THE AGV SCHEDULING PROBLEM WITH ALTERNATIVE
PICK UP AND DELIVERY NODES

INTRODUCTION

Productivity and flexibility, which are the primary goals of today’s automation
technology, can only be achieved in fully integrated manufacturing environments. A
carefully designed and efficiently managed material handling system is an important
part. The study of automated guided vehicle (AGV) system was initiated in 1987 by
Tanchoco and Moodie. AGV systems are among the fastest growing classes of
equipment in the material handling system in industry. AGVs are battery-powered,
unmanned vehicles with programming capabilities for selecting the traveling path,
positioning the pick up and delivery points, responding to frequently changing
transport patterns, and integrating into fully automated intelligent control systems.
These features make AGVs to be a viable alternative to other material handling
methods, especially in job shop environments where the variety of products are
proceeded in fluctuating transport requirements. In such a dynamic and sophisticated
environment, the job scheduling is one of the key factors in a successful

implementation of an AGV system.

Both job sequencing and scheduling are important parts of any kind of vehicle
routing design problem, including an AGV system design. Designing an AGV system
is a complex task because of factory layout, the number of nodes and the AGV’s
traffic system. One of the main purposes of a single/multi AGV scheduling problem is
concerning about how the scheduling can provide the minimum total traveling
distance of AGVs. Normally, the scheduling problem is considered or designed with
the routing problem concomitantly, for any kind of vehicle system management. The
ordinary vehicle scheduling and routing problem, as the single/multi AGV scheduling
problem, is a problem with a set of specific pick up and delivery nodes that can be

modeled by the existing network problem approach, which is the such as TSP/MTSP.



The TSP/MTSP is one of the most interested approaches because there is a
network structure that can be modified and applied to the AGV scheduling problem.
Because Dantzig, Fulkerson and Johnson (1954) proposed that determining the
optimal solution of the TSP for large numbers of nodes requires much time, heuristic
methods are considered when the TSP is applied to any kind of problems. Many
papers proposed heuristic algorithms for finding the AGV scheduling and traveling
path such as Maxwell and Muckstadt (1982), Gaskins and Tanchoco (1987). As NP-
hard nature of the original TSP, the vehicle scheduling problem with alternative pick
up and delivery (P/D) nodes may be considered as a class of NP-hard problem also
when the problem structure falls into the TSP category. According to this point, the
potential problem for studying the single/multi AGV scheduling problem is extended
to be more realistic when the original TSP problem is modified by adding the structure
of alternative P/D nodes. The main purpose is to find the solution of AGV scheduling
problem with alternative P/D nodes (AGVsp-P/D) that can provide the minimum total
traveling distance of AGVs.

The original TSP/MTSP is one of the applications of network problems; it is
necessary to choose a sequence of nodes to be visited so as to accomplish a specified
objective. The TSP/MTSP is a network problem that given a network and a cost (or
distance) associated with each arc, it is necessary to start from a specified originating
or depot node, visit each and every other nodes exactly one, and return to the starting
node with the lowest cost. For example, a bus that leaves the school yard must stop at
various locations to pick up students and ultimately return to the school yard in the
shortest possible distance. As another example, research considers the AGV system
that can start from a specified originating or depot node, visit each and every other
nodes, which have some alternatives for selection to visit exactly once, and return to
the starting node in the shortest distance. The TSP/MTSP can be solved to determine
the scheduling of normal uncapacitated vehicle routing problems but in this case, the

original TSP/MTSP has to be modified to support the AGVsp-P/D.

The concept of TSP/MTSP will be applied with some generated techniques of

assignment problem to solve the AGVsp-P/D to determine the minimum traveling



distance of each AGV from the starting node or depot to some appropriate selected
nodes, and then come back to the starting node. This procedure is based on the branch
and bound process with solving assignment subproblems to search for the optimal tour.
The formulated mathematical model will be presented in this research. The
assignment subproblems with alternative P/D nodes, and the branch and bound
algorithm for TPS/MTSP with alternative P/D nodes are considered as an important
part of this research. The assignment subproblem model and the solving approach for
finding the lower bound of the AGVsp-P/D will be proposed. The ordinary
assignment problem is an integer programming (IP) problem, but it has special
structures that make it can be solved by linear programming (LP) approach, not
considering IP constraints. When the constraint of alternative P/D nodes is added to
the system, the problem loses the property of regular assignment problem, which

causes it becomes the 0-1 IP problem.

Thus, a new 0-1 IP model of assignment problem with alternative P/D nodes is
created. The implementation of the generated model is tested using the Excel Solver
and MATLAB 7.0. After the lower bound of the AGVsp-P/D is found by solving the
assignment problem with alternative P/D nodes, the branch and bound algorithm for
finding the TSP/MTSP with alternative P/D nodes will be studied. Because the branch
and bound approach takes much time for the large problem, the heuristics for solving
the lower bound of the AGVsp-P/D are proposed. Benders’decomposition approach is
applied to create the heuristic for solving the lower bound of the AGVsp-P/D.
However, this Benders’decomposition algorithm still uses the 0-1 IP problem, but with
a smaller problem size than the direct method. To avoid solving the 0-1 IP problem,
three heuristics for selecting the alternative nodes and an alternative selection

improvement heuristic are proposed.

The lower bound solutions from solving both the 0-1 IP problem and heuristic
approaches may provide the single TSP tour or subtours. For the single TSP tour
solution, the subtour elimination approach is applied to the lower bound solution to
create the single TSP tour from subtours. The modified Eastman’s algorithm for TSP

with the lower bound model of the AGVsp-P/D is proposed for solving the single TSP



tour. When multi AGVs are considered, heuristics for solving the multi AGVsp-P/D
are presented. There are two approaches, which are the heuristic of splitting the single
TSP tour to multi tours for the lower bound of the multi AGVsp-P/D and the approach
of solving the MTSP as the standard TSP for the solution of the multi AGVsp-P/D.

Finally, the computer program for solving single/multi AGVsp-P/D using the
Excel Solver and MATLAB 7.0 are developed for testing the model of AGVsp-P/D.
The program of the 0-1 IP problem of AGVsp-P/D and heuristics are applied to some
size levels of tested problems. The tested results are analyzed by statistical methods

to verify the performance and quality of the AGVsp-P/D model.

An introduction to the research on the AGVsp-P/D including research
questions, problem statement, research objectives, research significance and research

assumption will be presented as follows.

Research Questions

Consider the modern manufacturing system, the AGV system is used to
transport items among departments in the factory. Let’s assume the problem that the
factory has a particular layout of departments for an AGV system, as in figure 1. The
AGYV layout can be drawn as a network. The AGVs move through the network
between nodes (labeled A, B, C, D, E, F, G, H, and I). Bidirectional flow of the AGVs

along the aisles is assumed.

In general, each job of AGVs consists of picking up a load at one node and
delivering it to a fixed destination node. For this research, the special characteristic of
alternatives P/D nodes is represented by some jobs that can have alternative pick up
and delivery nodes at more than one fixed point. For example, let job No. 1 of the
AGV is to pick up an item from a turning process at department (node) B and deliver
to a drilling process which can be performed at departments E or G or I. The AGV
has to travel from pick up the node B and can choose to deliver the item to only one

node at departments E or G or I, which is described as alternatives P/D nodes. If an



AGYV travels from node B and selects to deliver to node E, the total traveling distance
of AGVs may different from selects to deliver to node G or node I. An example of a
job list for AGVsp-P/D is shown as table 1. The job scheduling (for example, starting
with job No. 1, follows by job No. 6, No. 5, and ending the schedule when all jobs are
completed) and selecting the appropriate alternative node effects on the traveling
distance of the AGV. The objective is the selecting of alternatives and scheduling for
all jobs such that the total AGV traveling distance is minimized. Therefore, the

research questions can be described as follows:

1. Given the information of some specific daily tasks of a specific factory and
a specific route path with the distances among departments, what is the scheduling of
the single AGV with appropriate selected alternative P/D nodes that can provides the
minimum total traveling distance? An example of specific daily tasks is shown on

table 1.

2. Given the information of some specific daily tasks of a specific factory, a
specific route path with the distances among departments and a specific number of
AGVs, what is the schedul of each AGV with appropriate selected alternative P/D

nodes that can provide the minimum total traveling distance?

Table 1 The example of AGVsp-P/D jobs

Job No. Pick up Department Delivery Department

1 B C

2 A I

3 B EorGorl
4 G C

5 D E

6 BorDorH F

7 I CorDorE
8 C H

9 F E

10 H lorG
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Figure 1 The example of the layout of AGV systems

Problem Statement

Let the problem has a set of #n jobs J such that job J;= {P;,, Di»},i=1,2,...,n
where P;,is a set of alternative pick up departments a of job J;, a = {1, 2, ..., k(i)} and
D 1s a set of alternative delivery departments b of job J;, b= {1, 2, ..., [(i)}. k(i) is
the number of alternative departments a for job J.. /(i) is the number of alternative
departments b for job J;. When job J; = {P;4, D;»},j=1, 2, ..., nis scheduled after
job J;, ciajp 18 the traveling distance of an AGV that starts from a selected pick up
department a of job J;, goes to a selected delivery department b of job J;, goes to a
selected pick up department a of job J;, then goes to a selected delivery department b

of job J;, which is a non-negative number and ¢4 s = .

The AGVsp-P/D is the problem that selects one alternative department from
set a and one alternative department from set b of all jobs J, called x4 j» such that x;, 5
=1 ifan AGV travels from a selected pick up department a of job J;to a selected

delivery department b of job J; or x;, 5 = 0 otherwise and sequences all those jobs J



with their selected alternatives to form single/multi tours (TSP/MTSP tour) that can

provide the minimized total traveling distance.

Research Objectives

1. To study and develop the mathematical model of the single/multi AGVsp-

P/D that can describe the characteristics and structures of this problem.

2. To develop heuristic algorithms for solving the problem.

3. To create the code or program of developed algorithms by using a builder
software for solving the problem with some specific sizes and structures of problem as

a tool for verifying and validating efficiency and quality of proposed algorithms.

4. To analyze statistically the result of solving tested problems by using

proposed algorithms.

Research Significance

The trend of the modern manufacturing industry is to become more
computerized and automated systems. Improvements in production planning with
respect to the scheduling process of traveling vehicles (AGVs) will provide more
effective production planning that helps to improve the productivity. This research
establishes some kind of algorithms or production planning tools in the form of static
models that provide near-optimal solutions for the AGVsp-P/D which never been
studied and modeled before. The established algorithms are the extension and
modification from the existing AGV scheduling problem to capture the special

structure of the AGVsp-P/D.



Research Scope and Assumptions

1. This research considers only the constant speed AGV with undirected paths

in manufacturing factories.

2. The daily task of the AGV system is considered to be a static condition
during the shift period.

3. The task of pick up and delivery activities is considered as a unit load that

can be assigned to only one AGV or can not be spitted.

4. This research results provide the mathematical model of the single/multi
AGVsp-P/D that can describes the structures and characteristics of this problem for

analysis and developments of all solving procedures.



LITERATURE REVIEW

This chapter provides the background information on the key subjects for this
research. The first part of this chapter presents the AGV systems which explain about
the vehicle and the driving system. The description of all types of AGVs, function
criteria, and the dispatching systems are explained. The nature of dispatching systems

can be related to the scheduling approach, which is the main proposal of the research.

The next part explains about the AGV problems which all factories, using
AGVs, have to face with. Many cases of AGV problems are explained and analyzed
in order to diagnose and solve the problem. Then single/multi traveling salesman
problem (TSP/MTSP) is explained next with its applications and transformations.
This part presents the mathematical model of TSP/MTSP that can be applied to solve
many real world problems of vehicle routing applications. The transformation
approach for solving the MTSP as a standard TSP is reviewed for generating the
concept of solving the multi AGVsp-P/D.

The last part explains about the relevant statistical methods for analyzing the
data from the research results. The probability distribution of data sets is the first issue
that should be considered because most of statistic methods assume the normal
probability distribution of the data set. The normality test is explained in this part.
Then, the statistical hypothesis test and the analysis of variance, which are applied to

analyze some parts of research results, are reviewed.
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Automated Guided Vehicle Systems

The AGV system is one of the most exciting and dynamic areas in material
handling systems. AGV systems were invented around 1950’s, they were called the
driverless systems. AGV systems combine electromagnetic technology with existing
industrial truck equipment to create more flexible and self-steering vehicles.
Technological developments may have given AGVs more flexibility and capability for
operating in computer integrated manufacturing systems. In the future manufacturing,
AGYV systems are expected to be widely used as material handling equipments. These
vehicles transport tools and materials among different work cells in flexible
manufacturing systems. AGVs are programmed independently but all of them are
correlated with the scheduling and the traffic control system. These characteristics
confer the flexibility and the adaptability to the material handling system. AGVs
circulate on a network of guide paths connecting the various work cells at load transfer
points, also called P/D nodes, which are located on paths of the network. In the design
of AGV systems, many types of design problems can be identified such as a design of
the network layout, a design of load pick up and delivery point locations, a design of

fleet size, and a design of traffic management systems.

Egbelu (1986) proposed the paper of AGV dispatching heuristics that are
related to the pull versus push strategy for AGV load movement in a batch
manufacturing system. The purpose of this paper is to justify the use of demand based
dispatching rules for AGVs in the manufacturing system. The algorithm of the pull
strategy (demand base) algorithm is presented and compared to several push strategy
(source base) algorithms to demonstrate its effectiveness. The traditional source
based dispatching rules do not have the flexibility, required by just-in-time (JIT)
manufacturing systems, so there is a need to develop some useful dispatching rules for
such applications. When the pull strategy is used, direct access load retrieval systems
must be used in order to pick up parts from any position of the queue, not only the first
part. In developing the dispatching algorithm, some assumptions are made such as 1.

A vehicle can transport only one unit load at a time, 2. No look-ahead capacity for
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future events is considered, and 3. No job is assigned a global priority over all others

at the time of entry into the production system.

A hierarchical demand driven dispatching rule is developed and tested against
some commonly used source driven dispatching rules. There are mainly two steps for
this algorithm. First is to identify workstations that have the greatest demand for all
parts, then the sources of parts can be selected according to some preset rules. If no
workstations meet the minimum requirement in the first step, the rule automatically
reverts to a source driven rule. A FORTRAN based discrete event simulation language,
AGVSim, is used to investigate the effectiveness of the proposed method. The author
compares the pull system to the widely used push systems in three separate cases.
From the simulation results of all cases, the demand driven dispatching rule proves
itself to be the competitiveness of the push system. In all cases, the pull system shows

that it is superior to the push system.

Tanchoco and Moodie (1987) proposed the special issue of the study of AGV
systems in the Material Flow journal that consists of many points of view on the study
of AGV systems. This special issue brings together, under one cover, a collection of
papers dealing with new concepts in designing, planning, and analyzing. The paper
by G.A. Koff (1987) provided an introduction to the AGV system, its major functions,
and how these functions are executed. Koff illustrated that there are several types of

AGYV that they are:

1. AGV towing vehicles; were the first type introduced and are still a very
popular type until now. It can pull a multitude of trailer. AGV towing applications
involve the bulk movement of product into and out of warehouse areas. Often side-
path spurs are place in receiving or shipping areas so that trains can be loaded or
unloaded off the main line and thereby not hinder the movement of other trains on the

main path.

2. AGYV unit load vehicles; are equipped with decks which permit unit load

transportation and often automated load transfer. AGV unit load applications usually
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involve specific mission assignment for individual pallet movement. Unit load carries
are quite popular in applications of integrating conveyors with storage-retrieval

systems.

3. AGYV pallet trucks; are designed to transport palletized loads to and form
floor level and eliminate the need for fixed load stands. AGV pallet trucks are
generally used in distribution functions. Vehicles can be loaded in two ways, either
they are capable of automatically reversing into pallets on the floor or operators will

manually board the vehicle and back them into pallets.

4. AGYV fork trucks; are a relative new guided vehicle which has the ability to
service palletized loads both at floor level and on stands. AGV fork trucks are used
when the system requires the automatic pick up and delivery of loads from floor or
stand level, and where the heights of load transfer vary at stop locations. The guided
fork truck has the ability to pick up or deliver a load automatically without any human

interface.

5. Light load AGVs; are vehicles which have capacities to transport small
parts. They are design to operate in areas with limited space. Light load AGVs
applications are used in light manufacturing processes. The product can be distributed
from a small parts storage area to individual work stations where operators do light

assembly.

6. AGV assembly line vehicles; are an adaptation of the light load AGVs for
application involving serial-assembly processes. Assembly line AGV is adaptations of
the small, light-load AGVs for an assembly line process. The guided vehicles carry
major subassemblies such as motors or transmission to which parts are added in serial

assembly process.
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The basic functions of AGVs consist of five functions as follows:

1. Guidance: this function allows the vehicle to follow a predetermined route,

which is optimized for the material flow pattern of a given application.

2. Routing: this function is the vehicle’s ability to make decision along the

guidance path in order to select optimal route to specific destination.

3. Traffic management: this function is a system or vehicle’s ability to avoid
collisions with other vehicles, while at the same time maximizing vehicle flows and

therefore load movements throughout the system.

4. Load transfer: this function is the pick up and delivery method for AGVs,

which may be simple or integrated with other subsystems.

5. System Management: this function is the method of system control used to
dictate system operations. The proper method of selection for each function and its
ability to work with the other functions is determines in by measuring the degree of

successfulness of a given system.

The manufacturing industry consists of several machine centers performing
different machining functions. A part or unit load visits several centers before its
machining requirements are satisfied. A unit load continues to circulate in the shop
among work centers until receiving the last service. It is the transition of unit loads or
parts that generate the vehicle dispatching or task assignment problem in an AGV

system.

Egbelu and Tanchoco (1984) presented some heuristic rules for dispatching
AGYV in a job shop environment. The vehicle dispatching decisions fall into two
categories that are the work center initiated task assignment problem and the vehicle
initiated task assignment problem. The first category is a decision involving the

selection of a vehicle from a set of idle vehicles to assign to a unit load pick up task
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generated at some parts of the factory. This class of decisions involves a single work
center and one or more vehicles. The decision is generally the result of a request from
a work center for vehicle service. The secondary category of decisions involves the
selection of a work center from a set of work centers simultaneously requesting the
services of any vehicle, a decision, which usually involves a single vehicle and multi
work centers. The decision is to prioritize the departments and to dispatch vehicles to
the departments with the highest priority. Two vehicle dispatching decisions are

explained as follows:

1. The work center initiated task assignment problems: a typical machining
center in an AGV system consists of one or more machines, an incoming unit load
queue, and an outgoing unit load queue. The unit loads are drawn from the incoming
queue, processed, and released into the output queue at the same rate. The deposition
of a unit load into the output queue also initiates a request by the department for an
unassigned vehicle for the immediate removal of the deposited load. Several heuristic
rules can be employed to assign the priority of vehicles for dispatching such as
Random Vehicle rule, Nearest Vehicle rule, Farthest Vehicle rule, Longest Idle
Vehicle rule, and Least Utilized Vehicle rule.

2. Vehicle initiated task assignment problems: from an operational point of
view, the most desirable level of handling effectiveness is to ensure that unit loads
completed at a work center are removed promptly and transported to their subsequent
destinations with a minimum of delays. Like the work center initiated task assignment
problem, several heuristic rules are available for ranking work centers requesting
unassigned vehicles. Possible assignment rules are:

1. Random Work Center rule
Shortest Travel Time/Distance rule
Longest Travel Time/Distance rule
Maximum Outgoing Queue size rule

Minimum Remaining Outgoing Queue Space rule

A i

Modified First Come First Serve rule
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Several combinations of all above rules are tested on a factory using a simulation
technique. A simulation program, AGVSim, was developed specifically to simulate
an AGV system. Using unit load throughput as a measure of rule performance with 2
trials per rule combination, all experiments are conducted under similar conditions.
The demonstrations indicated that rules, which are derivatives of distance measures,
have several drawbacks if the appropriate layout conditions of factory and equipment

locations are not met.

In the design of an AGV system, one of the fundamental problems is the
determination of the number of vehicles that are required to provide a given level of
transportation service. There are so many methods for the fleet-size determination
process that use mathematical or simulation based techniques. Tanchoco, Egbelu and
Taghaboni (1987) proposed the effectiveness of CAN-Q software in determining the
number of AGVs and compared to a simulation based method (AGVsim). The
analysis indicates that the results obtained from the software provide a good starting
search point for a simulation technique. When two approaches are used jointly, the
number of simulation runs which is required to generate a solution is potentially
reduced. Simulation is the most reliable method to data estimating vehicle
requirements for complex system. However, since simulation is expensive in the cost
of data correction and time consuming, several non-simulations based calculation

approaches vehicle estimation are generated.

Egbelu (1987) proposed four cases of the method for estimating the number of
vehicles through hand calculation. They are
Case 1: it is assumed that the distance covered by vehicles making empty run is equal
to the distance traveled by loaded vehicles.
Case 2: it requires the estimation of blocking time factors and idle time factors. This
estimation is used to refine the estimate on the vehicle requirement.
Case 3: this method requires the computation of the net traffic flow into the work

center. For the work center i, the net in-flow is F;.
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- If F; >0, it implies that there are more number of vehicles coming to deliver a
load into the work center i then coming to pick up a load. It is a net exporter of
empty vehicle.

- If F; =0, the method assumes that no empty runs will be made from the work
center i. Every vehicle that delivers a load from the center i will leave with a
load to another center.

- If F; <0, it implies that the center i will be a net importer of empty vehicles.

Case 4; this method assumes a job shop environment for a work center i, the sequence
of jobs, which request to pick up load are generated from the work centers that is

varied randomly.

A modern manufacturing factory is usually managed by computer control
systems that obtain the production plans and monitor the current state of each job. In
such a dynamic and sophisticated environment, the job scheduling is one of key

factors in a successful implementation of the AGV system.

Automated Guided Vehicle Problems

When the vehicle management problem is considered, the vehicle routing and
scheduling problems are the most interested problem. There are many interesting
papers about AGV problems, which relate to the vehicle routing and scheduling

problem that are reviewed as follows.

Maxwell (1981) presented about solving material handling problems using
Operations Research (OR). The objective of this paper is to provide a broad overview
of OR techniques that can be used to solve interplant material handling problems. The
author first identifies the primary variables generally associated with material handling
problems. These variables such as flow rates, weights, sizes, distances, and velocities
can usually be handled in OR with matrices and joint probability distributions. OR
techniques are used to solve a vehicle requirement problem in the simple AGV. Itis
assumed that the factory layout and the AGV truck layout are already designed. To

simplify the analysis, the AGV are considered unidirectional and only one way flow is



17

allowed in each plant aisle. The minimum number of vehicles is determined
heuristically by first summing the total travel time required, total pick up and delivery
time required, and total blocking time encountered by vehicles, and thendividing this
value by the total operating time per a unit of vehicle. Blocking time is the time that
two or more AGVs are in conflict for a route, causing one or more of them to be
blocked. In order to determine the minimum vehicles requirement, blocking time is
assumed to be zero. The total pick up and delivery time is determined by time
estimation techniques, such as analyzing past productions data, or performing time
studies on similar operations. The total operation time per a unit of vehicle is simply a
constant base on an estimation of the available operating time of each vehicle over a
typical shift. The total traveling time is estimated by using the shortest path to
determine optimal route for all possible pairs of nodes, and the problem can finally be
treated as a transshipment problem. The author admits that many OR techniques are
in their infancy, and these techniques are underutilized in material handling problems.
The paper does show the applicability of the shortest route algorithm and

transshipment problem to solving an AGV design problem.

Maxwell and Muckstudt (1982) presented the problem of determining an
optimum schedule for dispatching AGV that the results a minimum number of AGVs
by focusing on the empty traveling distance. The system is designed to ensure proper
vehicle’s utilization. The items such as raw materials or work pieces are moved from
receiving stations to storage facilities and the production lines according to needs as
they arise. These functions cannot be carried out effectively unless considerable
thought and design effort has gone into planning of the vehicle dispatching and control
system. One purpose of their article is to show how the design of an AGV can
determine the minimum number of required vehicles. Determination of the optimal
number of vehicles is exactly difficult when considering detailed time-phased pick up
and drop off requirements, pick up and drop off areas, floor space capacities, and track
congestions. A large scale IP can be formulated including all these factors. The
second goal is to present other analysis tools that can be used to evaluate the time-
dependent behavior of an AGV. The procedure for dispatching vehicles is developed

and shown how to measure the blocking time caused by congestions and the size of
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storage areas. The problem is designed by assuming the particular layout for a system
already exists. The track layout can be defined as a network. The vehicles move
through the network among nodes on directed segments which correspond to a guide
path connecting one node with the others. The nodes correspond to the intersection
points of the various segments of guide path. Each segment has some number of pick
up or drop off stations. The problem is analyzed by assuming the system
characteristics as follows.
1. vehicles move in only one direction on any segment.
2. azone control system is used to prevent collisions particularly at
intersections.
3. load and unload times are known for each location.
4. traveling speeds among stations for loaded and unloaded vehicles are
known. The requirements, which are moved from one station to the other
are known. The data are given in integer vehicle loads and that vehicles

are always dispatched to pick up and drop off completed loads.

If a unit load must be moved from station i to station j, then one AGV is used
to accomplish this task. Splitting of loads is not allowed. Let v; be the number of
vehicle loads that must be moved from station 7 to station j during a shift and the

layout consists of # stations. The value of ZVg is the number of AGVs that are
j=1

needed at station i to move materials, and sz/ is the number of AGVs that arrives at
i=1

station j during the shift. For stations, which are not the storage points for AGVs, they

must have the total vehicle flow into the station within the shift equal to the total flow

out. The model’s objective function is to measure the total travel time for empty

vehicles moving among stations.

To formulate the problem, the net AGV flows into each station are determined.

The net flows for station i is Zvﬁ - sz‘/ . Iff;is the number of AGVs that are
j=1

J=1



available at the beginning of the shift and g; is the number of AGVs that are required

at the end of the shift, the net flow for station i is

NF(@)=Y v, =Y v, +fi—g
j=1 Jj=1

19

For the problem to be well defined, z NF(i)=0. Thus, the problem is to determine

i=1

how to allocate the vehicles that are available [NF'(i) > 0] at station i to satisfy the

deficits at other stations j [NF(j) < 0] so that the totaling traveling time for moving

empty AGVs are as small as possible.

Let a;= NF(i), it NF(i) >0
= (, otherwise.
b;=NF(i), if NF(i) <0
= (0, otherwise.
t; = the shortest travel time from station i to station j
when a vehicle is unloaded.
x;; = the number of empty vehicle trips that should be

made from station 7 to station j during the shift.

The problem is to find the values for the variables x;; for all i,j that
Minimize Z z 1%,
i=l j=1
subject to

n
le.j = q; , for all station i,
J=l

—z x,; = b; for all station i,

k=1

x; 2 0 forall 4, .

It is easy to see that the above problem is a simple transportation problem. The

solution indicates how many vehicle trips should be made with empty vehicles

between station i and j. Because this problem is a transportation problem, all variables
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will have integer values. The total traveling time for empty AGVs moving between
stations is measured. Thus, if this total is H hours and h hours are available on each

AGYV shift per, and then H/h vehicles are required for material movement plan.

An optimal flow path design is one of the interesting topic for an AGV system
planning. The AGV technologies are constantly growing due to better sensors,
improved robotics, low-cost high-performance computers, and sophisticated control
methods and software. In such a modern manufacturing environment the path routing

is one of key factors in a successful implementation of the AGV system.

Blair, Charnsethikul and Vasques (1987) presented the optimum routing
problem of AGVs among the workstations as the TSP. An algorithm for the near
optimal routing of AGVs in such a system is presented which seeks to organize
material moves into tours with the objective of minimizing the maximum tour length.
In their paper, they assume that the sequence of move transactions, which are assigned
to each AGYV, is a tour. The tour distance is the total distance to be traversed in order
for the assigned AGVs to go from its initial location to the location of the first move
and then to pick up and deliver each move in the prescribed sequence. The tour may
requires the AGV to travel empty from the destination of one move to the origin of the
next. Each move consists of a unit load, which will consume the capacity of AGVs.
The objective function is to minimize the maximum tour distance of all tours. The
AGYV activity scheduling task can be easily formulated as either two well known
network optimization problems. In the first formulation, work centers are represented
as nodes. Each move transaction is represented as a directed arc from the origin of the
move to its destination. The other formulation represents the move transactions as
nodes. Arcs are used to represent the sequence of performance. Each node is
connected to every other node by a set of corresponding arcs. This is a modification
of the classic TSP appropriately called the multiple traveling salesman problem or
MTSP. The heuristic method, which they presented in this work, is composed of two
phases. In the first phase, the AGV routing problem is formulated as a standard MTSP.
The MTSP is solved by using a modification of the branch and bound technique, first

proposed by Eastman (1958). The resulting solution is a minimum total distance over
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all tours. The second phase is a tour improvement process, which starts with the
feasible set of tours prescribed by phase one. At each iteration of phase two, the
longest tour is reduced by removing a node from it. Two new subproblems are
defined. One subproblem is the restructuring of the largest tour by treating it as a
single TSP. The second subproblem is a reduced MTSP, which includes all the nodes
in the other tours plus the node recently removed from the largest tour. Solving the
TSP for the largest tour, minus the removed node, provides an optimal patching of the
remaining set of nodes in the tour. Solving the remaining tours using an MTSP
provides an optimal allocation of the removed nodes to one of the remaining tours.
This algorithm has been coded into a BASIC program. The program was tested at
three levels:

1. Level I: small-sized problems, 15 moves and 3 tours;

2. Level II: medium-sized problems, 35 moves and 4 tours;

3. Level III: large-sized problems, 50 moves and 5 tours.

For each level, 100 randomly generated move transaction lists of the appropriate size
were generated and solved by the program. Each replication is evaluated with respect
to two performance measures: the optimization performance ratio (OPR) and the

corresponding computation (CPU) time.

Gaskins and Tanchoco (1987) first formulated the flow path design for AGV
systems by using IP approach. The objective of this study is to find the optimal flow
path for an AGV so that the total traveling distance of the loaded vehicles will be
minimized. The 0-1 IP model with considerations of the given facility layout and P/D
stations is used to determine the optimal flow path in this paper. However, the paper
only considers the unidirectional path network, which has lower utilization than the
bidirectional network. The traveling distance by the unloaded vehicles is not taken
into consideration. The main limitation of this study is that it only considers a fleet of
AGVs with the same origin and destination every time. These AGVs run along the
same route. Therefore, routing control is trivialized because issue such as congestion,

deadlocks, and conflicts will never occur.
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The first procedure of their work is to formulate the objective function. It
consists of the distance between pairs of nodes when a particular path is taken, the
flow intensity between pairs of nodes, and the decision variables for determining
which pairs of nodes are selected. The objective function represents the total distance
traveled by loaded vehicle. Besides the objective function, a set of constraint
equations are also required to ensure that the shortest route among all pairs of shortest
path are taken and all other limitations are satisfied. These constraints include
unidirectional flow, at least one input and one output arc that are selected for each
nodes, and finally the constraint equations use to ensure the shortest path is taken. The
problem is solved by first determining the shortest route between pairs of nodes, and
then putting them into the objective function. From this procedure, the minimum total
traveling distance is obtained. Unused arcs in the layout can be either removed from

the layout or included as alternative routs when blocking occurs.

Kaspi, Kesselman, and Tanchoco (2002) presented the optimal flow path
layout design method. The problem is analyzed and formulated by a mixed integer
programming (MIP) problem. A searching procedure, based on the branch and bound
technique, is proposed to solve the problem. The procedure is implemented as a
computer program and yields an optimal solution in a small number of iterations.
Using the transportation model for calculating the required and optimal flow of empty
vehicles, system balance is achieved. The problem is formulated as a node-arc
network where the nodes represent pick up and delivery stations and arcs are guide
paths connecting the nodes. Empty vehicle flows are also taken into account when the
checking the feasibility of a partially or fully directed guide path is done. The
objective of the flow path layout problem is to set directions for each arc in an
undirected flow path network such that the total traveling distance of both loaded and
unloaded vehicles is minimized. The assumption that the network is fully

unidirectional and the reach ability constraints eliminate the issue of blocking.

The authors stated that the formulated linear mixed variables (0-1 and
continuous) model is quite difficult to solve. The main difficulty in finding the

optimal solution to this problem is the large number of binary variables required for a
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realistic size problem. A general approach, which is used to solve this problem, is the
branch and bound procedure. When using the branch and bound method, the search
function deals with subproblems of the main problem at each step and ignore the
global aspect. It is possible that great computational effort can be directed to a branch
in which the optimal, or even a feasible, solution cannot be found. The specific used
technique is the branch and bound method with depth-first search and backtracking,
rather than the jump tracking approach (known also as best-first search). Using the
backtracking method, a feasible solution is obtained quite quickly and the required
memory is much less than for the jump tracking method. The backtracking procedure
is invoked any time when a feasible complete solution is obtained when a branch is
bounded or branching is impossible. The backtracking procedure returns to the source
branch. The procedure determines the optimal flow of the unloaded vehicles by
solving the transportation problem for each step in branching process. The direction

of each arc in the system is determined and optimal objective function is obtained.

Traveling Salesman Problem

The real world task of a salesman is trying to sales the products that a salesman
has to travel to possible customers at any cities. If a salesman, starts from the depot or
head office city, visits each city exactly once on a given list of possible customers and
return to the starting point, it is plausible for him to select the order in which he visits
all cities so that the distances traveled in his tour is as small as possible. Assume a
salesman knows, for every pairs of cities, the distance from one city to the others.
Then he has all the data necessary to find the minimum tour distance, but it is by
means obvious how to use these data in order to get the answer. This kind of problem

is called “Traveling Salesman Problem” or “TSP”.

Lawler et al. (1985) presented the survey of knowledge on the TSP. The TSP
is one of combinatorial optimization problems that attempt to minimize the total
distance of the tour. The problem is one of optimization problems, but cannot
immediately employ the methods of differential calculus by setting derivative to zero,

because it is in a combinatorial situation that its choice of solution is not over a



24

continuum but over the set of a tour. A different optimization method comes from
linear programming (LP). The continuous history began in the late 1940s with George
Dantzig, treats the problem of finding the minimum of linear function on a polyhedron
by a system of linear equations. The LP can be used as a tool of combinatorial
optimizations by its principle. There are three aspects of the history of any
mathematical problem, which are:

1. how to arose

2. how research on it influences other developments of mathematics

3. how the problem is finally solved.

If the TSP is one of the mathematical problems which developed algorithms which
satisfy formal or informal standard of efficiency, this problem can be considered that it
has not yet been solved. So the TSP is the most prominent of the unsolved
combinatorial optimization problem. And that is why it continues to influence the

development of optimization concepts and algorithms.

One of the earlier problems of the combinatorial mathematics arises in the
theory of graphs. A graph is a finite set of vertices and some pairs of which are joined
by edges. A cycle in the graph is a set of vertices of the graph which such that it is
possible to move from one vertex to another vertex, along edges of the graph, so that
all vertices are encountered exactly once, and it must finish where it started. If a cycle
contains all the vertices of the graphs, it is called “Hamiltonian cycle”. The TSP for a
graph with specified edge lengths is the problem of finding a Hamiltonian cycle with
the shortest length. Lawler et al. (1985) presented the survey that many papers relate

to the Hamiltonian cycle and the TSP as following examples.

Kirkman (1856) considered Hamiltonian cycles in a general context. He
asserted a sufficient condition for a polyhedral graph to admit such a cycle, and also
showed that a polyhedron on an odd number of vertices, in which each face has an

even number of edges, cannot have such a cycle.
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Hamilton (1856) invented a system of noncommutative algebra, for which the
actions of the basis elements could be interpreted in terms of paths on the regular
dodecahedron. Hamilton named this algebra as “The Icosian Calculus”, and used the
graphical interpretation as the basis for a puzzle, marketed the game in name “The
Icosian Game”. The game consisted of various problems, such as finishing a cycle

when the first five positions are given.

Lin and Kernighan (1973) proposed an effective heuristic algorithm for solving
the TSP. The general concept is to transfer arcs which are not included in the previous
tour into a new tour by exchanging nodes. They presented several algorithms to show
methods which can be used to generate a set of tours from an available tour. A
method, which is widely used, is called the 3-OPT procedure. The process of 3-OPT
is to choose three arcs out of the old tour and find three new arcs to replace them.
Several new tours are generated. An objective function, which is minimizing tour
length, must be evaluated and the process stops when all new tours show no
improvement in the objective value. Otherwise, a tour with improvement is chosen to

start the process again.

The TSP/MTSP can be formulated as IP. Orman and Williams (2004)
presented a survey of different IP formulations of the TSP such as the conventional
formulation that is presented by Dantzig, Fulkerson and Johnson (1954) and Miller,
Tucker and Zemilin (1960). The 0-1 IP model of TSP is defined on a complete
directed graph G = (V, A), on n vertices, with vertex aset V= {1, 2, ..., n}, arc a set 4
={@G ) i,j=1,2,...,n }, nonnegative cost or distance c; associated with arcs (7, j)

andc;= oo forall i,jel .
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Dantzig, Fulkerson and Johnson (1954) formulated the standard problem of
TSP as a 0-1 IP model as follows

vin 7=3 S0 0
Subject to o

ixl,—l, i=120n (2
o

ixfl’ i=1,2,.,n (3)
=

2%, <[8]-1 VSV and 2<|S|<n-1,  (4)
;1;5200"1 Vi, jeV

where V'= {1, 2, ..., n}, x;=11if arc (i, j) is in the solution and x; = 0, otherwise.
The constraints (2) and (3) are the assignment constraints. The constraints (4)
represent the subtour elimination constraints. This formulation has 2" + n-1
constraints and #n (n-1) of 0-1 variables x;;. The exponential number of constraints
makes it impractical to solve directly. The branch and bound approach can be applied

and solved this model iteratively.

The sequential formulation is the Miller, Tucker and Zemlin (1960)

formulation of the classical TSP that is given as follows

Min Z = Zchij. (6)
i=1 j=I

Subject to
> x, =1, j=L2...n (7
i=1
D ox, =1, i=1,2,..n (8
=
Y=y, +nx; <n-1 Vi#j 9)
x; =00rl Vi, ].

The number of cities is n, the distances are c;; and the arcs in the tour are represented
by the variable x;; for alli, j . The ¢;is the distance from city i to j (c;; = a fori =j).

The variable x;;1s 1 if the salesman travels from city i to j and 0 otherwise. The
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variables y; are arbitrary real numbers which satisfy the subtour elimination constrain
(9). The constraints (7) and (8) are the assignment constraints. This formulation has n*
—n + 2 constraints and n (n-1) of 0-1 variables x;. The mathematical formulation of
the MTSP can be formed by applying the transformation idea to the Miller Tucker and
Zemlin(1960) formulation. Svestka and Huckfeldt (1973) gave the MTSP formulation

for m salesmen as following.

Min Z=Y>d,x, (10)
i=1 j=1

Subject to
D ox, =1, j=12.r  (12)
i=1
D ox, =1, i=1,2,..,r  (13)
Jj=1
Yi—y;+(m+m-Dx; <n+m-2 Vi#j (14)
x; =00rl Vi, ].

where r = n+m-1

d;denotes the new distances for MTSP and all other terms have the same definitions
as the Miller Tucker and Zemlin(1960) formulation. The new distance matrix [d;;] are
defined from the original distance c;, which augment the original distance matrix [c;]
with m-1 new rows and columns, where each new row and column is a duplicate of the
first row and column of the matrix [c;]. It is assumed that the first row and column
correspond to the home city. Set all other new elements on new rows and columns of
the augment matrix to infinity. All other terms have the same value as the original

matrix [c;].

Bellmore and Hong (1974) proposed another method to solve MTSP. Suppose
all n cities must be visited by one of m salesmen. They presented the transformation of
the MTSP for m salesmen to the classical TSP by adding m-1 dummy nodes to the
original network as the artificial starting node and solved the MTSP from solving the

TSP of the modified network.
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According to this point, the TSP is seductively easy to state. It takes no
mathematical background to understand the problem and no great talent to find good
solutions to large problems. Thus, it is exciting to work on the way to solve the
problem on any sizes. The TSP has resisted all efforts to find a good optimization
algorithm or even an approximation algorithm that is guaranteed to be effective.
There are also practical reasons for the importance of the TSP. Many significant real
world problems can be formulated as instances of the TSP. The application of TSP
can describe various problem transformations, related combinatorial problems, and

generalizations of the basic TSP.
Generalizations of the TSP and related problems

There are many problems related or have some relationships with the TSP.
Lawler et al. (1985) illustrated the relationships of the TSP to several other

optimization problems, which are shown as follows.

1. The assignment problem: the problem of 7 cities is considered. Let x; be a
0-1 variable indicating whether or not the salesman goes directly from city i to city j

for all i, j and c;; be the corresponding distance. The length of salesman tour is then

Zn:icljxij (15)

i=1 j=I

which is to be minimized. Clearly,
dx;=1, i=l..n, (16)
=

since a unique city is visited directly after each city, and similarly,

> x, =1, j=L...n, (17)
i=1

Figure 2 Subtours from the assignment solution
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Now, (15), (16) and (17) describe the well-solved assignment problem. It follows that
the TSP must involve some additional complications. In particular, the missing
constraints in the above formulation involve subtours. For example, if n = 4 then x;, =
X271 =x34=x43= 1 and x;; = 0 otherwise satisfies (16), (17) but represents two subtours
(1, 2), (3, 4) of figure 2 rather than a single tour. Thus, the assignment problem is a
relaxation of the TSP or, equivalently, the TSP is the restriction of the assignment

problem obtained by adding the constraint of a single tour, which is:
‘no subtours allowed’. (18)

2. Integer linear programming: There are a number of ways to enforce (18)

mathematically. For instance, (18) can be replace with

2. 2.% <[8]-1 (18a)

ies jes

or with
Zinj >1 (18a)
ies jes
for every proper, nonempty subtour S of N= {1, ..., n} where |.| denotes cardinality.

Clearly, any subtour violates (18a) and (18b) for some S (In figure 2, S= {1, 2} and {3,
4}). Of course (18a) and (18b) represent a large number of constraints: 2" - 2 to be
exact. However, these formulations, due to Dantzig, Fulkerson and Johnson (1954),

do have at least one characteristic of good formulations, namely a well-solved

relaxation.

A more compact variation of (18a) and (18b) is proposed by Miller, Tucker
and Zemline (1960). Arbitrarily designate vertex 1 to be the home base. Then the
constraints

Yi-yjtnx;<n-1, Lj=2,..,n, (18¢c)

where y; and y; are arbitrary real numbers, block all tours not containing vertex 1. To

see that (18c) in conjunction with (16), (17) blocks subtours, consider an arbitrary
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subtour (i;, ...., ir) where 1 isnot in {i;, ...., ir}. If a set of x; satistying (16), (17)
represents more than one subtour, then it also represents at least one subtour not
containing vertex 1. But addition of the constraints (18c), represented by this subtour
yields nk < (n-1)k which is clearly false since n, k> 2. Furthermore, every TSP tour
remains feasible with these additional constraints. Every tour can be assumed to start
at city 1. If city i is visited j ™ after city 1, let y;=/. As example, consider the tour (1,
4, 3,2). Forthis,sety;=0,y,=1,y;=2,and y, = 3. It is straightforward to verify

that this procedure works in general.

Note that the model (15), (16), (17), (18c) with binary variables x;; is a mixed
integer program since it has zn-1 continuous variables, and that (18c) represents only
(n-1)* constraints. It is also shown by Miller, Tucker and Zemline (1960) that an
extension of the TSP can be modeled in the same way. Suppose the salesman visits
the cities in a number of subtours, each beginning and ending at city 1, and no subtour
can contain more than r cities, which » <n. Then (18c) can be replace with

yi-yitrx; <r-l, i, j=2,...,n, (18d)
Of course, since city 1 can be visited more than once, the constraints
Zn:xlj =1 and ixﬂ =1 should be replaced by Zn:xlj >1 and ixﬂ >1.
J=1 i=l j=1 i1

The model obtains the solution, which is a set of subtours of 7 cities.
Branch and bound methods for TSP

Lawler et al. (1985) stated that the origins of the branch and bound idea go
back to the work of Dantzig, Fulkerson & Johnson (1954 and 1959) on the TSP. The
first attempt to solve TSP by enumerative approach is apparently due to the work of
Eastman (1958). In a sense the TSP has served as a testing ground for the
development of solution methods for discrete optimization, in that many procedures
and devices were first developed for the TSP and then, after successful testing,

extended to more general integer programming.
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Gillett (1976) stated that the enumerative (branch and bound, implicit
enumeration) methods solve a discrete optimization problem by breaking up its
feasible set into successively smaller subset, calculating bounds on the objective
function value over each subset, and using them to discard certain subsets from further
consideration. The bounds are obtained by replacing the problem over a given subset
with an easier (relaxed) problem, such that the solution value of the latter bounds that
of the former. The procedure ends when each subset has either produced a feasible
solution, or has been shown to contain no better solution than the one already in hand.
The best solution found during the procedure is a global optimum. A number of
branch and bound algorithms that find the exact solution for a small to moderate size
of TSP (fewer than 50 cities) have appeared in many literatures, but most of them are

base on the algorithm by Eastman (1958).

Little et al. (1963) presented an algorithm that is a branch and bound method
for solving TSP. The set of all tours (feasible solutions) is broken up into smaller
subsets by a procedure called branching. For each subset, a lower bound on the length
of tours is calculated. Eventually, a subset is found that it contains a single tour whose
length is less than or equal to some lower bound for every tour. This algorithm
modifies both the branching and bounding procedures by modifying the Eastman’s
algorithm to eliminate two cities subtours. Since the Eastman and Little’s algorithm
form the basis for all TSP branch and bound algorithms, one of them, namely,

Eastman’s algorithm is presented as follows.

Eastman’s algorithm for TSP

Gillett (1976) presented an Eastman’s algorithm for TSP which is the branch
and bound algorithm for solving the single TSP tour. Let c(i,j) be the distance from
cityitocityifori=1,2,...,nandj=1, 2, ..., n. Where n is the number of cities and
c(@jiy=wfori=1,2,...,n A tourisacomplete route or cycle through n cities where
no city is visited more than once. If the salesman visits a certain city and returns to
that city later, the cities involved form a subtour. Of course, this cannot occur if a

route is feasible (each city is visited once and only once). The Eastman’s algorithm
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solves the easier assignment problem that allows subtours and then systematically
forbids subtours until finally the single tour is obtained that are the optimal. An

illustrative procedure follows the algorithm, which is:

Step 1:
Let CLUB represents the current least upper bound on the optimal solution of the TSP.
Set CLUB = 10'"° (CLUB equal to a large positive number)

Step 2:

Solve the associated assignment problem, where the distances c(i,j) are the elements of
the distance matrix. The solution provides a lower bound on the optimal solution of
the TSP. If at least one subtour exists in the solution, go to step 3, otherwise the
optimal solution of the assignment problem is also an optimal solution of the TSP, so

stop.

Step 3:
Select a subtour and let k£ be the number of arcs in the selected subtour. Eastman
selects the subtour with the smallest number of arcs. All other subtours at this node

can be ignored.

Step 4:

Branch into & subproblems. If the subtour is:

Ij-1p- .. dp-1;

Then for subproblem 1 let ¢(i;, i,) = oo, for subproblem 2 let c(i>, i3) = o, etc., and for

subproblem £k let c(iy, i;) = .

Step 5:
Solve the k£ new assignment problems. Each solution distance is a lower bound for the

corresponding subproblem.
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Step 6:
If there are one or more feasible solutions from step 5 and if the smallest total distance
for these feasible solutions, say STD, is smaller than CLUB, set CLUB = STD and

save the corresponding feasible solution. Otherwise CLUB remains unchanged.

Step 7:

If CLUB is less than the lower bounds on all other unexplored subproblems, then the
solution corresponding to CLUB is an optimal solution of the TSP, so stop; otherwise,
goes to step 8. By unexplored subproblems, it means subproblems that have not been

divided into further subproblems.

Step 8:

From the set of all unexplored nonfeasible (subtours present) subproblems with a
bound less than CLUB, select the subproblem with smallest lower bound for further
branching. Go back to step 3

Applications of the TSP

Despite the fact that the TSP can be applied to many useful situations directly,
most of reported applications are quite different. Seemingly there are many unrelated
problems that can be solved by formulating them as instances of the TSP. Lawler ef al.
(1985) illustrated some examples of applications of the TSP. Many applications
descried below are the versatility of the TSP model.

1. Vehicle routing: by vehicle routing it means the problem of determining for
a fleet of vehicle which customers should be served by which vehicles, and in what
order each vehicle should visit its customers. Constraints generally include capacities
of the vehicles as well as time windows for each the customers. Some algorithms for
this problem use the TSP model for the subproblem of ordering each vehicle’s

customers.
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2. Computer wiring: this problem occurs repeatedly in the design of the
computer’s component and other digital systems. A system consists of a number of
modules and several pins are located on each module. A given set of pins has to be
interconnected by wires. In order to avoid signal crossing and to improve ease and
neatness of wiring, the total wire length should be minimized. A minimum length

Hamiltonian path can be solved by using an (n+1)-city symmetric TSP.

3. Cutting wallpaper: this situation needs to cut n sheets of wallpaper from a
single long roll of paper by minimizing waste. Sheet i starts at position S; and finishes
at position F};, with respect to a pattern that repeats at one unit intervals. Thus, F; = S;
+ L; (mod 1) where the length of sheet i is L; pattern units. The amount of wallpaper
that is wasted if sheet j is cut from the roll immediately after sheet i is then;

Cj=Si—F; 1ifF;<§S; otherwise C;; = 1+ S, - F;

or equivalently,

Cyj = Si— Fi(mod 1).
Now suppose that when begin cutting, the end of the roll is at position F, and that after
cutting the last sheet worker must makes one final cut to restore the roll to the same
starting points Sy = Fy. If create a dummy sheet 0 is created, the starting and finishing
point, the problem of cutting the » sheets from the roll become an (n+1)-city TSP with

distance matrix defined by Cj;.

4. Job sequencing: Consider the problem of sequencing 7 jobs on a single
machine. The jobs can be done in any order and the objective is to complete all of
them in the shortest possible time. Assume that the machine must be in a certain state
S; in order to do job j and that the beginning and ending state for the machine is S,.
Let the time required to complete job ; directly after job i be

T;=Cyj+ P
where Cj; is the time required to transform the machine from S; to S; and P; is the
actual time to perform job j (with Py =0). The TSP can be used to solve this kind of

problem by using the distance matrix defined by 7.
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5. The stacker crane problem: The motivation for this problem is expressed by
ignoring the stacker cranes and considering the delivery trucks. Suppose a truck must
perform a collection of pick up and delivery, subject to the constraint that each loads,
which is picked up completely, fills the truck and goes to a single destination, Hence,
no picks up or deliveries can be combined. The stacker crane problem is a
generalization of the TSP in which the desired tour must contain certain edges, and
must traverse them in specified directions. An instance is a set of cities (and
corresponding distance matrix C is defined by [Cj;] ) together with a set 4 of arcs,
where each arc is an ordered pairs of cities and every city occurs in exactly one arc.

If(i, j) € A, this means that a load must be picked up at city i and delivered to city ;.

The goal is to save fuel, by minimizing the total length of the route that is used to
make all movements. The TSP with distance matrix [C;;] can be applied to this

problem.

6. Problem of postal service: The stacker crane problem is related to a number
of other problems which are concerned more with traversing arcs (or edges) then with
visiting vertices. The undirected analogue of the stacker crane problem is called the
rural postman problem, Orloff (1974). The information is given a set of required
edges (rather than arcs) and asks for a route of the minimum length, which will
traverse each edge at least once (the direction of traversal dose not matter). This
model is the problem that a mail carrier designs an optimum route, with each edge
corresponding to a street along which the mail must be delivered. The TSP can be

applied to help a mail carrier to solve an optimum route.

Benders’Decomposition Algorithm

J. F. Benders (1962) proposed a technique in which the mixed integer
programming (MIP) problem can be written as an IP problem. Using the linear
programming duality theory, it is possible to show that any the MIP problem can be
written as an integer program. The equivalent IP problem is solved after generating
only a subset of its constraints. The remaining “implicitly enumerated” constraints are

relaxed from the IP problem. The Benders decomposition procedure partitions the
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MIP problem into an integer and a continuous part, consisting respectively of the

integer and the continuous variables of the original problem.

The decomposition algorithm works by successive solving a continuous
programming problem and an integer programming problem, considering the linear
case. A LP produces an extreme point and a single constraint for the IP problem.
Also, the value of the LP optimal solution gives an upper bound for the optimal
solution to the MIP problem. After the IP problem, which is the MIP problem’s
equivalent when it has all cut constraints, is solved, it yields a nondecreasing lower
bound. When the two bounds coincide, the optimal MIP solution has been found and

the process terminates.

Consider a class of linear MIP problem, which is the Benders’master problem,
as follows.
(MIP) Minimize ¢'x +d'y
Subjectto Ax + By >b,
x>0, yeY
where A is a m by n coefficient matrix of vector x,
B is a m by n' coefficient matrix of vector y,
cis anby 1 cost vector of vector x,
dis an'by 1 cost vector of vector y
x is a n by 1 vector of continuous variable x,

yisan'by 1 vector of variable y with ¥ = {y |yl~ e {0,1};1=1,2,...,n"}

A concept of the Benders’algorithm is that the partitioning of the variables into
two sets (x and y) and projecting the problem onto the y variables. If let ¥ denote the
set of binary or all possible nonnegative integer vectors y, then MIP may be written as

follows.

Let v(y) =d'y + min { c'x |Ax2b—By,x20}
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the Benders’master problem is clearly seen to be equivalent to:
Minimize v(y)
Subjectto ye Y

for a fixed y, the minimization problem is the LP problem
(LP) Minimize ¢'x
Subjectto Ax>b-— By,
x>0
its dual programming (DL) problem is
(DL) Maximize (b - By) u
Subjectto A" u <c,
u=>0

where u is a m by 1 vector of dual variable u,

In principle, it is possible to identify and enumerate all of extreme points of the dual

feasible region and choose the best. That is, the function v (y) can be evaluated by:
v (y) = d"y + Maximize {(b — By) Tul A'u<c u>0}

Suppose ¥ consists of p sets of vector y, a fixed vector y is defined by y/ for all
j=1,2,...,pand v ()’) is a function that a vector )’ is supplied to the function v ()
at iteration k for finding the k™ solution for all k = 1,2,...,p. However, the v (y)is to
be evaluated by solving the LP problem, not by identifying all sets of dual extreme
points (p sets) and computing the corresponding linear objective function of y. If k™
iterations are used with the sets of y’ (where 1<k < p), it can provided an
approximation function, which is an underestimate of v (), defined by v (y/) =

Maximize {(b— B y’)"u’ | A"y’ <¢, u’ >0}, that is the Benders’subproblem.

The initial (k= 1) value of variables y € ¥ can be generated by selecting any
arbitrary value of vector y (it is the first y/, which is y ') that provides the feasible
solution to the Benders’subproblem, Maximum vy (/) = Maximize {(b — B y/) "u’ |

A"’ <c¢, u’ > 0}. The solution of the Benders’subproblem is evaluated by solve LP
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with fixed /. The Benders’subproblem solution is a generated vector u’ of dual
variable u and its objective function value of v (/) that corresponding with a selected
y/. When a generated vector u’/ from solving the Benders’subproblem is put into the
Benders master problem, which is the Benderspartial master problem of iteration k™
that is:

Minimize v (y) =d'y + Maximize { [(b — By) " u/]x }

Subjectto ye Y

This step provides the Benders’partial master problem with one underestimate
function of v (), called the Benders’cut of the iteration k™ ( [(b — By) " u’]« ). For
each iteration, the algorithm must solve this Benders’partial master problem to
generate the new vector y, for replacing the previous selected vector y, and the new

solution value of master problem, v ().

If v (/) = v (»), the solution can be accepted and terminate the algorithm
otherwise the algorithm has to improve by adding the new approximation function,
Benders’cut by using new set of dual extreme points to generate the new arbitrary )’
of iteration k+1for solving the new partial master problem. Therefore, the
Benders’decomposition algorithm for solving the lower bound of AGVsp-P/D can be

summarized step by step as follows.

Step 1: Initialization: set v (y) = 0, select a fixed vector y’ € ¥, setj =1 and set k= 1

Step 2: Solve the Benders’subproblem: evaluate the value of vy (/) with its
corresponding set of the dual extreme point (vector u’) by solving LP with a
fixed vector y’

Step 3: Stopping criterion: if vx (/) = v () then stop, otherwise go to step 4

Step 4: Improve the approximation function: by using a set of dual extreme point
(vector u”) to generate the Benders’cut for forming iteration Kt Benders’partial
master problem

Step 5: Solve the Benders’partial master problem: that is the minimizing of v (y) with
Benders’cut from step 4 for updating the value of v (y) and then set j=j+1 and

updating the new vector y/, set k= k+1 and go to step 1.
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Statistical methods for data analysis

Montgomery and Runger (2002) illustrated and applied statistics for using in
the engineering research. The data probability distribution is the first issue that should
be considered because most of statistic assumptions are assuming the normal
probability distribution of the data set. The normality test is explained in this part.
Then the analysis of variance that is the important method to conclude the solving

result is reviewed.

1. Probability plots

Montgomery and Runger (2002) explained that the probability plot is a
graphical method for determining whether sample data conform to a hypothesized
distribution based on a subjective visual examination of the data set. The general
procedure is very simple and can be performed quickly. Probability plotting typically
uses special graph paper, known as the probability paper that has been designed for the
hypothesized distribution. Probability plotting is wildly used for the normal
distribution because most of statistical methods are using normal probability

distribution data.

A normal probability plot can also be constructed on an ordinary graph paper

by plotting the standardized normal scores z; against x;), where the standardized

normal scores satisfy

—0.5 e
J =P(Z<z;)=¢(z;). Almost of statistical software can
" _ _

perform the normality test by doing the normal probability and showing the result in
same form as plotting on an ordinary graph paper. If the specific type I error is a, the
probability distribution of the data set is the normal probability distribution when the
P-value of the normal probability plot of the data set is grater than o, otherwise the
data set is not the normal probability distribution. The example of the normal
probability plot that is obtained from normal distribution data by using MATLAB is

shown as follows.
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Normal Probability Plot
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Average: 12.4137 Anderson-Darling Normality Test
StDev: 0.999490 A-Squared: 0.528
N: 40 P-value: 0.167

Figure 3 The example of the normal probability plot of the assignment data with 50
nodes from table 31 by using MINITAB

When the obtained data is non-normality, MINITAB has Two Box-Cox
transformation procedures, which are a stand-alone command and a transformation
option that can be useful for correcting both non-normality and highly skewed. First,
use the stand-alone command as an exploratory tool to determine the best lambda
value for the transformation. Then, use the transformation option to transform the data.
The Box-Cox transformation is used to make the data “more normal.” The
transformation takes the original data to the power I, unless 1 = 0, in which case the
natural log is taken. (I is pronounced “lambda.”) To use this option, the data must be
positive. The options subdialog box lists the common transformations natural log (1=0)
and square root (1= 0.5). User can also choose any value between -5 and 5 for 1. In

most cases, user should not choose an | outside the range of -2 and 2.

2. Hypothesis testing

Montgomery and Runger (2002) illustrated that many research problems
require the conclusion that the results will be accepted or rejected, based on some
parameters. Normally, the researchers decide whether accept or reject a statement

about the research results of some parameters. The statement is called a hypothesis,
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and the decision making procedure about the hypothesis is called hypothesis testing.
This is one of the most useful aspects of statistical inferences, since many types of
decision making problems, tests, or experiments in the research can be formulated as
hypothesis testing problems. Normally, research considers the hypothesis test about
the mean p of a single normal population distribution where the variance of the

population ¢” is known. The hypothesis can be formally stated as

Ho: 1= o

Hi: UW# Mo
It is usually more convenient to standardize the sample mean and use a test statistical
based on the standard normal distribution. That is, the test procedure for Hy uses the
test statistic

X —
Z,=—F—

Hy
o/n
If the specific type I error is o, the hypothesis Hy: L = LLy cannot be rejected when the
observed value of the test statistic Zy is - Zg» < Zo< Z o». When a research considers
hypothesis testing about the mean p of population with unknown variance of the
population o, the test procedure for Hy uses the test statistic

X —
S/\In

T) has a ¢ distribution with n-1 degrees of freedom. If the specific type I error is a, the

TO:

Hp: WL = o cannot be rejected when the observed value of the test statistic is - 42, n.1 <

fo<tw2,n1.

3. The analysis of variance (ANOVA)

Montgomery and Runger (2002) presented that many single-factor experiments
require that more than two levels of the factor be considered. For example, an
industrial engineer may want to investigate three different methods. The ANOVA,
can be used for comparing means when there are more than two levels of a single

factor. Suppose all experiments have different levels of a single factor that the
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researchers wish to compare. Each factor level is called a treatment, a very general
term that can be traced to the early applications of the experimental design
methodology. The response from the experiment for each of the £ treatments is a

random variable. The researchers are interested in testing the equality of the &

treatment means L, o, ..., Ux The hypothesis can be formally stated as:

H()I Mlz Mzz...: Mk
Hi: W;# W, for at least one pair of all 7, j

Thus, if each observation consists of the overall mean L plus a realization of the
random error component, this is equivalent to saying that all N observations are taken
from the normal probability distribution with mean |l and variance 6. Therefore, if
the hypothesis H is not rejected, the changing of the level of the factor has not affect
on the mean |l of response. Table 2 is called the ANOVA table of k treatments, n

observations and N = kn total number of observations.

Table 2 The ANOVA table for a single-factor experiment, fixed effects model

Source of Sum of Degree of Mean Jo
Variation Squares Freedom Squares
Treatment SStreatment k-1 MStreament Jo= MStreatmen/ MSE
Error SSE N-k MSg
Total SSt N-1

The value of test statistic is

k ni
SS; zz lj__

i=1 j=I

k 2
Trealment = Z

SS,. =SS, _s5

MS _ S S Treatment

Treatment
¢ k-1

2

Treatment
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us, =55
N -k
_ MSTl'eatment
S - MS,

where y, is a data point from the experiment by using treatment i and replication j th

i=1,2,...,kandj=1,2,...,n

v, 1s the summation value of all observations from the experiment by using

treatment 7, (y, = Z Vi)

=
k n
»_is the grand total, (y = Z zyij)
i=l j=1
If the specific type I error is a, the hypothesis Hy cannot be rejected when o <f o, vi,v2
= f o k-1, Nk from the table of F- probability distribution.

4. Nonparametric statistics

Montgomery and Runger (2002) explained that most of the hypothesis testing
and confidence interval procedures, which is discussed in the previous part, are based
on the assumption that it works with random samples from normal populations.
Traditionally, these procedures are called parametric methods because they are based
on a particular parametric family of distributions, the normal in this case.
Alternatively, sometimes it can be said that these procedures are not distribution-free
because they depend on the assumption of normality. Nonparametric or distribution-
free procedures do not utilize all the information, which provides by the sample. As a
result, a nonparametric procedure will be less efficient than the corresponding
parametric procedure when the underlying population is normal. There are many

nonparametric methods involve the analysis of data.

The Kruskal-Wallis test is a nonparametric method in the analysis of variance
for a single-factor experiment. The Kruskal-Wallis can perform a test of the equality

of medians for two or more populations. This test offers a nonparametric alternative
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to the single-factor (one-way) analysis of variance. Suppose that N = z n, is the total
i=1

number of observations #; for all factor levels i = 1, 2,..., a, R, demote the n; ranks in

the i ™ treatment and R, denote the average value of R, . The Kruskal-Wallis

hypotheses are:
H: the population medians are all equal versus H;: the medians are not all equal

The Kruskal-Wallis test statistic measures the degree, which the actual observed
average rankRT , to the different from their expected value (N + 1)/2. If this difference

is sufficiently large, the hypothesis Hj is rejected. The test statistic is

a _ 2
H:LZ”{& _N+1j
NN+DEST\ T 2

H has approximately a chi-square distribution with a-1 degrees of freedom. Since

large values of H imply that Hj is false, H, will be rejected if the observed

value H > x. . When observations are tied, assign an average rank to each of the

tied observation. The test statistic is
1 [&R NN+
H=— Z R, NN+
Nl =/ 4
where #; 1s the number of observations in the im treatment, AN is the total number of
observations, and
1| N(N -1y
§r=_" Z R’ _NWV-)
N-1|3 4
An assumption for this test is that samples from the different populations are
independent random samples from continuous distributions, with the distributions

having the same shape.



45

MATERIALS AND METHODS

This chapter presents research methods, which include materials for
researching the problem formulation, the mathematical model of AGVsp-P/D and

solving algorithms to find the solution and verify the model quality.

Materials

The materials for this research could be categorized into three groups as

follows:
1. Computer

A personal computer, CPU Pentium IV 2.0GHz with 2 GB RAM, was used to
generate the data of simulated problems, process data sets, formulate the mathematical
model, program the algorithms, and run programs to solve the tested problems.
2. Software

2.1 Microsoft Excel program was used to solve the formulated integer
programming by using Solver, form the information sheets, and create the tables and

graphs for this research document.

2.2 MATLAB 7.0 was used to generate the tested problems, program the

algorithm and run the program to solve the generated problems.

2.3 Microsoft Word was used to create this research document.

2.4 Minitab was used to perform all statistical analysis.
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3. Literatures and related papers

Most of literatures and related papers have been received from many
professors, which are Dr. Peerayuth Charnsethikul (the advisor of this thesis), Dr.
Kamlesh Mathur, Dr. Danil Solow, and Dr. George Viraktarakis. A lot of books and
papers have been collected from the Kelvin Smith library of Case Western Reserve
University (CWRU), USA, the main library of Asian Institution of Technology (AIT),
Thailand, the library of the faculty of Engineering and the main library of Kasetsart
University, Thailand and download from electronic online journals, which available at

OHIOLINK on the Internet.

Methods

The motivation of the mathematical model and solving approaches are due to
the fact that the routing problems normally are difficult to solve and can not satisfy
some real situations, because it relates to some problems in NP-hard class such as
TSP/MTSP. If some real world constraints are added to a kind of routing problem, it

becomes a much more difficult problem to be modeled and solved.

The original single/multi AGV scheduling problem with specific P/D nodes
can be formulated and solved as TSP/MTSP (Blair, Charnsethikul and Vasques, 1987).
When the original AGV problem is modified to capture the special network structure
that is the network, which has alternatives for some nodes, the problem becomes the
AGVsp-P/D. TSP/MTSP with alternative P/D nodes will be considered for finding the
solution of this special AGV scheduling problem.

The key successfulness of this thesis will be creating the appropriate
mathematical model and heuristic approaches for solving the AGVsp-P/D. The
research sequence will be conducted following the steps that consist of the study and
analysis of the AGVsp-P/D, compare the AGVsp-P/D with the existing related
problems from literatures, formulate the mathematical model of this problem, create

the heuristic algorithms for solving these created mathematical model which is the
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modified TSP approach, and perform the test and evaluation of the created model by
programming the model on MATLAB 7.0 and solving some generated examples of

this problem. The proposed research will be explained step by step as follows.

1. The problem of AGV with alternative pick up and delivery nodes (AGVsp-P/D)

Job sequencing and scheduling is the important part of AGV system design.
The main goal of this step is to define the problem of AGVsp-P/D clearly in detail and
structure for doing analysis and studies in the next step. Designing AGV systems are
complex tasks. One of the main purposes of the scheduling problem for single/multi
AGYV is how the scheduling can provide the minimum total traveling distance of AGV.
Normally, the scheduling problems have been considered or designed with the routing
problem concomitantly. The ordinary vehicle scheduling and routing problem as
single/multi AGV scheduling problem is the problem with a single specific P/D node
that can be simulated by a network problem approach such as TSP/MTSP.

According to this point, the potential problem for studying the single/multi
AGYV scheduling problem is extended to be more realistic that the original TSP/MTSP
problem is modified by adding the structure of alternative P/D nodes. The main
purpose is to find the scheduling of AGV problems with alternative P/D nodes. This

kind of problems is presented in section 2.1.

The original TSP/MTSP is one of the applications of network problems, it is
necessary to choose a sequence of nodes to visit so as to accomplish a specified
objective. When the AGVsp-P/D is considered, the TSP/MTSP approach can be
applied for solving the schedule of problem like normal vehicle routing problems, but
the approach has to be modified to support the special structures of AGVsp-P/D. The
concept of TSP/MTSP will be applied by using the generated technique of assignment
problem with alternative P/D nodes to solve the AGVsp-P/D for determining the
minimum traveling distance of each AGV from the starting depot to some appropriate

selected nodes and then come back to the starting depot. This procedure based on the
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branch and bound with solving assignment subproblems for determining the optimal

schedule. The formulated mathematical model is presented in section 2.2.

The assignment problem with alternative P/D nodes which is the lower bound
of the AGVsp-P/D is considered as one of important parts of this research. The
mathematical models of TSP/MTSP are formulated in form of the 0-1 IP problem. For
large 0-1 IP problems, it takes much time to solve the problem. The Benders
decomposition approach is considered for lower bound of the AGVsp-P/D. The
generated Benders’decomposition algorithm for solving the lower bound of the

AGVsp-P/D is described in section 2.3.

The ordinary assignment problem is the 0-1 IP problem. An assignment
problem can be solved as a regular LP without concerning of 0-1 integer constraints
because of the unimodularlity of the network structure. The result is an integer
solution automaticly (Mathur and Solow, 1994). When the alternative nodes
constraints are added to the system, the properties of the problem will be changed.
The heuristics for the alternative selection and the improvement of selection for
solving the lower bound of AGVsp-P/D as solving the regular assignment problem are
presented in section 2.4. The lower bound model of AGVsp-P/D and its solving
approaches are programmed and tested on the computer by using MATLAB 7.0 and

Excel Solver.

The solutions of many tested problems, which are presented in the next chapter,
will sometimes form the single TSP tour but sometimes will not. After the lower
bound model is completed, the modified branch and bound and heuristic approaches
are applied to generate the TSP/MTSP tour of the schedule for multi/single AGVsp-
P/D. The modified Eastman’s algorithm for TSP of the AGVsp-P/D is presented in
section 2.5. The last section presents the heuristic for solving multi AGVsp-P/D by
using the methods of solving MTSP as standard TSP and using the heuristic of
splitting TSP tour.
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2. The Problem Analysis and Solution Technique
2.1 AGYV Scheduling Problems Analysis
Let consider the problem that the factory has a particular layout of
departments for the AGV system as figure 1. From the example layout, let assume

that the distance between each department (node) is shown in table 3.

Table 3 The distance table of the example layout from figure 1

To
From A B C D E F G H I
A 0 1 2 1 2 3 2 3 4
B o0 1 2 1 2 3 2 3
C 0 3 2 1 4 3 2
D 0 1 2 1 2 3
E 0 1 2 1 2
F o0 3 2 1
G o0 1 2
H o0 1
I o0

Normally, the list of jobs for AGV problems can be defined as the example
on table 4. In general, each job of AGVs composes of pick up the items at one node
and delivers them at one fixed destination node. For example, let consider a job No. 1
on table 4, the AGV travels from a starting department (node A) to the pick up node B

for getting the items and then travels to the delivery node C for finally sending items.
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Table 4 The example of a part of job list for a regular AGV problem

Job No. Pick up Department Delivery Department
1 B C
2 A I
3 B H
4 G C
5 D E
6 H F

Blair, Charnsethikul and Vasques (1987) modeled the optimum routing
problem of AGVs among the workstations as TSP/MTSP, mentioned previously. An
algorithm for the near optimal routing of AGVs in such a system is presented which
seeks to organize materials move into tours with the objective of minimizing the

maximum tour length.

For this research, the specific characteristic of alternative P/D nodes here is
considered the jobs that can have the alternative pick up and delivery nodes to select
more than one fixed point. Suppose in some parts of the example, the list of jobs that

one AGV is used to complete all jobs is shown as follows.

Table 5 The example of a part of job list for the single AGVsp-P/D

Job No. Pick up Department Delivery Department
1 B C
2 A I
3 B HorGorl
4 G C
5 D E
6 DorH F

The meaning of each job of AGVsp-P/D can be explained as the following
example. Let consider the job No. 3 on table 5, the AGV job is the item movements
that pick up the items from the turning process at department (node) B and deliver at

the drilling process, which can be performed at departments H or G or I. The AGV



51

has to travel from pick up node B and can select to deliver the items at nodes H or G
or I that is called “alternative pick up and delivery nodes” (alternative P/D nodes). If
the AGV travels from node B and select to deliver at node H, the total AGV traveling
distance may different from selecting to deliver at node G or node I. The job
scheduling of jobs (for example started with job No. 1 and followed by job No. 6, No.
5, and ended the schedule when all jobs done) and selecting of alternative P/D nodes
appropriately may provides the minimized total traveling distance of the AGV, which

is the objective of this research.

The AGVsp-P/D can be transformed to TSP for solving the special situation
that some jobs of AGVs have the P/D alternatives. The distance matrix [c;] of
AGVsp-P/D in a form of TSP is defined, which the table is consisted of the distance of
AGVs that move from the starting point of the current job to the starting point of the
next job. So the TSP distance table for the AGV problem is an asymmetric distance
table. Suppose the distance table of the previous AGVs job list on table 5, which is
the distance from the considered job to the others in a form of TSP distance table, is

shown as follows.

Table 6 The example of distance matrix [c;] of the AGVsp-P/D in a form of TSP

To Job j No.
(n) 1 2 3 4 5 6
From
Jobj No. Alternative
(job i, Alt. a) .1 21 31 32 33 41 51 6.1 62
n 1 2 3 4 5 6 7 8 9
1 1.1 I o 3 2 2 2 5 4 2 4
2 2.1 2 7 o 7 7 7 6 7 7 7
3.1 3 2 3 o0 00 00 3 2 2 2
3 3.2 4 6 5 o © @ o© 3 4 6 4
33 5 6 7 o o ® 5 6 6 6
4 4.1 6 5 6 5 5 5 0 7 5 7
5 5.1 7 2 3 2 2 2 3 0 2 2
6.1 8 4 7 4 4 4 5 4 0 0
6 6.2 9 3 5 4 4 4 6 7 o0 o0
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From table 6, assume that job No. 1 is a starting job with a starting node B
(depot) for the AGV. Job No. 1 of the movement from node B to node C is a regular
job (not has any alternative P/D nodes) that has label 1.1, but job No. 3 of the
movement from node B to the selected alternative delivery nodes H or G or I is an
alternative job that are labeled as 3.1, 3.2, and 3.3. Job No. 3 can be separated to 3.1
(B to H), 3.2 (B to G), and 3.3 (B to I). The distance on table 6 is the distance of the
AGYV that move from the pick up nodes of the current job to the pick up nodes of the
next job. For example, the distance of the AGV that move from job 1.1 to job 2.1 is 3
units, which is the summation distance from the pick up node of job 1.1 (node B) to
the delivery node of job 1.1 (node C), 1 unit, and the distance from node C to the pick
up node of job 2.1 (node A), 2 units, that equal to 1+2 = 3 units. When the TSP
approach is applied to this table with alternative P/D nodes constraints, the solution of

AGVsp-P/D can be generated.

2.2 Problem Formulation of the AGVsp-P/D

When mathematical formulations of routing problems are studied, there
are so many kinds of mathematical models as mentioned previously in the literature
review part. When the presented problem statement of AGVsp-P/D is compared to the
TSP, the detail can be analyzed as follows.

Refer to the stated problem statement, given a set of n jobs J such that job
Ji={Pis, Dip},i=1,2,...,n where P;,1s a set of alternative pick up departments a
ofjobJ;,a={1,2, ..., k(i)} and D;; is a set of alternative delivery departments b of
jobJ;,b={1,2,...,1(i)}. k(i) is the number of alternative departments a for job J;.
[(i) is the number of alternative departments b for job J;. When job J; = {P;4, Dj»},j =
1,2, ..., nis scheduled after job J;, ciq » 1s the traveling distance of an AGV that starts
from a selected pick up department a of job J;, goes to a selected delivery department
b of job J;, goes to a selected pick up department a of job J;, then goes to a selected
delivery department b of job J;, which is a non-negative number and ¢, i, = . The

AGVsp-P/D is the problem that selects one alternative department from set a and one
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alternative department from set b of all jobs J, called x;, j» such that x;, » = 1 if an AGV
travels from a selected pick up department a of job J; to a selected delivery department
b of job J; or x4 5 = 0 otherwise and sequences all those jobs J with their selected
alternatives to form single/multi tours (TSP/MTSP tour) that provide minimized the

total traveling distance. The single/multi AGVsp-P/D relates directly to TSP/MTSP.

Refer to Miller-Tucker-Zemlin (1960)’s formulation of classical TSP and
Svestka and Huckfeldt (1973)’s formulation of MTSP. TSP/MTSP variable x;; is equal
1 if the salesman travels from node i to node j. When the alternative P/D nodes
structure is analyzed on the model’s variables, if the salesman travels from node i with
alternative a to node j with alternative b the variable should be x;, j» = 1. By similar
idea, the TSP/MTSP with alternative P/D can be formulated base on the original
model but change x;; to x;, j». This research does the analysis and creates the model of
TSP/MTSP with alternative P/D nodes, n nodes and m AGVs, which similar idea with
the original TSP/MTSP model as follows.

r k(i) r 1(j)

MinZ = ZZZZXW,, Ciajb (19)

i=l a=1 j=I b=l

Subject to

r k()

zzxiajb :1’ v.]:L 2,...,7' and Vbzl’ 2”1(-]) (20)
i=1l a=1

r ()

X5 =1 Vi=l,2,..,r and Ya=1,2,...k({) (21)

j=1 b=1

V=YX, Sr—1 Vi#j,a,b (22)
xiajb 2007’1 Vi’aaj)b

a,b > 0and Integer

where

r  =ntm-1

Xiajb = 1; If one AGV travel from node i with alternative a to node j with
alternative b (for example, x,; 3; is that the AGV travel from node No.

1 with alternative No. 1 to node No. 3 with alternative No. 1)
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= (; otherwise

ciajp Tepresents the distance from node i with alternative a
to node j with alternative b
k(i) represents the number of alternative departments a for node J;.
[(i) represents the number of alternative departments b for node J..
m  represents the number of AGVs (m = 1 when considers the single

AGYV case)

This mathematical model is a TSP/MTSP with alternative P/D nodes that can
simulate the model of single/multi AGVsp-P/D by identifying nodes of the TSP/MTSP
as jobs of AGVs. This model can not be solved regularly same as the original

TSP/MTSP. Therefore, the model has to be modified as follows.

When relax the subtour elimination constraints (22) and consider the single
AGYV case, this problem looks like the assignment problem, but there are the
alternative P/D nodes for each job. This assignment problem with alternative P/D is
the 0-11P model that is the relaxation of TSP/MTSP with alternative nodes. For
solving TSP/MTSP with alternative P/D nodes, the solving algorithm has to apply the
branch and bound approach with solving the assignment problem with alternative P/D
nodes as a subproblem of each branching. The solution from solving this assignment
problem provides the lower bound of AGVsp-P/D and can be modified to be the
simpler mathematical model. The variable x;, j is considered to be eliminated the
subscribes @ and . The main propose of the modification is to create the model that
can be solved by similar approaches of solving the regular assignment problem. For
clearly explaining, the table 6 (the example of cost matrix [c;] of the AGVsp-P/D in a
form of TSP) and table 7 (The assignment solution of variable x;; of AGVsp-P/D from
table 6) is considered concomitantly. The modified mathematical model is explained
as follows, where # = number of all nodes (all rows or columns) that consist of all

alternatives and n = number of jobs.
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Let the new variable x;; is a 0-1 integer variable, which indicating whether the
schedule of the AGV is accomplished from node (row) i to node (column) j or not and
can be solved as an original assignment problem. The dummy variable Z is introduced
to the model to capture the alternative structures and eliminate the subscribes a and b
of the variables x;, 5. It represents to the summation of variables x;; for each row and
column. Consider table 7 for clearly explaining, job No.1 is a regular job, which not
has P/D alternatives. It consists of one row (row No.1) of job 1.1 and one column on
table 7. The dummy variable Z;) of row No.l (Z(y)) is the summation of the solution of
variables x;; of row No.1, which equal to 1. For job No. 3, it has 3 alternative P/D
nodes, which it consists of row No.3, row No.4 and row No.5 of job 3.1, job 3.2 and
job 3.3 sequentially. Table 7 shows that the dummy variables Z; of row No.3 (Z3))
equals to 1, row No.4 (Z4)) equals to 0 and row No.5 (Zs)) equals to 0. Because only
one alternative of job No. 3 (job 3.1or 3.2 or 3.3) will be selected, only one row of job
No.3 (row No.3 or row No.4 or row No.5) will has the summation of the solution of
variable x;; equal to 1, which is row No.3 of job 3.1 in this case. According to this
point, all Z; variables of job No.3 (Z3), Z4), and Zs)) will have the summation equal to
1 (Z3) +Z@4ytZs = 1). Table 7 is the example of AGVsp-P/D, which consists of 9
nodes (9 rows and columns) with 6 jobs (2 =9 and n = 6). Set S(k) is defined to
represent the set of all alternatives of any job k (k=1, 2, ..., n). From table 7, there
are six sets S, of 6 jobs that are set S(;) of job No.1, which consists of row No.1 of job
1.1, set Sz)of job No.2, which consists of row No.2 of job 2.1, set S(3) of job No.3,
which consists of rows No.3, 4 and 5 of jobs 3.1, 3.2 and 3.3, set Su) of job No.4,
which consists of row No.6 of jobs 4.1, set S5y of job No.5, which consists of row
No.7 of job 5.1 and set Si) of job No.6, which consists of rows No.8 and 9 of jobs 6.1
and 6.2. Therefore, the constraints of alternative P/D nodes of the modified model is
that the summation of all dummy variables Z; of all rows No. i in each set Sy, of any

jobs k will equal to 1.



According to this point, the created lower bound model of AGVsp-P/D is

shown as follows.

h _h
MinZ = ZXU (o
i=1 j=1
Subject to
h
lexij =7 Vi=1,2,..,h
h
dx, =Z, Vi=1,2,..h
j=l1
> 7z, =1 Vk=1,2,.,n
i€
x,; =0orl Vi, j
where
x; = 1;If one AGV travel from node i to node j
= (; otherwise

cj  represents the distance from pick up node i through the path to delivery node j
S represents the set of all P/D alternatives of job &
n represents the number of jobs

h represents the number of nodes

Now the lower bound model of AGVsp-P/D can be programmed in Excel
Solver and MATLAB 7.0. After the lower bound model is implemented with the
example of distance matrix [c;] of the AGVsp-P/D on table 6 by using Excel Solver,

the result is shown on table 7.

56
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Table 7 The assignment solution of variable x;; of AGVsp-P/D from table 6

Job No. 1 2 3 4 5 6
(n) Jobi Alta 1.1 21 31 32 33 41 51 61 62

h 1 2 3 4 5 6 7 8 9 Z;
1.1 1 o 0 1 0 0 0 0 0 0 1
2 2.1 2 0 w 0 0 0 1 0 0 0 1
3.1 3 0 0 o o o 0 1 0 0 1
3 32 4 0 0 o o o 0 0 0 0 0
33 5 0 0 © 0 0 0 0 0 0 0
4 4.1 6 0 1 0 0 0 o 0 0 0 1
5 5.1 7 0 0 0 0 0 0 © 0 1 1
6.1 8 0 0 0 0 0 0 0 © o 0
6 6.2 9 1 0 0 0 0 0 0 © © 1

zZ 1 1 1 0 0 1 1 0 1

From the Excel Solver solution, the assignment solution is 1.1 - 3.1, 2.1 - 4.1, 3.1 - 5.1,
41-2.1,5.1-6.2,6.2-1.1 and the solution value of minimum total distance that is 21
units. The alternative job No. 3.1 (B to H) and job No. 6.2 (H to F) are selected. The
solution forms 2 subtours that are 1.1-3.1-5.1-6.2-1.1 and 2.1-4.1-2.1. The meaning of
this solution is that one AGV starts at node B of job No.1 and accomplishes job No.1

at node C, travels to node B, which is the starting job of job No. 3.1and accomplishes
job No. 3.1 at node H, travels to node D, which is the starting job of job No.5 and
accomplishes job No.5 at node E, travels to node H, which is the starting job of job No.
6.2 and accomplishes job No. 6.2 at node F, then travels back to node B which is the
starting node of this AGV. Another AGV starts at node A of job No.2.1 and
accomplishes job No.2.1 at node I, travels to node G which is the starting job of job
No.4 and accomplishes job No.4.1 at node C, then travels back to node A, which is the
starting node of this AGV.

According to this point, the problem size is increased and the research found
that the ordinary version of Microsoft Excel Solver can run only 13 nodes (& = 13).
Solver shows that “Too many adjustable cells” and terminate running. Then
MATLAB 7.0 is applied. The experiment is performed by randomly generating
simulated problem of 10, 20, 30, 40, and 50 nodes with some numbers of 2 alternative

jobs and some numbers of regular jobs. The running time of this lower bound model is
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examined and compared to the original assignment problem of same problem size. The

result is shown in the next chapter.

After using MATLAB 7.0 on a 2 GB RAM computer to perform the
experiment, the research found that MATLAB 7.0 can run steadily up to 50 nodes (& =
50) with an average running time about 50 seconds but MATLAB 7.0 shows “Out of
memory” of running the bintprog function, which is the function of solving 0-1 IP,
beyond 50 nodes. Because this mathematical model of the lower bound of AGVsp-
P/D is 0-1 IP, the operation find the optimal solution by using branch and bound
approach for solving 0-1 IP but if a considered situation is a larger scale problem, IP
may take much more memory to run. From the experimental results, the resource of
required memory is the problem, not the running time, so that the researcher attempts
to solve the lower bound model of AGVsp-P/D in LP rather than 0-1 IP. The
decomposition techniques and other heuristic methods are considered for solving the
larger scale problem to avoid running out of memory. Next, the research tries to apply

Benders’decomposition to solve the lower bound model of AGVsp-P/D.

2.3 The lower bound of AGVsp-P/D by Benders’decomposition approach

Let consider the Benders’decomposition approach for MIP. The lower bound
model of AGVsp-P/D in a similar form of MIP of the Benders’decomposition will be
considered. Refer to Benders’decomposition algorithm, it can be applied to the lower
bound model of AGVsp-P/D by partitioning the variables of the into two sets which
are x;; and Z; and projecting the problem onto Z;) variables. Consider the example on
table 7 for clearly explaining, there are nine Z; variables of nine nodes (rows), which
can be separated into six sets of Siy. They are Suy = { Zy}, Se) = { Zp)}, S3) = { Zo),
Zay, Z5)}> Sy = { Ze)}» S5y = { Zny} and S6) = { Zg), Z9)}. Because only one
alternative node of each job will be selected in each iteration of solving the model by
using Benders’decomposition, only one variable Z; of each set Sy will be fixed to be
1 and the others will be 0. The alternative nodes, which have the value of variable Z;
= 0, can be ignored from the model so that the model becomes the regular assignment

problem. All variables x;; , which are 0-1 integer, can be ignore to become x;; >0,
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because of the property of assignment problem (Mathur and Solow, 1994). Let Z
denotes the sets of all feasible 0-1 integer vectors Z, then the lower bound model of
AGVsp-P/D in a similar form of MIP by the Benders’decomposition approach can be

written as following.

Minimize cx +d'Z
Subjectto Ax + BZ>b,
x>0 ZeZ

where A is a m by n coefficient matrix of vector x,
B is a m by n' coefficient matrix of vector Z,
cisanby I cost vector of vector x,
dis an'by 1 dummy cost vector of vector Z, which is a zero vector
x is a n by 1 vector of variable x;,

Zis an'by | vector of variable Z; with Z = {Z | Zipn e {0,1};1=1,2,..,n"}

Let v (Z)=d'Z+ maximize {(b—BZ)"u| A"u<c, u>0}

where u is a m by 1 vector of dual variable u.

When the Benders’algorithm is applied for solving the example of AGVsp-P/D
on table 6, the function v (2) is:

v(Z=1Z), Zey Z3) Ziay Zisy Zeoyr Zrs Zisys Zoyl' )

= maximize {(b — BZ) Tul A"u<c u>0}.

Because this example is the 9 nodes problem, the dual problem of this example
consists of 18 dual variables # and 81 constraints. The example of applying
Benders’decomposition approach to solve the lower bound model of AGVsp-P/D of

the example on table 6 is explained as follows.
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The Benders’decomposition algorithm for the variables x;; and Z;) for this example is:

Step 1: Initialization: set v (Z) = 0, select a fixed vector Z/ € Z, set j=1 and set k= 1

Step 2: Solve the Benders’subproblem: evaluate the value of vy (Z/) with its
corresponding set of dual extreme point (vector /) by solving LP with a fixed
vector Z/

Step 3: Stopping criterion: if v (Z/) = v (Z) then stop, otherwise go to step 4

Step 4: Improve an approximation function: by using a set of dual extreme point
(vector u”) to generate the Benders’cut for forming iteration K™ of
Benders’partial master problem

Step 5: Solve the Benders’partial master problem: that is minimizing v (Z) with
Benders’cut from step 4 for updating the value of v (Z) and then set j=j+1 and
updating the new vector Z/, set k= k+1 and go to step 2.

When the algorithm is implemented, the result is illustrated as follows.
Iteration 1:

Step 1: Initialization:
Let setv (Z) =0, select v (Z = [Z(l), Z(z), Z(3), Z(4), Z(s), Z(6), Z(7), Z(g), Z(g)]T ) =
% (Z1 =[1,1,0,0,1,1,1,0, I]T ),setj=1andsetk=1.

Step 2: Solve the Benders’subproblem:

The first Benders’subproblem of the example on table 6, which is:

Maximize v| (Z') = Maximize {(b~BZ") u' | A"u'<c, u' >0},
is solved. The maximum occurs at the extreme point u I = [u1, Uy, U3, U4, Us, Ug U7, Ug, Ug,
Ujo, U1, U2, Ug3, Ug4, Uj5, Uje, U7, uig] =10,5,0,2,4,3,0,1,0,2,3,2,2,2,1,2,2,2]

and maximum value of v, (Z') =24.

Step 3: Stopping Criterion:
Now the value of v (2) =0, v, (Z') =24 # v (Z) then go to step 4
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Step 4: Improve the approximations function:

Using the dual extreme point u ' generates the approximations function (v (2)),
with a Benders’cut, for the Benders’partial master problem of the iteration 1. The
Benders’partial master problem is:

Minimize v (Z)=d'Z + maximize { [(b—BZ)" u'];}

Subjectto Ze Z
A Benders’cut of the iteration 1 is [(b — BZ) " u'], that is:

[0Z1)+5Z2yt0Z 3y 12 ZayH4Zsy+3 26y H0Z7yH1 Zi3yH0Z 0y H 2 Z 1yt 3 Z 0y 2 Z3)H 2 Zay+2Z 5y +

1 Z6y2Z7y+2Z(3y+2Z9)]1

= 220y+8Zayt 223yt 4Zayt6 syt 126y 220y T3 2812 29)

Because a vector d is a zero vector, the Benders’partial master problem for

iteration lis:

Minimize v (Z) = maximize { [2Zt8Z)+2Z3y+4Zuyt6Zsy+7Z6t2Z7y+3 232 Z9)]1 }
Subjectto Ze Z

Step 5: Solve the Benders’partial master problem:
Update j = 2, k = 2 and the value of v (£) from solving the Benders’partial
master problem = 20 with 1s new vector Z = 72 = [1,1,1,0,0,1,1,0, 1]T

Iteration 2:

Step 2: Solve the Benders’subproblem:

The Benders’subproblem of iteration 2 is:

Maximize v, (Z°) = Maximize {(b— B Z*)"u’ | A"u’ <c, u” >0},
is solved. The maximum occurs at the extreme point uw = [u1, uy, U3, U4, us, Ue, U7, Ug, Ug,
Ui, Uy, U2, Ups, Ui, Ugs, Upe, Wiz, Uig] = [0,5,0,1,1,3,0,1,1,2,3,2,2,1,1,2,2,2]

and maximum value of v, (Z') =21.

Step 3: Stopping Criterion:
Now the current value of v (Z) = 20. Because v; (Z') =21 # v (Z), not terminate,

then go to step 4
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Step 4: Improve the approximations function:

Using the dual extreme point u * generates an approximations function (v (Z)),
with a Benders’cut. A Benders’cut of the iteration 2 is [(b — BZ) " u?*], that is:
[0Z0)+5Z2yH0ZyH1 Zayt 1 Zisyt3 26yt 0Lyt 1 2y + 1L Zoy 220y 3 2yt 226y +2 24y T 1 25y +
1Z6y2Z2 228+ 2 Z0)]1
= 270148702233 Zay+ 2 Z 5 +4 Zi6y -2 27+ 3 Z 5+ 3 Z,0)

The Benders’partial master problem for iteration 2 is:

Minimize v (Z) = maximize { [2Zy+8Zpyt2Z3)+4Zuy 625yt Z6)H 2273 Z3y12Z9)]1
(278202 Z3y+3 Zayt2 25y 4 Zi6y 2 Z 3 Zi8y 3 2oy o}

Subjectto Ze Z

Step 5: Solve the Benders’partial master problem:
Update j = 3, k=3 and the value of v (£) from solving the Benders’partial
master problem = 21 with is new vector Z = 7= [1,1,1,0,0,1,1,0, l]T

Iteration 3:

Step 2: Solve the Benders’subproblem:

The Benders’subproblem of iteration 3 is:

Maximize vs (Z) = Maximize {(b—B Z’)"u’ | A"u’ <c,u’ >0},
is solved. The maximum occurs at the extreme point uw = [u1, uz, us, ug us, Ug U7, ug, Ug,
Uy, U11, Uj2, W13, Up4, Ugs, Uje, U17, ulg]T =10,5,0,1,1,3,0,1,1,2,3,2,2,1,1,2,2,2]

and maximum value of v; (Z°) =21.

Step 3: Stopping Criterion:
Now the current value of v (Z) = 21. Because vs (Z°) =21 = v (Z), terminate the

algorithm and stop.

The solution from the Benders’ algorithm now is same as the solution from IP
which the assignment is 1.1 -3.1,2.1-4.1,3.1-5.1,4.1-2.1,5.1-6.2and 6.2 - 1.1
with the solution value of minimized total distance of 21 units, that same as the

solution from solving 0-1 linear programming. Alternative 3.1 and 6.2 are selected.
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The example result shows that the solution provide two subtours that can
assigns to 2 AGVs which starts at node 1 and node 2. This solution can be the lower
bound of the AGVsp-P/D. This lower bound can be used in branch and bound
approach to find a single TSP tour that is the optimal schedule of the single AGVsp-
P/D.

There are some solutions provide the assignment solution as a single tour that
is the TSP solution, but most of them provide subtours. According to this point, the
model can be applied to any size of problem but the Benders’decomposition algorithm
may consists of many iterations for generating one lower bound solution. The
algorithm is so complicate and still has to solve 0-1 IP in step 5 for finding vectors Z.
However, refer to the result section, the 0-1 IP lower bound problem with 50 nodes
can be solved by MATLAB 7.0 but most of problems which have more than 50 nodes
(h=50) cause MATLAB 7.0 shows “Out of memory” in calculation of binary problem.
Benders’decomposition algorithm can be applied for the larger scale problem, which
MATLAB 7.0 can not generate solution, because the problem size of 0-1 IP of the
Benders’partial master problem in each iterations is smaller than the problem size of

0-1 IP of the original lower bound model for the same tested problem.

For example, let consider a problem of 60 nodes, the 0-1 IP model has the
matrix [4] with the size of 120 x 3600, 3600 x;; variables, that cause MATLAB 7.0 can
not calculate binary problems and shows “out of memory”. The example of applying
the Benders’decomposition algorithm to the 60 nodes problem is shown in an
appendix. However, the research attempts to examine the methods to solve the lower
bound of AGVsp-P/D without solving 0-1 IP and easier to process than Benders’
decomposition algorithm. The research forms some heuristic approaches. The
following section presents heuristics for selecting alternative nodes that can provide

that assignment solutions, which close to solutions from the 0-1 IP model.
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2.4 Heuristic approaches for solving the lower bound of AGVsp-P/D

The lower bound of AGVsp-P/D, which is the assignment problem with
alternative P/D nodes, can be solved by selecting the appropriate alternative nodes first
and then solving the regular assignment problem. The considered problem is “How to
select the best alternative that can provide the best assignment solution?” This section
presents heuristics for selecting the appropriate alternatives of each job and the
heuristic for improving the selected alternatives that can provide the assignment
solution, which close to the solution from the 0-1 IP model. Suppose the example of
distance matrix, called the master matrix, of 6 jobs that job 3 has 3 alternatives and job

6 has 2 alternatives, is shown on table 8 as follows.

Table 8 The example of master matrix

Job
No. 1 2 3 4 5 6
Jobi, Alta 1.1 2.1 3.1 3.2 33 4.1 5.1 6.1 6.2
1 1.1 o 2 11 3 35 94 30 13 97
2 2.1 3 © 57 73 86 23 21 61 83
3.1 85 27 % © © 41 11 66 27
3 3.2 48 57 o ® 0 52 46 73 52
3.3 80 66 o © © 58 79 63 28
4 4.1 61 37 33 0 56 0 88 87 9
5 5.1 72 16 68 14 20 485 © 4 70
6.1 22 43 62 17 88 21 44 © ©
6 6.2 96 18 86 60 34 42 15 © ©

The solution of this master matrix from solving the 0-1 IP model is 74 units
with the assignment solution 1.1-2.1, 2.1-1.1, 3.1-5.1, 4.1-3.1, 5.1-6.1, and 6.1-4.1.
Manually, the assignment problem with alternative P/D nodes can be solved by
selecting the appropriate alternative for job No. 3 and job No. 6 first and then solve the
regular assignment problem. This research tries to create 3 heuristics for alternative
selection that can provide the initial solution and the heuristic for improving the

alternative selection. All for alternative selection heuristics are:
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Heuristic-1 for selecting the alternative nodes

Step 1: For all rows of job j that have alternative nodes, compute the average of all
cost elements in each row

Step 2: For all columns of job j that have alternative nodes, compute the average of
all cost elements in each column

Step 3: Compute the average value of cost elements from all rows, from step 1, and
the correlated columns, from step 2, of each alternative jobs j

Step 4: Select the alternatives for each job j that have the minimum value from step 3

and solve the assignment problem with this selected alternatives

Heuristic-2 for selecting the alternative nodes

Step 1: Solve the assignment problem of the master matrix

Step 2: Calculate the average of the assignment solution of all rows and columns of
each alternative

Step 3: Select the alternatives that have the minimum value of the average of
assignment solution and solve the assignment problem with this selected

alternatives

Heuristic-3 for selecting the alternative nodes

Step 1: Create the distance matrix, [dj], that consists of minimum distance of all jobs

Step 2: Solve the assignment problem of the distance matrix, [dj]

Step 3: Select feasible alternatives of master matrix, which provide the minimum
increasing (penalty) of cost elements from the assignment solutions of step 2

Step 4: Solve the feasible assignment solution.

For explaining, the master matrix on table 8 is used to show the
implementation of all heuristics. The details are shown step by step for all heuristics

as follows.



The example of implementing the Heuristic-1 of the alternative nodes selection:

Step 1 and step 2 are explained as follows.
Step 1: For all rows of job j that have alternatives, compute the average of the
cost in each row
Step 2: For all columns of job j that have alternatives, compute the average of

the cost in each column

Table 9 The example of step 1 and step 2 of Heuristic-1

Jobi, Alta 1.1 2.1 3.1 3.2 33 41 5.1 6.1 6.2

1.1 - 2 11 3 35 94 30 13 97

2.1 3 - 57 73 86 23 21 61 83 Avg.
3.1 85 27 - - - 41 11 66 27 42.833
32 48 57 - - - 52 46 73 52 54.667
33 80 66 - - - 58 79 63 28 62.333
4.1 61 37 33 0 56 - 88 87 9

5.1 72 16 68 14 20 485 - 4 70

6.1 22 43 62 17 88 21 44 - - 42.429
6.2 96 18 86 60 34 42 15 - - 50.143

Avg. 52.833 27.833 53.167 52.429 52.286

Step 3: Compute the average value of each alternative jobs
3.1: (42.83+52.83)/2 = 47.83
3.2: (54.66+27.83)/2 = 41.25
3.3:(62.33+53.16)/2 = 57.75

6.1: (42.43+52.43)/12 =47.43
6.2: (50.14+52.28)/2 = 51.21

Step 4: Select the alternatives that have the minimum value of average cost and
solve the assignment problem with this selection
From step 3, job 3.2 and 6.1 are selected. The assignment solutions with the

selected jobs are shown on table 10 as follows. The solution is 76 units.



Table 10 The assignment solution of the example of Heuristic-1
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Job i,

Alta 1.1 2.1 32 4.1 5.1 6.1
1.1 © 2 3 94 30 13
2.1 3 ) 73 23 21 61
3.2 48 57 0 52 46 73
4.1 61 37 0 w 88 87
5.1 72 16 14 485 o0 4
6.1 22 43 17 21 44 0

The example of implementing the Heuristic-2 for the alternative nodes selection:

Step 1: Solve the assignment problem of the master matrix

The assignment solution with the selected jobs is shown as follow.

Table 11 The assignment solution of step 1of Heuristic-2

Job i,

Alta 1.1 2.1 3.1 3.2 33 4.1 5.1 6.1 6.2
1.1 ) 2 11 3 35 94 30 13 97
2.1 3 0 57 73 86 23 21 61 83
3.1 85 27 0 ) ) 41 11 66 27
3.2 48 57 0 ) ) 52 46 73 52
3.3 80 66 0 ) ) 58 79 63 28
4.1 61 37 33 0 56 0 88 87 9
5.1 72 16 68 14 20 485 ) 4 70
6.1 22 43 62 17 38 21 44 0 )
6.2 96 18 86 60 34 42 15 0 )

Step 2: Calculate the average of assignment solution of all rows and columns of

each alternative

From table 11, the column of job 3.1 has the assignment solution =11 and the

rows of job 3.1 has the assignment solution =11. The average assignment solution of

job3.11s (11+11)/2 =11. The average assignment solutions of all alternative jobs are:

=28.5

3.1:(11+11)2 =11
3.2: (0+57)/2
3.3: (34+28)/2 =31
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and

12.5
31

6.1: (4+21)/2
6.2: (28+34)/2

Step 3: Select the alternatives that have the minimum value of the average of
assignment solution and solve the assignment problem with this selected
alternatives From step 2, job 3.1 and 6.1 are selected. The assignment solution

with selected jobs is shown on the table 12 as follows. The solution is 74 units

Table 12 The assignment solution of step 2 of Heuristic-2

Job i,

Alta 1.1 2.1 3.1 4.1 5.1 6.1
1.1 ) 2 11 94 30 13
2.1 3 ) 57 23 21 61
3.1 85 27 0 41 11 66
4.1 61 37 33 ) 88 87
5.1 72 16 68 485 ) 4
6.1 22 43 62 21 44 0

The example of implementing the Heuristic-3 for the alternative nodes selection:

Step 1: Create the distance matrix, [d;;] that consists of minimum distance of all jobs
The distance matrix, [d;;] is shown on table 13 as follows. For all alternative
jobs j, the notation of j. X represents the job with the minimum distance element. For

example, job 3.X represents the job that all distance elements are the minimum value

from jobs 3.1, 3.2 and 3.3.

Table 13 The distance matrix, [dj;] of step 1 of Heuristic-3

Job i,

Alta 1.1 2.1 3X 4.1 5.1 6.X
1.1 o0 2 3 94 30 13
2.1 3 0 57 23 21 61
3.X 48 27 oo 41 11 27
4.1 61 37 0 0 88 9
5.1 72 16 14 485 o)

8 »

6.X 22 18 17 21 15
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Step 2: Solve the assignment problem of the distance matrix, [d};]

The assignment solution of table 13 is shown on table 14 as follows.

Table 14 The assignment of minimum distance matrix of Heuristic-3

Job i,

Alta 1.1 2.1 3.X 4.1 5.1 6.X
1.1 0 2 3 94 30 13
2.1 3 o0 57 23 21 61
3.X 48 27 o0 41 11 27
4.1 61 37 0 0 88 9
5.1 72 16 14 485 0 4
6.X 22 18 17 21 15 0

The assignment solution is 1.1-2.1, 2.1-1.1, 3.X-5.1, 4.1-3.X, 5.1-6.X, and 6.X-4.1
with the total cost = 41.

Step 3: Select the appropriate alternatives from the assignment solutions of step 2

Let consider job 3.X, the assignment solution shows that the assignment is
3.X-5.1 with cost =11. The alternative 3.1 must be selected for making the solution to
be feasible, but when consider assignment of 4.1-3.X with cost = 0, the alternative 3.2
must be selected. The problem is which alternative 3.1 or 3.2, should be selected. For
the master matrix, the algorithm selects the alternative that provides the minimum

increasing (penalty) cost. For example,

1. If select 3.1 to replace 3.X, the assignment of 4.1-3.X becomes 4.1-3.1 with
the cost increasing from 0 to 33 and the assignment of 3.X-5.1 becomes 3.1-5.1 with

the same cost = 11. The total increasing cost is the penalty cost = (33-0) + (0) = 33.

2. If select 3.2 to replace 3.X, the assignment of 3.X-5.1 becomes 3.2-5.1 with
the cost increasing from 11 to 46 and the assignment of 4.1-3.X becomes 4.1-3.2 with

the same cost = 0. The total increasing cost is the penalty cost = (46-11) + (0) = 35.

The alternative 3.1 is selected for this problem and used the same procedure for

considering job 6.X.
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Let consider job 6.X, the assignment solution shows that the assignment 6.X to
4 with cost =21. The alternative 6.1 must be selected for making the solution to be
feasible, but when consider assignment 5.1-6.X with cost = 4, the alternative 6.1 must
be selected also. Therefore, the alternative 6.1 is selected without considering the

penalty cost.

Step 4: Solve the feasible assignment solution

The distance matrix is updated by using the feasible alternative in the matrix, [d;].

The feasible distance matrix and assignment solution is shown on table 15 as follows.

Table 15 The assignment solution of step 4 of Heuristic-3

Job i,

Alta 1.1 2.1 3.1 4.1 5.1 6.1
1.1 o0 2 11 94 30 13
2.1 3 o 57 23 21 61
3.1 85 27 0 41 11 66
4.1 61 37 33 o) 88 87
5.1 72 16 68 485 o 4
6.1 22 43 62 21 44 o

The assignment solution is 1.1-2.1, 2.1-1.1, 3.1-5.1, 4.1-3.1, 5.1-6.1, and 6.1-4.1 with

cost 74 units that is the same as the 0-1 IP solution.

30 tested problems are generated to verify the quality of solutions for all
heuristics. All heuristics are applied to select the alternative of all tested problems and
then the assignment solution of the selected alternative is solved and compared to the

IP solution from the master problem. The results are showed in the next chapter.

All heuristics for selecting alternatives discussed can provide the initial
solution of the lower bound of the AGVsp-P/D. The previously procedures, can
usually be classified as methods of constructive heuristics. The solutions can be
improved by applying the procedure that is the improvement heuristic base on a given

initial solution. The next part presents a heuristic for improving selected alternatives
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from previous alternative selection heuristics. The purpose is to improve the selected

alternatives that can provide that the assignment solution close to the solution from the

0-1 IP model. The alternative selection improvement heuristic is:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

For all rows of job j that have alternatives, compute the summation of the
cost in each row

For all columns of job ;j that have alternative, compute the summation of

the cost in each column

Compute the summation value of each alternative job and label the selected
solution from any alternative selected heuristics (Heuristic-1 or 2 or 3 can

be used)

Select one of the un-label alternatives that has the minimum value of
summation label the new selection, change the selected alternative to the new
selection and solve the assignment problem of the distance matrix with

new selected alternatives

If the assignment solution is not improved, go back to step 4, otherwise keep
the improved solution, label all alternatives of this considered job and then go

to back step 4. Continue until all jobs (in step 3) are labeled

Suppose the example of the master matrix for explaining the implementation of

this heuristic is shown on table 16 as follows.

Table 16 The example of the alternative selection improvement heuristic

Job i,

Alta 1.1 2.1 3.1 32 33 4.1 5.1 6.1 6.2
1.1 71 16 56 90 47 75 97 99
2.1 6 0 10 33 25 43 94 50 2
3.1 73 69 ) 0 0 67 38 1 87
32 66 2 ) 0 ) 83 42 63 81
3.3 11 32 ) 0 ) 5 92 76 37
4.1 79 54 22 94 11 o) 16 7 23
5.1 67 6 24 70 70 45 0 0 20
6.1 97 45 56 62 60 9 86 o0 o)
6.2 89 39 95 0 54 27 67 0 o)
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The solution of this distance matrix from solving the 0-1 IP model is 54 units
with selected alternative 3.1 and 6.1 and the assignment of 1.1-3.1, 2.1-1.1, 3.1-6.1,
4.1-5.1,5.1-2.1, and 6.1-4.1. When the alternative selection Heuristic-3 is applied to
this example, the alternatives 3.2 and 6.1 are selected with cost 89 units. The solution

1s shown as follow.

Table 17 The assignment solution of table 16 by using Heuristic-3

Job i,

Alta 1.1 2.1 3.2 4.1 5.1 6.1
1.1 o0 71 56 47 75 97
2.1 6 0 33 43 94 50
3.2 66 2 0 83 42 63
4.1 79 54 94 ) 16 7
5.1 67 6 70 45 0 0
6.1 97 45 62 9 86 0

The Heuristic-3 solution deviates from the IP solution about 64.81% that is too
much. When the alternative selection improvement heuristic is applied to the
generated solution from Heuristic-3, the example of implementation of the alternative

selection improvement heuristic algorithm is shown step by step as follows.

Step 1: For all rows of job j that have alternatives, compute the summation of the

cost in each row

Step 2: For all columns of job j that have alternative, compute the summation of

the cost in each column

The detail of step 1 and step 2 are shown on table 18 as follows
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Table 18 The result of implementation of step 1 and 2 of the improvement heuristic

Job i,

Alta 1.1 2.1 3.1 3.2 33 4.1 5.1 6.1 6.2
1.1 - 71 16 56 90 47 75 97 99
2.1 6 - 10 33 25 43 94 50 2 Sum.
3.1 73 69 - - - 67 38 1 87 335
3.2 66 2 - - - 83 42 63 81 337
3.3 11 32 - - - 5 92 76 37 253
4.1 79 54 22 94 11 - 16 7 23
5.1 67 6 24 70 70 45 - 0 20
6.1 97 45 56 62 60 9 86 - - 415
6.2 89 39 95 0 54 27 67 - - 371

Sum. 223 315 310 294 349

Step 3: Compute the summation value of each alternative job and label the selected

solution from the alternative selection heuristic

3.1: (335+223) = 558
3.2: (337+315) = 652
3.3: (253+310) = 563

6.1: (415+294) = 709
6.2: (371+349) = 702

From the alternative selection Heuristic-3, job 3.2 and 6.1 are the selected from

Heuristic-3, which are labeled at this step.

Step 4: Select one of the unlabel alternatives that has the minimum value of

summation label the new selection, change the selected alternative to the new

selection and solve the assignment problem of the distance matrix with

new selected alternatives

From step 3, the alternative 3.1 has the minimum value of summation. The

existing selected alternative is changed from the alternative 3.2 and 6.1 to the

alternative 3.1 and 6.1 and labels the alternative 3.1. The new distance matrix and the

assignment solution are shown on table 19 as follows.



74

Table 19 The result of step 4 of the alternative improvement heuristic

Job i,

Alta 1.1 2.1 3.1 4.1 5.1 6.1
1.1 0 71 16 47 75 97
2.1 6 0 10 43 94 50
3.1 73 69 o0 67 38 1
4.1 79 54 22 0 16 7
5.1 67 6 24 45 0
6.1 97 45 56 9 86 )

The assignment solution value is 54 units

Step 5: If the assignment solution is not improved, go to step 4, otherwise keep the
improved solution, label all alternatives of this considered job and then go to

step 4. Continue until all jobs (in step 3) are labeled

From step 4, the solution is improved from 89 units to 54 units. This solution
with alternative selection of 3.1 and 6.1 is kept. Then label all alternatives of job No.3
and continue to step 3 by considering the rest of unlabeled jobs. This example is
ended at the iteration 2 with the solution of alternatives 3.1 and 6.1 that is same as the

IP solution.

The same set of tested problems of alternative selection heuristics are used to
verify the quality of solution for this alternative improvement heuristic. This
improvement heuristic is applied to improve the initial solution from the alternative

selection heuristic of tested problems. All results are shown in the next chapter.

2.5 The modified Eastman’s algorithm for TSP of the AGVsp-P/D

Now the solution of the assignment problem with alternative P/D nodes by
solving the 0-1 IP model, which is the lower bound of the AGVsp-P/D, provides a
single tour or subtours. The goal of this part is to propose the heuristics approach to

create TSP tours from the lower bound solutions.
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Eastman’s algorithm for solving the TSP is considered for solving a single
TSP tour from the lower bound of AGVsp-P/D. Charnsethikul (1993) presented that
Eastman’s algorithm has some advantages over Little’s algorithm. For instance, there
is no difference in the level of branching or fathoming between solving the MTSP and
the TSP using Little’s algorithm, because the algorithm treats the MTSP same as the
TSP. Eastman’s algorithm has difference rules to fathom an active node, it considers
whether the tour is feasible or not for the MTSP. For example, consider a problem
with five nodes and two vehicles. Suppose that the solution from the assignment
problem is 6-1-2-6, and 7-3-5-4-7, where 6 and 7 represent the starting point of each
vehicle. This tour is feasible for the MTSP, but it is not feasible for the TSP. If the
MTSP is solved by Eastman’s algorithm and use its rule for solving the TSP, it has to
continue branching and searching for the solution of the TSP. In fact, there is already
has a feassible tour in the first step. This was illustrated by Svestka and Huckfeldt
(1973) when they modified this rule to Eastman’s algorithm. The results showed that
solving the MTSP usually required fewer steps than solving the TSP.

To satisfy the subtour elimination constrain of the TSP with alternative P/D
nodes, the heuristic techniques are applied to the problem of minimum total distance
solved by the method as similar idea in the previous paragraph. The goal of the
heuristic is to create the TSP tour from the solution of solving the assignment problem
with alternative P/D nodes, which is the lower bound of the TSP. The procedure
deletes each link (i, ;) of the first found subtour from the lower bound solution, where
(7, j) is a sequence of node in the first found subtour by assigning c; (cost of traveling
from node i to node j) equal to infinity, the assignment problem with alternative P/D
nodes corresponding to each deletion of links (i, /) is solved. Suppose there are & links
(i, j) in the first subtour, thus the heuristic produces the new & solutions, then selects
the best solution, which provides a single TSP tour. If it can not found the single TSP
tour in this set of & solutions, continue searching in the next found subtours of the
lower bound solution until the single TSP tour is found. When all subtours are
searched and still exist no single TSP tour, the best improvement solution is selected
to be the new lower bound solution and continued searching in the same process until

the single TSP tour is found.
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From the previous procedure, the algorithm can be described as follows.

Step 1: Solves the assignment problem with alternative P/D nodes

(which is a TSP relaxation).

Step 2: If the solution from step 1 is a single TSP tour, stops and keeps the solution,
otherwise, from the solution in step 1 or step 3, selects the first produced

subtour.

Step 3: Starts to deletes each link (i, j), which is called de-link, in that selected subtour
from step 2 and resolves the assignment problem with alternative P/D nodes

corresponding to each deletion of links (7, j).

Step 4: If a single TSP tour is found in step 3, stops and keeps the best solution,
otherwise, selects the next produced subtours from the solution in step 1 and
goes back to step 3 until all produced subtours are investigated. If a TSP tour

can not be found, goes to step 5.

Step 5: Select the best solution in step 3 as the current lower bound solution and goes

to back step 2.

Consider the example of the distance matrix in table 8, the solution of this
distance matrix from solving the 0-1 IP model is 74 units with the assignment of 1.1-
2.1,2.1-1.1, 3.1-5.1, 4.1-3.1, 5.1-6.1, and 6.1-4.1. The solution is the optimum for 2
AGVs which stat at node 1 and node 3.1, because there are 2 subtours which are 1.1-

2.1-1.1 and 3.1-5.1-6.1-4.1-3.1.

For a single AGV, subtour elimination constraints will be added for creating
the single TSP tour. By applying the modified Eastman’s branch and bound algorithm
for the TSP, the procedure is to select the first subtour, eliminates each arc in the tour,
called de-link, and solves the corresponding assignment problem with alternative P/D

nodes. Base on the generated lower bound solution, a first found subtour, which is
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subtour 1-2-1, is selected and link 1-2 and 2-1 are de-linked, which are shown on table

20 and 22, and solved the assignment problem with alternative P/D nodes. The results

are shown on table 21and 23 as follows.

Table 20 The cost table of de-link 1-2 , by assigning the cost of the link 1-2 to

Job i,

Alta 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2
1.1 0 © 11 3 35 94 30 13 97
2.1 3 00 57 73 86 23 21 61 83
3.1 85 27 0 0 0 41 11 66 27
32 48 57 0 © o0 52 46 73 52
33 80 66 o0 © o0 58 79 63 28
4.1 61 37 33 0 56 o0 88 87 9
5.1 72 16 68 14 20 485 o0 4 70
6.1 22 43 62 17 88 21 44 0 0
6.2 96 18 86 60 34 42 15 o) 0

Table 21 The assignment solution of table 20

Job i,

Alta 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2 2
1.1 00 0 1 0 0 0 0 0 0 1
2.1 1 00 0 0 0 0 0 0 0 1
3.1 0 0 o o o 0 1 0 0 1
32 0 0 o0 00 o0 0 0 0 0 0
33 0 0 o o o 0 0 0 0 0
4.1 0 1 0 0 0 0 0 0 0 1
5.1 0 0 0 0 0 0 o) 1 0 1
6.1 0 0 0 0 0 1 0 o0 o0 1
6.2 0 0 0 0 0 0 0 00 00 0
zZ 1 1 1 0 0 1 1 1 0

The assignment solution of table 20 is 1.1-3.1- 5.1 - 6.1 - 4.1 - 2.1 - 1.1 with total

distance of 87 units. It implies the TSP tour which is stated and ended at node 1.
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Job i,

Alta 1.1 2.1 3.1 32 33 4.1 5.1 6.1 6.2
1.1 0 2 11 3 35 94 30 13 97
2.1 ®© o0 57 73 86 23 21 61 83
3.1 85 27 © 0 0 41 11 66 27
32 48 57 0 o 0 52 46 73 52
33 80 66 00 0 o0 58 79 63 28
4.1 61 37 33 0 56 00 88 87 9
5.1 72 16 68 14 20 485 0 4 70
6.1 22 43 62 17 88 21 44 0 0
6.2 96 18 86 60 34 42 15 o) 0

Table 23 The The assignment solution of table 22
Job i,
Alta 1.1 2.1 3.1 32 33 4.1 5.1 6.1 6.2 2

1.1 0 1 0 0 0 0 0 0 0 1

2.1 0 o0 0 0 0 1 0 0 0 1

3.1 0 0 0 © o0 0 1 0 0 1

3.2 0 0 o) © o 0 0 0 0 0

33 0 0 o0 0 o 0 0 0 0 0

4.1 0 0 1 0 0 0 0 0 0 1

5.1 0 0 0 0 0 0 0 1 0 1

6.1 1 0 0 0 0 0 0 0 00 1

6.2 0 0 0 0 0 0 0 0 0 0

20 1 1 1 0 0 1 1 1 0

The assignment solution of table 22 is 1.1- 2.1 - 4.1 - 3.1 - 5.1- 6.1 - 1.1 with the total

distance of 95 units. This solution implies the single TSP tour which stat at node 1,
but this solution is not better than the previous one. This heuristic would appear to

require a lot of memory and time of computation for solving the sequence of

assignment subproblems with alternative P/D nodes which is 0-1 IP. In fact, the

algorithm starts searching the first produced subtour and then goes to the next subtours

for saving running time, instead of searching from all found links (7, ) from the

solution in step 1, which may provides the better solution but takes much more time.

The results of some simulated problems are presented in the next chapter.
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3. The algorithms for solving the multi AGVsp-P/D

The previous section provides the procedure for solving the case of single
AGVsp-P/D. The results from applying the procedure to solve the distance matrix are
sets of the single TSP tour. When the case of multi AGVsp-P/D is considered, a
specific number of AGVs is given to the problem. How can all vehicles will be
utilized is considered. The solutions of multi AGVsp-P/D are the sets of multi TSP
tours. The procedure of solving the MTSP from the existing TSP solutions will be
applied to form the sets of TSP tours from the single TSP tour. The research presents

two heuristic procedures as follows.

3.1 The heuristic of splitting a TSP tour for solving the lower bound of
multi AGVsp-P/D

Let assume that a regular AGV has speed equal to 1 meter/minute. If the
problem defines a special AGV that has speed equal to M meters /minute, it can
accomplish the same job (same total distance) faster than a regular AGV by the normal
mission time divided by M or can travels more distance by using the same amount of
time. Refer to table 8, let this table is the distance matrix of the regular AGV, which is
used for explaining the example of multi AGVsp-P/D as follows.

Table 24 The example of the regular AGV distance matrix for multi AGVsp-P/D

Job i,

Alta 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2
1.1 0 2 11 3 35 94 30 13 97
2.1 3 o0 57 73 86 23 21 61 83
3.1 85 27 ) 0 0 41 11 66 27
32 48 57 00 ) 0 52 46 73 52
3.3 80 66 o0 ) 0 58 79 63 28
4.1 61 37 33 0 56 0 88 87 9
5.1 72 16 68 14 20 485 ) 4 70
6.1 22 43 62 17 38 21 44 00 0

6.2 96 18 86 60 34 42 15 e) 0
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The table shows that the regular AGV can travel from the starting point of job
1.1 to the starting point of job 2.1 by the total distance of 2 meters. From the
assumption of the regular AGV speed, that it takes 2 minutes. Let define that the
auxiliary problem, called Aux-problem, is the problem of the special AGV that the
traveling time from node i to node j equal to the original distance matrix divided by M.
The auxiliary cost matrix is used with the special AGV of M times faster. The
auxiliary cost matrix of 2 times faster AGVs (M = 2), called 2M-AGYV, is shown on
table 25 as follows.

Table 25 The cost matrix of Aux-problem of 2 times faster AGVs

Job i,

Alta 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2
1.1 0 1 5.5 1.5 17.5 47 15 6.5 48.5
2.1 1.5 © 28.5 36.5 43 11.5 10.5 30.5 41.5
3.1 42.5 13.5 o 0 o0 20.5 5.5 33 13.5
32 24 28.5 oe) 0 o0 26 23 36.5 26
33 40 33 0 ) 0 29 39.5 31.5 14
4.1 30.5 18.5 16.5 0 28 ) 44 43.5 4.5
5.1 36 8 34 7 10 242.5 ) 2 35
6.1 11 21.5 31 8.5 44 10.5 22 0 00
6.2 48 9 43 30 17 21 7.5 0 o0

The Aux-problem considers the traveling time (because the distance of each pair of
jobs is same as the regular AGV), not the distance. It can see that from the starting
point of job1.1 to the starting point of job2.1 takes 1 minute by 2M-AGV. It means
that this is the lower bound of the mission time for 2 regular AGVs, which are AGV-1
and AGV-2. If the mission time of the Aux- problem is splitted into two parts, the
explanation is shown as follows.
Start I mim/2 m. Stop
2M-AGV

Aux-problem

1 min/1 m 1 min/1 m

AGV-1 AGV-2

Original problem
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From the above chart, let assume that AGV-1 and AGV-2 can be started everywhere
and every time. Therefore, the relationship between the original problem and the Aux-
problem is:

2M-AGV time < AGV-1 time + AGV-2 time

For a given, the optimal TSP tour from the starting depot to all jobs and back to depots
of AGV-1 and AGV-2, both of tour distances can be added together and get the
optimal total distance. For explaining, the relationship of AGV-1, AGV-2 and 2M-

AGYV is examined as follows.

AGV-1 X m. tour 1-2-3-4-5-1= X meters / X min
«—
<o Xmin.__
AGV-2 < Y m. > tour 1-6-7-8-9-1=Y meters / Y min
€ o Ymin __ N
2M-AGV X+Y m. R
(X+Y)/2 min
€ >

Tour 1-2-3-4-5-1-6-7-8-9-1 = X+Y meters / (X+Y)/2 min

Let a tour 1-2-3-4-5-6-7-8-9-1 of the Aux-problem is the optimal TSP tour.
The distance of X+Y (1-2-3-4-5-1-6-7-8-9-1) is > the Aux-problem TSP tour distance
of 1-2-3-4-5-6-7-8-9-1. Assume that distance of X+Y is the optimal solution of the
original problem so that it can claim that the optimal tour of Aux-problem is the lower
bound of the original problem with 2 AGVs. If the TSP tour of the Aux-problem can
be solved, it can get the lower bound of problems with M number of AGVs for each
AGYV by splitting the Aux-problem tour into M parts. Therefore, the original distance
value of M multiplied by Aux-tour distance is the lower bound distance of each regular

AGV.
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According to this point, solutions of a single TSP tour from the original
problem man provide M balance subtours, which is the lower bound of multi AGVsp-
P/D by splitting the optimal TSP tour distance of the Aux-problem into M parts, (M
subtours) and converting to the original distance of all subtours. The proof is shown

as follows.

Lemma: Let construct the Aux-problem of a single AGV where the Aux-problem
distance matrix [C’; ] = (1/M) x C;; ; Cyis the original distance matrix. If T 4yxis the
optimal TSP tour for the single AGV of the Aux-problem, the length of the optimal
tour T *AUX , (T *AUX), is a lower bound of the length of the optimal tour T *, T *), of the

original problem with M number of AGV's

That it is; Mx (T qux) < (T

Proof: Given an optimal tour, T", of M AGVs with the original distance matrix by

assuming that all AGVs are started at the starting depot and can start at the same time.

Let set S” is a set of subtour of the optimal tour T * which consists of subtours T, i=1{Ty,

T, T;, ... Ty} for each AGV. SetS * can form the tours as the following diagram.

D U Vi D ;T;of AGV-1
D U Vo, D ;T,of AGV-2
e >—>

D Uy Vu D ; Tyof AGV-M
«——>e———— <>

Set S of subtours of the optimal tour 7"
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Figure 4 Subtours 7; and tour T*

T =T+ T+ T;+..+ Ty

Consider any subtours 7; forall i =1, 2, ..., M, all of them have some common
jobs which are travel from last node (job) of subtours 7T; to the starting depot, D, and
travel from the starting depot to the first job of subtours 7;;. For example, tour 7;
consists of the travel distance from the starting depot D to job U; and go to the next

job, follows the optimal sequence, until finishing the last job ¥; of this subtour and

then travel from V; back to the starting depot D.

Let U;, Us,..., Uy be the first nodes after the starting node D and Vi, V5,..., Vi
be the last nodes before the starting node D. From Set.S" of subtours of the optimal

tour 7', let construct a single tour 7 by:

1. Disconnect the arcs from the last node, V; to the starting node D of all

subtours 7; for all i,

2. Disconnect the arcs from the starting node D to the first node, U; of all
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subtours 7; for all i, except for the arc from the starting node D to node U;
and from V), to the starting node depot D , and then
3. Connect the node V; to node U;4; for all subtours 7; for for all 5.

A single tout 7 is constructed which is a single AGV starts at depot, travels only one
time to the first node Uj, continuous travels along the optimal sequence to the last

node Vy, and travels back to the starting node D only one time.

T,

T

Figure 5 The TSP tour T”

Let the length between node i and node j is /(i, j). From the property of triangle

inequality,

[(Vi,D)+1(D, Uz =1 (V1, Us)
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It can be derived that:
M
» (T
11y =210 v by 1, U+ 1V, U)

-[[(V2, D)+ 1 (D, Us)] + [ (V2, Us)

-1 Va1, D)+ 1 (D, U + 1 (Varr, Un)

Because of -/ (V;, D) - [ (D, Uy) + [ (V1, Uz) <0, so that

(T < (T

Now procedure claim that M x (T 4ux) < I(T") include every tours T; of the original
problem that has length /(T")/M in the Aux-problem. Since /( T 4uyx ) is the optimal

length of tour of the Aux-problem, it can conclude that:

(T avx) < (T IM
Therefore, (T qux) < (TYM
M KT quw) < (T

This heuristic can be used to split a single TSP tour to multi tours. Solutions of
the lower bound of multi AGVsp-P/D are the sets of multi tours, not the sets of multi
TSP tours or MTSP solution. The assumption of this algorithm is that vehicles can be
started and ended everywhere. Therefore, this heuristic can not satisfy the objective of
the multi AGVsp-P/D, which same as the objective of the MTSP, but can be used for
solving the lower bound of the multi AGVsp-P/D by splitting a single TSP tour to a set
of M routes for M AGVs. A set of M routes from splitting a single TSP tour to M parts
can be form a set of M tours, if the distance from the starting depot to the starting job
and the ending job to the starting depot of each route is added. Actually, the goal is
attempting to form the algorithm which can support the assumption of the MTSP,

which is shown on the next part. The experiment on the next chapter is performed to



compare the solution of the algorithm of splitting a single TSP and the algorithm of
solving the MTSP as the standard TSP

AGVsp-P/D, the problem on table 8 can be modified for using the algorithm of
solving the MTSP as the standard TSP. The new distances matrix [dj; ] are created

from the original distances matrix [c;; ], which is shown on table 26 as follows

Table 26 The MTSP distances matrix [d;; ]

3.2 The algorithm of solving the MTSP as the standard TSP

86

Refer to Svestka and Huckfeldt (1973), if 2 AGVs are given for the multi

1.1 1.2 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2
1.1 o0 0 2 11 3 35 94 30 13 97
1.2 o0 0 2 11 3 35 94 30 13 97
2.1 3 3 0 57 73 86 23 21 61 83
3.1 85 85 27 el 0 o 41 11 66 27
32 48 48 57 0 0 o0 52 46 73 52
33 80 80 66 0 0 el 58 79 63 28
4.1 61 61 37 33 0 56 ¢ 88 87 9
5.1 72 72 16 68 14 20 485 o 4 70
6.1 22 22 43 62 17 88 21 44 el )
6.2 96 96 18 86 60 34 42 15 o0 o0
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Table 27 The AGVsp-P/D solution of table 26
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Table 28 The corresponding cost from the solution of table 27

1.1 1.2 2.1 3.1 3.2 33 4.1 5.1 6.1 6.2
1.1 00 00 0 0 0 0 0 30 0 0
1.2 o0 o0 2 0 0 0 0 0 0 0
2.1 3 0 o0 0 0 0 0 0 0 0
3.1 0 0 0 o o 0 0 0 0 0
3.2 0 48 0 00 0 0 0 0 0 0
33 0 0 0 o0 00 00 0 0 0 0
4.1 0 0 0 0 0 0 ) 0 0 0
5.1 0 0 0 0 0 0 0 o0 4 0
6.1 0 0 0 0 0 0 21 0 ) o0
6.2 0 0 0 0 0 0 0 0 00 0

Table 26 shows that there is one additional first row and column, which is row and
column No. 1.2. They represent the dummy starting node for the problem of 2 AGVs.
The solution of AGVsp-P/D of table 26 is shown on table 27 with its corresponding

cost, which is shown on table 28.

From table 27, the assignment solutionis 1.1 -5-6.1-4-32-12-2-1.1
with the distance of 108 units. If the assignment solution is not a single TSP tour, the

modified Eastman’s algorithm for the TSP of the AGVsp-P/D is applied. By the
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solution from table 27, it shows that the assignment solution consists of 2 TSP tours

for 2 AGVs which are:

the TSP tour 1 for AGV-1 that is: 1.1 (depot) - 5.1 - 6.1 -4.1-3.2 - 1.2 (depot) and
the TSP tour 2 for AGV-2that is: 1.2 (depot) - 2.1 - 1.1 (depot).

This algorithm provides the solution of the multi AGVsp-P/D by solving the single
TSP tour of the modified distance matrix [dj;]. The running time of solving the TSP
and the MTSP may not different significantly when the number of AGVs (M)
increasing, because in the real world problems of n nodes, it may have the constraints
of the cost of increasing the number of salesman or vehicle. This algorithm is tested
for the implementation with many levels of problem sizes that are shown in the next

chapter.

All presented methods of this research can provide the results that satisty the
research objectives. The single/multi AGVsp-P/D can be solved with some levels of

problem sizes. The results of all experiments are explained in the next chapter.
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RESULTS AND DISCUSSIONS

This chapter presents the results of all experiments of this research, which

includes the result analysis, conclusions and discussions.

Results

The detailed results of all tested problems are displayed in the form of tables and
graphs. Tested problems of the AGVsp-P/D are generated randomly as similar as the
example on table 6. The formulated mathematical model of AGVsp-P/D is programed
using MATLAB 7.0 for solving lower bound solutions, single TSP tours, and multi
TSP tours of the single/multi AGVsp-P/D.

1. The results of solving the lower bound of the AGVsp-P/D by

integer linear programming

The simulated problems of the AGVsp-P/D with 10, 20, 30, 40, and 50 nodes
are generated randomly with some numbers of 2 alternative jobs and some numbers of
regular jobs. The running times of solving the lower bound solution is examined and
compared to the regular assignment problem of the same problem size. The simulated

problems are generated, which are:

1. 10 nodes with 5 jobs of 2 alternatives

2. 20 nodes with 5 jobs of 2 alternatives and 10 regular jobs
3. 30 nodes with 5 jobs of 2 alternatives and 20 regular jobs
4. 40 nodes with 5 jobs of 2 alternatives and 30 regular jobs
5. 50 nodes with 5 jobs of 2 alternatives and 40 regular jobs

that all for them are in a set of problems called 2Al-5 of n nodes (n = 10, 20, 30, 40

and 50). The other sets of simulated problems are:
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10 nodes with 5 jobs of 2 alternatives, called 2Al-5

20 nodes with 10 jobs of 2 alternatives, called 2AI-10
30 nodes with 15 jobs of 2 alternatives, called 2Al-15
40 nodes with 20 jobs of 2 alternatives, called 2A1-20
50 nodes with 25 jobs of 2 alternatives, called 2Al-25

@wohk b=

that all of them are in a set of problem, called 2Al-Max. The running time of 40
replications for each of the level of problem size are compared with the regular
assignment problems with 10, 20, 30, 40, and 50 jobs, which are solved using the

lower bound model with alternative P/D nodes.

According to this experiment, the main purpose is to examine that whether the
increasing of number of alternative jobs, from 2Al-5 to 2Al-Max, affects on the
average running time for solving the problem or not. The research assumes that the
type I error, a is 0.05. The hypothesis test will be examined after the experiments
done. The results of all experiments of this section using MATLAB 7.0 are shown as

follows.



Table 29 The running time in seconds of simulated problems of 2Al-5
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Problem No. 10node 20node 30node 40node 50node
1 0.237 0.920 2.188 5.375 12.437
2 0.253 0.527 2.887 6.286 15.814
3 1.073 0.576 5.770 6.535 14.133
4 0.383 0.605 1.900 5.567 11.435
5 0.420 0.618 1.930 4.850 12.047
6 0.391 0.599 1.711 5.333 16.538
7 0.436 0.551 3.743 5.025 16.167
8 0.396 0.531 2.101 5.243 12.177
9 0.737 1.292 1.752 8.186 16.165
10 0.282 0.910 3.618 4.745 11.653
11 0.224 0.615 2.014 4.731 11.587
12 0.511 0.598 1.919 4.845 11.054
13 0.546 0.997 1.798 5.535 12.677
14 0.701 0.584 3.584 5.097 25.688
15 0.231 0.574 2.930 4.584 10.257
16 0.340 0.635 1.890 5.754 22.572
17 0.217 0.560 3.757 8.197 12.422
18 0.952 0.543 1.810 5.010 10.695
19 0.558 1.693 1.522 4.68 13.052
20 0.615 0.994 1.712 4.397 10.861
21 0.286 0.546 2.014 4961 12.478
22 0.219 0.691 1.921 5.064 37.135
23 0.175 0.976 1.960 4912 11.232
24 0.797 0.622 1.982 4.980 11.485
25 0.257 0.513 1.860 4.760 11.323
26 0.662 0.633 1.804 5.06 12.594
27 0.456 0.648 1.701 5.659 11.331
28 0.230 0.575 1.709 5.266 11.463
29 0.401 0.548 1.723 4.806 11.872
30 1.009 0.938 3.833 9.179 10.668
31 0.269 0.617 1.924 5.584 14.824
32 1.000 0.619 2.126 4.993 13.29
33 0.204 0.565 2.017 5.161 10.866
34 0.256 0.941 2.695 5.546 11.880
35 0.293 0.662 2.114 4.855 10.570
36 0.767 0.582 3.601 4.328 11.755
37 1.320 0.575 3.692 6.780 11.946
38 0.284 0.638 1.883 5.005 17.767
39 0.209 0.619 2.031 4.477 15.268
40 0.377 0.555 1.644 4.475 11.330




Table 30 The running time in seconds of simulated problems of 2Al-Max

Problem No. 10node 20node 30node 40node 50node
(2Al-5) (2Al1-10) (2Al-15) (2A1-20) (2A1-25)

1 0.237 1.500 4.293 29.315 59.497
2 0.253 1.065 6.390 19.752 13.864
3 1.073 2.014 9.446 36.411 31.589
4 0.383 1.944 4.504 36.797 91.136
5 0.420 2.376 9.662 28.656 22.187
6 0.391 2.968 11.68 37.923 49.681
7 0.436 0.756 13.357 43.830 115.214
8 0.396 3.570 13.681 43.389 12.944
9 0.737 3.641 3.714 7.674 27.961
10 0.282 1.590 3.274 12.666 59.073
11 0.224 0.988 2.236 14.049 13.920
12 0.511 0.662 6.230 6.591 31.656
13 0.546 0.637 5.866 7.332 91.336
14 0.701 2.794 7.680 21.991 22.085
15 0.231 1.904 6.577 22.744 49.614
16 0.340 2.329 3.328 12.535 115.064
17 0.217 2.423 3.827 11.762 12.787
18 0.952 1.152 5.813 12.317 70.256
19 0.558 1.015 3.427 8.901 21.932
20 0.615 3.729 7.756 4.899 37.877
21 0.286 2.248 2.926 26.677 16.208
22 0.219 0.743 8.94 89.939 74.394
23 0.175 0.584 2.934 9.427 26.248
24 0.797 3.570 9.691 8.390 32.616
25 0.257 1.246 2.077 37.673 39.466
26 0.662 2.793 3.898 8.304 29.349
27 0.456 2.446 6.359 57.296 78.340
28 0.230 1.424 6.765 16.613 67.905
29 0.401 3.164 7.865 84.195 11.305
30 1.009 2.868 14.005 41.498 71.857
31 0.269 1.430 6.913 64.475 37.215
32 1.000 1.614 2.805 32.793 80.843
33 0.204 3.288 3.748 16.388 66.105
34 0.256 1.410 6.405 25.121 46.362
35 0.293 1.168 5.972 25.765 64.666
36 0.767 1.473 9.716 10.831 23.741
37 1.320 3.505 9.225 32.688 77.782
38 0.284 2.327 4.920 5.297 63.787
39 0.209 3.745 9.378 26.874 89.043
40 0.377 0.741 7.505 7.965 57916




Table 31 The running time in second of the regular assignment problems
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Problem No. 10node 20node 30node 40node 50node
1 0.1859 0.672 2.297 5.976 10.600
2 0.174 0.558 2.373 5.183 12.343
3 0.244 0.738 2.203 5.437 10.852
4 0.203 0.627 2.384 5.555 14.656
5 0.168 0.587 2.07 5.863 12.167
6 0.242 0.726 2.076 4.932 12.587
7 0.224 0.691 2.038 5.863 11.106
8 0.230 0.718 2.318 5.660 14.293
9 0.197 0.690 2.016 5.212 12.923
10 0.199 0.674 2.028 4.678 14.413
11 0.195 0.714 2.031 5.782 13.157
12 0.256 0.772 2.331 5.250 11.171
13 0.165 0.640 1.972 5.795 12.326
14 0.174 0.721 2.024 5.833 13.488
15 0.235 0.642 2.104 5.289 12.356
16 0.161 0.640 2.138 5.362 13.078
17 0.191 0.714 1.963 5.309 12.426
18 0.274 0.658 2.371 5.972 11.694
19 0.282 0.756 2.068 5.749 12.767
20 0.254 0.716 2.284 5.607 11.204
21 0.224 0.669 2.074 5.572 12.924
22 0.203 0.663 2.309 5.446 12.273
23 0.236 0.628 2.007 5914 11.959
24 0.161 0.599 2.107 5.001 12.547
25 0.249 0.778 2.134 5.438 12.241
26 0.205 0.666 2.244 5.755 12.624
27 0.216 0.695 2.253 5.109 11.317
28 0.258 0.673 2.260 5.643 12.981
29 0.237 0.724 2.059 4.989 13.321
30 0.194 0.702 2.302 5.146 10.499
31 0.245 0.710 1.991 5.466 13.068
32 0.218 0.678 2.054 5.249 12.833
33 0.215 0.688 2.655 5.355 12.136
34 0.217 0.690 2.052 5.440 11.000
35 0.250 0.633 2.008 5.284 13.150
36 0.254 0.68 2.049 5.347 13.127
37 0.247 0.677 2.315 5.865 11.848
38 0.210 0.660 2.205 5.531 12.891
39 0.231 0.669 2.181 5.902 13.032
40 0.224 0.705 2.268 5.396 11.170
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Table 32 The summarized running time in seconds of solving the lower bound of

AGVsp-P/D
Size Levels Assignment 2Al-5 2Al-Max
Problems Problems Problems
Mean 0.2186975 0.47435 0.47435
10 nodes S.D. 0.031660438 0.287858633 0.287858633
Min 0.161 0.175 0.175
Max 0.282 1.320 1.320
Mean 0.681025 0.699625 2.0211
20 nodes S.D. 0.04663084 0.238417613 1.009444549
Min 0.558 0.513 0.584
Max 0.778 1.693 3.745
Mean 2.1654 2.36925 6.6197
30 nodes S.D. 0.152020545 0.906358924 3.189694184
Min 1.963 1.522 2.077
Max 2.655 5.770 14.005
Mean 5.478875 5.39565 26.193575
40 nodes S.D. 0.318063144 1.05462081 20.3977164
Min 4.678 4.328 4.899
Max 5.976 9.179 89.939
Mean 12.4137 13.7627 50.120525
50 nodes S.D. 0.999490388 4941659133 28.89604306
Min 10.499 10.257 11.305
Max 14.656 37.135 115.214

Sec.

60

50 A

40 1

30

20

10 A

The running time of simulated problems

—e— Assignment
—a—2Al-5
—a— 2Al-Max

3 4
No. of Nodes x 10

Figure 6 The graph of running time in second for obtaining the lower bound of

AGVsp-P/D



Let consider the data set of tables 29, 30 and 31 of 50 nodes, the normal

probability plot results using Minitab are performed sequentially as follows.

Normal Probability Plot
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.99
.95 ~
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.001 A
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Average: 13.7627 Anderson-Darling Normality Test
StDev: 4.94166 A-Squared: 5.076
N: 40 P-value: 0.000

Figure 7 The normal probability plot of 2Al-5 data with 50 nodes
from table 29
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N: 40 P-value: 0.068

Figure 8 The normal probability plot of the 2Al-Max data with 50 nodes
from table 30

95
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Normal Probability Plot
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N: 40 P-value: 0.167

Figure 9 The normal probability plot of the regular assignment data with 50 nodes
from table 31

The results of the normal probability plot show that the data set of 2Al-5 of 50
nodes, figure 7, is not statistically normal distribution, because the P-value less than
0.05. Before performing any statistical analysis, the data should be transformed or
adjusted to be the normal distributed data set. The Box-Cox transformation function
in Minitab is used to adjust and transform the data set from the experimental results
for forming the normal probability data set. The data set from the figure 7 is
transformed using the Box-Cox transformation function and tested the normality by
performing the normal probability plot of the transformed data set. The result of the
normality test of the transformed data set of the figure 7 is shown on figure 10 as

follows.
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Normal Probability Plot
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N: 40 P-Value: 0.046

Figure 10 The normal probability plot of the Box-Cox transformation data of
2Al-5 with 50 nodes of table 29

The normal probability plot on figure 10 shows that the transformed data set of 2Al-5
with 50 nodes is still not the normal probability distribution, because the P-value is
still less than 0.05. Therefore, the data of table 29, 30 and 31 will be analyzed by
using nonparametric statistics. The analysis can be performed using the Kruskal-
Wallis test. This test offers a nonparametric statistic of the one-way analysis of

variance.

According to the experimental results, because the effect of increasing on the
number of alternative jobs with a specific size level of problem is considered, research

wish to test the hypothesis that the mean values of running times of assignment
(M assignment), 2A1-5 (Maar-s), and 2Al-Max (Maar-max) €Xperiments are equal or not. Let
consider the size level of 50 nodes experiments with 40 replications and type I error of
a = 0.05, the Kruskal-Wallis hypotheses can be formally stated as:

Ho: Wassignment = H2ar-s = Hoar-max (M1 = M2 = U3)

Hi: W;# W, for at least one pair of all 7, j, where 7, =1, 2 and 3

The Kruskal-Wallis test is used for analyzing data sets on tables 28, 29 and 30
for 3 treatments of assignment (Ass), 2Al-5, and 2Al-Max of 50 nodes (k = 3) and 40

replications (n; =40 and N = 120). The result from Minitab is shown as follows.
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Kruskal-Wallis Test: C6 versus C7

Kruskal-Wallis Test on C6

Cc7 N Median Ave Rank Z
2A1-five 40 12.00 42.3 -4.05
2A1-max 40 47.99 96.3 7.97
Ass 40 12.49 42.9 -3.92
Overall 120 60.5

H=63.56 DF =2 P = 0.000

Figure 11 The Kruskal-Wallis test of the data set on Ass, 2Al-5, and 2Al-Max of 50

nodes

If the type I error of a = 0.05, the result from figure 11 obtains that the P-value
of the Kruskal-Wallis test of data sets on Ass, 2Al-5, and 2Al-Max of 50 nodes equal

to 0.000, which less than 0.05. Therefore, the hypothesis Hy: lassignment = H2aL-s =

W2aL-max can be rejected and can conclude base on the inference statistics that the

increasing on the number of alternative jobs with a specific size level of problem

affects on the average running time.

2. The results of solving the lower bound by the alternative selection heuristics

This part attempts to test all heuristics for selecting the alternative nodes. The
30 tested problems are generated randomly to verify the quality of solution for all 3
heuristics (Heu-i Sol. for all i = 1, 2 and 3) by consider the deviation (Dev) of the
heuristic solutions from the IP solutions in a form of the percent deviations (% Dev).
The tested problems are the distance matrix, which has the same format as the
example on table 6. The assignment problem with alternative P/D nodes can by
solved by selecting the appropriate alternative jobs (Alt. Sel.) for job No. 3, and job
No. 6 first and then solve the regular assignment problem. The research tries to
evaluate which heuristic can perform the best solution. The appropriate heuristic

should provide the minimum average of % Dev.



99

Refer to the section 2.4 for the materials and methods chapter, all 3 heuristics

are applied to select the alternatives of 30 tested problems and then the assignment

solution of the selected alternative problem is solved and compared to the IP solution

(IP Sol.) of the master problem. The result of solutions and the %Dev between the

heuristics and the IP solutions are shown as follows.

Table 33 The %Dev of alternative selection Heuristic-1 solutions

from the IP solutions

Problem No.  IP Sol. Alt. Sel. Heu-1 Sol. Dev Alt. Sel. %Dev
1 74 3.1,6.1 76 2 3.2,6.1 2.7027
2 99 3.3,6.2 110 11 3.2,6.2 11.1111
3 138 3.2,6.2 144 6 3.2,6.1 4.34783
4 138 3.1,6.2 218 80 3.2,6.1 57.971
5 109 3.1,6.2 121 12 3.3,6.2 11.0092
6 98 3.2,6.1 98 0 3.2,6.1 0
7 148 3.2,6.1 172 24 3.3.6.1 16.2162
8 71 3.3,6.1 76 5 3.2,6.1 7.04225
9 72 3.2,6.1 100 28 3.3,6.1 38.8889
10 83 3.3,6.1 105 22 3.3,6.2 26.506
11 129 3.1,6.2 129 0 3.1,6.2 0
12 81 3.3,6.2 97 16 3.3,6.1 19.7531
13 60 3.2,6.1 60 0 3.2,6.1 0
14 77 3.2,6.1 88 11 3.3,6.1 14.2857
15 95 3.1,6.2 95 0 3.1,6.2 0
16 127 3.2,6.1 133 6 3.1,6.1 4.72441
17 68 3.1,6.1 79 11 3.3,6.1 16.1765
18 146 3.1,6.1 154 8 3.2,6.2 5.47945
19 82 3.3,6.1 85 3 3.2,6.1 3.65854
20 91 3.3,6.1 94 3 3.2,6.1 3.2967
21 104 3.1,6.1 104 0 3.1,6.1 0
22 54 3.1,6.1 54 0 3.1,6.1 0
23 143 3.1,6.2 143 0 3.1,6.2 0
24 67 3.1,6.2 111 44 3.2,6.2 65.6716
25 72 3.1,6.1 72 0 3.1,6.1 0
26 122 3.2,6.1 139 17 3.3,6.2 13.9344
27 111 3.1,6.1 111 0 3.1,6.1 0
28 65 3.2,6.1 65 0 3.2,6.1 0
29 98 3.1,6.2 98 0 3.1,6.2 0
30 217 3.1,6.2 217 0 3.1,6.2 0
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Table 34 The %Dev of alternative selection Heuristic-2 solutions

from the IP solutions

Problem No.  IP Sol. Alt. Sel. Heu-2 Sol. Dev Alt. Sel. %Dev
1 74 3.1,6.1 74 0 3.1,6.1 0
2 99 3.3,6.2 110 11 3.2,6.2 11.1111
3 138 3.2,6.2 144 6 3.2,6.1 4.34783
4 138 3.1,6.2 152 14 3.1,6.1 10.1449
5 109 3.1,6.2 143 34 3.2,6.2 31.1927
6 98 3.2,6.1 98 0 3.2,6.1 0
7 148 3.2,6.1 148 0 3.2,6.1 0
8 71 3.3,6.1 76 5 3.2,6.1 7.04225
9 72 3.2,6.1 97 25 3.1,6.1 34,7222
10 83 3.3,6.1 126 43 3.2,6.1 51.8072
11 129 3.1,6.2 129 0 3.1,6.2 0
12 81 3.3,6.2 97 16 3.3,6.1 19.7531
13 60 3.2,6.1 63 3 3.1,6.1 5
14 77 3.2,6.1 122 45 3.2,6.2 58.4416
15 95 3.1,6.2 95 0 3.1,6.2 0
16 127 3.2,6.1 133 6 3.1,6.1 4.72441
17 68 3.1,6.1 89 21 3.1,6.2 30.8824
18 146 3.1,6.1 154 8 3.2,6.2 5.47945
19 82 3.3,6.1 106 24 3.1,6.1 29.2683
20 91 3.3,6.1 94 3 3.2,6.1 3.2967
21 104 3.1,6.1 120 16 3.1,6.2 15.3846
22 54 3.1,6.1 91 37 3.2,6.2 68.5185
23 143 3.1,6.2 149 6 3.3,6.2 4.1958
24 67 3.1,6.2 67 0 3.1,6.2 0
25 72 3.1,6.1 72 0 3.1,6.1 0
26 122 3.2,6.1 160 38 3.2,6.2 31.1475
27 111 3.1,6.1 111 0 3.1,6.1 0
28 65 3.2,6.1 65 0 3.2,6.1 0
29 98 3.1,6.2 98 0 3.1,6.2 0
30 217 3.1,6.2 249 32 3.2,6.1 14.7465
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Table 35 The %Dev of alternative selection Heuristic-3 solutions

from the IP solutions

Problem No.  IP Sol. Alt. Sel. Heu-3 Sol. Dev Alt. Sel. %Dev
1 74 3.1,6.1 74 0 3.1,6.1 0
2 99 3.3,6.2 110 11 3.2,6.2 11.1111
3 138 3.2,6.2 138 0 3.2,6.2 0
4 138 3.1,6.2 152 14 3.1,6.1 10.1449
5 109 3.1,6.2 121 12 3.3,6.2 11.0092
6 98 3.2,6.1 98 0 3.2,6.1 0
7 148 3.2,6.1 164 16 3.1,6.1 10.8108
8 71 3.3,6.1 76 5 3.2,6.1 7.04225
9 72 3.2,6.1 72 0 3.2,6.1 0
10 83 3.3,6.1 105 22 3.3,6.2 26.506
11 129 3.1,6.2 129 0 3.1,6.2 0
12 81 3.3,6.2 81 0 3.3,6.2 0
13 60 3.2,6.1 63 3 3.1,6.1 5
14 77 3.2,6.1 88 11 3.3,6.1 14.2857
15 95 3.1,6.2 95 0 3.1,6.2 0
16 127 3.2,6.1 133 6 3.1,6.1 4.72441
17 68 3.1,6.1 68 0 3.1,6.1 0
18 146 3.1,6.1 152 6 3.1,6.2 4.10959
19 82 3.3,6.1 85 3 3.2,6.1 3.65854
20 91 3.3,6.1 91 0 3.3,6.1 0
21 104 3.1,6.1 104 0 3.1,6.1 0
22 54 3.1,6.1 89 35 3.2,6.1 64.8148
23 143 3.1,6.2 143 0 3.1,6.2 0
24 67 3.1,6.2 67 0 3.1,6.2 0
25 72 3.1,6.1 72 0 3.1,6.1 0
26 122 3.2,6.1 139 17 3.3,6.2 13.9344
27 111 3.1,6.1 111 0 3.1,6.1 0
28 65 3.2,6.1 77 12 3.3,6.1 18.4615
29 98 3.1,6.2 98 0 3.1,6.2 0
30 217 3.1,6.2 217 0 3.1,6.2 0

The interested result is considered that the %Dev of all 3 alternatives selection
heuristics, which are shown on table 36. A summary of the %Dev is shown on table

37 as follows.



Table 36 The comparison of the %Dev for all 3 heuristics
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Problem No. IP Sol. %Dev of %Dev %Dev
Heuristic-1 Heuristic-2 Heuristic-3
1 74 2.7027 0 0
2 99 11.1111 11.1111 11.1111
3 138 4.34783 4.34783 0
4 138 57.971 10.1449 10.1449
5 109 11.0092 31.1927 11.0092
6 98 0 0 0
7 148 16.2162 0 10.8108
8 71 7.04225 7.04225 7.04225
9 72 38.8889 34.7222 0
10 83 26.506 51.8072 26.506
11 129 0 0 0
12 81 19.7531 19.7531 0
13 60 0 5 5
14 77 14.2857 58.4416 14.2857
15 95 0 0 0
16 127 4.72441 4.72441 4.72441
17 68 16.1765 30.8824 0
18 146 5.47945 5.47945 4.10959
19 82 3.65854 29.2683 3.65854
20 91 3.2967 3.2967 0
21 104 0 15.3846 0
22 54 0 68.5185 64.8148
23 143 0 4.1958 0
24 67 65.6716 0 0
25 72 0 0 0
26 122 13.9344 31.1475 13.9344
27 111 0 0 0
28 65 0 0 18.4615
29 98 0 0 0
30 217 0 14.7465 0
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Table 37 The summary of the %Dev for all 3 heuristics

% Dev of % Dev of % Dev of
Heuristic-1 Heuristic-2 Heuristic-3
Mean 10.7592 15.2925 6.85378
S.D. 16.739 18.8379 12.8988
Min 0 0 0
Max 65.67164 68.51852 64.814815

According to the experimental results, the hypothesis is to test whether the
mean values of the %Dev of the solution from the different alternative selection

heuristics are equal or not. The hypothesis can be formally stated as:
HO: “Heuristic-l = uHeuristic-Z = HHeuristic-3 (Hl = MZ = lvt?: )

Hi: W;# W, for at least one pair of all 7, j, where 7, =1, 2 and 3

Let consider the results on table 36 with 30 replications and the error of a =

0.05. The normal probability plots of the data set on table 36 are performed as follow.

Normal Probability Plot
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N: 30 P-Value: 0.000

Figure 12 The normal probability plot of the %Dev of Heuristic-1 from table 36



104

Normal Probability Plot
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Figure 13 The normal probability plot of the %Dev of Heuristic-2 from table 36
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Figure 14 The normal probability plot of the %Dev of Heuristic-3 from table 36

The normal probability plots show that all 3 sets of data from table 36 are not
the normally distributed. The Box-Cox transformation function in Minitab is used to
transform the data set from the experimental results. After all 3 sets of data from
table 36 are transformed, and then normality tests by the normal probability plot are

performed, which are shown as follows.
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Normal Probability Plot
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Figure 15 The normal probability plot of the Box-Cox transformation data of the
%Dev of Heuristic-1 from table 36
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Figure 16 The normal probability plot of the Box-Cox transformation data of the
%Dev of Heuristic-2 from table 36
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Normal Probability Plot
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Figure 17 The normal probability plot of the Box-Cox transformation data of the
%Dev of Heuristic-3 from table 36

Normal probability plots on figures 14, 15 and 16 show that all sets of
transformed data are not normal distributed so that all data sets will be analyzed by
using nonparametric statistics. The Kruskal-Wallis test is used for analyzing the data
sets on figures 11, 12 and 13 for 3 treatments of Heuristic-1, Heuristic-2 and Heuristic-
3 (k=3) and 30 replications (n; = 30 and N = 90). The result from Minitab is shown

as follows.

Kruskal-Wallis Test: %Dev versus Heu-

Kruskal-Wallis Test on %Dev

Heu- N Median Ave Rank 4
1 30 4.00E+00 45.3 -0.05
2 30 6.26E+00 52.7 1.85
3 30 0.00E+00 38.5 -1.80
Overall 90 45.5

H=4.44 DF =2 P = 0.108
H=4.78 DF =2 P = 0.092 (adjusted for ties)

Figure 18 The Kruskal-Wallis test of the %Dev for all 3 heuristics
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If the type I error of a = 0.05 is specified, then the result of from the Kruskal-Wallis
test provides P-value = 0.092 > 0.05. The Ho: WHeuristic-1 = N Heuristic-2 = N Heuristic-3

cannot be rejected and can be concluded base on the inference statistics that the
average value of the %Dev of each alternative selection heuristic is not significantly

different.

According to the results, all heuristics will be used appropriately for solving
the large scale problem because the IP problem may requires too much memory and
take too much time than solving the regular assignment problem with some heuristics
of alternative selection. From the result on table 36, there are some cases that having
much %Dev such as the tested problem No.22 of Heuristic-3, which has the %Dev of
64.815. The heuristic for improving the alternative selection heuristic is applied. The
same 30 tested problems on table 33, 34 and 35 are used to verify the quality of
solutions for the heuristic of alternative selection improvement heuristics by

considering the deviation of solutions.

Let consider the tested problems on tables 33, 34 and 35 that have the
deviation value grater than zero such as case numbers 2, 4, 5, and so on. The
alternative selection improvement heuristic is applied and the results of solutions of
the deviation of alternative selection heuristics, the deviation of alternative selection
improvement heuristic solutions (Imp. Heu) and the IP solutions (IP Sol.) are shown as

follows.
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Table 38 The result of alternative selection improvement for Heuristic-1

No. IP Sol. Alt. Sel. Heu-1Sol. Dev Alt. Sel. %Dev Imp. Heu Dev Alt. Sel.Iterations

1 74 3.1,6.1 76 2 32,61 27027 74 0 3.1,6.1 2
2 99 3.3,6.2 110 11 3.2,6.211.1111 99 0 3362 2
3 138 3.2,6.2 144 6 3.2,6.1434783 138 0 3262 3
4 138 3.1,6.2 218 80 3.2,6.1 57971 138 0 31,62 2
5 109  3.1,6.2 121 12 33,6.211.0092 109 0 31,62 3
6 98 3.2,6.1 98 0 3261 0
7 148 3.2,6.1 172 24 33,6.116.2162 148 0 3.26.1 2
8 71 3.3,6.1 76 5  3.2,6.17.04225 71 0 33,61 2
9 72 3.2,6.1 100 28 3.3,6.1 38.8889 72 0 3.2,6.1 3
10 83 3.3,6.1 105 22 3.3,6.2 26506 83 0 33,6.1 3
11 129  3.1,6.2 129 0 31,62 0
12 81 3.3,6.2 97 16 3.3,6.119.7531 81 0 3362 3
13 60 3.2,6.1 60 0 3261 0
14 77 3.2,6.1 88 11 3.3,6.1 14.2857 77 0 3.26.1 3
15 95 3.1,6.2 95 0 3162 0
16 127  3.2,6.1 133 6 3.1,6.14.72441 127 0 3261 2
17 68 3.1,6.1 79 11 3.3,6.116.1765 68 0 3.1,6.1 2
18 146  3.1,6.1 154 8 3.2,62547945 146 0 3.1,.1 2
19 82 3.3,6.1 85 3 3.2,6.13.65854 82 0 33,6.1 2
20 91 3.3,6.1 94 3 3.26.1 32967 91 0 33,61 2
21 104  3.1,6.1 104 0 3161 0
22 54 3.1,6.1 54 0 3161 0
23 143 3.1,6.2 143 0 3162 0
24 67 3.1,6.2 111 44  3.2,6.265.6716 67 0 3162 2
25 72 3.1,6.1 72 0 31,61 0
26 122 3.2,6.1 139 17 3.3,6.213.9344 122 0 32061 3
27 111 3.1,6.1 111 0 31,61 0
28 65 3.2,6.1 65 0 3261 0
29 98 3.1,6.2 98 0 3162 0
30 217 3.1,6.2 217 0 3162 0
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Table 39 The result of alternative selection improvement for Heuristic-2

No. IP Sol. Alt. Sel. Heu-2 Dev Alt. Sel. %Dev Imp. Heu Dev Alt. Sel.Iteration

1 74  3.1,6.1 74 0 3.1,6.1 0
2 99 33,62 110 11 32,62 11.1111 99 0 3.3,6.2 2
3 138 32,62 144 6 3.2,6.1 4.34783 138 0 3.2,6.2 3
4 138 3.1,6.2 152 14 3.1,6.1 10.1449 138 0 3.1,6.2 2
5 109 3.1,6.2 143 34 33,62 31.1927 109 0 3.1,6.2 3
6 98 3.2,6.1 98 0 3.2,6.1 0
7 148 3.2,6.1 148 0 3.2,6.1 0
8 71 33,6.1 76 5 3.2,6.1 7.04225 71 0 3.3,6.1 2
9 72 3.2,6.1 97 25  3.1,6.1 347222 72 0 3.2,6.1 2
10 8 33,6.1 126 43 3.2,6.1 51.8072 83 0 3.3,6.1 2
11 129 3.1,6.2 129 0 3.1,6.2 0
12 81 33,62 97 16 3.3,6.1 19.7531 81 0 3.3,6.2 3
13 60 3.2,6.1 63 3 3.1,6.1 5 60 0 3.2,6.1 2
14 77 3.2,6.1 122 45 3.2,6.2 584416 77 0 3.2,6.1 3
15 95 3.1,62 95 0 3.1,6.2 0
16 127  3.2,6.1 133 6 3.1,6.1 4.72441 127 0 3.2,6.1 2
17 68 3.1,6.1 &9 21  3.1,6.2 30.8824 68 0 3.1,6.1 3
18 146 3.1,6.1 154 8 3.2,6.2 547945 146 0 3.1,6.1 3
19 82 33,6.1 106 24 3.1,6.1 29.2683 82 0 3.3,6.1 3
20 91 33,6.1 94 3 3.2,6.1 3.2967 91 0 3.3,6.1 2
21 104 3.1,6.1 120 16 3.1,6.2 153846 104 0 3.1,6.1 2
22 54  3.1,6.1 91 37 32,62 685185 54 0 3.1,6.1 2
23 143 3.1,6.2 149 6 3.3,6.2 41958 143 0 3.1,6.2 2
24 67 3.1,62 67 0 3.1,6.2 0
25 72 3.1,6.1 72 0 3.1,6.1 0
26 122 32,6.1 160 38 3.2,6.2 31.1475 122 0 3.2,6.1 3
27 111 3.1,6.1 111 0 3.1,6.1 0
28 65 32,61 65 0 3.2,6.1 0
29 98 3.1,62 98 0 3.1,6.2 0
30 217 3.1,6.2 249 32 3.2,6.1 14.7465 217 0 3.1,6.2 2




Table 40 The result of alternative selection improvement for Heuristic-3
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IP Sol. Alt. Sel. Heu-3

Dev Alt. Sel. %Dev Imp. Heu Dev Alt. Sel.Iteration
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The results from table 38, 39 and 40 show all heuristics of improving

alternative selection can be performed well for all tested problems. All heuristics can

provide the same solution as the IP model. For example, when consider tested

problem No.2, the alternative selection Heuristic-3 provide the solution with the

deviation of 11 units from the IP solution and then the result of alternative selection

improvement heuristic shows that the solution is 99 units, which equal to the IP

solution. The deviation becomes zero on the iteration 2 of running. The heuristic of

alternative selection improvement appropriates for solving the lower bound of

AGVsp-P/D with all alternative selection heuristics.
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According to the experimental results, the hypothesis is to test whether the
mean values of the %Dev of the solutions from the different alternative selection
heuristics with the alternative selection improvement heuristic are equal or not. The

hypothesis can be formally stated as:
Hoy: MHeuristic-1+1mp = WHeuristic-2+Imp = M Heuristic-3+Imp (“1 =U= u3)

Hy: W;# W, for at least one pair of all 7, j, where 7, =1, 2 and 3

The data sets of the number of iterations from tables 38, 39 and 40 are not the
normally distributed obviously, because the data are discrete numbers. The data set
will be analyzed by using the nonparametric statistics. The Kruskal-Wallis test is used
for analyzing data sets of the numbers of iterations from tables 38, 39 and 40 for 3
treatments of all heuristics (k= 3) and 30 replications (r; = 30 and N = 90). The result

from Minitab is showed as follows.

Kruskal-Wallis Test: No. of Iteration versus Heu-

Kruskal-Wallis Test on No. of 1

Heu- N Median Ave Rank Z

1 30 2.00E+00 46.3 0.20

2 30 2.00E+00 49.4 1.01

3 30 0.00E+00 40.8 -1.21
Overall 90 45.5

H=1.68 DF =2 P = 0.432

H=1.92 DF =2 P = 0.382 (adjusted for ties)

Figure 19 The Kruskal-Wallis test of the %Dev for all 3 heuristics with the

alternatives selection improvement heuristic

If a type I error of o = 0.05, the results provide P-value = 0.382 which is > 0.05. The

Hoy: “Heuristic—lﬂmp = HHeuristic—2+Imp = uHeuristic—3+Imp cannot be Icj ected and can be

concluded base on the inference statistics that all 3 alternative selection heuristics with

the alternative selection improvement heuristic are not different significantly.
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3. The results of solving the single TSP tour of the AGVsp-P/D using the modified

Eastman’s algorithm

The research attempts to implement the modified Eastman’s algorithm for the
TSP with lower the bound model of assignment problems with alternative P/D nodes
on MATLAB 7. The 40 simulated problems with 10, 20, 30, 40, and 50 nodes, which
consist of one job of 2 alternatives, one job of 3 alternatives and some regular jobs, are
generated randomly. The running time of solving the single TSP tour of AGVsp-P/D,
using the modified Eastman’s algorithm, of the simulated problems are shown on table
41 and compared with the running time of solving the regular assignment problem

with 10, 20, 30, 40, and 50 jobs, shown on table 42.
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Table 41 The running time in second of solving the TSP tour of AGVsp-P/D

Problem No. 10 nodes 20 nodes 30 nodes 40 nodes 50 nodes
1 1.693 14.436 66.797 231.027 766.072
2 3.335 14.641 137.112 247.091 639.657
3 1.808 14.026 67.063 5.240 636.986
4 1.856 13.612 207.756 235.259 712.353
5 0.258 57.574 352.885 241.898 704.137
6 1.877 27.765 62.591 214.908 701.258
7 1.828 0.739 328.193 225.427 647.43
8 1.651 0.713 69.698 224.664 656.990
9 3.392 0.7111 79.219 219.988 668.780
10 1.682 14.103 69.182 6.183 734.886
11 0.226 55.339 134911 241.618 734411
12 0.262 16.011 67.598 719.097 744.121
13 0.283 27.951 304.586 204.507 679.370
14 1.825 14.284 73.322 236.092 642.580
15 1.859 13.929 80.206 425.945 637.226
16 0.298 14.475 73.39 474.657 639.772
17 1.832 13.888 76.527 231.260 708.768
18 1.698 15.442 65.905 237.361 711.008
19 0.307 15.025 64.765 224.364 712.425
20 1.692 0.769 64.591 252.56 657.413
21 1.747 30.800 70.174 226.488 636.859
22 1.674 28.348 71.670 236.647 732.089
23 1.740 0.792 114.147 231.182 647.651
24 0.284 13.745 64.398 246.789 676.477
25 0.285 32.151 69.559 5.246 732.258
26 0.263 13.072 70.199 235.618 734.277
27 1.757 65.791 2.161 261.750 732.742
28 0.237 13.280 78.426 237.382 673.567
29 1.652 58.381 72.749 255.169 640.159
30 0.211 13.693 75.813 205.515 625.663
31 0.290 41.085 65.514 266.024 629.462
32 1.719 14.342 64.394 6.832 625.209
33 1.731 14.264 64.568 266.383 702.128
34 1.717 56.760 69.746 787.577 681.357
35 0.229 0.721 71.241 232.691 682.662
36 1.713 0.672 113.415 246.183 771.671
37 0.314 13.932 64.098 426.096 764.973
38 1.796 14.332 69.131 475.67 770.507
39 1.841 14.932 70.087 230.799 708.948
40 0.198 53.106 2.160 235.654 647.383
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Table 42 The comparison of the running time in second of solving the single TSP

tour and the regular assignment problem

Size Levels Statistics Assignment TSP Tour
Problem Problem
Mean 0.2186975 1.2765
10 nodes S.D. 0.031660438 0.870312
Min 0.161 0.198
Max 0.282 3.392
Mean 0.681025 20.9908
20 nodes S.D. 0.04663084 18.14552
Min 0.558 0.672
Max 0.778 65.791
Mean 2.1654 94.74868
30 nodes S.D. 0.152020545 74.87147
Min 1.963 2.16
Max 2.655 352.885
Mean 5.478875 260.371
40 nodes S.D. 0.318063144 153.5101
Min 4.678 5.24
Max 5.976 787.577
Mean 12.4137 688.7921
50 nodes S.D. 0.999490388 45.38168
Min 10.499 625.209
Max 14.656 771.671

The running time of simulated problem

800
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S 400
P 200 / —m— Avg.ASS
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100
0 - . —u
1 2 3 4 5

No. of Nodes x10

Figure 20 The graph of running time in second of solving the single TSP tour of the
AGVsp- P/D
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Consider the graph on figure 20, the graph shows that the running time of
solving the single TSP tour of the AGVsp-P/D increases dramatically when the
number of AGVs is increased. This result shows that the heuristic can be used to

solve the case of single AGVsp-P/D.

4. Results of solving the multi AGVsp-P/D

This part of the experiment of solving multi AGVsp-P/D using the heuristic of
solving the MTSP as the standard TSP is performed. The solution of multi AGVsp-
P/D is the sets of multi TSP tours. The heuristic is programmed on MATLAB 7.0.
The 50 simulated problems with 10, 20, 30, 40, and 50 nodes, which consist of one job
of 2 alternatives, one job of 3 alternatives and some regular jobs for all cases of single
AGV (M=1), 2 AGVs (M =2)and 3 AGV (M = 3) are generated randomly. The
data sets of running time of solving the multi AGVsp-P/D by considering only the

calculation time, not include the problem set up time, are shown on table 43, 45 and 47.

According to this experiment, the main purpose is to examine that whether the
increasing of the number of AGVs affects on the average running time of solving the
multi AGVsp-P/D or not. The hypothesis test will be examined after all experiments

done



Table 43 The running time in second of 10 nodes MTSP for the multi AGVsp-P/D
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Problem No. 10 nodes
M=1 M=2 M=3

1 0.5781 0.4963 0.3187
2 1.3044 0.4534 1.3768
3 0.245 0.5547 0.2213
4 0.2081 0.2613 0.3131
5 0.8105 0.3016 0.6008
6 1.2781 0.844 2.0474
7 0.223 0.4001 1.026

8 0.4473 0.6251 0.9685
9 0.2722 3.6764 0.6313
10 0.8397 0.4283 0.4077
11 1.1375 0.4061 0.7901
12 0.2273 1.7481 0.2893
13 0.1793 0.3521 0.7662
14 0.470 0.4544 0.5212
15 0.9578 0.364 0.9125
16 0.25105 0.238 0.9261
17 0.6137 0.3895 0.4226
18 0.7162 0.6538 0.7331
19 1.122 1.3593 0.5414
20 0.266 0.2857 2.3444
21 0.3687 0.4212 1.0174
22 0.473 0.272 1.0084
23 0.2933 0.4277 2.5028
24 1.0118 0.3127 0.2272
25 0.4057 0.4355 0.8508
26 0.1926 1.598 0.7059
27 1.3251 0.2247 0.7774
28 0.6122 0.2395 2.2004
29 0.2553 0.375 1.1827
30 0.2766 3.846 0.5311
31 0.516 0.2879 0.403

32 0.7142 1.756 0.2493
33 0.2956 0.8841 0.8959
34 0.208 0.6551 0.8793
35 0.6997 0.3407 0.4914
36 0.3625 0.4416 4.081

37 0.2044 0.7505 0.7278
38 0.3185 0.8979 0.302

39 0.5303 0.5229 1.9412
40 0.5628 0.773 0.4439




Table 43 (Continued)
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Problem No. 10 nodes
M=1 M=2 M=3
41 0.3808 0.698 0.5543
42 0.258 0.6145 0.3318
43 0.3888 0.889 3.0799
44 0.259 0.6725 0.7411
45 0.506 1.2406 0.8989
46 0.2321 0.7288 1.071
47 0.2642 0.823 1.9991
48 0.4068 0.3143 0.498
49 0.3919 0.8437 2.5709
50 0.536 0.1283 1.134
Table 44 The summary of 10 nodes MTSP for the multi AGVsp-P/D
10 nodes
M =0 M =1 M =2
Mean 0.507943 0.734138 1.009128
S.D. 0.31895549 0.72995078 0.816217924
Min 0.1793 0.1283 0.2213
Max 1.3251 3.846 4.081
10 Nodes

Avg.Running time (Sec.)
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Figure 21 The graph of the average running time in second of 10 nodes MTSP



Table 45 The running time in second of 20 nodes MTSP for the multi AGVsp-P/D
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Problem No. 20 nodes

M=1 M=2 M=3
1 7.2711 1.4687 10.4991
2 5.3215 4.666 1.4812
3 0.6562 9.2695 4.9078
4 2.4304 7.9018 9.1667
5 1.6493 10.6857 4.6736
6 1.2746 1.3451 1.4609
7 2.2308 8.7386 9.7711
8 9.3824 5.4041 1.4887
9 3.9393 2.3899 9.8529
10 2.9384 31.7611 5.4141
11 1.9332 3.9518 0.8323
12 8.9992 15.4405 6.7089
13 6.9871 1.296 27.2017
14 20.3591 2.1797 19.8646
15 1.1316 47616 6.8771
16 21.499 2.6524 57.4077
17 7.4028 7.9937 7.7732
18 1.2898 4.4645 25.7845
19 6.4044 4.7286 6.7818
20 5.7406 25.9307 20.7878
21 3.406 4.2891 0.8185
22 3.5275 13.9361 11.7984
23 2.284 2.0237 13.7122
24 0.653 13.2995 12.4737

25 1.3032 11.3131 5.241
26 1.1372 17.0743 5.1957
27 24.5203 12.4049 4.4442
28 2.6884 7.6847 6.9935
29 2.662 10.4358 7.4455
30 1.7965 8.6316 17.0687

31 1.2876 45.5607 8.242
32 7.5661 13.0314 4.9419
33 3.0469 5.3899 0.7621
34 1.7372 14.5202 14.315
35 13.2586 12.085 11.0408
36 7.1424 4.5083 3.7207
37 8.8102 6.4901 12.2831
38 27.3407 7.4976 19.7948
39 3.8289 41.4066 0.8236
40 1.363 4.8039 8.2879




Table 45 (Continued)
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Problem No. 20 nodes

M=1 M=2 M=3
41 23.9681 1.3514 23.1394
42 1.7786 11.9583 18.5901
43 2.2326 2.8668 4.8258
44 7.5768 9.2478 14.582
45 2.5632 21.5848 28.713
46 1.3223 2.5375 39.9687
47 15.2526 4.4379 26.2798
48 4.7328 7.7225 8.5443
49 12.6934 2.7995 6.5797
50 5.1685 10.4343 8.324

Table 46 The summary of 20 nodes MTSP for the multi AGVsp-P/D

20 nodes
M=1 M =2 M =3
Mean 6.309788 9.767146 11.753716
S.D. 6.76525129 9.38018444 10.7872062
Min 0.653 1.296 0.7621
Max 27.3407 45.5607 57.4077
20 Nodes
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Figure 22 The graph of the average running time in second of 20 nodes MTSP
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Table 47 The running time in second of 30 nodes MTSP for the multi AGVsp-P/D

Problem No. 30 nodes
M=1 M=2 M=3

1 14.468 25.7828 33.311
2 96.8074 31.2256 11.646
3 17.1893 133.2994 81.8107
4 136.9473 10.0478 28.5088
5 102.1074 33.8301 5.4162
6 22.7224 16.1166 178.181
7 42.1609 43,8518 18.4791
8 54.9581 40.2743 31.0544
9 23.0809 16.9561 19.5557
10 61.138 20.6118 12.8187
11 24.7432 78.939 71.4472
12 32.4986 14.7052 89.8392
13 75.8807 34.8351 84.0734
14 23.8733 46.0669 138.6934
15 14.4361 174.4891 30.6783
16 10.9639 46.729 82.247
17 129.4007 21.0921 14.3649
18 4.0006 39.324 42.9922
19 62.6249 96.6452 26.1129
20 27.143 17.8762 47.5797
21 65.4614 33.1484 6.8357
22 29.9751 24.1449 23.0791
23 28.8981 28.4337 8.9306
24 11.624 22.0013 51.8817
25 13.7934 43.0344 65.8268
26 25.5864 50.598 25.8491
27 14.9759 68.6874 163.0203
28 7.876 24.099 24.2744
29 74.7315 27.4172 27.8802
30 6.5012 26.2887 25.8394
31 43.0726 90.2681 94.7307
32 12.4687 14.7459 59.423
33 155.261 52.2774 66.3459
34 10.0452 42.5896 30.3738
35 6.1793 102.03667 10.0852
36 23.533 19.4913 26.7812
37 6.7356 2.2572 94.643
38 26.025 14.2288 117.7158
39 28.208 58.6066 20.4345

40 35.1858 32.0658 27.4943
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Problem No. 30 nodes
M=1 M=2 M=3
41 37.3528 19.2568 31.293
42 19.916 2.1943 41.5333
43 10.3684 36.4643 62.6321
44 6.0149 4.5291 35.7456
45 10.421 63.5197 42.5076
46 32.1945 141.0189 15.1661
47 16.7367 29.7821 81.5883
48 127.6941 93.0225 28.6096
49 37.7534 69.2408 96.3396
50 5.4234 38.6061 76.6012
Table 48 The summary of 30 nodes MTSP for the multi AGVsp-P/D
30 nodes
M =1 M =2 M =3
Mean 38.143142 443350614 50.645418
S.D. 37.5907785 36.4018846 40.0213276
Min 4.0006 2.1943 5.4162
Max 155.261 174.4891 178.181
30 Nodes
< 60
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Figure 23 The graph of the average running time in second of 30 nodes MTSP
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According to the experimental results, the hypothesis is to test whether the
mean values of the running time from solving the multi AGVsp-P/D of the different

number of AGVs are equal or not. The hypothesis can be formally stated as:
Ho: W1 = W= = Loz (= o = L)

Hi: W ;# W, for at least one pair of all 7, j, where 7, =1, 2 and 3

Let consider experiments of M = 1, M = 2 and M = 3 of 30 nodes simulated
problems with 50 replications and the type I error of a = 0.05. The normal probability

plots of data sets on table 47 are performed as follow.

Normal Probability Plot
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StDev: 37.5908 A-Squared: 3.942
N: 50 P-Value: 0.000

Figure 24 The normal probability plot of the average running time of M =1
from table 47
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Normal Probability Plot
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Figure 25 The normal probability plot of the average running time of M =2
from table 47
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Figure 26 The normal probability plot of the average running time of M =3
from table 47

The normal probability plots show that all data sets of table 47 are not
normally distributed. The Box-Cox transformation function in Minitab is used to
transform all data sets from experimental results. All data sets of table 47 are
transformed, which are M = 1-Trans, M = 2-Trans and M = 3-Trans, shown on table 49.
The normality tests by normal probability plots are performed, which are shown on

figures 27, 28 and 29 as follows.
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Table 49 The data set from Box-Cox transformation of table 47

Problem No. 30 nodes
M = 1-Trans M = 2-Trans M = 3-Trans

1 0.739668 2.07227 1.48538
2 0.596858 2.16321 1.31925
3 0.725420 2.99521 1.64391
4 0.573944 1.67758 1.45951
5 0.593279 2.20241 1.21005
6 0.702929 1.86506 1.79486
7 0.655561 2.33434 1.38982
8 0.636240 2.29022 1.47367
9 0.701688 1.88642 1.39873
10 0.628634 1.97083 1.33362
11 0.696202 2.66323 1.61897
12 0.675105 1.82713 1.66137
13 0.613492 2.21692 1.64898
14 0.699020 2.36028 1.74482
15 0.739852 3.18161 1.47165
16 0.763185 2.36784 1.64490
17 0.577627 1.98104 1.35087
18 0.855154 2.27799 1.52878
19 0.626931 2.78686 1.44513
20 0.688966 1.90890 1.54637
21 0.623805 2.19238 1.24226
22 0.681292 2.04200 1.42512
23 0.684112 2.11825 1.28031
24 0.758166 1.99987 1.56155
25 0.743665 2.32452 1.60407
26 0.693574 2.41046 1.44347
27 0.736793 2.58145 1.77694
28 0.792216 2.04113 1.43327
29 0.614550 2.10103 1.45585
30 0.809554 2.08132 1.44341
31 0.653981 2.74453 1.67134
32 0.752188 1.82826 1.58565
33 0.565871 2.42817 1.60550
34 0.770760 2.31911 1.46999
35 0.814207 2.82099 1.29800
36 0.700153 1.94629 1.44925
37 0.806324 1.20027 1.67117
38 0.692245 1.81369 1.71283
39 0.685980 2.49119 1.40568
40 0.669079 2.17612 1.45356
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Table 49 (Continued)

Problem No. 30 nodes
M= 1-Trans M = 2-Trans M = 3-Trans
41 0.664582 1.94101 1.47494
42 0.713465 1.19268 1.52283
43 0.768011 2.23976 1.59509
44 0.816689 1.40311 1.49726
45 0.767572 2.53657 1.52682
46 0.675822 3.03326 1.35917
47 0.727608 2.14037 1.64341
48 0.578494 2.76309 1.46010
49 0.663782 2.58609 1.67452
50 0.826286 2.26860 1.63175
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Figure 27 The normal probability plot of Box-Cox transformation data of
M =1 from table 49
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Normal Probability Plot
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Figure 28 The normal probability plot of Box-Cox transformation data of
M =2 from table 49
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Figure 29 The normal probability plot of Box-Cox transformation data of

M =3 from table 49

The normal probability plots on figures 27, 28 and 29 show all transformed data sets
are normally distributed. According to this point, all data sets of table 49 on figures
27, 28 and 29 can be used to perform the hypothesis test by using regular statistic
methods. The ANOVA is used for analyzing the transformed data set of table 49 for 3
treatments, which are M = 1-Trans, M = 2-Trans and M = 3-Trans, (k= 3) and 50
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experiments (n; = 50 and N = 150), that implies the analysis of original data set. The
ANOVA table is shown as follows.

Table 50 The ANOVA table of the data set on table 49

Source of Sum of Degree of Mean F statistic
Variation Squares Freedom Squares (f0)
Treatment 57.63443 2 288172149 433441717
Error 9.773242 147 0.06648464
Total 67.40767 149

If the type I error of a = 0.05 is specified, the result from the ANOVA table provides
the value of fy=433.441. From the statistical table of F distribution, the value of /¢ os,
vi,v2 of this ANOVA is f 05,2, 147 =3.057. The result of the ANOVA is f,>f0.0s.2, 147

Therefore, the Hy: M M=1 = M M=2 = M M=3 (Ml = uz = M3)can be rejected (f() >f0,05, 2, 147)
and can conclude base on the inference statistics that the different number of AGVs

affects on the mean value of the running time of solving multi AGVsp-P/D.

The results show that the mean values of the running time of solving the multi
AGVsp-P/D with the different numbers of AGVs are not equal, at the type I error o =
0.05, because this heuristic solves the MTSP as solving the standard TSP with the
additional dummy rows and columns. According to this point, this heuristic can be

used to solve the multi AGVsp-P/D with the specific number of AGVs.
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5. The result of the heuristic of splitting the single TSP tour for solving
the multi AGVsp-P/D

From the previous section, when the number of AGVs is increased, the average
running time of solving multi AGVsp-P/D increases. If the larger problem of AGVsp-
P/D with a lot of AGVs (vehicles) is considered, it may take a lot of computational
time and memory to solve the problem. The large numbers of AGVs (M) may cause
the running out of memory of MATLAB 7.0. The heuristic of splitting the single TSP
tour is used for solving the lower bound solution of multi AGVsp-P/D. The lower
bound of multi AGVsp-P/D solutions is the sets of multi tours, not multi TSP tours.
The 30 simulated problems with 10 nodes, which consist of one job of 2 alternatives,
one job of 3 alternatives and 5 regular jobs are generated randomly for the cases of 2
AGVs (M =2). The solution of M TSP tours from solving the MTSP as the standard
TSP and the solutions of M tours from the heuristic of splitting a single TSP tour are

compare. The %Dev of the solutions from both methods is examined as follows.
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(Spliting TSP Heu) and the solutions of multi TSP tours from the heuristic of

solving MTSP as a standard TSP(MTSP Heu)

No. MTSP Heu Spliting TSP Heu Dev %Dev
1 152 236 84 55.263
2 96 169 73 76.042
3 170 223 53 31.176
4 165 221 56 33.939
5 96 157 61 63.542
6 102 102 0 0.000
7 177 225 48 27.119
8 168 226 58 34.524
9 155 198 43 27.742
10 170 239 69 40.588
11 119 177 58 48.739
12 178 190 12 6.742
13 135 168 33 24.444
14 142 185 43 30.282
15 219 234 15 6.849
16 134 156 22 16.418
17 195 288 93 47.692
18 138 179 41 29.710
19 164 198 34 20.732
20 171 213 42 24.561
21 119 170 51 42.857
22 178 210 32 17.978
23 135 214 79 58.519
24 142 185 43 30.282
25 219 236 17 7.763
26 134 156 22 16.418
27 155 224 69 44.516
28 74 87 13 17.568
29 171 213 42 24.561
30 132 203 71 53.788
Table 52 The statistical summary of table 51
MTSP Heu Spliting TSP Heu Dev %Dev
Mean 150.167 196.067 45.900 32.012
S.D. 34.097 40.914 23.307 18.251
Min 74.000 87.000 0.000 0.000
Max 219.000 288.000 93.000 76.042
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From the result, the splitting heuristic can be used to form the multi tours for M
AGYVs from the single TSP tour of the single AGV. The % deviation of the splitting
TSP Heu and MTSP Heu solutions show that the solutions of Spliting TSP Heu
deviate so much, about 32% on the average, from the MTSP Heu, but the Spliting TSP
Heu can generate the feasible solution easily and quickly for the large AGVsp-P/D
systems with the large number of AGVs.

Results Analysis Based on the Tested Problem

This section presents the analysis of experimental results based on all results of
all tested problems. The analysis will be conducted following the sequences, which
are 1. analysis of the lower bound solution of AGVsp-P/D by integer programming, 2.
analysis of the lower bound solution of AGVsp-P/D by alternative selection heuristics,
3. analysis of results of solving the single TSP tour of the AGVsp-P/D by the modified
Eastman’s algorithm, and 4. analysis of results of solving the multi AGVsp-P/D.

1. Analysis of the lower bound solution of AGVsp-P/D by integer programming

Recall table 32, it is the statistical summary of the running time in seconds of
the lower bound solution of the AGVsp-P/D and figure 6, which is the graph of table
32. The analysis of this section is based on the 40 generated problems. The result of
the average running time of all cases, which are assignment, 2Al-5 and 2Al-Max
problems, increases when the numbers of nodes are increased. The increasing in each
case is not linearly proportional to the number of nodes, which the trend is much more
rapidly increasing. The formulated 0-1 IP of the lower bound model can provide the
solution well but may required a lot of memory take too much time for the large
problem. Based on the experiment of 2Al-Max, the problem size of 50 nodes takes
50.12 seconds to run by MATLAB 7.0 on average, but for the 30 nodes problems
takes only 6.61 seconds. The increasing of the average running time grow rapidly,
because problems are 0-1 I[P model that are solved by branch and bound approach.

More number of nodes means more variable to solve, which form more branching.
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When the problem is larger than 50 nodes, the average running time may increase
dramatically as same as the required memory, which is used to solve the problem. The
experiment did not go further more 50 nodes because the MATLAB 7.0 will give the
warning of “out of MEMORY™ on the “bintprog” function.

Another point of consideration is the number of alternative jobs. The research
does the testing on no-alternative jobs (the regular assignment problems), 2Al-5, and
2Al-Max. The graph in figure 6 shows that the number of alternative jobs affects so
much on the increasing of the average running time. Consider the problems of 50
nodes of the regular assignment problem, 2Al-5 (five pairs of alternative jobs and 40
normal jobs) and 2Al-Max (twenty five pairs of alternative jobs and no normal jobs)
the number of 2 alternative jobs is increased from 0 to 5 jobs and from 5 to 25 jobs.
The average running time is increased from 12.41 to 13.76 seconds and from 13.76 to
50.12 seconds. From the inference statistic, the result expresses the same conclusion
as the descriptive statistic, which is mentioned previously that the same size of
problem but with a different number of alternative jobs may provide the different
average running time. Because the lower bound model is solved by branch and bound
approach, more alternative numbers form more branching of alternative selections for

the same size of problems.

2. Analysis of the lower bound solution of AGVsp-P/D by alternative

selection heuristics

From table 37, the comparison of results of the % deviation (%Dev) of all
alternatives selection heuristics is analyzed. From the descriptive statistics show that
Heuristic-3 provides the minimum value of the %Dev on the average, standard
deviation of the %Dev and the maximum number of problems, which obtain the
heuristic solution the same as the IP solution. Considering the inference statistic, the
Kruskal-Wallis test shows that all heuristics do not perform differently in term of the
mean value of the % Dev. The results of testing shows that all heuristics can be used
equivalently, but the descriptive statistics shows that the Heuristic-3 is the most

efficient (based on table 37). Heuristic-3 provides better solutions than the others on



132

the average but it is also the most complex approach. The %Dev is the main
consideration because the research wants to find the solutions from the alternative
selection heuristics as close as the IP solution of the same problem. The experiment
does not mention about the running time of all heuristics because all heuristics are not
the complicated algorithm and do not take many steps. When all heuristics are applied,
the main part of running time will be taken by running the assignment problem, not
from the methods of alternative selection from heuristics. It can conclude that all
heuristics can provide the solutions close to IP solutions by solving the regular

assignment problems that it is efficiently for the large problem.

There are some cases having too much %Dev and the research attempts to test
the heuristic for improving the alternative selection heuristics. The research applies
the alternative selection improvement heuristic to all alternative selection heuristics
and considers the improvement of the reduction of the %Dev. The results show that
all cases can provide the heuristic solution same as the IP solution after applying the
alternative selection improvement heuristic to the initial solution from alternative
selection heuristics, but different number of iterations. The improvement heuristic is
the searching heuristic so that some cases may search all possible alternatives. If the
initial solution is not the optimum, this heuristic can provides the better solution

exactly.

3. Analysis of results of solving the single TSP tour of the AGVsp-P/D
by the modified Eastman’s algorithm

When the modified Eastman’s algorithm is applied to the lower bound
solutions of the AGVsp-P/D, the assignment solutions become the TSP tours. This
searching procedure is the branch and bound approach so that the running time
increases dramatically when the problem size is increased because the 0-1 IP
subproblems are solved for all branches. The objective of this experiment is the
modified Eastman’s algorithm. The research shows that this algorithm performs well
but takes quite a lot of computation time and required memory for solving the AGVsp-

P/D using MATLAB 7.0.



133

Now the research found the TSP tour solutions for the AGVsp-P/D by solving
the 0-1 IP subproblem with the modified Eastman’s algorithm for the TSP. Table 42
and figure 20 show that the average running time of the 50 nodes problem is 688.79
seconds. This result leads to the conclusion that the average running time will grow

dramatically and not linear proportion when the number of nodes is inceased.

4. Analysis of the results from solving the multi AGVsp-P/D

This analysis focuses the effect of the running time, when the additional AGVs
are added to the system of the AGVsp-PD. Let’s consider the results on table 51 and
52, the ANOVA of the experiment and the descriptive statistic show that the
increasing of the number of AGVs affects on the average running time that consider
only the calculation time. The average running time of 10 nodes AGVsp-P/D
increases about 0.3 seconds when the number of AGVs is increased from 2 AGVs to 3
AGVs, but when the 30 node problems are considered, the running time will be
increased about 5 seconds. This algorithm performs adding one node to the problem
when one additional AGV is added. The MTSP can be solved as the standard TSP of
the problem with some additional nodes. The running time of solving the MTSP does
not increase much compared to solving the TSP of same problem size. It can say that
this algorithm performs well on solving multi AGVsp-P/D and provides the solution,
which is the set of TSP tours. If the problem is very large and uses a lot of AGVs, the
heuristic of splitting the single TSP tour may be used appropriately. The solution of
the multi AGVsp-P/D in the form of multi tours, not multi TSP tours, may suitable for

the large manufacturing system.
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Discussions

Based on research results, this research accomplishes all research objectives,
which are studying the problem of single/multi AGVsp-P/D, developing the
algorithms to solve the problem and creating some computer programs for solving
single/multi AGVsp-P/D for testing the quality of the model. This section discusses
many issues such as the weaknesses of all algorithms of this research on the objective
s perspective, real world applications of AGVsp-P/D and difficulties on the
implementation of AGVsp-P/D model.

1. Problem of Single/Multi AGVsp-P/D

This AGVsp-P/D is a special case of TSP in both cases of single and
multisalesman. Bases on literature search results, there are not shown any literature
that explains about the TSP with the special structure of alternative P/D nodes. The
research generated the mathematical model for the AGVsp-P/D in the form of
modified TSP/MTSP. The generated model can provide a solution in the form of the
schedule of jobs for the AGV with alternative selection nodes but this model does not
consider many constraints in the real world. The assumptions of the static job list and
fixed plaint layout make the model inflexible for some kinds of product layout
manufacturing. Many manufacturing process concepts such as “just in time” or lean
system may produce response to the changing of demand by minimizing the stock.
This AGV system that cannot support the dynamic demand provides a poor solution in
a real production system. Therefore, the research model appropriates for applying to
the manufacturing layout in which the product items do different steps in different
departments with static environments. Another issue is about the problem size. The
generated AGV system in the form of the 0-1 IP lower bound model with modified
Eastman’s algorithm may take too much time for implementing in the real world
situations because of the size of problem. Although the model can provide the
solutions well, on average, they are suitable for problems of static layout that are not

larger than 50 nodes.
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2. The weakness of the model of AGVsp-P/D

There are two weaknesses of the formulated model of AGVsp-P/D, which are

1. problem size and 2. computation time.

The first weakness is the problem size. The current approach uses the 0-1 IP
approach for forming the mathematical model of AGVsp-P/D. The research creates
the heuristics to support the larger problem size. However, the result still illustrates
preferences of the IP model because of the obtained solution quality. The branch and
bound is used to solve the TSP tour of the AGVsp-P/D by using modified Eastman’s
algorithm. Generally, branch and bound approach is an exhaustive search that is used
to solve the 0-1 IP. The research use MATLAB 7.0 that has the function to solve the
0-1 IP. This software can provide a stable running condition up to about 50 nodes for
this research model. Because of the nature of 0-1 IP, the problem takes a lot of
memory for computing on MATLAB 7.0, which is limited on the regular personal
computer with 2 GB RAM. This research uses MATLAB 7.0 because it provides the
flexibility to program and can run automatically through the algorithms. For future
improvement, because the bintprog function of solving 0-1 IP is the main consuming
of required memory, the way to program the model of AGVsp-P/D should be changed
by improving the program structure of solving the 0-1 IP without using the binprog

function to avoid the “out of MEMORY” for extending to support the larger problems.

The second weakness is about the computation time. The combinatorial nature
of the TSP/MTSP affects on the computation time of the problem obviously. Because
the generated model of the AGVsp-P/D is a special case of the TSP, the increasing of
running time is not the polynomial function, exactly. From the results, the model
takes about 10 minutes, on the average, to solve 50 nodes for the TSP solution of the
AGVsp-P/D. For the real implementation, the software for programming the AGVsp-
P/D may be much more powerful than MATLAB 7.0. The average running time may

be improved by reprogramming the model on the other software.
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3. The application of AGVsp-P/D

In some applications of the regular AGV systems, only few numbers of
vehicles and jobs are involved. The aim of the regular AGV scheduling is to dispatch
a set of AGVs to achieve the goals for a batch of pick up and delivery jobs under the
certain constraints such as batch size, deadlines, priority and etc. The goals are
normally related to the processing time or utilization of resources, such as minimizing
the total traveling time or distance of all vehicles. Qiu and Hsu (2002) proposed the
survey paper of the AGV scheduling. The paper showed that most of current AGV
system uses simple scheduling algorithms. Jobs are usually handled in a first-come-
first-serve (FCFS) fashion, and the nearest idle vehicle is usually chosen to serve a
next job. When the problem of scheduling of AGVs in the real manufacturing situation
is different from the conventional path problem such as this AGVsp-P/D, the AGV
systems still operate under the human monitoring and decision making, not exactly

automatic.

The AGVsp-P/D model is developed directly under the real manufacturing
application that is automated materials handling systems. For example, the AGV
starts at the recharging depot then goes to pick up its first job at some process station,
such as pick up the items from a drilling station, and goes to deliver the items at some
process station, such as a milling station. Because the factory may have many milling
stations, the AGV has to select the appropriate milling station for minimizing the total
traveling distance. Askin and Standridge (1993) illustrated some examples of
applications of the AGV system. Many real world applications descried below are the

versatilities, which the AGVsp-P/D system can be applied to solve the problem.

3.1. Satellite signal transferring

Consider the signal transferring systems, the signal is sent from the ground
station to the satellite and comes back to the station. The signal is generated from the
main controller device and transferred to the ground transition posts having multiple

routers. Next, the signal will being into one router that transfers the signal to the next
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nearest ground transition post until be transferred reaching the satellite transition
station of the specific satellite. Then, the signal is sent to the satellite to operate the
equipments and backs to the main controller device. On the path of signal traveling,
there are so many posts and routers to choose in the transferring system. The first-
come-first-serve (FCFS) fashion, and the nearest idle router may be usually chosen to
serve a transferring, but it may not provides good efficiency. According to this

problem structure, the AGVsp-P/D can be applied to the signal transferring problems.

3.2. Circuit board wiring

This kind of problem appears normally in the design of any wiring such as
the car’s computers and the other digital systems. A system consists of the numbers of
modules and several pins that are located on each module. A given set of pins has to
be connected by the wire. Some modules, which have sever common pins such as a
ground pin, have alternative pins to be selected for connecting to other modules in the
circuit. In order to avoid the signal crossing and to minimize the length of wire, the

AGVsp-P/D model can be applied to this problem also.

3.3. Messenger scheduling

The following type of problem occurs repeatedly in the decision making
process of the messengers, for example in a financial agent. The messenger job is
similar to the AGV job that starts at the office and goes to pick up the financial
documents, such as the checks or cash, from one customer and deliver them to the
specific bank (or post office) and goes to the next customer until all customers are
served then goes back to the office. There are so many banks for serving the customer
needs, for example the messenger has to go to deliver the checks of one customer to
KBank. There are many KBanks that messenger can select to deliver the documents
and then goes to the next job. It is similar to the AGVsp-P/D model. A simulated

example of this application is showed in an appendix.
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4. The difficulty on the implementation of the AGVsp-P/D model

The first difficulty is concerned with how the user can apply the model of
AGVsp-P/D to solve the real world situation. The research is created based on many
assumptions that make it possible for solving by some mathematical approaches. The
research does the AGVsp-P/D model with specific kinds of variables and many
constraints, because the research want to capture the real world situation as much as
possible, but there are many real world situations that hard to be formed into the
mathematical model. For example, some real conditions that are the AGVs speed, the
pick up and delivery period, the traffic jam conditions or the maintenance activities are
not considered in this research. When the model is implemented, the obtained
solutions should be adjusted to avoid the infeasible implementation. The suitable set
up of the material handling system should be considered concomitantly with

implementing the AGVsp-P/D system.

Secondly, based on the result of the tested problems of the multi AGVsp-P/D,
when the additional AGVs are added to the problem, the running time is increased but
not much. However, the research does not consider the cost of additional AGVs. The
model considers solving the problem by minimizing the total traveling distance with
the specific numbers of AGVs, but without considers the operating cost, which is an
important factor in the real world situation. Users should conduct the trade off
analysis between the optimum solutions and the appropriate implementation

conditions.
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CONCLUSION AND RECOMMENDATION

Conclusion

In this research, the mathematical model of the AGVsp-P/D and the relaxation
model which is the assignment problem with alternative P/D nodes are proposed with
the solving approaches by integer linear programming, Benders’decomposition and
both constructive and improvement heuristics. The assignment problem with
alternative P/D nodes is solved for finding the lower bound of the AGVsp-P/D. This
study is conducted because the assignment problem is the subproblem that has to be
solved in all iterations of solving the TSP/MTSP by a branch and bound approach.
This research creates a knowledge base for studying the TSP/MTSP with alternative
nodes that cab be applied for solving the AGVsp-P/D.

The assignment problem with alternative P/D nodes has a special structure that
is different from the original assignment problem and cannot be solved by the
traditional solving approach of the original assignment problem. This special structure
creates an effect on the unimodular property of the assignment problem, which the 0-1
IP model of original assignment problem can be solved as a regular linear
programming without concerning the 0-1 integer constraints. When the alternative P/D
nodes constraints are added, the model will lose the unimodular property. The
research creates a new mathematical model for formulating the assignment problem
with alternative P/D nodes, which is the lower bound of AGVsp-P/D by modifying the
original assignment problem structure. The created model is still the 0-1 IP, look like
the assignment problem, and can be solved by using branch and bound approach that
can be programmed on MATLAB 7.0 for solving the problem. The procedure of
solving 0-1 IP requires a lot of memory to run on MATLAB 7.0 and makes the
program cannot solve the lower bound of AGVsp-P/D beyond 50 nodes, because
MATLAB 7.0 shows “out of MEMORY™ for solving the binary problem using the

“bintprog” function.
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For solving larger problem size, the research creates the heuristics for solving
the lower bound of the AGVsp-P/D without solving the created 0-1 IP model, but
solving the linear programming or the regular assignment problem with some heuristic
methods. Benders’decomposition approach is applied to solve the lower bound model
of AGVsp-P/D. The created algorithm of solving the lower bound of AGVsp-P/D by
Benders’decomposition is a complicate procedure and still solving the 0-1 IP in the
Benders partial mater problem, but the problem sizes of the 0-1 IP is smaller than the
direct method. This method can be use to solve the lower bound of the AGVsp-P/D,
which larger than 50 nodes. Then, the research attempts to create other heuristics
without solving the 0-1 IP model. The created heuristics consist of three alternatives
selection heuristics and one alternative selection improvement heuristic. All
alternatives selection heuristics are the constructive heuristic methods that can
provides the initial solution of assignment problem with alternative P/D nodes, which
is the initial lower bound then, the initial solution is improve by the alternative
selection improvement heuristic that can provide the improved solutions, which is the

better lower bound solution of the AGVsp-P/D.

After that the modified Eastman’s algorithm for TSP is applied to the lower
bound solution of the AGVsp-P/D, which can provide the single TSP tour for the cases
of single AGVsp-P/D. Finally, the heuristics for solving the multi AGVsp-P/D are
created by using the TSP tours solution. Two heuristics that are the heuristic of
solving the MTSP as the standard TSP and the heuristic of solving multi tours from
splitting a single TSP tour are compared to show that the heuristic of solving the
MTSP as the standard TSP can provide the solution of multi TSP tours with less total
tour distance than the solution of multi tours from the heuristic of splitting a single
TSP. The advantage of the heuristic of splitting a single TSP is that the heuristic can
provide the feasible solution quickly for a larger problem size that the heuristic of

solving the MTSP as the standard TSP cannot run on MATLAB 7.0.

The simulated problem is generated to verify and validate the quality of the
AGVsp-P/D model by using MATLAB 7.0. All results from experiments are analyzed

by statistical methods with type I error a = 0.05. The results of average running time
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of solving the lower bound model of AGVsp-P/D with different size levels of problem
using the 0-1 IP model are analyzed using statistical methods. The conclusion is that
the averaging running time increases when the number of node is increased. The
experiments of solving the lower bound model of AGVsp-P/D using three alternatives
selection heuristics and alternative selection improvement heuristic focuses on the
%Dev of heuristic solutions from IP solutions. The statistical analysis results show
that all three created heuristics provide not different on the mean value of the %Dev of
heuristic solutions from IP solutions, which imply all heuristics can by used to solve
the lower bound solution of AGVsp-P/D equivalently. When the modified Eastman’s
algorithm for TSP is applied to the lower bound solution of the AGVsp-P/D, the result
is the TSP tour solution of AGVsp-P/D. The average running time of 50 nodes
problem is about 688 seconds. For multi AGVsp-P/D cases, the average running time
of solving the problem using the heuristic of solving MTSP as the standard TSP of 30
nodes problem with 3 AGVs is about 50 seconds. The statistical analysis shows that
the average running time is increased not much when one AGV is added to the system,
but it is significant at the type I error a = 0.05. When the heuristic of splitting a single
TSP tour for multi tours of the multi AGVsp-P/D is applied, the average %Dev of this
heuristic solutions and the heuristic of solving MTSP as the standard TSP solutions is
about 32%. The heuristic of splitting a single TSP tour provided much %Dev of the
solution but it can provide the solution quickly for the larger size of AGVsp-P/D.
According to this point, all solutions and analysis results from all simulated problems
satisfy all model constraints, can provide the solution of AGVsp-P/D and can be

applied to use in the real situations.
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Recommendation

The AGVsp-P/D model is formulated by applying the TSP approach that the
created model is the 0-1 IP model. This research conducts the study and analysis to
create the knowledge bases of AGV problem with some special structure. The created
model attempts to capture the structure of alternative P/D nodes, but ignore many real
world constraints so that the model may feasible for some real applications by relaxing
unconsidered constraints, but may not feasible for many cases. This model is suitable
for the fixed layout of traveling path, fixed job list and constant AGV speed that are
not compatible with many real flexible manufacturing systems. The implementations
of this created AGVsp-P/D model will success when the obtained solutions should be

adjusted to handle the realistic situations.

The objective of the single/multi AGVsp-P/D is to minimize the total traveling
distance, which is total tour/tours length. When the multi AGVsp-P/D cases are
considered, the obtained solutions are the route of multi TSP tours, which is the
minimum total traveling distance, but not balance the length of each TSP tour. For the
real situation, if the additional AGVs are supplied to the system, all AGVs should be
utilized equivalently because the additional AGV make the increasing of operating
cost. For example, the solution may provide two TSP tour for 10 nodes problem with
2 AGVs that consists of one TSP tour of seven nodes and another TSP tour of three
nodes. One AGV may still running, but another AGV is already finished and
becomes the unutilized at the same period time. For the suitable implementation, all
AGVs should be scheduled and utilized equivalently. The solution of multi AGVsp-
P/D provides the minimum total traveling distance, but not provides the maximum
AGYV utilization and the minimum operating cost that is the most important issue in
any real world situations. When the multi AGVsp-P/D model is implementing to the
real manufacturing or applications, the obtained solutions should be analyzed and
concerned about the operating cost. All considered AGVs should be utilized as
equivalent as possible. The obtained solutions from solving the AGVsp-P/D should
conduct the trade-off analysis between the minimum total traveling distance and the

minimum operating cost.
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The problem of the single/multi AGVsp-P/D with 50 nodes can be solved by
MATLAB 7.0 on a personal computer with 2 GB RAM, but the research found that
most of problems having more than 50 nodes cause MATLAB 7.0 to be “out of
MEMORY” in solving the 0-1 IP. The model works well for solving single/multi
AGVsp-P/D with fewer nodes. If the larger problem sizes are considered, the
heuristics of alternative selection and improvement or Benders’ decomposition

approach should be applied.

From the limitation previously, the future research should extend to cover more
realistic situation for more accuracy and reality of the obtained solution. The other
solving approaches should be considered instead of branch and bound approach. The
cost of operation and the dynamic job list constraints should be studied. The
researcher believes that this research can be modified to cover the more realistic

events and can still be solved under some mathematical approaches.
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This part shows some simulated examples that can help to understand some
content of this research. There are two examples, the example of lower bound of
AGVsp-P/D by Benders’ decomposition approach, and the example of application of
AGVsp-P/D that are shown as follows.

1. The example of solving the lower bound of the AGVsp-P/D

by the Benders’decomposition approach

Refer to the result section of solving the lower bound of the AGVsp-P/D by
integer programming, most of problems which have more than 50 nodes causes
MATLAB 7.0 out of memory in calculation of binary problems but the
Benders’decomposition approach can be applied for a larger problem that the direct

solving method using branch and bound on MATLAB 7.0 can not generate solutions.
Let consider the generated problem of 60 nodes with 60 of variables Z that are
55 regular jobs, one of the 2 alternatives job and one of the 3 alternatives job. The

distance matrix of 60 nodes problem can be shown as follows.

Columns 1 through 10

o0 54 85 16 71 74 19 61 2 88
26 0 66 46 29 34 91 64 12 52
52 91 0 29 47 13 82 80 43 41
29 47 61 0 43 87 33 94 57 39
33 61 56 88 0 58 87 56 29 1
23 18 86 97 93 0 24 96 51 15
39 86 75 99 28 68 0 13 57 41

3 64 27 71 97 65 81 0 92 47
30 79 85 17 76 91 49 80 0 10
78 3 40 90 33 91 68 94 85 0

11 60 43 43 63 59 33 21 44 27
96 64 40 49 93 52 45 80 53 68
30 34 79 13 85 57 14 8 51 36
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91
10
50
78

79
21
72
75
60

63
42
50
82

65
11
77
93
68
57
15
79
95
67
66
95

67
89
70
65
55
12
79
54
26
48
88
51
57
60
17
72
82
68
85
75

21
89
32
12
37
10
98
92
82
79
48

156



61

2
48
33
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Columns 41 through 50
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0
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45 85 89 83 14 o0 o 96 78 91
63 66 72 75 20 o0 o 99 28 56
22 17 80 8 35 25 23 o0 o0
77 40 62 82 77 32 18 o o0 o0
81 73 97 82 66 98 54 © 0 0

When considering the Benders’algorithm for solving this example, the process is

explained as follows.
Iteration 1:

Step 1: Initialization:

Let set v (Z) = 0, select v (Z = [Zu), Z@y,---» Zisw)]' ), setj=1and set k=1
For this example, from node No.1 to node No. 55 are the normal jobs. Node No. 56
and No. 57 are the component of a 2 alternatives job. Node No. 58, No. 59 and No. 60
are the component of a 3 alternatives job. Therefore, all variables of Z;) to Zss) equal
to 1 and the rest of them are Z;) € {0, 1}, 1=156,57, ..., 60. The first v (Z = [Z),
Zayse s Ziso)) ") is:

I T
v(Z =[1u), 1@)---» 136), 156), 057), 158, O(59) > O60)] " )

Step 2: Solve the Benders’subproblem:
The first the Benders’subproblem of this example is:
Maximize v; (Z') = Maximize {(b—B Z")" u' | A'u'<cu' >0},
is solved. The maximum occurs at the vector of extreme point # ' and the maximum

value of v, (Z') =115.

Step 3: Stopping Criterion:
Now the value of v (2) =0, v, (Z') =115 # v (Z) then go to step 4
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Step 4: Improve the approximations function:

Using the dual extreme point u ' generates the approximations function (v (2)),
with the Benders’cut, for the Benders’partial master problem of the iteration 1. The
Benders’partial master problem is:

Minimize v (Z)=d Z + maximize { [(b—BZ)" u'],}

Subjectto Ze Z
The Benders’cut of the iteration 1 is [(b — BZ) " u'], that is:

[ 1 Zayt u' @ Zayt .+ u' o Zeol
Because a vector d is a zero vector, the Benders’partial master problem for
iteration 1 is:

Minimize v (Z) = maximize { [u'Zay+ u' @0 Zayt ...+ 1 60 Zso)]1

Subjectto Ze Z

Step 5: Solve the Benders’partial master problem:
Update j = 2, k = 2 and the value of v (£) from solving the Benders’partial
master problem = 143 with is new vector Z =

7= [Lay, 12)s---5 156)s 156)> 057y, Ocs8), 1(59y, 0(60)]T
Iteration 2:

Step 2: Solve the Benders’subproblem:
The Benders’subproblem of iteration 2 is:
Maximize v, (Z*) = Maximize {(b—B Z°) "u* | A'u<c u* >0y},
is solved. The maximum occurs at the vector of extreme point > and the maximum

value of v, (Z%) =153.

Step 3: Stopping Criterion:
Now the current value of v (Z) = 143. Because v (Z°) =153 # v (Z), not

terminate, then go to step 4
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Step 4: Improve the approximations function:

Using the dual extreme point u > generates the approximations function (v (2)),
with the Benders’cut, for the Benders’partial master problem of the iteration 2. The
Benders’partial master problem is:

Minimize v (Z)=d Z + maximize {[(b—BZ)" u']}, [(b—-BZ)" u’],}

Subjectto Ze Z
The Benders’cut of the iteration 2 is [(b — BZ) * u*], that is:

[ Zayt W ooyt F W e Zeol2
Because a vector d is a zero vector, the Benders’partial master problem for
iteration 2 is:

Minimize v (Z) = maximize { [u' Zay+ u' @Zay*. ..+ u' 60 Zeo1s

[ Zayt W Zert..+ w'eoZeol)

Subjectto Ze Z

Step 5: Solve the Benders’partial master problem:
Update j = 3, k= 3 and the value of v () from solving the Benders’partial

master problem = 149 with is new vector Z =

3
Z" =1, 1@),-.., 16), 1(56), 0¢57), Ogs8), 059y, 1(60)]T
Iteration 3:

Step 2: Solve the Benders’subproblem:
The Benders’subproblem of iteration 3 is:
Maximize v; (Z°) = Maximize {(b— B Z)"u’> | A"u*<c, u’ >0},
is solved. The maximum occurs at the vector of extreme point %> and the maximum

value of vs (Z°) =159.

Step 3: Stopping Criterion:
Now the current value of v (Z) = 149. Because v (Z°) =159 # v (Z), not

terminate, then go to step 4
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Step 4: Improve the approximations function:

Using the dual extreme point u > generates the approximations function (v (2)),
with the Benders’cut, for the Benders’partial master problem of the iteration 3. The
Benders’partial master problem is:

Minimize v (Z)=d Z + maximize {{(b—BZ) " u']i, [(b—BZ)" u’],,

[(b—B2)" u’]s}

Subjectto Ze Z
The Benders’cut of the iteration 3 is [(b — BZ) " u°]; that is:

[ Zayt waZot. .+ weoZenl
Because a vector d is a zero vector, the Benders’partial master problem for
iteration 3 is:

Minimize v (Z) =maximize { [u' nZay+ u' @ Zay*. ..+ u' 60 Zeo)1s

[ Zayt w o Zoyt .+ w e Zeol2
[’ 1 Zayt @ Zyt... 160 Zeo s}
Subjectto Ze Z

Step 5: Solve the Benders partial master problem:
Update j = 4, k = 4 and the value of v (£) from solving the Benders’partial
master problem = 150 with is new vector Z =

Z' =1y, 1@y Lissy 156y 0575 Ocss)s 159y » Oge0y]
Iteration 4:

Step 2: Solve the Benders’subproblem:
The Benders’subproblem of iteration 4 is:
Maximize v4 (Z*) = Maximize {(b— B Z")Tu* | A" ut<c ut >0},
is solved. The maximum occurs at the vector of extreme point > and the maximum

value of vy (Z') =152.

Step 3: Stopping Criterion:
Now the current value of v (Z) = 150. Because v4 (Z) =152 # v (Z), not

terminate, then go to step 4
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Step 4: Improve the approximations function:

Using the dual extreme point u * generates an approximations function (v (2)),
with the Benders’cut, for the Benders’partial master problem of the iteration 4. The
Benders’partial master problem is:

Minimize v (Z)=d Z + maximize {{(b—BZ) " u'];, [(b—BZ)" u’],,

[(b—B2)" u’]s, [(b—B2) " u'la}

Subjectto Ze Z
The Benders’cut of the iteration 4 is [(b — BZ) " u ], that is:

[ o Zayt u' o Zoyt .+ u' e Zeols
Because a vector d is a zero vector, the Benders’partial master problem for
iteration 4 is:

Minimize v (Z) =maximize { [u' nZay+ u' @ Zay*. ..+ u' 60 Zeo)1s

[ Zayt w o Zoyt .+ w e Zeol2

[’ 1y Zayt 1 )2yt .+ 1w s0 Zeos

[ Zay+ v o Zeyt. + u' o Zen ]}
Subjectto Ze Z

Step 5: Solve the Benders’partial master problem:
Update j = 5, k=5 and the value of v (£) from solving the Benders’partial
master problem = 152 with is new vector Z =

7= [Lay, 12)s---5 156)s 156)> 057y, O(58), 1(59y, 0(60)]T
Iteration 5:

Step 2: Solve the Benders’subproblem:
The Benders’subproblem of iteration 4 is:
Maximize vs (Z°) = Maximize {(b—B Z°) " u’ | A'u’<c u’ >0},
is solved. The maximum occurs at the vector of extreme point « > and the maximum

value of vs (2°) =152.
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Step 3: Stopping Criterion:
Now the current value of v (Z) = 152. Because vs (Z°) =152, stop

This example can be solved by using the Benders’decomposition as above.

2. The example of the application of the AGVsp-P/D

Refer to the problem of messenger scheduling, one of the proposed application
of the AGVsp-P/D. This problem occurs repeatedly in the decision making process of
the messenger of any agent such as the government agent, the financial business agent,

the private postal service agent and etc.

For example, the messenger of the engineering faculty has a job list for one

round as follows.

get the document at the Faculty office(ENG) and deliver at ME department
pick up the document at Financial office(FIN) and deliver to EE department
pick up the printed sheets at Copy shop(CPY') and deliver at Library(LBY)
pick up the document at IE department and deliver to graduated school(GRD)

A e

buy some cashier checks at either TBank or Abank and go to pay at Computer
training center (COM)
6. buy some stamps at the post office or shopl or shop2 and deliver at the faculty

The messenger job list for one round can be shown as follows.

Job No. Pick up Department Delivery Department
1. ENG ME
2. FIN EE
3. CPY LBY
4. IE GRD
5. TBank or ABank COM
6. Post or Shopl or Shop2 ENG
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Suppose the distances among all of locations are known and transformed into a
form of the TSP distance table, by same method of table 5 that is explained previously.

The distance table of this problem is shown as follows.

To Job No. (h) 1 2 3 4 5 6
From
Alternative 1.1 21 3.1 4.1 51 52 61 62 6.3
Job No. (job i, alt. a)

n 1 2 3 4 5 6 7 8 9

1 1.1 1 o 31 25 43 83 18 50 45 32
2 2.1 2 38 o 75 87 45 79 13 6 37
3 3.1 3 37 48 o 34 25 58 52 16 48
4 4.1 4 49 8 80 o 60 56 61 10 16
5.1 5 41 55 27 78 o o 58 55 20

5 5.2 6 9 92 26 20 o o 54 9 63
6.1 7 4 7 37 25 92 62 o o o

6 6.2 8§ 43 97 9 52 54 28 o o o
6.3 9 8 14 17 7 8 13 o o o

This simulated problem is programmed in MATLAB 7.0 and solved by
AGVsp-P/D model. The result is the schedule of the messenger that is the sequence of
1-6-4-8-3-2-1 according to number of nodes n with the total distance of 143
units. The result of solving this problem using the AGVsp-P/D model on MATLAB

7.0 is shown as follows.
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cnew =

(0.0]
38
37
49
41
9
44
43
83

31
0
48
83
55
92
7
97
14

25
75
0
80
27
26
37
9
17

Optimization terminated.

Xnod =

2.0
(3.2)
(8,3)
(6,4)
(1,6)
(4.8)

fval =

143

The Optimal TSP Tour is

tour =

— N W oo O\~

subtour =

0

Elapsed time is 0.384500 seconds.
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87
34

78
20
25
52

18
79
58
56
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28
13

50
13
52
61
58
54

8 8 8
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	1.  The work center initiated task assignment problems: a typical machining center in an AGV system consists of one or more machines, an incoming unit load queue, and an outgoing unit load queue.  The unit loads are drawn from the incoming queue, processed, and released into the output queue at the same rate.  The deposition of a unit load into the output queue also initiates a request by the department for an unassigned vehicle for the immediate removal of the deposited load.  Several heuristic rules can be employed to assign the priority of vehicles for dispatching such as Random Vehicle rule, Nearest Vehicle rule, Farthest Vehicle rule, Longest Idle Vehicle rule, and Least Utilized Vehicle rule.
	2.  Vehicle initiated task assignment problems: from an operational point of view, the most desirable level of handling effectiveness is to ensure that unit loads completed at a work center are removed promptly and transported to their subsequent destinations with a minimum of delays.  Like the work center initiated task assignment problem, several heuristic rules are available for ranking work centers requesting unassigned vehicles.  Possible assignment rules are:

