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THE AGV SCHEDULING PROBLEM WITH ALTERNATIVE  
PICK UP AND DELIVERY NODES 

 

INTRODUCTION 
 

Productivity and flexibility, which are the primary goals of today’s automation 

technology, can only be achieved in fully integrated manufacturing environments.  A 

carefully designed and efficiently managed material handling system is an important 

part.  The study of automated guided vehicle (AGV) system was initiated in 1987 by 

Tanchoco and Moodie.  AGV systems are among the fastest growing classes of 

equipment in the material handling system in industry.  AGVs are battery-powered, 

unmanned vehicles with programming capabilities for selecting the traveling path, 

positioning the pick up and delivery points, responding to frequently changing 

transport patterns, and integrating into fully automated intelligent control systems.  

These features make AGVs to be a viable alternative to other material handling 

methods, especially in job shop environments where the variety of products are 

proceeded in fluctuating transport requirements.  In such a dynamic and sophisticated 

environment, the job scheduling is one of the key factors in a successful 

implementation of an AGV system.   

 

Both job sequencing and scheduling are important parts of any kind of vehicle 

routing design problem, including an AGV system design.  Designing an AGV system 

is a complex task because of factory layout, the number of nodes and the AGV’s 

traffic system.  One of the main purposes of a single/multi AGV scheduling problem is 

concerning about how the scheduling can provide the minimum total traveling 

distance of AGVs.  Normally, the scheduling problem is considered or designed with 

the routing problem concomitantly, for any kind of vehicle system management.  The 

ordinary vehicle scheduling and routing problem, as the single/multi AGV scheduling 

problem, is a problem with a set of specific pick up and delivery nodes that can be 

modeled by the existing network problem approach, which is the  such as TSP/MTSP.     
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The TSP/MTSP is one of the most interested approaches because there is a 

network structure that can be modified and applied to the AGV scheduling problem.  

Because Dantzig, Fulkerson and Johnson (1954) proposed that determining the 

optimal solution of the TSP for large numbers of nodes requires much time, heuristic 

methods are considered when the TSP is applied to any kind of problems.  Many 

papers proposed heuristic algorithms for finding the AGV scheduling and traveling 

path such as Maxwell and Muckstadt (1982), Gaskins and Tanchoco (1987).  As NP-

hard nature of the original TSP, the vehicle scheduling problem with alternative pick 

up and delivery (P/D) nodes may be considered as a class of NP-hard problem also 

when the problem structure falls into the TSP category.   According to this point, the 

potential problem for studying the single/multi AGV scheduling problem is extended 

to be more realistic when the original TSP problem is modified by adding the structure 

of alternative P/D nodes.  The main purpose is to find the solution of AGV scheduling 

problem with alternative P/D nodes (AGVsp-P/D) that can provide the minimum total 

traveling distance of AGVs.   

 

The original TSP/MTSP is one of the applications of network problems; it is 

necessary to choose a sequence of nodes to be visited so as to accomplish a specified 

objective.  The TSP/MTSP is a network problem that given a network and a cost (or 

distance) associated with each arc, it is necessary to start from a specified originating 

or depot node, visit each and every other nodes exactly one, and return to the starting 

node with the lowest cost.  For example, a bus that leaves the school yard must stop at 

various locations to pick up students and ultimately return to the school yard in the 

shortest possible distance.  As another example, research considers the AGV system 

that can start from a specified originating or depot node, visit each and every other 

nodes, which have some alternatives for selection to visit exactly once, and return to 

the starting node in the shortest distance.  The TSP/MTSP can be solved to determine 

the scheduling of normal uncapacitated vehicle routing problems but in this case, the 

original TSP/MTSP has to be modified to support the AGVsp-P/D.   

 

The concept of TSP/MTSP will be applied with some generated techniques of 

assignment problem to solve the AGVsp-P/D to determine the minimum traveling 
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distance of each AGV from the starting node or depot to some appropriate selected 

nodes, and then come back to the starting node.  This procedure is based on the branch 

and bound process with solving assignment subproblems to search for the optimal tour.  

The formulated mathematical model will be presented in this research.  The 

assignment subproblems with alternative P/D nodes, and the branch and bound 

algorithm for TPS/MTSP with alternative P/D nodes are considered as an important 

part of this research.   The assignment subproblem model and the solving approach for 

finding the lower bound of the AGVsp-P/D will be proposed.  The ordinary 

assignment problem is an integer programming (IP) problem, but it has special 

structures that make it can be solved by linear programming (LP) approach, not 

considering IP constraints.  When the constraint of alternative P/D nodes is added to 

the system, the problem loses the property of regular assignment problem, which 

causes it becomes the 0-1 IP problem.   

 

Thus, a new 0-1 IP model of assignment problem with alternative P/D nodes is 

created. The implementation of the generated model is tested using the Excel Solver 

and MATLAB 7.0.  After the lower bound of the AGVsp-P/D is found by solving the 

assignment problem with alternative P/D nodes, the branch and bound algorithm for 

finding the TSP/MTSP with alternative P/D nodes will be studied.  Because the branch 

and bound approach takes much time for the large problem, the heuristics for solving 

the lower bound of the AGVsp-P/D are proposed.  Benders’decomposition approach is 

applied to create the heuristic for solving the lower bound of the AGVsp-P/D.  

However, this Benders’decomposition algorithm still uses the 0-1 IP problem, but with 

a smaller problem size than the direct method.  To avoid solving the 0-1 IP problem, 

three heuristics for selecting the alternative nodes and an alternative selection 

improvement heuristic are proposed.   

 

The lower bound solutions from solving both the 0-1 IP problem and heuristic 

approaches may provide the single TSP tour or subtours.  For the single TSP tour 

solution, the subtour elimination approach is applied to the lower bound solution to 

create the single TSP tour from subtours.  The modified Eastman’s algorithm for TSP 

with the lower bound model of the AGVsp-P/D is proposed for solving the single TSP 
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tour.  When multi AGVs are considered, heuristics for solving the multi AGVsp-P/D 

are presented.  There are two approaches, which are the heuristic of splitting the single 

TSP tour to multi tours for the lower bound of the multi AGVsp-P/D and the approach 

of solving the MTSP as the standard TSP for the solution of the multi AGVsp-P/D.   

 

Finally, the computer program for solving single/multi AGVsp-P/D using the 

Excel Solver and MATLAB 7.0 are developed for testing the model of AGVsp-P/D.  

The program of the 0-1 IP problem of AGVsp-P/D and heuristics are applied to some 

size levels of tested problems.   The tested results are analyzed by statistical methods 

to verify the performance and quality of the AGVsp-P/D model. 

 

An introduction to the research on the AGVsp-P/D including research 

questions, problem statement, research objectives, research significance and research 

assumption will be presented as follows. 

 

Research Questions 

 

Consider the modern manufacturing system, the AGV system is used to 

transport items among departments in the factory.  Let’s assume the problem that the 

factory has a particular layout of departments for an AGV system, as in figure 1.  The 

AGV layout can be drawn as a network.  The AGVs move through the network 

between nodes (labeled A, B, C, D, E, F, G, H, and I). Bidirectional flow of the AGVs 

along the aisles is assumed. 

 

In general, each job of AGVs consists of picking up a load at one node and 

delivering it to a fixed destination node.  For this research, the special characteristic of 

alternatives P/D nodes is represented by some jobs that can have alternative pick up 

and delivery nodes at more than one fixed point.  For example, let job No. 1 of the 

AGV is to pick up an item from a turning process at department (node) B and deliver 

to a drilling process which can be performed at departments E or G or I.  The AGV 

has to travel from pick up the node B and can choose to deliver the item to only one 

node at departments E or G or I, which is described as alternatives P/D nodes.  If an 
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AGV travels from node B and selects to deliver to node E, the total traveling distance 

of AGVs may different from selects to deliver to node G or node I.  An example of a 

job list for AGVsp-P/D is shown as table 1.  The job scheduling (for example, starting 

with job No. 1, follows by job No. 6, No. 5, and ending the schedule when all jobs are 

completed) and selecting the appropriate alternative node effects on the traveling 

distance of the AGV.   The objective is the selecting of alternatives and scheduling for 

all jobs such that the total AGV traveling distance is minimized.  Therefore, the 

research questions can be described as follows: 

 

1.  Given the information of some specific daily tasks of a specific factory and 

a specific route path with the distances among departments, what is the scheduling of 

the single AGV with appropriate selected alternative P/D nodes that can provides the 

minimum total traveling distance?  An example of specific daily tasks is shown on 

table 1. 

 

2.  Given the information of some specific daily tasks of a specific factory, a 

specific route path with the distances among departments and a specific number of 

AGVs, what is the schedul of each AGV with appropriate selected alternative P/D 

nodes that can provide the minimum total traveling distance?   

 

Table 1  The example of AGVsp-P/D jobs 

 

Job No. Pick up Department Delivery Department 
1 B C 
2 A I 
3 B E or G or I 
4 G C 
5 D E 
6 B or D or H F 
7 I C or D or E 
8 C H 
9 F E 
10 H I or G 
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Figure 1  The example of the layout of AGV systems 

 
 

Problem Statement 

 

 Let the problem has a set of n jobs J such that job Ji = {Pi a, Di b}, i = 1, 2, …, n   

where Pi a is a set of alternative pick up departments a of job Ji, a = {1, 2, …, k(i)} and 

Di b is a set of  alternative delivery departments b of job Ji , b = {1, 2, …, l(i)}.  k(i) is 

the number of alternative departments a for job Ji. l(i) is the number of alternative 

departments b for job Ji.  When job Jj = {Pj a, Dj b}, j = 1, 2, …, n is scheduled after 

job Ji, cia jb is the traveling distance of an AGV that starts from a selected pick up 

department a of job  Ji , goes to a selected delivery department b of job  Ji , goes to a 

selected pick up department a of job  Jj , then goes to a selected delivery department b 

of job  Jj , which is a non-negative number and cia ia  =  ∞. 

 

The AGVsp-P/D is the problem that selects one alternative department from 

set a and one alternative department from set b of all jobs J, called xia jb such that xia jb 

= 1 if an AGV travels from a selected pick up department a of job Ji to a selected 

delivery department b of job Jj or xia jb = 0 otherwise and sequences all those jobs J 
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with their selected alternatives to form single/multi tours (TSP/MTSP tour) that can 

provide the minimized total traveling distance.  

 
Research Objectives 

 

1.  To study and develop the mathematical model of the single/multi AGVsp- 

P/D that can describe the characteristics and structures of this problem. 

 

2.  To develop heuristic algorithms for solving the problem. 

 

3.  To create the code or program of developed algorithms by using a builder 

software for solving the problem with some specific sizes and structures of problem as 

a tool for verifying and validating efficiency and quality of proposed algorithms. 

 

4.  To analyze statistically the result of solving tested problems by using 

proposed algorithms. 

 

Research Significance 

 

The trend of the modern manufacturing industry is to become more 

computerized and automated systems.  Improvements in production planning with 

respect to the scheduling process of traveling vehicles (AGVs) will provide more 

effective production planning that helps to improve the productivity.  This research 

establishes some kind of algorithms or production planning tools in the form of static 

models that provide near-optimal solutions for the AGVsp-P/D which never been 

studied and modeled before.  The established algorithms are the extension and 

modification from the existing AGV scheduling problem to capture the special 

structure of the AGVsp-P/D. 
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Research Scope and Assumptions 
 

1.  This research considers only the constant speed AGV with undirected paths 

in manufacturing factories. 

 

2.  The daily task of the AGV system is considered to be a static condition 

during the shift period. 

 

3.  The task of pick up and delivery activities is considered as a unit load that 

can be assigned to only one AGV or can not be spitted.    

 

4.  This research results provide the mathematical model of the single/multi 

AGVsp-P/D that can describes the structures and characteristics of this problem for 

analysis and developments of all solving procedures. 
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LITERATURE REVIEW 
 

This chapter provides the background information on the key subjects for this 

research.  The first part of this chapter presents the AGV systems which explain about 

the vehicle and the driving system.  The description of all types of AGVs, function 

criteria, and the dispatching systems are explained.  The nature of dispatching systems 

can be related to the scheduling approach, which is the main proposal of the research. 

 

 The next part explains about the AGV problems which all factories, using 

AGVs, have to face with.  Many cases of AGV problems are explained and analyzed 

in order to diagnose and solve the problem.  Then single/multi traveling salesman 

problem (TSP/MTSP) is explained next with its applications and transformations.  

This part presents the mathematical model of TSP/MTSP that can be applied to solve 

many real world problems of vehicle routing applications.  The transformation 

approach for solving the MTSP as a standard TSP is reviewed for generating the 

concept of solving the multi AGVsp-P/D. 

 

 The last part explains about the relevant statistical methods for analyzing the 

data from the research results.  The probability distribution of data sets is the first issue 

that should be considered because most of statistic methods assume the normal 

probability distribution of the data set.  The normality test is explained in this part.  

Then, the statistical hypothesis test and the analysis of variance, which are applied to 

analyze some parts of research results, are reviewed.    
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Automated Guided Vehicle Systems 

 

The AGV system is one of the most exciting and dynamic areas in material 

handling systems.  AGV systems were invented around 1950’s, they were called the 

driverless systems.  AGV systems combine electromagnetic technology with existing 

industrial truck equipment to create more flexible and self-steering vehicles.  

Technological developments may have given AGVs more flexibility and capability for 

operating in computer integrated manufacturing systems.   In the future manufacturing, 

AGV systems are expected to be widely used as material handling equipments.  These 

vehicles transport tools and materials among different work cells in flexible 

manufacturing systems.  AGVs are programmed independently but all of them are 

correlated with the scheduling and the traffic control system.  These characteristics 

confer the flexibility and the adaptability to the material handling system.  AGVs 

circulate on a network of guide paths connecting the various work cells at load transfer 

points, also called P/D nodes, which are located on paths of the network.  In the design 

of AGV systems, many types of design problems can be identified such as a design of 

the network layout, a design of load pick up and delivery point locations, a design of 

fleet size, and a design of traffic management systems.   

 

Egbelu (1986) proposed the paper of AGV dispatching heuristics that are 

related to the pull versus push strategy for AGV load movement in a batch 

manufacturing system.  The purpose of this paper is to justify the use of demand based 

dispatching rules for AGVs in the manufacturing system.  The algorithm of the pull 

strategy (demand base) algorithm is presented and compared to several push strategy 

(source base) algorithms to demonstrate its effectiveness.   The traditional source 

based dispatching rules do not have the flexibility, required by just-in-time (JIT) 

manufacturing systems, so there is a need to develop some useful dispatching rules for 

such applications.  When the pull strategy is used, direct access load retrieval systems 

must be used in order to pick up parts from any position of the queue, not only the first 

part.  In developing the dispatching algorithm, some assumptions are made such as 1. 

A vehicle can transport only one unit load at a time, 2. No look-ahead capacity for 
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future events is considered, and 3. No job is assigned a global priority over all others 

at the time of entry into the production system.   

 

A hierarchical demand driven dispatching rule is developed and tested against 

some commonly used source driven dispatching rules.  There are mainly two steps for 

this algorithm. First is to identify workstations that have the greatest demand for all 

parts, then the sources of parts can be selected according to some preset rules.  If no 

workstations meet the minimum requirement in the first step, the rule automatically 

reverts to a source driven rule. A FORTRAN based discrete event simulation language, 

AGVSim, is used to investigate the effectiveness of the proposed method. The author 

compares the pull system to the widely used push systems in three separate cases.  

From the simulation results of all cases, the demand driven dispatching rule proves 

itself to be the competitiveness of the push system.  In all cases, the pull system shows 

that it is superior to the push system.  

 

  Tanchoco and Moodie (1987) proposed the special issue of the study of AGV 

systems in the Material Flow journal that consists of many points of view on the study 

of AGV systems.  This special issue brings together, under one cover, a collection of 

papers dealing with new concepts in designing, planning, and analyzing.   The paper 

by G.A. Koff (1987) provided an introduction to the AGV system, its major functions, 

and how these functions are executed.  Koff illustrated that there are several types of 

AGV that they are: 

 

1.  AGV towing vehicles; were the first type introduced and are still a very 

popular type until now.  It can pull a multitude of trailer. AGV towing applications 

involve the bulk movement of product into and out of warehouse areas.  Often side-

path spurs are place in receiving or shipping areas so that trains can be loaded or 

unloaded off the main line and thereby not hinder the movement of other trains on the 

main path. 

 

2.  AGV unit load vehicles; are equipped with decks which permit unit load 

transportation and often automated load transfer.  AGV unit load applications usually 
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involve specific mission assignment for individual pallet movement. Unit load carries 

are quite popular in applications of integrating conveyors with storage-retrieval 

systems. 

 

3.  AGV pallet trucks; are designed to transport palletized loads to and form 

floor level and eliminate the need for fixed load stands.  AGV pallet trucks are 

generally used in distribution functions.  Vehicles can be loaded in two ways, either 

they are capable of automatically reversing into pallets on the floor or operators will 

manually board the vehicle and back them into pallets. 

 

4.  AGV fork trucks; are a relative new guided vehicle which has the ability to 

service palletized loads both at floor level and on stands.  AGV fork trucks are used 

when the system requires the automatic pick up and delivery of loads from floor or 

stand level, and where the heights of load transfer vary at stop locations.  The guided 

fork truck has the ability to pick up or deliver a load automatically without any human 

interface. 

 

5.  Light load AGVs; are vehicles which have capacities to transport small 

parts. They are design to operate in areas with limited space.  Light load AGVs 

applications are used in light manufacturing processes. The product can be distributed 

from a small parts storage area to individual work stations where operators do light 

assembly.  

 

6.  AGV assembly line vehicles; are an adaptation of the light load AGVs for 

application involving serial-assembly processes.  Assembly line AGV is adaptations of 

the small, light-load AGVs for an assembly line process.  The guided vehicles carry 

major subassemblies such as motors or transmission to which parts are added in serial 

assembly process. 
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The basic functions of AGVs consist of five functions as follows: 

 

1. Guidance: this function allows the vehicle to follow a predetermined route, 

which is optimized for the material flow pattern of a given application.   

 

2.  Routing: this function is the vehicle’s ability to make decision along the 

guidance path in order to select optimal route to specific destination.   

 

3.  Traffic management: this function is a system or vehicle’s ability to avoid 

collisions with other vehicles, while at the same time maximizing vehicle flows and 

therefore load movements throughout the system.   

 

4.  Load transfer: this function is the pick up and delivery method for AGVs, 

which may be simple or integrated with other subsystems.   

 

5.  System Management: this function is the method of system control used to 

dictate system operations.  The proper method of selection for each function and its 

ability to work with the other functions is determines in by measuring the degree of 

successfulness of a given system. 

  

The manufacturing industry consists of several machine centers performing 

different machining functions. A part or unit load visits several centers before its 

machining requirements are satisfied.  A unit load continues to circulate in the shop 

among work centers until receiving the last service.  It is the transition of unit loads or 

parts that generate the vehicle dispatching or task assignment problem in an AGV 

system.    

  

Egbelu and Tanchoco (1984) presented some heuristic rules for dispatching 

AGV in a job shop environment.  The vehicle dispatching decisions fall into two 

categories that are the work center initiated task assignment problem and the vehicle 

initiated task assignment problem.  The first category is a decision involving the 

selection of a vehicle from a set of idle vehicles to assign to a unit load pick up task 
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generated at some parts of the factory.  This class of decisions involves a single work 

center and one or more vehicles.  The decision is generally the result of a request from 

a work center for vehicle service.  The secondary category of decisions involves the 

selection of a work center from a set of work centers simultaneously requesting the 

services of any vehicle, a decision, which usually involves a single vehicle and multi 

work centers.  The decision is to prioritize the departments and to dispatch vehicles to 

the departments with the highest priority.  Two vehicle dispatching decisions are 

explained as follows: 

 

1.  The work center initiated task assignment problems: a typical machining 

center in an AGV system consists of one or more machines, an incoming unit load 

queue, and an outgoing unit load queue.  The unit loads are drawn from the incoming 

queue, processed, and released into the output queue at the same rate.  The deposition 

of a unit load into the output queue also initiates a request by the department for an 

unassigned vehicle for the immediate removal of the deposited load.  Several heuristic 

rules can be employed to assign the priority of vehicles for dispatching such as 

Random Vehicle rule, Nearest Vehicle rule, Farthest Vehicle rule, Longest Idle 

Vehicle rule, and Least Utilized Vehicle rule. 

 
2.  Vehicle initiated task assignment problems: from an operational point of 

view, the most desirable level of handling effectiveness is to ensure that unit loads 

completed at a work center are removed promptly and transported to their subsequent 

destinations with a minimum of delays.  Like the work center initiated task assignment 

problem, several heuristic rules are available for ranking work centers requesting 

unassigned vehicles.  Possible assignment rules are: 

1. Random Work Center rule 

2. Shortest Travel Time/Distance rule 

3. Longest Travel Time/Distance rule 

4. Maximum Outgoing Queue size rule 

5. Minimum Remaining Outgoing Queue Space rule 

6. Modified First Come First Serve rule 
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Several combinations of all above rules are tested on a factory using a simulation 

technique.  A simulation program, AGVSim, was developed specifically to simulate 

an AGV system.  Using unit load throughput as a measure of rule performance with 2 

trials per rule combination, all experiments are conducted under similar conditions.  

The demonstrations indicated that rules, which are derivatives of distance measures, 

have several drawbacks if the appropriate layout conditions of factory and equipment 

locations are not met.      

 

In the design of an AGV system, one of the fundamental problems is the 

determination of the number of vehicles that are required to provide a given level of 

transportation service.  There are so many methods for the fleet-size determination 

process that use mathematical or simulation based techniques.  Tanchoco, Egbelu and 

Taghaboni (1987) proposed the effectiveness of CAN-Q software in determining the 

number of AGVs and compared to a simulation based method (AGVsim).  The 

analysis indicates that the results obtained from the software provide a good starting 

search point for a simulation technique.  When two approaches are used jointly, the 

number of simulation runs which is required to generate a solution is potentially 

reduced.  Simulation is the most reliable method to data estimating vehicle 

requirements for complex system.  However, since simulation is expensive in the cost 

of data correction and time consuming, several non-simulations based calculation 

approaches vehicle estimation are generated.   

    

Egbelu (1987) proposed four cases of the method for estimating the number of 

vehicles through hand calculation. They are 

Case 1: it is assumed that the distance covered by vehicles making empty run is equal 

to the distance traveled by loaded vehicles. 

Case 2: it requires the estimation of blocking time factors and idle time factors.  This 

estimation is used to refine the estimate on the vehicle requirement. 

Case 3: this method requires the computation of the net traffic flow into the work 

center.  For the work center i, the net in-flow is Fi .   
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- If Fi > 0, it implies that there are more number of vehicles coming to deliver a 

load into the work center i then coming to pick up a load. It is a net exporter of 

empty vehicle.   

- If Fi = 0, the method assumes that no empty runs will be made from the work 

center i. Every vehicle that delivers a load from the center i will leave with a 

load to another center.   

- If Fi < 0, it implies that the center i will be a net importer of empty vehicles.   

 Case 4; this method assumes a job shop environment for a work center i, the sequence 

of jobs, which request to pick up load are generated from the work centers that is 

varied randomly. 

 

A modern manufacturing factory is usually managed by computer control 

systems that obtain the production plans and monitor the current state of each job.  In 

such a dynamic and sophisticated environment, the job scheduling is one of key 

factors in a successful implementation of the AGV system.  

 

Automated Guided Vehicle Problems 

 

When the vehicle management problem is considered, the vehicle routing and 

scheduling problems are the most interested problem.  There are many interesting 

papers about AGV problems, which relate to the vehicle routing and scheduling 

problem that are reviewed as follows.  

 

Maxwell (1981) presented about solving material handling problems using 

Operations Research (OR).  The objective of this paper is to provide a broad overview 

of OR techniques that can be used to solve interplant material handling problems.  The 

author first identifies the primary variables generally associated with material handling 

problems.  These variables such as flow rates, weights, sizes, distances, and velocities 

can usually be handled in OR with matrices and joint probability distributions.  OR 

techniques are used to solve a vehicle requirement problem in the simple AGV.  It is 

assumed that the factory layout and the AGV truck layout are already designed. To 

simplify the analysis, the AGV are considered unidirectional and only one way flow is 
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allowed in each plant aisle.  The minimum number of vehicles is determined 

heuristically by first summing the total travel time required, total pick up and delivery 

time required, and total blocking time encountered by vehicles, and thendividing this 

value by the total operating time per a unit of vehicle.  Blocking time is the time that 

two or more AGVs are in conflict for a route, causing one or more of them to be 

blocked.  In order to determine the minimum vehicles requirement, blocking time is 

assumed to be zero.  The total pick up and delivery time is determined by time 

estimation techniques, such as analyzing past productions data, or performing time 

studies on similar operations.  The total operation time per a unit of vehicle is simply a 

constant base on an estimation of the available operating time of each vehicle over a 

typical shift.  The total traveling time is estimated by using the shortest path to 

determine optimal route for all possible pairs of nodes, and the problem can finally be 

treated as a transshipment problem.  The author admits that many OR techniques are 

in their infancy, and these techniques are underutilized in material handling problems.  

The paper does show the applicability of the shortest route algorithm and 

transshipment problem to solving an AGV design problem.    

 

Maxwell and Muckstudt (1982) presented the problem of determining an 

optimum schedule for dispatching AGV that the results a minimum number of AGVs 

by focusing on the empty traveling distance.  The system is designed to ensure proper 

vehicle’s utilization.  The items such as raw materials or work pieces are moved from 

receiving stations to storage facilities and the production lines according to needs as 

they arise.  These functions cannot be carried out effectively unless considerable 

thought and design effort has gone into planning of the vehicle dispatching and control 

system.  One purpose of their article is to show how the design of an AGV can 

determine the minimum number of required vehicles.  Determination of the optimal 

number of vehicles is exactly difficult when considering detailed time-phased pick up 

and drop off requirements, pick up and drop off areas, floor space capacities, and track 

congestions.  A large scale IP can be formulated including all these factors.  The 

second goal is to present other analysis tools that can be used to evaluate the time-

dependent behavior of an AGV.  The procedure for dispatching vehicles is developed 

and shown how to measure the blocking time caused by congestions and the size of 
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storage areas.  The problem is designed by assuming the particular layout for a system 

already exists.  The track layout can be defined as a network.  The vehicles move 

through the network among nodes on directed segments which correspond to a guide 

path connecting one node with the others.  The nodes correspond to the intersection 

points of the various segments of guide path.  Each segment has some number of pick 

up or drop off stations.  The problem is analyzed by assuming the system 

characteristics as follows. 

1. vehicles move in only one direction on any segment. 

2. a zone control system is used to prevent collisions particularly at 

intersections. 

3. load and unload times are known for each location. 

4. traveling speeds among stations for loaded and unloaded vehicles are 

known.   The requirements, which are moved from one station to the other 

are known.  The data are given in integer vehicle loads and that vehicles 

are always dispatched to pick up and drop off completed loads. 

  

If a unit load must be moved from station i to station j, then one AGV is used 

to accomplish this task.  Splitting of loads is not allowed.  Let vij be the number of 

vehicle loads that must be moved from station i to station j during a shift and the 

layout consists of n stations.  The value of 
1

n

ij
j

v
=
∑ is the number of AGVs that are 

needed at station i to move materials, and 
1

n

ij
i

v
=
∑  is the number of AGVs that arrives at 

station j during the shift.  For stations, which are not the storage points for AGVs, they 

must have the total vehicle flow into the station within the shift equal to the total flow 

out.  The model’s objective function is to measure the total travel time for empty 

vehicles moving among stations. 

 

To formulate the problem, the net AGV flows into each station are determined. 

The net flows for station i is 
1 1

n n

ji ij
j j

v v
= =

−∑ ∑ .  If fi is the number of AGVs that are 
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available at the beginning of the shift and gi is the number of AGVs that are required 

at the end of the shift, the net flow for station i is  

1 1
( )

n n

ji ij i i
j j

NF i v v f g
= =

= − + −∑ ∑  

For the problem to be well defined, 
1

( ) 0
n

i
NF i

=

=∑ .  Thus, the problem is to determine 

how to allocate the vehicles that are available [NF(i) > 0] at station i to satisfy the 

deficits at other stations j [NF(j) < 0] so that the totaling traveling time for moving 

empty AGVs are as small as possible.  

 

 Let  ai = NF(i),  if NF(i) ≥ 0 

                       = 0, otherwise. 

        bi = NF(i),  if NF(i) < 0  

                       = 0, otherwise. 

        tij = the shortest travel time from station i to station j  

                          when a vehicle is unloaded. 

                   xij = the number of empty vehicle trips that should be  

                          made from station i to station j during the shift. 

 

The problem is to find the values for the variables xij for all i,j that 

 Minimize    
1 1

n n

ij ij
i j

t x
= =
∑∑   

            subject to 

  
1

n

ij
j

x
=
∑  = ai , for all station i,  

                 
1

n

ki
k

x
=

−∑ = bi , for all station i , 

   xij ≥ 0 for all i, j. 

 

It is easy to see that the above problem is a simple transportation problem.  The 

solution indicates how many vehicle trips should be made with empty vehicles 

between station i and j.  Because this problem is a transportation problem, all variables 
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will have integer values.  The total traveling time for empty AGVs moving between 

stations is measured.  Thus, if this total is H hours and h hours are available on each 

AGV shift per, and then H/h vehicles are required for material movement plan.   

 

An optimal flow path design is one of the interesting topic for an AGV system 

planning.  The AGV technologies are constantly growing due to better sensors, 

improved robotics, low-cost high-performance computers, and sophisticated control 

methods and software.  In such a modern manufacturing environment the path routing 

is one of key factors in a successful implementation of the AGV system.   

 

Blair, Charnsethikul and Vasques (1987) presented the optimum routing 

problem of AGVs among the workstations as the TSP.  An algorithm for the near 

optimal routing of AGVs in such a system is presented which seeks to organize 

material moves into tours with the objective of minimizing the maximum tour length.  

In their paper, they assume that the sequence of move transactions, which are assigned 

to each AGV, is a tour.  The tour distance is the total distance to be traversed in order 

for the assigned AGVs to go from its initial location to the location of the first move 

and then to pick up and deliver each move in the prescribed sequence.  The tour may 

requires the AGV to travel empty from the destination of one move to the origin of the 

next.  Each move consists of a unit load, which will consume the capacity of AGVs.  

The objective function is to minimize the maximum tour distance of all tours.  The 

AGV activity scheduling task can be easily formulated as either two well known 

network optimization problems.  In the first formulation, work centers are represented 

as nodes.  Each move transaction is represented as a directed arc from the origin of the 

move to its destination.  The other formulation represents the move transactions as 

nodes.  Arcs are used to represent the sequence of performance.  Each node is 

connected to every other node by a set of corresponding arcs.  This is a modification 

of the classic TSP appropriately called the multiple traveling salesman problem or 

MTSP.  The heuristic method, which they presented in this work, is composed of two 

phases.  In the first phase, the AGV routing problem is formulated as a standard MTSP.  

The MTSP is solved by using a modification of the branch and bound technique, first 

proposed by Eastman (1958).  The resulting solution is a minimum total distance over 
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all tours.  The second phase is a tour improvement process, which starts with the 

feasible set of tours prescribed by phase one.  At each iteration of phase two, the 

longest tour is reduced by removing a node from it.  Two new subproblems are 

defined.  One subproblem is the restructuring of the largest tour by treating it as a 

single TSP.  The second subproblem is a reduced MTSP, which includes all the nodes 

in the other tours plus the node recently removed from the largest tour.  Solving the 

TSP for the largest tour, minus the removed node, provides an optimal patching of the 

remaining set of nodes in the tour.  Solving the remaining tours using an MTSP 

provides an optimal allocation of the removed nodes to one of the remaining tours.  

This algorithm has been coded into a BASIC program.  The program was tested at 

three levels: 

1. Level I: small-sized problems, 15 moves and 3 tours; 

2. Level II: medium-sized problems, 35 moves and 4 tours; 

3. Level III: large-sized problems, 50 moves and 5 tours. 

 

For each level, 100 randomly generated move transaction lists of the appropriate size 

were generated and solved by the program.  Each replication is evaluated with respect 

to two performance measures: the optimization performance ratio (OPR) and the 

corresponding computation (CPU) time.   

 

Gaskins and Tanchoco (1987) first formulated the flow path design for AGV 

systems by using IP approach.  The objective of this study is to find the optimal flow 

path for an AGV so that the total traveling distance of the loaded vehicles will be 

minimized.  The 0-1 IP model with considerations of the given facility layout and P/D 

stations is used to determine the optimal flow path in this paper.  However, the paper 

only considers the unidirectional path network, which has lower utilization than the 

bidirectional network.  The traveling distance by the unloaded vehicles is not taken 

into consideration. The main limitation of this study is that it only considers a fleet of 

AGVs with the same origin and destination every time.  These AGVs run along the 

same route.  Therefore, routing control is trivialized because issue such as congestion, 

deadlocks, and conflicts will never occur.   
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The first procedure of their work is to formulate the objective function.  It 

consists of the distance between pairs of nodes when a particular path is taken, the 

flow intensity between pairs of nodes, and the decision variables for determining 

which pairs of nodes are selected.  The objective function represents the total distance 

traveled by loaded vehicle.  Besides the objective function, a set of constraint 

equations are also required to ensure that the shortest route among all pairs of shortest 

path are taken and all other limitations are satisfied.  These constraints include 

unidirectional flow, at least one input and one output arc that are selected for each 

nodes, and finally the constraint equations use to ensure the shortest path is taken.  The 

problem is solved by first determining the shortest route between pairs of nodes, and 

then putting them into the objective function.  From this procedure, the minimum total 

traveling distance is obtained.  Unused arcs in the layout can be either removed from 

the layout or included as alternative routs when blocking occurs.   

 

Kaspi, Kesselman, and Tanchoco (2002) presented the optimal flow path 

layout design method.  The problem is analyzed and formulated by a mixed integer 

programming (MIP) problem.  A searching procedure, based on the branch and bound 

technique, is proposed to solve the problem.  The procedure is implemented as a 

computer program and yields an optimal solution in a small number of iterations.  

Using the transportation model for calculating the required and optimal flow of empty 

vehicles, system balance is achieved.  The problem is formulated as a node-arc 

network where the nodes represent pick up and delivery stations and arcs are guide 

paths connecting the nodes.  Empty vehicle flows are also taken into account when the 

checking the feasibility of a partially or fully directed guide path is done.  The 

objective of the flow path layout problem is to set directions for each arc in an 

undirected flow path network such that the total traveling distance of both loaded and 

unloaded vehicles is minimized.  The assumption that the network is fully 

unidirectional and the reach ability constraints eliminate the issue of blocking.   

 

The authors stated that the formulated linear mixed variables (0-1 and 

continuous) model is quite difficult to solve.  The main difficulty in finding the 

optimal solution to this problem is the large number of binary variables required for a 
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realistic size problem.  A general approach, which is used to solve this problem, is the 

branch and bound procedure.  When using the branch and bound method, the search 

function deals with subproblems of the main problem at each step and ignore the 

global aspect.  It is possible that great computational effort can be directed to a branch 

in which the optimal, or even a feasible, solution cannot be found.  The specific used 

technique is the branch and bound method with depth-first search and backtracking, 

rather than the jump tracking approach (known also as best-first search).  Using the 

backtracking method, a feasible solution is obtained quite quickly and the required 

memory is much less than for the jump tracking method.  The backtracking procedure 

is invoked any time when a feasible complete solution is obtained when a branch is 

bounded or branching is impossible.  The backtracking procedure returns to the source 

branch.  The procedure determines the optimal flow of the unloaded vehicles by 

solving the transportation problem for each step in branching process.  The direction 

of each arc in the system is determined and optimal objective function is obtained. 

 

Traveling Salesman Problem 

 

The real world task of a salesman is trying to sales the products that a salesman 

has to travel to possible customers at any cities.  If a salesman, starts from the depot or 

head office city, visits each city exactly once on a given list of possible customers and 

return to the starting point, it is plausible for him to select the order in which he visits 

all cities so that the distances traveled in his tour is as small as possible.  Assume a 

salesman knows, for every pairs of cities, the distance from one city to the others.  

Then he has all the data necessary to find the minimum tour distance, but it is by 

means obvious how to use these data in order to get the answer.  This kind of problem 

is called “Traveling Salesman Problem” or “TSP”.  

 

Lawler et al. (1985) presented the survey of knowledge on the TSP.  The TSP 

is one of combinatorial optimization problems that attempt to minimize the total 

distance of the tour.  The problem is one of optimization problems, but cannot 

immediately employ the methods of differential calculus by setting derivative to zero, 

because it is in a combinatorial situation that its choice of solution is not over a 
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continuum but over the set of a tour.  A different optimization method comes from 

linear programming (LP).  The continuous history began in the late 1940s with George 

Dantzig, treats the problem of finding the minimum of linear function on a polyhedron 

by a system of linear equations.  The LP can be used as a tool of combinatorial 

optimizations by its principle. There are three aspects of the history of any 

mathematical problem, which are: 

1. how to arose 

2. how research on it influences other developments of mathematics 

3. how the problem is finally solved. 

 

If the TSP is one of the mathematical problems which developed algorithms which 

satisfy formal or informal standard of efficiency, this problem can be considered that it 

has not yet been solved.  So the TSP is the most prominent of the unsolved 

combinatorial optimization problem.  And that is why it continues to influence the 

development of optimization concepts and algorithms.  

 

One of the earlier problems of the combinatorial mathematics arises in the 

theory of graphs.  A graph is a finite set of vertices and some pairs of which are joined 

by edges.  A cycle in the graph is a set of vertices of the graph which such that it is 

possible to move from one vertex to another vertex, along edges of the graph, so that 

all vertices are encountered exactly once, and it must finish where it started.  If a cycle 

contains all the vertices of the graphs, it is called “Hamiltonian cycle”.  The TSP for a 

graph with specified edge lengths is the problem of finding a Hamiltonian cycle with 

the shortest length.  Lawler et al. (1985) presented the survey that many papers relate 

to the Hamiltonian cycle and the TSP as following examples. 

 

Kirkman (1856) considered Hamiltonian cycles in a general context.  He 

asserted a sufficient condition for a polyhedral graph to admit such a cycle, and also 

showed that a polyhedron on an odd number of vertices, in which each face has an 

even number of edges, cannot have such a cycle.   
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Hamilton (1856) invented a system of noncommutative algebra, for which the 

actions of the basis elements could be interpreted in terms of paths on the regular 

dodecahedron. Hamilton named this algebra as “The Icosian Calculus”, and used the 

graphical interpretation as the basis for a puzzle, marketed the game in name “The 

Icosian Game”.  The game consisted of various problems, such as finishing a cycle 

when the first five positions are given.  

 

Lin and Kernighan (1973) proposed an effective heuristic algorithm for solving 

the TSP.  The general concept is to transfer arcs which are not included in the previous 

tour into a new tour by exchanging nodes.  They presented several algorithms to show 

methods which can be used to generate a set of tours from an available tour.  A 

method, which is widely used, is called the 3-OPT procedure.  The process of 3-OPT 

is to choose three arcs out of the old tour and find three new arcs to replace them.  

Several new tours are generated.  An objective function, which is minimizing tour 

length, must be evaluated and the process stops when all new tours show no 

improvement in the objective value.  Otherwise, a tour with improvement is chosen to 

start the process again.   

 

The TSP/MTSP can be formulated as IP. Orman and Williams (2004) 

presented a survey of different IP formulations of the TSP such as the conventional 

formulation that is presented by Dantzig, Fulkerson and Johnson (1954) and Miller, 

Tucker and Zemilin (1960).  The 0-1 IP model of TSP is defined on a complete 

directed graph G = (V, A), on n vertices, with vertex  a set V = {1, 2, …, n}, arc a set A 

= {(i, j)| i, j = 1, 2, …, n }, nonnegative cost or distance  cij associated with arcs (i, j) 

and cii =  ∞ for all ,i j V∈ .   
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Dantzig, Fulkerson and Johnson (1954) formulated the standard problem of 

TSP as a 0-1 IP model as follows 

1 1

(1)
n n

ij ij
i j

Min Z c x
= =

=∑∑  
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where V = {1, 2, … , n},  xij = 1 if arc (i, j) is in the solution and xij = 0, otherwise. 

The constraints (2) and (3) are the assignment constraints.  The constraints (4) 

represent the subtour elimination constraints.  This formulation has 2n-1 + n-1 

constraints and n (n-1) of 0-1 variables xij.  The exponential number of constraints 

makes it impractical to solve directly.  The branch and bound approach can be applied 

and solved this model iteratively.   

 

The sequential formulation is the Miller, Tucker and Zemlin (1960) 

formulation of the classical TSP that is given as follows 
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The number of cities is n, the distances are cij and the arcs in the tour are represented 

by the variable xij for all ,i j .  The cij is the distance from city i to j (cij = α for i = j ).  

The variable xij is 1 if the salesman travels from city i to j and 0 otherwise.  The 
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variables yi are arbitrary real numbers which satisfy the subtour elimination constrain 

(9).  The constraints (7) and (8) are the assignment constraints. This formulation has n2 

– n + 2 constraints and n (n-1) of 0-1 variables xij.  The mathematical formulation of 

the MTSP can be formed by applying the transformation idea to the Miller Tucker and 

Zemlin(1960) formulation.  Svestka and Huckfeldt (1973) gave the MTSP formulation 

for m salesmen as following. 
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where r = n+m-1 

 

 dij denotes the new distances for MTSP and all other terms have the same definitions 

as the Miller Tucker and Zemlin(1960) formulation. The new distance matrix [dij] are 

defined from the original distance cij, which augment the original distance matrix [cij] 

with m-1 new rows and columns, where each new row and column is a duplicate of the 

first row and column of the matrix [cij].  It is assumed that the first row and column 

correspond to the home city.  Set all other new elements on new rows and columns of 

the augment matrix to infinity.  All other terms have the same value as the original 

matrix [cij].         

 

Bellmore and Hong (1974) proposed another method to solve MTSP.  Suppose 

all n cities must be visited by one of m salesmen. They presented the transformation of 

the MTSP for m salesmen to the classical TSP by adding m-1 dummy nodes to the 

original network as the artificial starting node and solved the MTSP from solving the 

TSP of the modified network.   
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According to this point, the TSP is seductively easy to state.  It takes no 

mathematical background to understand the problem and no great talent to find good 

solutions to large problems.  Thus, it is exciting to work on the way to solve the 

problem on any sizes.  The TSP has resisted all efforts to find a good optimization 

algorithm or even an approximation algorithm that is guaranteed to be effective.  

There are also practical reasons for the importance of the TSP.  Many significant real 

world problems can be formulated as instances of the TSP.  The application of TSP 

can describe various problem transformations, related combinatorial problems, and 

generalizations of the basic TSP. 

 

Generalizations of the TSP and related problems 

 

 There are many problems related or have some relationships with the TSP.  

Lawler et al. (1985) illustrated the relationships of the TSP to several other 

optimization problems, which are shown as follows. 

 

1. The assignment problem: the problem of n cities is considered.  Let xij be a 

0-1 variable indicating whether or not the salesman goes directly from city i to city j 

for all i, j and cij be the corresponding distance.  The length of salesman tour is then 
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n n

ij ij
i j

c x
= =
∑∑                                                     (15)       

which is to be minimized.  Clearly, 
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since a unique city is visited directly after each city, and similarly, 
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x j n
=
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Figure 2  Subtours from the assignment solution 

1 2 3 4 
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Now, (15), (16) and (17) describe the well-solved assignment problem.  It follows that 

the TSP must involve some additional complications.  In particular, the missing 

constraints in the above formulation involve subtours.  For example, if n = 4 then x12 = 

x21 = x34 = x43 = 1 and xij = 0 otherwise satisfies (16), (17) but represents two subtours 

(1, 2), (3, 4) of figure 2 rather than a single tour.  Thus, the assignment problem is a 

relaxation of the TSP or, equivalently, the TSP is the restriction of the assignment 

problem obtained by adding the constraint of a single tour, which is: 

    

        ‘no subtours allowed’.                                  (18) 

 

2.  Integer linear programming: There are a number of ways to enforce (18) 

mathematically.  For instance, (18) can be replace with 

   1ij
i s j s

x S
∈ ∈

≤ −∑∑                                           (18a)  

or with 

   1ij
i s j s

x
∈ ∈

≥∑∑                                                   (18a) 

for every proper, nonempty subtour S of N = {1, …, n} where |.| denotes cardinality.  

Clearly, any subtour violates (18a) and (18b) for some S (In figure 2, S = {1, 2} and {3, 

4}).  Of course (18a) and (18b) represent a large number of constraints: 2n - 2 to be 

exact.  However, these formulations, due to Dantzig, Fulkerson and Johnson (1954), 

do have at least one characteristic of good formulations, namely a well-solved 

relaxation.   

 

A more compact variation of (18a) and (18b) is proposed by Miller, Tucker 

and Zemline (1960).  Arbitrarily designate vertex 1 to be the home base.  Then the 

constraints  

yi - yj + nxij ≤ n-1,              i, j = 2, …, n,      (18c) 

 

where yi and yj are arbitrary real numbers, block all tours not containing vertex 1.  To 

see that (18c) in conjunction with (16), (17) blocks subtours, consider an arbitrary 
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subtour (i1 , …., ik) where 1 is not in {i1 , …., ik}.  If a set of xij satisfying (16), (17) 

represents more than one subtour, then it also represents at least one subtour not 

containing vertex 1.  But addition of the constraints (18c), represented by this subtour 

yields nk ≤ (n-1)k which is clearly false since n, k ≥ 2.  Furthermore, every TSP tour 

remains feasible with these additional constraints.  Every tour can be assumed to start 

at city 1.  If city i is visited j th after city 1, let yi = j.  As example, consider the tour (1, 

4, 3, 2).  For this, set y1 = 0, y4 = 1, y3 = 2, and y2 = 3.  It is straightforward to verify 

that this procedure works in general. 

 

Note that the model (15), (16), (17), (18c) with binary variables xij is a mixed 

integer program since it has n-1 continuous variables, and that (18c) represents only 

(n-1)2 constraints.  It is also shown by Miller, Tucker and Zemline (1960) that an 

extension of the TSP can be modeled in the same way.  Suppose the salesman visits 

the cities in a number of subtours, each beginning and ending at city 1, and no subtour 

can contain more than r cities, which r < n.  Then (18c) can be replace with  

yi - yj + rxij ≤ r-1,              i,  j = 2, …, n,             (18d) 

Of course, since city 1 can be visited more than once, the constraints  
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The model obtains the solution, which is a set of subtours of r cities.   

                                                                                                                                                        

Branch and bound methods for TSP 

 

 Lawler et al. (1985) stated that the origins of the branch and bound idea go 

back to the work of Dantzig, Fulkerson & Johnson (1954 and 1959) on the TSP.  The 

first attempt to solve TSP by enumerative approach is apparently due to the work of 

Eastman (1958).  In a sense the TSP has served as a testing ground for the 

development of solution methods for discrete optimization, in that many procedures 

and devices were first developed for the TSP and then, after successful testing, 

extended to more general integer programming.   
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Gillett (1976) stated that the enumerative (branch and bound, implicit 

enumeration) methods solve a discrete optimization problem by breaking up its 

feasible set into successively smaller subset, calculating bounds on the objective 

function value over each subset, and using them to discard certain subsets from further 

consideration.  The bounds are obtained by replacing the problem over a given subset 

with an easier (relaxed) problem, such that the solution value of the latter bounds that 

of the former.  The procedure ends when each subset has either produced a feasible 

solution, or has been shown to contain no better solution than the one already in hand.  

The best solution found during the procedure is a global optimum.  A number of 

branch and bound algorithms that find the exact solution for a small to moderate size 

of TSP (fewer than 50 cities) have appeared in many literatures, but most of them are 

base on the algorithm by Eastman (1958).   

 

Little et al. (1963) presented an algorithm that is a branch and bound method 

for solving TSP.  The set of all tours (feasible solutions) is broken up into smaller 

subsets by a procedure called branching.  For each subset, a lower bound on the length 

of tours is calculated.  Eventually, a subset is found that it contains a single tour whose 

length is less than or equal to some lower bound for every tour.  This algorithm 

modifies both the branching and bounding procedures by modifying the Eastman’s 

algorithm to eliminate two cities subtours.  Since the Eastman and Little’s algorithm 

form the basis for all TSP branch and bound algorithms, one of them, namely, 

Eastman’s algorithm is presented as follows. 

 

Eastman’s algorithm for TSP 

 

Gillett (1976) presented an Eastman’s algorithm for TSP which is the branch 

and bound algorithm for solving the single TSP tour. Let c(i,j) be the distance from 

city i to city i for i = 1, 2, …, n and j = 1, 2, …, n. Where n is the number of cities and 

c (i,i) = ∞ for i = 1, 2, …, n.  A tour is a complete route or cycle through n cities where 

no city is visited more than once.  If the salesman visits a certain city and returns to 

that city later, the cities involved form a subtour.  Of course, this cannot occur if a 

route is feasible (each city is visited once and only once).  The Eastman’s algorithm 



 32

solves the easier assignment problem that allows subtours and then systematically 

forbids subtours until finally the single tour is obtained that are the optimal. An 

illustrative procedure follows the algorithm, which is: 

 

Step 1: 

Let CLUB represents the current least upper bound on the optimal solution of the TSP.  

Set CLUB = 1010 (CLUB equal to a large positive number) 

 

Step 2: 

Solve the associated assignment problem, where the distances c(i,j) are the elements of 

the distance matrix.  The solution provides a lower bound on the optimal solution of 

the TSP.  If at least one subtour exists in the solution, go to step 3, otherwise the 

optimal solution of the assignment problem is also an optimal solution of the TSP, so 

stop. 

 

Step 3: 

Select a subtour and let k be the number of arcs in the selected subtour.  Eastman 

selects the subtour with the smallest number of arcs.  All other subtours at this node 

can be ignored. 

 

Step 4: 

Branch into k subproblems.  If the subtour is: 

i1 - i2 - … ik - il  

Then for subproblem 1 let c(i1, i2) = ∞, for subproblem 2 let c(i2, i3) = ∞, etc., and for 

subproblem k let c(ik, il) = ∞. 

 

Step 5: 

Solve the k new assignment problems.  Each solution distance is a lower bound for the 

corresponding subproblem. 

 

 

 



 33

Step 6: 

If there are one or more feasible solutions from step 5 and if the smallest total distance 

for these feasible solutions, say STD, is smaller than CLUB, set CLUB = STD and 

save the corresponding feasible solution.  Otherwise CLUB remains unchanged. 

 

Step 7: 

If CLUB is less than the lower bounds on all other unexplored subproblems, then the 

solution corresponding to CLUB is an optimal solution of the TSP, so stop; otherwise, 

goes to step 8.  By unexplored subproblems, it means subproblems that have not been 

divided into further subproblems. 

 

Step 8: 

From the set of all unexplored nonfeasible (subtours present) subproblems with a 

bound less than CLUB, select the subproblem with smallest lower bound for further 

branching.  Go back to step 3   

 

Applications of the TSP 

 

Despite the fact that the TSP can be applied to many useful situations directly, 

most of reported applications are quite different. Seemingly there are many unrelated 

problems that can be solved by formulating them as instances of the TSP.  Lawler et al. 

(1985) illustrated some examples of applications of the TSP.  Many applications 

descried below are the versatility of the TSP model. 

 

1.  Vehicle routing: by vehicle routing it means the problem of determining for 

a fleet of vehicle which customers should be served by which vehicles, and in what 

order each vehicle should visit its customers. Constraints generally include capacities 

of the vehicles as well as time windows for each the customers.  Some algorithms for 

this problem use the TSP model for the subproblem of ordering each vehicle’s 

customers.  
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2. Computer wiring: this problem occurs repeatedly in the design of the 

computer’s component and other digital systems.  A system consists of a number of 

modules and several pins are located on each module.  A given set of pins has to be 

interconnected by wires.  In order to avoid signal crossing and to improve ease and 

neatness of wiring, the total wire length should be minimized. A minimum length 

Hamiltonian path can be solved by using an (n+1)-city symmetric TSP. 

 

3.  Cutting wallpaper: this situation needs to cut n sheets of wallpaper from a 

single long roll of paper by minimizing waste.  Sheet i starts at position Si and finishes 

at position Fi, with respect to a pattern that repeats at one unit intervals.  Thus, Fi = Si 

+ Li (mod 1) where the length of sheet i is Li pattern units.  The amount of wallpaper 

that is wasted if sheet j is cut from the roll immediately after sheet i is then; 

Cij = Si – Fi     if Fi ≤ Si, otherwise Cij = 1+ Si – Fi  

or equivalently, 

Cij = Si – Fi (mod 1). 

Now suppose that when begin cutting, the end of the roll is at position Fo and that after 

cutting the last sheet worker must makes one final cut to restore the roll to the same 

starting points S0 = F0.  If create a dummy sheet 0 is created, the starting and finishing 

point, the problem of cutting the n sheets from the roll become an (n+1)-city TSP with 

distance matrix defined by Cij.  

 

4.  Job sequencing: Consider the problem of sequencing n jobs on a single 

machine.  The jobs can be done in any order and the objective is to complete all of 

them in the shortest possible time.  Assume that the machine must be in a certain state 

Si in order to do job j and that the beginning and ending state for the machine is So.  

Let the time required to complete job j directly after job i be  

   Tij = Cij + Pi 

where Cij is the time required to transform the machine from Si to Sj and Pi is the 

actual time to perform job j (with P0 = 0).  The TSP can be used to solve this kind of 

problem by using the distance matrix defined by Tij.   
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5.  The stacker crane problem: The motivation for this problem is expressed by 

ignoring the stacker cranes and considering the delivery trucks.   Suppose a truck must 

perform a collection of pick up and delivery, subject to the constraint that each loads, 

which is picked up completely, fills the truck and goes to a single destination, Hence, 

no picks up or deliveries can be combined.  The stacker crane problem is a 

generalization of the TSP in which the desired tour must contain certain edges, and 

must traverse them in specified directions.  An instance is a set of cities (and 

corresponding distance matrix C is defined by [Cij] ) together with a set A of arcs, 

where each arc is an ordered pairs of cities and every city occurs in exactly one arc. 

If ( , )i j A∈ , this means that a load must be picked up at city i and delivered to city j.  

The goal is to save fuel, by minimizing the total length of the route that is used to 

make all movements.  The TSP with distance matrix [Cij] can be applied to this 

problem. 

 

6.  Problem of postal service: The stacker crane problem is related to a number 

of other problems which are concerned more with traversing arcs (or edges) then with 

visiting vertices.  The undirected analogue of the stacker crane problem is called the 

rural postman problem, Orloff (1974).  The information is given a set of required 

edges (rather than arcs) and asks for a route of the minimum length, which will 

traverse each edge at least once (the direction of traversal dose not matter).  This 

model is the problem that a mail carrier designs an optimum route, with each edge 

corresponding to a street along which the mail must be delivered.  The TSP can be 

applied to help a mail carrier to solve an optimum route.  

 

Benders’Decomposition Algorithm 

 

J. F. Benders (1962) proposed a technique in which the mixed integer 

programming (MIP) problem can be written as an IP problem.  Using the linear 

programming duality theory, it is possible to show that any the MIP problem can be 

written as an integer program.  The equivalent IP problem is solved after generating 

only a subset of its constraints.  The remaining “implicitly enumerated” constraints are 

relaxed from the IP problem.  The Benders decomposition procedure partitions the 
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MIP problem into an integer and a continuous part, consisting respectively of the 

integer and the continuous variables of the original problem.   

 

The decomposition algorithm works by successive solving a continuous 

programming problem and an integer programming problem, considering the linear 

case.  A LP produces an extreme point and a single constraint for the IP problem.  

Also, the value of the LP optimal solution gives an upper bound for the optimal 

solution to the MIP problem.  After the IP problem, which is the MIP problem’s 

equivalent when it has all cut constraints, is solved, it yields a nondecreasing lower 

bound.  When the two bounds coincide, the optimal MIP solution has been found and 

the process terminates. 

 

Consider a class of linear MIP problem, which is the Benders’master problem, 

as follows. 

(MIP)  Minimize     cTx + dTy 

Subject to     Ax + By ≥ b, 

            x ≥ 0, y∈Y 

where  A is a m by n coefficient matrix of vector x,    

B is a m by n′ coefficient matrix of vector y, 

c is a n by 1 cost vector of vector x, 

d is a n′ by 1 cost vector of vector y  

x is a n by 1 vector of continuous variable x, 

y is a n′ by 1 vector of variable y with Y = {y │yi ∈  {0, 1}; i = 1, 2, …, n′ } 

 

A concept of the Benders’algorithm is that the partitioning of the variables into 

two sets (x and y) and projecting the problem onto the y variables.  If let Y denote the 

set of binary or all possible nonnegative integer vectors y, then MIP may be written as 

follows. 

 

Let    v(y) = dTy + min { cTx │Ax ≥ b – By, x ≥ 0} 
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the Benders’master problem is clearly seen to be equivalent to: 

                                    Minimize     v(y)  

                                    Subject to     y ∈  Y 

 

for a fixed y, the minimization problem is the LP problem 

 (LP)  Minimize     cTx  

            Subject to     Ax ≥ b – By, 

                        x ≥ 0 

its dual programming (DL) problem is  

  (DL)  Maximize     (b – By) T u 

            Subject to     AT u ≤ c, 

                        u ≥ 0 

where u is a m by 1 vector of dual variable u, 

 

In principle, it is possible to identify and enumerate all of extreme points of the dual 

feasible region and choose the best.  That is, the function v (y) can be evaluated by:

   

v (y) = dTy + Maximize {(b – By) T u│ AT u ≤ c, u ≥ 0}  

 

Suppose Y consists of p sets of vector y, a fixed vector y is defined by y j for all 

j = 1, 2, …, p and  vk (y j) is a function that a vector y j is supplied to the function v (y) 

at iteration k for finding the k th solution for all k = 1, 2, …, p.   However, the v (y) is to 

be evaluated by solving the LP problem, not by identifying all sets of dual extreme 

points (p sets) and computing the corresponding linear objective function of y.   If k th 

iterations are used with the sets of y j (where 1≤k ≤ p), it can provided an 

approximation function, which is an underestimate of v (y), defined by vk (y j) = 

Maximize {(b – B y j) T u j │ AT u j ≤ c, u j ≥ 0}, that is the Benders’subproblem. 

 

The initial (k = 1) value of variables y ∈  Y can be generated by selecting any 

arbitrary value of vector y (it is the first y j, which is y 1) that provides the feasible 

solution to the Benders’subproblem, Maximum vk (y j) = Maximize {(b – B y j) T u j │ 

AT u j ≤ c, u j ≥ 0}.  The solution of the Benders’subproblem is evaluated by solve LP 
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with fixed y j.   The Benders’subproblem solution is a generated vector u j of dual 

variable u and its objective function value of vk (y j) that corresponding with a selected 

y j.  When a generated vector u j from solving the Benders’subproblem is put into the 

Benders’master problem, which is the Benders’partial master problem of iteration k th 

that is: 

               Minimize   v (y) = dTy + Maximize { [(b – By) T u j]k }   

               Subject to     y ∈  Y 

 

This step provides the Benders’partial master problem with one underestimate 

function of v (y), called the Benders’cut of the iteration k th ( [(b – By) T u j]k ).  For 

each iteration, the algorithm must solve this Benders’partial master problem to 

generate the new vector y, for replacing the previous selected vector y, and the new 

solution value of master problem, v (y). 

 

If vk (y j) = v (y), the solution can be accepted and terminate the algorithm 

otherwise the algorithm has to improve by adding the new approximation function, 

Benders’cut by using new set of dual extreme points to generate the new arbitrary y j 

of iteration k+1for solving the new partial master problem.  Therefore, the 

Benders’decomposition algorithm for solving the lower bound of AGVsp-P/D can be 

summarized step by step as follows. 

  

Step 1: Initialization: set v (y) = 0, select a fixed vector y j ∈  Y, set j = 1 and set k = 1 

Step 2: Solve the Benders’subproblem: evaluate the value of vk (y j) with its  

            corresponding set of the dual extreme point (vector u j) by  solving LP with a  

            fixed vector y j  

Step 3: Stopping criterion: if vk (y j) = v (y) then stop, otherwise go to step 4 

Step 4: Improve the approximation function: by using a set of dual extreme point  

            (vector u j) to generate the Benders’cut for forming iteration kth Benders’partial  

            master problem  

Step 5: Solve the Benders’partial master problem: that is the minimizing of v (y) with  

            Benders’cut from step 4 for updating the value of v (y) and then set j=j+1 and  

            updating the new vector y j,  set k = k+1 and go to step 1. 
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Statistical methods for data analysis 

 

 Montgomery and Runger (2002) illustrated and applied statistics for using in 

the engineering research.  The data probability distribution is the first issue that should 

be considered because most of statistic assumptions are assuming the normal 

probability distribution of the data set.  The normality test is explained in this part.  

Then the analysis of variance that is the important method to conclude the solving 

result is reviewed.    

  

1.  Probability plots 

 

 Montgomery and Runger (2002) explained that the probability plot is a 

graphical method for determining whether sample data conform to a hypothesized 

distribution based on a subjective visual examination of the data set.  The general 

procedure is very simple and can be performed quickly.  Probability plotting typically 

uses special graph paper, known as the probability paper that has been designed for the 

hypothesized distribution.  Probability plotting is wildly used for the normal 

distribution because most of statistical methods are using normal probability 

distribution data. 

 

 A normal probability plot can also be constructed on an ordinary graph paper 

by plotting the standardized normal scores zj against x(j), where the standardized 

normal scores satisfy 0.5 ( ) ( )j j
j P Z z z

n
φ−

= ≤ = .  Almost of statistical software can 

perform the normality test by doing the normal probability and showing the result in 

same form as plotting on an ordinary graph paper.  If the specific type I error is α, the 

probability distribution of the data set is the normal probability distribution when the 

P-value of the normal probability plot of the data set is grater than α, otherwise the 

data set is not the normal probability distribution.  The example of the normal 

probability plot that is obtained from normal distribution data by using MATLAB is 

shown as follows. 
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P-Value:   0.167
A-Squared: 0.528

Anderson-Darling Normality Test

N: 40
StDev: 0.999490
Average: 12.4137

14.513.512.511.510.5

.999

.99

.95

.80

.50

.20

.05

.01

.001

Pr
ob

ab
ilit

y

Ass

Normal Probability Plot

 
 

Figure 3  The example of the normal probability plot of the assignment data with 50  

                 nodes from table 31 by using MINITAB 

 

When the obtained data is non-normality, MINITAB has Two Box-Cox 

transformation procedures, which are a stand-alone command and a transformation 

option that can be useful for correcting both non-normality and highly skewed. First, 

use the stand-alone command as an exploratory tool to determine the best lambda 

value for the transformation. Then, use the transformation option to transform the data. 

The Box-Cox transformation is used to make the data “more normal.” The 

transformation takes the original data to the power l, unless l = 0, in which case the 

natural log is taken. (l is pronounced “lambda.”)  To use this option, the data must be 

positive.  The options subdialog box lists the common transformations natural log (l=0) 

and square root (l= 0.5). User can also choose any value between -5 and 5 for l. In 

most cases, user should not choose an l outside the range of -2 and 2.  

 

2.  Hypothesis testing 

 

 Montgomery and Runger (2002) illustrated that many research problems 

require the conclusion that the results will be accepted or rejected, based on some 

parameters.  Normally, the researchers decide whether accept or reject a statement 

about the research results of some parameters.  The statement is called a hypothesis, 
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and the decision making procedure about the hypothesis is called hypothesis testing.  

This is one of the most useful aspects of statistical inferences, since many types of 

decision making problems, tests, or experiments in the research can be formulated as 

hypothesis testing problems.   Normally, research considers the hypothesis test about 

the mean µ of a single normal population distribution where the variance of the 

population σ2 is known.  The hypothesis can be formally stated as                            

                                                               H0:  µ = µ0 

                              H1:  µ ≠ µ0 

It is usually more convenient to standardize the sample mean and use a test statistical 

based on the standard normal distribution.  That is, the test procedure for H0 uses the 

test statistic 

                       0
0

XZ
n
μ

σ
−

=  

If the specific type I error is α, the hypothesis H0:  µ = µ0 cannot be rejected when the 

observed value of the test statistic Z0 is - Zα/2 ≤ Z0 ≤ Z α/2.  When a research considers 

hypothesis testing about the mean µ of population with unknown variance of the 

population σ2, the test procedure for H0 uses the test statistic 

                       0
0

XT
S n

μ−
=  

T0 has a t distribution with n-1 degrees of freedom.  If the specific type I error is α, the 

H0:  µ = µ0 cannot be rejected when the observed value of the test statistic is -t α/2, n-1 ≤ 

t0 ≤ t α/2, n-1. 

 

3.  The analysis of variance (ANOVA) 

 

Montgomery and Runger (2002) presented that many single-factor experiments 

require that more than two levels of the factor be considered.  For example, an 

industrial engineer may want to investigate three different methods.  The ANOVA, 

can be used for comparing means when there are more than two levels of a single 

factor.  Suppose all experiments have different levels of a single factor that the 
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researchers wish to compare.  Each factor level is called a treatment, a very general 

term that can be traced to the early applications of the experimental design 

methodology.  The response from the experiment for each of the k treatments is a 

random variable.  The researchers are interested in testing the equality of the k 

treatment means µ1, µ2, …, µk.  The hypothesis can be formally stated as:   

            H0:  µ 1 = µ 2 =…= µ k  

 H1:  µ i ≠ µ j for at least one pair of all i, j 

Thus, if each observation consists of the overall mean µ plus a realization of the 

random error component, this is equivalent to saying that all N observations are taken 

from the normal probability distribution with mean µ and variance σ2.  Therefore, if 

the hypothesis H0 is not rejected, the changing of the level of the factor has not affect 

on the mean µ of response.  Table 2 is called the ANOVA table of k treatments, n 

observations and N = kn total number of observations. 

 

Table 2  The ANOVA table for a single-factor experiment, fixed effects model 

 

Source of Sum of  Degree of Mean f0 

Variation Squares Freedom Squares   

Treatment SSTreatment k-1 MSTreatment f0= MSTreatment/ MSE

Error SSE N-k MSE  

Total SST N-1     

 

The value of test statistic is 

   

2
2 ..

1 1

2 2
. ..

1

1

k ni

T ij
i j

k
i

Treatment
i i

E T Treatment

Treatment
Treatment

ySS y
N

y ySS
n N

SS SS SS
SSMS

k

= =

=

= −

= −

= −

=
−

∑∑

∑  

 



 43

                                          
0

E
E

Treatment

E

SSMS
N k
MSf

MS

=
−

=
 

where  ijy  is a data point from the experiment by using treatment i and replication j th ,  

                  i = 1, 2, …, k and j = 1, 2, …, n 

            .iy  is the summation value of all observations from the experiment by using  

                  treatment i,
1

( )
n

i ij
j

y y
=

= ∑  

            ..y  is the grand total, ..
1 1

( )
k n

ij
i j

y y
= =

=∑∑  

If the specific type I error is α, the hypothesis H0 cannot be rejected when f 0 < f α, v1, v2 

= f α, k-1, N-k from the table of F- probability distribution. 

 

4. Nonparametric statistics 

 

 Montgomery and Runger (2002) explained that most of the hypothesis testing 

and confidence interval procedures, which is discussed in the previous part, are based 

on the assumption that it works with random samples from normal populations.  

Traditionally, these procedures are called parametric methods because they are based 

on a particular parametric family of distributions, the normal in this case.  

Alternatively, sometimes it can be said that these procedures are not distribution-free 

because they depend on the assumption of normality.  Nonparametric or distribution-

free procedures do not utilize all the information, which provides by the sample.  As a 

result, a nonparametric procedure will be less efficient than the corresponding 

parametric procedure when the underlying population is normal.  There are many 

nonparametric methods involve the analysis of data.   

 

The Kruskal-Wallis test is a nonparametric method in the analysis of variance 

for a single-factor experiment.  The Kruskal-Wallis can perform a test of the equality 

of medians for two or more populations.  This test offers a nonparametric alternative 
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to the single-factor (one-way) analysis of variance.  Suppose that 
1

a

i
i

N n
=

=∑  is the total 

number of observations ni for all factor levels i = 1, 2,…, a, .iR demote the ni ranks in 

the i th treatment and .iR  denote the average value of .iR .  The Kruskal-Wallis 

hypotheses are: 

 

        H0: the population medians are all equal versus H1: the medians are not all equal 

 

The Kruskal-Wallis test statistic measures the degree, which the actual observed 

average rank .iR , to the different from their expected value (N + 1)/2.  If this difference 

is sufficiently large, the hypothesis H0 is rejected.  The test statistic is  
2

.
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H has approximately a chi-square distribution with a-1 degrees of freedom.  Since 

large values of H imply that H0 is false, H0 will be rejected if the observed 

value 2
, 1aH xα −≥ .  When observations are tied, assign an average rank to each of the 

tied observation.  The test statistic is  
2 2
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where ni is the number of observations in the i th treatment, N is the total number of 

observations, and 
2

2 2

1

1 ( 1)
1 4
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An assumption for this test is that samples from the different populations are 

independent random samples from continuous distributions, with the distributions 

having the same shape.  
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MATERIALS AND METHODS 
  

 This chapter presents research methods, which include materials for 

researching the problem formulation, the mathematical model of AGVsp-P/D and 

solving algorithms to find the solution and verify the model quality.   

 

Materials 

 

The materials for this research could be categorized into three groups as 

follows:  

 

1. Computer 

 

A personal computer, CPU Pentium IV 2.0GHz with 2 GB RAM, was used to 

generate the data of simulated problems, process data sets, formulate the mathematical 

model, program the algorithms, and run programs to solve the tested problems. 

 

2. Software 

 

2.1 Microsoft Excel program was used to solve the formulated integer 

programming by using Solver, form the information sheets, and create the tables and 

graphs for this research document. 

 

2.2  MATLAB 7.0 was used to generate the tested problems, program the 

algorithm and run the program to solve the generated problems. 

 

2.3  Microsoft Word was used to create this research document. 

2.4  Minitab was used to perform all statistical analysis. 
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3. Literatures and related papers 

 

Most of literatures and related papers have been received from many 

professors, which are Dr. Peerayuth Charnsethikul (the advisor of this thesis), Dr. 

Kamlesh Mathur, Dr. Danil Solow, and Dr. George Viraktarakis.  A lot of books and 

papers have been collected from the Kelvin Smith library of Case Western Reserve 

University (CWRU), USA, the main library of Asian Institution of Technology (AIT), 

Thailand, the library of the faculty of Engineering and the main library of Kasetsart 

University, Thailand and download from electronic online journals, which available at 

OHIOLINK on the Internet.   

 

Methods 

 

The motivation of the mathematical model and solving approaches are due to 

the fact that the routing problems normally are difficult to solve and can not satisfy 

some real situations, because it relates to some problems in NP-hard class such as 

TSP/MTSP.  If some real world constraints are added to a kind of routing problem, it 

becomes a much more difficult problem to be modeled and solved. 

 

The original single/multi AGV scheduling problem with specific P/D nodes 

can be formulated and solved as TSP/MTSP (Blair, Charnsethikul and Vasques, 1987).  

When the original AGV problem is modified to capture the special network structure 

that is the network, which has alternatives for some nodes, the problem becomes the 

AGVsp-P/D.  TSP/MTSP with alternative P/D nodes will be considered for finding the 

solution of this special AGV scheduling problem. 

 

The key successfulness of this thesis will be creating the appropriate 

mathematical model and heuristic approaches for solving the AGVsp-P/D. The 

research sequence will be conducted following the steps that consist of the study and 

analysis of the AGVsp-P/D, compare the AGVsp-P/D with the existing related 

problems from literatures, formulate the mathematical model of this problem, create 

the heuristic algorithms for solving these created mathematical model which is the 
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modified TSP approach, and perform the test and evaluation of the created model by 

programming the model on MATLAB 7.0 and solving some generated examples of 

this problem.  The proposed research will be explained step by step as follows. 

 

1. The problem of AGV with alternative pick up and delivery nodes (AGVsp-P/D) 

 

Job sequencing and scheduling is the important part of AGV system design.  

The main goal of this step is to define the problem of AGVsp-P/D clearly in detail and 

structure for doing analysis and studies in the next step.   Designing AGV systems are 

complex tasks.  One of the main purposes of the scheduling problem for single/multi 

AGV is how the scheduling can provide the minimum total traveling distance of AGV.  

Normally, the scheduling problems have been considered or designed with the routing 

problem concomitantly.  The ordinary vehicle scheduling and routing problem as 

single/multi AGV scheduling problem is the problem with a single specific P/D node 

that can be simulated by a network problem approach such as TSP/MTSP.  

 

According to this point, the potential problem for studying the single/multi 

AGV scheduling problem is extended to be more realistic that the original TSP/MTSP 

problem is modified by adding the structure of alternative P/D nodes.  The main 

purpose is to find the scheduling of AGV problems with alternative P/D nodes.  This 

kind of problems is presented in section 2.1. 

 

The original TSP/MTSP is one of the applications of network problems, it is 

necessary to choose a sequence of nodes to visit so as to accomplish a specified 

objective.  When the AGVsp-P/D is considered, the TSP/MTSP approach can be 

applied for solving the schedule of problem like normal vehicle routing problems, but 

the approach has to be modified to support the special structures of AGVsp-P/D.  The 

concept of TSP/MTSP will be applied by using the generated technique of assignment 

problem with alternative P/D nodes to solve the AGVsp-P/D for determining the 

minimum traveling distance of each AGV from the starting depot to some appropriate 

selected nodes and then come back to the starting depot.  This procedure based on the 
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branch and bound with solving assignment subproblems for determining the optimal 

schedule.  The formulated mathematical model is presented in section 2.2.   

 

The assignment problem with alternative P/D nodes which is the lower bound 

of the AGVsp-P/D is considered as one of important parts of this research. The 

mathematical models of TSP/MTSP are formulated in form of the 0-1 IP problem.  For 

large 0-1 IP problems, it takes much time to solve the problem.  The Benders 

decomposition approach is considered for lower bound of the AGVsp-P/D.  The 

generated Benders’decomposition algorithm for solving the lower bound of the 

AGVsp-P/D is described in section 2.3.   

 

The ordinary assignment problem is the 0-1 IP problem.  An assignment 

problem can be solved as a regular LP without concerning of 0-1 integer constraints 

because of the unimodularlity of the network structure.  The result is an integer 

solution automaticly (Mathur and Solow, 1994). When the alternative nodes 

constraints are added to the system, the properties of the problem will be changed.  

The heuristics for the alternative selection and the improvement of selection for 

solving the lower bound of AGVsp-P/D as solving the regular assignment problem are 

presented in section 2.4. The lower bound model of AGVsp-P/D and its solving 

approaches are programmed and tested on the computer by using MATLAB 7.0 and 

Excel Solver.   

 

The solutions of many tested problems, which are presented in the next chapter, 

will sometimes form the single TSP tour but sometimes will not.  After the lower 

bound model is completed, the modified branch and bound and heuristic approaches 

are applied to generate the TSP/MTSP tour of the schedule for multi/single AGVsp-

P/D.  The modified Eastman’s algorithm for TSP of the AGVsp-P/D is presented in 

section 2.5.  The last section presents the heuristic for solving multi AGVsp-P/D by 

using the methods of solving MTSP as standard TSP and using the heuristic of 

splitting TSP tour. 
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2. The Problem Analysis and Solution Technique 

 

2.1  AGV Scheduling Problems Analysis 

 

 Let consider the problem that the factory has a particular layout of 

departments for the AGV system as figure 1.  From the example layout, let assume 

that the distance between each department (node) is shown in table 3. 

 

Table 3  The distance table of the example layout from figure 1 

 

         To 
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A 

 
B 

 
C 

 
D 

 
E 

 
F 

 
G 

 
H 

 
I 

 
A 

 
∞ 

 
1 

 
2 

 
1 

 
2 

 
3 

 
2 

 
3 

 
4 

 
B 

  
∞ 

 
1 

 
2 

 
1 

 
2 

 
3 

 
2 

 
3 

 
C 

   
∞ 

 
3 

 
2 

 
1 

 
4 

 
3 

 
2 

 
D 

    
∞ 

 
1 

 
2 

 
1 

 
2 

 
3 

 
E 

     
∞ 

 
1 

 
2 

 
1 

 
2 

 
F 

      
∞ 

 
3 

 
2 

 
1 

 
G 

       
∞ 

 
1 

 
2 

 
H 

        
∞ 

 
1 

 
I 

        
 

 
∞ 

 

  Normally, the list of jobs for AGV problems can be defined as the example 

on table 4.  In general, each job of AGVs composes of pick up the items at one node 

and delivers them at one fixed destination node.  For example, let consider a job No. 1 

on table 4, the AGV travels from a starting department (node A) to the pick up node B 

for getting the items and then travels to the delivery node C for finally sending items.   
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Table 4  The example of a part of job list for a regular AGV problem  

 

Job No. Pick up Department Delivery Department 
1 B C 
2 A I 
3 B H  
4 G C 
5 D E 
6 H F 

 

Blair, Charnsethikul and Vasques (1987) modeled the optimum routing 

problem of AGVs among the workstations as TSP/MTSP, mentioned previously.  An 

algorithm for the near optimal routing of AGVs in such a system is presented which 

seeks to organize materials move into tours with the objective of minimizing the 

maximum tour length.   

 

For this research, the specific characteristic of alternative P/D nodes here is 

considered the jobs that can have the alternative pick up and delivery nodes to select 

more than one fixed point. Suppose in some parts of the example, the list of jobs that 

one AGV is used to complete all jobs is shown as follows.  

 

Table 5  The example of a part of job list for the single AGVsp-P/D 

 

Job No. Pick up Department Delivery Department 
1 B C 
2 A I 
3 B H or G or I 
4 G C 
5 D E 
6  D or H F 

 
 

The meaning of each job of AGVsp-P/D can be explained as the following 

example. Let consider the job No. 3 on table 5, the AGV job is the item movements 

that pick up the items from the turning process at department (node) B and deliver at 

the drilling process, which can be performed at departments H or G or I.  The AGV 
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has to travel from pick up node B and can select to deliver the items at nodes H or G 

or I that is called “alternative pick up and delivery nodes” (alternative P/D nodes).  If 

the AGV travels from node B and select to deliver at node H, the total AGV traveling 

distance may different from selecting to deliver at node G or node I.  The job 

scheduling of jobs (for example started with job No. 1 and followed by job No. 6, No. 

5, and ended the schedule when all jobs done) and selecting of alternative P/D nodes 

appropriately may provides the minimized total traveling distance of the AGV, which 

is the objective of this research.    

 

The AGVsp-P/D can be transformed to TSP for solving the special situation 

that some jobs of AGVs have the P/D alternatives.  The distance matrix [cij] of 

AGVsp-P/D in a form of TSP is defined, which the table is consisted of the distance of 

AGVs that move from the starting point of the current job to the starting point of the 

next job. So the TSP distance table for the AGV problem is an asymmetric distance 

table.  Suppose the distance table of the previous AGVs job list on table 5, which is 

the distance from the considered job to the others in a form of TSP distance table, is 

shown as follows. 

 

Table 6  The example of distance matrix [cij] of the AGVsp-P/D in a form of TSP  

 
             To 
 
From 

Job j No. 
(n) 

 
 

 
 1 

 
2 

 
3 

 
4 

 
5 

 
6 

Job j No. Alternative 
(job i, Alt. a) 

  
1.1

 
2.1

 
3.1 

 
3.2 

 
3.3 

 
4.1 

 
5.1 

 
6.1 

 
6.2 

  n 1 2 3 4 5 6 7 8 9 
1 1.1 1 ∞ 3 2 2 2 5 4 2 4 
2 2.1 2 7 ∞ 7 7 7 6 7 7 7 

3.1 3 2 3 ∞ ∞ ∞ 3 2 2 2 
3.2 4 6 5 ∞ ∞ ∞ 3 4 6 4 

 
3 

3.3 5 6 7 ∞ ∞ ∞ 5 6 6 6 
4 4.1 6 5 6 5 5 5 ∞ 7 5 7 
5 5.1 7 2 3 2 2 2 3 ∞ 2 2 

6.1 8 4 7 4 4 4 5 4 ∞ ∞  
6 6.2 9 3 5 4 4 4 6 7 ∞ ∞ 
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From table 6, assume that job No. 1 is a starting job with a starting node B 

(depot) for the AGV.  Job No. 1 of the movement from node B to node C is a regular 

job (not has any alternative P/D nodes) that has label 1.1, but job No. 3 of the 

movement from node B to the selected alternative delivery nodes H or G or I is an 

alternative job that are labeled as 3.1, 3.2, and 3.3.  Job No. 3 can be separated to 3.1 

(B to H), 3.2 (B to G), and 3.3 (B to I).  The distance on table 6 is the distance of the 

AGV that move from the pick up nodes of the current job to the pick up nodes of the 

next job.  For example, the distance of the AGV that move from job 1.1 to job 2.1 is 3 

units, which is the summation distance from the pick up node of job 1.1 (node B) to 

the delivery node of job 1.1 (node C), 1 unit, and the distance from node C to the pick 

up node of job 2.1 (node A), 2 units, that equal to 1+2 = 3 units.  When the TSP 

approach is applied to this table with alternative P/D nodes constraints, the solution of 

AGVsp-P/D can be generated.     

 

2.2  Problem Formulation of the AGVsp-P/D 

 

       When mathematical formulations of routing problems are studied, there 

are so many kinds of mathematical models as mentioned previously in the literature 

review part.  When the presented problem statement of AGVsp-P/D is compared to the 

TSP, the detail can be analyzed as follows.   

 

       Refer to the stated problem statement, given a set of n jobs J such that job 

Ji = {Pi a, Di b}, i = 1, 2, …, n   where Pi a is a set of alternative pick up departments a 

of job Ji, a = {1, 2, …, k(i)} and Di b is a set of  alternative delivery departments b of 

job Ji , b = {1, 2, …, l(i)}.  k(i) is the number of alternative departments a for job Ji.  

l(i) is the number of alternative departments b for job Ji.  When job Jj = {Pj a, Dj b}, j = 

1, 2, …, n is scheduled after job Ji, cia jb is the traveling distance of an AGV that starts 

from a selected pick up department a of job  Ji , goes to a selected delivery department 

b of job  Ji , goes to a selected pick up department a of job  Jj , then goes to a selected 

delivery department b of job  Jj , which is a non-negative number and cia ia  =  ∞.  The 

AGVsp-P/D is the problem that selects one alternative department from set a and one 



 53

alternative department from set b of all jobs J, called xia jb such that xia jb = 1 if an AGV 

travels from a selected pick up department a of job Ji to a selected delivery department 

b of job Jj or xia jb = 0 otherwise and sequences all those jobs J with their selected 

alternatives to form single/multi tours (TSP/MTSP tour) that provide minimized the 

total traveling distance.  The single/multi AGVsp-P/D relates directly to TSP/MTSP. 

 

Refer to Miller-Tucker-Zemlin (1960)’s formulation of classical TSP and 

Svestka and Huckfeldt (1973)’s formulation of MTSP. TSP/MTSP variable xij is equal 

1 if the salesman travels from node i to node j. When the alternative P/D nodes 

structure is analyzed on the model’s variables, if the salesman travels from node i with 

alternative a to node j with alternative b the variable should be xia, jb = 1. By similar 

idea, the TSP/MTSP with alternative P/D can be formulated base on the original 

model but change xij to xia, jb. This research does the analysis and creates the model of 

TSP/MTSP with alternative P/D nodes, n nodes and m AGVs, which similar idea with 

the original TSP/MTSP model as follows.  
( ) ( )

1 1 1 1
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k i l jr r
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i a j b
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Integerandba 0, >  

where 

r       = n + m - 1 

xia jb  =  1; If one AGV travel from node i with alternative a to node j with  

             alternative b (for example,  x11 31 is that the AGV travel from node No.  

             1 with alternative No. 1 to node No. 3 with alternative No. 1) 
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          = 0; otherwise 

 

cia jb   represents the distance from node i with alternative a  

          to node j with alternative b  

k(i)    represents the number of alternative departments a for node Ji.  

 l(i)     represents the number of alternative departments b for node Ji.  

m       represents the number of AGVs (m = 1 when considers the single  

          AGV case) 

 

This mathematical model is a TSP/MTSP with alternative P/D nodes that can 

simulate the model of single/multi AGVsp-P/D by identifying nodes of the TSP/MTSP 

as jobs of AGVs.  This model can not be solved regularly same as the original 

TSP/MTSP. Therefore, the model has to be modified as follows.  

 

When relax the subtour elimination constraints (22) and consider the single 

AGV case, this problem looks like the assignment problem, but there are the 

alternative P/D nodes for each job.  This assignment problem with alternative P/D is 

the 0-1IP model that is the relaxation of TSP/MTSP with alternative nodes.  For 

solving TSP/MTSP with alternative P/D nodes, the solving algorithm has to apply the 

branch and bound approach with solving the assignment problem with alternative P/D 

nodes as a subproblem of each branching.  The solution from solving this assignment 

problem provides the lower bound of AGVsp-P/D and can be modified to be the 

simpler mathematical model.  The variable xia jb is considered to be eliminated the 

subscribes a and b.  The main propose of the modification is to create the model that 

can be solved by similar approaches of solving the regular assignment problem.  For 

clearly explaining, the table 6 (the example of cost matrix [cij] of the AGVsp-P/D in a 

form of TSP) and table 7 (The assignment solution of variable xij of AGVsp-P/D from 

table 6) is considered concomitantly.  The modified mathematical model is explained 

as follows, where h = number of all nodes (all rows or columns) that consist of all 

alternatives and n = number of jobs.  
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Let the new variable xij is a 0-1 integer variable, which indicating whether the 

schedule of the AGV is accomplished from node (row) i to node (column) j or not and 

can be solved as an original assignment problem. The dummy variable Z is introduced 

to the model to capture the alternative structures and eliminate the subscribes a and b 

of the variables xia jb.  It represents to the summation of variables xij for each row and 

column.  Consider table 7 for clearly explaining, job No.1 is a regular job, which not 

has P/D alternatives. It consists of one row (row No.1) of job 1.1 and one column on 

table 7.  The dummy variable Z(i) of row No.1 (Z(1)) is the summation of the solution of 

variables xij of row No.1, which equal to 1.  For job No. 3, it has 3 alternative P/D 

nodes, which it consists of row No.3, row No.4 and row No.5 of job 3.1, job 3.2 and 

job 3.3 sequentially.  Table 7 shows that the dummy variables Z(i) of row No.3 (Z(3)) 

equals to 1, row No.4 (Z(4)) equals to 0 and row No.5 (Z(5)) equals to 0.  Because only 

one alternative of job No. 3 (job 3.1or 3.2 or 3.3) will be selected, only one row of job 

No.3 (row No.3 or row No.4 or row No.5) will has the summation of the solution of 

variable xij equal to 1, which is row No.3 of job 3.1 in this case.  According to this 

point, all Z(i) variables of job No.3 (Z(3), Z(4), and Z(5)) will have the summation equal to 

1 (Z(3) +Z(4)+Z(5) = 1).  Table 7 is the example of AGVsp-P/D, which consists of 9 

nodes (9 rows and columns) with 6 jobs (h = 9 and n = 6).  Set S(k) is defined to 

represent the set of all alternatives of any job k (k = 1, 2, …, n).  From table 7, there 

are six sets S(k) of 6 jobs that are set S(1) of job No.1, which consists of row No.1 of job 

1.1, set S(2)of job No.2, which consists of row No.2 of job 2.1, set S(3) of job No.3, 

which consists of rows No.3, 4 and 5 of jobs 3.1, 3.2 and 3.3, set S(4) of job No.4, 

which consists of row No.6 of jobs 4.1, set S(5) of job No.5, which consists of row 

No.7 of job 5.1 and set S(6) of job No.6, which consists of rows No.8 and 9 of jobs 6.1 

and 6.2.  Therefore, the constraints of alternative P/D nodes of the modified model is 

that the summation of all dummy variables Z(i) of all rows No. i in each set S(k) of any 

jobs k will equal to 1.   
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According to this point, the created lower bound model of AGVsp-P/D is 

shown as follows.   

1 1
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where   

xij      =   1; If one AGV travel from node i to node j 

         =   0; otherwise 

cij       represents the distance from pick up node i  through the path to delivery node j  

S(k)   represents the set of all P/D alternatives of job k 

n        represents the number of jobs 

h        represents the number of nodes 

 

Now the lower bound model of AGVsp-P/D can be programmed in Excel 

Solver and MATLAB 7.0.  After the lower bound model is implemented with the 

example of distance matrix [cij] of the AGVsp-P/D on table 6 by using Excel Solver, 

the result is shown on table 7.  
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Table 7  The assignment solution of variable xij of AGVsp-P/D from table 6 

Job No.     1 2 3 4 5 6  
(n)  Job i, Alt a   1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2  

    h 1 2 3 4 5 6 7 8 9 Zi  
1 1.1 1 ∞ 0 1 0 0 0 0 0 0 1 
2 2.1 2 0 ∞ 0 0 0 1 0 0 0 1 
  3.1 3 0 0 ∞ ∞ ∞ 0 1 0 0 1 
3 3.2 4 0 0 ∞ ∞ ∞ 0 0 0 0 0 
  3.3 5 0 0 ∞ ∞ ∞ 0 0 0 0 0 
4 4.1 6 0 1 0 0 0 ∞ 0 0 0 1 
5 5.1 7 0 0 0 0 0 0 ∞ 0 1 1 
  6.1 8 0 0 0 0 0 0 0 ∞ ∞  0 
6 6.2 9 1 0 0 0 0 0 0 ∞ ∞ 1 
  Zj 1 1    1         0         0  1 1      0          1  

 

From the Excel Solver solution, the assignment solution is 1.1 - 3.1, 2.1 - 4.1, 3.1 - 5.1, 

4.1 - 2.1, 5.1 - 6.2, 6.2 - 1.1 and the solution value of minimum total distance that is 21 

units.  The alternative job No. 3.1 (B to H) and job No. 6.2 (H to F) are selected.  The 

solution forms 2 subtours that are 1.1-3.1-5.1-6.2-1.1 and 2.1-4.1-2.1.  The meaning of 

this solution is that one AGV starts at node B of job No.1 and accomplishes job No.1 

at node C, travels to node B, which is the starting job of job No. 3.1and accomplishes 

job No. 3.1 at node H, travels to node D, which is the starting job of job No.5 and 

accomplishes job No.5 at node E, travels to node H, which is the starting job of job No. 

6.2 and accomplishes job No. 6.2 at node F, then travels back to node B which is the 

starting node of this AGV.  Another AGV starts at node A of job No.2.1 and 

accomplishes job No.2.1 at node I, travels to node G which is the starting job of job 

No.4 and accomplishes job No.4.1 at node C, then travels back to node A, which is the 

starting node of this AGV.    

 

According to this point, the problem size is increased and the research found 

that the ordinary version of Microsoft Excel Solver can run only 13 nodes (h = 13).  

Solver shows that “Too many adjustable cells” and terminate running.  Then 

MATLAB 7.0 is applied.  The experiment is performed by randomly generating 

simulated problem of 10, 20, 30, 40, and 50 nodes with some numbers of 2 alternative 

jobs and some numbers of regular jobs. The running time of this lower bound model is 
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examined and compared to the original assignment problem of same problem size. The 

result is shown in the next chapter.    

 

After using MATLAB 7.0 on a 2 GB RAM computer to perform the 

experiment, the research found that MATLAB 7.0 can run steadily up to 50 nodes (h = 

50) with an average running time about 50 seconds but MATLAB 7.0 shows “Out of 

memory” of running the bintprog function, which is the function of solving 0-1 IP, 

beyond 50 nodes.  Because this mathematical model of the lower bound of AGVsp-

P/D is 0-1 IP, the operation find the optimal solution by using branch and bound 

approach for solving 0-1 IP but if a considered situation is a larger scale problem, IP 

may take much more memory to run.  From the experimental results, the resource of 

required memory is the problem, not the running time, so that the researcher attempts 

to solve the lower bound model of AGVsp-P/D in LP rather than 0-1 IP.  The 

decomposition techniques and other heuristic methods are considered for solving the 

larger scale problem to avoid running out of memory.  Next, the research tries to apply 

Benders’decomposition to solve the lower bound model of AGVsp-P/D. 

 

2.3  The lower bound of AGVsp-P/D by Benders’decomposition approach 

 

Let consider the Benders’decomposition approach for MIP. The lower bound 

model of AGVsp-P/D in a similar form of MIP of the Benders’decomposition will be 

considered.  Refer to Benders’decomposition algorithm, it can be applied to the lower 

bound model of AGVsp-P/D by partitioning the variables of the into two sets which 

are xij and Z(i) and projecting the problem onto Z(i) variables.  Consider the example on 

table 7 for clearly explaining, there are nine Z(i) variables of nine nodes (rows), which 

can be separated into six sets of S(k).  They are S(1) = { Z(1)}, S(2) = { Z(2)}, S(3) = { Z(3), 

Z(4), Z(5)}, S(4) = { Z(6)}, S(5) = { Z(7)} and S(6) = { Z(8), Z(9)}.  Because only one 

alternative node of each job will be selected in each iteration of solving the model by 

using Benders’decomposition, only one variable Z(i) of each set S(k) will be fixed to be 

1 and the others will be 0.  The alternative nodes, which have the value of variable Z(i) 

= 0, can be ignored from the model so that the model becomes the regular assignment 

problem.  All variables xij , which are 0-1 integer, can be ignore to become xij ≥0, 
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because of the property of assignment problem (Mathur and Solow, 1994).  Let Z 

denotes the sets of all feasible 0-1 integer vectors Z, then the lower bound model of 

AGVsp-P/D in a similar form of MIP by the Benders’decomposition approach can be 

written as following. 

 

                        Minimize     cTx + dTZ 

Subject to     Ax + BZ ≥ b, 

            x ≥ 0, Z ∈Z 

 

where  A is a m by n coefficient matrix of vector x,    

B is a m by n′ coefficient matrix of vector Z, 

c is a n by 1 cost vector of vector x, 

d is a n′ by 1 dummy cost vector of vector Z, which is a zero vector  

x is a n by 1 vector of variable xij, 

Z is a n′ by 1 vector of variable Z(i) with Z = {Z │ Z(i) ∈  {0, 1}; i = 1, 2, …, n′ } 

 

 

Let    v (Z) = dTZ + maximize {(b – BZ) T u│ AT u ≤ c, u ≥ 0}  

 

where u is a m by 1 vector of dual variable u. 

     

When the Benders’algorithm is applied for solving the example of AGVsp-P/D 

on table 6, the function v (Z) is:    

 

v (Z = [Z(1), Z(2), Z(3), Z(4), Z(5), Z(6), Z(7), Z(8), Z(9)]T )  

                            = maximize {(b – BZ) T u│ AT u ≤ c, u ≥ 0}. 

 

Because this example is the 9 nodes problem, the dual problem of this example 

consists of 18 dual variables u and 81 constraints.  The example of applying 

Benders’decomposition approach to solve the lower bound model of AGVsp-P/D of 

the example on table 6 is explained as follows.   
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The Benders’decomposition algorithm for the variables xij and Z(i)  for this example is: 

 

Step 1: Initialization: set v (Z) = 0, select a fixed vector Z j ∈  Z, set j = 1 and set k = 1 

Step 2: Solve the Benders’subproblem: evaluate the value of vk (Z j) with its  

            corresponding set of dual extreme point (vector u j) by solving LP with a fixed  

            vector Z j  

Step 3: Stopping criterion: if vk (Z j) = v (Z) then stop, otherwise go to step 4 

Step 4: Improve an approximation function: by using a set of dual extreme point  

            (vector u j) to generate the Benders’cut for forming iteration kth of  

            Benders’partial master problem  

Step 5: Solve the Benders’partial master problem: that is minimizing v (Z ) with  

            Benders’cut from step 4 for updating the value of v (Z) and then set j=j+1 and  

            updating the new vector Z j,  set k = k+1 and go to step 2. 

 

When the algorithm is implemented, the result is illustrated as follows.  

 

Iteration 1: 

 

Step 1: Initialization:  

Let set v (Z) = 0, select v (Z = [Z(1), Z(2), Z(3), Z(4), Z(5), Z(6), Z(7), Z(8), Z(9)]T ) = 

v (Z1 = [1, 1, 0, 0, 1, 1, 1, 0, 1]T ), set j = 1 and set k = 1. 

 

Step 2: Solve the Benders’subproblem:  

The first Benders’subproblem of the example on table 6, which is:  

Maximize  v1 (Z1) = Maximize {(b – B Z1) T u 1 │ AT u 1 ≤ c, u 1 ≥ 0},  

is solved.  The maximum occurs at the extreme point u 1 = [u1, u2, u3, u4, u5, u6, u7, u8, u9, 

u10, u11, u12, u13, u14, u15, u16,  u17, u18]T = [0, 5, 0, 2, 4, 3, 0, 1, 0, 2, 3, 2, 2, 2, 1, 2, 2, 2] 

and maximum value of v1 (Z1) =24. 

 

 

Step 3: Stopping Criterion:  

Now the value of v (Z) = 0, v1 (Z1) =24 ≠ v (Z) then go to step 4 
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Step 4: Improve the approximations function:  

Using the dual extreme point u 1 generates the approximations function (v (Z)), 

with a Benders’cut, for the Benders’partial master problem of the iteration 1.  The 

Benders’partial master problem is: 

Minimize   v (Z) = dTZ + maximize { [(b – BZ) T u 1]1} 

  Subject to     Z ∈  Z 

A Benders’cut of the iteration 1 is [(b – BZ) T u 1]1 that is: 

[0Z(1)+5Z(2)+0Z(3)+2Z(4)+4Z(5)+3Z(6)+0Z(7)+1Z(8)+0Z(9)+2Z(1)+3Z(2)+2Z(3)+2Z(4)+2Z(5)+ 

1Z(6)+2Z(7)+2Z(8)+2Z(9)]1 

= 2Z(1)+8Z(2)+2Z(3)+4Z(4)+6Z(5)+7Z(6)+2Z(7)+3Z(8)+2Z(9) 

Because a vector d is a zero vector, the Benders’partial master problem for   

iteration 1is:  

Minimize   v (Z) = maximize { [2Z(1)+8Z(2)+2Z(3)+4Z(4)+6Z(5)+7Z(6)+2Z(7)+3Z(8)+2Z(9)]1 } 

Subject to    Z ∈  Z 

 

Step 5: Solve the Benders’partial master problem: 

Update j = 2, k = 2 and the value of v (Z) from solving the Benders’partial 

master problem = 20 with is new vector Z = Z2 = [1, 1, 1, 0, 0, 1, 1, 0, 1]T  

 

Iteration 2: 

 

Step 2: Solve the Benders’subproblem:  

The Benders’subproblem of iteration 2 is:  

Maximize v2 (Z2) = Maximize {(b – B Z2) T u 2 │ AT u 2 ≤ c, u 2 ≥ 0},  

is solved.  The maximum occurs at the extreme point u2 = [u1, u2, u3, u4, u5, u6, u7, u8, u9, 

u10, u11, u12, u13, u14, u15, u16,  u17, u18]T = [0, 5, 0, 1, 1, 3, 0, 1, 1, 2, 3, 2, 2, 1, 1, 2, 2, 2] 

and maximum value of v1 (Z1) =21. 

  

Step 3: Stopping Criterion:  

Now the current value of v (Z) = 20.  Because v1 (Z1) =21 ≠ v (Z), not terminate, 

then go to step 4 
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Step 4: Improve the approximations function:  

Using the dual extreme point u 2 generates an approximations function (v (Z)), 

with a Benders’cut.  A Benders’cut of the iteration 2 is [(b – BZ) T u 2]2 that is: 

[0Z(1)+5Z(2)+0Z(3)+1Z(4)+1Z(5)+3Z(6)+0Z(7)+1Z(8)+1Z(9)+2Z(1)+3Z(2)+2Z(3)+2Z(4)+1Z(5)+ 

1Z(6)+2Z(7)+2Z(8)+2Z(9)]1 

= 2Z(1)+8Z(2)+2Z(3)+3Z(4)+2Z(5)+4Z(6)+2Z(7)+3Z(8)+3Z(9) 

The Benders’partial master problem for iteration 2 is:  

Minimize  v (Z) = maximize { [2Z(1)+8Z(2)+2Z(3)+4Z(4)+6Z(5)+7Z(6)+2Z(7)+3Z(8)+2Z(9)]1 , 

                                                 [2Z(1)+8Z(2)+2Z(3)+3Z(4)+2Z(5)+4Z(6)+2Z(7)+3Z(8)+3Z(9)]2} 

Subject to    Z ∈  Z 

 

Step 5: Solve the Benders’partial master problem: 

Update j = 3, k = 3 and the value of v (Z) from solving the Benders’partial 

master problem = 21 with is new vector Z = Z3 = [1, 1, 1, 0, 0, 1, 1, 0, 1]T  

 

Iteration 3: 

 

Step 2: Solve the Benders’subproblem:  

The Benders’subproblem of iteration 3 is:  

Maximize  v3 (Z3) = Maximize {(b – B Z3) T u 3 │ AT u 3 ≤ c, u 3 ≥ 0},  

is solved.  The maximum occurs at the extreme point u2 = [u1, u2, u3, u4, u5, u6, u7, u8, u9, 

u10, u11, u12, u13, u14, u15, u16,  u17, u18]T = [0, 5, 0, 1, 1, 3, 0, 1, 1, 2, 3, 2, 2, 1, 1, 2, 2, 2] 

and maximum value of v3 (Z3) =21. 

  

Step 3: Stopping Criterion:  

Now the current value of v (Z) = 21.  Because v3 (Z3) =21 = v (Z), terminate the 

algorithm and stop. 

 

The solution from the Benders’ algorithm now is same as the solution from IP 

which the assignment is 1.1 - 3.1, 2.1 - 4.1, 3.1 - 5.1, 4.1 – 2.1, 5.1 - 6.2 and 6.2 – 1.1 

with the solution value of minimized total distance of 21 units, that same as the 

solution from solving 0-1 linear programming.  Alternative 3.1 and 6.2 are selected. 
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The example result shows that the solution provide two subtours that can 

assigns to 2 AGVs which starts at node 1 and node 2.  This solution can be the lower 

bound of the AGVsp-P/D.  This lower bound can be used in branch and bound 

approach to find a single TSP tour that is the optimal schedule of the single AGVsp-

P/D.   

 

There are some solutions provide the assignment solution as a single tour that 

is the TSP solution, but most of them provide subtours.   According to this point, the 

model can be applied to any size of problem but the Benders’decomposition algorithm 

may consists of many iterations for generating one lower bound solution.  The 

algorithm is so complicate and still has to solve 0-1 IP in step 5 for finding vectors Z.  

However, refer to the result section, the 0-1 IP lower bound problem with 50 nodes 

can be solved by MATLAB 7.0 but most of problems which have more than 50 nodes 

(h=50) cause MATLAB 7.0 shows “Out of memory” in calculation of binary problem.  

Benders’decomposition algorithm can be applied for the larger scale problem, which 

MATLAB 7.0 can not generate solution, because the problem size of 0-1 IP of the 

Benders’partial master problem in each iterations is smaller than the problem size of 

0-1 IP of the original lower bound model for the same tested problem.   

 

For example, let consider a problem of 60 nodes, the 0-1 IP model has the 

matrix [A] with the size of 120 x 3600, 3600 xij variables, that cause MATLAB 7.0 can 

not calculate binary problems and shows “out of memory”.  The example of applying 

the Benders’decomposition algorithm to the 60 nodes problem is shown in an 

appendix.   However, the research attempts to examine the methods to solve the lower 

bound of AGVsp-P/D without solving 0-1 IP and easier to process than Benders’ 

decomposition algorithm.  The research forms some heuristic approaches.  The 

following section presents heuristics for selecting alternative nodes that can provide 

that assignment solutions, which close to solutions from the 0-1 IP model. 
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2.4  Heuristic approaches for solving the lower bound of AGVsp-P/D 

 

        The lower bound of AGVsp-P/D, which is the assignment problem with 

alternative P/D nodes, can be solved by selecting the appropriate alternative nodes first 

and then solving the regular assignment problem.   The considered problem is “How to 

select the best alternative that can provide the best assignment solution?”  This section 

presents heuristics for selecting the appropriate alternatives of each job and the 

heuristic for improving the selected alternatives that can provide the assignment 

solution, which close to the solution from the 0-1 IP model.  Suppose the example of 

distance matrix, called the master matrix, of 6 jobs that job 3 has 3 alternatives and job 

6 has 2 alternatives, is shown on table 8 as follows. 

 

Table 8  The example of master matrix 

Job 
No.   1 2 3 4 5 6 

  Job i, Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2 
1 1.1 ∞ 2 11 3 35 94 30 13 97 
2 2.1 3 ∞ 57 73 86 23 21 61 83 

3.1 85 27 ∞ ∞ ∞ 41 11 66 27 
3.2 48 57 ∞ ∞ ∞ 52 46 73 52 

 
3 

3.3 80 66 ∞ ∞ ∞ 58 79 63 28 
4 4.1 61 37 33 0 56 ∞ 88 87 9 
5 5.1 72 16 68 14 20 485 ∞ 4 70 

6.1 22 43 62 17 88 21 44 ∞ ∞  
6 6.2 96 18 86 60 34 42 15 ∞ ∞ 

   
 

The solution of this master matrix from solving the 0-1 IP model is 74 units 

with the assignment solution 1.1-2.1, 2.1-1.1, 3.1-5.1, 4.1-3.1, 5.1-6.1, and 6.1-4.1.   

Manually, the assignment problem with alternative P/D nodes can be solved by 

selecting the appropriate alternative for job No. 3 and job No. 6 first and then solve the 

regular assignment problem.  This research tries to create 3 heuristics for alternative 

selection that can provide the initial solution and the heuristic for improving the 

alternative selection. All for alternative selection heuristics are: 
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Heuristic-1 for selecting the alternative nodes 

 

Step 1:  For all rows of job j that have alternative nodes, compute the average of all  

              cost elements in each row  

Step 2:  For all columns of job j that have alternative nodes, compute the average of  

              all cost elements in each column  

Step 3:  Compute the average value of cost elements from all rows, from step 1, and  

             the correlated columns, from step 2, of each alternative jobs j 

Step 4:  Select the alternatives for each job j that have the minimum value from step 3  

             and solve the assignment problem with this selected alternatives 

 

Heuristic-2 for selecting the alternative nodes 

 

Step 1:  Solve the assignment problem of the master matrix 

Step 2:  Calculate the average of the assignment solution of all rows and columns of   

              each alternative  

Step 3:  Select the alternatives that have the minimum value of the average of   

              assignment solution and solve the assignment problem with this selected  

              alternatives 

 

Heuristic-3 for selecting the alternative nodes 

 

Step 1:  Create the distance matrix, [dij], that consists of minimum distance of all jobs 

Step 2:  Solve the assignment problem of the distance matrix, [dij] 

Step 3:  Select feasible alternatives of master matrix, which provide the minimum  

             increasing (penalty) of cost elements from the assignment solutions of step 2 

Step 4:  Solve the feasible assignment solution. 

 

 For explaining, the master matrix on table 8 is used to show the 

implementation of all heuristics.  The details are shown step by step for all heuristics 

as follows.   
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The example of implementing the Heuristic-1 of the alternative nodes selection: 

 

Step 1 and step 2 are explained as follows. 

Step 1:  For all rows of job j that have alternatives, compute the average of the  

              cost in each row  

Step 2:  For all columns of job j that have alternatives, compute the average of  

              the cost in each column  

 

Table 9  The example of step 1 and step 2 of Heuristic-1 

  Job i, Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2  
1.1 - 2 11 3 35 94 30 13 97  
2.1 3 - 57 73 86 23 21 61 83 Avg. 
3.1 85 27 - - - 41 11 66 27 42.833 
3.2 48 57 - - - 52 46 73 52 54.667 
3.3 80 66 - - - 58 79 63 28 62.333 
4.1 61 37 33 0 56 - 88 87 9  
5.1 72 16 68 14 20 485 - 4 70  
6.1 22 43 62 17 88 21 44 - - 42.429 
6.2 96 18 86 60 34 42 15 - - 50.143 

  Avg. 52.833 27.833 53.167   52.429 52.286  
 
 
Step 3:  Compute the average value of each alternative jobs 

3.1: (42.83+52.83)/2 = 47.83 

3.2: (54.66+27.83)/2 = 41.25 

3.3: (62.33+53.16)/2 = 57.75 

 

6.1: (42.43+52.43)/2 = 47.43 

6.2: (50.14+52.28)/2 = 51.21 

 

Step 4:  Select the alternatives that have the minimum value of average cost and  

              solve the assignment problem with this selection 

   From step 3, job 3.2 and 6.1 are selected. The assignment solutions with the 

selected jobs are shown on table 10 as follows. The solution is 76 units. 
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Table 10  The assignment solution of the example of Heuristic-1 

  Job i,  
Alt a  1.1 2.1 3.2 4.1 5.1 6.1 

1.1 ∞ 2 3 94 30 13 
2.1 3 ∞ 73 23 21 61 
3.2 48 57 ∞ 52 46 73 
4.1 61 37 0 ∞ 88 87 
5.1 72 16 14 485 ∞ 4 
6.1 22 43 17 21 44 ∞ 

 
 

The example of implementing the Heuristic-2 for the alternative nodes selection: 

  

Step 1:  Solve the assignment problem of the master matrix 

  The assignment solution with the selected jobs is shown as follow.  

 

Table 11  The assignment solution of step 1of Heuristic-2 

  Job i, 
Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2 
1.1 ∞ 2 11 3 35 94 30 13 97 
2.1 3 ∞ 57 73 86 23 21 61 83 
3.1 85 27 ∞ ∞ ∞ 41 11 66 27 
3.2 48 57 ∞ ∞ ∞ 52 46 73 52 
3.3 80 66 ∞ ∞ ∞ 58 79 63 28 
4.1 61 37 33 0 56 ∞ 88 87 9 
5.1 72 16 68 14 20 485 ∞ 4 70 
6.1 22 43 62 17 88 21 44 ∞ ∞ 
6.2 96 18 86 60 34 42 15 ∞ ∞ 

 
 

Step 2:  Calculate the average of assignment solution of all rows and columns of   

              each alternative  

  From table 11, the column of job 3.1 has the assignment solution =11 and the 

rows of job 3.1 has the assignment solution =11.  The average assignment solution of 

job 3.1 is (11+11)/2 = 11.  The average assignment solutions of all alternative jobs are: 

 

3.1: (11+11)/2  = 11 

3.2: (0+57)/2    = 28.5 

3.3: (34+28)/2  = 31 
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and 

6.1: (4+21)/2    =  12.5 

6.2: (28+34)/2  =  31 

 

Step 3:  Select the alternatives that have the minimum value of the average of   

              assignment solution and solve the assignment problem with this selected  

              alternatives From step 2, job 3.1 and 6.1 are selected. The assignment solution  

              with selected jobs is shown on the table 12 as follows. The solution is 74 units 

 

Table 12  The assignment solution of step 2 of Heuristic-2 

   Job i, 
Alt a 1.1 2.1 3.1 4.1 5.1 6.1 
1.1 ∞ 2 11 94 30 13 
2.1 3 ∞ 57 23 21 61 
3.1 85 27 ∞ 41 11 66 
4.1 61 37 33 ∞ 88 87 
5.1 72 16 68 485 ∞ 4 
6.1 22 43 62 21 44 ∞ 

 
 
The example of implementing the Heuristic-3 for the alternative nodes selection: 

 

Step 1:  Create the distance matrix, [dij] that consists of minimum distance of all jobs 

 The distance matrix, [dij] is shown on table 13 as follows.  For all alternative 

jobs j, the notation of j.X represents the job with the minimum distance element. For 

example, job 3.X represents the job that all distance elements are the minimum value 

from jobs 3.1, 3.2 and 3.3. 

 

Table 13  The distance matrix, [dij] of step 1 of Heuristic-3 

 Job i, 
Alt a  1.1 2.1 3.X 4.1 5.1 6.X 

1.1 ∞ 2 3 94 30 13 
2.1 3 ∞ 57 23 21 61 
3.X 48 27 ∞ 41 11 27 
4.1 61 37 0 ∞ 88 9 
5.1 72 16 14 485 ∞ 4 
6.X 22 18 17 21 15 ∞ 
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Step 2:  Solve the assignment problem of the distance matrix, [dij] 

  The assignment solution of table 13 is shown on table 14 as follows. 

Table 14  The assignment of minimum distance matrix of Heuristic-3 

 Job i, 
Alt a  1.1 2.1 3.X 4.1 5.1 6.X 

1.1 ∞ 2 3 94 30 13 
2.1 3 ∞ 57 23 21 61 
3.X 48 27 ∞ 41 11 27 
4.1 61 37 0 ∞ 88 9 
5.1 72 16 14 485 ∞ 4 
6.X 22 18 17 21 15 ∞ 

  

The assignment solution is 1.1-2.1, 2.1-1.1, 3.X-5.1, 4.1-3.X, 5.1-6.X, and 6.X-4.1 

with the total cost = 41. 

 

Step 3:  Select the appropriate alternatives from the assignment solutions of step 2 

 

Let consider job 3.X, the assignment solution shows that the assignment is 

3.X-5.1 with cost =11.  The alternative 3.1 must be selected for making the solution to 

be feasible, but when consider assignment of 4.1-3.X with cost = 0, the alternative 3.2 

must be selected. The problem is which alternative 3.1 or 3.2, should be selected.  For 

the master matrix, the algorithm selects the alternative that provides the minimum 

increasing (penalty) cost.   For example,  

 

1.  If select 3.1 to replace 3.X, the assignment of 4.1-3.X becomes 4.1-3.1 with 

the cost increasing from 0 to 33 and the assignment of 3.X-5.1 becomes 3.1-5.1 with 

the same cost = 11.  The total increasing cost is the penalty cost = (33-0) + (0) = 33. 

 

2.  If select 3.2 to replace 3.X, the assignment of 3.X-5.1 becomes 3.2-5.1 with 

the cost increasing from 11 to 46 and the assignment of 4.1-3.X becomes 4.1-3.2 with 

the same cost = 0.  The total increasing cost is the penalty cost = (46-11) + (0) = 35. 

 

The alternative 3.1 is selected for this problem and used the same procedure for 

considering job 6.X. 
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Let consider job 6.X, the assignment solution shows that the assignment 6.X to 

4 with cost =21.  The alternative 6.1 must be selected for making the solution to be 

feasible, but when consider assignment 5.1-6.X with cost = 4, the alternative 6.1 must 

be selected also. Therefore, the alternative 6.1 is selected without considering the 

penalty cost.   

 

Step 4:  Solve the feasible assignment solution 

 

The distance matrix is updated by using the feasible alternative in the matrix, [dij].  

The feasible distance matrix and assignment solution is shown on table 15 as follows.  

 

Table 15  The assignment solution of step 4 of Heuristic-3 

Job i, 
Alt a  1.1 2.1 3.1 4.1 5.1 6.1 

1.1 ∞ 2 11 94 30 13 
2.1 3 ∞ 57 23 21 61 
3.1 85 27 ∞ 41 11 66 
4.1 61 37 33 ∞ 88 87 
5.1 72 16 68 485 ∞ 4 
6.1 22 43 62 21 44 ∞ 

 

The assignment solution is 1.1-2.1, 2.1-1.1, 3.1-5.1, 4.1-3.1, 5.1-6.1, and 6.1-4.1 with 

cost 74 units that is the same as the 0-1 IP solution. 

 

30 tested problems are generated to verify the quality of solutions for all 

heuristics.  All heuristics are applied to select the alternative of all tested problems and 

then the assignment solution of the selected alternative is solved and compared to the 

IP solution from the master problem. The results are showed in the next chapter. 

 
All heuristics for selecting alternatives discussed can provide the initial 

solution of the lower bound of the AGVsp-P/D.  The previously procedures, can 

usually be classified as methods of constructive heuristics.  The solutions can be 

improved by applying the procedure that is the improvement heuristic base on a given 

initial solution.  The next part presents a heuristic for improving selected alternatives 
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from previous alternative selection heuristics.  The purpose is to improve the selected 

alternatives that can provide that the assignment solution close to the solution from the 

0-1 IP model.   The alternative selection improvement heuristic is: 

 

Step 1:  For all rows of job j that have alternatives, compute the summation of the  

              cost in each row  

Step 2:  For all columns of job j that have alternative, compute the summation of  

              the cost in each column 

Step 3:  Compute the summation value of each alternative job and label the selected    

              solution from any alternative selected heuristics (Heuristic-1 or 2 or 3 can  

              be used) 

Step 4:  Select one of the un-label alternatives that has the minimum value of  

              summation label the new selection, change the selected alternative to the new  

              selection and solve the assignment problem of the distance matrix with  

              new selected alternatives  

Step 5:  If the assignment solution is not improved, go back to step 4, otherwise keep  

             the improved solution, label all alternatives of this considered job and then go   

             to back step 4.  Continue until all jobs (in step 3) are labeled 

 

Suppose the example of the master matrix for explaining the implementation of 

this heuristic is shown on table 16 as follows. 

 

Table 16  The example of the alternative selection improvement heuristic 

Job i,  
Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2 
1.1 ∞ 71 16 56 90 47 75 97 99 
2.1 6 ∞ 10 33 25 43 94 50 2 
3.1 73 69 ∞ ∞ ∞ 67 38 1 87 
3.2 66 2 ∞ ∞ ∞ 83 42 63 81 
3.3 11 32 ∞ ∞ ∞ 5 92 76 37 
4.1 79 54 22 94 11 ∞ 16 7 23 
5.1 67 6 24 70 70 45 ∞ 0 20 
6.1 97 45 56 62 60 9 86 ∞ ∞ 
6.2 89 39 95 0 54 27 67 ∞ ∞ 
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The solution of this distance matrix from solving the 0-1 IP model is 54 units 

with selected alternative 3.1 and 6.1 and the assignment of 1.1-3.1, 2.1-1.1, 3.1-6.1, 

4.1-5.1, 5.1-2.1, and 6.1-4.1.  When the alternative selection Heuristic-3 is applied to 

this example, the alternatives 3.2 and 6.1 are selected with cost 89 units. The solution 

is shown as follow.   

 

Table 17  The assignment solution of table 16 by using Heuristic-3  

Job i,   
Alt a 1.1 2.1 3.2 4.1 5.1 6.1 
1.1 ∞ 71 56 47 75 97 
2.1 6 ∞ 33 43 94 50 
3.2 66 2 ∞ 83 42 63 
4.1 79 54 94 ∞ 16 7 
5.1 67 6 70 45 ∞ 0 
6.1 97 45 62 9 86 ∞ 

 

The Heuristic-3 solution deviates from the IP solution about 64.81% that is too 

much.  When the alternative selection improvement heuristic is applied to the 

generated solution from Heuristic-3, the example of implementation of the alternative 

selection improvement heuristic algorithm is shown step by step as follows.   

 

Step 1:  For all rows of job j that have alternatives, compute the summation of the  

              cost in each row 

 

Step 2:  For all columns of job j that have alternative, compute the summation of  

              the cost in each column 

 

The detail of step 1 and step 2 are shown on table 18 as follows 
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Table 18  The result of implementation of step 1 and 2 of the improvement heuristic 

Job i,  
Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2  
1.1 - 71 16 56 90 47 75 97 99  
2.1 6 - 10 33 25 43 94 50 2 Sum.
3.1 73 69 - - - 67 38 1 87 335 
3.2 66 2 - - - 83 42 63 81 337 
3.3 11 32 - - - 5 92 76 37 253 
4.1 79 54 22 94 11 - 16 7 23  
5.1 67 6 24 70 70 45 - 0 20  
6.1 97 45 56 62 60 9 86 - - 415 
6.2 89 39 95 0 54 27 67 - - 371 

  Sum. 223 315 310   294 349  
           

 

Step 3:  Compute the summation value of each alternative job and label the selected    

              solution from the alternative selection heuristic 

3.1: (335+223) = 558 

3.2: (337+315) = 652 

3.3: (253+310) = 563 

 

6.1: (415+294) = 709 

6.2: (371+349) = 702 

From the alternative selection Heuristic-3, job 3.2 and 6.1 are the selected from 

Heuristic-3, which are labeled at this step. 

 

Step 4:  Select one of the unlabel alternatives that has the minimum value of  

              summation label the new selection, change the selected alternative to the new  

              selection and solve the assignment problem of the distance matrix with  

              new selected alternatives  

  From step 3, the alternative 3.1 has the minimum value of summation.  The 

existing selected alternative is changed from the alternative 3.2 and 6.1 to the 

alternative 3.1 and 6.1 and labels the alternative 3.1.  The new distance matrix and the 

assignment solution are shown on table 19 as follows.  
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Table 19  The result of step 4 of the alternative improvement heuristic 

 

The assignment solution value is 54 units 

 

Step 5:  If the assignment solution is not improved, go to step 4, otherwise keep the  

              improved solution, label all alternatives of this considered job and then go to  

              step 4.  Continue until all jobs (in step 3) are labeled 

 

From step 4, the solution is improved from 89 units to 54 units.  This solution 

with alternative selection of 3.1 and 6.1 is kept.  Then label all alternatives of job No.3 

and continue to step 3 by considering the rest of unlabeled jobs.  This example is 

ended at the iteration 2 with the solution of alternatives 3.1 and 6.1 that is same as the 

IP solution. 

 

The same set of tested problems of alternative selection heuristics are used to 

verify the quality of solution for this alternative improvement heuristic.  This 

improvement heuristic is applied to improve the initial solution from the alternative 

selection heuristic of tested problems. All results are shown in the next chapter. 

 

2.5  The modified Eastman’s algorithm for TSP of the AGVsp-P/D 

 

        Now the solution of the assignment problem with alternative P/D nodes by 

solving the 0-1 IP model, which is the lower bound of the AGVsp-P/D, provides a 

single tour or subtours.  The goal of this part is to propose the heuristics approach to 

create TSP tours from the lower bound solutions.   

 

Job i,  
Alt a  1.1 2.1 3.1 4.1 5.1 6.1 

1.1 ∞ 71 16 47 75 97 
2.1 6 ∞ 10 43 94 50 
3.1 73 69 ∞ 67 38 1 
4.1 79 54 22 ∞ 16 7 
5.1 67 6 24 45 ∞ 0 
6.1 97 45 56 9 86 ∞ 
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 Eastman’s algorithm for solving the TSP is considered for solving a single 

TSP tour from the lower bound of AGVsp-P/D.  Charnsethikul (1993) presented that 

Eastman’s algorithm has some advantages over Little’s algorithm.  For instance, there 

is no difference in the level of branching or fathoming between solving the MTSP and 

the TSP using Little’s algorithm, because the algorithm treats the MTSP same as the 

TSP.  Eastman’s algorithm has difference rules to fathom an active node, it considers 

whether the tour is feasible or not for the MTSP.  For example, consider a problem 

with five nodes and two vehicles.  Suppose that the solution from the assignment 

problem is 6-1-2-6, and 7-3-5-4-7, where 6 and 7 represent the starting point of each 

vehicle.  This tour is feasible for the MTSP, but it is not feasible for the TSP.  If the 

MTSP is solved by Eastman’s algorithm and use its rule for solving the TSP, it has to 

continue branching and searching for the solution of the TSP.  In fact, there is already 

has a feassible tour in the first step.  This was illustrated by Svestka and Huckfeldt 

(1973) when they modified this rule to Eastman’s algorithm.  The results showed that 

solving the MTSP usually required fewer steps than solving the TSP. 

 

        To satisfy the subtour elimination constrain of the TSP with alternative P/D 

nodes, the heuristic techniques are applied to the problem of minimum total distance 

solved by the method as similar idea in the previous paragraph.  The goal of the 

heuristic is to create the TSP tour from the solution of solving the assignment problem 

with alternative P/D nodes, which is the lower bound of the TSP.  The procedure 

deletes each link (i, j) of the first found subtour from the lower bound solution, where 

(i, j) is a sequence of node in the first found subtour by assigning cij (cost of traveling 

from node i to node j) equal to infinity, the assignment problem with alternative P/D 

nodes corresponding to each deletion of links (i, j) is solved. Suppose there are k links 

(i, j) in the first subtour, thus the heuristic produces the new k solutions, then selects 

the best solution, which provides a single TSP tour.  If it can not found the single TSP 

tour in this set of k solutions, continue searching in the next found subtours of the 

lower bound solution until the single TSP tour is found.  When all subtours are 

searched and still exist no single TSP tour, the best improvement solution is selected 

to be the new lower bound solution and continued searching in the same process until 

the single TSP tour is found. 
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From the previous procedure, the algorithm can be described as follows. 

 

Step 1: Solves the assignment problem with alternative P/D nodes  

            (which is a TSP relaxation). 

 

Step 2: If the solution from step 1 is a single TSP tour, stops and keeps the solution,  

            otherwise, from the solution in step 1 or step 3, selects the first produced  

            subtour. 

 

Step 3: Starts to deletes each link (i, j), which is called de-link, in that selected subtour  

            from step 2 and resolves the assignment problem with alternative P/D nodes  

            corresponding to each deletion of links (i, j). 

 

Step 4: If a single TSP tour is found in step 3, stops and keeps the best solution,  

            otherwise, selects the next produced subtours from the solution in step 1 and  

            goes back to step 3 until all produced subtours are investigated.  If a TSP tour  

            can not be found, goes to step 5. 

 

Step 5: Select the best solution in step 3 as the current lower bound solution and goes  

            to back step 2. 

 

Consider the example of the distance matrix in table 8, the solution of this 

distance matrix from solving the 0-1 IP model is 74 units with the assignment of 1.1-

2.1, 2.1-1.1, 3.1-5.1, 4.1-3.1, 5.1-6.1, and 6.1-4.1.  The solution is the optimum for 2 

AGVs which stat at node 1 and node 3.1, because there are 2 subtours which are 1.1-

2.1-1.1 and 3.1-5.1-6.1-4.1-3.1.   

 

For a single AGV, subtour elimination constraints will be added for creating 

the single TSP tour.  By applying the modified Eastman’s branch and bound algorithm 

for the TSP, the procedure is to select the first subtour, eliminates each arc in the tour, 

called de-link, and solves the corresponding assignment problem with alternative P/D 

nodes.  Base on the generated lower bound solution, a first found subtour, which is 
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subtour 1-2-1, is selected and link 1-2 and 2-1 are de-linked, which are shown on table 

20 and 22, and solved the assignment problem with alternative P/D nodes.  The results 

are shown on table 21and 23 as follows. 

 

Table 20  The cost table of de-link 1-2 , by assigning the cost of the link 1-2 to ∞ 

Job i, 
 Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2 

1.1 ∞ ∞ 11 3 35 94 30 13 97 
2.1 3 ∞ 57 73 86 23 21 61 83 
3.1 85 27 ∞ ∞ ∞ 41 11 66 27 
3.2 48 57 ∞ ∞ ∞ 52 46 73 52 
3.3 80 66 ∞ ∞ ∞ 58 79 63 28 
4.1 61 37 33 0 56 ∞ 88 87 9 
5.1 72 16 68 14 20 485 ∞ 4 70 
6.1 22 43 62 17 88 21 44 ∞ ∞ 
6.2 96 18 86 60 34 42 15 ∞ ∞ 

 

Table 21  The assignment solution of table 20 

Job i, 
 Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2 ( )iz  

1.1 ∞ 0 1 0 0 0 0 0 0 1 
2.1 1 ∞ 0 0 0 0 0 0 0 1 
3.1 0 0 ∞ ∞ ∞ 0 1 0 0 1 
3.2 0 0 ∞ ∞ ∞ 0 0 0 0 0 
3.3 0 0 ∞ ∞ ∞ 0 0 0 0 0 
4.1 0 1 0 0 0 ∞ 0 0 0 1 
5.1 0 0 0 0 0 0 ∞ 1 0 1 
6.1 0 0 0 0 0 1 0 ∞ ∞ 1 
6.2 0 0 0 0 0 0 0 ∞ ∞ 0 

           

( )jz  1 1 1 0 0 1 1 1 0  

 

The assignment solution of table 20 is 1.1- 3.1- 5.1 - 6.1 - 4.1 - 2.1 - 1.1 with total 

distance of 87 units.  It implies the TSP tour which is stated and ended at node 1. 
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Table 22  The cost table of de-link 2-1, by assigning the cost of the link 2-1 to ∞ 

Job i,  
Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2 
1.1 ∞ 2 11 3 35 94 30 13 97 
2.1 ∞ ∞ 57 73 86 23 21 61 83 
3.1 85 27 ∞ ∞ ∞ 41 11 66 27 
3.2 48 57 ∞ ∞ ∞ 52 46 73 52 
3.3 80 66 ∞ ∞ ∞ 58 79 63 28 
4.1 61 37 33 0 56 ∞ 88 87 9 
5.1 72 16 68 14 20 485 ∞ 4 70 
6.1 22 43 62 17 88 21 44 ∞ ∞ 
6.2 96 18 86 60 34 42 15 ∞ ∞ 

 

 

Table 23  The The assignment solution of table 22 

Job i, 
Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2 ( )iz  

1.1 ∞ 1 0 0 0 0 0 0 0 1 
2.1 0 ∞ 0 0 0 1 0 0 0 1 
3.1 0 0 ∞ ∞ ∞ 0 1 0 0 1 
3.2 0 0 ∞ ∞ ∞ 0 0 0 0 0 
3.3 0 0 ∞ ∞ ∞ 0 0 0 0 0 
4.1 0 0 1 0 0 ∞ 0 0 0 1 
5.1 0 0 0 0 0 0 ∞ 1 0 1 
6.1 1 0 0 0 0 0 0 ∞ ∞ 1 
6.2 0 0 0 0 0 0 0 ∞ ∞ 0 

           

( )jz  1 1 1 0 0 1 1 1 0  
 

The assignment solution of table 22 is 1.1- 2.1 - 4.1 - 3.1 - 5.1- 6.1 - 1.1 with the total 

distance of 95 units.  This solution implies the single TSP tour which stat at node 1, 

but this solution is not better than the previous one.  This heuristic would appear to 

require a lot of memory and time of computation for solving the sequence of 

assignment subproblems with alternative P/D nodes which is 0-1 IP. In fact, the 

algorithm starts searching the first produced subtour and then goes to the next subtours 

for saving running time, instead of searching from all found links (i, j) from the 

solution in step 1, which may provides the better solution but takes much more time. 

The results of some simulated problems are presented in the next chapter. 
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3. The algorithms for solving the multi AGVsp-P/D 

 

 The previous section provides the procedure for solving the case of single 

AGVsp-P/D.  The results from applying the procedure to solve the distance matrix are 

sets of the single TSP tour.  When the case of multi AGVsp-P/D is considered, a 

specific number of AGVs is given to the problem.  How can all vehicles will be 

utilized is considered.  The solutions of multi AGVsp-P/D are the sets of multi TSP 

tours.  The procedure of solving the MTSP from the existing TSP solutions will be 

applied to form the sets of TSP tours from the single TSP tour. The research presents 

two heuristic procedures as follows. 

 

3.1  The heuristic of splitting a TSP tour for solving the lower bound of  

        multi AGVsp-P/D 

 

        Let assume that a regular AGV has speed equal to 1 meter/minute.  If the 

problem defines a special AGV that has speed equal to M meters /minute, it can 

accomplish the same job (same total distance) faster than a regular AGV by the normal 

mission time divided by M or can travels more distance by using the same amount of 

time.  Refer to table 8, let this table is the distance matrix of the regular AGV, which is 

used for explaining the example of multi AGVsp-P/D as follows.   

 

Table 24  The example of the regular AGV distance matrix for multi AGVsp-P/D 

 
Job i,  
Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2 
1.1 ∞ 2 11 3 35 94 30 13 97 
2.1 3 ∞ 57 73 86 23 21 61 83 
3.1 85 27 ∞ ∞ ∞ 41 11 66 27 
3.2 48 57 ∞ ∞ ∞ 52 46 73 52 
3.3 80 66 ∞ ∞ ∞ 58 79 63 28 
4.1 61 37 33 0 56 ∞ 88 87 9 
5.1 72 16 68 14 20 485 ∞ 4 70 
6.1 22 43 62 17 88 21 44 ∞ ∞ 
6.2 96 18 86 60 34 42 15 ∞ ∞ 
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The table shows that the regular AGV can travel from the starting point of job 

1.1 to the starting point of job 2.1 by the total distance of 2 meters.  From the 

assumption of the regular AGV speed, that it takes 2 minutes.  Let define that the 

auxiliary problem, called Aux-problem, is the problem of the special AGV that the 

traveling time from node i to node j equal to the original distance matrix divided by M.   

The auxiliary cost matrix is used with the special AGV of M times faster.  The 

auxiliary cost matrix of 2 times faster AGVs (M = 2), called 2M-AGV, is shown on 

table 25 as follows.      

 

Table 25  The cost matrix of Aux-problem of 2 times faster AGVs  

 
 Job i, 
Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2 
1.1 ∞ 1 5.5 1.5 17.5 47 15 6.5 48.5 
2.1 1.5 ∞ 28.5 36.5 43 11.5 10.5 30.5 41.5 
3.1 42.5 13.5 ∞ ∞ ∞ 20.5 5.5 33 13.5 
3.2 24 28.5 ∞ ∞ ∞ 26 23 36.5 26 
3.3 40 33 ∞ ∞ ∞ 29 39.5 31.5 14 
4.1 30.5 18.5 16.5 0 28 ∞ 44 43.5 4.5 
5.1 36 8 34 7 10 242.5 ∞ 2 35 
6.1 11 21.5 31 8.5 44 10.5 22 ∞ ∞ 
6.2 48 9 43 30 17 21 7.5 ∞ ∞ 

 
  
The Aux-problem considers the traveling time (because the distance of each pair of 

jobs is same as the regular AGV), not the distance.  It can see that from the starting 

point of job1.1 to the starting point of job2.1 takes 1 minute by 2M-AGV.  It means 

that this is the lower bound of the mission time for 2 regular AGVs, which are AGV-1 

and AGV-2.  If the mission time of the Aux- problem is splitted into two parts, the 

explanation is shown as follows.  

                             Start                           1 mim/2 m.                 Stop 

               2M-AGV 

                                                         Aux-problem 

 

                                        1 min/1 m             1 min/1 m 

                                 AGV-1                          AGV-2 

                                                         Original problem 
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From the above chart, let assume that AGV-1 and AGV-2 can be started everywhere 

and every time.  Therefore, the relationship between the original problem and the Aux-

problem is: 

  2M-AGV time ≤ AGV-1 time + AGV-2 time 

 

For a given, the optimal TSP tour from the starting depot to all jobs and back to depots 

of AGV-1 and AGV-2, both of tour distances can be added together and get the 

optimal total distance. For explaining, the relationship of AGV-1, AGV-2 and 2M-

AGV is examined as follows. 

 

AGV-1              X m.                                    tour 1-2-3-4-5-1= X meters / X min 

                           X min. 

 

AGV-2                Y m.                                   tour 1-6-7-8-9-1=Y meters / Y min 

                             Y min 

 

2M-AGV                         X+Y m.                                             

                          (X+Y)/2 min                       

 

Tour 1-2-3-4-5-1-6-7-8-9-1 = X+Y meters / (X+Y)/2 min  

 

 Let a tour 1-2-3-4-5-6-7-8-9-1 of the Aux-problem is the optimal TSP tour.   

The distance of X+Y (1-2-3-4-5-1-6-7-8-9-1) is ≥ the Aux-problem TSP tour distance 

of 1-2-3-4-5-6-7-8-9-1.  Assume that distance of X+Y is the optimal solution of the 

original problem so that it can claim that the optimal tour of Aux-problem is the lower 

bound of the original problem with 2 AGVs.  If the TSP tour of the Aux-problem can 

be solved, it can get the lower bound of problems with M number of AGVs for each 

AGV by splitting the Aux-problem tour into M parts.  Therefore, the original distance 

value of M multiplied by Aux-tour distance is the lower bound distance of each regular 

AGV.   
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According to this point, solutions of a single TSP tour from the original 

problem man provide M balance subtours, which is the lower bound of multi AGVsp-

P/D by splitting the optimal TSP tour distance of the Aux-problem into M parts, (M 

subtours) and converting to the original distance of all subtours.  The proof is shown 

as follows.  

 
Lemma: Let construct the Aux-problem of a single AGV where the Aux-problem 

distance matrix [C’ij ] = (1/M) × Cij ; Cij is the original distance matrix.   If T*
AUX is the 

optimal TSP tour for the single AGV of the Aux-problem, the length of the optimal 

tour T*
AUX , l(T*

AUX), is a lower bound of the length of the optimal tour T*, l(T*), of the 

original problem with M number of AGVs 

That it is;                                    M× l(T*
AUX)  ≤  l(T*) 

 

Proof: Given an optimal tour, T*, of M AGVs with the original distance matrix by 

assuming that all AGVs are started at the starting depot and can start at the same time. 

Let set S* is a set of subtour of the optimal tour T* which consists of subtours Ti = {T1, 

T2, T3, …  TM } for each AGV.   Set S* can form the tours as the following diagram.      

              

                            D   U1                           V1        D    ; T1 of AGV-1 

 

                            D        U2                                  V2       D    ; T2 of AGV-2 

             S*                                            
                                                        

                                                        

                            D     UM                    VM     D    ; TM of AGV-M 

 

 

Set S* of subtours of the optimal tour T* 
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                                                                                                     T1 
 

 

                                                                 T* 
 

    TM                                    
   

 

                                                                                                                  T2 
 

 

 

Figure 4  Subtours Ti  and tour T* 

 

T* = T1 + T2 + T3 +…+ TM 

l(T*) = 1
( )

M

i
i

l T
=
∑   

Consider any subtours Ti for all i = 1, 2, …, M, all of them have some common 

jobs which are travel from last node (job) of subtours Ti to the starting depot, D, and 

travel from the starting depot to the first job of subtours Ti+1.    For example, tour T1 

consists of the travel distance from the starting depot D to job U1 and go to the next 

job, follows the optimal sequence, until finishing the last job V1 of this subtour and 

then travel from V1 back to the starting depot D. 

 Let U1, U2,…, UM be the first nodes after the starting node D and V1, V2,…, VM 

be the last nodes before the starting node D.  From Set S* of subtours of the optimal 

tour T*, let construct a single tour T’’ by: 

1. Disconnect the arcs from the last node, Vi to the starting node D of all  

       subtours Ti for all i,  

2. Disconnect the arcs from the starting node D to the first node, Ui of all  

D
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       subtours Ti for all i, except for the arc from the starting node D to node U1   

       and from VM to the starting node depot D , and then 

3. Connect the node Vi to node Ui+1 for all subtours Ti for for all i. 

A single tout T’’  is constructed which is a single AGV starts at depot, travels only one 

time to the first node U1, continuous travels along the optimal sequence to the last 

node VM , and travels back to the starting node D only one time. 

                                                                                                                           

                                                                                          T1 
 

 

                                                               T’’ 
 

    TM                                    
   

 

                                                                                                                  T2 
 

 

 

Figure 5  The TSP tour T” 

 

Let the length between node i and node j is l(i, j).  From the property of triangle 

inequality,  

l (V1, D) + l (D, U2) ≥ l (V1, U2) 

 

 

 

 

 

D
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It can be derived that: 

l (T’’) = 1
( )

M

i
i

l T
=
∑  - [l (V1, D) + l (D, U2)] + l (V1, U2) 

                            - [l (V2, D) + l (D, U3)] + l (V2, U3) 

 

                       

                            - [l (VM-1, D) + l (D, UM)] + l (VM-1, UM) 

 

Because of -l (V1, D) - l (D, U2) + l (V1, U2) ≤ 0, so that 

        l(T’’) ≤  l(T*) 

  

Now procedure claim that M × l(T*
AUX)  ≤  l(T’’) include every tours Ti of the original 

problem that has length l(T*)/M in the Aux-problem.  Since l( T*
AUX ) is the optimal 

length of tour of the Aux-problem, it can conclude that: 

   l(T*
AUX)  ≤  l(T’’) /M 

Therefore,                             l(T*
AUX)  ≤  l(T*)/M 

 M × l(T*
AUX)   ≤  l(T*) 

 

 This heuristic can be used to split a single TSP tour to multi tours.  Solutions of 

the lower bound of multi AGVsp-P/D are the sets of multi tours, not the sets of multi 

TSP tours or MTSP solution.  The assumption of this algorithm is that vehicles can be 

started and ended everywhere.  Therefore, this heuristic can not satisfy the objective of 

the multi AGVsp-P/D, which same as the objective of the MTSP, but can be used for 

solving the lower bound of the multi AGVsp-P/D by splitting a single TSP tour to a set 

of M routes for M AGVs.  A set of M routes from splitting a single TSP tour to M parts 

can be form a set of M tours, if the distance from the starting depot to the starting job 

and the ending job to the starting depot of each route is added.  Actually, the goal is 

attempting to form the algorithm which can support the assumption of the MTSP, 

which is shown on the next part.  The experiment on the next chapter is performed to 
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compare the solution of the algorithm of splitting a single TSP and the algorithm of 

solving the MTSP as the standard TSP 

  

3.2  The algorithm of solving the MTSP as the standard TSP 

  

       Refer to Svestka and Huckfeldt (1973), if 2 AGVs are given for the multi 

AGVsp-P/D, the problem on table 8 can be modified for using the algorithm of 

solving the MTSP as the standard TSP.  The new distances matrix [dij ] are created 

from the original distances matrix [cij ], which is shown on table 26 as follows 

 

Table 26  The MTSP distances matrix  [dij ]  

 

  1.1 1.2 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2 
1.1 ∞ ∞ 2 11 3 35 94 30 13 97 
1.2 ∞ ∞ 2 11 3 35 94 30 13 97 
2.1 3 3 ∞ 57 73 86 23 21 61 83 
3.1 85 85 27 ∞ ∞ ∞ 41 11 66 27 
3.2 48 48 57 ∞ ∞ ∞ 52 46 73 52 
3.3 80 80 66 ∞ ∞ ∞ 58 79 63 28 
4.1 61 61 37 33 0 56 ∞ 88 87 9 
5.1 72 72 16 68 14 20 485 ∞ 4 70 
6.1 22 22 43 62 17 88 21 44 ∞ ∞ 
6.2 96 96 18 86 60 34 42 15 ∞ ∞ 
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Table 27  The AGVsp-P/D solution of table 26 
 
 

 1.1 1.2 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2 
1.1 ∞ ∞ 0 0 0 0 0 1 0 0 
1.2 ∞ ∞ 1 0 0 0 0 0 0 0 
2.1 1 0 ∞ 0 0 0 0 0 0 0 
3.1 0 0 0 ∞ ∞ ∞ 0 0 0 0 
3.2 0 1 0 ∞ ∞ ∞ 0 0 0 0 
3.3 0 0 0 ∞ ∞ ∞ 0 0 0 0 
4.1 0 0 0 0 1 0 ∞ 0 0 0 
5.1 0 0 0 0 0 0 0 ∞ 1 0 
6.1 0 0 0 0 0 0 1 0 ∞ ∞ 
6.2 0 0 0 0 0 0 0 0 ∞ ∞ 

 
 
Table 28  The corresponding cost from the solution of table 27  
 

 1.1 1.2 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2 
1.1 ∞ ∞ 0 0 0 0 0 30 0 0 
1.2 ∞ ∞ 2 0 0 0 0 0 0 0 
2.1 3 0 ∞ 0 0 0 0 0 0 0 
3.1 0 0 0 ∞ ∞ ∞ 0 0 0 0 
3.2 0 48 0 ∞ ∞ ∞ 0 0 0 0 
3.3 0 0 0 ∞ ∞ ∞ 0 0 0 0 
4.1 0 0 0 0 0 0 ∞ 0 0 0 
5.1 0 0 0 0 0 0 0 ∞ 4 0 
6.1 0 0 0 0 0 0 21 0 ∞ ∞ 
6.2 0 0 0 0 0 0 0 0 ∞ ∞ 

           
 

 

Table 26 shows that there is one additional first row and column, which is row and 

column No. 1.2.  They represent the dummy starting node for the problem of 2 AGVs.  

The solution of AGVsp-P/D of table 26 is shown on table 27 with its corresponding 

cost, which is shown on table 28.   

 

From table 27, the assignment solution is 1.1 - 5 - 6.1 - 4 - 3.2 - 1.2 - 2 - 1.1 

with the distance of 108 units.  If the assignment solution is not a single TSP tour, the 

modified Eastman’s algorithm for the TSP of the AGVsp-P/D is applied.  By the 
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solution from table 27, it shows that the assignment solution consists of 2 TSP tours 

for 2 AGVs which are: 

 

the TSP tour 1 for AGV-1 that is: 1.1 (depot) - 5.1 - 6.1 - 4.1 - 3.2 - 1.2 (depot) and 

the TSP tour 2 for AGV-2that is: 1.2 (depot) - 2.1 - 1.1 (depot). 

 

This algorithm provides the solution of the multi AGVsp-P/D by solving the single 

TSP tour of the modified distance matrix [dij].  The running time of solving the TSP 

and the MTSP may not different significantly when the number of AGVs (M) 

increasing, because in the real world problems of n nodes, it may have the constraints 

of the cost of increasing the number of salesman or vehicle. This algorithm is tested 

for the implementation with many levels of problem sizes that are shown in the next 

chapter.  

 

All presented methods of this research can provide the results that satisfy the 

research objectives.  The single/multi AGVsp-P/D can be solved with some levels of 

problem sizes.  The results of all experiments are explained in the next chapter. 
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RESULTS AND DISCUSSIONS 
 

This chapter presents the results of all experiments of this research, which 

includes the result analysis, conclusions and discussions.   

 

Results 

 

The detailed results of all tested problems are displayed in the form of tables and 

graphs.  Tested problems of the AGVsp-P/D are generated randomly as similar as the 

example on table 6.  The formulated mathematical model of AGVsp-P/D is programed 

using MATLAB 7.0 for solving lower bound solutions, single TSP tours, and multi 

TSP tours of the single/multi AGVsp-P/D.   

 

1.  The results of solving the lower bound of the AGVsp-P/D by  

      integer linear programming 

 

The simulated problems of the AGVsp-P/D with 10, 20, 30, 40, and 50 nodes 

are generated randomly with some numbers of 2 alternative jobs and some numbers of 

regular jobs. The running times of solving the lower bound solution is examined and 

compared to the regular assignment problem of the same problem size.  The simulated 

problems are generated, which are: 

 

1.  10 nodes with 5 jobs of 2 alternatives  

2.  20 nodes with 5 jobs of 2 alternatives and 10 regular jobs  

3.  30 nodes with 5 jobs of 2 alternatives and 20 regular jobs  

4.  40 nodes with 5 jobs of 2 alternatives and 30 regular jobs 

5.  50 nodes with 5 jobs of 2 alternatives and 40 regular jobs  

 

that all for them are in a set of problems called 2Al-5 of n nodes (n = 10, 20, 30, 40 

and 50). The other sets of simulated problems are: 
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1.  10 nodes with 5 jobs of 2 alternatives, called 2Al-5  

2.  20 nodes with 10 jobs of 2 alternatives, called 2Al-10 

3.  30 nodes with 15 jobs of 2 alternatives, called 2Al-15 

4.  40 nodes with 20 jobs of 2 alternatives, called 2Al-20 

5.  50 nodes with 25 jobs of 2 alternatives, called 2Al-25 

 

that all of them are in a set of problem, called 2Al-Max. The running time of 40 

replications for each of the level of problem size are compared with the regular 

assignment problems with 10, 20, 30, 40, and 50 jobs, which are solved using the 

lower bound model with alternative P/D nodes.   

 

According to this experiment, the main purpose is to examine that whether the 

increasing of number of alternative jobs, from 2Al-5 to 2Al-Max, affects on the 

average running time for solving the problem or not.  The research assumes that the 

type I error, α is 0.05.  The hypothesis test will be examined after the experiments 

done.  The results of all experiments of this section using MATLAB 7.0 are shown as 

follows.   
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Table 29  The running time in seconds of simulated problems of 2Al-5 

 

Problem No. 10node 20node 30node 40node 50node 
1 0.237 0.920 2.188 5.375 12.437 
2 0.253 0.527 2.887 6.286 15.814 
3 1.073 0.576 5.770 6.535 14.133 
4 0.383 0.605 1.900 5.567 11.435 
5 0.420 0.618 1.930 4.850 12.047 
6 0.391 0.599 1.711 5.333 16.538 
7 0.436 0.551 3.743 5.025 16.167 
8 0.396 0.531 2.101 5.243 12.177 
9 0.737 1.292 1.752 8.186 16.165 

10 0.282 0.910 3.618 4.745 11.653 
11 0.224 0.615 2.014 4.731 11.587 
12 0.511 0.598 1.919 4.845 11.054 
13 0.546 0.997 1.798 5.535 12.677 
14 0.701 0.584 3.584 5.097 25.688 
15 0.231 0.574 2.930 4.584 10.257 
16 0.340 0.635 1.890 5.754 22.572 
17 0.217 0.560 3.757 8.197 12.422 
18 0.952 0.543 1.810 5.010 10.695 
19 0.558 1.693 1.522 4.68 13.052 
20 0.615 0.994 1.712 4.397 10.861 
21 0.286 0.546 2.014 4.961 12.478 
22 0.219 0.691 1.921 5.064 37.135 
23 0.175 0.976 1.960 4.912 11.232 
24 0.797 0.622 1.982 4.980 11.485 
25 0.257 0.513 1.860 4.760 11.323 
26 0.662 0.633 1.804 5.06 12.594 
27 0.456 0.648 1.701 5.659 11.331 
28 0.230 0.575 1.709 5.266 11.463 
29 0.401 0.548 1.723 4.806 11.872 
30 1.009 0.938 3.833 9.179 10.668 
31 0.269 0.617 1.924 5.584 14.824 
32 1.000 0.619 2.126 4.993 13.29 
33 0.204 0.565 2.017 5.161 10.866 
34 0.256 0.941 2.695 5.546 11.880 
35 0.293 0.662 2.114 4.855 10.570 
36 0.767 0.582 3.601 4.328 11.755 
37 1.320 0.575 3.692 6.780 11.946 
38 0.284 0.638 1.883 5.005 17.767 
39 0.209 0.619 2.031 4.477 15.268 
40 0.377 0.555 1.644 4.475 11.330 
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Table 30  The running time in seconds of simulated problems of 2Al-Max 

 

 

 
 
 

Problem No. 10node 20node 30node 40node 50node 
  (2Al-5) (2Al-10) (2Al-15) (2Al-20) (2Al-25) 
1 0.237 1.500 4.293 29.315 59.497 
2 0.253 1.065 6.390 19.752 13.864 
3 1.073 2.014 9.446 36.411 31.589 
4 0.383 1.944 4.504 36.797 91.136 
5 0.420 2.376 9.662 28.656 22.187 
6 0.391 2.968 11.68 37.923 49.681 
7 0.436 0.756 13.357 43.830 115.214 
8 0.396 3.570 13.681 43.389 12.944 
9 0.737 3.641 3.714 7.674 27.961 

10 0.282 1.590 3.274 12.666 59.073 
11 0.224 0.988 2.236 14.049 13.920 
12 0.511 0.662 6.230 6.591 31.656 
13 0.546 0.637 5.866 7.332 91.336 
14 0.701 2.794 7.680 21.991 22.085 
15 0.231 1.904 6.577 22.744 49.614 
16 0.340 2.329 3.328 12.535 115.064 
17 0.217 2.423 3.827 11.762 12.787 
18 0.952 1.152 5.813 12.317 70.256 
19 0.558 1.015 3.427 8.901 21.932 
20 0.615 3.729 7.756 4.899 37.877 
21 0.286 2.248 2.926 26.677 16.208 
22 0.219 0.743 8.94 89.939 74.394 
23 0.175 0.584 2.934 9.427 26.248 
24 0.797 3.570 9.691 8.390 32.616 
25 0.257 1.246 2.077 37.673 39.466 
26 0.662 2.793 3.898 8.304 29.349 
27 0.456 2.446 6.359 57.296 78.340 
28 0.230 1.424 6.765 16.613 67.905 
29 0.401 3.164 7.865 84.195 11.305 
30 1.009 2.868 14.005 41.498 71.857 
31 0.269 1.430 6.913 64.475 37.215 
32 1.000 1.614 2.805 32.793 80.843 
33 0.204 3.288 3.748 16.388 66.105 
34 0.256 1.410 6.405 25.121 46.362 
35 0.293 1.168 5.972 25.765 64.666 
36 0.767 1.473 9.716 10.831 23.741 
37 1.320 3.505 9.225 32.688 77.782 
38 0.284 2.327 4.920 5.297 63.787 
39 0.209 3.745 9.378 26.874 89.043 
40 0.377 0.741 7.505 7.965 57.916 
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Table 31  The running time in second of the regular assignment problems 
 

Problem No. 10node 20node 30node 40node 50node 
1 0.1859 0.672 2.297 5.976 10.600 
2 0.174 0.558 2.373 5.183 12.343 
3 0.244 0.738 2.203 5.437 10.852 
4 0.203 0.627 2.384 5.555 14.656 
5 0.168 0.587 2.07 5.863 12.167 
6 0.242 0.726 2.076 4.932 12.587 
7 0.224 0.691 2.038 5.863 11.106 
8 0.230 0.718 2.318 5.660 14.293 
9 0.197 0.690 2.016 5.212 12.923 

10 0.199 0.674 2.028 4.678 14.413 
11 0.195 0.714 2.031 5.782 13.157 
12 0.256 0.772 2.331 5.250 11.171 
13 0.165 0.640 1.972 5.795 12.326 
14 0.174 0.721 2.024 5.833 13.488 
15 0.235 0.642 2.104 5.289 12.356 
16 0.161 0.640 2.138 5.362 13.078 
17 0.191 0.714 1.963 5.309 12.426 
18 0.274 0.658 2.371 5.972 11.694 
19 0.282 0.756 2.068 5.749 12.767 
20 0.254 0.716 2.284 5.607 11.204 
21 0.224 0.669 2.074 5.572 12.924 
22 0.203 0.663 2.309 5.446 12.273 
23 0.236 0.628 2.007 5.914 11.959 
24 0.161 0.599 2.107 5.001 12.547 
25 0.249 0.778 2.134 5.438 12.241 
26 0.205 0.666 2.244 5.755 12.624 
27 0.216 0.695 2.253 5.109 11.317 
28 0.258 0.673 2.260 5.643 12.981 
29 0.237 0.724 2.059 4.989 13.321 
30 0.194 0.702 2.302 5.146 10.499 
31 0.245 0.710 1.991 5.466 13.068 
32 0.218 0.678 2.054 5.249 12.833 
33 0.215 0.688 2.655 5.355 12.136 
34 0.217 0.690 2.052 5.440 11.000 
35 0.250 0.633 2.008 5.284 13.150 
36 0.254 0.68 2.049 5.347 13.127 
37 0.247 0.677 2.315 5.865 11.848 
38 0.210 0.660 2.205 5.531 12.891 
39 0.231 0.669 2.181 5.902 13.032 
40 0.224 0.705 2.268 5.396 11.170 
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Table 32  The summarized running time in seconds of solving the lower bound of  

                 AGVsp-P/D 
 

Size Levels   Assignment 2Al-5 2Al-Max 
    Problems Problems Problems 
  Mean 0.2186975 0.47435 0.47435 

10 nodes S.D. 0.031660438 0.287858633 0.287858633 
  Min 0.161 0.175 0.175 
  Max 0.282 1.320 1.320 
  Mean 0.681025 0.699625 2.0211 

20 nodes S.D. 0.04663084 0.238417613 1.009444549 
  Min 0.558 0.513 0.584 
  Max 0.778 1.693 3.745 
  Mean 2.1654 2.36925 6.6197 

30 nodes S.D. 0.152020545 0.906358924 3.189694184 
  Min 1.963 1.522 2.077 
  Max 2.655 5.770 14.005 
  Mean 5.478875 5.39565 26.193575 

40 nodes S.D. 0.318063144 1.05462081 20.3977164 
  Min 4.678 4.328 4.899 
  Max 5.976 9.179 89.939 
  Mean 12.4137 13.7627 50.120525 

50 nodes S.D. 0.999490388 4.941659133 28.89604306 
  Min 10.499 10.257 11.305 
  Max 14.656 37.135 115.214 
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Figure 6  The graph of running time in second for obtaining the lower bound of  

                 AGVsp-P/D 
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 Let consider the data set of tables 29, 30 and 31 of 50 nodes, the normal 

probability plot results using Minitab are performed sequentially as follows. 
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Figure 7  The normal probability plot of 2Al-5 data with 50 nodes  

                 from  table 29 
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Figure 8  The normal probability plot of the 2Al-Max data with 50 nodes  

                 from  table 30 
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Average: 12.4137
StDev: 0.999490
N: 40

Anderson-Darling Normality Test
A-Squared: 0.528
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Figure 9  The normal probability plot of the regular assignment data with 50 nodes  

                 from table 31 

 

The results of the normal probability plot show that the data set of 2Al-5 of 50 

nodes, figure 7, is not statistically normal distribution, because the P-value less than 

0.05.  Before performing any statistical analysis, the data should be transformed or 

adjusted to be the normal distributed data set.  The Box-Cox transformation function 

in Minitab is used to adjust and transform the data set from the experimental results 

for forming the normal probability data set.   The data set from the figure 7 is 

transformed using the Box-Cox transformation function and tested the normality by 

performing the normal probability plot of the transformed data set.  The result of the 

normality test of the transformed data set of the figure 7 is shown on figure 10 as 

follows. 
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P-Value:   0.046
A-Squared: 0.751
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N: 40
StDev: 0.0002778
Average: 0.0006360
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Figure 10  The normal probability plot of the Box-Cox transformation data of  

                  2Al-5 with 50 nodes of table 29 

  

The normal probability plot on figure 10 shows that the transformed data set of 2Al-5 

with 50 nodes is still not the normal probability distribution, because the P-value is 

still less than 0.05.  Therefore, the data of table 29, 30 and 31 will be analyzed by 

using nonparametric statistics.  The analysis can be performed using the Kruskal-

Wallis test.  This test offers a nonparametric statistic of the one-way analysis of 

variance.  

 

According to the experimental results, because the effect of increasing on the 

number of alternative jobs with a specific size level of problem is considered, research 

wish to test the hypothesis that the mean values of running times of assignment 

(µAssignment), 2Al-5 (µ2AL-5), and 2Al-Max (µ2AL-Max) experiments are equal or not.  Let 

consider the size level of 50 nodes experiments with 40 replications and type I error of 

α = 0.05, the Kruskal-Wallis hypotheses can be formally stated as:  

    H0:  µAssignment = µ2AL-5 = µ2AL-Max   (µ1 = µ2 = µ3)  

 H1:  µ i ≠ µ j for at least one pair of all i, j, where i, j = 1, 2 and 3  

The Kruskal-Wallis test is used for analyzing data sets on tables 28, 29 and 30 

for 3 treatments of assignment (Ass), 2Al-5, and 2Al-Max of 50 nodes (k = 3) and 40 

replications (ni = 40 and N = 120).  The result from Minitab is shown as follows. 
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Figure 11  The Kruskal-Wallis test of the data set on Ass, 2Al-5, and 2Al-Max of 50  

                   nodes 

 

If the type I error of α = 0.05, the result from figure 11 obtains that the P-value 

of the Kruskal-Wallis test of data sets on Ass, 2Al-5, and 2Al-Max of 50 nodes equal 

to 0.000, which less than 0.05.   Therefore, the hypothesis H0:  µAssignment = µ2AL-5 = 

µ2AL-Max can be rejected and can conclude base on the inference statistics that the 

increasing on the number of alternative jobs with a specific size level of problem 

affects on the average running time.   

 

2. The results of solving the lower bound by the alternative selection heuristics 

 

 This part attempts to test all heuristics for selecting the alternative nodes. The 

30 tested problems are generated randomly to verify the quality of solution for all 3 

heuristics (Heu-i Sol. for all i = 1, 2 and 3) by consider the deviation (Dev) of the 

heuristic solutions from the IP solutions in a form of the percent deviations (% Dev).  

The tested problems are the distance matrix, which has the same format as the 

example on table 6.  The assignment problem with alternative P/D nodes can by 

solved by selecting the appropriate alternative jobs (Alt. Sel.) for job No. 3, and job 

No. 6 first and then solve the regular assignment problem.  The research tries to 

evaluate which heuristic can perform the best solution.  The appropriate heuristic 

should provide the minimum average of % Dev.  

Kruskal-Wallis Test: C6 versus C7 
 
Kruskal-Wallis Test on C6 
 
C7          N    Median    Ave Rank         Z 
2Al-five   40     12.00        42.3     -4.05 
2Al-max    40     47.99        96.3      7.97 
Ass        40     12.49        42.9     -3.92 
Overall   120                  60.5 
 
H = 63.56  DF = 2  P = 0.000 
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Refer to the section 2.4 for the materials and methods chapter, all 3 heuristics 

are applied to select the alternatives of 30 tested problems and then the assignment 

solution of the selected alternative problem is solved and compared to the IP solution 

(IP Sol.) of the master problem. The result of solutions and the %Dev between the 

heuristics and the IP solutions are shown as follows. 

 

Table 33  The %Dev of alternative selection Heuristic-1 solutions  

                 from the IP solutions 

 

 

 

Problem No. IP Sol. Alt. Sel. Heu-1 Sol. Dev Alt. Sel. %Dev 
1 74 3.1,6.1 76 2 3.2,6.1 2.7027 
2 99 3.3,6.2 110 11 3.2,6.2 11.1111 
3 138 3.2,6.2 144 6 3.2,6.1 4.34783 
4 138 3.1,6.2 218 80 3.2,6.1 57.971 
5 109 3.1,6.2 121 12 3.3,6.2 11.0092 
6 98 3.2,6.1 98 0 3.2,6.1 0 
7 148 3.2,6.1 172 24 3.3,6.1 16.2162 
8 71 3.3,6.1 76 5 3.2,6.1 7.04225 
9 72 3.2,6.1 100 28 3.3,6.1 38.8889 

10 83 3.3,6.1 105 22 3.3,6.2 26.506 
11 129 3.1,6.2 129 0 3.1,6.2 0 
12 81 3.3,6.2 97 16 3.3,6.1 19.7531 
13 60 3.2,6.1 60 0 3.2,6.1 0 
14 77 3.2,6.1 88 11 3.3,6.1 14.2857 
15 95 3.1,6.2 95 0 3.1,6.2 0 
16 127 3.2,6.1 133 6 3.1,6.1 4.72441 
17 68 3.1,6.1 79 11 3.3,6.1 16.1765 
18 146 3.1,6.1 154 8 3.2,6.2 5.47945 
19 82 3.3,6.1 85 3 3.2,6.1 3.65854 
20 91 3.3,6.1 94 3 3.2,6.1 3.2967 
21 104 3.1,6.1 104 0 3.1,6.1 0 
22 54 3.1,6.1 54 0 3.1,6.1 0 
23 143 3.1,6.2 143 0 3.1,6.2 0 
24 67 3.1,6.2 111 44 3.2,6.2 65.6716 
25 72 3.1,6.1 72 0 3.1,6.1 0 
26 122 3.2,6.1 139 17 3.3,6.2 13.9344 
27 111 3.1,6.1 111 0 3.1,6.1 0 
28 65 3.2,6.1 65 0 3.2,6.1 0 
29 98 3.1,6.2 98 0 3.1,6.2 0 
30 217 3.1,6.2 217 0 3.1,6.2 0 
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Table 34  The %Dev of alternative selection Heuristic-2 solutions  

                 from the IP solutions 

 

 

 

 

 

 

 

 

 

Problem No. IP Sol. Alt. Sel. Heu-2 Sol. Dev Alt. Sel. %Dev 
1 74 3.1,6.1 74 0 3.1,6.1 0 
2 99 3.3,6.2 110 11 3.2,6.2 11.1111 
3 138 3.2,6.2 144 6 3.2,6.1 4.34783 
4 138 3.1,6.2 152 14 3.1,6.1 10.1449 
5 109 3.1,6.2 143 34 3.2,6.2 31.1927 
6 98 3.2,6.1 98 0 3.2,6.1 0 
7 148 3.2,6.1 148 0 3.2,6.1 0 
8 71 3.3,6.1 76 5 3.2,6.1 7.04225 
9 72 3.2,6.1 97 25 3.1,6.1 34.7222 

10 83 3.3,6.1 126 43 3.2,6.1 51.8072 
11 129 3.1,6.2 129 0 3.1,6.2 0 
12 81 3.3,6.2 97 16 3.3,6.1 19.7531 
13 60 3.2,6.1 63 3 3.1,6.1 5 
14 77 3.2,6.1 122 45 3.2,6.2 58.4416 
15 95 3.1,6.2 95 0 3.1,6.2 0 
16 127 3.2,6.1 133 6 3.1,6.1 4.72441 
17 68 3.1,6.1 89 21 3.1,6.2 30.8824 
18 146 3.1,6.1 154 8 3.2,6.2 5.47945 
19 82 3.3,6.1 106 24 3.1,6.1 29.2683 
20 91 3.3,6.1 94 3 3.2,6.1 3.2967 
21 104 3.1,6.1 120 16 3.1,6.2 15.3846 
22 54 3.1,6.1 91 37 3.2,6.2 68.5185 
23 143 3.1,6.2 149 6 3.3,6.2 4.1958 
24 67 3.1,6.2 67 0 3.1,6.2 0 
25 72 3.1,6.1 72 0 3.1,6.1 0 
26 122 3.2,6.1 160 38 3.2,6.2 31.1475 
27 111 3.1,6.1 111 0 3.1,6.1 0 
28 65 3.2,6.1 65 0 3.2,6.1 0 
29 98 3.1,6.2 98 0 3.1,6.2 0 
30 217 3.1,6.2 249 32 3.2,6.1 14.7465 
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Table 35  The %Dev of alternative selection Heuristic-3 solutions  

                 from the IP solutions 

 

The interested result is considered that the %Dev of all 3 alternatives selection 

heuristics, which are shown on table 36.  A summary of the %Dev is shown on table 

37 as follows. 

 

 

 

 

 

 

Problem No. IP Sol. Alt. Sel. Heu-3 Sol. Dev Alt. Sel. %Dev 
1 74 3.1,6.1 74 0 3.1,6.1 0 
2 99 3.3,6.2 110 11 3.2,6.2 11.1111 
3 138 3.2,6.2 138 0 3.2,6.2 0 
4 138 3.1,6.2 152 14 3.1,6.1 10.1449 
5 109 3.1,6.2 121 12 3.3,6.2 11.0092 
6 98 3.2,6.1 98 0 3.2,6.1 0 
7 148 3.2,6.1 164 16 3.1,6.1 10.8108 
8 71 3.3,6.1 76 5 3.2,6.1 7.04225 
9 72 3.2,6.1 72 0 3.2,6.1 0 

10 83 3.3,6.1 105 22 3.3,6.2 26.506 
11 129 3.1,6.2 129 0 3.1,6.2 0 
12 81 3.3,6.2 81 0 3.3,6.2 0 
13 60 3.2,6.1 63 3 3.1,6.1 5 
14 77 3.2,6.1 88 11 3.3,6.1 14.2857 
15 95 3.1,6.2 95 0 3.1,6.2 0 
16 127 3.2,6.1 133 6 3.1,6.1 4.72441 
17 68 3.1,6.1 68 0 3.1,6.1 0 
18 146 3.1,6.1 152 6 3.1,6.2 4.10959 
19 82 3.3,6.1 85 3 3.2,6.1 3.65854 
20 91 3.3,6.1 91 0 3.3,6.1 0 
21 104 3.1,6.1 104 0 3.1,6.1 0 
22 54 3.1,6.1 89 35 3.2,6.1 64.8148 
23 143 3.1,6.2 143 0 3.1,6.2 0 
24 67 3.1,6.2 67 0 3.1,6.2 0 
25 72 3.1,6.1 72 0 3.1,6.1 0 
26 122 3.2,6.1 139 17 3.3,6.2 13.9344 
27 111 3.1,6.1 111 0 3.1,6.1 0 
28 65 3.2,6.1 77 12 3.3,6.1 18.4615 
29 98 3.1,6.2 98 0 3.1,6.2 0 
30 217 3.1,6.2 217 0 3.1,6.2 0 
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Table 36  The comparison of the %Dev for all 3 heuristics 

 

Problem No. IP Sol. %Dev of %Dev %Dev 
  Heuristic-1 Heuristic-2 Heuristic-3 

1 74 2.7027 0 0 
2 99 11.1111 11.1111 11.1111 
3 138 4.34783 4.34783 0 
4 138 57.971 10.1449 10.1449 
5 109 11.0092 31.1927 11.0092 
6 98 0 0 0 
7 148 16.2162 0 10.8108 
8 71 7.04225 7.04225 7.04225 
9 72 38.8889 34.7222 0 

10 83 26.506 51.8072 26.506 
11 129 0 0 0 
12 81 19.7531 19.7531 0 
13 60 0 5 5 
14 77 14.2857 58.4416 14.2857 
15 95 0 0 0 
16 127 4.72441 4.72441 4.72441 
17 68 16.1765 30.8824 0 
18 146 5.47945 5.47945 4.10959 
19 82 3.65854 29.2683 3.65854 
20 91 3.2967 3.2967 0 
21 104 0 15.3846 0 
22 54 0 68.5185 64.8148 
23 143 0 4.1958 0 
24 67 65.6716 0 0 
25 72 0 0 0 
26 122 13.9344 31.1475 13.9344 
27 111 0 0 0 
28 65 0 0 18.4615 
29 98 0 0 0 
30 217 0 14.7465 0 
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Table 37  The summary of the %Dev for all 3 heuristics 

 

According to the experimental results, the hypothesis is to test whether the 

mean values of the %Dev of the solution from the different alternative selection 

heuristics are equal or not.  The hypothesis can be formally stated as:  

 H0:  µHeuristic-1 = µHeuristic-2 = µHeuristic-3  (µ1 = µ2 = µ3 ) 

 H1:  µ i ≠ µ j for at least one pair of all i, j, where i, j = 1, 2 and 3 

 

 Let consider the results on table 36 with 30 replications and the error of α = 

0.05.  The normal probability plots of the data set on table 36 are performed as follow. 
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Figure 12  The normal probability plot of the %Dev of Heuristic-1 from table 36 

 

  % Dev of  % Dev of % Dev of 
  Heuristic-1 Heuristic-2 Heuristic-3 

Mean 10.7592 15.2925 6.85378 
S.D. 16.739 18.8379 12.8988 
Min 0 0 0 
Max 65.67164 68.51852 64.814815 
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Average: 15.2925
StDev: 18.8380
N: 30
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Figure 13  The normal probability plot of the %Dev of Heuristic-2 from table 36 
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Figure 14  The normal probability plot of the %Dev of Heuristic-3 from table 36 

 

The normal probability plots show that all 3 sets of data from table 36 are not 

the normally distributed.  The Box-Cox transformation function in Minitab is used to 

transform the data set from the experimental results.   After all 3 sets of data from 

table 36 are transformed, and then normality tests by the normal probability plot are 

performed, which are shown as follows. 
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Average: 0.743245
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N: 30
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Figure 15  The normal probability plot of the Box-Cox transformation data of the  

                   %Dev of Heuristic-1 from table 36 
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Figure 16  The normal probability plot of the Box-Cox transformation data of the  

                   %Dev of Heuristic-2 from table 36 
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Figure 17  The normal probability plot of the Box-Cox transformation data of the  

                   %Dev of Heuristic-3 from table 36 

 

 

Normal probability plots on figures 14, 15 and 16 show that all sets of 

transformed data are not normal distributed so that all data sets will be analyzed by 

using nonparametric statistics.  The Kruskal-Wallis test is used for analyzing the data 

sets on figures 11, 12 and 13 for 3 treatments of Heuristic-1, Heuristic-2 and Heuristic-

3 (k = 3) and 30 replications (ni = 30 and N = 90).  The result from Minitab is shown 

as follows. 

 

 

 

 

 

 

 

 

 

 

Figure 18  The Kruskal-Wallis test of the %Dev for all 3 heuristics 

 

Kruskal-Wallis Test: %Dev versus Heu- 
 
Kruskal-Wallis Test on %Dev     
 
Heu-        N    Median    Ave Rank         Z 
1          30  4.00E+00        45.3     -0.05 
2          30  6.26E+00        52.7      1.85 
3          30  0.00E+00        38.5     -1.80 
Overall    90                  45.5 
 

H = 4.44  DF = 2  P = 0.108 
H = 4.78  DF = 2  P = 0.092 (adjusted for ties) 
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If the type I error of α = 0.05 is specified, then the result of from the Kruskal-Wallis 

test provides P-value = 0.092 > 0.05.  The H0:  µHeuristic-1 = µHeuristic-2 = µHeuristic-3 

cannot be rejected and can be concluded base on the inference statistics that the 

average value of the %Dev of each alternative selection heuristic is not significantly 

different.    

 

According to the results, all heuristics will be used appropriately for solving 

the large scale problem because the IP problem may requires too much memory and 

take too much time than solving the regular assignment problem with some heuristics 

of alternative selection.  From the result on table 36, there are some cases that having 

much %Dev such as the tested problem No.22 of Heuristic-3, which has the %Dev of 

64.815.  The heuristic for improving the alternative selection heuristic is applied. The 

same 30 tested problems on table 33, 34 and 35 are used to verify the quality of 

solutions for the heuristic of alternative selection improvement heuristics by 

considering the deviation of solutions.   

 

Let consider the tested problems on tables 33, 34 and 35 that have the 

deviation value grater than zero such as case numbers 2, 4, 5, and so on. The 

alternative selection improvement heuristic is applied and the results of solutions of 

the deviation of alternative selection heuristics, the deviation of alternative selection 

improvement heuristic solutions (Imp. Heu) and the IP solutions (IP Sol.) are shown as 

follows. 
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Table 38  The result of alternative selection improvement for Heuristic-1 

 

No. IP Sol. Alt. Sel. Heu-1 Sol. Dev Alt. Sel. %Dev Imp. Heu Dev Alt. Sel. Iterations
1 74 3.1,6.1 76 2 3.2,6.1 2.7027 74 0  3.1,6.1  2 
2 99 3.3,6.2 110 11 3.2,6.2 11.1111 99 0 3.3,6.2 2 
3 138 3.2,6.2 144 6 3.2,6.1 4.34783 138 0 3.2,6.2 3 
4 138 3.1,6.2 218 80 3.2,6.1 57.971 138 0 3.1,6.2 2 
5 109 3.1,6.2 121 12 3.3,6.2 11.0092 109 0 3.1,6.2 3 
6 98 3.2,6.1 98 0 3.2,6.1 0     
7 148 3.2,6.1 172 24 3.3,6.1 16.2162 148 0 3.2,6.1 2 
8 71 3.3,6.1 76 5 3.2,6.1 7.04225 71 0 3.3,6.1 2 
9 72 3.2,6.1 100 28 3.3,6.1 38.8889 72 0 3.2,6.1 3 

10 83 3.3,6.1 105 22 3.3,6.2 26.506 83 0 3.3,6.1 3 
11 129 3.1,6.2 129 0 3.1,6.2 0     
12 81 3.3,6.2 97 16 3.3,6.1 19.7531 81 0 3.3,6.2 3 
13 60 3.2,6.1 60 0 3.2,6.1 0     
14 77 3.2,6.1 88 11 3.3,6.1 14.2857 77 0 3.2,6.1 3 
15 95 3.1,6.2 95 0 3.1,6.2 0     
16 127 3.2,6.1 133 6 3.1,6.1 4.72441 127 0 3.2,6.1 2 
17 68 3.1,6.1 79 11 3.3,6.1 16.1765 68 0 3.1,6.1 2 
18 146 3.1,6.1 154 8 3.2,6.2 5.47945 146 0 3.1,6.1 2 
19 82 3.3,6.1 85 3 3.2,6.1 3.65854 82 0 3.3,6.1 2 
20 91 3.3,6.1 94 3 3.2,6.1 3.2967 91 0 3.3,6.1 2 
21 104 3.1,6.1 104 0 3.1,6.1 0     
22 54 3.1,6.1 54 0 3.1,6.1 0     
23 143 3.1,6.2 143 0 3.1,6.2 0     
24 67 3.1,6.2 111 44 3.2,6.2 65.6716 67 0 3.1,6.2 2 
25 72 3.1,6.1 72 0 3.1,6.1 0     
26 122 3.2,6.1 139 17 3.3,6.2 13.9344 122 0 3.2,6.1 3 
27 111 3.1,6.1 111 0 3.1,6.1 0     
28 65 3.2,6.1 65 0 3.2,6.1 0     
29 98 3.1,6.2 98 0 3.1,6.2 0     
30 217 3.1,6.2 217 0 3.1,6.2 0     
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Table 39  The result of alternative selection improvement for Heuristic-2 

 

No. IP Sol. Alt. Sel. Heu-2 Dev Alt. Sel. %Dev Imp. Heu Dev Alt. Sel. Iteration
1 74 3.1,6.1 74 0 3.1,6.1 0     
2 99 3.3,6.2 110 11 3.2,6.2 11.1111 99 0 3.3,6.2 2 
3 138 3.2,6.2 144 6 3.2,6.1 4.34783 138 0 3.2,6.2 3 
4 138 3.1,6.2 152 14 3.1,6.1 10.1449 138 0 3.1,6.2 2 
5 109 3.1,6.2 143 34 3.3,6.2 31.1927 109 0 3.1,6.2 3 
6 98 3.2,6.1 98 0 3.2,6.1 0     
7 148 3.2,6.1 148 0 3.2,6.1 0     
8 71 3.3,6.1 76 5 3.2,6.1 7.04225 71 0 3.3,6.1 2 
9 72 3.2,6.1 97 25 3.1,6.1 34.7222 72 0 3.2,6.1 2 

10 83 3.3,6.1 126 43 3.2,6.1 51.8072 83 0 3.3,6.1 2 
11 129 3.1,6.2 129 0 3.1,6.2 0     
12 81 3.3,6.2 97 16 3.3,6.1 19.7531 81 0 3.3,6.2 3 
13 60 3.2,6.1 63 3 3.1,6.1 5 60 0 3.2,6.1 2 
14 77 3.2,6.1 122 45 3.2,6.2 58.4416 77 0 3.2,6.1 3 
15 95 3.1,6.2 95 0 3.1,6.2 0     
16 127 3.2,6.1 133 6 3.1,6.1 4.72441 127 0 3.2,6.1 2 
17 68 3.1,6.1 89 21 3.1,6.2 30.8824 68 0 3.1,6.1 3 
18 146 3.1,6.1 154 8 3.2,6.2 5.47945 146 0 3.1,6.1 3 
19 82 3.3,6.1 106 24 3.1,6.1 29.2683 82 0 3.3,6.1 3 
20 91 3.3,6.1 94 3 3.2,6.1 3.2967 91 0 3.3,6.1 2 
21 104 3.1,6.1 120 16 3.1,6.2 15.3846 104 0 3.1,6.1 2 
22 54 3.1,6.1 91 37 3.2,6.2 68.5185 54 0 3.1,6.1 2 
23 143 3.1,6.2 149 6 3.3,6.2 4.1958 143 0 3.1,6.2 2 
24 67 3.1,6.2 67 0 3.1,6.2 0     
25 72 3.1,6.1 72 0 3.1,6.1 0     
26 122 3.2,6.1 160 38 3.2,6.2 31.1475 122 0 3.2,6.1 3 
27 111 3.1,6.1 111 0 3.1,6.1 0     
28 65 3.2,6.1 65 0 3.2,6.1 0     
29 98 3.1,6.2 98 0 3.1,6.2 0     
30 217 3.1,6.2 249 32 3.2,6.1 14.7465 217 0 3.1,6.2 2 
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Table 40  The result of alternative selection improvement for Heuristic-3 

 

No. IP Sol. Alt. Sel. Heu-3 Dev Alt. Sel. %Dev Imp. Heu Dev Alt. Sel. Iteration
1 74 3.1,6.1 74 0 3.1,6.1 0         
2 99 3.3,6.2 110 11 3.2,6.2 11.1111 99 0 3.3,6.2 2 
3 138 3.2,6.2 138 0 3.2,6.2 0         
4 138 3.1,6.2 152 14 3.1,6.1 10.1449 138 0 3.1,6.2 3 
5 109 3.1,6.2 121 12 3.3,6.2 11.0091 109 0 3.1,6.2 3 
6 98 3.2,6.1 98 0 3.2,6.1 0         
7 148 3.2,6.1 164 16 3.1,6.1 10.8108 148 0 3.2,6.1 3 
8 71 3.3,6.1 104 33 3.2,6.1 46.4788 71 0 3.3,6.1 2 
9 72 3.2,6.1 72 0 3.2,6.1 0         

10 83 3.3,6.1 105 22 3.3,6.2 26.5060 83 0 3.3,6.1 3 
11 129 3.1,6.2 129 0 3.1,6.2 0         
12 81 3.3,6.2 81 0 3.3,6.2 0         
13 60 3.2,6.1 63 3 3.1,6.1 5 60 0 3.2,6.1 2 
14 77 3.2,6.1 88 11 3.3,6.1 14.2857 77 0 3.2,6.1 3 
15 95 3.1,6.2 95 0 3.1,6.2 0         
16 127 3.2,6.1 133 6 3.1,6.1 4.72440 127 0 3.2,6.1 2 
17 68 3.1,6.1 68 0 3.1,6.1 0         
18 146 3.1,6.1 152 6 3.1,6.2 4.1095 146 0 3.1,6.1 3 
19 82 3.3,6.1 85 3 3.2,6.1 3.6585 82 0 3.3,6.1 2 
20 91 3.3,6.1 91 0 3.3,6.1 0         
21 104 3.1,6.1 104 0 3.1,6.1 0         
22 54 3.1,6.1 89 35 3.2,6.1 64.8148 54 0 3.1,6.1 2 
23 143 3.1,6.2 143 0 3.1,6.2 0         
24 67 3.1,6.2 67 0 3.1,6.2 0         
25 72 3.1,6.1 72 0 3.1,6.1 0         
26 122 3.2,6.1 139 17 3.3,6.2 13.9344 122 0 3.2,6.1 2 
27 111 3.1,6.1 111 0 3.1,6.1 0         
28 65 3.2,6.1 77 12 3.3,6.1 18.4615 65 0 3.2,6.1 2 
29 98 3.1,6.2 98 0 3.1,6.2 0         
30 217 3.1,6.2 217 0 3.1,6.2 0         

 

The results from table 38, 39 and 40 show all heuristics of improving 

alternative selection can be performed well for all tested problems.  All heuristics can 

provide the same solution as the IP model.  For example, when consider tested 

problem No.2, the alternative selection Heuristic-3 provide the solution with the 

deviation of 11 units from the IP solution and then the result of alternative selection 

improvement heuristic shows that the solution is 99 units, which equal to the IP 

solution.  The deviation becomes zero on the iteration 2 of running. The heuristic of 

alternative selection improvement appropriates for solving the lower bound of 

AGVsp-P/D with all alternative selection heuristics. 
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According to the experimental results, the hypothesis is to test whether the 

mean values of the %Dev of the solutions from the different alternative selection 

heuristics with the alternative selection improvement heuristic are equal or not.  The 

hypothesis can be formally stated as:  

 H0:  µHeuristic-1+Imp = µHeuristic-2+Imp = µHeuristic-3+Imp (µ1 = µ2 = µ3) 

 H1:  µ i ≠ µ j for at least one pair of all i, j, where i, j = 1, 2 and 3 

 

The data sets of the number of iterations from tables 38, 39 and 40 are not the 

normally distributed obviously, because the data are discrete numbers.  The data set 

will be analyzed by using the nonparametric statistics.  The Kruskal-Wallis test is used 

for analyzing data sets of the numbers of iterations from tables 38, 39 and 40 for 3 

treatments of all heuristics (k = 3) and 30 replications (ni = 30 and N = 90).  The result 

from Minitab is showed as follows. 

 

 

 

 

 

 

 

 

 

 

Figure 19  The Kruskal-Wallis test of the %Dev for all 3 heuristics with the  

                   alternatives selection improvement heuristic 

 

If a type I error of α = 0.05, the results provide P-value = 0.382 which is > 0.05.  The 

H0:  µHeuristic-1+Imp = µHeuristic-2+Imp = µHeuristic-3+Imp cannot be rejected and can be 

concluded base on the inference statistics that all 3 alternative selection heuristics with 

the alternative selection improvement heuristic are not different significantly.    

Kruskal-Wallis Test: No. of Iteration versus Heu- 
 
Kruskal-Wallis Test on No. of I 
 
Heu-        N    Median    Ave Rank         Z 
1          30  2.00E+00        46.3      0.20 
2          30  2.00E+00        49.4      1.01 
3          30  0.00E+00        40.8     -1.21 
Overall    90                  45.5 
 
H = 1.68  DF = 2  P = 0.432 
H = 1.92  DF = 2  P = 0.382 (adjusted for ties) 
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3. The results of solving the single TSP tour of the AGVsp-P/D using the modified  

     Eastman’s algorithm 

 

The research attempts to implement the modified Eastman’s algorithm for the 

TSP with lower the bound model of assignment problems with alternative P/D nodes 

on MATLAB 7.  The 40 simulated problems with 10, 20, 30, 40, and 50 nodes, which 

consist of one job of 2 alternatives, one job of 3 alternatives and some regular jobs, are 

generated randomly.  The running time of solving the single TSP tour of AGVsp-P/D, 

using the modified Eastman’s algorithm, of the simulated problems are shown on table 

41 and compared with the running time of solving the regular assignment problem 

with 10, 20, 30, 40, and 50 jobs, shown on table 42. 
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Table 41  The running time in second of solving the TSP tour of AGVsp-P/D 

 

 

 

 

 

Problem No. 10 nodes 20 nodes 30 nodes 40 nodes 50 nodes 
1 1.693 14.436 66.797 231.027 766.072 
2 3.335 14.641 137.112 247.091 639.657 
3 1.808 14.026 67.063 5.240 636.986 
4 1.856 13.612 207.756 235.259 712.353 
5 0.258 57.574 352.885 241.898 704.137 
6 1.877 27.765 62.591 214.908 701.258 
7 1.828 0.739 328.193 225.427 647.43 
8 1.651 0.713 69.698 224.664 656.990 
9 3.392 0.7111 79.219 219.988 668.780 

10 1.682 14.103 69.182 6.183 734.886 
11 0.226 55.339 134.911 241.618 734.411 
12 0.262 16.011 67.598 719.097 744.121 
13 0.283 27.951 304.586 204.507 679.370 
14 1.825 14.284 73.322 236.092 642.580 
15 1.859 13.929 80.206 425.945 637.226 
16 0.298 14.475 73.39 474.657 639.772 
17 1.832 13.888 76.527 231.260 708.768 
18 1.698 15.442 65.905 237.361 711.008 
19 0.307 15.025 64.765 224.364 712.425 
20 1.692 0.769 64.591 252.56 657.413 
21 1.747 30.800 70.174 226.488 636.859 
22 1.674 28.348 71.670 236.647 732.089 
23 1.740 0.792 114.147 231.182 647.651 
24 0.284 13.745 64.398 246.789 676.477 
25 0.285 32.151 69.559 5.246 732.258 
26 0.263 13.072 70.199 235.618 734.277 
27 1.757 65.791 2.161 261.750 732.742 
28 0.237 13.280 78.426 237.382 673.567 
29 1.652 58.381 72.749 255.169 640.159 
30 0.211 13.693 75.813 205.515 625.663 
31 0.290 41.085 65.514 266.024 629.462 
32 1.719 14.342 64.394 6.832 625.209 
33 1.731 14.264 64.568 266.383 702.128 
34 1.717 56.760 69.746 787.577 681.357 
35 0.229 0.721 71.241 232.691 682.662 
36 1.713 0.672 113.415 246.183 771.671 
37 0.314 13.932 64.098 426.096 764.973 
38 1.796 14.332 69.131 475.67 770.507 
39 1.841 14.932 70.087 230.799 708.948 
40 0.198 53.106 2.160 235.654 647.383 
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Table 42  The comparison of the running time in second of solving the single TSP  

                 tour and the regular assignment problem 

 

Size Levels Statistics  Assignment TSP Tour 
    Problem Problem 
  Mean 0.2186975 1.2765 

10 nodes S.D. 0.031660438 0.870312 
  Min 0.161 0.198 
  Max 0.282 3.392 
  Mean 0.681025 20.9908 

20 nodes S.D. 0.04663084 18.14552 
  Min 0.558 0.672 
  Max 0.778 65.791 
  Mean 2.1654 94.74868 

30 nodes S.D. 0.152020545 74.87147 
  Min 1.963 2.16 
  Max 2.655 352.885 
  Mean 5.478875 260.371 

40 nodes S.D. 0.318063144 153.5101 
  Min 4.678 5.24 
  Max 5.976 787.577 
  Mean 12.4137 688.7921 

50 nodes S.D. 0.999490388 45.38168 
  Min 10.499 625.209 
  Max 14.656 771.671 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20  The graph of running time in second of solving the single TSP tour of the  

                   AGVsp- P/D  
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 Consider the graph on figure 20, the graph shows that the running time of 

solving the single TSP tour of the AGVsp-P/D increases dramatically when the 

number of AGVs is increased.  This result shows that the heuristic can be used to 

solve the case of single AGVsp-P/D. 

 

4. Results of solving the multi AGVsp-P/D  

 

 This part of the experiment of solving multi AGVsp-P/D using the heuristic of 

solving the MTSP as the standard TSP is performed.  The solution of multi AGVsp-

P/D is the sets of multi TSP tours.   The heuristic is programmed on MATLAB 7.0.  

The 50 simulated problems with 10, 20, 30, 40, and 50 nodes, which consist of one job 

of 2 alternatives, one job of 3 alternatives and some regular jobs for all cases of single 

AGV (M = 1),  2 AGVs (M = 2) and 3 AGV (M = 3) are generated randomly.  The 

data sets of running time of solving the multi AGVsp-P/D by considering only the 

calculation time, not include the problem set up time, are shown on table 43, 45 and 47.   

 

According to this experiment, the main purpose is to examine that whether the 

increasing of the number of AGVs affects on the average running time of solving the 

multi AGVsp-P/D or not.  The hypothesis test will be examined after all experiments 

done  
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Table 43  The running time in second of 10 nodes MTSP for the multi AGVsp-P/D 

 

 Problem No.   10 nodes   
 M = 1 M = 2 M = 3 

1 0.5781 0.4963 0.3187 
2 1.3044 0.4534 1.3768 
3 0.245 0.5547 0.2213 
4 0.2081 0.2613 0.3131 
5 0.8105 0.3016 0.6008 
6 1.2781 0.844 2.0474 
7 0.223 0.4001 1.026 
8 0.4473 0.6251 0.9685 
9 0.2722 3.6764 0.6313 

10 0.8397 0.4283 0.4077 
11 1.1375 0.4061 0.7901 
12 0.2273 1.7481 0.2893 
13 0.1793 0.3521 0.7662 
14 0.470 0.4544 0.5212 
15 0.9578 0.364 0.9125 
16 0.25105 0.238 0.9261 
17 0.6137 0.3895 0.4226 
18 0.7162 0.6538 0.7331 
19 1.122 1.3593 0.5414 
20 0.266 0.2857 2.3444 
21 0.3687 0.4212 1.0174 
22 0.473 0.272 1.0084 
23 0.2933 0.4277 2.5028 
24 1.0118 0.3127 0.2272 
25 0.4057 0.4355 0.8508 
26 0.1926 1.598 0.7059 
27 1.3251 0.2247 0.7774 
28 0.6122 0.2395 2.2004 
29 0.2553 0.375 1.1827 
30 0.2766 3.846 0.5311 
31 0.516 0.2879 0.403 
32 0.7142 1.756 0.2493 
33 0.2956 0.8841 0.8959 
34 0.208 0.6551 0.8793 
35 0.6997 0.3407 0.4914 
36 0.3625 0.4416 4.081 
37 0.2044 0.7505 0.7278 
38 0.3185 0.8979 0.302 
39 0.5303 0.5229 1.9412 
40 0.5628 0.773 0.4439 
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Table 43  (Continued) 

 

 Problem No.  10 nodes  
 M = 1 M = 2 M = 3 

41 0.3808 0.698 0.5543 
42 0.258 0.6145 0.3318 
43 0.3888 0.889 3.0799 
44 0.259 0.6725 0.7411 
45 0.506 1.2406 0.8989 
46 0.2321 0.7288 1.071 
47 0.2642 0.823 1.9991 
48 0.4068 0.3143 0.498 
49 0.3919 0.8437 2.5709 
50 0.536 0.1283 1.134 

 

Table 44  The summary of 10 nodes MTSP for the multi AGVsp-P/D 
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Figure 21  The graph of the average running time in second of 10 nodes MTSP 

 

 

 

    10 nodes  
 M  = 0 M  = 1 M  = 2 

Mean 0.507943 0.734138 1.009128 
S.D. 0.31895549 0.72995078 0.816217924 
Min 0.1793 0.1283 0.2213 
Max 1.3251 3.846 4.081 
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Table 45  The running time in second of 20 nodes MTSP for the multi AGVsp-P/D 

 

 

 

 

 Problem No.    20 nodes   
 M = 1 M = 2 M = 3 

1 7.2711 1.4687 10.4991 
2 5.3215 4.666 1.4812 
3 0.6562 9.2695 4.9078 
4 2.4304 7.9018 9.1667 
5 1.6493 10.6857 4.6736 
6 1.2746 1.3451 1.4609 
7 2.2308 8.7386 9.7711 
8 9.3824 5.4041 1.4887 
9 3.9393 2.3899 9.8529 

10 2.9384 31.7611 5.4141 
11 1.9332 3.9518 0.8323 
12 8.9992 15.4405 6.7089 
13 6.9871 1.296 27.2017 
14 20.3591 2.1797 19.8646 
15 1.1316 4.7616 6.8771 
16 21.499 2.6524 57.4077 
17 7.4028 7.9937 7.7732 
18 1.2898 4.4645 25.7845 
19 6.4044 4.7286 6.7818 
20 5.7406 25.9307 20.7878 
21 3.406 4.2891 0.8185 
22 3.5275 13.9361 11.7984 
23 2.284 2.0237 13.7122 
24 0.653 13.2995 12.4737 
25 1.3032 11.3131 5.241 
26 1.1372 17.0743 5.1957 
27 24.5203 12.4049 4.4442 
28 2.6884 7.6847 6.9935 
29 2.662 10.4358 7.4455 
30 1.7965 8.6316 17.0687 
31 1.2876 45.5607 8.242 
32 7.5661 13.0314 4.9419 
33 3.0469 5.3899 0.7621 
34 1.7372 14.5202 14.315 
35 13.2586 12.085 11.0408 
36 7.1424 4.5083 3.7207 
37 8.8102 6.4901 12.2831 
38 27.3407 7.4976 19.7948 
39 3.8289 41.4066 0.8236 
40 1.363 4.8039 8.2879 
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Table 45  (Continued) 

 

 Problem No.  20 nodes  
 M = 1 M = 2 M = 3 

41 23.9681 1.3514 23.1394 
42 1.7786 11.9583 18.5901 
43 2.2326 2.8668 4.8258 
44 7.5768 9.2478 14.582 
45 2.5632 21.5848 28.713 
46 1.3223 2.5375 39.9687 
47 15.2526 4.4379 26.2798 
48 4.7328 7.7225 8.5443 
49 12.6934 2.7995 6.5797 
50 5.1685 10.4343 8.324 

 

Table 46  The summary of 20 nodes MTSP for the multi AGVsp-P/D 
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Figure 22  The graph of the average running time in second of 20 nodes MTSP 

 

 

    20 nodes  
 M  = 1 M  = 2 M  = 3 

Mean 6.309788 9.767146 11.753716 
S.D. 6.76525129 9.38018444 10.7872062 
Min 0.653 1.296 0.7621 
Max 27.3407 45.5607 57.4077 
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Table 47  The running time in second of 30 nodes MTSP for the multi AGVsp-P/D 

 

 

 

 

 Problem No.    30 nodes   
 M = 1 M = 2 M = 3 

1 14.468 25.7828 33.311 
2 96.8074 31.2256 11.646 
3 17.1893 133.2994 81.8107 
4 136.9473 10.0478 28.5088 
5 102.1074 33.8301 5.4162 
6 22.7224 16.1166 178.181 
7 42.1609 43.8518 18.4791 
8 54.9581 40.2743 31.0544 
9 23.0809 16.9561 19.5557 

10 61.138 20.6118 12.8187 
11 24.7432 78.939 71.4472 
12 32.4986 14.7052 89.8392 
13 75.8807 34.8351 84.0734 
14 23.8733 46.0669 138.6934 
15 14.4361 174.4891 30.6783 
16 10.9639 46.729 82.247 
17 129.4007 21.0921 14.3649 
18 4.0006 39.324 42.9922 
19 62.6249 96.6452 26.1129 
20 27.143 17.8762 47.5797 
21 65.4614 33.1484 6.8357 
22 29.9751 24.1449 23.0791 
23 28.8981 28.4337 8.9306 
24 11.624 22.0013 51.8817 
25 13.7934 43.0344 65.8268 
26 25.5864 50.598 25.8491 
27 14.9759 68.6874 163.0203 
28 7.876 24.099 24.2744 
29 74.7315 27.4172 27.8802 
30 6.5012 26.2887 25.8394 
31 43.0726 90.2681 94.7307 
32 12.4687 14.7459 59.423 
33 155.261 52.2774 66.3459 
34 10.0452 42.5896 30.3738 
35 6.1793 102.03667 10.0852 
36 23.533 19.4913 26.7812 
37 6.7356 2.2572 94.643 
38 26.025 14.2288 117.7158 
39 28.208 58.6066 20.4345 
40 35.1858 32.0658 27.4943 
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Table 47  (Continued) 

 

 Problem No.  30 nodes  
 M = 1 M = 2 M = 3 

41 37.3528 19.2568 31.293 
42 19.916 2.1943 41.5333 
43 10.3684 36.4643 62.6321 
44 6.0149 4.5291 35.7456 
45 10.421 63.5197 42.5076 
46 32.1945 141.0189 15.1661 
47 16.7367 29.7821 81.5883 
48 127.6941 93.0225 28.6096 
49 37.7534 69.2408 96.3396 
50 5.4234 38.6061 76.6012 

 

Table 48  The summary of 30 nodes MTSP for the multi AGVsp-P/D 
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Figure 23 The graph of the average running time in second of 30 nodes MTSP 

 

 

 

  30 nodes  
 M  = 1 M  = 2 M  = 3 

Mean 38.143142 44.3350614 50.645418 
S.D. 37.5907785 36.4018846 40.0213276 
Min 4.0006 2.1943 5.4162 
Max 155.261 174.4891 178.181 
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According to the experimental results, the hypothesis is to test whether the 

mean values of the running time from solving the multi AGVsp-P/D of the different 

number of AGVs are equal or not.  The hypothesis can be formally stated as:  

 H0:  µ M=1 = µ M=2 = µ M=3 (µ1 = µ2 = µ3) 

 H1:  µ i ≠ µ j for at least one pair of all i, j, where i, j = 1, 2 and 3 

 

 Let consider experiments of M = 1, M = 2 and M = 3 of 30 nodes simulated 

problems with 50 replications and the type I error of α = 0.05.  The normal probability 

plots of data sets on table 47 are performed as follow. 
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Figure 24  The normal probability plot of the average running time of M =1  

                   from table 47 
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Average: 44.3351
StDev: 36.4019
N: 50

Anderson-Darling Normality Test
A-Squared: 2.716
P-Value:   0.000
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Figure 25  The normal probability plot of the average running time of M =2  

                   from table 47 
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Figure 26  The normal probability plot of the average running time of M =3  

                   from table 47 

 

The normal probability plots show that all data sets of table 47 are not 

normally distributed.  The Box-Cox transformation function in Minitab is used to 

transform all data sets from experimental results.   All data sets of table 47 are 

transformed, which are M = 1-Trans, M = 2-Trans and M = 3-Trans, shown on table 49.  

The normality tests by normal probability plots are performed, which are shown on 

figures 27, 28 and 29 as follows. 
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Table 49  The data set from Box-Cox transformation of table 47 

 

 

 

 

 

    Problem No.   30 nodes   
 M = 1-Trans M = 2-Trans M = 3-Trans 
1 0.739668 2.07227 1.48538 
2 0.596858 2.16321 1.31925 
3 0.725420 2.99521 1.64391 
4 0.573944 1.67758 1.45951 
5 0.593279 2.20241 1.21005 
6 0.702929 1.86506 1.79486 
7 0.655561 2.33434 1.38982 
8 0.636240 2.29022 1.47367 
9 0.701688 1.88642 1.39873 

10 0.628634 1.97083 1.33362 
11 0.696202 2.66323 1.61897 
12 0.675105 1.82713 1.66137 
13 0.613492 2.21692 1.64898 
14 0.699020 2.36028 1.74482 
15 0.739852 3.18161 1.47165 
16 0.763185 2.36784 1.64490 
17 0.577627 1.98104 1.35087 
18 0.855154 2.27799 1.52878 
19 0.626931 2.78686 1.44513 
20 0.688966 1.90890 1.54637 
21 0.623805 2.19238 1.24226 
22 0.681292 2.04200 1.42512 
23 0.684112 2.11825 1.28031 
24 0.758166 1.99987 1.56155 
25 0.743665 2.32452 1.60407 
26 0.693574 2.41046 1.44347 
27 0.736793 2.58145 1.77694 
28 0.792216 2.04113 1.43327 
29 0.614550 2.10103 1.45585 
30 0.809554 2.08132 1.44341 
31 0.653981 2.74453 1.67134 
32 0.752188 1.82826 1.58565 
33 0.565871 2.42817 1.60550 
34 0.770760 2.31911 1.46999 
35 0.814207 2.82099 1.29800 
36 0.700153 1.94629 1.44925 
37 0.806324 1.20027 1.67117 
38 0.692245 1.81369 1.71283 
39 0.685980 2.49119 1.40568 
40 0.669079 2.17612 1.45356 



 125

Table 49  (Continued) 

 

 Problem No.  30 nodes  
 M = 1-Trans M = 2-Trans M = 3-Trans 

41 0.664582 1.94101 1.47494 
42 0.713465 1.19268 1.52283 
43 0.768011 2.23976 1.59509 
44 0.816689 1.40311 1.49726 
45 0.767572 2.53657 1.52682 
46 0.675822 3.03326 1.35917 
47 0.727608 2.14037 1.64341 
48 0.578494 2.76309 1.46010 
49 0.663782 2.58609 1.67452 
50 0.826286 2.26860 1.63175 

 

 

Average: 0.698812
StDev: 0.0730298
N: 50

Anderson-Darling Normality Test
A-Squared: 0.229
P-Value:   0.801
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Figure 27  The normal probability plot of Box-Cox transformation data of  

                     M = 1 from table 49 

 



 126

Average: 2.21590
StDev: 0.418101
N: 50

Anderson-Darling Normality Test
A-Squared: 0.397
P-Value:   0.357
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Figure 28  The normal probability plot of Box-Cox transformation data of  

                     M = 2 from table 49 

 

 

Average: 1.51092
StDev: 0.138970
N: 50

Anderson-Darling Normality Test
A-Squared: 0.370
P-Value:   0.412

1.2 1.3 1.4 1.5 1.6 1.7 1.8

.001

.01

.05

.20

.50

.80

.95

.99

.999

P
ro

ba
bi

lit
y

m=3_Trans

Normal Probability Plot

 
Figure 29  The normal probability plot of Box-Cox transformation data of  

                     M = 3 from table 49 

 

The normal probability plots on figures 27, 28 and 29 show all transformed data sets 

are normally distributed.   According to this point, all data sets of table 49 on figures 

27, 28 and 29 can be used to perform the hypothesis test by using regular statistic 

methods.  The ANOVA is used for analyzing the transformed data set of table 49 for 3 

treatments, which are M = 1-Trans, M = 2-Trans and M = 3-Trans, (k = 3) and 50 
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experiments (ni = 50 and N = 150), that implies the analysis of original data set.  The 

ANOVA table is shown as follows. 

 

Table 50  The ANOVA table of the data set on table 49 

 

 

Source of Sum of  Degree of Mean F statistic 

Variation Squares Freedom Squares  (f0) 

Treatment 57.63443 2 28.8172149 433.441717 
Error 9.773242 147 0.06648464  
Total 67.40767 149   

 

If the type I error of α = 0.05 is specified, the result from the ANOVA table provides 

the value of f0 = 433.441.  From the statistical table of F distribution, the value of f 0.05, 

v1, v2 of this ANOVA is  f 0.05, 2, 147 = 3.057.  The result of the ANOVA is f0 >f 0.05, 2, 147.  

Therefore, the H0:  µ M=1 = µ M=2 = µ M=3 (µ1 = µ2 = µ3)can be rejected (f0 >f 0.05, 2, 147) 

and can conclude base on the inference statistics that the different number of AGVs 

affects on the mean value of the running time of solving multi AGVsp-P/D.   

 

The results show that the mean values of the running time of solving the multi 

AGVsp-P/D with the different numbers of AGVs are not equal, at the type I error α = 

0.05, because this heuristic solves the MTSP as solving the standard TSP with the 

additional dummy rows and columns. According to this point, this heuristic can be 

used to solve the multi AGVsp-P/D with the specific number of AGVs.  
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5.  The result of the heuristic of splitting the single TSP tour for solving  

      the multi AGVsp-P/D 

 

 From the previous section, when the number of AGVs is increased, the average 

running time of solving multi AGVsp-P/D increases.  If the larger problem of AGVsp-

P/D with a lot of AGVs (vehicles) is considered, it may take a lot of computational 

time and memory to solve the problem.  The large numbers of AGVs (M) may cause 

the running out of memory of MATLAB 7.0.  The heuristic of splitting the single TSP 

tour is used for solving the lower bound solution of multi AGVsp-P/D.  The lower 

bound of multi AGVsp-P/D solutions is the sets of multi tours, not multi TSP tours.  

The 30 simulated problems with 10 nodes, which consist of one job of 2 alternatives, 

one job of 3 alternatives and 5 regular jobs are generated randomly for the cases of 2 

AGVs (M =2). The solution of M TSP tours from solving the MTSP as the standard 

TSP and the solutions of M tours from the heuristic of splitting a single TSP tour are 

compare.  The %Dev of the solutions from both methods is examined as follows. 
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Table 51  The solutions of multi tours from the heuristic of splitting a TSP tour  

                 (Spliting TSP Heu) and the solutions of multi TSP tours from the heuristic of  

                  solving MTSP as a standard TSP(MTSP Heu)   

 

No. MTSP Heu Spliting TSP Heu Dev %Dev 
1 152 236 84 55.263 
2 96 169 73 76.042 
3 170 223 53 31.176 
4 165 221 56 33.939 
5 96 157 61 63.542 
6 102 102 0 0.000 
7 177 225 48 27.119 
8 168 226 58 34.524 
9 155 198 43 27.742 

10 170 239 69 40.588 
11 119 177 58 48.739 
12 178 190 12 6.742 
13 135 168 33 24.444 
14 142 185 43 30.282 
15 219 234 15 6.849 
16 134 156 22 16.418 
17 195 288 93 47.692 
18 138 179 41 29.710 
19 164 198 34 20.732 
20 171 213 42 24.561 
21 119 170 51 42.857 
22 178 210 32 17.978 
23 135 214 79 58.519 
24 142 185 43 30.282 
25 219 236 17 7.763 
26 134 156 22 16.418 
27 155 224 69 44.516 
28 74 87 13 17.568 
29 171 213 42 24.561 
30 132 203 71 53.788 

 

Table 52  The statistical summary of table 51 

 

 

 

 MTSP Heu Spliting TSP Heu   Dev %Dev 
Mean 150.167 196.067 45.900 32.012 
S.D. 34.097 40.914 23.307 18.251 
Min 74.000 87.000 0.000 0.000 
Max 219.000 288.000 93.000 76.042 
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From the result, the splitting heuristic can be used to form the multi tours for M 

AGVs from the single TSP tour of the single AGV.  The % deviation of the splitting 

TSP Heu and MTSP Heu solutions show that the solutions of Spliting TSP Heu 

deviate so much, about 32% on the average, from the MTSP Heu, but the Spliting TSP 

Heu can generate the feasible solution easily and quickly for the large AGVsp-P/D 

systems with the large number of AGVs.  

 

Results Analysis Based on the Tested Problem  

 

This section presents the analysis of experimental results based on all results of 

all tested problems.   The analysis will be conducted following the sequences, which 

are 1. analysis of the lower bound solution of AGVsp-P/D by integer programming, 2. 

analysis of the lower bound solution of AGVsp-P/D by alternative selection heuristics, 

3. analysis of results of solving the single TSP tour of the AGVsp-P/D by the modified 

Eastman’s algorithm, and 4. analysis of results of solving the multi AGVsp-P/D. 

 

1.  Analysis of the lower bound solution of AGVsp-P/D by integer programming 

 

 Recall table 32, it is the statistical summary of the running time in seconds of 

the lower bound solution of the AGVsp-P/D and figure 6, which is the graph of table 

32.  The analysis of this section is based on the 40 generated problems.  The result of 

the average running time of all cases, which are assignment, 2Al-5 and 2Al-Max 

problems, increases when the numbers of nodes are increased.  The increasing in each 

case is not linearly proportional to the number of nodes, which the trend is much more 

rapidly increasing.   The formulated 0-1 IP of the lower bound model can provide the 

solution well but may required a lot of memory take too much time for the large 

problem.  Based on the experiment of 2Al-Max, the problem size of 50 nodes takes 

50.12 seconds to run by MATLAB 7.0 on average, but for the 30 nodes problems 

takes only 6.61 seconds.  The increasing of the average running time grow rapidly, 

because problems are 0-1 IP model that are solved by branch and bound approach.  

More number of nodes means more variable to solve, which form more branching.  
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When the problem is larger than 50 nodes, the average running time may increase 

dramatically as same as the required memory, which is used to solve the problem.  The 

experiment did not go further more 50 nodes because the MATLAB 7.0 will give the 

warning of “out of MEMORY” on the “bintprog” function. 

 

 Another point of consideration is the number of alternative jobs.  The research 

does the testing on no-alternative jobs (the regular assignment problems), 2Al-5, and 

2Al-Max.  The graph in figure 6 shows that the number of alternative jobs affects so 

much on the increasing of the average running time.  Consider the problems of 50 

nodes of the regular assignment problem, 2Al-5 (five pairs of alternative jobs and 40 

normal jobs) and 2Al-Max (twenty five pairs of alternative jobs and no normal jobs) 

the number of 2 alternative jobs is increased from 0 to 5 jobs and from 5 to 25 jobs.  

The average running time is increased from 12.41 to 13.76 seconds and from 13.76 to 

50.12 seconds.  From the inference statistic, the result expresses the same conclusion 

as the descriptive statistic, which is mentioned previously that the same size of 

problem but with a different number of alternative jobs may provide the different 

average running time.  Because the lower bound model is solved by branch and bound 

approach, more alternative numbers form more branching of alternative selections for 

the same size of problems. 

 

2. Analysis of the lower bound solution of AGVsp-P/D by alternative  

    selection heuristics 

 

 From table 37, the comparison of results of the % deviation (%Dev) of all 

alternatives selection heuristics is analyzed.  From the descriptive statistics show that 

Heuristic-3 provides the minimum value of the %Dev on the average, standard 

deviation of the %Dev and the maximum number of problems, which obtain the 

heuristic solution the same as the IP solution.  Considering the inference statistic, the 

Kruskal-Wallis test shows that all heuristics do not perform differently in term of the 

mean value of the % Dev.  The results of testing shows that all heuristics can be used 

equivalently, but the descriptive statistics shows that the Heuristic-3 is the most 

efficient (based on table 37).  Heuristic-3 provides better solutions than the others on 
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the average but it is also the most complex approach.  The %Dev is the main 

consideration because the research wants to find the solutions from the alternative 

selection heuristics as close as the IP solution of the same problem.  The experiment 

does not mention about the running time of all heuristics because all heuristics are not 

the complicated algorithm and do not take many steps.  When all heuristics are applied, 

the main part of running time will be taken by running the assignment problem, not 

from the methods of alternative selection from heuristics.  It can conclude that all 

heuristics can provide the solutions close to IP solutions by solving the regular 

assignment problems that it is efficiently for the large problem. 

 

There are some cases having too much %Dev and the research attempts to test 

the heuristic for improving the alternative selection heuristics.  The research applies 

the alternative selection improvement heuristic to all alternative selection heuristics 

and considers the improvement of the reduction of the %Dev.  The results show that 

all cases can provide the heuristic solution same as the IP solution after applying the 

alternative selection improvement heuristic to the initial solution from alternative 

selection heuristics, but different number of iterations.  The improvement heuristic is 

the searching heuristic so that some cases may search all possible alternatives.  If the 

initial solution is not the optimum, this heuristic can provides the better solution 

exactly.    

 

3. Analysis of results of solving the single TSP tour of the AGVsp-P/D  

    by the modified Eastman’s algorithm  

 

 When the modified Eastman’s algorithm is applied to the lower bound 

solutions of the AGVsp-P/D, the assignment solutions become the TSP tours.  This 

searching procedure is the branch and bound approach so that the running time 

increases dramatically when the problem size is increased because the 0-1 IP 

subproblems are solved for all branches.  The objective of this experiment is the 

modified Eastman’s algorithm.  The research shows that this algorithm performs well 

but takes quite a lot of computation time and required memory for solving the AGVsp-

P/D using MATLAB 7.0.   
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Now the research found the TSP tour solutions for the AGVsp-P/D by solving 

the 0-1 IP subproblem with the modified Eastman’s algorithm for the TSP.  Table 42 

and figure 20 show that the average running time of the 50 nodes problem is 688.79 

seconds.  This result leads to the conclusion that the average running time will grow 

dramatically and not linear proportion when the number of nodes is inceased.   

 

4. Analysis of the results from solving the multi AGVsp-P/D 

 

This analysis focuses the effect of the running time, when the additional AGVs 

are added to the system of the AGVsp-PD.  Let’s consider the results on table 51 and 

52, the ANOVA of the experiment and the descriptive statistic show that the 

increasing of the number of AGVs affects on the average running time that consider 

only the calculation time.  The average running time of 10 nodes AGVsp-P/D 

increases about 0.3 seconds when the number of AGVs is increased from 2 AGVs to 3 

AGVs, but when the 30 node problems are considered, the running time will be 

increased about 5 seconds.  This algorithm performs adding one node to the problem 

when one additional AGV is added.  The MTSP can be solved as the standard TSP of 

the problem with some additional nodes.  The running time of solving the MTSP does 

not increase much compared to solving the TSP of same problem size.  It can say that 

this algorithm performs well on solving multi AGVsp-P/D and provides the solution, 

which is the set of TSP tours.  If the problem is very large and uses a lot of AGVs, the 

heuristic of splitting the single TSP tour may be used appropriately.  The solution of 

the multi AGVsp-P/D in the form of multi tours, not multi TSP tours, may suitable for 

the large manufacturing system. 
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Discussions 

 

Based on research results, this research accomplishes all research objectives, 

which are studying the problem of single/multi AGVsp-P/D, developing the 

algorithms to solve the problem and creating some computer programs for solving 

single/multi AGVsp-P/D for testing the quality of the model.  This section discusses 

many issues such as the weaknesses of all algorithms of this research on the objective 

s perspective, real world applications of AGVsp-P/D and difficulties on the 

implementation of AGVsp-P/D model. 

 

1. Problem of Single/Multi AGVsp-P/D 

 

This AGVsp-P/D is a special case of TSP in both cases of single and 

multisalesman.  Bases on literature search results, there are not shown any literature 

that explains about the TSP with the special structure of alternative P/D nodes.  The 

research generated the mathematical model for the AGVsp-P/D in the form of 

modified TSP/MTSP.  The generated model can provide a solution in the form of the 

schedule of jobs for the AGV with alternative selection nodes but this model does not 

consider many constraints in the real world.  The assumptions of the static job list and 

fixed plaint layout make the model inflexible for some kinds of product layout 

manufacturing.  Many manufacturing process concepts such as “just in time” or lean 

system may produce response to the changing of demand by minimizing the stock.  

This AGV system that cannot support the dynamic demand provides a poor solution in 

a real production system.  Therefore, the research model appropriates for applying to 

the manufacturing layout in which the product items do different steps in different 

departments with static environments.  Another issue is about the problem size.  The 

generated AGV system in the form of the 0-1 IP lower bound model with modified 

Eastman’s algorithm may take too much time for implementing in the real world 

situations because of the size of problem.  Although the model can provide the 

solutions well, on average, they are suitable for problems of static layout that are not 

larger than 50 nodes.   
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2. The weakness of the model of AGVsp-P/D 

 

There are two weaknesses of the formulated model of AGVsp-P/D, which are 

1. problem size and 2. computation time. 

 

 The first weakness is the problem size.  The current approach uses the 0-1 IP 

approach for forming the mathematical model of AGVsp-P/D.  The research creates 

the heuristics to support the larger problem size.  However, the result still illustrates 

preferences of the IP model because of the obtained solution quality.  The branch and 

bound is used to solve the TSP tour of the AGVsp-P/D by using modified Eastman’s 

algorithm.  Generally, branch and bound approach is an exhaustive search that is used 

to solve the 0-1 IP.  The research use MATLAB 7.0 that has the function to solve the 

0-1 IP.  This software can provide a stable running condition up to about 50 nodes for 

this research model.  Because of the nature of 0-1 IP, the problem takes a lot of 

memory for computing on MATLAB 7.0, which is limited on the regular personal 

computer with 2 GB RAM.  This research uses MATLAB 7.0 because it provides the 

flexibility to program and can run automatically through the algorithms.  For future 

improvement, because the bintprog function of solving 0-1 IP is the main consuming 

of required memory, the way to program the model of AGVsp-P/D should be changed 

by improving the program structure of solving the 0-1 IP without using the binprog 

function to avoid the “out of MEMORY” for extending to support the larger problems. 

 

The second weakness is about the computation time.  The combinatorial nature 

of the TSP/MTSP affects on the computation time of the problem obviously.  Because 

the generated model of the AGVsp-P/D is a special case of the TSP, the increasing of 

running time is not the polynomial function, exactly.  From the results, the model 

takes about 10 minutes, on the average, to solve 50 nodes for the TSP solution of the 

AGVsp-P/D.  For the real implementation, the software for programming the AGVsp-

P/D may be much more powerful than MATLAB 7.0.  The average running time may 

be improved by reprogramming the model on the other software.   
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3.  The application of AGVsp-P/D 

   

In some applications of the regular AGV systems, only few numbers of 

vehicles and jobs are involved.  The aim of the regular AGV scheduling is to dispatch 

a set of AGVs to achieve the goals for a batch of pick up and delivery jobs under the 

certain constraints such as batch size, deadlines, priority and etc.  The goals are 

normally related to the processing time or utilization of resources, such as minimizing 

the total traveling time or distance of all vehicles.  Qiu and Hsu (2002) proposed the 

survey paper of the AGV scheduling.  The paper showed that most of current AGV 

system uses simple scheduling algorithms.  Jobs are usually handled in a first-come-

first-serve (FCFS) fashion, and the nearest idle vehicle is usually chosen to serve a 

next job. When the problem of scheduling of AGVs in the real manufacturing situation 

is different from the conventional path problem such as this AGVsp-P/D, the AGV 

systems still operate under the human monitoring and decision making, not exactly 

automatic. 

 

The AGVsp-P/D model is developed directly under the real manufacturing 

application that is automated materials handling systems.  For example, the AGV 

starts at the recharging depot then goes to pick up its first job at some process station, 

such as pick up the items from a drilling station, and goes to deliver the items at some 

process station, such as a milling station.  Because the factory may have many milling 

stations, the AGV has to select the appropriate milling station for minimizing the total 

traveling distance.  Askin and Standridge (1993) illustrated some examples of 

applications of the AGV system.  Many real world applications descried below are the 

versatilities, which the AGVsp-P/D system can be applied to solve the problem. 

 

            3.1. Satellite signal transferring 

  

       Consider the signal transferring systems, the signal is sent from the ground 

station to the satellite and comes back to the station.  The signal is generated from the 

main controller device and transferred to the ground transition posts having multiple 

routers.  Next, the signal will being into one router that transfers the signal to the next 
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nearest ground transition post until be transferred reaching the satellite transition 

station of the specific satellite.  Then, the signal is sent to the satellite to operate the 

equipments and backs to the main controller device.  On the path of signal traveling, 

there are so many posts and routers to choose in the transferring system.  The first-

come-first-serve (FCFS) fashion, and the nearest idle router may be usually chosen to 

serve a transferring, but it may not provides good efficiency.  According to this 

problem structure, the AGVsp-P/D can be applied to the signal transferring problems. 

 

3.2. Circuit board wiring 

 

         This kind of problem appears normally in the design of any wiring such as 

the car’s computers and the other digital systems.  A system consists of the numbers of 

modules and several pins that are located on each module.  A given set of pins has to 

be connected by the wire.  Some modules, which have sever common pins such as a 

ground pin, have alternative pins to be selected for connecting to other modules in the 

circuit.   In order to avoid the signal crossing and to minimize the length of wire, the 

AGVsp-P/D model can be applied to this problem also.  

 

3.3. Messenger scheduling 

 

        The following type of problem occurs repeatedly in the decision making 

process of the messengers, for example in a financial agent.  The messenger job is 

similar to the AGV job that starts at the office and goes to pick up the financial 

documents, such as the checks or cash, from one customer and deliver them to the 

specific bank (or post office) and goes to the next customer until all customers are 

served then goes back to the office.  There are so many banks for serving the customer 

needs, for example the messenger has to go to deliver the checks of one customer to 

KBank.  There are many KBanks that messenger can select to deliver the documents 

and then goes to the next job.  It is similar to the AGVsp-P/D model.  A simulated 

example of this application is showed in an appendix. 
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4. The difficulty on the implementation of the AGVsp-P/D model 

 

The first difficulty is concerned with how the user can apply the model of 

AGVsp-P/D to solve the real world situation.  The research is created based on many 

assumptions that make it possible for solving by some mathematical approaches.  The 

research does the AGVsp-P/D model with specific kinds of variables and many 

constraints, because the research want to capture the real world situation as much as 

possible, but there are many real world situations that hard to be formed into the 

mathematical model.  For example, some real conditions that are the AGVs speed, the 

pick up and delivery period, the traffic jam conditions or the maintenance activities are 

not considered in this research.  When the model is implemented, the obtained 

solutions should be adjusted to avoid the infeasible implementation.  The suitable set 

up of the material handling system should be considered concomitantly with 

implementing the AGVsp-P/D system.  

 

Secondly, based on the result of the tested problems of the multi AGVsp-P/D, 

when the additional AGVs are added to the problem, the running time is increased but 

not much.  However, the research does not consider the cost of additional AGVs.  The 

model considers solving the problem by minimizing the total traveling distance with 

the specific numbers of AGVs, but without considers the operating cost, which is an 

important factor in the real world situation.  Users should conduct the trade off 

analysis between the optimum solutions and the appropriate implementation 

conditions.   
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CONCLUSION AND RECOMMENDATION 
 

Conclusion 

 

In this research, the mathematical model of the AGVsp-P/D and the relaxation 

model which is the assignment problem with alternative P/D nodes are proposed with 

the solving approaches by integer linear programming, Benders’decomposition and 

both constructive and improvement heuristics.  The assignment problem with 

alternative P/D nodes is solved for finding the lower bound of the AGVsp-P/D. This 

study is conducted because the assignment problem is the subproblem that has to be 

solved in all iterations of solving the TSP/MTSP by a branch and bound approach.  

This research creates a knowledge base for studying the TSP/MTSP with alternative 

nodes that cab be applied for solving the AGVsp-P/D.   

 

 The assignment problem with alternative P/D nodes has a special structure that 

is different from the original assignment problem and cannot be solved by the 

traditional solving approach of the original assignment problem.  This special structure 

creates an effect on the unimodular property of the assignment problem, which the 0-1 

IP model of original assignment problem can be solved as a regular linear 

programming without concerning the 0-1 integer constraints. When the alternative P/D 

nodes constraints are added, the model will lose the unimodular property.   The 

research creates a new mathematical model for formulating the assignment problem 

with alternative P/D nodes, which is the lower bound of AGVsp-P/D by modifying the 

original assignment problem structure.  The created model is still the 0-1 IP, look like 

the assignment problem, and can be solved by using branch and bound approach that 

can be programmed on MATLAB 7.0 for solving the problem.  The procedure of 

solving 0-1 IP requires a lot of memory to run on MATLAB 7.0 and makes the 

program cannot solve the lower bound of AGVsp-P/D beyond 50 nodes, because 

MATLAB 7.0 shows “out of MEMORY” for solving the binary problem using the 

“bintprog” function.    

 



 140

For solving larger problem size, the research creates the heuristics for solving 

the lower bound of the AGVsp-P/D without solving the created 0-1 IP model, but 

solving the linear programming or the regular assignment problem with some heuristic 

methods.  Benders’decomposition approach is applied to solve the lower bound model 

of AGVsp-P/D.  The created algorithm of solving the lower bound of AGVsp-P/D by 

Benders’decomposition is a complicate procedure and still solving the 0-1 IP in the 

Benders partial mater problem, but the problem sizes of the 0-1 IP is smaller than the 

direct method.   This method can be use to solve the lower bound of the AGVsp-P/D, 

which larger than 50 nodes.  Then, the research attempts to create other heuristics 

without solving the 0-1 IP model.  The created heuristics consist of three alternatives 

selection heuristics and one alternative selection improvement heuristic.  All 

alternatives selection heuristics are the constructive heuristic methods that can 

provides the initial solution of assignment problem with alternative P/D nodes, which 

is the initial lower bound then, the initial solution is improve by the alternative 

selection improvement heuristic that can provide the improved solutions, which is the 

better lower bound solution of the AGVsp-P/D.  

 

After that the modified Eastman’s algorithm for TSP is applied to the lower 

bound solution of the AGVsp-P/D, which can provide the single TSP tour for the cases 

of single AGVsp-P/D.  Finally, the heuristics for solving the multi AGVsp-P/D are 

created by using the TSP tours solution.  Two heuristics that are the heuristic of 

solving the MTSP as the standard TSP and the heuristic of solving multi tours from 

splitting a single TSP tour are compared to show that the heuristic of solving the 

MTSP as the standard TSP can provide the solution of multi TSP tours with less total 

tour distance than the solution of multi tours from the heuristic of splitting a single 

TSP.  The advantage of the heuristic of splitting a single TSP is that the heuristic can 

provide the feasible solution quickly for a larger problem size that the heuristic of 

solving the MTSP as the standard TSP cannot run on MATLAB 7.0. 

 

The simulated problem is generated to verify and validate the quality of the 

AGVsp-P/D model by using MATLAB 7.0.  All results from experiments are analyzed 

by statistical methods with type I error α = 0.05.  The results of average running time 
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of solving the lower bound model of AGVsp-P/D with different size levels of problem 

using the 0-1 IP model are analyzed using statistical methods.  The conclusion is that 

the averaging running time increases when the number of node is increased.  The 

experiments of solving the lower bound model of AGVsp-P/D using three alternatives 

selection heuristics and alternative selection improvement heuristic focuses on the 

%Dev of heuristic solutions from IP solutions.  The statistical analysis results show 

that all three created heuristics provide not different on the mean value of the %Dev of 

heuristic solutions from IP solutions, which imply all heuristics can by used to solve 

the lower bound solution of AGVsp-P/D equivalently.  When the modified Eastman’s 

algorithm for TSP is applied to the lower bound solution of the AGVsp-P/D, the result 

is the TSP tour solution of AGVsp-P/D.  The average running time of 50 nodes 

problem is about 688 seconds.  For multi AGVsp-P/D cases, the average running time 

of solving the problem using the heuristic of solving MTSP as the standard TSP of 30 

nodes problem with 3 AGVs is about 50 seconds.  The statistical analysis shows that 

the average running time is increased not much when one AGV is added to the system, 

but it is significant at the type I error α = 0.05.  When the heuristic of splitting a single 

TSP tour for multi tours of the multi AGVsp-P/D is applied, the average %Dev of this 

heuristic solutions and the heuristic of solving MTSP as the standard TSP solutions is 

about 32%.  The heuristic of splitting a single TSP tour provided much %Dev of the 

solution but it can provide the solution quickly for the larger size of AGVsp-P/D.  

According to this point, all solutions and analysis results from all simulated problems 

satisfy all model constraints, can provide the solution of AGVsp-P/D and can be 

applied to use in the real situations. 
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Recommendation 

 

The AGVsp-P/D model is formulated by applying the TSP approach that the 

created model is the 0-1 IP model.  This research conducts the study and analysis to 

create the knowledge bases of AGV problem with some special structure.  The created 

model attempts to capture the structure of alternative P/D nodes, but ignore many real 

world constraints so that the model may feasible for some real applications by relaxing 

unconsidered constraints, but may not feasible for many cases.  This model is suitable 

for the fixed layout of traveling path, fixed job list and constant AGV speed that are 

not compatible with many real flexible manufacturing systems.  The implementations 

of this created AGVsp-P/D model will success when the obtained solutions should be 

adjusted to handle the realistic situations.   

 

The objective of the single/multi AGVsp-P/D is to minimize the total traveling 

distance, which is total tour/tours length.  When the multi AGVsp-P/D cases are 

considered, the obtained solutions are the route of multi TSP tours, which is the 

minimum total traveling distance, but not balance the length of each TSP tour.  For the 

real situation, if the additional AGVs are supplied to the system, all AGVs should be 

utilized equivalently because the additional AGV make the increasing of operating 

cost.  For example, the solution may provide two TSP tour for 10 nodes problem with 

2 AGVs that consists of one TSP tour of seven nodes and another TSP tour of three 

nodes.   One AGV may still running, but another AGV is already finished and 

becomes the unutilized at the same period time.   For the suitable implementation, all 

AGVs should be scheduled and utilized equivalently.  The solution of multi AGVsp-

P/D provides the minimum total traveling distance, but not provides the maximum 

AGV utilization and the minimum operating cost that is the most important issue in 

any real world situations.  When the multi AGVsp-P/D model is implementing to the 

real manufacturing or applications, the obtained solutions should be analyzed and 

concerned about the operating cost.  All considered AGVs should be utilized as 

equivalent as possible. The obtained solutions from solving the AGVsp-P/D should 

conduct the trade-off analysis between the minimum total traveling distance and the 

minimum operating cost.      
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The problem of the single/multi AGVsp-P/D with 50 nodes can be solved by 

MATLAB 7.0 on a personal computer with 2 GB RAM, but the research found that 

most of problems having more than 50 nodes cause MATLAB 7.0 to be “out of 

MEMORY” in solving the 0-1 IP.  The model works well for solving single/multi 

AGVsp-P/D with fewer nodes.   If the larger problem sizes are considered, the 

heuristics of alternative selection and improvement or Benders’ decomposition 

approach should be applied.    

 

From the limitation previously, the future research should extend to cover more 

realistic situation for more accuracy and reality of the obtained solution.  The other 

solving approaches should be considered instead of branch and bound approach.  The 

cost of operation and the dynamic job list constraints should be studied.  The 

researcher believes that this research can be modified to cover the more realistic 

events and can still be solved under some mathematical approaches.    
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This part shows some simulated examples that can help to understand some 

content of this research.  There are two examples, the example of lower bound of 

AGVsp-P/D by Benders’ decomposition approach, and the example of application of 

AGVsp-P/D that are shown as follows. 

 

1.  The example of solving the lower bound of the AGVsp-P/D  

     by the Benders’decomposition  approach 

 

Refer to the result section of solving the lower bound of the AGVsp-P/D by 

integer programming, most of problems which have more than 50 nodes causes 

MATLAB 7.0 out of memory in calculation of binary problems but the 

Benders’decomposition approach can be applied for a larger problem that the direct 

solving method using branch and bound on MATLAB 7.0 can not generate solutions.   

 

Let consider the generated problem of 60 nodes with 60 of variables Z that are 

55 regular jobs, one of the 2 alternatives job and one of the 3 alternatives job.   The 

distance matrix of 60 nodes problem can be shown as follows. 

 

Columns 1 through 10  

∞           54          85          16          71          74          19          61            2          88 

26           ∞          66          46          29          34          91          64          12          52 

52          91           ∞          29          47          13          82          80          43          41 

29          47          61           ∞          43          87          33          94          57          39 

33          61          56          88           ∞          58          87          56          29            1 

23          18          86          97          93           ∞          24          96          51          15 

39          86          75          99          28          68           ∞          13          57          41 

  3          64          27          71          97          65          81           ∞          92          47 

30          79          85          17          76          91          49          80           ∞          10 

78           3           40          90          33          91          68          94          85           ∞ 

11          60          43          43          63          59          33          21          44          27 

96          64          40          49          93          52          45          80          53          68 

30          34          79          13          85          57          14            8          51          36 
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  9          15          45          75          61          13          30          41          64          83 

52          39          46          25          98          42          32          75          64          29 

51          23          73            6          46          13          92          62          49          57 

71          60          69          91          31          70            7          86          71          87 

  1          76          27          23          55          82            4          53          95          71 

69          12          74          29            5            9          69          26          71          93 

98          98            7            4          31          31          58          60          46          26 

73          71          90          10            1          71          76          94            7          88 

17          18          32          19          68          43          29            7          95          67 

48          90          11          68          83          23          24          82          27          69 

  4          14          85          28          83          29          91          83          52          86 

31          40          29          91          67          35          75          64            3          76 

57          40          89          77          43          34          91          89          82          15 

18          33          23          30          28          37          45          38          25          20 

86          60          66          41          46          93          49          48          75          65 

  0          45          65          65          99          94          18          79            1          10 

67          30          10          66          34          91          22          52          98          84 

75          52             7          79          45          14          26           6          34          48 

74          93          21            4          28          40          45          84          14          96 

45          75          84          56          37            4            2          16          24          76 

95          45          69          56          96          69          83          65          48          37 

41          87          63          36          53            2          95          74          16          86 

  5          63          70          38          77            2          66          36          13          63 

46          24          57            8          22          78          93          92          35          88 

67          19          31          64          64          47          20          79          81          16 

49          91          94          26          62          48          10          12          57          53 

39          73          60            4          13          47          34          33          15          95 

33          91            2            2          90          16          82          79          14          55 

57          37          29          83          12          32          61          76          42          60 

93          58          66          91          94          71          42          73          49          40 

73          22          60          48          44          47          25          89          85          45 

  6            8          96          52            0          87          71          17          97          13 
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67          38          82          81          74          58          58          36            1            4 

27          23            4          76            4          45          32          98          97            4 

85          75          26          66          85          83            2          80          53          31 

63          48            7          97          65          82          88          81          32          59 

93          51          22          68          94          77          66          70            3          83 

  5          42          82          22          87          58          78          58            3          85 

97          43          23          75          38          49          64            9          93          17 

41          41          60          11          74          68          48            3          21          15 

71          52          69          52          22          76          24          20          12          77 

44          97          44          80          29          52          61          54          25          59 

90          91          26          57          87          29          35          24          99          18 

86          98          41          94          32          77          38          20          95          73 

50          27          54          45          27          34          12          78          52          73 

50          36          41          55          20          32          24          26          86          96 

46          65          37          18          45            5          44          30          78          50 

 

Columns 11 through 20 

13          65          27          17          35          59          14          32          35          91 

91          83          18            8          50          71          58          31          76          51 

13          46          59          77          26          16          71          56          57          33 

15          28          75          50          67          19          10          24          81          39 

79          38          28          98          52          35          45          93          19          36 

51          79          15          50          68          91          58          98          50          79 

  6          78          13            7          46          44          91          69          78          26 

10          18          45          14          81          74          33          97          67          77 

  3          58          81          74          12          63          11          97          57          14 

47          38          24          59          83          65          65          74            9            9 

 ∞          12          73          84          97          61          55          59          88          93 

 98          ∞          48          32          83            8          84          75          30          76 

 44          33          ∞          28            9          93          58          66          42            8 

 36          13          89          ∞          54          97          46          57          43          27 

 40          89          30          66          ∞          68          73          19          68          12 
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 98            5          49          10          31           ∞         71          34          84          33 

 50          69          74          30          51          45         ∞           52          15          94 

   4            2          21            9          32            3          97          ∞          74          56 

   5          33          34          62          55          25          48          37          ∞          27 

   4          53          24          54          52          85            7          12          98          ∞            

 89          73          48          11          89          92          80          64          67          19 

 47          70          95          18          44          53          33            5          40          34 

   9          32          67          36          49          60          60          98          37          90 

 96          76          85          69          69          52            0          72          73          88 

 26          96          71          33          76          49          45          62            2          64 

 57          35          57          92          88          75          44          34            7          84 

 97          89          43          65          12          20          70          75          97          11 

 94            5          72          59          33            1          29          98          45          31 

 40          97          17          24          84          83          17          18          98          95 

 87          32          17          61          77          18          48          58          56          59 

 53          28          86          56          88          64          67          26          94          62 

 84          59          92            7          50          47            2          53          24          82 

 25          88          21          93          69            1          51          74          37          50 

 32          55          78          84          51          50          13          14          26          31 

 22          17          12          56          88          40            8          87          12          93 

 58          55          53          15            2          92          74          13          49          81 

 80          65          12          70          73            3          59          50          39          98 

 64          59          10          46            8          58          24          19          99          28 

 84          54          70          58          52          95            1          61          24          92 

 72          42          63          24          82            0          43          10          26          11 

 74          34          72          33          40          39          93          40          28          86 

 69            8          98          91          79          44          49          13          30          59 

 59          77          92          32          83          84          68          84          53          17 

 28          64          19          78          48          71          75          97          12          83 

 22          71          10          59          77          48          82          98          41          51 

 16          43          35          98          14          34           2          76            9            7 

 71            6          76          95          18          65          76          68          38          40 



 153

 12            8          39          98          15          50          32          70          85          11 

 67          70          88          74          13          36          75          31          35          24 

 41          11          70          88          36          37          92          82          51          13 

 33          59          10            3          55          79          64          13          83          88 

 69          82          33          79            3            9          65          43          50          54 

   8          32            2          78          20          54          81          49            7          62 

 89          66          66          44          79          56          90          28          35          65 

 22          10          26          62          51          56          73          79          97          98 

   1            1          63          47          59          55          83          25          12          47 

 48          64          67          74          75          95          82          27          97          24 

 43          93          78          36            7          87          97          86          13          21 

 67          32          46          45          85            2          56          16            0          71 

 16          61          27          75          38            7          81          45          69          68 

 

Columns 21 through 30 

67          56          76          19            0            4          62            9          95          38 

72          49          41          29          23          83          22          46          91          65 

76          73          83            3          41            7            5          56          14          60 

21            8          16          97          48          94          12          66          81          41 

  8            4          48          84          26          22          25          16          33          80 

63          14          98          77          93          15          70          32          60          23 

31          85          77          13          62          43          91          97          29          75 

43          76          25          50          70            1          19          58          82          25 

39          79          38          39          58          20          95          23          22          83 

90          77          15          11          22          71          34          23          65          26 

81          14          72          96          77          22          69          71          15          33 

65          31          65          38          33            1          47          79          46          52 

17          15          23          73          84          77          50          95          40          55 

42            3            9          89          39          44          88          72          45          81 

95          10          45          94            4          47          88          22          65          52 

22          26          76          89          57          28          23          80          42          60 

80          18          97          93            0            4          30          40          43          92 
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87          11          29          95          80          79          45            1            7          12 

84          13          95          96          28          17          83          81          46          55 

97          56          86          84          38          81          34          72          24            3 

 ∞          43          30          22          57          62          27          74          13          84 

  4           ∞          12          88          92          31          98          48          28          56 

 60          80          ∞          37          65          48          83          66          91          28 

 32          50          35          ∞          91          24          77          62          96          97 

 51          97          22            6         ∞           31            8           4             6          28 

 23          79          25            3          96         ∞            67          38           3          41 

 39          11          87          86          96          10           ∞            3          94         81 

 92          48          22          53          11          12          15           ∞         53          27 

 40          25          33          79          42          90          88          77          ∞          50 

 33          27          31          68          80          67          83          79          95           ∞ 

 70          42          34            1          45          65          33          16          58          37 

 75          53          29          69          93          84          73          41          16          30 

   9          32          22          14          40          58          59          74          93          26 

 73          24          70          88          54          79          82          71          59          73 

   2          26          37          11          96          94            8          71          67            3 

 18          36          70          34          40          73          20          77          15          45 

 28            5          15          46          73          64          72          51          76          95 

 76          88          82          33          65          15          47          95            0          92 

 95          97          43          18          89            5          16          11            3          51 

 17          77          55            1          59          79          21          55          96          24 

 14          18            2          90          64          56          27          98          76          32 

   9            2          43          51          95          48          61          45          53          88 

   0          34          13            1          15          67          39          21          74          67 

 88          40          14          62          80          79          24          44          26          65 

 42          47          55          92          83          86          47          39          86          81 

 57          14          90          68            7          97          27          66          98            8 

 45          82          45          33          51          52            4          71          42          65 

 17          88          51          64          22          89          65          56          46          98 

 60          61          21          62          67          20          89          57          30          32 
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 92          29          15          57          61          86          67          74          83          32 

 96          64          54          68            5          50          48          58          11          16 

 61          73          93          41          47          31          93          47          18          26 

 66          65          33          90          16          67          78          23          13          48 

 97          96          51          74          39            3          25          73            8          82 

 79          67          75          81          55            7          10          15          86          36 

 29          63          59          56            2          92          20          77          82          90 

 50          26          63          54          15          98          15          91          93          64 

 95          43            8          89          53          50          48          65            9          75 

 54            9          32            8          77          20          29          43          49          73 

 71            9          50          61          90          90          74          82          89          98 

 

 Columns 31 through 40 

    8          82          63          35          36          11          40          90          10          60 

 53          19          45          62          64          37          58          50          86          18 

 20          12          40            7          97          57            1          68          81          86 

 12          16          34          73          35          11          12          71          74          11 

 56          68          74          21          81          32          46          34          69          97 

 58          85          51            3          51          48          74          48            6          49 

 98            9          78          35          70          13          23          39          76          97 

 66          62          63          11          78            9          33          84          94          20 

 72          88          50          45          86          27          89          14          38          42 

 45          64          18          46          53          61          41          41          67          92 

 20            3          37          72          36          98          49          45          57          93 

   0          24            8          99          93          98          63            9          97          13 

 40          19          24          92          11            1          14          46            9          31 

 63          83          20          80          91          74          36            2          91          11 

 48          76          48          78          36          22          80          92          77          62 

 50            9          57          61          70          33          60          63          17          37 

 35          39          74            9          49          69          44            3          71          26 

 31          17          10            3          36            1          57          91          20          92 

 70          45          32          72          25            8          94          23          23          15 
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 53          86          75          41          80            9          57          74          39          67 

 51          19          25          34          33            3          87          83          33          89 

   7          57          62          67            4          91            2            7          29          70 

 80          42          67          66          93          96          63          18          18          65 

 17          77          13            1          79          13          10          86          91          55 

 18            9          33            5          32            4          57            5          10          12 

 41          36          72          50          29          27          78          84          50          79 

 27          89            1          53          21          77          52          85          78          54 

 88          18            1          11          91          71          57          90           8          26 

   8          15          61          17          61          91          18          47          79          48 

   0          53          62          11          69          51            1          24          21          88 

  ∞          42          72          83          35          52          10          93          72          51 

 21           ∞          73          48          97          71          23            2          75          57 

 92          34           ∞          48          10            5          28          73          60          60 

 65          96          92           ∞          15          48          30          49            9          17 

 72          51            1          98           ∞          84            2          94          63          72 

 11          81          18          58          24           ∞          26          68          42          82 

 28          41          71          18          46          69           ∞          90          50          68 

 69          97          26          35          52          79          43           ∞          82          85 

 75          51          23          58          24          48          62          24          ∞           75 

 46          69          93           9          38          88          18          97          65            ∞ 

 27          12          75          76          43          75          74          56          11          21 

 34          58          95          19          30          20          87          72          77          89 

 59          43          29            2          40          56          71          59          93          32 

 97          26          91            8          13          53          74          96          68          12 

 77          78          68          76          42            7          96          46          57          37 

 30          18          89          92          49          94          12          44          15          10 

 95          47          67          12          69          32          82          78          79          98 

 65          22          91          72          50            4          75          57          95          92 

 54          28          17          81          27          63          10          68          67          82 

 96          27            3          68          78          64          72          38          66          79 

 45          92          70          86          36          86          50          95          95          48 
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 61          96          30          67          85          51          27          53          52          67 

   2          26          79          47          43          90            6          85          43            8 

 48          48          92          44          96          67          40          95          93          41 

 33          58          16          63          14          53          64          61            3          87 

 62          45          11          24          52            2          51          98          13          66 

 69          57          48            4          30          78          41          34          89          10 

 72          97          50          48          16          63          42          72          89          19 

 10          40          21          93          97          32          19          30          72          13 

 93          11          50          51          20          71          90          29            4          45 

 

 Columns 41 through 50 

 37          23          35          83          72          11          35          43          76          74 

 72            1          61          99          92          88          79          81          42          30 

 33          59          87          20          35          46          31            8          32          18 

 94          43          62          11          10          80          79          85            6          42 

 32          17          18          81          80            1          32          17          37            1 

 52          85          17          50          57          43          41          31          37          50 

 44          33          30          16            5          86          41          82          35          44 

 65          72          88          33          73          78          38          70          84          58 

 54          76            5          35          58          94          35          67            2          81 

   4          91          41            0          33          22          57          77          29          22 

 25          68          44          36          50          19          41          92          49          71 

   2          97          67          26          15          47          54          86          36          41 

 51          50          25          36          98          43          97          62          60          16 

 11            0            2          25          38          17          43          45          34          74 

 80          61          41          77            8          24          14          49          63          84 

 35          38          45          30          70          62          68          15          91          63 

 57            1          68          12          12          54          76            1            7            3 

 61          60          41          37          79          40          75            9          88          91 

 93            4          48          95          12          52          13          97          81          35 

 82          39          19          58          65          63          28          22          20          21 

 21          20          75          33          94          30            1          86          98          39 
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   7          25          37            2          95          27          74          81          91          70 

 43          65          84          81          30          44          78          55          89          88 

 38          70          45          85          57          45          69          62          36          10 

 54          74          75          86          57            6          63          14          52          82 

 36          63          39          54          45          55          84          10          10          61 

   0          76          24          66          11            6          17          22          25          51 

 12          73          95          51          18          89          43          90            9          27 

 81            6          39          95          48          37          57          93          98          59 

 47            5          58          35            4          12          64          22          52          52 

 63          74          43          55          43            7          82          73          65          13 

 12          97          97          45            7            3          24          68          64          83 

   8          38          72          80          23          57          35          87            4          25 

   3          85            5          70          59          28          59          60            4          67 

 87            5          74          77          23          43          44          54          52          25 

 80          15          42          77          61          49          53          14            7          33 

   8          44          36          66            8          72          54          35            1          97 

 91          62          46          80          11          82          28          93          99          60 

 28          15          16          56          29          51          43          62            5          51 

 31          19          38          65          79          59          27          66          52          10 

 ∞           99          67          95          77          24          81          96          84          62 

 2             ∞          24          53          67          67          38          19          69          46 

 15          21           ∞          60          79          35          49          71          84          77 

 46          32            2           ∞          94          89          28            8          23          36 

 52          96          33          59           ∞          20          60          59          32          89 

 69          67          10          22          94           ∞          28          63          56          64 

 86          81          94          56          11          64           ∞            9          98          74 

 75          67          12          56          55          82          88           ∞          19          23 

 84          12          22          64          88          77          18          70          ∞           39 

 62            1          91          62          25          73          46          20          72           ∞ 

    4         92          65          17          64          47          50          25          97          58 

 51          38          50          82          67          37          98          82          29            2 

 30            9          31          51          73          47          75            8          24          20 
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 54          66          62          42          70          20          11          67          74          73 

 85          39          54          88          40          24          39          84          55            9 

 65            7          93          55          58          14          36          53          24          69 

 42          18            1            5          67          47          23          69          86          94 

 69          99            7          41          66          24            3          61          67          92 

   2          39            9          54            1          97          48          63            8          60 

 21          31          92          56          66          67          85          57          78          95 

 

 Columns 51 through 60 

  94          92          46          31          39          13          15          93          63          47 

 13          95          45          57          83          71          35          46          90          35 

 74          74          20          76          37          81          37          45          37          55 

 74          97          10          35          73          35          56          67          81          70 

   7          27          41          71          75          16          64          41          71          72 

   6          93          52          88          73            9          70          51          72          88 

 56          17          57          71          39          82          33          64          19          35 

   5          84          58          51          47          74          16            7          29          16 

 69          98          48          58          92          14          14          71          77          18 

 54          86          45          71          33          41          19          82          86          61 

 98          63            2          51          40          25          35            1          22          39 

 40          53            1          85          37          19          63          29          93          56 

 46          83            6          28          62          20          87          15          85          95 

 13          59          60          13          40            3          72          47          90          24 

 93          78          33          20          19          16          13          63          91          18 

 28          66          74          11          34          87            6          73          25          48 

 25          31          90          76          95          77          54          60          24          14 

 62          47          89          38          27          48          33            2          47          78 

 15          99          56          48          55          87          34          62          56            8 

 79            8          80            6          37          63          75          56          52          25 

 31            2          96          83          86          15            6          75          62          43 

 56          54          60          56          62          63          65          42          11          98 

 75            8            5          27          38            6          78          79          27          18 
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 78          98            7          15          75            4          64          41          12          50 

   1          35          29          27          95          93          40          93          77          85 

 29          62          45          66          10          57            0          73          49          49 

 12            5          62          60            8          45          49          62          41          24 

 26          28          10          92          82            1          77          97          16          85 

 94          18          52          44          76          17          93          31          76          77 

 79          66          34          31            1          38          48            6          28          46 

 74          21          54          43            5          20          87          98          40          71 

 20          85          46            5          55          21          80          51          75            9 

 56          18          20          75            7          78          70          19            4          92 

 13          85          15          17            9          70          10          53          68          75 

 99          30          52          56          96          22          13          49          27          81 

 77          67          16            9          85          61          79          21          53          58 

 33          52          43          72          79          76          24          25          43          67 

 51          60          39          21          81          80          38          68          93          70 

 32            1          25            2            4          87          26          54          59          58 

 68          17          77            0          54          90          36          22          75          92 

 20          71          54          39          59          69          41          85          44          61 

   5          94          59          26          81          74          82          40          64          28 

 53          16          13          72          75            9          75          31            5          16 

 82          15          89          22          52          88          66          13            2          74 

 51          40          28          48          78          27          87          35          15          88 

 55          88          31          60          70          83          78          17            9          10 

 54          42          78          80          62          32          30            5          60          22 

 14          31          93          57          22          45          55          52          28          30 

 78          61          35          26          61          19          44            5          86          51 

 73          14            2          47          74          31            4            5          10          23 

 ∞           29            9            4          34            8          28          59            5          48 

 75          ∞            23          78          45          71          68          72           9          40 

 48          76            ∞         14          48          57          21          41          33          46 

   1          99          97           ∞            5          42          12          92          60          90 

 10          46          87          38           ∞          11          20          71          63          47 
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 45          85          89          83          14           ∞           ∞      96          78          91 

 63          66          72          75          20           ∞           ∞      99          28          56 

 22          17          80            8          35          25          23       ∞          ∞           ∞ 

 77          40          62          82          77          32          18       ∞          ∞           ∞ 

 81          73          97          82          66          98          54       ∞          ∞           ∞ 

 

When considering the Benders’algorithm for solving this example, the process is 

explained as follows. 

 

Iteration 1: 

 

Step 1: Initialization:  

Let set v (Z) = 0, select v (Z = [Z(1), Z(2),…, Z(60)]T ), set j = 1 and set k = 1 

For this example, from node No.1 to node No. 55 are the normal jobs.  Node No. 56 

and No. 57 are the component of a 2 alternatives job.  Node No. 58, No. 59 and No. 60 

are the component of a 3 alternatives job.  Therefore, all variables of Z(1) to Z(55) equal 

to 1 and the rest of them are Z(i) ∈  {0, 1},  i = 56, 57, …, 60.  The first v (Z = [Z(1), 

Z(2),…, Z(60)]T ) is: 

v (Z1 = [1(1), 1(2),…, 1(56), 1(56), 0(57), 1(58), 0(59) , 0(60)]T ) 

 

Step 2: Solve the Benders’subproblem:  

The first the Benders’subproblem of this example is:  

Maximize v1 (Z1) = Maximize {(b – B Z1) T u 1 │ AT u 1 ≤ c, u 1 ≥ 0},  

is solved.  The maximum occurs at the vector of extreme point u 1 and the maximum 

value of v1 (Z1) =115. 

 

Step 3: Stopping Criterion:  

Now the value of v (Z) = 0, v1 (Z1) =115 ≠ v (Z) then go to step 4 
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Step 4: Improve the approximations function:  

Using the dual extreme point u 1 generates the approximations function (v (Z)), 

with the Benders’cut, for the Benders’partial master problem of the iteration 1.  The 

Benders’partial master problem is: 

Minimize   v (Z) = dTZ + maximize { [(b – BZ) T u 1]1} 

  Subject to     Z ∈  Z 

The Benders’cut of the iteration 1 is [(b – BZ) T u 1]1 that is: 

[u1
(1)Z(1)+ u1

(2)Z(2)+…+ u1
(60)Z(60)]1 

Because a vector d is a zero vector, the Benders’partial master problem for   

iteration 1 is:  

Minimize   v (Z) = maximize { [u1
(1)Z(1)+ u1

(2)Z(2)+…+ u1
(60)Z(60)]1} 

Subject to    Z ∈  Z 

 

Step 5: Solve the Benders’partial master problem: 

Update j = 2, k = 2 and the value of v (Z) from solving the Benders’partial 

master problem = 143 with is new vector Z =  

Z2 = [1(1), 1(2),…, 1(56), 1(56), 0(57), 0(58), 1(59) , 0(60)]T  

 

Iteration 2: 

 

Step 2: Solve the Benders’subproblem:  

The Benders’subproblem of iteration 2 is:  

Maximize v2 (Z2) = Maximize {(b – B Z2) T u 2 │ AT u 2 ≤ c, u 2 ≥ 0},  

is solved.  The maximum occurs at the vector of extreme point u 2 and the maximum 

value of v2 (Z2) =153. 

  

Step 3: Stopping Criterion:  

Now the current value of v (Z) = 143.  Because v2 (Z2) =153 ≠ v (Z), not 

terminate, then go to step 4 

 

 

 



 163

Step 4: Improve the approximations function:  

Using the dual extreme point u 2 generates the approximations function (v (Z)), 

with the Benders’cut, for the Benders’partial master problem of the iteration 2.  The 

Benders’partial master problem is: 

Minimize   v (Z) = dTZ + maximize {[(b – BZ) T u 1]1, [(b – BZ) T u 2]2} 

  Subject to     Z ∈  Z 

The Benders’cut of the iteration 2 is [(b – BZ) T u 2]2 that is: 

[u2
(1)Z(1)+ u2

(2)Z(2)+…+ u2
(60)Z(60)]2 

Because a vector d is a zero vector, the Benders’partial master problem for   

iteration 2 is:  

Minimize   v (Z) = maximize { [u1
(1)Z(1)+ u1

(2)Z(2)+…+ u1
(60)Z(60)]1, 

                                                  [u2
(1)Z(1)+ u2

(2)Z(2)+…+ u2
(60)Z(60)]2} 

Subject to    Z ∈  Z 

 

Step 5: Solve the Benders’partial master problem: 

Update j = 3, k = 3 and the value of v (Z) from solving the Benders’partial 

master problem = 149 with is new vector Z =  

Z3 = [1(1), 1(2),…, 1(56), 1(56), 0(57), 0(58), 0(59) , 1(60)]T  

 

Iteration 3: 

 

Step 2: Solve the Benders’subproblem:  

The Benders’subproblem of iteration 3 is:  

Maximize v3 (Z3) = Maximize {(b – B Z3) T u 3 │ AT u 2 ≤ c, u 3 ≥ 0},  

is solved.  The maximum occurs at the vector of extreme point u 3 and the maximum 

value of v3 (Z3) =159. 

  

Step 3: Stopping Criterion:  

Now the current value of v (Z) = 149.  Because v3 (Z3) =159 ≠ v (Z), not 

terminate, then go to step 4 
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Step 4: Improve the approximations function:  

Using the dual extreme point u 3 generates the approximations function (v (Z)), 

with the Benders’cut, for the Benders’partial master problem of the iteration 3.  The 

Benders’partial master problem is: 

Minimize   v (Z) = dTZ + maximize {[(b – BZ) T u 1]1, [(b – BZ) T u 2]2, 

                                                           [(b – BZ) T u 3]3} 

  Subject to     Z ∈  Z 

The Benders’cut of the iteration 3 is [(b – BZ) T u 3]3 that is: 

[u3
(1)Z(1)+ u3

(2)Z(2)+…+ u3
(60)Z(60)]3 

Because a vector d is a zero vector, the Benders’partial master problem for   

iteration 3 is:  

Minimize   v (Z) = maximize { [u1
(1)Z(1)+ u1

(2)Z(2)+…+ u1
(60)Z(60)]1, 

                                                  [u2
(1)Z(1)+ u2

(2)Z(2)+…+ u2
(60)Z(60)]2 

                                                  [u3
(1)Z(1)+ u3

(2)Z(2)+…+ u3
(60)Z(60)]3} 

Subject to    Z ∈  Z 

 

Step 5: Solve the Benders’partial master problem: 

Update j = 4, k = 4 and the value of v (Z) from solving the Benders’partial 

master problem = 150 with is new vector Z =  

Z4 = [1(1), 1(2),…, 1(56), 1(56), 0(57), 0(58), 1(59) , 0(60)]T  

 

Iteration 4: 

 

Step 2: Solve the Benders’subproblem:  

The Benders’subproblem of iteration 4 is:  

Maximize v4 (Z4) = Maximize {(b – B Z4) T u 4 │ AT u 4 ≤ c, u 4 ≥ 0},  

is solved.  The maximum occurs at the vector of extreme point u 3 and the maximum 

value of v4 (Z4) =152. 

  

Step 3: Stopping Criterion:  

Now the current value of v (Z) = 150.  Because v4 (Z4) =152 ≠ v (Z), not 

terminate, then go to step 4 
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Step 4: Improve the approximations function:  

Using the dual extreme point u 4 generates an approximations function (v (Z)), 

with the Benders’cut, for the Benders’partial master problem of the iteration 4.  The 

Benders’partial master problem is: 

Minimize   v (Z) = dTZ + maximize {[(b – BZ) T u 1]1, [(b – BZ) T u 2]2, 

                                                           [(b – BZ) T u 3]3, [(b – BZ) T u 4]4} 

  Subject to     Z ∈  Z 

The Benders’cut of the iteration 4 is [(b – BZ) T u 4]4 that is: 

[u4
(1)Z(1)+ u4

(2)Z(2)+…+ u4
(60)Z(60)]4 

Because a vector d is a zero vector, the Benders’partial master problem for   

iteration 4 is:  

Minimize   v (Z) = maximize { [u1
(1)Z(1)+ u1

(2)Z(2)+…+ u1
(60)Z(60)]1, 

                                                  [u2
(1)Z(1)+ u2

(2)Z(2)+…+ u2
(60)Z(60)]2 

                                                  [u3
(1)Z(1)+ u3

(2)Z(2)+…+ u3
(60)Z(60)]3 

                                                  [u4
(1)Z(1)+ u4

(2)Z(2)+…+ u4
(60)Z(60)]4} 

Subject to    Z ∈  Z 

 

Step 5: Solve the Benders’partial master problem: 

Update j = 5, k = 5 and the value of v (Z) from solving the Benders’partial 

master problem = 152 with is new vector Z =  

Z5 = [1(1), 1(2),…, 1(56), 1(56), 0(57), 0(58), 1(59) , 0(60)]T  

 

Iteration 5: 

 

Step 2: Solve the Benders’subproblem:  

The Benders’subproblem of iteration 4 is:  

Maximize v5 (Z5) = Maximize {(b – B Z5) T u 5 │ AT u 5 ≤ c, u 5 ≥ 0},  

is solved.  The maximum occurs at the vector of extreme point u 5 and the maximum 

value of v5 (Z5) =152. 
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Step 3: Stopping Criterion:  

Now the current value of v (Z) = 152.  Because v5 (Z5) =152, stop 

 

This example can be solved by using the Benders’decomposition as above. 

 

2.  The example of the application of the AGVsp-P/D 

 
Refer to the problem of messenger scheduling, one of the proposed application 

of the AGVsp-P/D.  This problem occurs repeatedly in the decision making process of 

the messenger of any agent such as the government agent, the financial business agent, 

the private postal service agent and etc.   

 

For example, the messenger of the engineering faculty has a job list for one 

round as follows. 

 

1.  get the document at the Faculty office(ENG) and deliver at ME department 

2.  pick up the document at Financial office(FIN) and deliver to EE department 

3.  pick up the printed sheets at Copy shop(CPY) and deliver at Library(LBY) 

4.  pick up the document at IE department and deliver to graduated school(GRD) 

5.  buy some cashier checks at either TBank or Abank and go to pay at Computer   

     training center (COM) 

6.  buy some stamps at the post office or shop1 or shop2 and deliver at the faculty 

 

The messenger job list for one round can be shown as follows. 

 

Job No. Pick up Department Delivery Department 
1. ENG ME 
2. FIN EE 
3. CPY LBY 
4. IE GRD 
5. TBank or ABank COM 
6. Post or Shop1 or Shop2 ENG 
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Suppose the distances among all of locations are known and transformed into a 

form of the TSP distance table, by same method of table 5 that is explained previously. 

The distance table of this problem is shown as follows. 

 

             To 
From 

Job No. (h) 
 

 
 

1 2 3 4 5 
 

6 

 
Job No. 

Alternative 
(job i, alt. a)

 1.1 2.1 3.1 4.1 5.1 5.2 6.1 6.2 6.3 

  n 1 2 3 4 5 6 7 8 9 
1 1.1 1 ∞ 31 25 43 83 18 50 45 32 
2 2.1 2 38 ∞ 75 87 45 79 13 6 37 
3 3.1 3 37 48 ∞ 34 25 58 52 16 48 
4 4.1 4 49 83 80 ∞ 60 56 61 10 16 

5.1 5 41 55 27 78 ∞ ∞ 58 55 20  
5 5.2 6 9 92 26 20 ∞ ∞ 54 9 63 

6.1 7 44 7 37 25 92 62 ∞ ∞ ∞ 
6.2 8 43 97 9 52 54 28 ∞ ∞ ∞ 

 
6 

6.3 9 83 14 17 7 82 13 ∞ ∞ ∞ 
 

 

 This simulated problem is programmed in MATLAB 7.0 and solved by 

AGVsp-P/D model.  The result is the schedule of the messenger that is the sequence of 

1 - 6 - 4 - 8 - 3 - 2 - 1 according to number of nodes n with the total distance of 143 

units.  The result of solving this problem using the AGVsp-P/D model on MATLAB 

7.0 is shown as follows. 
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cnew = 
 
          ∞            31          25             43           83          18             50            45          32 
          38            ∞          75             87           45          79             13              6          37 
          37            48          ∞             34           25          58             52            16          48 
          49            83          80            ∞            60          56             61            10          16 
          41            55          27            78            ∞          ∞             58            55          20 
           9             92          26            20            ∞          ∞             54              9          63 
          44              7          37            25           92          62             ∞             ∞           ∞ 
          43            97           9             52           54          28             ∞             ∞           ∞ 
          83            14          17             7            82          13             ∞             ∞           ∞ 
   
Optimization terminated. 
 
Xnod = 
 
   (2,1)        1 
   (3,2)        1 
   (8,3)        1 
   (6,4)        1 
   (1,6)        1 
   (4,8)        1 
 
 
fval = 
 
   143 
 
The Optimal TSP Tour is 
tour = 
 
     1 
     6 
     4 
     8 
     3 
     2 
     1 
 
 
subtour = 
 
     0 
 
Elapsed time is 0.384500 seconds. 
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