplied to 
approximately 400 million people in 25 regions, as 
reported by the World Health Organization (WHO) 
(O’Mullane et al., 2016). 
       Although the benefits of fluoride in dentistry are 
significant, studies have linked fluoride with several health 
issues. Excessive systemic fluoride, termed fluorosis, can 
accumulate in hard tissues such as bone and teeth, the 
latter of which is easily visualized and diagnosed by the 
dentist during routine examinations (Nakornchai et al., 
2016). Fluorosis can also affect soft tissues, including 
blood cells and vessels, as well as organs such as the 
kidneys, lungs, and brain (Kurdi, 2016). A meta-analysis 
linked high fluoride levels in drinking water with a 
decrease in children’s intelligence quotient (IQ), revealing 
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the detrimental effect of fluoride on cerebral function (Xu 
et al., 2020). Despite the separation of the brain from the 
rest of the body by the blood brain barrier, studies have 
shown that fluoride can be carried to the brain by active 
transport (Hu and Wu, 1988). Studies, both in vivo and in 
vitro show evidence of the neurotoxicity of high fluoride 
exposure in the brain, leading to disruption of the 
glutaminergic, γ-aminobutyric acid (GABA) and cholinergic 
neurotransmitter systems. Acetylcholine, glutamate, and 
GABA are important neurotransmitters for memory 
consolidation in the hippocampus. Several studies have 
linked fluoride suppression of neurotransmitter release 
and receptor expression with memory impairment (Dec 
et al., 2017). Because of the adverse health effects of 
fluorosis, WHO guidelines limit fluoride content in 
drinking water to no more than 1.5 mg per liter. However, 
incidences of fluorosis have still been reported as a result 
of overconsumption of fluoride from other sources 
(McGrady et al., 2012; Nakornchai et al., 2016). 
       A few studies reported the influence of chronic fluoride 
exposure on the cerebral dopamine system. Dopamine is a 
monoamine neurotransmitter, responsible for motivation, 
reward, and motor control (Bernheimer et al., 1973; 
Brydon et al., 2008). A decrease in dopamine levels in 
certain parts of the brain is associated with the development 
of depression, addiction, and Parkinson’s disease.  
       The present study aimed to investigate the influence of 
fluoride on dopaminergic neuronal differentiation in an 
in vitro model. Neuroblastoma SH-SY5Y cells were 
established as the differentiation model by the addition of 
retinoic acid (RA), with or without the presence of fluoride.  
 
 
2. MATERIALS AND METHODS 
 
2.1 Reagents 
Sodium fluoride (NaF) and sodium chloride (NaCl) were 
purchased from Merck (Darmstadt, Germany). RA was 
obtained from Sigma-Aldrich (St. Louis, MO, USA). All 
antibodies used in immunoblot analysis were acquired 
from Cell Signaling Technology (Beverly, MA, USA).  All cell 
culture chemicals used for cell cultures were purchased 
from Gibco (Carlsbad, CA, USA). All other chemicals were 
obtained from Merck Millipore unless otherwise stated. 
 
2.2 Cell cultures and treatments 
The neuroblastoma cell line SH-SY5Y was obtained from 
American Type Culture Collection (ATCC; Manassas, VA, 
USA). The cells were cultured according to the 
manufacturer instructions. Cells were incubated with NaF 
or NaCl for 24 h before RA-induced differentiation. 
Afterwards, the cells were incubated with 10 µM of RA or 
0.1% dimethyl sulfoxide (DMSO) (v/v) with or without 
NaF. The medium was changed daily. 
 
2.3 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide (MTT) assay 
Cell viability was determined by MTT assay. SH-SY5Y cells 
(104 cells/well) were subcultured into 96-well plates 
(Costar, Corning, NY, USA). Upon completion of the given 
conditions, 0.5 mg/mL MTT solution was substituted. Cells 
were further incubated for 4 h under dark conditions. The 
purple formazans representing viable cells were solubilized 
in DMSO and measured by a microplate reader machine at 
570 nm (BioTek Synergy H4, BioTek). 

2.4 Hoechst 33342 staining 
Chromatin condensation is one characteristic of apoptotic 
cells. The condensed nuclei were visualized by the nuclear 
staining dye Hoechst under the fluorescence microscope. 
After RA incubation, the cell culture medium was replaced 
with fixative (methanol/glacial acetic acid in a 3:1 ratio) for 
25 min in a 4°C chamber, washed twice with phosphate 
buffered saline (PBS), and then stained for 15 min with 
Hoechst 33342 (1 µg/mL) at 25°C. Images of the nuclei 
were observed using a fluorescence microscope (IX83ZDC, 
Olympus Corp., Tokyo, Japan). Any cell with a bright blue 
nucleus was identified as a chromatin condensation 
positive cell. Images were randomly taken from three fields 
of each group of experiments for approximately 500 cells. 
The data were expressed as a percentage of condensed 
nuclei cells out of the total nuclei. 
 
2.5 Immunoblot analysis 
The neuronal markers of differentiated cells were detected 
using immunoblot analysis. After treatment, cells were lysed 
by radioimmunoprecipitation assay buffer supplemented 
with a protease inhibitor cocktail and quantified by BCA 
protein quantification assay (Thermo Scientific, MA, USA). 
The twenty-microgram protein of each experimental 
condition was separated on sodium dodecyl sulfate 
polyacrylamide gel electrophoresis and transferred onto 
methanol-activated polyvinylidene fluoride membranes. To 
prevent non-specific antibody binding, membranes were 
pre-probed with 5% bovine serum albumin in tris-buffered 
saline with 0.1% Tween® 20 detergent and incubated 
overnight with primary antibodies (1:1000) against 
microtubule-associated protein-2 (MAP2) (M9942; Sigma-
Aldrich, Darmstadt, Germany), tyrosine hydroxylase (TH) 
(#2792) and β-actin (A2228; Sigma, Darmstadt, Germany) at 
4°C with gentle shaking overnight. Afterwards, membranes 
were incubated with horseradish peroxidase-conjugated 
secondary antibodies; anti-rabbit (#7074) or anti-mouse 
(#7076) at ambient temperature for 2 h. The bands were 
visualized by a chemiluminescence kit (Bio-Rad, CA, USA). 
Images were acquired by the enhanced chemiluminescence 
system (UVITEC, Cambridge, UK) and quantified by 
densitometry analysis (Image J software). 
 
2.6 Statistical analysis 
All data were presented as mean±SEM from three 
independent experiments. Significant differences among 
the groups were statistically calculated using one-way 
ANOVA analysis followed by Tukey-Kramer test for 
multiple comparison results. All statistical analyses were 
calculated by using GraphPad Prism software 8.0. A p-value 
of less than 0.05 indicated statistical significance. 
 
 
3. RESULTS AND DISCUSSION 
 
3.1 Toxic effect of sodium fluoride on undifferen- 
tiated SH-SY5Y cell viability 
To study the influence of sodium fluoride on SH-SY5Y cell 
viability, cells were pre-treated with various doses of NaF 
for durations of 48, 72, and 96 h. NaF was observed to 
significantly decrease cell viability in both time- and 
concentration-dependent manners. At 48 h and 40 µg/mL, 
NaF decreased the number of SH-SY5Y cells by 
approximately 20%, compared to the NaCl control group 
(Figure 1B). At 72 h and 96 h, incubation with NaF 
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significantly decreased cell viability at 40 µg/mL and 20 
µg/mL (Figure 1C). Incubation with 10, 5 and 2.5 µg/mL of 
NaF did not statistically reduce cell viability under any 
experimental condition (Figure 1B-D). 
       Fluoride exposure above a certain concentration and  
duration of time could induce apoptosis in certain types of 
cells, such as macrophages (Hirano and Ando, 1996), 
hepatocytes (Gutowska et al., 2016), and neuroblastoma 
cells (Inkielewicz-Stepniak et al., 2012; Wei et al., 2014). 
In this study, cell viability was reduced by NaF in both 
time- and dose-dependent manners. These results were 

comparable to those reported by Xu et al. (2011), which 
showed that higher concentrations of NaF lead to 
increasing toxicity. Our study further demonstrated that 
not only a higher concentration, but also a longer period of 
incubation can increase NaF toxicity, as exemplified by the 
group treated with 20 μg/mL of NaF exhibiting an increase 
in toxicity over time. Our findings suggested that special 
caution should be taken to avoid conditions that may 
contribute to chronic exposure to fluoride, which may raise 
the risk of fluoride toxicity. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. (A) The experimental model, NaF induced reduction of cell viability in undifferentiated SH-SY5Y cells at (B) 48 h, 
(C) 72 h, and (D) 96 h of incubation 
Note: Each bar graph represents the mean±SEM calculated from three independent experiments. *p<0.05, compared to the NaF-untreated 
group. 
 
3.2 NaF decreased cell viability and increased 
apoptotic nuclei in differentiating cells 
To examine the effect of NaF on cell viability during 
neuronal differentiation, the cells were pre-treated with 
NaF for 24 h, followed by the addition of 10 μM of RA for 
72 h. Cell viability was determined by the MTT assay. There 
was no significant difference observed in 2.5, 5, and 10 
µg/mL NaF-treated groups, when compared to the NaCl 
control group (Figure 2G). However, there was a 
statistically significant reduction of cell viability in the 
group treated with 40 and 20 µg/mL of NaF. 
       Hoechst nuclear staining assay (Figure 2H) revealed 
that NaF significantly increased the number of cells with 
condensed chromatin at concentrations of 40 and 20 
µg/mL, compared to the untreated group. In addition, 10, 
5, and 2.5 µg/mL of NaF did not significantly raise the 
number of cells with condensed nuclei. 
       Sodium fluoride has previously been reported to cause 
apoptosis in both in vitro and in vivo models (Ribeiro et al., 

2017). Characteristics of apoptosis include membrane 
blebbing, apoptosome formation, DNA fragmentation, and  
chromatin condensation (Reed, 2000). In the present 
study, cells were identified using Hoechst nuclear 
staining to detect chromatin condensation. The results 
indicated that, even in the presence of RA, NaF could 
increase chromatin condensation positive cells in 
differentiating neuroblastoma SH-SY5Y cells. It was 
recently discovered that RA is capable of exerting a 
protective effect against toxin-induced apoptosis and UV 
exposure by upregulating pro-survival pathways, such as 
Akt/mTOR signaling (Cao et al., 2008; Cheung et al., 
2009). However, RA did not protect or diminish the 
deleterious effects of NaF in our experimental setup, 
suggesting that pre-treatment with NaF possibly 
prevented RA from exerting its protective effect, or RA 
did not confer a protective effect against NaF toxicity. 
However, further experimentation is needed to confirm 
this hypothesis. 
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Figure 2. The number of apoptotic nuclei in cells treated with various concentrations of NaF: (A) 0 µg/mL, (B) 40 µg/mL, 
(C) 20 µg/mL, (D) 10 µg/mL, (E) 5 µg/mL, and (F) 2.5 µg/mL, followed by the addition of 10 μM RA for 72 h, (G) MTT assay 
and (H) the number of apoptotic nuclei.  
Note: Each bar represents the mean±SEM calculated from three independent experiments. *p<0.05, compared to the 0 µg/mL treated group. 
 
3.3 NaF-attenuated neuronal markers in 
differentiating SH-SY5Y cells  
To assess the expression of neuronal differentiation 
markers, cells were subjected to immunoblot analysis 
probing for MAP2 and TH proteins. Differentiation of SH-
SY5Y cells induced by the addition of 10 µM RA 
significantly increased the protein expression of MAP2 and 
TH, compared to undifferentiated cells (Figure 3). The 
presence of 20 µg/mL and 10 µg/mL of NaF was observed 
to significantly reduce expression of MAP2 and TH. 
However, in the group treated with 5 µg/mL NaF, there 
was no statistically significant change in the expression of 
either MAP2 or TH.  
       SH-SY5Y cells could be differentiated into 
dopaminergic neurons by RA. The undifferentiated cells 
were characterized morphologically by non-polarized cell 
bodies with truncated processes (Figure 3C). On the other 
hand, differentiated SH-SY5Y cells transformed were more 
morphologically similar to primary neurons, with 
elongated processes and expression of neuronal markers 
(Figure 3D). Neuronal markers are endogenous tags 
expressed in the cell lineage during neurogenesis and 
differentiation. The expression pattern of markers 
correlates with the function of the cell state. Some neuronal 

markers are present in several states of neurogenesis, 
while others are present only in differentiated neurons. 
For example, expression of MAP2 is detectable in both 
early and late neurogenesis (Menezes and Luskin, 1994). 
The MAP2 protein has several isoforms (Chung et al., 
1996). The MAP2b (280 kDa) isoform is expressed 
throughout neurogenesis, while the MAP2a (280 kDa) 
isoform is increasingly expressed in later states of 
neurogenesis. The upregulation of the juvenile isoform 
MAP2c (75 kDa) during neurite outgrowth and 
microtubule stabilization has suggested that this isoform 
serves a significant role in these processes (Lieven et al., 
2007). Previous studies have reported that high 
concentrations of NaF suppressed neurite outgrowth in 
undifferentiated human neuroblastoma (Nakagawa-Yagi 
et al., 1993) and mouse hippocampal neurons (Bhatnagar 
et al., 2002) and were also associated with the 
downregulation of MAP2. In this study, RA induced the 
upregulation of MAP2c, which was conversely subdued 
with the addition of NaF. Interestingly, 10 μg/mL of NaF 
was shown to decrease MAP2 expression even though it 
did not significantly affect cell viability. These results 
suggested that nontoxic concentrations of NaF could 
adversely affect neurodifferentiation. 
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       Dopamine is an essential neurotransmitter that plays 
an important role in behavior modulation, mood 
regulation, and motor movement (Crocker, 1997). 
Dopaminergic neurons produce dopamine via several 
enzymes, including the rate-limiting TH (Daubner et al., 
2011). Fluoride has been reported to disturb the action of 
several neurotransmitters, including glutamate and 
acetylcholine (Ekambaram and Paul, 2001; Liu et al., 
2013). Fluoride overexposure can also alter dopamine 
levels and number of dopamine receptors in the striatum 
(Kupnicka et al., 2020). However, the effects of fluoride on 
dopamine production remain unclear. The present study 
investigated the influence of fluoride on TH expression in 
dopaminergic neuronal differentiation, and the results 
indicated that fluoride could suppress TH expression 

during differentiation. TH is a rate-limiting enzyme in 
neurotransmitter production and is commonly used as a 
marker for dopaminergic neuron cell characterization 
(Gale and Li, 2008; Van Heesbeen et al., 2013). Since 
dopamine levels are correlated with cognitive function, 
decreased TH may possibly contribute to IQ reduction in 
children prenatally exposed to fluoride (González-Burgos 
and Feria-Velasco, 2008). Dopaminergic neurogenesis 
has also been shown to occur in adult mammals 
(Morrison, 2016). As such, chronic exposure to fluoride 
may have deleterious effects on dopaminergic-related 
neurodegenerative conditions, such as Parkinson’s disease. 
Caution is therefore recommended when considering 
fluoride application for caries prevention when treating 
this group of special needs patients. 

 

 
 
Figure 3. Immunoblot analysis showing (A) the expression of microtubule-associated protein 2 (MAP2), (B) the expression 
of tyrosine hydroxylase (TH). The morphology of (C) undifferentiated SH-SY5Y cells, and (D) differentiated SH-SY5Y cells.  
Note: Each bar represents the mean±SEM calculated from three independent experiments. *p<0.05. Whitehead arrows indicate a truncated 
process. Blackhead arrows indicate an elongated process. 
 
 
4. CONCLUSION 
 
Higher concentrations of fluoride reduced both 
neuroblastoma SH-SY5Y cell viability, and number of 
neuronal markers. At the lower concentration of 5 μg/mL, 
NaF did not lead to reduction of cell viability but rather to 
a significant decrease in MAP2 and TH expression. The 
results from this study indicated that a nonlethal dose of 
NaF could suppress neuronal differentiation, and NaF 
disturbed the dopamine synthesis pathway via reduction 
of TH expression. 
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