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ABSTRACT 

Title of Dissertation The Upper Bounds of the Ruin Probability for an 

Insurance Discrete-Time Risk Model with Proportional 

Reinsurance and Investment 

Author Mr. Apichart Luesamai 

Degree Doctor of Philosophy (Statistics) 

Year 2018 
 

 

In this study, the two upper bounds of the ruin probability for discrete time 

risk model derived by adding two controlled factors to the classical discrete time risk 

model: proportional reinsurance and investment are proposed. These upper bounds are 

derived using an inductive method and rely on a recursive form of the finite time 

and/or an integral equation of ultimate (infinite time) of ruin probability which is also 

derived in this study. Both of the upper bounds are formulated by the assumption that 

the retention level of reinsurance and the amount of stock investment during each 

time period are controlled as constant values. The first upper bound can be used with 

the finite time ruin probability and the ultimate ruin probability under the condition 

that the value of the adjustment coefficient can be found. The second upper bound is 

formulated by a using new worse than used distribution. This upper bound can only 

be used with the finite time ruin probability, and its value can be found even though 

the value of the adjustment coefficient does not exist. However, this upper bound has 

limitations on the total claims amount which the total claims amount in each time 

period must come from the summation of independent and identically distributed 

(i.i.d.) claim amounts, and the number of claims is also i.i.d. in each time period. 

Two numerical examples are used to consider the characteristics of the derived 

upper bounds. In the first example, the total claims amount is assumed to follow an 

exponential distribution from which the value of the adjustment coefficient can be 

found to show the first derived upper bound. In the other example, the claim amounts 



(iv) 

are set as a Pareto distribution, from which the adjustment coefficient cannot be found 

and is used to show some of the characteristics of the second upper bound. Moreover, 

real-life motor insurance claims data that fits a log-normal distribution is used to show 

the application of the derived upper bounds. Under the different agreements of the 

three aforementioned situations, it was found that the values of the two upper bounds 

derived in this study responded to the two additional controlled factors in the 

proposed risk model in the same direction. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Background of the Study 
  

Insurance companies have been established on the concept of risk avoidance 

from the risk-bearer. Under an insurance contract known as the insurance policy 

between the company known as insurer and policyholder also known as insured, the 

insurers accept to provide a part or all of the insured’s losses, referred to as a claim, 

upon the occurrence of specified event covered by the policy. In return for this 

protection the insured agrees to pay the prescribed sum of money known as a 

premium (Promislow, 2011: 3-4). 

The uncertainty of both the claim amount and occurrence add to a complicated 

situation for the insurer when evaluating the surplus, which is the amount of money 

that remains after all liabilities have been met. To ensure that the company does not 

go bankrupt, the insurer needs to have efficient tools for analyzing the surplus, and the 

ruin probability is one of several models an insurer can use to analyze the surplus 

(Challa, 2012: 1). This model informs us of the chances of a business to become 

ruined, a business being in state of ruin if the surplus is negative (Tse, 2009: 144). 

The ruin probability is usually considered from a surplus model, also known as a 

reserve, or risk model, and basically depends on the initial capital, inflow, and 

outflow of the business. A surplus model can be considered over time, thus  insurance 

companies will evaluate a suitable surplus as frequently as is required, this approach 

is known as a continuous time risk model. Some insurance companies may take equal 

intervals of time, such as for each month, each quarter, or each year considering the 

surplus, giving rise to discrete time risk models (Bowers, Gerber, Hickman, Jones and 

Nesbitt, 1997; Kaas, Goovaerts, Dhaene and Denuit, 2008; Tse, 2009). 



2 

Research concerning the ruin probability and the surplus of insurance 

companies over continuous time has been undertaken for nearly a century. 

Particularly over the last decade, much advancement in continuous time risk models 

has been established due to the fact that insurance companies can purchase 

reinsurance, invest in the stock market, obtain dividends, and partake in other 

transactions. However, studies that have concentrated on discrete time risk models are 

relatively few, and one of the crucial drawbacks is that differentiation cannot be used 

to solve this problem. Undoubtedly, continuous time models are powerful when 

describing the practical world, but discrete time risk models are suitable in some 

situations. For example, when considering risk models with reinsurance, companies 

can only change the level or type of reinsurance once each year (Jasiulewicz and 

Kordecki, 2015; Lin, Dongjin and Yanru, 2015).  

In this study, the ruin probability under a discrete time risk model controlled 

by reinsurance and investment is presented. However, obtaining an explicit solution 

for the ruin probability is actually a difficult task. One alternative method commonly 

used is deriving the bounds for the ruin probability (Diasparra and Romera, 2009; Lin 

et al., 2015), thus the focus in this study is on the upper bound for the ruin probability. 

 

1.2 The Objectives of the Study  
 

The objectives of this study are as follows: 

1) To propose a recursive formula for the ruin probability of a discrete time 

risk model controlled by reinsurance and investment. 

2) To propose the upper bounds of the ruin probability. 

3) To show the application of the proposed method to real-life data. 

 

1.3 The Scope of the Study  
 

This study of ruin probability focuses on a discrete time risk model controlled 

by reinsurance and investment. The restrictions are that only proportional reinsurance 

is considered, while two assets are allowed for investment: bonds with a finite 
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countable number of possible interest rate values following a time-homogeneous 

Markov chain and stocks with a return on investment driven by discrete time. 

 

1.4 The Usefulness of the Study 
 

This study may benefit insurance companies by giving them a more accurate 

picture of the risks of losses and increasing the chance of making a profit due to 

recognizing the financial risks from the ruin probability by assimilating the 

reinsurance level and the investment amount. 

Furthermore, it may spark new concepts, theories, and a deeper interest in this 

field. 

 

 



 

CHAPTER 2  

 

LITERATURE REVIEW 

In this chapter, an introduction to both classical continuous and discrete time 

risk models, which constitute the foundation for developing other models including 

the proposed model presented in this study is offered.  

Besides, this chapter also contains ruin probability methods and their upper 

bounds under the aforementioned two risk models. Furthermore, a review of the upper 

bounds of ruin probability under various risk models (both continuous and discrete 

time) related to the proposed risk model in this study is presented. 

 

2.1 The Classical Risk Model and the Ruin Probability 

 

2.1.1 The Classical Risk Model or the Cramér-Lundberg Model 

The foundations of modern risk theory were laid out by Fillip Lundberg in 

1903. One of Lundberg’s major contributions was the introduction of a simple model 

capable of describing the dynamics of a homogeneous insurance portfolio. In 1930, 

Lundberg’s model was extensively developed by the famous probabilistic actuary 

Harald Cramér. Thus, the resulting model is called the Cramér-Lundberg model or the 

classical risk model. This model is given by (Kaas et al., 2008: 87-91) 

 
 ,t t tU u X S= + −  

( )

1

N t
i

i
u ct Y

=
= + − ∑                  (2.1) 

 
where 

1) tU  is the insurer’s surplus at time 0t > , 
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2) 0 = u U  is the initial surplus or surplus at time 0, 

3) tX  is the premium income for the time interval (0,t]. Because the premium 

income from the insurance contract is spread over a period of time, there are two 

assumptions on premium income. First, it is continuous overtime. Second, in any time 

interval the premium income is proportional to the interval length. The result of this 

assumption is tX  = ct , where constant  > 0c  is called the premium rate, and 

4) 
( )

1

N t
t i

i
S Y

=
= ∑  is the aggregated claims at time t . The claim amount iY  arrives 

at time iT . The sequence { },  1, 2,3,...iY i =  constitutes an independent and identically 

distributed (i.i.d.) sequence of non-negative random variables with common 

distribution function ( ) ( )Pr ; 0iP y Y y y= ≤ ≥ . Moreover, sequence { },  1, 2,3,...iY i =  

is also mutually independent of sequence { },  1, 2,3,...iT i = . The number of claims 

( )N t  is defined as ( ) { | 1; ,  and 0}iN t max i i T t t= ≥ ≤ > . At 0t = , ( ) 0N t =  and ( )N t  

is assumed to be distributed as Poisson with parameter tλ . Furthermore, if ( ) 0N t = , 

0tS = . 

By considering model (2.1) at the claim arrival-time, i.e. ,  1, 2,3,...it T i= = , 

we can write  

 
 

i iT i TU u cT S= + − .                 (2.2) 

 
Since ( ) { | 1, }m i mN T max i i T T m= ≥ ≤ = , for all 1, 2,3,...,i m= . Let 1,i i iZ T T −= −

1,2,3,...i = , then model (2.2) can be written in the form  
 

 m mT m TU u cT S= + −  

11 1 mm m m T mu cT cT cT S Y
−− −= + + − − −  

{ } { }11 1mm T m m mu cT S c T T Y
−− −= + − + − −  

1mT m mU cZ Y
−

= + − .                   (2.3) 
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The recursive form of the risk model in Equation (2.3) is useful for defining the 

discrete time risk model, which is explained later on. 

 

2.1.2 The Ruin Probability and the Upper Bound of the Ruin Probability 

The ruin probability is the probability that the insurer’s surplus falls below 

zero at some time in the future (Dickson, 2005: 129).  

Let { }min | 0, 0tT t t U= > <  denote the time of ruin (the first time that surplus 

becomes negative). 

The ruin probability at infinite time, also known as the ultimate ruin probability, is 

defined as (Bowers et.al, 1977: 400) 

 
( ) ( )0Pr |u T U uψ = < ∞ = ,                 (2.4) 

 
while the finite time ruin probability can be written as 

 
( ) ( )0Pr |t u T t U uψ = < = ,                 (2.5) 

 
which is the probability that the insurer’s surplus falls below zero for finite time 

interval ( ]0, t .  

In general, obtaining an exact expression for ultimate ruin probability, ( )uψ , 

and finite time ruin probability ( )t uψ  is quite challenging. The analysis commonly 

used in ruin theory is to derive inequalities for the ruin probability. In the classical 

risk model, the Lundberg inequality (upper bound) is the well-known upper bound for 

ruin probabilities (Cai and Dickson, 2004: 4). 

Lundberg’s upper bound is exponential bound for the ultimate ruin probability 

of the classical risk model as long as the moment generating function (m.g.f.) of the 

claim amount distribution exists. An important quantity for obtaining Lundberg’s 

upper bound is the “adjustment coefficient” defined as follows. 
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Definition 1. The Adjustment Coefficient, represented by 0R , for the classical risk 

model in Equation (2.1) is the smallest positive value of real variable R  that satisfies 

equation (Bowers et al., 1997: 410) 

 
( )( ) [ ] ( ) 1t

t t
R S ct Rct

S ct SM R E e e M R− −
− = = = .              (2.6) 

 

Remark 1.  

1) From ( )( )( ) log
t iS N t YM R M M R =    (Bowers et. al, 1997: 369) and 

( ) ( )N t Poi tλ , the m.g.f. ( ) ( )( ) exp 1R
N tM R t eλ = − 

 and the m.g.f. of an aggregate 

claim ( )log( ) exp 1Yi
t

M R
SM R t eλ  = −    

. Thus, by replacing ( )
tSM R  in Equation 

(2.6), we obtain the following equations: 

 
( )logexp 1 1YiM RRcte t eλ−   − =    

,  

( )log 1YiM Rt e Rctλ  − = 
 

, 

( ) 0
iYM R Rcλ λ− − = .                (2.7) 

 
Therefore, the adjustment coefficient 0R  in Definition 1 can be obtained from 

Equation (2.7).  

2) From ( ) ( ) ( ) ( )t i iE S E N t E Y tE Yλ= =    and by assuming that the constant 

premium rate c  is over the expected claim per unit time, ( )iE Yλ , then 

( ) ( )1 ic E Yθ λ= + , where 0 1θ≤ ≤ , is called the safety loading factor (Bowers et. al, 

1997: 410). Thus, by replacing c , Equation (2.7) can be rewritten as 

 
( ) ( )1 1

iYM R Rθ µ= + + ,                (2.8) 

 
where ( )iE Yµ = . 
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To show that the adjustment coefficient exists, Dickson (2005) showed by 

letting 

( )( )
iYL R M R Rcλ λ= − − , which is on the left-hand side of Equation (2.7), 

and ( )0 0L = , then we can take derivative ( )L R with respect to R as  

( ) ( ) i
i

RY
Y iL R M R c E Y e cλ λ  ′ ′= − = −   and 

( ) [ ]0 0iL E Y cλ′ = − <   (from ( ) ( )1 E Yic θ λ= + in Remark 1.(2)), 

( ) 2 iRY
iL R E Y eλ  ′′ =   ,  

( ) 20 0iL E Yλ  ′′ = >  .  

Furthermore, suppose γ  is a positive real value such that the largest open interval 

( ),γ−∞  where the m.g.f. of ( )P y  exists, and ( ) ( )i
i

RY
YM R E e= tends toward +∞  as 

R  tends toward γ . Clearly if γ < ∞ , then ( )lim
R

L R
γ −→

= ∞ . This conclusion includes 

the case of γ = ∞ .  

Since all claim amount are positive, there exists a positive number ε  and a 

probability q  such that  

 
( )Pr 0iY qε> = > , 

so ( ) ( ) ( )
0

i
Ry Ry r

YM R e dP y e dP y e qε
ε

∞ ∞
= ≥ ≥∫ ∫ . 

Hence, 

( ) ( ){ } { }lim lim lim
i

Ry
YR R R

L R M R Rc e q Rcλ λ λ λ
→∞ →∞ →∞

= − − ≥ − − = ∞ . 



9 

 

Figure 2.1 The Function ( )L R  Giving the Definition of the Adjustment Coefficient 

for the Classical Risk Model. 

Source: Dickson, 2005: 130. 

 

As illustrated in Figure 2.1, the graph of ( )L R  (see Figure 2.1) is upwardly concave 

and tends toward +∞  as R  tends toward a positive real value γ . Thus, adjustment 

coefficient 0R  is a unique positive root of Equation (2.6).  

By relying on the adjustment coefficient, Lundberg’s upper bound can be 

ascertained as follows. 

 

Theorem 1. (Lundberg’s Upper Bound). The ultimate ruin probability ( )uψ  of the 

classical risk model in Equation (2.1) given initial surplus u  satisfying the following 

inequality can be written as 

 
( )0( ) expu R uψ ≤ − ,                 (2.9) 

 
where 0R  is the adjustment coefficient satisfying Equation (2.6). 

 

The proof of Theorem 1 can be found in Appendix B. 
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2.2 A Review of the Upper Bound for the Ruin Probability in General 

Claim Size Distributions 
 

As shown in Theorem 1, Lundberg’s upper bound can be used for the 

probability of ultimate ruin in the classical risk model when the m.g.f. of the claim 

amount random variable exists. However, in many practical distributions, the m.g.f. 

does not exist, and so the Lundberg inequality is not available in these cases (Cai and 

Wu, 1996; Cai and Garrido, 1999). Many researchers have derived upper bounds of 

ruin probability that can be applied to more general claim amount distributions (e.g. 

Dickson, 1994; Willmot, 1994; Kalashnikov, 1999). 

From the classical risk model in Equation (2.1), Dickson (1994) showed that if 

claim amount iY  is i.i.d. with mean µ  and common distribution function ( )P y , and

( )0 0P = , then an alternative definition of 0R  as in Equation (2.8) is a unique positive 

number satisfying 

 

{ } ( )
0

exp 1Ry b y dy θ
∞

= +∫ ,                           (2.10) 

 

where ( ) ( ){ }1 1b y P y
µ

= −  and θ  is the safety loading factor. After that, Dickson 

truncated the condition in Equation (2.10) to give  

 

{ } ( )
0
exp 1

t
tK y b y dy θ= +∫ .                          (2.11) 

 
Thus, the unique positive solution of tK  in Equation (2.11) is used as a condition for 

deriving the upper bound of the ultimate ruin probability for general claim amount 

distributions.  

Willmot (1994) derived an upper bound for the tail of total claims amount 

distribution by using a class of distribution called new worse than used (NWU). The 

distribution function ( )B x  of the non-negative random variables is NWU if 
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( ) ( ) ( )B x B y B x y≤ +  for 0, 0x y≥ ≥  and where ( ) ( )1B x B x= − . The author 

defined the number of claims as N  with ( )Prmp N m= =  and 
1

m k
k m

a p
∞

= +
= ∑ , where 

0,1,2,...m = . In addition, N  is independent of the i.i.d claim amount ,  i 1, 2,3,...iY =  

with common distribution function ( ) ( )Pr iP y Y y= ≤ . The total claim is 
1

N
i

i
S Y

=
= ∑  

with ( ) ( )PrG s S s= ≤  and ( ) ( )1G s G s= − . Further assumptions for deriving the 

upper bound are that there exists positive number 1φ <  such that 1m ma aφ+ ≤ , 

0,1, 2,...m =  and there exists non-negative function ( ); 0B x x ≥  such that 

( ) ( ) ( )B x B y B x y≤ + , for 0, 0x y≥ ≥ , satisfies
 

( ){ } ( )1 1

0
B y dP y φ

∞ − −≤∫  and 

( ) ( ) ( ) ( ){ } ( )1

x
P x c x B x B y dP y

∞ −
≤ ∫ ; 0x ≥  where ( )c x  is a non-decreasing function 

for 0x ≥ . Thus, the upper bound for the tail of total claim ( )G s  is 

( ) ( ) ( ) ( )1
01G s p c x B xφ−≤ −  ; 0x ≥ . In this study, the other upper bounds for the tail 

of the total claim are derived from a variation of a subclass of the NWU distribution. 

Besides, previous results have been applied to find the upper bound of the ultimate 

ruin probability under the classical risk model in Equation (2.1). 

Kalashnikov (1996) rewrote the classical risk model in Equation (2.1) in 

geometric sum form, as the sum of i.i.d. random variables, with the number of 

summands being a random variable also having a geometric distribution. 

Subsequently, he derived the upper bound of a geometric sum risk model, the results 

of which were used as a two-sided bound of the ruin probability. 

Cai and Wu (1997) improved the Lundberg bound in Equation (2.9) by using 

an NWU distribution based on the renewal theory and the result from Willmot (1994). 

Furthermore, the lower bound of ruin probability was improved based on a class of 

distribution called the new better than used (NBU). The distribution function ( )B x  of 
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a non-negative random variable is NBU if ( ) ( ) ( )B x B y B x y≥ + , for 0, 0x y≥ ≥ , 

where ( ) ( )1B x B x= − .  

 

2.3 The Classical Discrete Time Risk Model and the Ruin Probability 
 

2.3.1 The Classical Discrete Time Risk Model 

The classical discrete time risk/surplus model is defined by considering the 

values of classical risk model tU  at only integer values of time t . Traditionally, this 

sequence of random variables is denoted by{ | the time 1,2,3,...}nU n = . Therefore the 

classical discrete time risk model is given by (Bowers et al., 1997: 401)  

 

 
1

n
n i

i
U u cn Y

=
= + − ∑ ,                          (2.12) 

 
where 

1) nU  is the insurer’s surplus at the end of time period 1,2,3,...n = ., 

2) 0 = u U  is the initial surplus or surplus at time 0, 

3) c  is the constant premium income per unit time period, and 

4) iY  is total claim amount in the ith time period where { },  1, 2,...,iY i n=  is an 

i.i.d. sequence of non-negative random variables. 

Model (2.12) can be written in the form   

 

 
1

n
n i

i
U u cn Y

=
= + − ∑   

( )
1

1
1

n
i n

i
u c n c Y Y

−

=
= + − + − −∑    

( )
1

1
1

n
i n

i
u c n Y c Y

−

=
= + − − + −∑  

1n nU c Y−= + −                (2.13) 
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This form of classical discrete time risk model is used to develop the new risk model 

of this study, which is presented in the next chapter. 

 

2.3.2 The Ruin Probability and the Upper Bound of the Ruin Probability 

The ruin probability for a classical discrete time risk model can be defined as 

follows. 

Let T (time of ruin) be the first time that the surplus becomes negative, then it 

is defined as (Bowers et al., 1997: 401) 

 
{ }min | 1,2,3...., 0kT k k U= = < .  

 
The ultimate ruin probability can be written as 

 
( ) ( )0Pr |u T U uψ = < ∞ = ,  

( )0Pr 0 for some 1,2,3,... |kU k U u= < = = , 

( ) 0
1

Pr 0 |k
k

U U u
∞

=

 = < = 
 


.             (2.14) 

 
Mean while, the probability that ruin will occur before a time n  is defined as 

 
( ) ( )0Pr |n u T n U uψ = < = ,  

( )0Pr 0 for some 1 |kU k n U u= < ≤ ≤ = , 

( ) 0
1

Pr 0 |
n

k
k

U U u
=

 = < = 
 


.             (2.15) 

 
From (2.14) and (2.15), the ruin probabilities are the cumulative probability, then  

 
( ) ( ) ( )1 2 3 ...u u uψ ψ ψ≤ ≤ ≤                (2.16) 

and  

( )lim  nn
uψ

→∞
 = ( )uψ .               (2.17) 
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Obtaining the exact expressions for the ultimate ruin probability ( )uψ  and 

finite time ruin probability ( )n uψ  under a discrete time risk model is challenging in 

the same way as for a continuous time risk model. Therefore, the upper bound of the 

ruin probability is still an option when studying ruin probability. Lundberg’s upper 

bound is likewise a well-known upper bound with which to carry out the study (Cai 

and Dickson, 2002: 4), although obtaining it depends upon an important quantity: the 

adjustment coefficient. For a discrete time risk model, this quantity is defined as 

follows. 

 

Definition 2. The Adjustment Coefficient, denoted by 0R , for the classical discrete 

time risk model in Equation (2.12) is the smallest positive value of real variable R  

satisfying the equation 

 

( ) ( )( ) 1i
i i

R Y c Rc
Y c YM R E e e M R− −
−  = = =              (2.18) 

 
(Bowers et al., 1997: 401). 

 

To show that the adjustment coefficient exists, Tse (2009) let

( ) ( )iR Y cL R E e − =   
, which is a term in Equation (2.18), and consequently, ( )0 1L = . 

Subsequently, take derivative ( )L R with respect to R to obtain 

 

( ) ( ) ( )iR Y cL R E Y c e − ′ = −  
,  

( ) ( )0 0iL E Y c′ = − <   (under the assumption that ( )ic E Y> ), 

( ) ( ) ( )2 0iR Y c
iL R E Y c e − ′′ = − >  

, and  

( ) ( )20 0iL E Y c ′′ = − >  
. 
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Figure 2.2 Function ( )L R  Giving the Definition of the Adjustment Coefficient for 

the Classical Discrete Time Risk Model. 

Source: Dickson, 2005: 121. 

 

Thus, the graph of ( )L R is upwardly concave (see Figure 2.2). Furthermore, suppose 

that cε >  such that ( )Pr 0iY ε≥ > , then ( ) ( ) ( )PrR c
iL R e Yε ε−≥ ≥ , i.e.  

( )lim
R

L R
→∞

= ∞ . Hence, unique positive value 0R  satisfies Equation (2.18) 

The Lundberg upper bound for a discrete time risk model can be obtained by 

using the adjustment coefficient as follows. 

 

Theorem 2. (Lundberg’s Upper Bound). The ultimate ruin probability ( )uψ  of the 

classical discrete time risk model in Equation (2.22) given initial surplus u  satisfies 

the following inequality 

 
( ) ( )0expu R uψ ≤ − ,                (2.19) 

 
where 0R  is the adjustment coefficient satisfying Equation (2.18). 

 

The proof of Theorem 2 can be found in Appendix B. 
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2.4 Reinsurance 
 

Reinsurance is the mechanism that insurance companies use to transfer part or 

all of the risk to a second insurance carrier, the reinsurer. Basically, if a particular risk 

is too high for an insurance company or if the loss potential of the entire portfolio is 

too heavy, the insurance company can purchase reinsurance treaties. The form of the 

reinsurance treaties depends upon the manner by which the risk is shared between the 

insurer and the reinsurer. Reinsurance treaties are classified into proportional and non-

proportional types (Booth, et al., 2005).  

Proportional reinsurance is a common form of reinsurance for claims of 

moderate size, and requires the reinsurer to cover the fraction of each claim equal to 

the fraction of total premiums that the reinsurer receives from the insurer. The 

principal types of proportional reinsurance cover are quota share and surplus. Under 

quota share reinsurance, both claims and premiums are in the same proportions at 

fixed percentages. In a surplus treaty, the reinsurer agrees to accept a particular risk of 

the sum insured in excess of the direct retention limit set by the ceding company 

(Goovaerts and Vyncke, 2006) 

Non-proportional reinsurance differs from proportional reinsurance in that the 

insurer and reinsurer do not share the amount of insurance coverage, premium and 

claim in the same proportion. Under a non-proportional agreement, the reinsurer only 

pays the insurer when the claim has exceeded a predetermined limit sometimes 

referred to as the excess point or retention (Outreville, 1997). The traditional forms of 

non-proportional reinsurance cover are known as excess of loss and stop loss. Excess 

of loss reinsurance covers claims which exceed a predetermined limit, while, under 

stop loss reinsurance, the reinsurer pays claims that exceed a specified percentage of 

the claim amount incurred during a specified period. However, it does not cover 

individual claims, rather the total percentage or amount of claims incurred by an 

insurer (Life Office Management Association, 2000; Booth et al., 2005).   
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Table 2.1 Percentage of Investment Assets of Thai Insurance Companies for the 

Years 2010-2014.   

 Investment assets (%) 

Non-life insurance companies Life insurance companies 

2010 2011 2012 2013 2014 2010 2011 2012 2013 2014 

Bonds 35.17 27.89 25.93 25.26 22.54 63.73 61.87 59.48 59.14 57.78 

Notes 5.53 11.81 1.99 0.82 0.85 6.52 9.66 10.19 9.02 6.99 

Stocks 23.73 24.99 26.77 24.27 27.33 9.51 7.39 8.28 7.28 7.33 

Debentures 8.71 7.74 7.85 8.22 9.06 10.84 11.98 12.87 14.35 17.26 

Investment 
Units 7.54 5.87 4.64 4.24 4.39 1.04 0.86 1.23 1.89 2.25 

Cash and 
Deposits 14.97 18.47 29.84 33.51 32.85 0.95 1.92 2.17 2.29 2.84 

Loans 2.84 2.32 1.62 1.3 1.18 5.96 5.37 4.96 4.92 4.62 

others 1.51 0.91 1.36 2.38 1.8 1.45 0.95 0.82 1.11 0.93 

Total 100 100 100 100 100 100 100 100 100 100 

 

Source: Office of insurance commission, 2017. 

 

2.5 Investment 

 

Investment is the current commitment of resources for a period of time in the 

expectation of receiving future resources that will compensate the investor for 1) the 

time the resources are committed, 2) the expected rate of inflation, and 3) the risk (the 

uncertainty of future payments). The investor is trading a known (or reasonably 

certain) amount of resources (e.g. money) today for expected future resources (e.g. a 

lump sum of cash or an income stream) that will be greater than the current outlay 

(Reilly and Norton, 2006: 5) 
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Investment is one of the activities carried out by insurance companies as 

investment income is significant for them. This income contributes to earnings and so 

affects the pricing of insurance policies (Nissim, 2010). There are many types of asset 

in the investment portfolios of insurance companies such as bonds, stock, mortgages, 

and real estate. Table 2.1 contains details of the investment assets of Thai insurance 

companies. 

 

2.6 A Review of the Upper Bound for Ruin Probability under the 

Generalized Classical Discrete Time Risk Model 
 

Cai (2002) generalized the classical risk model by adding the interest rate 

during each period to it. The rate of interest nI  is assumed to consist of i.i.d. 

nonnegative random variables. In addition, nI  is assumed to be independent of nY

(the total claim amount in time period n ) and nX (the premium at time period n ) for 

1, 2,3,...n =  In this article, two different risk models are introduced under the 

differences of time to receive the premium: beginning and end of each time period. 

The upper bounds of the ruin probability for both risk models were derived by using 

two methods. First, the upper bounds were derived using NWU and NBU 

distributions and second, the upper bounds were derived using a recursive renewal 

technique. The numerical results showed that the upper bounds derived using the 

second were tighter than the first.  

The effects of interest rates and the time of receiving the premium on a risk 

model by considering the ruin probability were considered by Cai (2002) and 

continued by Cai and Dickson (2004). Differently, i.i.d. nonnegative random variables 

nI  were assumed to follow a Markov chain and nI  took a finite number of possible 

values. Moreover, recursive forms and integral equations for the ruin probabilities 

were provided. Afterward, the upper bounds for ruin probabilities were presented 

using two approaches: inductive and Martingale. The numerical results suggest that 

the upper bounds derived by the inductive approach were tighter than those obtained 

by the Martingale method. 
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 Cai and Dickson (2004) studied the effect of only the interest rate on the risk 

model while assuming the premium will be received at the end of the time period. The 

i.i.d. random variable nI  is still assumed to follow a Markov chain and nI  takes a 

finite number of possible values. However, the value of nI  was studied in 2 cases: 

only positive and positive or negative. From the results of the first case with recursive 

and integral equations, the upper bound of the ruin probability using either the 

inductive or Martingale approaches; was similar. In the second case (positive or 

negative values of nI ), the asymptotic formulas for the ruin probabilities were derived 

as initial surplus u →∞  . 

Diasparra and Romera (2009) generalized the risk model proposed by Cai and 

Dickson (2004) by adding a controller: proportional reinsurance. The risk model is 

controlled by choosing retention level ( ]0,1nb ∈  during the nth period. In this article, 

the retention level is restricted as a stationary (i.e. nb b=  for all 1n ≥ ) i.i.d. 

nonnegative random variable nI  that is assumed to follow a Markov chain and takes 

a finite number of possible values. The upper bounds for the ruin probability are 

derived from the recursive and integral equations of ruin probabilities by either the 

inductive or Martingale approach. Corresponding with Cai and Dickson (2004), the 

numerical results suggest that the upper bounds derived by the inductive approach 

were tighter than those obtained by the Martingale approach. 

 Following the ideas of Cai and Dickson (2004) and Diasparra and Romera 

(2009), the article by Jasiulewicz and Kordecki (2015) presented the ruin probability 

for the generalized risk process with proportional reinsurance and investment surplus 

according to a random interest rate which follows a time-homogeneous Markov chain, 

and the recursive form and integral equations of the ruin probability are illustrated. 

The upper bound of the ruin probability is derived using the Lundberg adjustment 

coefficient which exists only for a light-tailed distribution of claims. Therefore, the 

asymptotic formulae of the ruin probabilities are derived for heavy-tailed distributions 

of claims as the initial surplus u →∞ . 

 Lin, Dongjin and Yanru (2015) added a different controller from the work of 

Diasparra and Romera (2009) in which the return from the risky investment is added 
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to the risk model studied by Cai and Dickson (2004). The authors showed that 

stationary policies of investment are appropriate for minimizing the upper bound of 

the ruin probability presented in a recursive form with integral equations. The upper 

bound of the ruin probability was once again derived by two approaches: inductive 

and Martingale.  

 



 

CHAPTER 3 

 

THE PROPOSED RISK MODEL 

The main point in this chapter is to present the new discrete time risk model to 

which two controllers: proportional reinsurance and investment are added. 

Furthermore, in the rest of the chapter, another form of the proposed risk model is 

presented for studying the ruin probability mentioned in the next chapter. 

 

3.1 The Risk Model and its Description 
 

From the classical discrete time risk model (Equation 2.13) 

 
1n n nU U c Y−= + −      ; 1, 2,3,...n =                (3.1) 

 
where nU  denotes the insurer’s surplus at the end of time period n  (i.e. from time 

1n −  to n ) with initial constant 0U u= , c  is the constant premium income per unit 

time, and nY  is the total claims amount during period n . We assume that this 

sequence consists of i.i.d. random variables with common distribution function 

( ) ( )Pr nP y Y y= ≤ ; 0y ≥ . In this study, the proposed risk model is formulated by 

adding proportional reinsurance and investment on the right hand side of Equation 

(3.1). 

Under proportional reinsurance contracts, the reinsurer agrees to cover a 

fraction of each claim equal to the fraction of premiums that it receives from the 

insurer. Throughout this study, ( ]0,1nb ∈   is defined as the retention level of a 

reinsurance contract for time period n . This means that the insurer pays n nb Y  of total 

claim amount nY  while the reinsurer is liable for ( )1 n nb Y− . Similarly, the reinsurer 



22 

receives ( )1 nb c−  of the constant premium c  while the insurer retains nb c , and if the 

retention level 1nb = , this means that there is no reinsurance. Let ( ),n nh b Y  denote 

the fraction of the total claim amount nY  paid by the insurer, ( )0 ,n n nh b Y Y< ≤ , with 

( ) ( )Pr , , 0b n n b bG y h b Y y y = ≤ ≥  , then ( ),n nh b Y  can be evaluated by 

( ),n n n nh b Y b Y=  (this is the case throughout this dissertation). By the expected value 

principle with safety loading factor 0θ > , the premium constant is calculated as 

( ) ( )1 nc E Yθ= +  and paid at the end of every time period unit ( ]1,n n− . Let δ  be the 

safety loading factor added by the reinsurer and rec  be the premium constant for the 

reinsurer. Thus, by the expected value principle, the constant premium for reinsurer is 

given by 

 
 ( ) ( )1 ,re n n nc E Y h b Yδ  = + −  , 

( ) [ ]1 n n nE Y b Yδ= + − , 

( ) ( )1 1 n nE b Yδ  = + −  , 

( )( ) ( )1 1 n nb E Yδ= + − .                (3.2) 

 
Next, the constant premium which is retained by the insurer in a unit period denoted 

by ( )nc b , when ( )0 nc b c≤ ≤ , can be calculated as 

 
 ( )nc b rec c= −  

( ) ( )( ) ( )1 1 1 n nb E Yθ δ = + − + −  .              (3.3) 

 
For the effect of an investment on a risk model, we assume that the insurer can 

invest in two assets. One is a bond with a known interest rate at the initial time ( 0I ); 

the interest rate at time n  ( ), 1, 2,3...nI n =  has a finite countable number ( nd ) of 

possible values ( n kI i= , where 1,2,3,..., nk d∈ ), and we assume that nd d=  for all n  

throughout this dissertation. In addition, nI  is assumed to follow a time-homogeneous 
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Markov chain, i.e. both the transition probabilities and the time are independent, and 

are denoted by 

 
{ } { }1 1 0 1Pr | ,..., , Pr |n c n b a s n c n bI i I i I i I i I i I i− −= = = = = = = ,   

bcp= ,             (3.4) 

 
where

 
si  is assumed to be the known value of 0I ; and ,  ,  a b ci i i are the possible 

values of 1 1,  ,  n nI I I− , respectively, for which { },  ,  1, 2,..., na b c d∈  and 
1

nd
bc

c
p

=
∑  = 1 

for all { },  ,  1, 2,..., na b c d∈ .  

Thus, the transition probability matrix of nI  can be written as 

 
11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

...

...

...

... ... ... ... ...
...

n

n

n

n n n n n

d

d

d

d d d d d

p p p p

p p p p

p p p p

p p p p

 
 
 
 
 
 
 
  

  

 
The other investment asset is a stock with simple net return nR  and the price 

of one share of stock nS  at time n  is defined as 

 
( )-1 -11n n n n nS S R S W= + =  ; 1, 2,3,...n =                       (3.5) 

 
A standard assumption on the stock market is  1 0n nR W+ = > , which is called the 

gross return. Throughout this study, nW  is assumed to be a sequence of i.i.d. 

nonnegative random variables with distribution functions ( ) ( )Pr ,nF w W w= ≤ 0.w ≥  

Base on the risk model in Equation (3.1), if the insurer at the beginning of nth 

period signs a reinsurance contract with retention level nb , invests 1n np U −  of the 

surplus in the stock, and invests the retain surplus ( ) 11 n np U −−  in the bond, where np  
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is the proportion of investment in nth period, 0 1np≤ ≤ , then the surplus at the end of 

the nth period becomes 

 
( ) ( ) ( ) ( )1 11 1 ,n n n n n n n n n nU p U W p U I c b h b Y− −= + − + + − , 

( ) ( ) ( ) ( )1 1 11 1 ,n n n n n n n n n n np U W U I p U I c b h b Y− − −= + + − + + − , 

( ) ( ){ } ( ) ( )1 11 1 ,n n n n n n n n nU I p U W I c b h b Y− −= + + − + + − , 

( ) ( ){ } ( ) ( )1 11 1 1 ,n n n n n n n n n nU I p U I W W c b h b Y− −= + + − + + − , 

( ) ( ) ( )1 1 ,n n n n n n nU I W c b h b Yα−= + + + − ,             (3.6) 

where ( ){ }1 1 1n n n n np U I Wα −= − + .               (3.7) 

 
The quantity of nα  in Equation (3.6) can be considered as the amount of money 

which the insurers invests in the stock at the beginning of the nth period, but the value 

of nI  and nW  are unknown at that time. Thus, we identify the amount of nα  using 

the information from { } and  : 0,1, 2,..., 1j jI W j n= − . 

From Equation (3.7), consider that nα ≥0 if and only if 

 
( ){ }1 1 1 0n n n np U I W− − + ≥ ,     

( )1 1 1n n n n n np U p U I W− −≥ + , 

( )1n nW I≥ + , 

1 1n nR I+ ≥ + , 

and n nR I≥ .                   (3.8) 

 
The meaning of Equation (3.8) is that the insurer will decide to invest in stock ( nα > 

0) if he thinks that its simple net return nR is greater than or equal to the bond interest 

rate nI . 
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3.2 The Other Form of the Proposed Risk Model 
 

From the proposed risk model in Equation (3.6), if we replace the values of n  

as 1, 2,..,n m= , then the output from this action is another form of the previous model 

written as   

 
( ) ( ) ( )1 0 1 1 1 1 1 11 ,U U I W c b h b Yα= + + + − , 

( ) ( ) ( )

( ) ( ) ( )( ) ( )( )

( ) ( )

2 1 2 2 2 2 2 2
2

0 1 1 2 1 2 1 1 2
1

2 2 2 2 2

1 , ,

     1 1 1 , 1

  , ,

j
j

U U I W c b h b Y

U I W I c b I h b Y I

W c b h b Y

α

α

α
=

= + + + −

= + + + + + − +∏

+ + −

  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( )
( ) ( )

3 2 3 3 3 3 3 3
3 3 3 3

0 1 1 1 1 1
1 2 2 2

2 2 3 2 3 2 2 3

3 3 3 3 3

1 , ,

     1 1 1 , 1

         1 1 , 1

         , ,

j k k k
j k k k

U U I W c b h b Y

U I W I c b I h b Y I

W I c b I h b Y I

W c b h b Y

α

α

α

α

= = = =

= + + + −

= + + + + + − +∏ ∏ ∏ ∏

+ + + + − +

+ + −

 

 
.
.
.
  

( ) ( ) ( )( ) ( )0
11 1

1 , 1
m mm

m j j j j j j k
jj k j

U U I W c b h b Y Iα
== = +

 
= + + + − +∑∏ ∏ 

 
.  

 
Therefore, the other form of nU  is 

 

( ) ( ) ( )( ) ( )0
11 1

1 , 1
n nn

n j j j j j j k
jj k j

U U I W c b h b Y Iα
== = +

 
= + + + − +∑∏ ∏ 

 
 

       ; 1, 2,3,...n =             (3.9) 
 
Remark 1. In the case where the value of k is greater than n, kI  does not exist in 

( )
1

1
n

k
k j

I
= +

+∏ , thus we assume kI = 0, i.e. ( ) ( )
1 1

1 1 1
n n

k
k j k j

I
= + = +

+ = =∏ ∏ . 

 



 

CHAPTER 4 

 

THE RUIN PROBABILITY FOR THE PROPOSED RISK MODEL 

This chapter is divided into two parts. The first part introduces the ruin 

probability of the proposed risk model presented in a recursive form as well as the 

integral equation, both in the case of finite time and infinite time. The second part 

presents two upper bounds of ruin probability which were developed previously. Both 

upper bounds are created under the assumption that the retention level of reinsurance 

and the amount of stock investment in each time period are controlled as constant 

values. The first upper bound of ruin probability will be developed both finite and 

infinite time under the additional assumption which the m.g.f. of the claim amounts 

exist. The second upper bound of ruin probability is specially developed in case of 

finite time by using an NWU distribution. For those which are infinite times cannot 

find the closed forms. 

 

4.1 Ruin Probability 
  

With the same principle as for the ruin probability defined in Equations (2.14) 

and (2.15), those of the proposed risk model defined in Equation (3.9) given the initial 

values 0U u=  and 0 sI i=  are as follows. 

The ruin probability for finite time is given by  

 

( ) ( ) 0 0
1

, Pr 0 | ,
n

n s k s
k

u i U U u I iψ
=

 = < = = 
 


 

( )

( ) ( )( ) ( )

0
1

1

1 1

0 0

1

Pr
, 1 0

| ,

k
j

n j

kkk
j j j j j m

j m j

s

U I

W c b h b Y I

U u I i

α

=

=

= = +

  +∏  
    =    + + − + <∑ ∏      
 = = 



,  (4.1) 
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and the ultimate ruin probability can be written as  

 

( ) ( ) 0 0
1

, Pr 0 | ,s k s
k

u i U U u I iψ
∞

=

 = < = = 
 


 

( )

( ) ( )( ) ( )

0
1

1

1 1

0 0

1

Pr .
, 1 0

| ,

k
j

j

kkk
j j j j j m

j m j

s

U I

W c b h b Y I

U u I i

α

∞ =

=

= = +

  +∏  
    =    + + − + <∑ ∏      
 = = 



 (4.2) 

 
The ruin probability of the proposed risk model could be written in a recursive 

form in the case of finite time and also written as an integral equation in the case of 

infinite time. The aforementioned results are shown in the following theorem. 

 

Theorem 3. The recursive form of the finite time ruin probability and the integral 

equations for the ultimate ruin probability under the proposed risk model as in 

Equation (3.6) are given as follows. 

The recursive form of the finite time ruin probability is 

 

( ) ( )( ) ( ) ( )1 1
0 0 0

( , ) 1 ,
d

n s st n t b t b
t

u i p u i w z y i dG y dF w
π

ψ ψ α
∞

+
=

= + + −∑ ∫ ∫  

( ) ( )
0 0

 ,
d

st
t

p G dF wπ
∞

=
+ ∑ ∫                (4.3) 

where ( ) ( ) ( )( )1 11 Pr ,G G h b Yπ π π= − = ≥  and ( ) ( )1 11 tu i w c bπ α= + + + . 

 
The integral equation of the ultimate ruin probability is 

 

( ) ( )( ) ( ) ( )1
0 0 0

( , ) 1 ,              
d

s st t b t b
t

u i p u i w z y i dG y dF w
π

ψ ψ α
∞

=
= + + −∑ ∫ ∫  

( ) ( )
0 0

d
st

t
p G dF wπ

∞

=
+ ∑ ∫ ,                          (4.4) 
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and the ruin probability in first time period is 

 

( ) ( )1
0 0

( , )
d

s st
t

u i p G dF wψ π
∞

=
= ∑ ∫ .               (4.5) 

 

Proof. 

Let ( ) ( ) ( ), ,n n n n n nZ z h b Y h b Y c b = = −  , 1, 2,3,...n =  and suppose that 1 tI i= ,

{ }0,1,2,..., nt d∈ , 1W w= , 0w ≥ , 1 1( , ) bh b Y y= , and 0by ≥ . Thus, ( )1 bZ z y=

( ) ( )1 1 1, .h b Y c b= −  

 
Consider from Equation (3.6) that  

 
( ) ( ) ( )1 0 1 1 1 1 1 11 ,U U I W c b h b Yα= + + + −  

( ) ( ) ( )0 1 1 1 1 1 11 ,U I W h b Y c bα= + + − −    

( ) ( )11 t bu i w z yα= + + −   

( )bh z y= − ,                           (4.6) 

 
where ( ) 11 th u i wα= + + . 

Thus, if ( )bz y h> , then 

 
( ){ }1 1 1 1 1 0 0Pr 0 |  ,  , ,   ,  , 1b t sU W w h b Y y I i I i U u< = = = = = = , 

 
implying that for ( )bz y h> , 

 

( ) ( )
1

1 1 1 1 0 0
1

Pr 0 | , , , , , 1
n

k b t s
k

U W w h b Y y I i I i U u
+

=

 < = = = = = = 
 


.           (4.7) 

 
Meanwhile, if ( )0 bz y h≤ ≤ , then 

 
( ){ }1 1 1 1 1 0 0Pr 0 | , , , , , 0b t sU W w h b Y y I i I i U u< = = = = = = ,   
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implying that for ( )0 bz y h≤ ≤ , 

 

( ) ( )
1

1 1 1 1 0 0
1

Pr 0 | ,  , ,  , ,
n

k b t s
k

U W w h b Y y I i I i U u
+

=

 < = = = = = 
 


 

( ) ( )
1

1 1 1 1 0 0
2

Pr 0 | , , , , ,
n

k b t s
k

U W w h b Y y I i I i U u
+

=

 = < = = = = = 
 


 ; by (4.7) 

( )( ) ( ) ( ) ( )

( )

1

11 12

1 1

1 1 0
Pr

| ,  

n k kk
b j j j j m

jj m jk

b t

h z y I W Z I

U h z y I i

α
+

== = +=

      − + + − + <∑∏ ∏    =       
 

= − =  



 

( )( ) ( ) ( ) ( )

( )
11 11

0 0

1 1 0
Pr

| ,  

n r rr
b j j j j m

jj m jr

b t

h z y I W Z I

U h z y I i

α
== = +=

      − + + − + <∑∏ ∏    =       
 

= − =  



 

( )( ),n b th z y iψ= −  ; by (3.11) 

( ) ( )( )11 ,n t b tu i w z y iψ α= + + − . ; ( ) 11 th u i wα= + + .            (4.8) 

 
Consider ( )1 ,n su iψ + from Equation (3.11) is as follows: 

 

( ) ( )
1

1 0 0
1

, Pr 0 | ,
n

n s k s
k

u i U U u I iψ
+

+
=

 = < = = 
 


, 

 
then by analogy, as ( ) ( )Pr , Pr , |

i
i i i i i

y
x y x y Y y= =∑ , thus we can rewrite ( )1 ,n su iψ +  

as 

( )
( )

( )
( ) ( )

1
0 0 1

11
0 0 0

1 1 1

 0 | , , ,
, Pr

, ,

n
d k s t

kn s st b
t

b

U U u I i I i
u i p dG y dF w

h b Y y W w
ψ

+
∞∞

=+
=

 < = = = = ∑ ∫ ∫  
 = = 



 

( ) ( ) ( )
1

0 10 0
Pr 0 |

nd
st k b

t k
p U dG y dF wβ

∞∞ +

= =

 = <∑ ∫ ∫  
 


,                       (4.9) 

 
where ( ){ }0 0 1 1 1 1, , , , ,s tU u I i I i h b Y y W wβ = = = = = = . 
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From Equation (4.4), consider that ruin will occur in the first period if ( )bz y h>  or 

( ) ( ) ( )1 1 1 1, 1 th b Y u i w c bα> + + +  and will occur in another period if

( ) ( ) ( )1 1 1 1, 1 th b Y u i w c bα≤ + + + . Since ( )1 1, bh b Y y=  is defined at the beginning of 

the proof, we now define ( ) ( )1 11 tu i w c bα π+ + + =  for the short term. In order to use 

Equations (4.7) and (4.8) to derive the recursive form, we need to rewrite ( )1 ,n su iψ +  

in Equation (4.9) as  

 

( ) ( )

( ) ( )
( )

1

10
1 10 0

1

Pr 0 |
( , )

Pr 0 |

n
k bd k

n s st nt
k b

k

U dG y
u i p dF w

U dG y

π

π

β
ψ

β

+

∞ =
+ ∞ +=

=

  <∫     = ∑ ∫  
  + <∫     





 

( ) ( )( ) ( ) ( )1
0 0 0

1 ,
d

st n t b t b
t

p u i w z y i dG y dF w
π
ψ α

∞

=
= + + −∑ ∫ ∫  

( ) ( )
0 0

d
st b

t
p dG y dF w

π

∞∞

=
+ ∑ ∫ ∫ . 

 

Since ( ) ( )( ) ( )1 1Pr , bG h b Y dG y
π

π π
∞

= ≥ = ∫ , then we can rewrite 1( , )n su iψ +  as 

 

( ) ( )( ) ( ) ( )1 1
0 0 0

( , ) 1 ,
d

n s st n t b t b
t

u i p u i w z y i dG y dF w
π

ψ ψ α
∞

+
=

= + + −∑ ∫ ∫  

( ) ( )
0 0

d
st

t
p G dF wπ

∞

=
+ ∑ ∫ .             (4.10) 

 
By using Equation (2.17) and the Lebesgue dominated convergence theorem, the 

result of taking n →∞   in Equation (4.10) becomes 

 
1( , ) lim ( , )s n sn

u i u iψ ψ +
→∞

=  

 

( ) ( )( ) ( ) ( )1
0 0 0

1 ,
d

st t b t b
t

p u i w z y i dG y dF w
π
ψ α

∞

=
= + + −∑ ∫ ∫  
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( ) ( )
0 0

d
st

t
p G dF wπ

∞

=
+ ∑ ∫ .  

 
Furthermore, following on from Equation (4.5), we can obtain  

 
{ }1 1 0 0( , ) Pr 0 | ,s su i U U u I iψ = < = =    

( ){ }0 0Pr 0 | ,b sh z y U u I i= − < = =  ; by (4.6) 

{ }1 0 0Pr | , sZ h U u I i= > = =   ; ( )1 bZ z y=  

( ){ }1 1 0 0Pr 1 | ,t sZ u i w U u I iα= > + + = =       ; ( ) 11 th u i wα= + +  

( ) ( ) ( ){ }1 1 1 1 0 0Pr , 1 | ,t sh b Y c b u i w U u I iα= − > + + = =  

; ( ) ( )1 1 1 1,Z h b Y c b= −  

( ) ( ) ( ){ }1 1 1 1 0 0Pr , 1 | ,t sh b Y u i w c b U u I iα= > + + + = =  

( ) ( ) ( ){

} ( )

1 1 1 1
0 0

0 0 1 1

Pr , 1

            | , , ,

d
st t

t

s t

p h b Y u i w c b

U u I i I i W w dF w

α
∞

=
= > + + +∑ ∫

= = = =
 

( ){ } ( )1 1 0 0 1 1
0 0

Pr , | , , ,
d

st s t
t

p h b Y U u I i I i W w dF wπ
∞

=
= > = = = =∑ ∫  

; ( ) ( )1 11 tu i w c bπ α= + + +  

( ) ( )
0 0

d
st

t
p G dF wπ

∞

=
= ∑ ∫ .      

                � 
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4.2 The Upper Bounds of the Ruin Probabilities 
 

In this section, two upper bounds of the ruin probabilities (as in Theorem 3) 

are derived by the inductive method and under the assumption that the retention level 

of reinsurance and the amount of stock investment in each time period are controlled 

to be constant values. The first upper bound is derived based on the condition that the 

adjustment coefficient (as in Definition 2) exists, while the second upper bound is 

derived based on an NWU distribution. 

 

Theorem 4. Under the assumptions that the retention level of reinsurance and the 

amount of stock investment in each time period are controlled to be constant values, 

i.e. nb b=  and nα α= , for 1, 2,3,...n = , and the adjustment coefficient as in Equation 

(2.18) exists, the upper bounds of finite time ruin probability 1( , )n su iψ +  and  ultimate 

ruin probability ( , )su iψ  of the proposed risk model are given by 

 
( )( )0 1 11

1 0 0( , ) |R u I W
n s su i E e I iαψ β − + +  
+ ≤ = ,            (4.11) 

 
where 

 

( )

( )

0

0
1

0 0
inf

bR y
b

m
R mm

e dG y

e G m
β

∞

−

≥

∫
=  , for all 0m ≥ .  

 
and      1( , ) lim ( , )s n sn

u i u iψ ψ +
→∞

=   

 
( )( )0 1 11

0 0|R u I W
sE e I iαβ − + +  ≤ = .            (4.12) 

 

Proof. 

Let ( ) ( ) ( )1 11 Pr ,G m G m h b Y m= − = >   , for all 0m ≥ , then ( )G m  can be rewritten 

as 
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( )
( )

( )
( )

0

0 0
0

1
b

b

R y
b

R m R ym
bR m

m

e dG y
G m e e dG y

e G m

−∞

∞
−

 
∫ 

 = ∫
 
 
 

 

( )0 0
0

bR m R y
b

m
e e dG yβ

∞
−≤ ∫   ; where 

( )

( )

0

0
1

0 0
inf

bR y
b

m
R mm

e dG y

e G m
β

∞

−

≥

∫
=  

( )0 0
0

bR m R y
be e dG yβ

∞
−

−∞
≤ ∫  

( )( )0 1 10 ,
0

R h b YR me E eβ −= .             (4.13) 

 
From Equation (4.5) in Theorem 3, we can obtain 

 

( ) ( )1
0 0

( , )
d

s st
t

u i p G dF wψ π
∞

=
= ∑ ∫ ,   

     
where ( ) ( )1 11 tu i w c bπ α= + + + . Subsequently, 

 
( ) ( ){ } ( )( ) ( )0 1 1 0 1 11 ,

1 0
0 0

( , ) t
d R u i w c b R h b Y

s st
t

u i p e E e dF wαψ β
∞ − + + +

=
≤ ∑ ∫   

         (from Equation (4.13)) 

( )( ) ( ) ( ){ } ( )0 1 10 1 1 1,
0

0 0

t
d R u i w c bR h b Y

st
t

E e p e dF wαβ
∞ − + + +

=
= ∑ ∫  

( )( ) ( ) ( ){ }( )0 1 1 1 10 1 1 1,
0 0|R u I W c bR h b Y

sE e E e I iαβ − + + += =  

( ) ( ){ }( ) ( ){ }( )0 1 1 1 0 1 1 1, 1
0 0|R c b h b Y R u I W

sE e E e I iαβ − − − + += =  

( ){ }( )0 1 1 11
0 0|R u I W

sE e I iαβ − + += = ,            (4.14) 

 

where ( ) ( ){ }( )0 1 1 1, 1R c b h b YE e− − =  (Diasparra and Romera, 2009, p. 102). 

By using the inductive method, we get 
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( ){ }( )0 1 1 11

0 0( , ) |R u I W
n s su i E e I iαψ β − + +≤ = .            (4.15) 

 
Replace u  and si  by ( ) ( )11 t bu i w z yα+ + −  and ti  in Equation (4.15), and consider 

Equation (4.3) in that ( ) ( )11 0t bu i w z yα+ + − >  when ( ) ( )11 t bu i w z yα+ + > , then 

 

( ) ( ) ( ) ( ){ }0 1 1 1 11 1
1 0 0(1 ) ( ), |t bR u i w z y I W

n t b t tu i w z y i E e I iα αψ α β
 − + + − + +  + + − ≤ = 

 
 

( ) ( )0 11
0

t bR u i w z ye αβ  − + + − ≤ .          (4.16) 

 
From Equation (4.3) in Theorem 3, we can write 

 

( ) ( )( ) ( ) ( )1 1
0 0 0

( , ) 1 ,
d

n s st n t b t b
t

u i p u i w z y i dG y dF w
π

ψ ψ α
∞

+
=

= + + −∑ ∫ ∫  

( ) ( )
0 0

d
st

t
p G dF wπ

∞

=
+ ∑ ∫ ,                     (4.17) 

 
and by replacing Equations (4.13) and, (4.16) in Equation (4.17), we can achieve 

 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 1

0 1 1 0

1
1 0

0 0 0

1
0

0 0

,

                      

t b

t b

d R u i w z y
n s st b

t

d R u i w c b R y
st b

t

u i p e dG y dF w

p e e dG y dF w

π α

α

π

ψ β

β

∞  − + + − 
+

=

∞ ∞ − + + + 

=

≤ ∑ ∫ ∫

+ ∑ ∫ ∫

 

( ) ( ) ( ) ( )0 1 1 01
0

0 0 0

t b
d R u i w c b R y

st b
t

p e e dG y dF wαβ
∞ ∞ − + + + 

=
= ∑ ∫ ∫  

( ) ( ) ( )( ) ( )0 1 1 0 1 11 ,
0

0 0

t
d R u i w c b R h b Y

st
t

p e E e dF wαβ
∞  − + + + 

=
= ∑ ∫  

( ) ( )( ) ( )( )0 1 1 1 0 1 1 1, 1
0 0|R c b h b Y R u I W

sE e E e I iαβ − − − + +      = =   

( )( )0 1 1 11
0 0|R u I W

sE e I iαβ − + +  = =   (see Equation (4.14)) 

( )( )0 1 11
0 0|R u I W

sE e I iαβ − + +  = = .   
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and  1( , ) lim ( , )s n sn
u i u iψ ψ +

→∞
=    

( )( )0 1 11
0 0|R u I W

sE e I iαβ − + +  ≤ = . 

                        � 

 

It is not difficult to calculate the results for the upper bound in Theorem 4, but 

it cannot be applied for all claims distribution because many practical distributions 

(especially heavy-tailed distributions such as Pareto and Weibull), the m.g.f. does not 

exist (i.e. the adjustment coefficient does not exist). Thus, the upper bound of the ruin 

probability in Theorem 4 cannot be applied for these distributions. Hence, in the next 

theorem, the upper bound of the ruin probability is applied to the claims distribution 

whether the m.g.f. exists or not. In this dissertation, it is derived base on the NWU 

distribution but only restricts the results where nY  is a summation of the i.i.d. claim 

amounts in order to use the outcome of Willmot (1994) to support this procedure. 

Therefore, the additional assumptions for the next theorem are as follows. 

Let ( )B x  be the distribution function of a non-negative random variable and 

( ) ( )1B x B x= − , then ( )B x  is the NWU if ( ) ( ) ( )B x B y B x y≤ + , for 0, 0x y≥ ≥  

(Willmot, 1994) 

 

Let 
1

nN
n ni

i
Y V

=
= ∑ ; 1, 2,3,...n = , and 1,2,3,..., ni N= ,           (4.18) 

 
where 

niV  is the ith claim amount occurring during time period n  (i.e. from 1n −  to n ) 

which is assumed to be an i.i.d. sequence with common distribution function 

( ) ( )Pr niO v V v= ≤ , 0v ≥ ; and  

nN  is the number of claims occurring during time period n , which is assumed 

to be an i.i.d. sequence with 
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 Pr( )nm nj N m= = ; 0,1, 2,...m =              (4.19) 

 
and 

 

1
nm nk

k m
a j

∞

= +
= ∑ ; 0,1, 2,...m =               (4.20) 

 
Suppose there exist positive numbers 0 1nφ< <  (see Willmot and Lin (1994) 

for more details) such that  

 
( 1)n m n nma aφ+ ≤ ; 0,1, 2,...m = ,                        (4.21) 

 
and since the sequence of ,nN 1,2,3,...n =  is assumed to be i.i.d., then the values of 

nmj , nma , and nφ as defined in Equations (4.19) - (4.21) are constant for all values of 

n . To make this easier, we define 

 
Pr( )m nm nj j N m= = = ; 0,1, 2,...m =                      (4.22) 

 
and 

 

1 1
m nm nk k

k m k m
a a j j

∞ ∞

= + = +
= = =∑ ∑ ; 0,1, 2,...m =            (4.23) 

 
Suppose there exist positive numbers 0 1nφ φ< = <  such that  

 
1m ma aφ+ ≤ ; 0,1, 2,...m =               (4.24) 

 
From the afore mentioned additional assumptions, Willmot (1994) showed us 

that if the non-negative, non-increasing function ( ) ,  0B x x ≥  exists (which is NWU) 

such that 

 

 { } 1 1

0
( ) ( )B v dO v φ

∞ − −≤∫                 (4.25) 
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and  

 

 { } 1
( ) ( ) ( ) ( ) ( )

y y
O y dO v B y B v dO v

∞ ∞ −
= ≤∫ ∫ ; 0y ≥ ,           (4.26) 

 
then the upper bound for ( ) ( )1P y P y= − , where ( ) ( )Pr nP y Y y= ≤ ; 0y ≥ , and the 

common distribution of the total claims nY , can be written as 

 
( ) ( ) ( )1

01P y j B yφ−≤ − ,              (4.27) 

 
where 0j  is defined as in Equation (4.22). 

Since the total claims amount 
1

nN
n ni

i
Y V

=
= ∑ ; 1, 2,3,...n = ; 1, 2,3,..., ni N=  is 

assumed and the fraction of the total claim amount paid by the insurer when the 

company signed the reinsurance contract is ( ),n n n nh b Y b Y= ; 1, 2,3,...n = , then 

( ),n nh b Y  can be rewritten as 
 

( ) ( )
1 1

, ,
n nN N

n n n ni n ni
i i

h b Y b V h b V
= =

= =∑ ∑ ,             (4.28) 

 
where ( ),n nih b V  is a fraction of the claims amount paid by the insurer which is  i.i.d. 

and the common distribution function is assumed to be ( ) ( ){ }Pr ,b n ni bQ v h b V v= ≤ , 

0bv ≥ . 

Similarly to Equations (4.25) - (4.27), if the non-negative, non-increasing 

function ( ) , 0D x x ≥ (which is NWU) exists such that 

 

{ } 1 1

0
( ) ( )b bD v dQ v φ

∞ − −≤∫                 (4.29) 

 
and in addition, 
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 { } 1
( ) ( ) ( ) ( ) ( )

b b
b b b b b

y y
Q y dQ v D y D v dQ v

∞ ∞ −
= ≤∫ ∫   ; 0by ≥ ,          (4.30) 

 
then the upper bound for ( ) ( )1b bG y G y= − , where ( )( ) Pr ,b n n bG y h b Y y = ≤   and 

0by ≥  is the common distribution of claim ( ),n nh b Y , can be expressed as 

 
 ( ) ( ) ( )1

01b bG y j D yφ−≤ − .              (4.31) 

 
The next theorem is derived from the previous information. 

 

Theorem 5. Let the total claims amount nY , 1, 2,3,...n =  satisfy Equation (4.18) and 

the quantity 0 1nφ φ< = <  satisfy Equation (4.24), and suppose there exists non-

negative and non-increasing function ( ) 1 ( )D x D x= −  for 0x ≥ , in which ( )D x  is the 

NWU, ( )0 1D = , and ( )D x  satisfies Equations (4.29) and (4.30). Thus, the upper 

bound of the finite time ruin probability (as in Equation (4.3))  under the assumptions 

that the retention level of reinsurance and the amount of stock investment in each time 

period are controlled to be constant values, i.e. nb b=  and nα α= , for 1, 2,3,...n =  is 

given as 

 

( ){ } 11
1 0 0( , ) (1 ) ( ) |

n

n s b su i j E D y E D I iψ φ π
−−

+
   ≤ − =   

,                     (4.32) 

 
where (as before) ( ) ( )1 11 tu i w c bπ α= + + + . 

 

Proof 

From Equation (4.5) in Theorem 3, we obtain 

 

( ) ( )1
0 0

( , )
d

s st
t

u i p G dF wψ π
∞

=
= ∑ ∫ ,   

 
where ( ) ( )1 11 tu i w c bπ α= + + + . 
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We can rewrite 1( , )su iψ  using Equation (4.31) as  

 

( ) ( ) ( )1
1 0

0 0
( , ) 1

d
s st

t
u i p j D dF wψ φ π

∞
−

=
 ≤ −∑ ∫     

( ) ( ) ( )1
0

0 0
1

d
st

t
j p D dF wφ π

∞
−

=
 = − ∑ ∫    

( ) ( ) ( ){ } ( )1
0 1 1

0 0
1 1

d
st t

t
j p D u i w c b dF wφ α

∞
−

=
 = − + + +∑ ∫    

( ) ( ) ( ){ }1
0 1 1 01 1 |t sj E D u i w c b I iφ α−  = − + + + =   

( ) ( )1
0 01 | sj E D I iφ π−  = − =    

( ) ( ){ }
( )

( )
011

0 01 |b sj E D y E D I iφ π
−−    = − =   

.  

 
By using the inductive method, we arrive at 

 

( ) ( ){ }
( )

( )
111

0 0( , ) 1 |
n

n s b su i j E D y E D I iψ φ π
−−−    ≤ − =   

   

( ) ( ){ }
( )

{ }
111

0 1 1 01 (1 ) ( ) |
n

b t sj E D y E D u i w c b I iφ α
−−−    = − + + + =   

                       (4.33) 

 
If we replace u  and si  by byπ −  and ti , we can rewrite ( , )n su iψ  in Equation (4.33) 

as 

 

( ) ( ){ }
( )

{ }
111

0 1 1 0( , ) 1 ( )(1 ) ( ) |
n

n t b b t ty i j E D y E D y i w c b I iψ π φ π α
−−−    − ≤ − − + + + =   

( ) ( ){ }
( )111

0 01 ( ) |
n

b b tj E D y E D y I iφ π
−−−    ≤ − − =   

 

( ) ( ){ }
( )

( )
111

01
n

b bj E D y D yφ π
−−−  = − −  

.           (4.34) 

From Equation (4.3) in Theorem 1, we obtain 
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( ) ( )( ) ( ) ( ) ( )1 1
0 0 0

( , ) 1 ,
d

n s st n t b t b
t

u i p u i w z y i dG y G dF w
π

ψ ψ α π
∞

+
=

 
= + + − +∑ ∫ ∫ 

 
  

                    (4.35) 

 
By considering ( ) ( )1u 1+i  + wt bz yα −  in Equation (4.35) as 

 
( ) ( ) ( ) ( ) ( )1 1 1 1 11 1 ,t b tu i w z y u i w c b h b Yα α+ + − = + + + −   

byπ= − ,             (4.36) 

 
and by replacing Equation (4.36) in Equation (4.35), we can achieve 

 

( ) ( ) ( ) ( )1
0 0 0

( , ) ,
d

n s st n b t b
t

u i p y i dG y G dF w
π

ψ ψ π π
∞

+
=

 
= − +∑ ∫ ∫ 

 
 

( ) ( ){ }
( )

( ) ( )

( ) ( )
( )

111
0

0
0 0 1

0

1

1

n
d b b b

st
t

j E D y D y dG y
p dF w

j D

π
φ π

φ π

−−−∞

=
−

     − −∫     ≤ ∑ ∫    
 
+ −    

( ) ( ){ }
( )

( ) ( )

( ) ( )
( )

111
0

0
0 0 1

0

1

1

n
d b b b

st
t

b

j E D y D y dG y
p dF w

j D y

π
φ π

φ π

−−−∞

=
−

     − −∫     ≤ ∑ ∫    
 
+ − −  

 

( ) ( ){ }
( )

( ) ( )

( ) ( ) ( )
( )

111
0

0

0 0 1
0

1

1

n

b b bd
st

t
b b

j E D y D y dG y
p dF w

j D y dG y

π

π

φ π

φ π

−−−
∞

∞=
−

     − −∫       ≤ ∑ ∫  
 
+ − −∫ 
 

 

( ) ( ){ }
( )

( ) ( ){ } ( )

( ) ( ) ( ){ } ( )
( )

11 11
0

0

10 0 1
0

1

 1

n

b b bd
st

t
b b

j E D y D D y dG y
p dF w

j D D y dG y

π

π

φ π

φ π

−− −−
∞

∞ −= −

  − ∫   ≤ ∑ ∫  
 + − ∫  

 

( ) ( ){ }
( )

( ) ( ){ } ( ) ( )
11 11

0
0 0 0

1
nd

st b b b
t

p j E D y D D y dG y dF wφ π
−∞ ∞− −−

=

  ≤ − ∑ ∫ ∫    
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( ) ( ){ } ( ) ( )
11

0
0 0

1
nd

st b
t

p j E D y D dF wφ π
∞ −−

=

   = −∑ ∫      
 

 ( ) ( ){ } ( ){ } ( )
11

0
0 0

1
n d

b st
t

j E D y p D dF wφ π
∞−−

=

 = − ∑ ∫  
 

( ) ( ){ } ( )
11

0 01 |
n

b sj E D y E D I iφ π
−−    = − =   

. 

                          � 



 

CHAPTER 5 

 

NUMERICAL COMPUTATIONS  

Two numerical examples are presented in the first part of this chapter in order 

to show the characteristics of the 2 upper bounds of the ruin probability derived in the 

previous chapter. The latter part of this chapter shows the application of the derived 

upper bounds for real-life data. 

 

5.1 Numerical Examples 
 

The two examples are presented under the assumptions that the retention level 

of reinsurance and the amount of stock investment in each time period of the insurer 

are controlled to be constant values. These are the main assumptions for the derived 

upper bounds in this dissertation. 

In Example 1, the total claims amount in each time period is assumed to be an 

i.i.d. exponential distribution. The adjustment coefficient can be obtained from this 

distribution in order to show the characteristics of the upper bound derived in the 

theorem 4 in the previous chapter. 

In Example 2, each claim amount is assumed to be an i.i.d. Pareto distribution, 

from which the adjustment coefficient cannot be found in order to show the 

characteristics of the upper bound derived in Theorem 5 in the previous chapter. 

 

Example 1. We suppose that total claims amount
 

1exp
9nY  

 
 


 in time periods

1,2,3,...n =  and that the insurance company has the chance to invest its financial 

surplus in both the bond and stock markets. The bond interest rates during time 

periods 1,2,3,...n =  are { }0.02,  0.03,  0.05 ,nI ∈  respectively. We also assume that 
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the bond interest rates follow a time-homogeneous Markov chain with transition 

probability matrix  

 
0.6 0.3 0.1
0.3 0.5 0.2
0.2 0.4 0.4

 
 
 
  

. 

 

Gross stock return ( nW ) is assumed to be nW  = 

2

2 nK

e

σµ σ
 
 − +
 
   with ( )0,1nK N  for 

time periods 1,2,3,...n = which is the one of commonly used functions explaining the 

behavior of stock return (Lin, Dongjin, and Yanru, 2015: 812). In this case, 0.7µ =  

and 0.5σ =  are also assumed. The safety loading factor given by the insurer and the 

reinsurer are 10 and 12%, respectively. 

Due to the total claims amount
 

1exp
9nY  

 
 

  being assumed, the distribution 

function of nY  is ( ) ( ) 9Pr 1
y

nP y Y y e
−

= < = − , which leads to the distribution function 

of a fraction of total claims amount ( ),n n n nh b Y b Y= , where nb b= , ( ]0,1b∈  can be 

written as
 ( ) ( )Pr ,b n bG y h b Y y = ≤   = 91

by
be

 − 
 − . Thus, the adjustment coefficient 

can be obtained from this distribution. Therefore, we show the upper bound for the 

finite time and the ultimate ruin probability values derived in Theorem 4. 

To show (in Table 5.1) how the factors in the proposed risk model affect the 

values of the upper bound of the ruin probability, we set the initial value of the factors 

additional to the assumptions at the beginning of this example as follows: 

1) The initial surplus 0U  is set at 50, 100, or 500.  

2) The initial value of interest rate 0I  is set at 0.02 or 0.05. 

3) The retention level of reinsurance nb  is assumed (as for the derived upper 

bound) to be a constant value and nb b=  in each time period 1,2,3,...n = . Here b = 

0.2, 0.6, or 1.0. 
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4) The amount of stock investment nα  is also assumed (as for the derived 

upper bound) to be a constant value, and nα α=  in each time period 1,2,3,...n = . We 

now obtain four values of α  by Equation (3.7 based on the other assumption that the 

proportion of stock investment np  is constant, and np p=  is assumed to be 0, 0.25, 

0.75, or 1. The values of nI  and nR  in Equation (3.7) are assumed to be 0I  and 10% 

respectively. 

The steps for getting the upper bound of the finite time ruin probability and the 

ultimate ruin probability calculations are as follows: 

1) Calculate the 0R  value using the formula in Equation (2.18)  

2) Calculate the 1
0B−  value using the formula in Equation (4.12) 

3) Define the distribution function of 1W  using the data from the set up 

assumption. In this example, the distribution function of 1W is 

 

( ) ( )

2
ln

2
Pr n

w
F w W w

σµ
Φ

σ

  
− −     = ≤ =  

 
 
 

 , whereΦ  is the standard normal 

distribution function, 0w ≥ , 0.7µ = , and 0.5σ = .  

4) Calculate the upper bound of the ruin value using Equation (4.11). 
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Table 5.1 The Proposed Upper Bounds for the Ruin Probability Compares with 

Lundberg’s Upper Bound. 

 

The results from Table 5.1 show that the upper bound value decreased when 

either initial surplus 0U  or the investment value in the stock α  increased whereas it 

0U  α  b  
The proposed upper bounds Lundberg’s upper 

bounds 0 0.02I =  0 0.05I =  

50 

0.00 
0.2 0.0944 0.0923 

0.3762 

0.6 0.1936 0.1909 
1.0 0.3022 0.2993 

0.91 
0.2 0.0871 0.0852 
0.6 0.1838 0.1812 
1.0 0.2916 0.2888 

2.73 
0.2 0.0745 0.0729 
0.6 0.1659 0.1635 
1.0 0.2718 0.2692 

3.63 
0.2 0.0692 0.0676 
0.6 0.1579 0.1556 
1.0 0.2627 0.2601  

100 

0.00 
0.2 0.0097 0.0093 

0.1415 

0.6 0.0444 0.0431 
1.0 0.1108 0.1087 

1.80 
0.2 0.0083 0.0079 
0.6 0.0400 0.0389 
1.0 0.1033 0.1013 

5.45 
0.2 0.0061 0.0059 
0.6 0.0328 0.0319 
1.0 0.0900 0.0883 

7.27 
0.2 0.0053 0.0051 
0.6 0.0298 0.0290 
1.0 0.0841 0.0825 

500 

0.00 
0.2 0.0000 0.0000 

0.0001 

0.6 0.0000 0.0000 
1 0.0000 0.0000 

9.09 
0.2 0.0000 0.0000 
0.6 0.0000 0.0000 
1.0 0.0000 0.0000 

27.27 
0.2 0.0000 0.0000 
0.6 0.0000 0.0000 
1.0 0.0000 0.0000 

36.36 
0.2 0.0000 0.0000 
0.6 0.0000 0.0000 
1.0 0.0000 0.0000 
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increased when the reinsurance contract retention level b  increased. In addition, the 

results show that the upper bound value from Theorem 4 was sharper than the well-

known Lundberg upper bound. 

 
Example 2. Here, it is assumed that the total claims amount nY ; 1, 2,3,...n =  is a 

summation of i.i.d. claim amounts niV , niV ~ ( )1.5,0.5pareto ; 1, 2,3,..., ni N= . The 

number of claims nN  during time period n  is an i.i.d. Poisson distribution with mean

3λ = . It is also assumed that the bond interest rates during time periods 1,2,3,...n =  

are { }0.02,  0.03,  0.05nI ∈  with initial value 0 0.02I = . Furthermore, they follow a 

time-homogeneous Markov chain with transition probability matrix  
 

0.6 0.3 0.1
0.3 0.5 0.2
0.2 0.4 0.4

 
 
 
  

. 

Gross stock return ( nW ) is assumed, as before, to be nW  = 

2

2 nK

e

σµ σ
 
 − +
 
   with 

( )0,1nK N  for time periods 1,2,3,...n = and 0.7µ = , 0.5σ =  are also assumed. 

The safety loading factors given by the insurer and the reinsurer are 10% and 12%, 

respectively. There exists ( ) ( ) 11D x kx −= + , which is NWU. 

Since claim amount niV ~ ( )1.5,0.5pareto is assumed, the distribution function 

of niV  is given by 

 

( )O v  = ( )Pr niV v≤  = 1
v

αβ −  
 

, where 0.5v β≥ =  and 1.5α = . 

 
Thus, the distribution function of the fraction of the ith claim amount that occurs 

during time period n , ( ),n ni n nih b V b V= , where nb b= , ( ]0,1b∈ , can be expressed as 

 

( )bQ v  = ( )Pr , ni bh b V v ≤   = 1
b

b
v

α
β 

−  
 

, where bv β≥ .  
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The m.g.f. of the Pareto distribution does not exist as in the case of the m.g.f. 

of ( ) ( )
1

, ,
nN

n n n ni
i

h b Y h b V
=

= ∑ ; therefore, we cannot find the adjustment coefficient value 

0R . In this example, the upper bounds for the finite time ruin probabilities derived in 

Theorem 5 are shown. 

To portray (in Table 5.2) how the factors in the proposed risk model affect the 

upper bound of the finite time ruin probability, we also set the initial value of the 

factors additional to the assumptions on the beginning of this example as follows: 

1) The time period n  is obtained for period 1, 2, 3, 4, and 5. 

2) The initial surplus 0U  is set at 50, 100, or 500.  

3) The retention level of reinsurance nb , which is assumed (as the derived 

upper bound) to be a constant value, where nb b=  in each time period 1,2,3,...n = is 

set at 0.2, 0.6, or 1.0. 

4) The amount of stock investment, nα , which is also assumed (as the derived 

upper bound) to be a constant value, and nα α=  in each time period 1,2,3,...n = . 

Four values of α  by Equation (3.7) are obtained based on the other assumption that 

the proportion of stock investment np  is a constant value and np p= : 0, 0.25, 0.75, 

and 1. The values of nI  and nR  in Equation (3.7)  are assumed to be 0I  and 10% 

respectively 

The steps in the upper bound of the finite time ruin probability value 

calculation are as follows: 

1) Define the probability function for the number of claims nN during the time 

period and calculate 0p . 

2) Calculate the value of φ  using Equation (4.24). 

3) Find the k value in the function of ( ) ( ) 11D x kx −= + , thereby making 

Equations (4.29) and (4.30) real. 

4) Define the distribution function of 1W  using the information from the 

assumptions. 
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5) Calculate the upper bound of the finite time ruin probability using Equation 

(4.32). 

Table 5.2 The Upper Bounds of the Finite Time Ruin Probability (Time Period n =  

1,2,3,4, and 5). 

0U  α  b  
Upper bounds 

1n =  2n =  3n =  4n =  5n =  

 50 

0.00 
(pn= 0.00) 

0.2 0.0342 0.0533 0.0831 0.1296 0.2021 
0.6 0.0940 0.1466 0.2286 0.3565 0.5560 
1 0.1410 0.2200 0.3430 0.5349 0.8343 

0.91 
(pn= 0.25) 

0.2 0.0330 0.0515 0.0803 0.1253 0.1954 
0.6 0.0911 0.1421 0.2216 0.3456 0.5390 
1 0.1372 0.2139 0.3336 0.5202 0.8113 

2.73 
(pn= 0.75) 

0.2 0.0310 0.0484 0.0755 0.1177 0.1835 
0.6 0.0860 0.1341 0.2092 0.3262 0.5087 
1 0.1301 0.2030 0.3165 0.4936 0.7698 

3.63 
(pn= 1.00) 

0.2 0.0301 0.0470 0.0733 0.1143 0.1783 
0.6 0.0837 0.1306 0.2036 0.3176 0.4952 
1 0.1270 0.1980 0.3088 0.4816 0.7511 

 100 

0.00 
(pn= 0.00) 

0.2 0.0174 0.0271 0.0422 0.0659 0.1028 
0.6 0.0498 0.0777 0.1212 0.1890 0.2947 
1 0.0784 0.1223 0.1908 0.2975 0.4640 

1.80 
(pn= 0.25) 

0.2 0.0168 0.0262 0.0408 0.0637 0.0993 
0.6 0.0482 0.0752 0.1173 0.1830 0.2854 
1 0.0761 0.1186 0.1850 0.2886 0.4500 

5.45 
(pn= 0.75) 

0.2 0.0157 0.0246 0.0383 0.0598 0.0932 
0.6 0.0454 0.0708 0.1104 0.1721 0.2684 
1 0.0718 0.1119 0.1746 0.2723 0.4246 

7.27 
(pn= 1.00) 

0.2 0.0153 0.0238 0.0372 0.0580 0.0905 
0.6 0.0441 0.0688 0.1072 0.1673 0.2608 
1 0.0699 0.1089 0.1699 0.2650 0.4132 

 500 

0.00 
(pn= 0.00) 

0.2 0.0035 0.0055 0.0086 0.0134 0.0208 
0.6 0.0105 0.0163 0.0255 0.0397 0.0619 
1 0.0172 0.0269 0.0419 0.0654 0.1020 

9.09 
(pn= 0.25) 

0.2 0.0034 0.0053 0.0083 0.0129 0.0201 
0.6 0.0101 0.0158 0.0246 0.0384 0.0598 
1 0.0167 0.0260 0.0405 0.0632 0.0986 

27.27 
(pn= 0.75) 

0.2 0.0032 0.0050 0.0078 0.0121 0.0189 
0.6 0.0095 0.0148 0.0231 0.0360 0.0561 
1 0.0156 0.0244 0.0380 0.0593 0.0925 

36.36 
(pn= 1.00) 

0.2 0.0031 0.0048 0.0075 0.0117 0.0183 
0.6 0.0092 0.0144 0.0224 0.0349 0.0545 
1 0.0152 0.0237 0.0369 0.0576 0.0899 
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The results in Table 5.2 show that the upper bound for the finite time ruin 

probability increases as the number of time periods ( n ) increases corresponding with 

Equation (2.16), whereby the values for the finite time ruin probability do not 

decrease as n  increases. The effects of variations in the other factors, i.e. the initial 

surplus ( 0U ), the stock investment value (α ), and the reinsurance contract retention 

level (b ) on the upper bound values of finite time ruin probability were the same as in 

Example 1. 

 

Remark 3. The values of the upper bound from Theorem 5 depend on not only the 

change of factors in the risk model mentioned in Example 5.2, but also the function 

(which is NWU) selected. Based on running the results from the data in Table 5.2 and 

the resembling data, we found that the upper bound from Theorem 5 is appropriate 

when the initial surplus is sufficiently large. In the other cases, overestimated values 

of the upper bound may lead to a misunderstanding of the risk level, which would 

make insurers more wary of the risk than is necessary. 

 

5.2 A Real-Life Data Example  
 

The data for 334 real-life motor insurance claims from a broker occurring in a 

single year are used to analyze the upper bound for the ruin probability. Figure 5.1 

shows that the minimum and maximum values of real-life claims dataset are 0.6063 

and 284.764 respectively. The mean and standard deviation of this dataset are 21.0704 

and 31.5294. Histogram and skewness’s value (4.4317) support conclusion that the 

distribution of this dataset is the right-skewness distribution.  

The real-life claims dataset was fitted to many right-skewness distributions by 

using R programming. Figure 5.2 shows that lognormal distribution is closest to the 

reference line. Thus, characteristic of this real-life claim dataset is explained by 

lognormal distribution with log data parameters 2. 71ˆ 46µ =  and 1. 94ˆ 03σ =  which 

are estimated by maximum likelihood method by using R programming. The m.g.f. of 

the lognormal distribution is infinite at any positive number, thus the upper bound of 

the ruin probability in Theorem 5 is appropriate in this situation.  
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a) Histogram     b) Summary statistics 

Figure 5.1 The Descriptive Statistics for Real-Life Motor Insurance Claims Data. 

 

 

 

 

 

 

 

 

 

a) Histogram and theoretical densities b) Empirical and theoretical CDFs 

 

 

 

 

 

 

 

 

       c)  Q-Q plot d) P-P plot 

Figure 5.2 Goodness of Fit Graphs for the Real-Life Motor Insurance Claims Data. 
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The dataset from the fourth quarter was used to find each upper bound of the 

ruin probability for the next 4 quarters. Figure 5.3 show that the minimum and 

maximum values of this dataset are 1.1889 and 98.0688 respectively. The mean and 

standard deviation of this dataset are 17.7649 and 19.6756. Histogram and skewness’s 

value (2.3562) show that the distribution of this dataset is still the right-skewness 

distribution. Figure 5.4 shows that lognormal distribution is still closest to the 

reference line. Thus, characteristic of this fourth quarter dataset is still explained by 

lognormal distribution with log data parameters  2.4171µ =  and 0. 47ˆ 95σ =  

estimated by maximum likelihood method by using R programming. 

 

 

 

 

 

 

 

 

 

a) Histogram     b) Summary statistics 

Figure 5.3 The Descriptive Statistics for the Fourth Quarter of Real-Life Motor 

Insurance Claims Data. 

 

The number of claims occurring in each quarter was assumed to be i.i.d. with a 

Poisson distribution for which the mean was estimated as the average value of the 4 

quarters of real-life claims data (the result was 83.25). The other factors for finding 

the upper bound of the ruin probability for this broker were an initial bond interest 

rate at 0.03 (based on Example 1), and ( ) ( ) 11 ,  0D x kx x−= + ≥ (which is NWU) was 

selected. The initial surplus was assumed to be 50 and 500 million baht, which is 

around 10 and 100 times the total value of the 334 claims in 1 year. The dealer was 

assumed to invest in 2 categories: bonds and stocks and similarly, the retention level 
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of reinsurance were set to show the behavior of upper bounds for each set of values 

for these variables. 

 

 

 

 

 

 

 

 

 

 

a) Histogram and theoretical densities b) Empirical and theoretical CDFs 

 

 

 

 

 

 

 

 

\ 

c)  Q-Q plot d) P-P plot 

Figure 5.4 Goodness of Fit Graphs for the Fourth Quarter with the Real-Life Motor 

Insurance Claims Data. 
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Table 5.3 The Upper Bounds of the Finite Time Ruin Probability for Real-Life 

Motor Insurance Claims Data with Various Sets of Parameter Values for 

the Next 4 Quarters (Time Period n =  1, 2, 3, 4). 

0U
(Million 

bath) 
α  b  

Upper bounds 

1n =  2n =  3n =  4n =  

 50 

688.073 
( np  = 0.25) 

0.6 0.1167 0.1167 0.1167 0.1167 
1 0.2662 0.2662 0.2663 0.2663 

2,064.220 
( np  = 0.75) 

0.6 0.1098 0.1098 0.1098 0.1098 
1 0.2532 0.2532 0.2532 0.2533 

500 

6,880.733 
( np  = 0.25) 

0.6 0.0132 0.0132 0.0132 0.0132 
1 0.0359 0.0359 0.0359 0.0359 

20,642.201     
( np  = 0.75) 

0.6 0.0123 0.0123 0.0123 0.0123 
1 0.0336 0.0336 0.0336 0.0336 

 

The results in Table 5.3 show that the variation of each factor affected the 

value of the upper bound in the same way as the results in Table 5.2, in that the upper 

bound values for the finite time ruin probability increased as the number of time 

periods ( n ) or reinsurance retention level (b )  increased, and the upper bound values 

for finite time ruin probability decreased as the initial surplus ( 0U ) or the stock 

investment value (α ) increased. 

 

 



 

CHAPTER 6 

 

CONCLUSIONS  

6.1 Conclusions 
 

Two upper bounds for the ruin probabilities of the proposed discrete time risk 

model are derived in this study, both of which were created using the inductive 

method and it is assumed that the retention level of reinsurance and the amount of 

stock investment in each time period are controlled to be constant values. The first 

derived upper bound can be used with both finite time and ultimate (Infinite Time) 

ruin probabilities under the condition that the m.g.f. of the distribution of total claims 

amount must exist (i.e. the value of Lundberg’s coefficient must be found). This upper 

bound can be viewed as an extension of the ideas of Diasparra and Romera (2009) 

and Jasiulewicz and Kordecki (2015) by adding investment in stocks and shares to 

their risk models. The second upper bound is formed by using an NWU distribution, 

as per the idea of Willmot (1994). This upper bound can be used with the finite time 

ruin probability only and it is able to find the values even without the m.g.f. of the 

total claims amount value. However, the second upper bound still has an additional 

condition on the total claims amount, i.e, the total claims amount in each time period 

must occur according to the sum of the i.i.d. claim amounts and the number of claims 

occurring in each period of time must be an i.i.d. random variable. 

The proposed discrete time risk model is different from other studies because 

two controlling factors: proportional reinsurance and investment are added to the 

classical discrete time risk model. In terms of the second controlling factor 

(investment), insurers are allowed to invest in two assets: bonds with a finite 

countable number of possible values of interest rate following a time-homogeneous 

Markov chain and stocks with returns on investment driven by discrete time interval. 

The ruin probability created from proposed discrete time risk model is presented in a 
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recursive form in the case of finite time and as an integral equation in the case of 

infinite time. To calculate the values of the ruin probabilities based on the derived 

formula is quite challenging or even impossible, but the form in the present study is 

useful for deriving the upper bound of ruin probability. 

For the cases of the two presented numerical examples, assumptions are raised 

for calculating the values of the upper bounds in order to consider the characteristics 

the latter derived in this study. In Example 1, the total claims amount is assumed to be 

an exponential distribution that is able to find the adjustment coefficient value in 

order to show the upper bound created in Theorem 4. In the second example, the 

claim amounts are assumed to follow a Pareto distribution for which we cannot find 

the adjustment coefficient in order to show the upper bound derived in Theorem 5. 

The output from the two numerical examples shows that the upper bounds responded 

to the changes in the two additional controlled factors inserted in the proposed risk 

model in the same direction; in other words, when the insurer increases the retention 

level of reinsurance, the upper bound values increase. On the other hand, increasing 

value of the second controlling factor, investment, was found to reduce the values of 

the upper bound. Besides the effects of the two controlling factors, when an insurance 

company increases its initial surplus, this will lower the values of the upper bound of 

the ruin probability. Furthermore, the application of the proposed upper bounds to 

real-life claims data estimated using a lognormal distribution supports the conclusions 

of the numerical study. 

 

6.2 Future Studies 

 

 This study may be extended in the future as follows: 

1) Find the optimal values of the retention level of reinsurance and the amount 

of money invested in the stock in each time period. 

2) Remove some of the restrictions on the conditions used in this study, such 

as setting the retention level of reinsurance and the amount of money invested in the 

stock in each time period so they are not constant values. 

3) Generalize the risk model by adding another factor such as dividends. 
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APPENDIX A 

 

The Lebesgue Dominated Convergence Theorem 

Theorem. Let { }nf  be a sequence of Lebesgue-integrable functions on an interval I , 

and assume that 

1)  { }nf converges almost everywhere on I  to a limit function f , and 

2) there is a nonnegative function g  in ( )L I  such that, for all 1n ≥  , 

( ) ( )nf x g x≤  almost everywhere on I . 

Subsequently, the limit function ( )f L I∈ , the sequence n
I

f 
∫ 

 
 converges, and 

lim nnI I
f f

→∞
=∫ ∫ .   
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The Proofs of Lundberg’s Upper Bound 

The Proof of Theorem 1 
 

Consider Equations (2.4) and (2.5) in that ( ) ( )lim tt
u uψ ψ

→∞
=  (Tse, 2009). 

Thus, it is sufficient to prove that ( ) ( )0expt u R uψ ≤ − . In addition, consider the 

classic risk model in Equation (2.1) and the finite time ruin probability in Equation 

(2.5) such that if ruin occurs, it must occur at once for the time at which claim amount  

iY arrives iT t≤ . Therefore, the finite time ruin probability in Equation (2.5) can be 

defined as follows (Dickson, 2005): 

 
( ) 0Pr 0 for some 0 < |

it T iu U T t U uψ  = < ≤ =  .  

 
Consider the ruin probability when the first claim 1Y  occurs as     

 
( )1 1 0Pr 0 |T Tu U U uψ  = < =  , 

[ ]1 1 0 1
0

Pr 0 | , PrTU T t U u T t dt
∞

 = < = = =∫   . 

 
Since 1T  is the time until the first claim occurs, then the distribution of 1T  is  

exponential with parameter λ  (Dickson, 2005). Thus, 

 

( )1 1 1 0
0

Pr 0 | , t
T Tu U T t U u e dtλψ λ

∞
− = < = =∫   , 

[ ]1 1 0
0

Pr 0 | , tu ct Y T t U u e dtλλ
∞

−= + − < = =∫ .                       (B.1) 
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From ( ) ( )Pr iP y Y y= ≤ ; 0y ≥ , then consider from Equation (B.1) that 

 

[ ] [ ]1 1Pr 0 Pru ct Y Y u ct+ − < = > + ( )
u ct

dP y
∞

+
= ∫ .              (B.2) 

 
Since  0u ct y+ − ≤ , then  ( )0exp 1R u ct y− + − ≥   .              (B.3) 

From Equation (B.3), we can write Equation (B.2) as 

 

[ ] ( )1 0Pr 0 exp ( )
u ct

u ct Y R u ct y dP y
∞

+
+ − < ≤ − + − ∫   , 

( ) [ ]0 0exp exp ( )
u ct

R u ct R y dP y
∞

+
= − +  ∫  , 

( ) [ ]0 0
0

exp exp ( )R u ct R y dP y
∞

≤ − +  ∫  , 

( ) 10 0exp ( )YR u ct M R= − +   ,             (B.4) 

 
Replace Equation (B.4) in Equation (B.1) such that 

 

( ) ( )1 10 0
0

exp ( ) t
T Yu R u ct M R e dtλψ λ

∞
−≤ − + ∫   , 

[ ] ( )10 0 0
0

exp ( ) expYR u M R t cR dtλ λ
∞

 = − − +∫   , 

[ ] ( )
[ ]1

0
0 0

0 0

exp
exp ( )Y

t cR
R u M R

cR
λ

λ
λ

∞
 − + = −
− +

, 

[ ]
[ ]

10 0

0

exp ( )YR u M R
cR

λ

λ

−
=

+
 .               (B.5) 

 
From Remark 1, replace  ( )1c θ µλ= +  and ( )1 0 0( ) 1 1YM R Rθ µ= + +  in Equation 

(B.5), resulting in 
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( )
[ ]
( )

1
1

0 0

0

exp ( )
1

Y
T

R u M R
u

R
λ

ψ
θ µλ λ

−
≤

+ +  
, 

[ ] ( )
( )

0 0

0

exp 1 1
1

R u R
R
θ µ λ

θ µλ λ
− + +  =

+ +  
, 

[ ]0exp R u= − .                 (B.6) 

 
By induction, we suppose that 

 
( ) [ ]0exp

nT u R uψ ≤ − .                 (B.7) 

 
Consider the ruin probability within the (n+1)th claim. 

Suppose the first claim occurs at time 0t >  and that the amount of this claim is y , 

thus  

 
( )1 0Pr 0 for some 1|

n iT Tu U i n U uψ
+

 = < ≤ + =  , 

[ ] [ ]1 1 1 0 1 1
0 0

Pr 0 | , , Pr PrTU T t Y y U u Y y T t dydt
∞∞

 = < = = = = =∫ ∫   , 

0 0 1 1 0

0 for some 1
Pr ( )

| , ,
iT tU i n

dP y e dt
T t Y y U u

λλ
∞∞

−< ≤ + 
= ∫ ∫  

= = =  
.             (B.8) 

 
Since   iT iU u cT y= + − , and if ruin occurs at the ( )th1n +  claim time, then it occurs 

at the first time or the thn  claim time.  Hence,  

 

1 1 0Pr 0 for some 1| , ,
iTU i n T t Y y U u < ≤ + = = =   

= ( )
1 if  0,

if  0.
nT

u ct y
u ct y u ct yψ

+ − <
 + − + − ≥

              (B.9) 

 
By putting Equation (B.9) in Equation (B.8), we obtain 

 

( ) ( )1
0 0 0

1 ( )  ( )
n n

u ctt t
T T

u ct
u dP y e dt u ct y dP y e dtλ λψ λ ψ λ

+

∞ ∞ ∞ +
− −

+
= + + −∫ ∫ ∫ ∫ . 



66 

Using the Equations (B.3) and (B.7) at the first and second terms respectively, we can 

achieve 

 

( ) ( )

( )

1 0
0

0
0 0

  exp  ( )

                  exp  ( ) ,

n
t

T
u ct
u ct t

u R u ct y dP y e dt

R u ct y dP y e dt

λ

λ

ψ λ

λ

+

∞ ∞
−

+
∞ +

−

≤ − + − ∫ ∫  

+ − + − ∫ ∫  

 

( )0
0 0

 exp  ( ) tR u ct y dP y e dtλλ
∞∞

−≤ − + − ∫ ∫   , 

( ) 10 0
0

exp ( ) t
YR u ct M R e dtλλ

∞
−= − + ∫        , from (B.4) 

[ ]0exp R u= −      , from (B.6))                    (B.10) 

               � 
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The proof of Theorem 2 
 

From ( )lim  ,n sn
u iψ

→∞
 = ( ), su iψ  in Equation (2.17), it is sufficient to prove 

that ( ) ( )0 , expn su i R uψ ≤ − . 

From Equation (2.15), we obtain 

 

( )n uψ  = ( ) 0
1

Pr 0 |
n

k
k

U U u
=

 < = 
 


.  

 
Consider that the ruin probability the 1st claim 1Y  occurs as     

 
{ }1 1 0( ) Pr 0 |u U U uψ = < = , 

{ }1Pr 0u c Y= + − < , 

{ }1Pr Y u c= > + , 

( )
u c

dP y
∞

+
= ∫ .               (B.11) 

 
Since  0u c y+ − ≤ , then  ( )0exp 1R u c y− + − ≥                (B.12) 

From Equations (B.11) and (B.12), we get 

 

( )1 0( ) exp ( )
u c

u R u c y dP yψ
∞

+
≤ − + − ∫   , 

( )0
0

exp ( )R u c y dP y
∞

≤ − + − ∫   , 

[ ] ( )0 0
0

exp exp ( )R u R y c dP y
∞

= − − ∫   , 

[ ] ( ){ }0 0exp expR u E R y c = − −  , 

[ ]0exp R u= − .    (from Equation (2.18)) 

 
By the induction approach, we suppose that 
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( ) [ ]0expn u R uψ ≤ − .               (B.13) 

 
Consider the ruin probability for the (n+1)th claim. 

From Equation (2.15), we can write 

 

( )
1

1 0
1

( ) Pr 0 |
n

n k
k

u U U uψ
+

+
=

 = < = 
 


, 

( )
1

1 0
10

Pr 0 | ,
n

k
k

U Y y U u dy
∞ +

=

 = < = =∫   


.           (B.14) 

 

Since  1

n
n i

i
U u cn Y

=
= + − ∑ , and if ruin occur at the ( )th1n +  claim time, it occurs at the 

first time or the thn  claim time.  Hence,  

 

( ) ( )
1

0
1

1 if  0,
Pr 0 |

if  0.
n

k
k n

u c y
U U u

u c y u c yψ
+

=

+ − < < = =   + − + − ≥  


         (B.15) 

 
From Equation (B.15), we can rewrite Equation (B.14) such that 

 

( ) ( ) ( )
1

1 1 0
10

Pr 0 | ,
n

n k
k

u U Y y U u dP yψ
∞ +

+
=

 = < = =∫   


, 

( ) ( ) ( )
0

1
u c

n
u c

dP y u c y dP yψ
∞ +

+
= + + −∫ ∫ . 

 
Replace Equations (B.12) and (B.13) at the first and second terms, respectively, to 

give 

 

( ) ( ) ( ) ( )1 0 0
0

exp ( ) exp
u c

n
u c

u R u c y dP y R u c y dP yψ
∞ +

+
+

≤ − + − + − + −   ∫ ∫    , 

( )0
0

exp ( )R u c y dP y
∞

= − + − ∫   , 

[ ] ( )0 0
0

exp exp ( )R u R y c dP y
∞

= − − ∫   , 



69 

[ ] ( ){ }0 0exp expR u E R y c = − −  , 

[ ]0exp R u= − .    (from Equation (2.18)) 

              � 
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