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Abstract 

 

Location selection is a complex decision problem, mainly caused by many considered criteria. Moreover, the criteria normally have 

different levels of importance or weights, and seeking a consensus among multiple decision makers regarding the weights of criteria is 

difficult. Since the weights are essential inputs for a logical decision-making process, this study examines the effects of varying the 

weights towards five weighting methods under the subjective and objective approaches. The direct rating, rank-order centroid, and 

rank sum represent the methods that derive the weights based on a decision maker’s subjective judgement, while the entropy and 

standard deviation methods signify the objective approach. A case of location selection for production fragmentation of a Thai 

manufacturing company that ranked candidate locations by the fuzzy Technique for Order Preference by Similarity to Ideal Solution 

(fuzzy TOPSIS) is used as a basis for comparing the sensibility of the five weighting methods. Discussions about their methodological 

and practical advantages and cautions are drawn according to the three criteria, including resource requirement, potential for bias, and 

general complexity of each method. 
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1. Introduction 

 

Industrial location selection (for a relocation, expansion, or production fragmentation) is a complex decision-making problem for 

business practitioners. Location describes where something is situated in association with other things. Industrial location concerns 

both the spatial distribution of industry and the relationships between that distribution and other phenomena [1]. When locations are 

chosen appropriately, this not only contributes to the economic prosperity of such a business but also avoids irreparable losses that 

could be caused to the environment and society [1, 2].  

The location selection problem is complex due to a number of factors. First, there are a vast variety of criteria to be considered, 

and the criteria include not only quantitative criteria simply assessed using numerical measurement units but also qualitative criteria 

that are highly dependent upon decision makers’ subjective judgements [3, 4]. For many criteria, furthermore, the information might 

be subject to frequent change or might not be readily available. In addition, the gathering of information might be time-consuming and 

resource-intensive. As such, incompleteness and/or uncertainty of information always cause decision makers’ hesitation in the 

assessment [5]. Another point is that the levels of importance of those criteria are generally not equal, varying by individual concerns 

and the variability and complexity of the context [6, 7]. The involvement of multiple decision makers is also considered another factor 

that raises the complexity of the problem. It is rather difficult to receive a consensus regarding the best choice, and decision makers 

may conduct the assessment under different standards or interpretations of the assessment scales, or the wordings employed, 

particularly for qualitative criteria [8].  

Multi-criteria decision making (MCDM) approaches are generally adopted to support location selection problems, mainly due to 

their ability to provide the best compromised choice under simultaneous consideration of a wide range of criteria [7, 9-14]. Since the 

problems involve many qualitative criteria that are difficult to assess precisely and quantitatively, rating scales are usually employed 

to handle such issues. Nevertheless, rating scales are generally built around linguistic terms, making them frequently unstandardised 

among decision makers and therefore rely heavily on their intuitive judgments [4]. When it comes to selecting a location for a facility, 

traditional MCDM techniques are usually less effective at dealing with the vagueness or lack of clarity of the linguistic assessment 

[15]. From the literature review, fuzzy logic is found to be a logical and reasonable approach to dealing with the ambiguity of the scales 

used as well as the uncertainty of information [9, 16-19]. In recent years, there has been a growing interest in applying fuzzy logic to 

location selection problems [15, 20-23]. Arunyanart, et al. [4] is one of the recent studies that adopted fuzzy logic with the TOPSIS 

method to support a location selection for production fragmentation (details are further described in the next section). For this work, 

up to 18 criteria were considered significant for the decision. The direct rating (DR), a simple method of subjective weighting, was 

adopted to determine the levels of importance of criteria (the weights) through experts’ judgements. A linguistic scale (Very low, Low, 
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Medium, High, and Very high) was employed for this purpose, and the scale was then converted into a form of triangular fuzzy numbers 

(TFNs) to compromise the vagueness of the scale. The weights obtained, however, may be argued because of their high dependence 

on subjective opinions and personal bias, and the weights might be unreliable, particularly when decision makers are confused with 

too many criteria to consider simultaneously.  

The weights of criteria are the critical inputs in analytical decision makings. The final results in MCDM are, many times, more 

sensitive to the changes in weights of the criteria than the choice of aggregation methods [7, 24]. An understanding of how different 

weighting methods influence the decision results allows business decision makers to gain a satisfactory and confident conclusion for 

their strategic planning. Methods that rely less on personal opinions also enable companies to reach a consensus and avoid conflict 

from the disagreement. Unfortunately, from a review of studies focusing on industrial location selection, most studies did not further 

analyse the effect of the change in criteria weights [3, 6, 16, 17, 25]. Furthermore, they generally determine the weights based on 

subjective weighting approaches, regardless of the impracticality and complexity of data elicitation processes. The problem becomes 

more apparent when numerous decision makers are involved in creating the criteria weights, since reaching consensus may be difficult 

[25]. There were also limited studies that compared how decisions turned out when switching between subjective and objective 

weighting techniques. This paper, therefore, aims to explore a more efficient and reliable way to aid the weighting process for 

Arunyanart, et al. [4] by considering other four simpler methods, including Rank sum (RS), Rank-order centroid (ROC), Entropy, and 

Standard deviation (SD) methods. The first two approaches, RS and ROC, are still considered subjective weighting approaches but 

require less effort from decision makers than the DR since only the priority of criteria is needed for determining the weights [26, 27]. 

Entropy and SD, on the other hand, are representatives of the objective weighting approach, which derives the weights from known 

data of alternatives for each criterion without the decision maker’s intervention [28, 29]. The derived ranking of alternatives from 

Arunyanart, et al. [4] was cross-compared to those when the weights were changed according to the four proposed methods in order to 

investigate how these methods influence the decision-making results.    

 This paper is organised as follows: After the introduction, Section 2 presents a review of literature by dividing into two sub-sections. 

Section 2.1 provides an overview of Arunyanart, et al. [4], the baseline of this comparative study, and a review of recent studies that 

used MCDM techniques to solve a location selection problem. Section 2.2 then describes the four weighting methods (RS, ROC, 

Entropy, and SD) in terms of their theoretical concepts and computation procedures. The methodology employed for this study is 

explained in Section 3. Section 4 shows results and discussions. Conclusions and practical implications are drawn in Section 5. 

 

2. A review of relevant literature  

 

2.1 Fuzzy TOPSIS for a location selection  

 

A selection of a facility location is very significant for manufacturing companies to minimise cost and maximise the use of resources 

[30]. Many researches applied MCDM techniques to determine the most suitable location. This review section provides an update on 

the trend of MCDM applications in this context by reviewing articles recently published during the years 2021 and 2022. Eroğlu [9] 

investigated suitable places to construct wind power plants by using geographic information systems (GIS). The analytic hierarchy 

process (AHP) was employed to elicit the weights of the criteria. Bait, et al. [6] applied AHP, TOPSIS, and cluster analysis methods 

to facilitate the selection of a location for a textile Italian company to settle a new plant in Africa. Ozdemir and Sahin [3] also adopted 

AHP to evaluate prospective locations for setting up a new solar PV power plant in Turkey. Chithambaranathan, et al. [31] applied the 

VIKOR method to a facility location selection problem under flexible criteria weights. In addition, MCDM methods have been applied 

to location selection problems in the healthcare industry. For example, Saroja, et al. [19] used fuzzy AHP to determine the weights of 

criteria for selecting locations to establish new COVID-19 testing centres in India, and next employed TOPSIS to rank the candidate 

locations. A review of recently published papers indicates that AHP, TOPSIS, and VIKOR remain prevalent approaches for site 

selection problems.  

TOPSIS is among the most generally used methods for addressing ranking issues in real situations. The logic of TOPSIS is 

straightforward and simple to comprehend by computing a composite score for an alternative based on its distance from the negative 

ideal solution and similarity to the positive ideal solution. When all criteria are considered simultaneously, the best choice should be 

the one that is closest to the positive solutions and the furthest away from the negative ones [8]. Although the TOPSIS technique is 

prevalent, it has some constraints. For instance, decision makers frequently struggle to give an alternative a precise performance score 

for some criteria. Many times, some criteria are challenging to quantify, and decision makers are reluctant or unable to express their 

judgments in the form of single numeric values [4, 32]. Fuzzy TOPSIS technique, developed by Chen [33], was introduced to get 

around some constraints of the original form of the TOPSIS method afterwards. Fuzzy TOPSIS proposes evaluating alternatives and 

weighing criteria using a linguistic scale in the form of fuzzy numbers. It is well suited for resolving issues with group decision-making 

in uncertain contexts [4, 17, 34]. When compared to AHP or fuzzy AHP, which are other popular MCDM methods for ranking 

alternatives, fuzzy TOPSIS is also better suited to handle a complex decision problem considering a large number of criteria since AHP 

demands too many subjective pairwise comparisons [8, 35]. For example, according to Arunyanart, et al. [4], 18 criteria and four 

alternatives were considered. AHP requires up to 153 judgments from each decision maker to determine the weights for all criteria and 

another 108 judgments for ranking the alternatives. There is a suggestion that, for AHP, only 18 should be a realistic upper limit for 

the number of comparisons that can be completed in order to enable consistent judgments and avoid decision makers becoming bored 

and confused [36, 37].  

 Fuzzy TOPSIS method has been used in various fields of location selection. Erkayman, et al. [38], for example, proposed a fuzzy 

TOPSIS model for determining the most appropriate location for a logistics centre in the northeast region of Turkey. Kaur, et al. 

[39] proposed a model for selecting the most appropriate energy power plant in Turkey based on the fuzzy TOPSIS method. Alkan and 

Kahraman [40] identified the most suitable site for a pandemic hospital using the TOPSIS method under circular intuitionistic fuzzy 

members. In addition, Arunyanart, et al. [4] demonstrated the application of fuzzy TOPSIS to support the location selection for 

production fragmentation of an electronics company in Thailand. The candidate locations here are Thailand’s neighboring countries–

Cambodia, Laos, Myanmar, and Vietnam (CLMV). The criteria were gathered from a review of around 30 research articles, published 

from the years 1995 to 2020, that suggested a logical method to solve an industrial location selection problem. The gathered criteria 

were then validated in terms of their significance through expert interviews, leading to the identification of 18 criteria. As previously 

stated, the weights of these criteria were determined using expert judgments (the DR method) in relation to the fuzzy set theory. Table 

1 shows the ranking of criteria and their aggregated fuzzy weights (�̃�𝑗), defuzzified weights (𝑤𝑗), and relative weights (𝑤𝑗
′), for each 
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criterion j when j = 1, 2, …, 18 criteria. The definition of each criterion can be seen in that paper. Note that the relative weights of all 

the criteria sum to one, or ∑ 𝑤𝑗
′ = 118

𝑗=1 . In the end, their study indicated, based on the obtained closeness coefficient values (CC), that 

Vietnam was the most suitable location, followed by Laos, Myanmar, and Cambodia, respectively. 
 

Table 1 The weights of criteria for industrial location selection [4]. 
 

Criteria �̃�𝒋 𝒘𝒋 𝒘𝒋
′ Ranking 

C1: Labor cost (0.5, 0.7857, 1.0) 0.7679 0.0649 6 

C2: Availability of labor force (0.5, 0.7429, 1.0) 0.7464 0.0630 7 

C3: Skill and competency level of labour (0.5, 0.8714, 1.0) 0.8107 0.0685 1 

C4: Labour laws and regulations (0.3, 0.6714, 1.0) 0.6607 0.0558 8 

C5: Foreign ownership laws (0.5, 0.8000, 1.0) 0.7750 0.0655 4 

C6: Taxation and tax incentives (0.5, 0.8429, 1.0) 0.7964 0.0673 3 

C7: Government structure and stability (0.3, 0.5857, 0.9) 0.5929 0.0501 12 

C8: Stability of government policy (0.1, 0.5429, 0.9) 0.5214 0.0440 17 

C9: Adequacy of energy and electricity (0.5, 0.8571, 1.0) 0.8036 0.0679 2 

C10: Efficiency of electrical supply systems (0.5, 0.8000, 1.0) 0.7750 0.0655 4 

C11: Price of electricity (0.3, 0.6286, 0.9) 0.6143 0.0519 11 

C12: Variety of transport modes (0.3, 0.6286, 1.0) 0.6393 0.0540 10 

C13: Efficiency of transportation systems (0.3, 0.6571, 1.0) 0.6536 0.0552 9 

C14: Availability of land (0.3, 0.5857, 0.9) 0.5929 0.0501 12 

C15: Efficiency of telecommunication and network systems (0.3, 0.5143, 0.9) 0.5571 0.0471 15 

C16: Land price (0.3, 0.5429, 0.9) 0.5714 0.0483 14 

C17: Stability of financial institutions (0.0, 0.3714, 0.9) 0.4107 0.0347 18 

C18: Risk of natural disaster (0.1, 0.6000, 0.9) 0.5500 0.0465 16 
 

2.2 Weighting methods (RS, ROC, Entropy, and SD) 
 

In the majority of MCDM models, criteria weighting must be thoroughly considered since it has a direct impact on the decision-

making outcome. Some experts specified weights directly, whereas the majority considered mathematical weighing procedures 

essential [41]. This section briefly describes the four weighting methods adopted for this comparative study, including RS, ROC, 

Entropy, and SD. The first two methods, RS and ROC, are accounted for in rank-based or rank-ordering weighting methods [26, 27]. 

Based on these, ordinal data can be converted into the relative weights through specified mathematical formulations. The basic principle 

is that criteria in the better positions receive higher weights. Equations (1) and (2) show mathematical formulations to determine the 

weights for RS and ROC, where n is the total number of criteria (n = 18 for this study), 𝑟j is the rank of criterion j, (j = 1, 2, …, n). For 

example, if criterion j is the most important one, it is ranked first (𝑟j = 1). The least important one has 𝑟j = n. 
 

𝑤𝑗
′(𝑅𝑆) =  

𝑛−𝑟𝑗+1

∑ 𝑛−𝑟𝑘+1𝑛
𝑘=1

                                                                                                                                               (1) 

 

𝑤𝑗
′(𝑅𝑂𝐶) =  

1

𝑛
∙ ∑

1

𝑟𝑘

𝑛
𝑘=𝑗                                                                                                                        (2)  

 

Entropy and SD methods are used to represent the objective weighting approach, which determines the weights of criteria based 

only on known data about the problem without considering subjective opinions. For the Entropy method, criteria with performance 

ratings that are extremely diverse from one another receive higher weights since they have a greater impact on differentiating and 

ranking alternatives. At the same time, if the alternatives have similar performance ratings for a criterion, then that one has less 

important weight [29]. The Entropy weights can be computed following these steps [42]. 

 From the normalised decision matrix, 𝑅 =  [𝑟𝑖𝑗]
𝑚x𝑛

, for m alternatives and n criteria, 𝑟𝑖𝑗 denotes the normalised assessment data 

of alternative i on criterion j, as shown in Table 2. The first step is to calculate the entropy, 𝐸𝑗 , of criterion j using Equation (3). Next, 

the relative weight of criterion j, or 𝑤𝑗
′, can be computed through Equation (4). 

 

Table 2 Normalised decision matrix m x n. 
 

Alternative i 

(i = 1, …, m) 

Criterion j (j = 1, …, n) 

1 2 … n 

1 𝑟11 𝑟12 … 𝑟1𝑛 

2 𝑟21 𝑟22 … 𝑟2𝑛 

… … … … … 

… … … … … 

m 𝑟𝑚1 𝑟𝑚2 … 𝑟𝑚𝑛 
 

𝐸𝑗 =  
−(∑ 𝑟𝑖𝑗 𝑙𝑛(𝑟𝑖𝑗)𝑚

𝑖=1 )

𝑙𝑛(𝑚)
                                                                                                      (3) 

 

𝑤𝑗
′ =  

1−𝐸𝑗

∑ (1−𝐸𝑘)𝑛
𝑘=1

                                                                                                                        (4) 

 

The SD method is analogous to the Entropy approach in that it gives a criterion a small weight if its values across alternatives are 

comparable, while giving a high weight if the alternatives’ data is massively diverse. The SD method calculates the weight of criterion 

j based on its standard deviations (𝜎𝑗), following Equations (5) and (6).   



766                                                                                                                                                  Engineering and Applied Science Research 2022;49(6) 

𝑤𝑗
′ =  

𝜎𝑗

∑ 𝜎𝑗
𝑛
𝑗=1

                                                                                                       (5) 

 

𝜎𝑗 =  √
∑ (𝑟𝑖𝑗−𝑟�̅�)2𝑚

𝑖=1

𝑚
                                                                                                                      (6) 

 

3. Methods 

 

 This section explains steps to investigate the influence of changing the weighting approaches on a location selection problem. This 

study employed secondary data from Arunyanart, et al. [4] in terms of the assessment data of the CLMV countries in each criterion. 

The data was gathered from 14 experts who were asked to assess the four potential nations for production fragmentation in light of the 

18 criteria using a linguistic scale, which was next transformed into TFNs. The assessment data from all experts was aggregated and 

then normalised. Their normalised fuzzy decision matrix, �̃� =  [�̃�𝑖𝑗]
𝑚x𝑛

 and �̃�𝑖𝑗 = (𝑟𝑖𝑗1, 𝑟𝑖𝑗2, 𝑟𝑖𝑗3), is shown in Table 3. 

 

Table 3 The normalised fuzzy decision matrix from the assessment of the CLMV countries [4]. 

 

Criteria Cambodia (A1) Laos (A2) Myanmar (A3) Vietnam (A4) 

C1 (0.5, 0.7, 0.9)  (0, 0.1, 0.3) (0.7, 0.9, 1)  (0, 0.1, 0.3)  

C2 (0, 0.1, 0.3)  (0, 0.1, 0.3) (0, 0.1, 0.3)  (0.7, 0.9, 1)  

C3 (0.1, 0.457, 0.7)  (0.1, 0.429, 0.7) (0.5, 0.614, 0.9)  (0.5, 0.814, 1)  

C4 (0.1, 0.457, 0.7)  (0.3, 0.571, 0.9) (0.1, 0.414, 0.7) (0.5, 0.771, 1)  

C5 (0.1, 0.471, 0.7)  (0.3, 0.557, 0.9) (0.1, 0.471, 0.7) (0.5, 0.743, 1)  

C6 (0.111, 0.476, 0.778)  (0.111, 0.524, 0.778) (0.556, 0.762, 1)  (0.333, 0.682, 1) 

C7 (0.3, 0.6, 0.9)  (0.3, 0.743, 1) (0.1, 0.4, 0.7)  (0.5, 0.771, 1)  

C8 (0.3, 0.643, 0.9)  (0.5, 0.829, 1) (0.1 ,0.443, 0.7)  (0.5, 0.786, 1)  

C9 (0, 0.1, 0.3)  (0.7, 0.9, 1) (0.3, 0.5, 0.7)  (0, 0.1, 0.3)  

C10 (0, 0.1, 0.3)  (0.3, 0.5, 0.7) (0, 0.1, 0.3)  (0.7, 0.9, 1)  

C11 (0, 0.1, 0.3)  (0.7, 0.9, 1) (0.5, 0.7, 0.9)  (0.7, 0.9, 1)  

C12 (0.3, 0.6, 0.9)  (0.1, 0.4, 0.7) (0.3, 0.657, 0.9)  (0.5, 0.814, 1)  

C13 (0.1, 0.486, 0.7)  (0.1, 0.314, 0.5) (0.3, 0.614, 0.9) (0.5, 0.829, 1)  

C14 (0, 0.1, 0.3)  (0, 0.1, 0.3) (0, 0.1, 0.3)  (0.7, 0.9, 1)  

C15 (0.1, 0.457, 0.9)  (0.3, 0.571, 0.9) (0.1, 0.343, 0.7)  (0.5, 0.771, 1)  

C16 (0.5, 0.7, 0.9)  (0.7, 0.9, 1) (0, 0.1, 0.3)  (0.1, 0.3, 0.5)  

C17 (0.1, 0.514, 0.9)  (0.1, 0.543, 0.9) (0.1, 0.357, 0.7) (0.5, 0.743, 1)  

C18 (0.333, 0.667, 1)  (0.333, 0.698, 1) (0.111, 0.333, 0.556)  (0.111, 0.508, 0.778)  

 

First, the RS and ROC weights were simply computed using Equations (1) and (2) towards the ranking order of criteria shown in 

Table 1. Second, the Entropy and SD weights were calculated using the data in Table 3. Before adopting Equations (3) – (6), every �̃�𝑖𝑗 

must be defuzzified, using Equation (7), to convert them back to crip values (𝑟𝑖𝑗), as shown in Table 2.  

 

𝑟𝑖𝑗 =  
𝑟𝑖𝑗1+2𝑟𝑖𝑗2+𝑟𝑖𝑗3

4
                                                                                                                      (7) 

 

 From all the weighting processes mentioned previously, the new sets of weights for the 18 criteria are presented in Table 4. The 

new weights were then applied to the decision-making process towards the fuzzy TOPSIS method as demonstrated in Arunyanart, et 

al. [4] in order to generate the ranking orders of the CLMV countries. The results obtained from the four sets of weights were cross-

compared to the reference one. 

 

Table 4 Criteria weights from the RS, ROC, Entropy, and SD methods. 

 

Criteria RS ROC Entropy SD 

C1: Labor cost 0.0760 0.0673 0.1200 0.0901 

C2: Availability of labor force 0.0702 0.0581 0.1790 0.1268 

C3: Skill and competency level of labour 0.1053 0.1942 0.0148 0.0333 

C4: Labour laws and regulations 0.0643 0.0501 0.0132 0.0318 

C5: Foreign ownership laws 0.0848 0.0854 0.0106 0.0285 

C6: Taxation and tax incentives 0.0936 0.1108 0.0094 0.0264 

C7: Government structure and stability 0.0380 0.0241 0.0105 0.0270 

C8: Stability of government policy 0.0117 0.0064 0.0109 0.0276 

C9: Adequacy of energy and electricity 0.0994 0.1386 0.1187 0.0934 

C10: Efficiency of electrical supply systems 0.0848 0.0854 0.1187 0.0934 

C11: Price of electricity 0.0468 0.0315 0.0609 0.0584 

C12: Variety of transport modes 0.0526 0.0370 0.0106 0.0275 

C13: Efficiency of transportation systems 0.0585 0.0432 0.0231 0.0411 

C14: Availability of land 0.0380 0.0241 0.1790 0.1268 

C15: Efficiency of telecommunication and network systems 0.0234 0.0135 0.0136 0.0319 

C16: Land price 0.0292 0.0175 0.0800 0.0733 

C17: Stability of financial institutions 0.0058 0.0031 0.0119 0.0300 

C18: Risk of natural disaster 0.0175 0.0098 0.0151 0.0326 
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4. Results and discussion  

 

According to Figure 1, the ranking orders of the candidate locations generated by DR, RS, Entropy, and SD weights are exactly 

the same (the CC scores for Vietnam > Laos > Myanmar > Cambodia). For DR and RS, their weight functions for all criteria are rather 

similar. Both are close to the linear function, but the RS weight is just steeper. Entropy and SD weights, on the other hand, are noticeably 

different from those of the subjective ones. For Entropy and SD, the range of criteria values is incorporated into the weighting 

procedure. The logic behind them is to capture a discrepancy between a group of alternatives based on each criterion, and then the 

weight of each criterion reflects the degree to which it contributes to discriminating the alternatives. From this concept, as seen in 

Figure 2, C2, C14, C9, C10, and C1 turn out to be the five most important criteria. However, as stated, the changes in weights towards 

the objective approach still do not influence the robustness of the ranking order.  

 ROC yields a different ranking order to the others in terms of the second- and third-ranked locations (Laos and Myanmar), while 

Vietnam is still the best location and Cambodia holds the least position in all sets of the weights adopted. This difference is partly 

caused by the fact that ROC provides the largest gaps between the weights of the most important criterion and the second-most 

important, and between the most and the least important ones. Furthermore, the least important criterion receives the lowest weight 

compared to that obtained by other methods, as shown in Figure 2, where the ROC weight function is very steep and non-linear. From 

this, Myanmar, which is ranked third by other weighting methods, moves to the second place by ROC. The main reasons are that 

Myanmar performs much better than Laos and Cambodia in terms of labour skills and competency (C3), which receives an outstanding 

weight from ROC. At the same time, its worst performances in terms of the stability of financial institutions (C17) and government 

policy (C8) do not significantly drop its ranking position since the ROC weights of these two criteria are very small. 

 

 
 

Figure 1 Ranking orders of alternatives derived by the five weighting methods. 

 

 
 

Figure 2 The relative weights of the 18 criteria from the five weighting methods. 

 

 Even though, overall, the ranking order of the four locations for this case is considerably robust and not susceptible to the change 

of weights, this does not mean that the five weighting methods will always give the same ranking of alternatives for every case. 

Selection of a weighting method can be based on several specific considerations. Next, the five weighting methods were compared, 
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based on their methodological and practical viewpoints, towards three criteria, adapted from Németh, et al. [36], including resource 

requirement, chance of bias, and general complexity. All of them are considered within the cost criteria (the lower the better). The 

resource requirement means time and money spent on data collection and weight elicitation. The chance of bias refers to the potential 

for personal bias regarding the weights obtained from each method, which possibly leads to unreliable outcomes as well as conflict or 

disagreement among multiple decision makers. Here, reliability means the extent to which the method produces the same result after 

several trials [43, 44]. General complexity is assessed based on the complexity of mathematical computation. The comparison shown 

in Table 5 is based on the theoretical advantages and drawbacks of each method, as well as the authors’ viewpoints. 

 

Table 5 A comparison of subjective and objective weighting methods. 

 

Weighting approaches Weighting methods Resource requirement Chance of bias General complexity 

Subjective weighting 

DR Moderate High Low 

RS Low Moderate Moderate 

ROC Low Moderate Moderate 

Objective weighting 
Entropy High Low High 

SD High Low High 

 

When simplicity or resource constraints are important, the three subjective weighting methods appear to be superior to the Entropy 

and SD methods, especially when a large number of criteria are considered. The DR, RS, and ROC only require a decision maker’s 

subjective judgement to determine the weights, while the analyst needs to complete the assessment of all alternatives on all criteria 

before the weights can be computed through the Entropy and SD methods. This implies that the objective methods tend to consume 

more time and resources for data collection. The rank-based methods are awarded the first for this criterion due to the fact that, while 

DR calls for a decision maker to straightforwardly assign scores to reflect degrees of criteria importance, focusing only on the priority 

of the criteria (as seen for the cases of RS and ROC) is much easier and quicker. The literature also affirms that the rank-based weighting 

is appropriate when there is a time constraint and when decision makers lack the knowledge or information necessary to undertake a 

complicated elicitation process [26, 27, 43, 45-48].  

The appropriate choice of weighting method might be changed when considering the potential for personal bias and unreliable 

outcomes. According to this criterion, objective methods are the best because the weights are determined by quantitative data rather 

than personal judgments, avoiding conflict among the peer group. The reliability of the weights determined by the objective methods 

can be confirmed, unless the evaluation results of the alternatives are still uncertain. The literature also praises the rationality of 

incorporating the range of feasible values into the weighting procedure, and many researchers support that a criterion should receive a 

higher weight as its range of alternative data increases [49-53]. Among the subjective methods, the rank-based approach is still superior 

to DR in terms of the potential for personal bias and unreliable outcomes. As previously stated, when decision makers feel more 

confident in solely prioritising the criteria, the weights obtained should be more dependable accordingly. On the other hand, decision 

makers generally find it more difficult to assign accurate weights, so their decisions are frequently ambiguous or superficial. 

Furthermore, in group decision making, agreement on the precise weights of many criteria seems to be an impractical demand; it is 

more likely that participants will agree on a ranking order [26, 27, 45-48, 54]. DR is also claimed to lack a scientific basis for weight 

elicitation [36]. In terms of general complexity, however, DR has a big advantage in the ease of computation [36], while the rank-based 

and objective methods both use more complicated mathematical formulas.   

The five methods considered here also have some limitations that practitioners should be aware of. The rank-based methods may 

only be useful when an accurate weight of a criterion is not a key issue for consideration since ordinal information communicates just 

one aspect of its relative importance and the strength of the decision maker's preference is not expressed [52, 55]. Regarding the 

objective methods, the generalisability of the weights depends on the completeness of the choices investigated as well as the availability 

and reliability of the data [42]. Generally speaking, if the assessment data from the alternatives being considered is uncertain, 

incomplete, and does not cover the entire range of feasible values, the weights generated might be misleading. The DR method is 

claimed that its process of weight elicitation is not rational as it does not consider the range of alternatives’ performances [51, 56, 57]. 

To get around this restriction, it is suggested here to add one more step before beginning the weighting procedure. A debate discussing 

the range of values for each criterion, or the best and worst situations for that criterion, may be held. This allows for the implicit 

assimilation of the feasible discrepancy within the alternatives into the decision maker’s cognitive learning.   

Instead of choosing only one approach to generate criteria weights for MCDM problems, a number of recent studies have shifted 

to combining both approaches to utilise information from different angles. Wu, et al. [58], for example, determined the aggregated 

weights of criteria by combining subjective weights with objective weights using a linear weight vector with a parameter to control the 

proportion between them. Their case study of a hotel selection based on the TOPSIS method demonstrated that the overall ranking of 

hotel alternatives began to significantly change as the proportion of objective weights reached 0.7 and above. Their study extracted the 

objective weights of criteria from the textual online reviews of the hotels (relying on counting wording frequencies), while the 

subjective weights are determined by the best worst method. Şahin [59] and Nuriyev [60] used similar ideas when weighing criteria in 

a location selection problem. The first one, Şahin [59], evaluated potential locations in Turkey for an automotive manufacturing plant 

by integrating rankings of candidate locations derived by various objective and subjective weighting methods to determine the optimal 

location. The four objective methods considered in this study included Entropy, SD, criteria importance through inter-criteria 

correlation (CRITIC), and equal weighting, while AHP was the only subjective weighting method used. Six common MCDM methods 

(including TOPSIS) were used to rank alternative locations. Their results revealed a significantly high correlation between each pair 

of the three objective methods (Entropy, SD, and CRITIC) on the criteria weights. In general, they proved that the criteria weights 

prominently affected the ranking outcomes for most MCDM methods. Some scenarios in this study showed that the rank of an 

alternative could be changed from the first to the seventh when changing weighting methods, particularly when switching between 

objective and subjective approaches (except for PROMETHEE, which suggested the same best locations regardless of the changes in 

weighting methods). Nuriyev [60] also proposed a combination of subjective and objective weights in the selection of power plant 

locations using the fuzzy TOPSIS method. Entropy represented the objective approach in this study, while the DR and fuzzy AHP with 

linguistic scales denoted the subjective approach. Similar to Wu, et al. [58], the combined weights of criteria were generated using a 

linear vector with a parameter to control the proportions of the two approaches. However, the sensitivity of the rankings of candidate 

locations to the changes in criteria weighting methods was only at a mild level for this study (the change in each location’s rank did 
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not exceed one point). In general, these studies illustrate the reasonableness and applicability of the combined approaches, which utilise 

both existing useful information about alternatives and the decision maker’s opinions to elicit the weights of criteria for a logical 

decision. Nuriyev [60] also claims that such a combination could increase the reliability and consistency of the decision outcomes.    

 

5. Conclusions 

 

From the selection of the most appropriate locations among the CLMV countries using the fuzzy TOPSIS method as the basis for 

computing the composite index and for ranking the alternatives, Vietnam shows up as the best compromise location in all weighting 

scenarios. Although this study does not discover massive differences in the rankings of alternatives across different weighting methods, 

it provides insightful discussions about the methodological and practical points of view of the five methods under the subjective and 

objective weighting approaches, which are generic and can be applied to other cases of MCDM problems. The practical implications 

provided by this paper are summarised below.  

 This study illustrates that considering a more efficient and reliable way to aid the weighting process is worthwhile. It suggests 

that decision makers choose a method based on their personal logic, considering the availability of time and financial resources, 

the potential for bias and conflict in group decision making, as well as the complexity of each method. 

 The three subjective weighting methods appear to be preferable to the Entropy and SD methods when simplicity or resource 

limitations are crucial. For this concern, the rank-based methods are first suggested, particularly when a lot of criteria are being 

considered. 

 When addressing the potential for personal bias and unreliable results, it turns out that objective methods are the most 

appropriate choice.  

 In terms of computational complexity, DR appears to utilise the simplest procedure, while the rank-based and objective methods 

need more involved mathematical formulations. 

 Suggestions for future studies are that other MCDM methods commonly used for alternative ranking, such as VIKOR, may be 

adopted. VIKOR is like TOPSIS in that they consider the closeness to the ideal solution of each alternative. The end result of VIKOR 

can be a set of the best compromise options that are not significantly different from each other. TOPSIS, on the other hand, does not 

examine whether or not the composite scores of the alternatives are significantly different. Furthermore, increasing the number of 

alternatives can also be considered when comparing outcomes from several weighting methods since the difference tends to become 

more apparent with a greater number of alternatives. The approach that uses both subjective and objective methods together, as 

mentioned at the end of the previous section, should also be considered in further research. 
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