
 1

THE AGV SCHEDULING PROBLEM WITH ALTERNATIVE
PICK UP AND DELIVERY NODES

INTRODUCTION

Productivity and flexibility, which are the primary goals of today’s automation

technology, can only be achieved in fully integrated manufacturing environments. A

carefully designed and efficiently managed material handling system is an important

part. The study of automated guided vehicle (AGV) system was initiated in 1987 by

Tanchoco and Moodie. AGV systems are among the fastest growing classes of

equipment in the material handling system in industry. AGVs are battery-powered,

unmanned vehicles with programming capabilities for selecting the traveling path,

positioning the pick up and delivery points, responding to frequently changing

transport patterns, and integrating into fully automated intelligent control systems.

These features make AGVs to be a viable alternative to other material handling

methods, especially in job shop environments where the variety of products are

proceeded in fluctuating transport requirements. In such a dynamic and sophisticated

environment, the job scheduling is one of the key factors in a successful

implementation of an AGV system.

Both job sequencing and scheduling are important parts of any kind of vehicle

routing design problem, including an AGV system design. Designing an AGV system

is a complex task because of factory layout, the number of nodes and the AGV’s

traffic system. One of the main purposes of a single/multi AGV scheduling problem is

concerning about how the scheduling can provide the minimum total traveling

distance of AGVs. Normally, the scheduling problem is considered or designed with

the routing problem concomitantly, for any kind of vehicle system management. The

ordinary vehicle scheduling and routing problem, as the single/multi AGV scheduling

problem, is a problem with a set of specific pick up and delivery nodes that can be

modeled by the existing network problem approach, which is the such as TSP/MTSP.

 2

The TSP/MTSP is one of the most interested approaches because there is a

network structure that can be modified and applied to the AGV scheduling problem.

Because Dantzig, Fulkerson and Johnson (1954) proposed that determining the

optimal solution of the TSP for large numbers of nodes requires much time, heuristic

methods are considered when the TSP is applied to any kind of problems. Many

papers proposed heuristic algorithms for finding the AGV scheduling and traveling

path such as Maxwell and Muckstadt (1982), Gaskins and Tanchoco (1987). As NP-

hard nature of the original TSP, the vehicle scheduling problem with alternative pick

up and delivery (P/D) nodes may be considered as a class of NP-hard problem also

when the problem structure falls into the TSP category. According to this point, the

potential problem for studying the single/multi AGV scheduling problem is extended

to be more realistic when the original TSP problem is modified by adding the structure

of alternative P/D nodes. The main purpose is to find the solution of AGV scheduling

problem with alternative P/D nodes (AGVsp-P/D) that can provide the minimum total

traveling distance of AGVs.

The original TSP/MTSP is one of the applications of network problems; it is

necessary to choose a sequence of nodes to be visited so as to accomplish a specified

objective. The TSP/MTSP is a network problem that given a network and a cost (or

distance) associated with each arc, it is necessary to start from a specified originating

or depot node, visit each and every other nodes exactly one, and return to the starting

node with the lowest cost. For example, a bus that leaves the school yard must stop at

various locations to pick up students and ultimately return to the school yard in the

shortest possible distance. As another example, research considers the AGV system

that can start from a specified originating or depot node, visit each and every other

nodes, which have some alternatives for selection to visit exactly once, and return to

the starting node in the shortest distance. The TSP/MTSP can be solved to determine

the scheduling of normal uncapacitated vehicle routing problems but in this case, the

original TSP/MTSP has to be modified to support the AGVsp-P/D.

The concept of TSP/MTSP will be applied with some generated techniques of

assignment problem to solve the AGVsp-P/D to determine the minimum traveling

 3

distance of each AGV from the starting node or depot to some appropriate selected

nodes, and then come back to the starting node. This procedure is based on the branch

and bound process with solving assignment subproblems to search for the optimal tour.

The formulated mathematical model will be presented in this research. The

assignment subproblems with alternative P/D nodes, and the branch and bound

algorithm for TPS/MTSP with alternative P/D nodes are considered as an important

part of this research. The assignment subproblem model and the solving approach for

finding the lower bound of the AGVsp-P/D will be proposed. The ordinary

assignment problem is an integer programming (IP) problem, but it has special

structures that make it can be solved by linear programming (LP) approach, not

considering IP constraints. When the constraint of alternative P/D nodes is added to

the system, the problem loses the property of regular assignment problem, which

causes it becomes the 0-1 IP problem.

Thus, a new 0-1 IP model of assignment problem with alternative P/D nodes is

created. The implementation of the generated model is tested using the Excel Solver

and MATLAB 7.0. After the lower bound of the AGVsp-P/D is found by solving the

assignment problem with alternative P/D nodes, the branch and bound algorithm for

finding the TSP/MTSP with alternative P/D nodes will be studied. Because the branch

and bound approach takes much time for the large problem, the heuristics for solving

the lower bound of the AGVsp-P/D are proposed. Benders’decomposition approach is

applied to create the heuristic for solving the lower bound of the AGVsp-P/D.

However, this Benders’decomposition algorithm still uses the 0-1 IP problem, but with

a smaller problem size than the direct method. To avoid solving the 0-1 IP problem,

three heuristics for selecting the alternative nodes and an alternative selection

improvement heuristic are proposed.

The lower bound solutions from solving both the 0-1 IP problem and heuristic

approaches may provide the single TSP tour or subtours. For the single TSP tour

solution, the subtour elimination approach is applied to the lower bound solution to

create the single TSP tour from subtours. The modified Eastman’s algorithm for TSP

with the lower bound model of the AGVsp-P/D is proposed for solving the single TSP

 4

tour. When multi AGVs are considered, heuristics for solving the multi AGVsp-P/D

are presented. There are two approaches, which are the heuristic of splitting the single

TSP tour to multi tours for the lower bound of the multi AGVsp-P/D and the approach

of solving the MTSP as the standard TSP for the solution of the multi AGVsp-P/D.

Finally, the computer program for solving single/multi AGVsp-P/D using the

Excel Solver and MATLAB 7.0 are developed for testing the model of AGVsp-P/D.

The program of the 0-1 IP problem of AGVsp-P/D and heuristics are applied to some

size levels of tested problems. The tested results are analyzed by statistical methods

to verify the performance and quality of the AGVsp-P/D model.

An introduction to the research on the AGVsp-P/D including research

questions, problem statement, research objectives, research significance and research

assumption will be presented as follows.

Research Questions

Consider the modern manufacturing system, the AGV system is used to

transport items among departments in the factory. Let’s assume the problem that the

factory has a particular layout of departments for an AGV system, as in figure 1. The

AGV layout can be drawn as a network. The AGVs move through the network

between nodes (labeled A, B, C, D, E, F, G, H, and I). Bidirectional flow of the AGVs

along the aisles is assumed.

In general, each job of AGVs consists of picking up a load at one node and

delivering it to a fixed destination node. For this research, the special characteristic of

alternatives P/D nodes is represented by some jobs that can have alternative pick up

and delivery nodes at more than one fixed point. For example, let job No. 1 of the

AGV is to pick up an item from a turning process at department (node) B and deliver

to a drilling process which can be performed at departments E or G or I. The AGV

has to travel from pick up the node B and can choose to deliver the item to only one

node at departments E or G or I, which is described as alternatives P/D nodes. If an

 5

AGV travels from node B and selects to deliver to node E, the total traveling distance

of AGVs may different from selects to deliver to node G or node I. An example of a

job list for AGVsp-P/D is shown as table 1. The job scheduling (for example, starting

with job No. 1, follows by job No. 6, No. 5, and ending the schedule when all jobs are

completed) and selecting the appropriate alternative node effects on the traveling

distance of the AGV. The objective is the selecting of alternatives and scheduling for

all jobs such that the total AGV traveling distance is minimized. Therefore, the

research questions can be described as follows:

1. Given the information of some specific daily tasks of a specific factory and

a specific route path with the distances among departments, what is the scheduling of

the single AGV with appropriate selected alternative P/D nodes that can provides the

minimum total traveling distance? An example of specific daily tasks is shown on

table 1.

2. Given the information of some specific daily tasks of a specific factory, a

specific route path with the distances among departments and a specific number of

AGVs, what is the schedul of each AGV with appropriate selected alternative P/D

nodes that can provide the minimum total traveling distance?

Table 1 The example of AGVsp-P/D jobs

Job No. Pick up Department Delivery Department
1 B C
2 A I
3 B E or G or I
4 G C
5 D E
6 B or D or H F
7 I C or D or E
8 C H
9 F E
10 H I or G

 6

Figure 1 The example of the layout of AGV systems

Problem Statement

 Let the problem has a set of n jobs J such that job Ji = {Pi a, Di b}, i = 1, 2, …, n

where Pi a is a set of alternative pick up departments a of job Ji, a = {1, 2, …, k(i)} and

Di b is a set of alternative delivery departments b of job Ji , b = {1, 2, …, l(i)}. k(i) is

the number of alternative departments a for job Ji. l(i) is the number of alternative

departments b for job Ji. When job Jj = {Pj a, Dj b}, j = 1, 2, …, n is scheduled after

job Ji, cia jb is the traveling distance of an AGV that starts from a selected pick up

department a of job Ji , goes to a selected delivery department b of job Ji , goes to a

selected pick up department a of job Jj , then goes to a selected delivery department b

of job Jj , which is a non-negative number and cia ia = ∞.

The AGVsp-P/D is the problem that selects one alternative department from

set a and one alternative department from set b of all jobs J, called xia jb such that xia jb

= 1 if an AGV travels from a selected pick up department a of job Ji to a selected

delivery department b of job Jj or xia jb = 0 otherwise and sequences all those jobs J

A

B

C

D

E

F

H

I

G

 7

with their selected alternatives to form single/multi tours (TSP/MTSP tour) that can

provide the minimized total traveling distance.

Research Objectives

1. To study and develop the mathematical model of the single/multi AGVsp-

P/D that can describe the characteristics and structures of this problem.

2. To develop heuristic algorithms for solving the problem.

3. To create the code or program of developed algorithms by using a builder

software for solving the problem with some specific sizes and structures of problem as

a tool for verifying and validating efficiency and quality of proposed algorithms.

4. To analyze statistically the result of solving tested problems by using

proposed algorithms.

Research Significance

The trend of the modern manufacturing industry is to become more

computerized and automated systems. Improvements in production planning with

respect to the scheduling process of traveling vehicles (AGVs) will provide more

effective production planning that helps to improve the productivity. This research

establishes some kind of algorithms or production planning tools in the form of static

models that provide near-optimal solutions for the AGVsp-P/D which never been

studied and modeled before. The established algorithms are the extension and

modification from the existing AGV scheduling problem to capture the special

structure of the AGVsp-P/D.

 8

Research Scope and Assumptions

1. This research considers only the constant speed AGV with undirected paths

in manufacturing factories.

2. The daily task of the AGV system is considered to be a static condition

during the shift period.

3. The task of pick up and delivery activities is considered as a unit load that

can be assigned to only one AGV or can not be spitted.

4. This research results provide the mathematical model of the single/multi

AGVsp-P/D that can describes the structures and characteristics of this problem for

analysis and developments of all solving procedures.

 9

LITERATURE REVIEW

This chapter provides the background information on the key subjects for this

research. The first part of this chapter presents the AGV systems which explain about

the vehicle and the driving system. The description of all types of AGVs, function

criteria, and the dispatching systems are explained. The nature of dispatching systems

can be related to the scheduling approach, which is the main proposal of the research.

 The next part explains about the AGV problems which all factories, using

AGVs, have to face with. Many cases of AGV problems are explained and analyzed

in order to diagnose and solve the problem. Then single/multi traveling salesman

problem (TSP/MTSP) is explained next with its applications and transformations.

This part presents the mathematical model of TSP/MTSP that can be applied to solve

many real world problems of vehicle routing applications. The transformation

approach for solving the MTSP as a standard TSP is reviewed for generating the

concept of solving the multi AGVsp-P/D.

 The last part explains about the relevant statistical methods for analyzing the

data from the research results. The probability distribution of data sets is the first issue

that should be considered because most of statistic methods assume the normal

probability distribution of the data set. The normality test is explained in this part.

Then, the statistical hypothesis test and the analysis of variance, which are applied to

analyze some parts of research results, are reviewed.

 10

Automated Guided Vehicle Systems

The AGV system is one of the most exciting and dynamic areas in material

handling systems. AGV systems were invented around 1950’s, they were called the

driverless systems. AGV systems combine electromagnetic technology with existing

industrial truck equipment to create more flexible and self-steering vehicles.

Technological developments may have given AGVs more flexibility and capability for

operating in computer integrated manufacturing systems. In the future manufacturing,

AGV systems are expected to be widely used as material handling equipments. These

vehicles transport tools and materials among different work cells in flexible

manufacturing systems. AGVs are programmed independently but all of them are

correlated with the scheduling and the traffic control system. These characteristics

confer the flexibility and the adaptability to the material handling system. AGVs

circulate on a network of guide paths connecting the various work cells at load transfer

points, also called P/D nodes, which are located on paths of the network. In the design

of AGV systems, many types of design problems can be identified such as a design of

the network layout, a design of load pick up and delivery point locations, a design of

fleet size, and a design of traffic management systems.

Egbelu (1986) proposed the paper of AGV dispatching heuristics that are

related to the pull versus push strategy for AGV load movement in a batch

manufacturing system. The purpose of this paper is to justify the use of demand based

dispatching rules for AGVs in the manufacturing system. The algorithm of the pull

strategy (demand base) algorithm is presented and compared to several push strategy

(source base) algorithms to demonstrate its effectiveness. The traditional source

based dispatching rules do not have the flexibility, required by just-in-time (JIT)

manufacturing systems, so there is a need to develop some useful dispatching rules for

such applications. When the pull strategy is used, direct access load retrieval systems

must be used in order to pick up parts from any position of the queue, not only the first

part. In developing the dispatching algorithm, some assumptions are made such as 1.

A vehicle can transport only one unit load at a time, 2. No look-ahead capacity for

 11

future events is considered, and 3. No job is assigned a global priority over all others

at the time of entry into the production system.

A hierarchical demand driven dispatching rule is developed and tested against

some commonly used source driven dispatching rules. There are mainly two steps for

this algorithm. First is to identify workstations that have the greatest demand for all

parts, then the sources of parts can be selected according to some preset rules. If no

workstations meet the minimum requirement in the first step, the rule automatically

reverts to a source driven rule. A FORTRAN based discrete event simulation language,

AGVSim, is used to investigate the effectiveness of the proposed method. The author

compares the pull system to the widely used push systems in three separate cases.

From the simulation results of all cases, the demand driven dispatching rule proves

itself to be the competitiveness of the push system. In all cases, the pull system shows

that it is superior to the push system.

 Tanchoco and Moodie (1987) proposed the special issue of the study of AGV

systems in the Material Flow journal that consists of many points of view on the study

of AGV systems. This special issue brings together, under one cover, a collection of

papers dealing with new concepts in designing, planning, and analyzing. The paper

by G.A. Koff (1987) provided an introduction to the AGV system, its major functions,

and how these functions are executed. Koff illustrated that there are several types of

AGV that they are:

1. AGV towing vehicles; were the first type introduced and are still a very

popular type until now. It can pull a multitude of trailer. AGV towing applications

involve the bulk movement of product into and out of warehouse areas. Often side-

path spurs are place in receiving or shipping areas so that trains can be loaded or

unloaded off the main line and thereby not hinder the movement of other trains on the

main path.

2. AGV unit load vehicles; are equipped with decks which permit unit load

transportation and often automated load transfer. AGV unit load applications usually

 12

involve specific mission assignment for individual pallet movement. Unit load carries

are quite popular in applications of integrating conveyors with storage-retrieval

systems.

3. AGV pallet trucks; are designed to transport palletized loads to and form

floor level and eliminate the need for fixed load stands. AGV pallet trucks are

generally used in distribution functions. Vehicles can be loaded in two ways, either

they are capable of automatically reversing into pallets on the floor or operators will

manually board the vehicle and back them into pallets.

4. AGV fork trucks; are a relative new guided vehicle which has the ability to

service palletized loads both at floor level and on stands. AGV fork trucks are used

when the system requires the automatic pick up and delivery of loads from floor or

stand level, and where the heights of load transfer vary at stop locations. The guided

fork truck has the ability to pick up or deliver a load automatically without any human

interface.

5. Light load AGVs; are vehicles which have capacities to transport small

parts. They are design to operate in areas with limited space. Light load AGVs

applications are used in light manufacturing processes. The product can be distributed

from a small parts storage area to individual work stations where operators do light

assembly.

6. AGV assembly line vehicles; are an adaptation of the light load AGVs for

application involving serial-assembly processes. Assembly line AGV is adaptations of

the small, light-load AGVs for an assembly line process. The guided vehicles carry

major subassemblies such as motors or transmission to which parts are added in serial

assembly process.

 13

The basic functions of AGVs consist of five functions as follows:

1. Guidance: this function allows the vehicle to follow a predetermined route,

which is optimized for the material flow pattern of a given application.

2. Routing: this function is the vehicle’s ability to make decision along the

guidance path in order to select optimal route to specific destination.

3. Traffic management: this function is a system or vehicle’s ability to avoid

collisions with other vehicles, while at the same time maximizing vehicle flows and

therefore load movements throughout the system.

4. Load transfer: this function is the pick up and delivery method for AGVs,

which may be simple or integrated with other subsystems.

5. System Management: this function is the method of system control used to

dictate system operations. The proper method of selection for each function and its

ability to work with the other functions is determines in by measuring the degree of

successfulness of a given system.

The manufacturing industry consists of several machine centers performing

different machining functions. A part or unit load visits several centers before its

machining requirements are satisfied. A unit load continues to circulate in the shop

among work centers until receiving the last service. It is the transition of unit loads or

parts that generate the vehicle dispatching or task assignment problem in an AGV

system.

Egbelu and Tanchoco (1984) presented some heuristic rules for dispatching

AGV in a job shop environment. The vehicle dispatching decisions fall into two

categories that are the work center initiated task assignment problem and the vehicle

initiated task assignment problem. The first category is a decision involving the

selection of a vehicle from a set of idle vehicles to assign to a unit load pick up task

 14

generated at some parts of the factory. This class of decisions involves a single work

center and one or more vehicles. The decision is generally the result of a request from

a work center for vehicle service. The secondary category of decisions involves the

selection of a work center from a set of work centers simultaneously requesting the

services of any vehicle, a decision, which usually involves a single vehicle and multi

work centers. The decision is to prioritize the departments and to dispatch vehicles to

the departments with the highest priority. Two vehicle dispatching decisions are

explained as follows:

1. The work center initiated task assignment problems: a typical machining

center in an AGV system consists of one or more machines, an incoming unit load

queue, and an outgoing unit load queue. The unit loads are drawn from the incoming

queue, processed, and released into the output queue at the same rate. The deposition

of a unit load into the output queue also initiates a request by the department for an

unassigned vehicle for the immediate removal of the deposited load. Several heuristic

rules can be employed to assign the priority of vehicles for dispatching such as

Random Vehicle rule, Nearest Vehicle rule, Farthest Vehicle rule, Longest Idle

Vehicle rule, and Least Utilized Vehicle rule.

2. Vehicle initiated task assignment problems: from an operational point of

view, the most desirable level of handling effectiveness is to ensure that unit loads

completed at a work center are removed promptly and transported to their subsequent

destinations with a minimum of delays. Like the work center initiated task assignment

problem, several heuristic rules are available for ranking work centers requesting

unassigned vehicles. Possible assignment rules are:

1. Random Work Center rule

2. Shortest Travel Time/Distance rule

3. Longest Travel Time/Distance rule

4. Maximum Outgoing Queue size rule

5. Minimum Remaining Outgoing Queue Space rule

6. Modified First Come First Serve rule

 15

Several combinations of all above rules are tested on a factory using a simulation

technique. A simulation program, AGVSim, was developed specifically to simulate

an AGV system. Using unit load throughput as a measure of rule performance with 2

trials per rule combination, all experiments are conducted under similar conditions.

The demonstrations indicated that rules, which are derivatives of distance measures,

have several drawbacks if the appropriate layout conditions of factory and equipment

locations are not met.

In the design of an AGV system, one of the fundamental problems is the

determination of the number of vehicles that are required to provide a given level of

transportation service. There are so many methods for the fleet-size determination

process that use mathematical or simulation based techniques. Tanchoco, Egbelu and

Taghaboni (1987) proposed the effectiveness of CAN-Q software in determining the

number of AGVs and compared to a simulation based method (AGVsim). The

analysis indicates that the results obtained from the software provide a good starting

search point for a simulation technique. When two approaches are used jointly, the

number of simulation runs which is required to generate a solution is potentially

reduced. Simulation is the most reliable method to data estimating vehicle

requirements for complex system. However, since simulation is expensive in the cost

of data correction and time consuming, several non-simulations based calculation

approaches vehicle estimation are generated.

Egbelu (1987) proposed four cases of the method for estimating the number of

vehicles through hand calculation. They are

Case 1: it is assumed that the distance covered by vehicles making empty run is equal

to the distance traveled by loaded vehicles.

Case 2: it requires the estimation of blocking time factors and idle time factors. This

estimation is used to refine the estimate on the vehicle requirement.

Case 3: this method requires the computation of the net traffic flow into the work

center. For the work center i, the net in-flow is Fi .

 16

- If Fi > 0, it implies that there are more number of vehicles coming to deliver a

load into the work center i then coming to pick up a load. It is a net exporter of

empty vehicle.

- If Fi = 0, the method assumes that no empty runs will be made from the work

center i. Every vehicle that delivers a load from the center i will leave with a

load to another center.

- If Fi < 0, it implies that the center i will be a net importer of empty vehicles.

 Case 4; this method assumes a job shop environment for a work center i, the sequence

of jobs, which request to pick up load are generated from the work centers that is

varied randomly.

A modern manufacturing factory is usually managed by computer control

systems that obtain the production plans and monitor the current state of each job. In

such a dynamic and sophisticated environment, the job scheduling is one of key

factors in a successful implementation of the AGV system.

Automated Guided Vehicle Problems

When the vehicle management problem is considered, the vehicle routing and

scheduling problems are the most interested problem. There are many interesting

papers about AGV problems, which relate to the vehicle routing and scheduling

problem that are reviewed as follows.

Maxwell (1981) presented about solving material handling problems using

Operations Research (OR). The objective of this paper is to provide a broad overview

of OR techniques that can be used to solve interplant material handling problems. The

author first identifies the primary variables generally associated with material handling

problems. These variables such as flow rates, weights, sizes, distances, and velocities

can usually be handled in OR with matrices and joint probability distributions. OR

techniques are used to solve a vehicle requirement problem in the simple AGV. It is

assumed that the factory layout and the AGV truck layout are already designed. To

simplify the analysis, the AGV are considered unidirectional and only one way flow is

 17

allowed in each plant aisle. The minimum number of vehicles is determined

heuristically by first summing the total travel time required, total pick up and delivery

time required, and total blocking time encountered by vehicles, and thendividing this

value by the total operating time per a unit of vehicle. Blocking time is the time that

two or more AGVs are in conflict for a route, causing one or more of them to be

blocked. In order to determine the minimum vehicles requirement, blocking time is

assumed to be zero. The total pick up and delivery time is determined by time

estimation techniques, such as analyzing past productions data, or performing time

studies on similar operations. The total operation time per a unit of vehicle is simply a

constant base on an estimation of the available operating time of each vehicle over a

typical shift. The total traveling time is estimated by using the shortest path to

determine optimal route for all possible pairs of nodes, and the problem can finally be

treated as a transshipment problem. The author admits that many OR techniques are

in their infancy, and these techniques are underutilized in material handling problems.

The paper does show the applicability of the shortest route algorithm and

transshipment problem to solving an AGV design problem.

Maxwell and Muckstudt (1982) presented the problem of determining an

optimum schedule for dispatching AGV that the results a minimum number of AGVs

by focusing on the empty traveling distance. The system is designed to ensure proper

vehicle’s utilization. The items such as raw materials or work pieces are moved from

receiving stations to storage facilities and the production lines according to needs as

they arise. These functions cannot be carried out effectively unless considerable

thought and design effort has gone into planning of the vehicle dispatching and control

system. One purpose of their article is to show how the design of an AGV can

determine the minimum number of required vehicles. Determination of the optimal

number of vehicles is exactly difficult when considering detailed time-phased pick up

and drop off requirements, pick up and drop off areas, floor space capacities, and track

congestions. A large scale IP can be formulated including all these factors. The

second goal is to present other analysis tools that can be used to evaluate the time-

dependent behavior of an AGV. The procedure for dispatching vehicles is developed

and shown how to measure the blocking time caused by congestions and the size of

 18

storage areas. The problem is designed by assuming the particular layout for a system

already exists. The track layout can be defined as a network. The vehicles move

through the network among nodes on directed segments which correspond to a guide

path connecting one node with the others. The nodes correspond to the intersection

points of the various segments of guide path. Each segment has some number of pick

up or drop off stations. The problem is analyzed by assuming the system

characteristics as follows.

1. vehicles move in only one direction on any segment.

2. a zone control system is used to prevent collisions particularly at

intersections.

3. load and unload times are known for each location.

4. traveling speeds among stations for loaded and unloaded vehicles are

known. The requirements, which are moved from one station to the other

are known. The data are given in integer vehicle loads and that vehicles

are always dispatched to pick up and drop off completed loads.

If a unit load must be moved from station i to station j, then one AGV is used

to accomplish this task. Splitting of loads is not allowed. Let vij be the number of

vehicle loads that must be moved from station i to station j during a shift and the

layout consists of n stations. The value of
1

n

ij
j

v
=
∑ is the number of AGVs that are

needed at station i to move materials, and
1

n

ij
i

v
=
∑ is the number of AGVs that arrives at

station j during the shift. For stations, which are not the storage points for AGVs, they

must have the total vehicle flow into the station within the shift equal to the total flow

out. The model’s objective function is to measure the total travel time for empty

vehicles moving among stations.

To formulate the problem, the net AGV flows into each station are determined.

The net flows for station i is
1 1

n n

ji ij
j j

v v
= =

−∑ ∑ . If fi is the number of AGVs that are

 19

available at the beginning of the shift and gi is the number of AGVs that are required

at the end of the shift, the net flow for station i is

1 1
()

n n

ji ij i i
j j

NF i v v f g
= =

= − + −∑ ∑

For the problem to be well defined,
1

() 0
n

i
NF i

=

=∑ . Thus, the problem is to determine

how to allocate the vehicles that are available [NF(i) > 0] at station i to satisfy the

deficits at other stations j [NF(j) < 0] so that the totaling traveling time for moving

empty AGVs are as small as possible.

 Let ai = NF(i), if NF(i) ≥ 0

 = 0, otherwise.

 bi = NF(i), if NF(i) < 0

 = 0, otherwise.

 tij = the shortest travel time from station i to station j

 when a vehicle is unloaded.

 xij = the number of empty vehicle trips that should be

 made from station i to station j during the shift.

The problem is to find the values for the variables xij for all i,j that

 Minimize
1 1

n n

ij ij
i j

t x
= =
∑∑

 subject to

1

n

ij
j

x
=
∑ = ai , for all station i,

1

n

ki
k

x
=

−∑ = bi , for all station i ,

 xij ≥ 0 for all i, j.

It is easy to see that the above problem is a simple transportation problem. The

solution indicates how many vehicle trips should be made with empty vehicles

between station i and j. Because this problem is a transportation problem, all variables

 20

will have integer values. The total traveling time for empty AGVs moving between

stations is measured. Thus, if this total is H hours and h hours are available on each

AGV shift per, and then H/h vehicles are required for material movement plan.

An optimal flow path design is one of the interesting topic for an AGV system

planning. The AGV technologies are constantly growing due to better sensors,

improved robotics, low-cost high-performance computers, and sophisticated control

methods and software. In such a modern manufacturing environment the path routing

is one of key factors in a successful implementation of the AGV system.

Blair, Charnsethikul and Vasques (1987) presented the optimum routing

problem of AGVs among the workstations as the TSP. An algorithm for the near

optimal routing of AGVs in such a system is presented which seeks to organize

material moves into tours with the objective of minimizing the maximum tour length.

In their paper, they assume that the sequence of move transactions, which are assigned

to each AGV, is a tour. The tour distance is the total distance to be traversed in order

for the assigned AGVs to go from its initial location to the location of the first move

and then to pick up and deliver each move in the prescribed sequence. The tour may

requires the AGV to travel empty from the destination of one move to the origin of the

next. Each move consists of a unit load, which will consume the capacity of AGVs.

The objective function is to minimize the maximum tour distance of all tours. The

AGV activity scheduling task can be easily formulated as either two well known

network optimization problems. In the first formulation, work centers are represented

as nodes. Each move transaction is represented as a directed arc from the origin of the

move to its destination. The other formulation represents the move transactions as

nodes. Arcs are used to represent the sequence of performance. Each node is

connected to every other node by a set of corresponding arcs. This is a modification

of the classic TSP appropriately called the multiple traveling salesman problem or

MTSP. The heuristic method, which they presented in this work, is composed of two

phases. In the first phase, the AGV routing problem is formulated as a standard MTSP.

The MTSP is solved by using a modification of the branch and bound technique, first

proposed by Eastman (1958). The resulting solution is a minimum total distance over

 21

all tours. The second phase is a tour improvement process, which starts with the

feasible set of tours prescribed by phase one. At each iteration of phase two, the

longest tour is reduced by removing a node from it. Two new subproblems are

defined. One subproblem is the restructuring of the largest tour by treating it as a

single TSP. The second subproblem is a reduced MTSP, which includes all the nodes

in the other tours plus the node recently removed from the largest tour. Solving the

TSP for the largest tour, minus the removed node, provides an optimal patching of the

remaining set of nodes in the tour. Solving the remaining tours using an MTSP

provides an optimal allocation of the removed nodes to one of the remaining tours.

This algorithm has been coded into a BASIC program. The program was tested at

three levels:

1. Level I: small-sized problems, 15 moves and 3 tours;

2. Level II: medium-sized problems, 35 moves and 4 tours;

3. Level III: large-sized problems, 50 moves and 5 tours.

For each level, 100 randomly generated move transaction lists of the appropriate size

were generated and solved by the program. Each replication is evaluated with respect

to two performance measures: the optimization performance ratio (OPR) and the

corresponding computation (CPU) time.

Gaskins and Tanchoco (1987) first formulated the flow path design for AGV

systems by using IP approach. The objective of this study is to find the optimal flow

path for an AGV so that the total traveling distance of the loaded vehicles will be

minimized. The 0-1 IP model with considerations of the given facility layout and P/D

stations is used to determine the optimal flow path in this paper. However, the paper

only considers the unidirectional path network, which has lower utilization than the

bidirectional network. The traveling distance by the unloaded vehicles is not taken

into consideration. The main limitation of this study is that it only considers a fleet of

AGVs with the same origin and destination every time. These AGVs run along the

same route. Therefore, routing control is trivialized because issue such as congestion,

deadlocks, and conflicts will never occur.

 22

The first procedure of their work is to formulate the objective function. It

consists of the distance between pairs of nodes when a particular path is taken, the

flow intensity between pairs of nodes, and the decision variables for determining

which pairs of nodes are selected. The objective function represents the total distance

traveled by loaded vehicle. Besides the objective function, a set of constraint

equations are also required to ensure that the shortest route among all pairs of shortest

path are taken and all other limitations are satisfied. These constraints include

unidirectional flow, at least one input and one output arc that are selected for each

nodes, and finally the constraint equations use to ensure the shortest path is taken. The

problem is solved by first determining the shortest route between pairs of nodes, and

then putting them into the objective function. From this procedure, the minimum total

traveling distance is obtained. Unused arcs in the layout can be either removed from

the layout or included as alternative routs when blocking occurs.

Kaspi, Kesselman, and Tanchoco (2002) presented the optimal flow path

layout design method. The problem is analyzed and formulated by a mixed integer

programming (MIP) problem. A searching procedure, based on the branch and bound

technique, is proposed to solve the problem. The procedure is implemented as a

computer program and yields an optimal solution in a small number of iterations.

Using the transportation model for calculating the required and optimal flow of empty

vehicles, system balance is achieved. The problem is formulated as a node-arc

network where the nodes represent pick up and delivery stations and arcs are guide

paths connecting the nodes. Empty vehicle flows are also taken into account when the

checking the feasibility of a partially or fully directed guide path is done. The

objective of the flow path layout problem is to set directions for each arc in an

undirected flow path network such that the total traveling distance of both loaded and

unloaded vehicles is minimized. The assumption that the network is fully

unidirectional and the reach ability constraints eliminate the issue of blocking.

The authors stated that the formulated linear mixed variables (0-1 and

continuous) model is quite difficult to solve. The main difficulty in finding the

optimal solution to this problem is the large number of binary variables required for a

 23

realistic size problem. A general approach, which is used to solve this problem, is the

branch and bound procedure. When using the branch and bound method, the search

function deals with subproblems of the main problem at each step and ignore the

global aspect. It is possible that great computational effort can be directed to a branch

in which the optimal, or even a feasible, solution cannot be found. The specific used

technique is the branch and bound method with depth-first search and backtracking,

rather than the jump tracking approach (known also as best-first search). Using the

backtracking method, a feasible solution is obtained quite quickly and the required

memory is much less than for the jump tracking method. The backtracking procedure

is invoked any time when a feasible complete solution is obtained when a branch is

bounded or branching is impossible. The backtracking procedure returns to the source

branch. The procedure determines the optimal flow of the unloaded vehicles by

solving the transportation problem for each step in branching process. The direction

of each arc in the system is determined and optimal objective function is obtained.

Traveling Salesman Problem

The real world task of a salesman is trying to sales the products that a salesman

has to travel to possible customers at any cities. If a salesman, starts from the depot or

head office city, visits each city exactly once on a given list of possible customers and

return to the starting point, it is plausible for him to select the order in which he visits

all cities so that the distances traveled in his tour is as small as possible. Assume a

salesman knows, for every pairs of cities, the distance from one city to the others.

Then he has all the data necessary to find the minimum tour distance, but it is by

means obvious how to use these data in order to get the answer. This kind of problem

is called “Traveling Salesman Problem” or “TSP”.

Lawler et al. (1985) presented the survey of knowledge on the TSP. The TSP

is one of combinatorial optimization problems that attempt to minimize the total

distance of the tour. The problem is one of optimization problems, but cannot

immediately employ the methods of differential calculus by setting derivative to zero,

because it is in a combinatorial situation that its choice of solution is not over a

 24

continuum but over the set of a tour. A different optimization method comes from

linear programming (LP). The continuous history began in the late 1940s with George

Dantzig, treats the problem of finding the minimum of linear function on a polyhedron

by a system of linear equations. The LP can be used as a tool of combinatorial

optimizations by its principle. There are three aspects of the history of any

mathematical problem, which are:

1. how to arose

2. how research on it influences other developments of mathematics

3. how the problem is finally solved.

If the TSP is one of the mathematical problems which developed algorithms which

satisfy formal or informal standard of efficiency, this problem can be considered that it

has not yet been solved. So the TSP is the most prominent of the unsolved

combinatorial optimization problem. And that is why it continues to influence the

development of optimization concepts and algorithms.

One of the earlier problems of the combinatorial mathematics arises in the

theory of graphs. A graph is a finite set of vertices and some pairs of which are joined

by edges. A cycle in the graph is a set of vertices of the graph which such that it is

possible to move from one vertex to another vertex, along edges of the graph, so that

all vertices are encountered exactly once, and it must finish where it started. If a cycle

contains all the vertices of the graphs, it is called “Hamiltonian cycle”. The TSP for a

graph with specified edge lengths is the problem of finding a Hamiltonian cycle with

the shortest length. Lawler et al. (1985) presented the survey that many papers relate

to the Hamiltonian cycle and the TSP as following examples.

Kirkman (1856) considered Hamiltonian cycles in a general context. He

asserted a sufficient condition for a polyhedral graph to admit such a cycle, and also

showed that a polyhedron on an odd number of vertices, in which each face has an

even number of edges, cannot have such a cycle.

 25

Hamilton (1856) invented a system of noncommutative algebra, for which the

actions of the basis elements could be interpreted in terms of paths on the regular

dodecahedron. Hamilton named this algebra as “The Icosian Calculus”, and used the

graphical interpretation as the basis for a puzzle, marketed the game in name “The

Icosian Game”. The game consisted of various problems, such as finishing a cycle

when the first five positions are given.

Lin and Kernighan (1973) proposed an effective heuristic algorithm for solving

the TSP. The general concept is to transfer arcs which are not included in the previous

tour into a new tour by exchanging nodes. They presented several algorithms to show

methods which can be used to generate a set of tours from an available tour. A

method, which is widely used, is called the 3-OPT procedure. The process of 3-OPT

is to choose three arcs out of the old tour and find three new arcs to replace them.

Several new tours are generated. An objective function, which is minimizing tour

length, must be evaluated and the process stops when all new tours show no

improvement in the objective value. Otherwise, a tour with improvement is chosen to

start the process again.

The TSP/MTSP can be formulated as IP. Orman and Williams (2004)

presented a survey of different IP formulations of the TSP such as the conventional

formulation that is presented by Dantzig, Fulkerson and Johnson (1954) and Miller,

Tucker and Zemilin (1960). The 0-1 IP model of TSP is defined on a complete

directed graph G = (V, A), on n vertices, with vertex a set V = {1, 2, …, n}, arc a set A

= {(i, j)| i, j = 1, 2, …, n }, nonnegative cost or distance cij associated with arcs (i, j)

and cii = ∞ for all ,i j V∈ .

 26

Dantzig, Fulkerson and Johnson (1954) formulated the standard problem of

TSP as a 0-1 IP model as follows

1 1

(1)
n n

ij ij
i j

Min Z c x
= =

=∑∑

Subject to

1

1

,

1, 1, 2,..., (2)

1, 1, 2,..., (3)

1 2 1, (4)

0 1 ,

n

ij
i
n

ij
j

ij
i j S

ij

x j n

x i n

x S S V and S n

x or i j V

=

=

∈

= =

= =

≤ − ∀ ⊆ ≤ ≤ −

= ∀ ∈

∑

∑

∑

where V = {1, 2, … , n}, xij = 1 if arc (i, j) is in the solution and xij = 0, otherwise.

The constraints (2) and (3) are the assignment constraints. The constraints (4)

represent the subtour elimination constraints. This formulation has 2n-1 + n-1

constraints and n (n-1) of 0-1 variables xij. The exponential number of constraints

makes it impractical to solve directly. The branch and bound approach can be applied

and solved this model iteratively.

The sequential formulation is the Miller, Tucker and Zemlin (1960)

formulation of the classical TSP that is given as follows

1 1
(6)

n n

ij ij
i j

Min Z c x
= =

= ∑∑

Subject to

1

1

1, 1, 2,..., (7)

1, 1, 2,..., (8)

1 (9)

0 1 , .

n

ij
i
n

ij
j

i j ij

ij

x j n

x i n

y y nx n i j

x or i j

=

=

= =

= =

− + ≤ − ∀ ≠

= ∀

∑

∑

The number of cities is n, the distances are cij and the arcs in the tour are represented

by the variable xij for all ,i j . The cij is the distance from city i to j (cij = α for i = j).

The variable xij is 1 if the salesman travels from city i to j and 0 otherwise. The

 27

variables yi are arbitrary real numbers which satisfy the subtour elimination constrain

(9). The constraints (7) and (8) are the assignment constraints. This formulation has n2

– n + 2 constraints and n (n-1) of 0-1 variables xij. The mathematical formulation of

the MTSP can be formed by applying the transformation idea to the Miller Tucker and

Zemlin(1960) formulation. Svestka and Huckfeldt (1973) gave the MTSP formulation

for m salesmen as following.

1 1
(10)

r r

ij ij
i j

Min Z d x
= =

= ∑∑

Subject to

1

1

1, 1, 2,..., (12)

1, 1, 2,..., (13)

(1) 2 (14)

0 1 , .

r

ij
i
r

ij
j

i j ij

ij

x j r

x i r

y y n m x n m i j

x or i j

=

=

= =

= =

− + + − ≤ + − ∀ ≠

= ∀

∑

∑

where r = n+m-1

 dij denotes the new distances for MTSP and all other terms have the same definitions

as the Miller Tucker and Zemlin(1960) formulation. The new distance matrix [dij] are

defined from the original distance cij, which augment the original distance matrix [cij]

with m-1 new rows and columns, where each new row and column is a duplicate of the

first row and column of the matrix [cij]. It is assumed that the first row and column

correspond to the home city. Set all other new elements on new rows and columns of

the augment matrix to infinity. All other terms have the same value as the original

matrix [cij].

Bellmore and Hong (1974) proposed another method to solve MTSP. Suppose

all n cities must be visited by one of m salesmen. They presented the transformation of

the MTSP for m salesmen to the classical TSP by adding m-1 dummy nodes to the

original network as the artificial starting node and solved the MTSP from solving the

TSP of the modified network.

 28

According to this point, the TSP is seductively easy to state. It takes no

mathematical background to understand the problem and no great talent to find good

solutions to large problems. Thus, it is exciting to work on the way to solve the

problem on any sizes. The TSP has resisted all efforts to find a good optimization

algorithm or even an approximation algorithm that is guaranteed to be effective.

There are also practical reasons for the importance of the TSP. Many significant real

world problems can be formulated as instances of the TSP. The application of TSP

can describe various problem transformations, related combinatorial problems, and

generalizations of the basic TSP.

Generalizations of the TSP and related problems

 There are many problems related or have some relationships with the TSP.

Lawler et al. (1985) illustrated the relationships of the TSP to several other

optimization problems, which are shown as follows.

1. The assignment problem: the problem of n cities is considered. Let xij be a

0-1 variable indicating whether or not the salesman goes directly from city i to city j

for all i, j and cij be the corresponding distance. The length of salesman tour is then

1 1

n n

ij ij
i j

c x
= =
∑∑ (15)

which is to be minimized. Clearly,

1

1, 1,..., ,
n

ij
j

x i n
=

= =∑ (16)

since a unique city is visited directly after each city, and similarly,

1

1, 1,..., ,
n

ij
i

x j n
=

= =∑ (17)

Figure 2 Subtours from the assignment solution

1 2 3 4

 29

Now, (15), (16) and (17) describe the well-solved assignment problem. It follows that

the TSP must involve some additional complications. In particular, the missing

constraints in the above formulation involve subtours. For example, if n = 4 then x12 =

x21 = x34 = x43 = 1 and xij = 0 otherwise satisfies (16), (17) but represents two subtours

(1, 2), (3, 4) of figure 2 rather than a single tour. Thus, the assignment problem is a

relaxation of the TSP or, equivalently, the TSP is the restriction of the assignment

problem obtained by adding the constraint of a single tour, which is:

 ‘no subtours allowed’. (18)

2. Integer linear programming: There are a number of ways to enforce (18)

mathematically. For instance, (18) can be replace with

 1ij
i s j s

x S
∈ ∈

≤ −∑∑ (18a)

or with

 1ij
i s j s

x
∈ ∈

≥∑∑ (18a)

for every proper, nonempty subtour S of N = {1, …, n} where |.| denotes cardinality.

Clearly, any subtour violates (18a) and (18b) for some S (In figure 2, S = {1, 2} and {3,

4}). Of course (18a) and (18b) represent a large number of constraints: 2n - 2 to be

exact. However, these formulations, due to Dantzig, Fulkerson and Johnson (1954),

do have at least one characteristic of good formulations, namely a well-solved

relaxation.

A more compact variation of (18a) and (18b) is proposed by Miller, Tucker

and Zemline (1960). Arbitrarily designate vertex 1 to be the home base. Then the

constraints

yi - yj + nxij ≤ n-1, i, j = 2, …, n, (18c)

where yi and yj are arbitrary real numbers, block all tours not containing vertex 1. To

see that (18c) in conjunction with (16), (17) blocks subtours, consider an arbitrary

 30

subtour (i1 , …., ik) where 1 is not in {i1 , …., ik}. If a set of xij satisfying (16), (17)

represents more than one subtour, then it also represents at least one subtour not

containing vertex 1. But addition of the constraints (18c), represented by this subtour

yields nk ≤ (n-1)k which is clearly false since n, k ≥ 2. Furthermore, every TSP tour

remains feasible with these additional constraints. Every tour can be assumed to start

at city 1. If city i is visited j th after city 1, let yi = j. As example, consider the tour (1,

4, 3, 2). For this, set y1 = 0, y4 = 1, y3 = 2, and y2 = 3. It is straightforward to verify

that this procedure works in general.

Note that the model (15), (16), (17), (18c) with binary variables xij is a mixed

integer program since it has n-1 continuous variables, and that (18c) represents only

(n-1)2 constraints. It is also shown by Miller, Tucker and Zemline (1960) that an

extension of the TSP can be modeled in the same way. Suppose the salesman visits

the cities in a number of subtours, each beginning and ending at city 1, and no subtour

can contain more than r cities, which r < n. Then (18c) can be replace with

yi - yj + rxij ≤ r-1, i, j = 2, …, n, (18d)

Of course, since city 1 can be visited more than once, the constraints

1
1

1
n

j
j

x
=

=∑ and 1
1

1
n

i
i

x
=

=∑ should be replaced by 1
1

1
n

j
j

x
=

≥∑ and 1
1

1
n

i
i

x
=

≥∑ .

The model obtains the solution, which is a set of subtours of r cities.

Branch and bound methods for TSP

 Lawler et al. (1985) stated that the origins of the branch and bound idea go

back to the work of Dantzig, Fulkerson & Johnson (1954 and 1959) on the TSP. The

first attempt to solve TSP by enumerative approach is apparently due to the work of

Eastman (1958). In a sense the TSP has served as a testing ground for the

development of solution methods for discrete optimization, in that many procedures

and devices were first developed for the TSP and then, after successful testing,

extended to more general integer programming.

 31

Gillett (1976) stated that the enumerative (branch and bound, implicit

enumeration) methods solve a discrete optimization problem by breaking up its

feasible set into successively smaller subset, calculating bounds on the objective

function value over each subset, and using them to discard certain subsets from further

consideration. The bounds are obtained by replacing the problem over a given subset

with an easier (relaxed) problem, such that the solution value of the latter bounds that

of the former. The procedure ends when each subset has either produced a feasible

solution, or has been shown to contain no better solution than the one already in hand.

The best solution found during the procedure is a global optimum. A number of

branch and bound algorithms that find the exact solution for a small to moderate size

of TSP (fewer than 50 cities) have appeared in many literatures, but most of them are

base on the algorithm by Eastman (1958).

Little et al. (1963) presented an algorithm that is a branch and bound method

for solving TSP. The set of all tours (feasible solutions) is broken up into smaller

subsets by a procedure called branching. For each subset, a lower bound on the length

of tours is calculated. Eventually, a subset is found that it contains a single tour whose

length is less than or equal to some lower bound for every tour. This algorithm

modifies both the branching and bounding procedures by modifying the Eastman’s

algorithm to eliminate two cities subtours. Since the Eastman and Little’s algorithm

form the basis for all TSP branch and bound algorithms, one of them, namely,

Eastman’s algorithm is presented as follows.

Eastman’s algorithm for TSP

Gillett (1976) presented an Eastman’s algorithm for TSP which is the branch

and bound algorithm for solving the single TSP tour. Let c(i,j) be the distance from

city i to city i for i = 1, 2, …, n and j = 1, 2, …, n. Where n is the number of cities and

c (i,i) = ∞ for i = 1, 2, …, n. A tour is a complete route or cycle through n cities where

no city is visited more than once. If the salesman visits a certain city and returns to

that city later, the cities involved form a subtour. Of course, this cannot occur if a

route is feasible (each city is visited once and only once). The Eastman’s algorithm

 32

solves the easier assignment problem that allows subtours and then systematically

forbids subtours until finally the single tour is obtained that are the optimal. An

illustrative procedure follows the algorithm, which is:

Step 1:

Let CLUB represents the current least upper bound on the optimal solution of the TSP.

Set CLUB = 1010 (CLUB equal to a large positive number)

Step 2:

Solve the associated assignment problem, where the distances c(i,j) are the elements of

the distance matrix. The solution provides a lower bound on the optimal solution of

the TSP. If at least one subtour exists in the solution, go to step 3, otherwise the

optimal solution of the assignment problem is also an optimal solution of the TSP, so

stop.

Step 3:

Select a subtour and let k be the number of arcs in the selected subtour. Eastman

selects the subtour with the smallest number of arcs. All other subtours at this node

can be ignored.

Step 4:

Branch into k subproblems. If the subtour is:

i1 - i2 - … ik - il

Then for subproblem 1 let c(i1, i2) = ∞, for subproblem 2 let c(i2, i3) = ∞, etc., and for

subproblem k let c(ik, il) = ∞.

Step 5:

Solve the k new assignment problems. Each solution distance is a lower bound for the

corresponding subproblem.

 33

Step 6:

If there are one or more feasible solutions from step 5 and if the smallest total distance

for these feasible solutions, say STD, is smaller than CLUB, set CLUB = STD and

save the corresponding feasible solution. Otherwise CLUB remains unchanged.

Step 7:

If CLUB is less than the lower bounds on all other unexplored subproblems, then the

solution corresponding to CLUB is an optimal solution of the TSP, so stop; otherwise,

goes to step 8. By unexplored subproblems, it means subproblems that have not been

divided into further subproblems.

Step 8:

From the set of all unexplored nonfeasible (subtours present) subproblems with a

bound less than CLUB, select the subproblem with smallest lower bound for further

branching. Go back to step 3

Applications of the TSP

Despite the fact that the TSP can be applied to many useful situations directly,

most of reported applications are quite different. Seemingly there are many unrelated

problems that can be solved by formulating them as instances of the TSP. Lawler et al.

(1985) illustrated some examples of applications of the TSP. Many applications

descried below are the versatility of the TSP model.

1. Vehicle routing: by vehicle routing it means the problem of determining for

a fleet of vehicle which customers should be served by which vehicles, and in what

order each vehicle should visit its customers. Constraints generally include capacities

of the vehicles as well as time windows for each the customers. Some algorithms for

this problem use the TSP model for the subproblem of ordering each vehicle’s

customers.

 34

2. Computer wiring: this problem occurs repeatedly in the design of the

computer’s component and other digital systems. A system consists of a number of

modules and several pins are located on each module. A given set of pins has to be

interconnected by wires. In order to avoid signal crossing and to improve ease and

neatness of wiring, the total wire length should be minimized. A minimum length

Hamiltonian path can be solved by using an (n+1)-city symmetric TSP.

3. Cutting wallpaper: this situation needs to cut n sheets of wallpaper from a

single long roll of paper by minimizing waste. Sheet i starts at position Si and finishes

at position Fi, with respect to a pattern that repeats at one unit intervals. Thus, Fi = Si

+ Li (mod 1) where the length of sheet i is Li pattern units. The amount of wallpaper

that is wasted if sheet j is cut from the roll immediately after sheet i is then;

Cij = Si – Fi if Fi ≤ Si, otherwise Cij = 1+ Si – Fi

or equivalently,

Cij = Si – Fi (mod 1).

Now suppose that when begin cutting, the end of the roll is at position Fo and that after

cutting the last sheet worker must makes one final cut to restore the roll to the same

starting points S0 = F0. If create a dummy sheet 0 is created, the starting and finishing

point, the problem of cutting the n sheets from the roll become an (n+1)-city TSP with

distance matrix defined by Cij.

4. Job sequencing: Consider the problem of sequencing n jobs on a single

machine. The jobs can be done in any order and the objective is to complete all of

them in the shortest possible time. Assume that the machine must be in a certain state

Si in order to do job j and that the beginning and ending state for the machine is So.

Let the time required to complete job j directly after job i be

 Tij = Cij + Pi

where Cij is the time required to transform the machine from Si to Sj and Pi is the

actual time to perform job j (with P0 = 0). The TSP can be used to solve this kind of

problem by using the distance matrix defined by Tij.

 35

5. The stacker crane problem: The motivation for this problem is expressed by

ignoring the stacker cranes and considering the delivery trucks. Suppose a truck must

perform a collection of pick up and delivery, subject to the constraint that each loads,

which is picked up completely, fills the truck and goes to a single destination, Hence,

no picks up or deliveries can be combined. The stacker crane problem is a

generalization of the TSP in which the desired tour must contain certain edges, and

must traverse them in specified directions. An instance is a set of cities (and

corresponding distance matrix C is defined by [Cij]) together with a set A of arcs,

where each arc is an ordered pairs of cities and every city occurs in exactly one arc.

If (,)i j A∈ , this means that a load must be picked up at city i and delivered to city j.

The goal is to save fuel, by minimizing the total length of the route that is used to

make all movements. The TSP with distance matrix [Cij] can be applied to this

problem.

6. Problem of postal service: The stacker crane problem is related to a number

of other problems which are concerned more with traversing arcs (or edges) then with

visiting vertices. The undirected analogue of the stacker crane problem is called the

rural postman problem, Orloff (1974). The information is given a set of required

edges (rather than arcs) and asks for a route of the minimum length, which will

traverse each edge at least once (the direction of traversal dose not matter). This

model is the problem that a mail carrier designs an optimum route, with each edge

corresponding to a street along which the mail must be delivered. The TSP can be

applied to help a mail carrier to solve an optimum route.

Benders’Decomposition Algorithm

J. F. Benders (1962) proposed a technique in which the mixed integer

programming (MIP) problem can be written as an IP problem. Using the linear

programming duality theory, it is possible to show that any the MIP problem can be

written as an integer program. The equivalent IP problem is solved after generating

only a subset of its constraints. The remaining “implicitly enumerated” constraints are

relaxed from the IP problem. The Benders decomposition procedure partitions the

 36

MIP problem into an integer and a continuous part, consisting respectively of the

integer and the continuous variables of the original problem.

The decomposition algorithm works by successive solving a continuous

programming problem and an integer programming problem, considering the linear

case. A LP produces an extreme point and a single constraint for the IP problem.

Also, the value of the LP optimal solution gives an upper bound for the optimal

solution to the MIP problem. After the IP problem, which is the MIP problem’s

equivalent when it has all cut constraints, is solved, it yields a nondecreasing lower

bound. When the two bounds coincide, the optimal MIP solution has been found and

the process terminates.

Consider a class of linear MIP problem, which is the Benders’master problem,

as follows.

(MIP) Minimize cTx + dTy

Subject to Ax + By ≥ b,

 x ≥ 0, y∈Y

where A is a m by n coefficient matrix of vector x,

B is a m by n′ coefficient matrix of vector y,

c is a n by 1 cost vector of vector x,

d is a n′ by 1 cost vector of vector y

x is a n by 1 vector of continuous variable x,

y is a n′ by 1 vector of variable y with Y = {y │yi ∈ {0, 1}; i = 1, 2, …, n′ }

A concept of the Benders’algorithm is that the partitioning of the variables into

two sets (x and y) and projecting the problem onto the y variables. If let Y denote the

set of binary or all possible nonnegative integer vectors y, then MIP may be written as

follows.

Let v(y) = dTy + min { cTx │Ax ≥ b – By, x ≥ 0}

 37

the Benders’master problem is clearly seen to be equivalent to:

 Minimize v(y)

 Subject to y ∈ Y

for a fixed y, the minimization problem is the LP problem

 (LP) Minimize cTx

 Subject to Ax ≥ b – By,

 x ≥ 0

its dual programming (DL) problem is

 (DL) Maximize (b – By) T u

 Subject to AT u ≤ c,

 u ≥ 0

where u is a m by 1 vector of dual variable u,

In principle, it is possible to identify and enumerate all of extreme points of the dual

feasible region and choose the best. That is, the function v (y) can be evaluated by:

v (y) = dTy + Maximize {(b – By) T u│ AT u ≤ c, u ≥ 0}

Suppose Y consists of p sets of vector y, a fixed vector y is defined by y j for all

j = 1, 2, …, p and vk (y j) is a function that a vector y j is supplied to the function v (y)

at iteration k for finding the k th solution for all k = 1, 2, …, p. However, the v (y) is to

be evaluated by solving the LP problem, not by identifying all sets of dual extreme

points (p sets) and computing the corresponding linear objective function of y. If k th

iterations are used with the sets of y j (where 1≤k ≤ p), it can provided an

approximation function, which is an underestimate of v (y), defined by vk (y j) =

Maximize {(b – B y j) T u j │ AT u j ≤ c, u j ≥ 0}, that is the Benders’subproblem.

The initial (k = 1) value of variables y ∈ Y can be generated by selecting any

arbitrary value of vector y (it is the first y j, which is y 1) that provides the feasible

solution to the Benders’subproblem, Maximum vk (y j) = Maximize {(b – B y j) T u j │

AT u j ≤ c, u j ≥ 0}. The solution of the Benders’subproblem is evaluated by solve LP

 38

with fixed y j. The Benders’subproblem solution is a generated vector u j of dual

variable u and its objective function value of vk (y j) that corresponding with a selected

y j. When a generated vector u j from solving the Benders’subproblem is put into the

Benders’master problem, which is the Benders’partial master problem of iteration k th

that is:

 Minimize v (y) = dTy + Maximize { [(b – By) T u j]k }

 Subject to y ∈ Y

This step provides the Benders’partial master problem with one underestimate

function of v (y), called the Benders’cut of the iteration k th ([(b – By) T u j]k). For

each iteration, the algorithm must solve this Benders’partial master problem to

generate the new vector y, for replacing the previous selected vector y, and the new

solution value of master problem, v (y).

If vk (y j) = v (y), the solution can be accepted and terminate the algorithm

otherwise the algorithm has to improve by adding the new approximation function,

Benders’cut by using new set of dual extreme points to generate the new arbitrary y j

of iteration k+1for solving the new partial master problem. Therefore, the

Benders’decomposition algorithm for solving the lower bound of AGVsp-P/D can be

summarized step by step as follows.

Step 1: Initialization: set v (y) = 0, select a fixed vector y j ∈ Y, set j = 1 and set k = 1

Step 2: Solve the Benders’subproblem: evaluate the value of vk (y j) with its

 corresponding set of the dual extreme point (vector u j) by solving LP with a

 fixed vector y j

Step 3: Stopping criterion: if vk (y j) = v (y) then stop, otherwise go to step 4

Step 4: Improve the approximation function: by using a set of dual extreme point

 (vector u j) to generate the Benders’cut for forming iteration kth Benders’partial

 master problem

Step 5: Solve the Benders’partial master problem: that is the minimizing of v (y) with

 Benders’cut from step 4 for updating the value of v (y) and then set j=j+1 and

 updating the new vector y j, set k = k+1 and go to step 1.

 39

Statistical methods for data analysis

 Montgomery and Runger (2002) illustrated and applied statistics for using in

the engineering research. The data probability distribution is the first issue that should

be considered because most of statistic assumptions are assuming the normal

probability distribution of the data set. The normality test is explained in this part.

Then the analysis of variance that is the important method to conclude the solving

result is reviewed.

1. Probability plots

 Montgomery and Runger (2002) explained that the probability plot is a

graphical method for determining whether sample data conform to a hypothesized

distribution based on a subjective visual examination of the data set. The general

procedure is very simple and can be performed quickly. Probability plotting typically

uses special graph paper, known as the probability paper that has been designed for the

hypothesized distribution. Probability plotting is wildly used for the normal

distribution because most of statistical methods are using normal probability

distribution data.

 A normal probability plot can also be constructed on an ordinary graph paper

by plotting the standardized normal scores zj against x(j), where the standardized

normal scores satisfy 0.5 () ()j j
j P Z z z

n
φ−

= ≤ = . Almost of statistical software can

perform the normality test by doing the normal probability and showing the result in

same form as plotting on an ordinary graph paper. If the specific type I error is α, the

probability distribution of the data set is the normal probability distribution when the

P-value of the normal probability plot of the data set is grater than α, otherwise the

data set is not the normal probability distribution. The example of the normal

probability plot that is obtained from normal distribution data by using MATLAB is

shown as follows.

 40

P-Value: 0.167
A-Squared: 0.528

Anderson-Darling Normality Test

N: 40
StDev: 0.999490
Average: 12.4137

14.513.512.511.510.5

.999

.99

.95

.80

.50

.20

.05

.01

.001

Pr
ob

ab
ilit

y

Ass

Normal Probability Plot

Figure 3 The example of the normal probability plot of the assignment data with 50

 nodes from table 31 by using MINITAB

When the obtained data is non-normality, MINITAB has Two Box-Cox

transformation procedures, which are a stand-alone command and a transformation

option that can be useful for correcting both non-normality and highly skewed. First,

use the stand-alone command as an exploratory tool to determine the best lambda

value for the transformation. Then, use the transformation option to transform the data.

The Box-Cox transformation is used to make the data “more normal.” The

transformation takes the original data to the power l, unless l = 0, in which case the

natural log is taken. (l is pronounced “lambda.”) To use this option, the data must be

positive. The options subdialog box lists the common transformations natural log (l=0)

and square root (l= 0.5). User can also choose any value between -5 and 5 for l. In

most cases, user should not choose an l outside the range of -2 and 2.

2. Hypothesis testing

 Montgomery and Runger (2002) illustrated that many research problems

require the conclusion that the results will be accepted or rejected, based on some

parameters. Normally, the researchers decide whether accept or reject a statement

about the research results of some parameters. The statement is called a hypothesis,

 41

and the decision making procedure about the hypothesis is called hypothesis testing.

This is one of the most useful aspects of statistical inferences, since many types of

decision making problems, tests, or experiments in the research can be formulated as

hypothesis testing problems. Normally, research considers the hypothesis test about

the mean µ of a single normal population distribution where the variance of the

population σ2 is known. The hypothesis can be formally stated as

 H0: µ = µ0

 H1: µ ≠ µ0

It is usually more convenient to standardize the sample mean and use a test statistical

based on the standard normal distribution. That is, the test procedure for H0 uses the

test statistic

 0
0

XZ
n
μ

σ
−

=

If the specific type I error is α, the hypothesis H0: µ = µ0 cannot be rejected when the

observed value of the test statistic Z0 is - Zα/2 ≤ Z0 ≤ Z α/2. When a research considers

hypothesis testing about the mean µ of population with unknown variance of the

population σ2, the test procedure for H0 uses the test statistic

 0
0

XT
S n

μ−
=

T0 has a t distribution with n-1 degrees of freedom. If the specific type I error is α, the

H0: µ = µ0 cannot be rejected when the observed value of the test statistic is -t α/2, n-1 ≤

t0 ≤ t α/2, n-1.

3. The analysis of variance (ANOVA)

Montgomery and Runger (2002) presented that many single-factor experiments

require that more than two levels of the factor be considered. For example, an

industrial engineer may want to investigate three different methods. The ANOVA,

can be used for comparing means when there are more than two levels of a single

factor. Suppose all experiments have different levels of a single factor that the

 42

researchers wish to compare. Each factor level is called a treatment, a very general

term that can be traced to the early applications of the experimental design

methodology. The response from the experiment for each of the k treatments is a

random variable. The researchers are interested in testing the equality of the k

treatment means µ1, µ2, …, µk. The hypothesis can be formally stated as:

 H0: µ 1 = µ 2 =…= µ k

 H1: µ i ≠ µ j for at least one pair of all i, j

Thus, if each observation consists of the overall mean µ plus a realization of the

random error component, this is equivalent to saying that all N observations are taken

from the normal probability distribution with mean µ and variance σ2. Therefore, if

the hypothesis H0 is not rejected, the changing of the level of the factor has not affect

on the mean µ of response. Table 2 is called the ANOVA table of k treatments, n

observations and N = kn total number of observations.

Table 2 The ANOVA table for a single-factor experiment, fixed effects model

Source of Sum of Degree of Mean f0

Variation Squares Freedom Squares

Treatment SSTreatment k-1 MSTreatment f0= MSTreatment/ MSE

Error SSE N-k MSE

Total SST N-1

The value of test statistic is

2
2 ..

1 1

2 2
. ..

1

1

k ni

T ij
i j

k
i

Treatment
i i

E T Treatment

Treatment
Treatment

ySS y
N

y ySS
n N

SS SS SS
SSMS

k

= =

=

= −

= −

= −

=
−

∑∑

∑

 43

0

E
E

Treatment

E

SSMS
N k
MSf

MS

=
−

=

where ijy is a data point from the experiment by using treatment i and replication j th ,

 i = 1, 2, …, k and j = 1, 2, …, n

 .iy is the summation value of all observations from the experiment by using

 treatment i,
1

()
n

i ij
j

y y
=

= ∑

 ..y is the grand total, ..
1 1

()
k n

ij
i j

y y
= =

=∑∑

If the specific type I error is α, the hypothesis H0 cannot be rejected when f 0 < f α, v1, v2

= f α, k-1, N-k from the table of F- probability distribution.

4. Nonparametric statistics

 Montgomery and Runger (2002) explained that most of the hypothesis testing

and confidence interval procedures, which is discussed in the previous part, are based

on the assumption that it works with random samples from normal populations.

Traditionally, these procedures are called parametric methods because they are based

on a particular parametric family of distributions, the normal in this case.

Alternatively, sometimes it can be said that these procedures are not distribution-free

because they depend on the assumption of normality. Nonparametric or distribution-

free procedures do not utilize all the information, which provides by the sample. As a

result, a nonparametric procedure will be less efficient than the corresponding

parametric procedure when the underlying population is normal. There are many

nonparametric methods involve the analysis of data.

The Kruskal-Wallis test is a nonparametric method in the analysis of variance

for a single-factor experiment. The Kruskal-Wallis can perform a test of the equality

of medians for two or more populations. This test offers a nonparametric alternative

 44

to the single-factor (one-way) analysis of variance. Suppose that
1

a

i
i

N n
=

=∑ is the total

number of observations ni for all factor levels i = 1, 2,…, a, .iR demote the ni ranks in

the i th treatment and .iR denote the average value of .iR . The Kruskal-Wallis

hypotheses are:

 H0: the population medians are all equal versus H1: the medians are not all equal

The Kruskal-Wallis test statistic measures the degree, which the actual observed

average rank .iR , to the different from their expected value (N + 1)/2. If this difference

is sufficiently large, the hypothesis H0 is rejected. The test statistic is
2

.
1

12 1
(1) 2

a

i i
i

NH n R
N N =

+⎛ ⎞= −⎜ ⎟+ ⎝ ⎠
∑

H has approximately a chi-square distribution with a-1 degrees of freedom. Since

large values of H imply that H0 is false, H0 will be rejected if the observed

value 2
, 1aH xα −≥ . When observations are tied, assign an average rank to each of the

tied observation. The test statistic is
2 2
.

2
1

1 (1)
4

a
i

i i

R N NH
S n=

⎡ ⎤+
= −⎢ ⎥

⎣ ⎦
∑

where ni is the number of observations in the i th treatment, N is the total number of

observations, and
2

2 2

1

1 (1)
1 4

a

i
i

N NS R
N =

⎡ ⎤−
= −⎢ ⎥− ⎣ ⎦

∑

An assumption for this test is that samples from the different populations are

independent random samples from continuous distributions, with the distributions

having the same shape.

 45

MATERIALS AND METHODS

 This chapter presents research methods, which include materials for

researching the problem formulation, the mathematical model of AGVsp-P/D and

solving algorithms to find the solution and verify the model quality.

Materials

The materials for this research could be categorized into three groups as

follows:

1. Computer

A personal computer, CPU Pentium IV 2.0GHz with 2 GB RAM, was used to

generate the data of simulated problems, process data sets, formulate the mathematical

model, program the algorithms, and run programs to solve the tested problems.

2. Software

2.1 Microsoft Excel program was used to solve the formulated integer

programming by using Solver, form the information sheets, and create the tables and

graphs for this research document.

2.2 MATLAB 7.0 was used to generate the tested problems, program the

algorithm and run the program to solve the generated problems.

2.3 Microsoft Word was used to create this research document.

2.4 Minitab was used to perform all statistical analysis.

 46

3. Literatures and related papers

Most of literatures and related papers have been received from many

professors, which are Dr. Peerayuth Charnsethikul (the advisor of this thesis), Dr.

Kamlesh Mathur, Dr. Danil Solow, and Dr. George Viraktarakis. A lot of books and

papers have been collected from the Kelvin Smith library of Case Western Reserve

University (CWRU), USA, the main library of Asian Institution of Technology (AIT),

Thailand, the library of the faculty of Engineering and the main library of Kasetsart

University, Thailand and download from electronic online journals, which available at

OHIOLINK on the Internet.

Methods

The motivation of the mathematical model and solving approaches are due to

the fact that the routing problems normally are difficult to solve and can not satisfy

some real situations, because it relates to some problems in NP-hard class such as

TSP/MTSP. If some real world constraints are added to a kind of routing problem, it

becomes a much more difficult problem to be modeled and solved.

The original single/multi AGV scheduling problem with specific P/D nodes

can be formulated and solved as TSP/MTSP (Blair, Charnsethikul and Vasques, 1987).

When the original AGV problem is modified to capture the special network structure

that is the network, which has alternatives for some nodes, the problem becomes the

AGVsp-P/D. TSP/MTSP with alternative P/D nodes will be considered for finding the

solution of this special AGV scheduling problem.

The key successfulness of this thesis will be creating the appropriate

mathematical model and heuristic approaches for solving the AGVsp-P/D. The

research sequence will be conducted following the steps that consist of the study and

analysis of the AGVsp-P/D, compare the AGVsp-P/D with the existing related

problems from literatures, formulate the mathematical model of this problem, create

the heuristic algorithms for solving these created mathematical model which is the

 47

modified TSP approach, and perform the test and evaluation of the created model by

programming the model on MATLAB 7.0 and solving some generated examples of

this problem. The proposed research will be explained step by step as follows.

1. The problem of AGV with alternative pick up and delivery nodes (AGVsp-P/D)

Job sequencing and scheduling is the important part of AGV system design.

The main goal of this step is to define the problem of AGVsp-P/D clearly in detail and

structure for doing analysis and studies in the next step. Designing AGV systems are

complex tasks. One of the main purposes of the scheduling problem for single/multi

AGV is how the scheduling can provide the minimum total traveling distance of AGV.

Normally, the scheduling problems have been considered or designed with the routing

problem concomitantly. The ordinary vehicle scheduling and routing problem as

single/multi AGV scheduling problem is the problem with a single specific P/D node

that can be simulated by a network problem approach such as TSP/MTSP.

According to this point, the potential problem for studying the single/multi

AGV scheduling problem is extended to be more realistic that the original TSP/MTSP

problem is modified by adding the structure of alternative P/D nodes. The main

purpose is to find the scheduling of AGV problems with alternative P/D nodes. This

kind of problems is presented in section 2.1.

The original TSP/MTSP is one of the applications of network problems, it is

necessary to choose a sequence of nodes to visit so as to accomplish a specified

objective. When the AGVsp-P/D is considered, the TSP/MTSP approach can be

applied for solving the schedule of problem like normal vehicle routing problems, but

the approach has to be modified to support the special structures of AGVsp-P/D. The

concept of TSP/MTSP will be applied by using the generated technique of assignment

problem with alternative P/D nodes to solve the AGVsp-P/D for determining the

minimum traveling distance of each AGV from the starting depot to some appropriate

selected nodes and then come back to the starting depot. This procedure based on the

 48

branch and bound with solving assignment subproblems for determining the optimal

schedule. The formulated mathematical model is presented in section 2.2.

The assignment problem with alternative P/D nodes which is the lower bound

of the AGVsp-P/D is considered as one of important parts of this research. The

mathematical models of TSP/MTSP are formulated in form of the 0-1 IP problem. For

large 0-1 IP problems, it takes much time to solve the problem. The Benders

decomposition approach is considered for lower bound of the AGVsp-P/D. The

generated Benders’decomposition algorithm for solving the lower bound of the

AGVsp-P/D is described in section 2.3.

The ordinary assignment problem is the 0-1 IP problem. An assignment

problem can be solved as a regular LP without concerning of 0-1 integer constraints

because of the unimodularlity of the network structure. The result is an integer

solution automaticly (Mathur and Solow, 1994). When the alternative nodes

constraints are added to the system, the properties of the problem will be changed.

The heuristics for the alternative selection and the improvement of selection for

solving the lower bound of AGVsp-P/D as solving the regular assignment problem are

presented in section 2.4. The lower bound model of AGVsp-P/D and its solving

approaches are programmed and tested on the computer by using MATLAB 7.0 and

Excel Solver.

The solutions of many tested problems, which are presented in the next chapter,

will sometimes form the single TSP tour but sometimes will not. After the lower

bound model is completed, the modified branch and bound and heuristic approaches

are applied to generate the TSP/MTSP tour of the schedule for multi/single AGVsp-

P/D. The modified Eastman’s algorithm for TSP of the AGVsp-P/D is presented in

section 2.5. The last section presents the heuristic for solving multi AGVsp-P/D by

using the methods of solving MTSP as standard TSP and using the heuristic of

splitting TSP tour.

 49

2. The Problem Analysis and Solution Technique

2.1 AGV Scheduling Problems Analysis

 Let consider the problem that the factory has a particular layout of

departments for the AGV system as figure 1. From the example layout, let assume

that the distance between each department (node) is shown in table 3.

Table 3 The distance table of the example layout from figure 1

 To
From

A

B

C

D

E

F

G

H

I

A

∞

1

2

1

2

3

2

3

4

B

∞

1

2

1

2

3

2

3

C

∞

3

2

1

4

3

2

D

∞

1

2

1

2

3

E

∞

1

2

1

2

F

∞

3

2

1

G

∞

1

2

H

∞

1

I

∞

 Normally, the list of jobs for AGV problems can be defined as the example

on table 4. In general, each job of AGVs composes of pick up the items at one node

and delivers them at one fixed destination node. For example, let consider a job No. 1

on table 4, the AGV travels from a starting department (node A) to the pick up node B

for getting the items and then travels to the delivery node C for finally sending items.

 50

Table 4 The example of a part of job list for a regular AGV problem

Job No. Pick up Department Delivery Department
1 B C
2 A I
3 B H
4 G C
5 D E
6 H F

Blair, Charnsethikul and Vasques (1987) modeled the optimum routing

problem of AGVs among the workstations as TSP/MTSP, mentioned previously. An

algorithm for the near optimal routing of AGVs in such a system is presented which

seeks to organize materials move into tours with the objective of minimizing the

maximum tour length.

For this research, the specific characteristic of alternative P/D nodes here is

considered the jobs that can have the alternative pick up and delivery nodes to select

more than one fixed point. Suppose in some parts of the example, the list of jobs that

one AGV is used to complete all jobs is shown as follows.

Table 5 The example of a part of job list for the single AGVsp-P/D

Job No. Pick up Department Delivery Department
1 B C
2 A I
3 B H or G or I
4 G C
5 D E
6 D or H F

The meaning of each job of AGVsp-P/D can be explained as the following

example. Let consider the job No. 3 on table 5, the AGV job is the item movements

that pick up the items from the turning process at department (node) B and deliver at

the drilling process, which can be performed at departments H or G or I. The AGV

 51

has to travel from pick up node B and can select to deliver the items at nodes H or G

or I that is called “alternative pick up and delivery nodes” (alternative P/D nodes). If

the AGV travels from node B and select to deliver at node H, the total AGV traveling

distance may different from selecting to deliver at node G or node I. The job

scheduling of jobs (for example started with job No. 1 and followed by job No. 6, No.

5, and ended the schedule when all jobs done) and selecting of alternative P/D nodes

appropriately may provides the minimized total traveling distance of the AGV, which

is the objective of this research.

The AGVsp-P/D can be transformed to TSP for solving the special situation

that some jobs of AGVs have the P/D alternatives. The distance matrix [cij] of

AGVsp-P/D in a form of TSP is defined, which the table is consisted of the distance of

AGVs that move from the starting point of the current job to the starting point of the

next job. So the TSP distance table for the AGV problem is an asymmetric distance

table. Suppose the distance table of the previous AGVs job list on table 5, which is

the distance from the considered job to the others in a form of TSP distance table, is

shown as follows.

Table 6 The example of distance matrix [cij] of the AGVsp-P/D in a form of TSP

 To

From

Job j No.
(n)

 1

2

3

4

5

6

Job j No. Alternative
(job i, Alt. a)

1.1

2.1

3.1

3.2

3.3

4.1

5.1

6.1

6.2

 n 1 2 3 4 5 6 7 8 9
1 1.1 1 ∞ 3 2 2 2 5 4 2 4
2 2.1 2 7 ∞ 7 7 7 6 7 7 7

3.1 3 2 3 ∞ ∞ ∞ 3 2 2 2
3.2 4 6 5 ∞ ∞ ∞ 3 4 6 4

3

3.3 5 6 7 ∞ ∞ ∞ 5 6 6 6
4 4.1 6 5 6 5 5 5 ∞ 7 5 7
5 5.1 7 2 3 2 2 2 3 ∞ 2 2

6.1 8 4 7 4 4 4 5 4 ∞ ∞
6 6.2 9 3 5 4 4 4 6 7 ∞ ∞

 52

From table 6, assume that job No. 1 is a starting job with a starting node B

(depot) for the AGV. Job No. 1 of the movement from node B to node C is a regular

job (not has any alternative P/D nodes) that has label 1.1, but job No. 3 of the

movement from node B to the selected alternative delivery nodes H or G or I is an

alternative job that are labeled as 3.1, 3.2, and 3.3. Job No. 3 can be separated to 3.1

(B to H), 3.2 (B to G), and 3.3 (B to I). The distance on table 6 is the distance of the

AGV that move from the pick up nodes of the current job to the pick up nodes of the

next job. For example, the distance of the AGV that move from job 1.1 to job 2.1 is 3

units, which is the summation distance from the pick up node of job 1.1 (node B) to

the delivery node of job 1.1 (node C), 1 unit, and the distance from node C to the pick

up node of job 2.1 (node A), 2 units, that equal to 1+2 = 3 units. When the TSP

approach is applied to this table with alternative P/D nodes constraints, the solution of

AGVsp-P/D can be generated.

2.2 Problem Formulation of the AGVsp-P/D

 When mathematical formulations of routing problems are studied, there

are so many kinds of mathematical models as mentioned previously in the literature

review part. When the presented problem statement of AGVsp-P/D is compared to the

TSP, the detail can be analyzed as follows.

 Refer to the stated problem statement, given a set of n jobs J such that job

Ji = {Pi a, Di b}, i = 1, 2, …, n where Pi a is a set of alternative pick up departments a

of job Ji, a = {1, 2, …, k(i)} and Di b is a set of alternative delivery departments b of

job Ji , b = {1, 2, …, l(i)}. k(i) is the number of alternative departments a for job Ji.

l(i) is the number of alternative departments b for job Ji. When job Jj = {Pj a, Dj b}, j =

1, 2, …, n is scheduled after job Ji, cia jb is the traveling distance of an AGV that starts

from a selected pick up department a of job Ji , goes to a selected delivery department

b of job Ji , goes to a selected pick up department a of job Jj , then goes to a selected

delivery department b of job Jj , which is a non-negative number and cia ia = ∞. The

AGVsp-P/D is the problem that selects one alternative department from set a and one

 53

alternative department from set b of all jobs J, called xia jb such that xia jb = 1 if an AGV

travels from a selected pick up department a of job Ji to a selected delivery department

b of job Jj or xia jb = 0 otherwise and sequences all those jobs J with their selected

alternatives to form single/multi tours (TSP/MTSP tour) that provide minimized the

total traveling distance. The single/multi AGVsp-P/D relates directly to TSP/MTSP.

Refer to Miller-Tucker-Zemlin (1960)’s formulation of classical TSP and

Svestka and Huckfeldt (1973)’s formulation of MTSP. TSP/MTSP variable xij is equal

1 if the salesman travels from node i to node j. When the alternative P/D nodes

structure is analyzed on the model’s variables, if the salesman travels from node i with

alternative a to node j with alternative b the variable should be xia, jb = 1. By similar

idea, the TSP/MTSP with alternative P/D can be formulated base on the original

model but change xij to xia, jb. This research does the analysis and creates the model of

TSP/MTSP with alternative P/D nodes, n nodes and m AGVs, which similar idea with

the original TSP/MTSP model as follows.
() ()

1 1 1 1
(19)

k i l jr r

i a jb i a jb
i a j b

MinZ x c
= = = =

= ∑∑∑∑

Subject to

()

1 1

()

1 1

1, 1, 2,..., 1, 2,..., () (20)

1, 1, 2,..., 1, 2,..., () (21)

1 , , (22)

0 1 , , ,

k ir

i a jb
i a

l jr

i a jb
j b

i j i a jb

i a jb

x j r and b l j

x i r and a k i

y y rx r i j a b

x or i a j b

= =

= =

= ∀ = ∀ =

= ∀ = ∀ =

− + ≤ − ∀ ≠

= ∀

∑∑

∑∑

Integerandba 0, >

where

r = n + m - 1

xia jb = 1; If one AGV travel from node i with alternative a to node j with

 alternative b (for example, x11 31 is that the AGV travel from node No.

 1 with alternative No. 1 to node No. 3 with alternative No. 1)

 54

 = 0; otherwise

cia jb represents the distance from node i with alternative a

 to node j with alternative b

k(i) represents the number of alternative departments a for node Ji.

 l(i) represents the number of alternative departments b for node Ji.

m represents the number of AGVs (m = 1 when considers the single

 AGV case)

This mathematical model is a TSP/MTSP with alternative P/D nodes that can

simulate the model of single/multi AGVsp-P/D by identifying nodes of the TSP/MTSP

as jobs of AGVs. This model can not be solved regularly same as the original

TSP/MTSP. Therefore, the model has to be modified as follows.

When relax the subtour elimination constraints (22) and consider the single

AGV case, this problem looks like the assignment problem, but there are the

alternative P/D nodes for each job. This assignment problem with alternative P/D is

the 0-1IP model that is the relaxation of TSP/MTSP with alternative nodes. For

solving TSP/MTSP with alternative P/D nodes, the solving algorithm has to apply the

branch and bound approach with solving the assignment problem with alternative P/D

nodes as a subproblem of each branching. The solution from solving this assignment

problem provides the lower bound of AGVsp-P/D and can be modified to be the

simpler mathematical model. The variable xia jb is considered to be eliminated the

subscribes a and b. The main propose of the modification is to create the model that

can be solved by similar approaches of solving the regular assignment problem. For

clearly explaining, the table 6 (the example of cost matrix [cij] of the AGVsp-P/D in a

form of TSP) and table 7 (The assignment solution of variable xij of AGVsp-P/D from

table 6) is considered concomitantly. The modified mathematical model is explained

as follows, where h = number of all nodes (all rows or columns) that consist of all

alternatives and n = number of jobs.

 55

Let the new variable xij is a 0-1 integer variable, which indicating whether the

schedule of the AGV is accomplished from node (row) i to node (column) j or not and

can be solved as an original assignment problem. The dummy variable Z is introduced

to the model to capture the alternative structures and eliminate the subscribes a and b

of the variables xia jb. It represents to the summation of variables xij for each row and

column. Consider table 7 for clearly explaining, job No.1 is a regular job, which not

has P/D alternatives. It consists of one row (row No.1) of job 1.1 and one column on

table 7. The dummy variable Z(i) of row No.1 (Z(1)) is the summation of the solution of

variables xij of row No.1, which equal to 1. For job No. 3, it has 3 alternative P/D

nodes, which it consists of row No.3, row No.4 and row No.5 of job 3.1, job 3.2 and

job 3.3 sequentially. Table 7 shows that the dummy variables Z(i) of row No.3 (Z(3))

equals to 1, row No.4 (Z(4)) equals to 0 and row No.5 (Z(5)) equals to 0. Because only

one alternative of job No. 3 (job 3.1or 3.2 or 3.3) will be selected, only one row of job

No.3 (row No.3 or row No.4 or row No.5) will has the summation of the solution of

variable xij equal to 1, which is row No.3 of job 3.1 in this case. According to this

point, all Z(i) variables of job No.3 (Z(3), Z(4), and Z(5)) will have the summation equal to

1 (Z(3) +Z(4)+Z(5) = 1). Table 7 is the example of AGVsp-P/D, which consists of 9

nodes (9 rows and columns) with 6 jobs (h = 9 and n = 6). Set S(k) is defined to

represent the set of all alternatives of any job k (k = 1, 2, …, n). From table 7, there

are six sets S(k) of 6 jobs that are set S(1) of job No.1, which consists of row No.1 of job

1.1, set S(2)of job No.2, which consists of row No.2 of job 2.1, set S(3) of job No.3,

which consists of rows No.3, 4 and 5 of jobs 3.1, 3.2 and 3.3, set S(4) of job No.4,

which consists of row No.6 of jobs 4.1, set S(5) of job No.5, which consists of row

No.7 of job 5.1 and set S(6) of job No.6, which consists of rows No.8 and 9 of jobs 6.1

and 6.2. Therefore, the constraints of alternative P/D nodes of the modified model is

that the summation of all dummy variables Z(i) of all rows No. i in each set S(k) of any

jobs k will equal to 1.

 56

According to this point, the created lower bound model of AGVsp-P/D is

shown as follows.

1 1

h h

i j i j
i j

MinZ x c
= =

=∑∑

Subject to

()

()
1

()
1

()

1, 2,...,

1, 2,...,

1 1, 2,...,

0 1 ,
k

h

i j j
i

h

i j i
j

i
i S

i j

x Z j h

x Z i h

Z k n

x or i j

=

=

∈

= ∀ =

= ∀ =

= ∀ =

= ∀

∑

∑

∑

where

xij = 1; If one AGV travel from node i to node j

 = 0; otherwise

cij represents the distance from pick up node i through the path to delivery node j

S(k) represents the set of all P/D alternatives of job k

n represents the number of jobs

h represents the number of nodes

Now the lower bound model of AGVsp-P/D can be programmed in Excel

Solver and MATLAB 7.0. After the lower bound model is implemented with the

example of distance matrix [cij] of the AGVsp-P/D on table 6 by using Excel Solver,

the result is shown on table 7.

 57

Table 7 The assignment solution of variable xij of AGVsp-P/D from table 6

Job No. 1 2 3 4 5 6
(n) Job i, Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2

 h 1 2 3 4 5 6 7 8 9 Zi
1 1.1 1 ∞ 0 1 0 0 0 0 0 0 1
2 2.1 2 0 ∞ 0 0 0 1 0 0 0 1
 3.1 3 0 0 ∞ ∞ ∞ 0 1 0 0 1
3 3.2 4 0 0 ∞ ∞ ∞ 0 0 0 0 0
 3.3 5 0 0 ∞ ∞ ∞ 0 0 0 0 0
4 4.1 6 0 1 0 0 0 ∞ 0 0 0 1
5 5.1 7 0 0 0 0 0 0 ∞ 0 1 1
 6.1 8 0 0 0 0 0 0 0 ∞ ∞ 0
6 6.2 9 1 0 0 0 0 0 0 ∞ ∞ 1
 Zj 1 1 1 0 0 1 1 0 1

From the Excel Solver solution, the assignment solution is 1.1 - 3.1, 2.1 - 4.1, 3.1 - 5.1,

4.1 - 2.1, 5.1 - 6.2, 6.2 - 1.1 and the solution value of minimum total distance that is 21

units. The alternative job No. 3.1 (B to H) and job No. 6.2 (H to F) are selected. The

solution forms 2 subtours that are 1.1-3.1-5.1-6.2-1.1 and 2.1-4.1-2.1. The meaning of

this solution is that one AGV starts at node B of job No.1 and accomplishes job No.1

at node C, travels to node B, which is the starting job of job No. 3.1and accomplishes

job No. 3.1 at node H, travels to node D, which is the starting job of job No.5 and

accomplishes job No.5 at node E, travels to node H, which is the starting job of job No.

6.2 and accomplishes job No. 6.2 at node F, then travels back to node B which is the

starting node of this AGV. Another AGV starts at node A of job No.2.1 and

accomplishes job No.2.1 at node I, travels to node G which is the starting job of job

No.4 and accomplishes job No.4.1 at node C, then travels back to node A, which is the

starting node of this AGV.

According to this point, the problem size is increased and the research found

that the ordinary version of Microsoft Excel Solver can run only 13 nodes (h = 13).

Solver shows that “Too many adjustable cells” and terminate running. Then

MATLAB 7.0 is applied. The experiment is performed by randomly generating

simulated problem of 10, 20, 30, 40, and 50 nodes with some numbers of 2 alternative

jobs and some numbers of regular jobs. The running time of this lower bound model is

 58

examined and compared to the original assignment problem of same problem size. The

result is shown in the next chapter.

After using MATLAB 7.0 on a 2 GB RAM computer to perform the

experiment, the research found that MATLAB 7.0 can run steadily up to 50 nodes (h =

50) with an average running time about 50 seconds but MATLAB 7.0 shows “Out of

memory” of running the bintprog function, which is the function of solving 0-1 IP,

beyond 50 nodes. Because this mathematical model of the lower bound of AGVsp-

P/D is 0-1 IP, the operation find the optimal solution by using branch and bound

approach for solving 0-1 IP but if a considered situation is a larger scale problem, IP

may take much more memory to run. From the experimental results, the resource of

required memory is the problem, not the running time, so that the researcher attempts

to solve the lower bound model of AGVsp-P/D in LP rather than 0-1 IP. The

decomposition techniques and other heuristic methods are considered for solving the

larger scale problem to avoid running out of memory. Next, the research tries to apply

Benders’decomposition to solve the lower bound model of AGVsp-P/D.

2.3 The lower bound of AGVsp-P/D by Benders’decomposition approach

Let consider the Benders’decomposition approach for MIP. The lower bound

model of AGVsp-P/D in a similar form of MIP of the Benders’decomposition will be

considered. Refer to Benders’decomposition algorithm, it can be applied to the lower

bound model of AGVsp-P/D by partitioning the variables of the into two sets which

are xij and Z(i) and projecting the problem onto Z(i) variables. Consider the example on

table 7 for clearly explaining, there are nine Z(i) variables of nine nodes (rows), which

can be separated into six sets of S(k). They are S(1) = { Z(1)}, S(2) = { Z(2)}, S(3) = { Z(3),

Z(4), Z(5)}, S(4) = { Z(6)}, S(5) = { Z(7)} and S(6) = { Z(8), Z(9)}. Because only one

alternative node of each job will be selected in each iteration of solving the model by

using Benders’decomposition, only one variable Z(i) of each set S(k) will be fixed to be

1 and the others will be 0. The alternative nodes, which have the value of variable Z(i)

= 0, can be ignored from the model so that the model becomes the regular assignment

problem. All variables xij , which are 0-1 integer, can be ignore to become xij ≥0,

 59

because of the property of assignment problem (Mathur and Solow, 1994). Let Z

denotes the sets of all feasible 0-1 integer vectors Z, then the lower bound model of

AGVsp-P/D in a similar form of MIP by the Benders’decomposition approach can be

written as following.

 Minimize cTx + dTZ

Subject to Ax + BZ ≥ b,

 x ≥ 0, Z ∈Z

where A is a m by n coefficient matrix of vector x,

B is a m by n′ coefficient matrix of vector Z,

c is a n by 1 cost vector of vector x,

d is a n′ by 1 dummy cost vector of vector Z, which is a zero vector

x is a n by 1 vector of variable xij,

Z is a n′ by 1 vector of variable Z(i) with Z = {Z │ Z(i) ∈ {0, 1}; i = 1, 2, …, n′ }

Let v (Z) = dTZ + maximize {(b – BZ) T u│ AT u ≤ c, u ≥ 0}

where u is a m by 1 vector of dual variable u.

When the Benders’algorithm is applied for solving the example of AGVsp-P/D

on table 6, the function v (Z) is:

v (Z = [Z(1), Z(2), Z(3), Z(4), Z(5), Z(6), Z(7), Z(8), Z(9)]T)

 = maximize {(b – BZ) T u│ AT u ≤ c, u ≥ 0}.

Because this example is the 9 nodes problem, the dual problem of this example

consists of 18 dual variables u and 81 constraints. The example of applying

Benders’decomposition approach to solve the lower bound model of AGVsp-P/D of

the example on table 6 is explained as follows.

 60

The Benders’decomposition algorithm for the variables xij and Z(i) for this example is:

Step 1: Initialization: set v (Z) = 0, select a fixed vector Z j ∈ Z, set j = 1 and set k = 1

Step 2: Solve the Benders’subproblem: evaluate the value of vk (Z j) with its

 corresponding set of dual extreme point (vector u j) by solving LP with a fixed

 vector Z j

Step 3: Stopping criterion: if vk (Z j) = v (Z) then stop, otherwise go to step 4

Step 4: Improve an approximation function: by using a set of dual extreme point

 (vector u j) to generate the Benders’cut for forming iteration kth of

 Benders’partial master problem

Step 5: Solve the Benders’partial master problem: that is minimizing v (Z) with

 Benders’cut from step 4 for updating the value of v (Z) and then set j=j+1 and

 updating the new vector Z j, set k = k+1 and go to step 2.

When the algorithm is implemented, the result is illustrated as follows.

Iteration 1:

Step 1: Initialization:

Let set v (Z) = 0, select v (Z = [Z(1), Z(2), Z(3), Z(4), Z(5), Z(6), Z(7), Z(8), Z(9)]T) =

v (Z1 = [1, 1, 0, 0, 1, 1, 1, 0, 1]T), set j = 1 and set k = 1.

Step 2: Solve the Benders’subproblem:

The first Benders’subproblem of the example on table 6, which is:

Maximize v1 (Z1) = Maximize {(b – B Z1) T u 1 │ AT u 1 ≤ c, u 1 ≥ 0},

is solved. The maximum occurs at the extreme point u 1 = [u1, u2, u3, u4, u5, u6, u7, u8, u9,

u10, u11, u12, u13, u14, u15, u16, u17, u18]T = [0, 5, 0, 2, 4, 3, 0, 1, 0, 2, 3, 2, 2, 2, 1, 2, 2, 2]

and maximum value of v1 (Z1) =24.

Step 3: Stopping Criterion:

Now the value of v (Z) = 0, v1 (Z1) =24 ≠ v (Z) then go to step 4

 61

Step 4: Improve the approximations function:

Using the dual extreme point u 1 generates the approximations function (v (Z)),

with a Benders’cut, for the Benders’partial master problem of the iteration 1. The

Benders’partial master problem is:

Minimize v (Z) = dTZ + maximize { [(b – BZ) T u 1]1}

 Subject to Z ∈ Z

A Benders’cut of the iteration 1 is [(b – BZ) T u 1]1 that is:

[0Z(1)+5Z(2)+0Z(3)+2Z(4)+4Z(5)+3Z(6)+0Z(7)+1Z(8)+0Z(9)+2Z(1)+3Z(2)+2Z(3)+2Z(4)+2Z(5)+

1Z(6)+2Z(7)+2Z(8)+2Z(9)]1

= 2Z(1)+8Z(2)+2Z(3)+4Z(4)+6Z(5)+7Z(6)+2Z(7)+3Z(8)+2Z(9)

Because a vector d is a zero vector, the Benders’partial master problem for

iteration 1is:

Minimize v (Z) = maximize { [2Z(1)+8Z(2)+2Z(3)+4Z(4)+6Z(5)+7Z(6)+2Z(7)+3Z(8)+2Z(9)]1 }

Subject to Z ∈ Z

Step 5: Solve the Benders’partial master problem:

Update j = 2, k = 2 and the value of v (Z) from solving the Benders’partial

master problem = 20 with is new vector Z = Z2 = [1, 1, 1, 0, 0, 1, 1, 0, 1]T

Iteration 2:

Step 2: Solve the Benders’subproblem:

The Benders’subproblem of iteration 2 is:

Maximize v2 (Z2) = Maximize {(b – B Z2) T u 2 │ AT u 2 ≤ c, u 2 ≥ 0},

is solved. The maximum occurs at the extreme point u2 = [u1, u2, u3, u4, u5, u6, u7, u8, u9,

u10, u11, u12, u13, u14, u15, u16, u17, u18]T = [0, 5, 0, 1, 1, 3, 0, 1, 1, 2, 3, 2, 2, 1, 1, 2, 2, 2]

and maximum value of v1 (Z1) =21.

Step 3: Stopping Criterion:

Now the current value of v (Z) = 20. Because v1 (Z1) =21 ≠ v (Z), not terminate,

then go to step 4

 62

Step 4: Improve the approximations function:

Using the dual extreme point u 2 generates an approximations function (v (Z)),

with a Benders’cut. A Benders’cut of the iteration 2 is [(b – BZ) T u 2]2 that is:

[0Z(1)+5Z(2)+0Z(3)+1Z(4)+1Z(5)+3Z(6)+0Z(7)+1Z(8)+1Z(9)+2Z(1)+3Z(2)+2Z(3)+2Z(4)+1Z(5)+

1Z(6)+2Z(7)+2Z(8)+2Z(9)]1

= 2Z(1)+8Z(2)+2Z(3)+3Z(4)+2Z(5)+4Z(6)+2Z(7)+3Z(8)+3Z(9)

The Benders’partial master problem for iteration 2 is:

Minimize v (Z) = maximize { [2Z(1)+8Z(2)+2Z(3)+4Z(4)+6Z(5)+7Z(6)+2Z(7)+3Z(8)+2Z(9)]1 ,

 [2Z(1)+8Z(2)+2Z(3)+3Z(4)+2Z(5)+4Z(6)+2Z(7)+3Z(8)+3Z(9)]2}

Subject to Z ∈ Z

Step 5: Solve the Benders’partial master problem:

Update j = 3, k = 3 and the value of v (Z) from solving the Benders’partial

master problem = 21 with is new vector Z = Z3 = [1, 1, 1, 0, 0, 1, 1, 0, 1]T

Iteration 3:

Step 2: Solve the Benders’subproblem:

The Benders’subproblem of iteration 3 is:

Maximize v3 (Z3) = Maximize {(b – B Z3) T u 3 │ AT u 3 ≤ c, u 3 ≥ 0},

is solved. The maximum occurs at the extreme point u2 = [u1, u2, u3, u4, u5, u6, u7, u8, u9,

u10, u11, u12, u13, u14, u15, u16, u17, u18]T = [0, 5, 0, 1, 1, 3, 0, 1, 1, 2, 3, 2, 2, 1, 1, 2, 2, 2]

and maximum value of v3 (Z3) =21.

Step 3: Stopping Criterion:

Now the current value of v (Z) = 21. Because v3 (Z3) =21 = v (Z), terminate the

algorithm and stop.

The solution from the Benders’ algorithm now is same as the solution from IP

which the assignment is 1.1 - 3.1, 2.1 - 4.1, 3.1 - 5.1, 4.1 – 2.1, 5.1 - 6.2 and 6.2 – 1.1

with the solution value of minimized total distance of 21 units, that same as the

solution from solving 0-1 linear programming. Alternative 3.1 and 6.2 are selected.

 63

The example result shows that the solution provide two subtours that can

assigns to 2 AGVs which starts at node 1 and node 2. This solution can be the lower

bound of the AGVsp-P/D. This lower bound can be used in branch and bound

approach to find a single TSP tour that is the optimal schedule of the single AGVsp-

P/D.

There are some solutions provide the assignment solution as a single tour that

is the TSP solution, but most of them provide subtours. According to this point, the

model can be applied to any size of problem but the Benders’decomposition algorithm

may consists of many iterations for generating one lower bound solution. The

algorithm is so complicate and still has to solve 0-1 IP in step 5 for finding vectors Z.

However, refer to the result section, the 0-1 IP lower bound problem with 50 nodes

can be solved by MATLAB 7.0 but most of problems which have more than 50 nodes

(h=50) cause MATLAB 7.0 shows “Out of memory” in calculation of binary problem.

Benders’decomposition algorithm can be applied for the larger scale problem, which

MATLAB 7.0 can not generate solution, because the problem size of 0-1 IP of the

Benders’partial master problem in each iterations is smaller than the problem size of

0-1 IP of the original lower bound model for the same tested problem.

For example, let consider a problem of 60 nodes, the 0-1 IP model has the

matrix [A] with the size of 120 x 3600, 3600 xij variables, that cause MATLAB 7.0 can

not calculate binary problems and shows “out of memory”. The example of applying

the Benders’decomposition algorithm to the 60 nodes problem is shown in an

appendix. However, the research attempts to examine the methods to solve the lower

bound of AGVsp-P/D without solving 0-1 IP and easier to process than Benders’

decomposition algorithm. The research forms some heuristic approaches. The

following section presents heuristics for selecting alternative nodes that can provide

that assignment solutions, which close to solutions from the 0-1 IP model.

 64

2.4 Heuristic approaches for solving the lower bound of AGVsp-P/D

 The lower bound of AGVsp-P/D, which is the assignment problem with

alternative P/D nodes, can be solved by selecting the appropriate alternative nodes first

and then solving the regular assignment problem. The considered problem is “How to

select the best alternative that can provide the best assignment solution?” This section

presents heuristics for selecting the appropriate alternatives of each job and the

heuristic for improving the selected alternatives that can provide the assignment

solution, which close to the solution from the 0-1 IP model. Suppose the example of

distance matrix, called the master matrix, of 6 jobs that job 3 has 3 alternatives and job

6 has 2 alternatives, is shown on table 8 as follows.

Table 8 The example of master matrix

Job
No. 1 2 3 4 5 6

 Job i, Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2
1 1.1 ∞ 2 11 3 35 94 30 13 97
2 2.1 3 ∞ 57 73 86 23 21 61 83

3.1 85 27 ∞ ∞ ∞ 41 11 66 27
3.2 48 57 ∞ ∞ ∞ 52 46 73 52

3

3.3 80 66 ∞ ∞ ∞ 58 79 63 28
4 4.1 61 37 33 0 56 ∞ 88 87 9
5 5.1 72 16 68 14 20 485 ∞ 4 70

6.1 22 43 62 17 88 21 44 ∞ ∞
6 6.2 96 18 86 60 34 42 15 ∞ ∞

The solution of this master matrix from solving the 0-1 IP model is 74 units

with the assignment solution 1.1-2.1, 2.1-1.1, 3.1-5.1, 4.1-3.1, 5.1-6.1, and 6.1-4.1.

Manually, the assignment problem with alternative P/D nodes can be solved by

selecting the appropriate alternative for job No. 3 and job No. 6 first and then solve the

regular assignment problem. This research tries to create 3 heuristics for alternative

selection that can provide the initial solution and the heuristic for improving the

alternative selection. All for alternative selection heuristics are:

 65

Heuristic-1 for selecting the alternative nodes

Step 1: For all rows of job j that have alternative nodes, compute the average of all

 cost elements in each row

Step 2: For all columns of job j that have alternative nodes, compute the average of

 all cost elements in each column

Step 3: Compute the average value of cost elements from all rows, from step 1, and

 the correlated columns, from step 2, of each alternative jobs j

Step 4: Select the alternatives for each job j that have the minimum value from step 3

 and solve the assignment problem with this selected alternatives

Heuristic-2 for selecting the alternative nodes

Step 1: Solve the assignment problem of the master matrix

Step 2: Calculate the average of the assignment solution of all rows and columns of

 each alternative

Step 3: Select the alternatives that have the minimum value of the average of

 assignment solution and solve the assignment problem with this selected

 alternatives

Heuristic-3 for selecting the alternative nodes

Step 1: Create the distance matrix, [dij], that consists of minimum distance of all jobs

Step 2: Solve the assignment problem of the distance matrix, [dij]

Step 3: Select feasible alternatives of master matrix, which provide the minimum

 increasing (penalty) of cost elements from the assignment solutions of step 2

Step 4: Solve the feasible assignment solution.

 For explaining, the master matrix on table 8 is used to show the

implementation of all heuristics. The details are shown step by step for all heuristics

as follows.

 66

The example of implementing the Heuristic-1 of the alternative nodes selection:

Step 1 and step 2 are explained as follows.

Step 1: For all rows of job j that have alternatives, compute the average of the

 cost in each row

Step 2: For all columns of job j that have alternatives, compute the average of

 the cost in each column

Table 9 The example of step 1 and step 2 of Heuristic-1

 Job i, Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2
1.1 - 2 11 3 35 94 30 13 97
2.1 3 - 57 73 86 23 21 61 83 Avg.
3.1 85 27 - - - 41 11 66 27 42.833
3.2 48 57 - - - 52 46 73 52 54.667
3.3 80 66 - - - 58 79 63 28 62.333
4.1 61 37 33 0 56 - 88 87 9
5.1 72 16 68 14 20 485 - 4 70
6.1 22 43 62 17 88 21 44 - - 42.429
6.2 96 18 86 60 34 42 15 - - 50.143

 Avg. 52.833 27.833 53.167 52.429 52.286

Step 3: Compute the average value of each alternative jobs

3.1: (42.83+52.83)/2 = 47.83

3.2: (54.66+27.83)/2 = 41.25

3.3: (62.33+53.16)/2 = 57.75

6.1: (42.43+52.43)/2 = 47.43

6.2: (50.14+52.28)/2 = 51.21

Step 4: Select the alternatives that have the minimum value of average cost and

 solve the assignment problem with this selection

 From step 3, job 3.2 and 6.1 are selected. The assignment solutions with the

selected jobs are shown on table 10 as follows. The solution is 76 units.

 67

Table 10 The assignment solution of the example of Heuristic-1

 Job i,
Alt a 1.1 2.1 3.2 4.1 5.1 6.1

1.1 ∞ 2 3 94 30 13
2.1 3 ∞ 73 23 21 61
3.2 48 57 ∞ 52 46 73
4.1 61 37 0 ∞ 88 87
5.1 72 16 14 485 ∞ 4
6.1 22 43 17 21 44 ∞

The example of implementing the Heuristic-2 for the alternative nodes selection:

Step 1: Solve the assignment problem of the master matrix

 The assignment solution with the selected jobs is shown as follow.

Table 11 The assignment solution of step 1of Heuristic-2

 Job i,
Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2
1.1 ∞ 2 11 3 35 94 30 13 97
2.1 3 ∞ 57 73 86 23 21 61 83
3.1 85 27 ∞ ∞ ∞ 41 11 66 27
3.2 48 57 ∞ ∞ ∞ 52 46 73 52
3.3 80 66 ∞ ∞ ∞ 58 79 63 28
4.1 61 37 33 0 56 ∞ 88 87 9
5.1 72 16 68 14 20 485 ∞ 4 70
6.1 22 43 62 17 88 21 44 ∞ ∞
6.2 96 18 86 60 34 42 15 ∞ ∞

Step 2: Calculate the average of assignment solution of all rows and columns of

 each alternative

 From table 11, the column of job 3.1 has the assignment solution =11 and the

rows of job 3.1 has the assignment solution =11. The average assignment solution of

job 3.1 is (11+11)/2 = 11. The average assignment solutions of all alternative jobs are:

3.1: (11+11)/2 = 11

3.2: (0+57)/2 = 28.5

3.3: (34+28)/2 = 31

 68

and

6.1: (4+21)/2 = 12.5

6.2: (28+34)/2 = 31

Step 3: Select the alternatives that have the minimum value of the average of

 assignment solution and solve the assignment problem with this selected

 alternatives From step 2, job 3.1 and 6.1 are selected. The assignment solution

 with selected jobs is shown on the table 12 as follows. The solution is 74 units

Table 12 The assignment solution of step 2 of Heuristic-2

 Job i,
Alt a 1.1 2.1 3.1 4.1 5.1 6.1
1.1 ∞ 2 11 94 30 13
2.1 3 ∞ 57 23 21 61
3.1 85 27 ∞ 41 11 66
4.1 61 37 33 ∞ 88 87
5.1 72 16 68 485 ∞ 4
6.1 22 43 62 21 44 ∞

The example of implementing the Heuristic-3 for the alternative nodes selection:

Step 1: Create the distance matrix, [dij] that consists of minimum distance of all jobs

 The distance matrix, [dij] is shown on table 13 as follows. For all alternative

jobs j, the notation of j.X represents the job with the minimum distance element. For

example, job 3.X represents the job that all distance elements are the minimum value

from jobs 3.1, 3.2 and 3.3.

Table 13 The distance matrix, [dij] of step 1 of Heuristic-3

 Job i,
Alt a 1.1 2.1 3.X 4.1 5.1 6.X

1.1 ∞ 2 3 94 30 13
2.1 3 ∞ 57 23 21 61
3.X 48 27 ∞ 41 11 27
4.1 61 37 0 ∞ 88 9
5.1 72 16 14 485 ∞ 4
6.X 22 18 17 21 15 ∞

 69

Step 2: Solve the assignment problem of the distance matrix, [dij]

 The assignment solution of table 13 is shown on table 14 as follows.

Table 14 The assignment of minimum distance matrix of Heuristic-3

 Job i,
Alt a 1.1 2.1 3.X 4.1 5.1 6.X

1.1 ∞ 2 3 94 30 13
2.1 3 ∞ 57 23 21 61
3.X 48 27 ∞ 41 11 27
4.1 61 37 0 ∞ 88 9
5.1 72 16 14 485 ∞ 4
6.X 22 18 17 21 15 ∞

The assignment solution is 1.1-2.1, 2.1-1.1, 3.X-5.1, 4.1-3.X, 5.1-6.X, and 6.X-4.1

with the total cost = 41.

Step 3: Select the appropriate alternatives from the assignment solutions of step 2

Let consider job 3.X, the assignment solution shows that the assignment is

3.X-5.1 with cost =11. The alternative 3.1 must be selected for making the solution to

be feasible, but when consider assignment of 4.1-3.X with cost = 0, the alternative 3.2

must be selected. The problem is which alternative 3.1 or 3.2, should be selected. For

the master matrix, the algorithm selects the alternative that provides the minimum

increasing (penalty) cost. For example,

1. If select 3.1 to replace 3.X, the assignment of 4.1-3.X becomes 4.1-3.1 with

the cost increasing from 0 to 33 and the assignment of 3.X-5.1 becomes 3.1-5.1 with

the same cost = 11. The total increasing cost is the penalty cost = (33-0) + (0) = 33.

2. If select 3.2 to replace 3.X, the assignment of 3.X-5.1 becomes 3.2-5.1 with

the cost increasing from 11 to 46 and the assignment of 4.1-3.X becomes 4.1-3.2 with

the same cost = 0. The total increasing cost is the penalty cost = (46-11) + (0) = 35.

The alternative 3.1 is selected for this problem and used the same procedure for

considering job 6.X.

 70

Let consider job 6.X, the assignment solution shows that the assignment 6.X to

4 with cost =21. The alternative 6.1 must be selected for making the solution to be

feasible, but when consider assignment 5.1-6.X with cost = 4, the alternative 6.1 must

be selected also. Therefore, the alternative 6.1 is selected without considering the

penalty cost.

Step 4: Solve the feasible assignment solution

The distance matrix is updated by using the feasible alternative in the matrix, [dij].

The feasible distance matrix and assignment solution is shown on table 15 as follows.

Table 15 The assignment solution of step 4 of Heuristic-3

Job i,
Alt a 1.1 2.1 3.1 4.1 5.1 6.1

1.1 ∞ 2 11 94 30 13
2.1 3 ∞ 57 23 21 61
3.1 85 27 ∞ 41 11 66
4.1 61 37 33 ∞ 88 87
5.1 72 16 68 485 ∞ 4
6.1 22 43 62 21 44 ∞

The assignment solution is 1.1-2.1, 2.1-1.1, 3.1-5.1, 4.1-3.1, 5.1-6.1, and 6.1-4.1 with

cost 74 units that is the same as the 0-1 IP solution.

30 tested problems are generated to verify the quality of solutions for all

heuristics. All heuristics are applied to select the alternative of all tested problems and

then the assignment solution of the selected alternative is solved and compared to the

IP solution from the master problem. The results are showed in the next chapter.

All heuristics for selecting alternatives discussed can provide the initial

solution of the lower bound of the AGVsp-P/D. The previously procedures, can

usually be classified as methods of constructive heuristics. The solutions can be

improved by applying the procedure that is the improvement heuristic base on a given

initial solution. The next part presents a heuristic for improving selected alternatives

 71

from previous alternative selection heuristics. The purpose is to improve the selected

alternatives that can provide that the assignment solution close to the solution from the

0-1 IP model. The alternative selection improvement heuristic is:

Step 1: For all rows of job j that have alternatives, compute the summation of the

 cost in each row

Step 2: For all columns of job j that have alternative, compute the summation of

 the cost in each column

Step 3: Compute the summation value of each alternative job and label the selected

 solution from any alternative selected heuristics (Heuristic-1 or 2 or 3 can

 be used)

Step 4: Select one of the un-label alternatives that has the minimum value of

 summation label the new selection, change the selected alternative to the new

 selection and solve the assignment problem of the distance matrix with

 new selected alternatives

Step 5: If the assignment solution is not improved, go back to step 4, otherwise keep

 the improved solution, label all alternatives of this considered job and then go

 to back step 4. Continue until all jobs (in step 3) are labeled

Suppose the example of the master matrix for explaining the implementation of

this heuristic is shown on table 16 as follows.

Table 16 The example of the alternative selection improvement heuristic

Job i,
Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2
1.1 ∞ 71 16 56 90 47 75 97 99
2.1 6 ∞ 10 33 25 43 94 50 2
3.1 73 69 ∞ ∞ ∞ 67 38 1 87
3.2 66 2 ∞ ∞ ∞ 83 42 63 81
3.3 11 32 ∞ ∞ ∞ 5 92 76 37
4.1 79 54 22 94 11 ∞ 16 7 23
5.1 67 6 24 70 70 45 ∞ 0 20
6.1 97 45 56 62 60 9 86 ∞ ∞
6.2 89 39 95 0 54 27 67 ∞ ∞

 72

The solution of this distance matrix from solving the 0-1 IP model is 54 units

with selected alternative 3.1 and 6.1 and the assignment of 1.1-3.1, 2.1-1.1, 3.1-6.1,

4.1-5.1, 5.1-2.1, and 6.1-4.1. When the alternative selection Heuristic-3 is applied to

this example, the alternatives 3.2 and 6.1 are selected with cost 89 units. The solution

is shown as follow.

Table 17 The assignment solution of table 16 by using Heuristic-3

Job i,
Alt a 1.1 2.1 3.2 4.1 5.1 6.1
1.1 ∞ 71 56 47 75 97
2.1 6 ∞ 33 43 94 50
3.2 66 2 ∞ 83 42 63
4.1 79 54 94 ∞ 16 7
5.1 67 6 70 45 ∞ 0
6.1 97 45 62 9 86 ∞

The Heuristic-3 solution deviates from the IP solution about 64.81% that is too

much. When the alternative selection improvement heuristic is applied to the

generated solution from Heuristic-3, the example of implementation of the alternative

selection improvement heuristic algorithm is shown step by step as follows.

Step 1: For all rows of job j that have alternatives, compute the summation of the

 cost in each row

Step 2: For all columns of job j that have alternative, compute the summation of

 the cost in each column

The detail of step 1 and step 2 are shown on table 18 as follows

 73

Table 18 The result of implementation of step 1 and 2 of the improvement heuristic

Job i,
Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2
1.1 - 71 16 56 90 47 75 97 99
2.1 6 - 10 33 25 43 94 50 2 Sum.
3.1 73 69 - - - 67 38 1 87 335
3.2 66 2 - - - 83 42 63 81 337
3.3 11 32 - - - 5 92 76 37 253
4.1 79 54 22 94 11 - 16 7 23
5.1 67 6 24 70 70 45 - 0 20
6.1 97 45 56 62 60 9 86 - - 415
6.2 89 39 95 0 54 27 67 - - 371

 Sum. 223 315 310 294 349

Step 3: Compute the summation value of each alternative job and label the selected

 solution from the alternative selection heuristic

3.1: (335+223) = 558

3.2: (337+315) = 652

3.3: (253+310) = 563

6.1: (415+294) = 709

6.2: (371+349) = 702

From the alternative selection Heuristic-3, job 3.2 and 6.1 are the selected from

Heuristic-3, which are labeled at this step.

Step 4: Select one of the unlabel alternatives that has the minimum value of

 summation label the new selection, change the selected alternative to the new

 selection and solve the assignment problem of the distance matrix with

 new selected alternatives

 From step 3, the alternative 3.1 has the minimum value of summation. The

existing selected alternative is changed from the alternative 3.2 and 6.1 to the

alternative 3.1 and 6.1 and labels the alternative 3.1. The new distance matrix and the

assignment solution are shown on table 19 as follows.

 74

Table 19 The result of step 4 of the alternative improvement heuristic

The assignment solution value is 54 units

Step 5: If the assignment solution is not improved, go to step 4, otherwise keep the

 improved solution, label all alternatives of this considered job and then go to

 step 4. Continue until all jobs (in step 3) are labeled

From step 4, the solution is improved from 89 units to 54 units. This solution

with alternative selection of 3.1 and 6.1 is kept. Then label all alternatives of job No.3

and continue to step 3 by considering the rest of unlabeled jobs. This example is

ended at the iteration 2 with the solution of alternatives 3.1 and 6.1 that is same as the

IP solution.

The same set of tested problems of alternative selection heuristics are used to

verify the quality of solution for this alternative improvement heuristic. This

improvement heuristic is applied to improve the initial solution from the alternative

selection heuristic of tested problems. All results are shown in the next chapter.

2.5 The modified Eastman’s algorithm for TSP of the AGVsp-P/D

 Now the solution of the assignment problem with alternative P/D nodes by

solving the 0-1 IP model, which is the lower bound of the AGVsp-P/D, provides a

single tour or subtours. The goal of this part is to propose the heuristics approach to

create TSP tours from the lower bound solutions.

Job i,
Alt a 1.1 2.1 3.1 4.1 5.1 6.1

1.1 ∞ 71 16 47 75 97
2.1 6 ∞ 10 43 94 50
3.1 73 69 ∞ 67 38 1
4.1 79 54 22 ∞ 16 7
5.1 67 6 24 45 ∞ 0
6.1 97 45 56 9 86 ∞

 75

 Eastman’s algorithm for solving the TSP is considered for solving a single

TSP tour from the lower bound of AGVsp-P/D. Charnsethikul (1993) presented that

Eastman’s algorithm has some advantages over Little’s algorithm. For instance, there

is no difference in the level of branching or fathoming between solving the MTSP and

the TSP using Little’s algorithm, because the algorithm treats the MTSP same as the

TSP. Eastman’s algorithm has difference rules to fathom an active node, it considers

whether the tour is feasible or not for the MTSP. For example, consider a problem

with five nodes and two vehicles. Suppose that the solution from the assignment

problem is 6-1-2-6, and 7-3-5-4-7, where 6 and 7 represent the starting point of each

vehicle. This tour is feasible for the MTSP, but it is not feasible for the TSP. If the

MTSP is solved by Eastman’s algorithm and use its rule for solving the TSP, it has to

continue branching and searching for the solution of the TSP. In fact, there is already

has a feassible tour in the first step. This was illustrated by Svestka and Huckfeldt

(1973) when they modified this rule to Eastman’s algorithm. The results showed that

solving the MTSP usually required fewer steps than solving the TSP.

 To satisfy the subtour elimination constrain of the TSP with alternative P/D

nodes, the heuristic techniques are applied to the problem of minimum total distance

solved by the method as similar idea in the previous paragraph. The goal of the

heuristic is to create the TSP tour from the solution of solving the assignment problem

with alternative P/D nodes, which is the lower bound of the TSP. The procedure

deletes each link (i, j) of the first found subtour from the lower bound solution, where

(i, j) is a sequence of node in the first found subtour by assigning cij (cost of traveling

from node i to node j) equal to infinity, the assignment problem with alternative P/D

nodes corresponding to each deletion of links (i, j) is solved. Suppose there are k links

(i, j) in the first subtour, thus the heuristic produces the new k solutions, then selects

the best solution, which provides a single TSP tour. If it can not found the single TSP

tour in this set of k solutions, continue searching in the next found subtours of the

lower bound solution until the single TSP tour is found. When all subtours are

searched and still exist no single TSP tour, the best improvement solution is selected

to be the new lower bound solution and continued searching in the same process until

the single TSP tour is found.

 76

From the previous procedure, the algorithm can be described as follows.

Step 1: Solves the assignment problem with alternative P/D nodes

 (which is a TSP relaxation).

Step 2: If the solution from step 1 is a single TSP tour, stops and keeps the solution,

 otherwise, from the solution in step 1 or step 3, selects the first produced

 subtour.

Step 3: Starts to deletes each link (i, j), which is called de-link, in that selected subtour

 from step 2 and resolves the assignment problem with alternative P/D nodes

 corresponding to each deletion of links (i, j).

Step 4: If a single TSP tour is found in step 3, stops and keeps the best solution,

 otherwise, selects the next produced subtours from the solution in step 1 and

 goes back to step 3 until all produced subtours are investigated. If a TSP tour

 can not be found, goes to step 5.

Step 5: Select the best solution in step 3 as the current lower bound solution and goes

 to back step 2.

Consider the example of the distance matrix in table 8, the solution of this

distance matrix from solving the 0-1 IP model is 74 units with the assignment of 1.1-

2.1, 2.1-1.1, 3.1-5.1, 4.1-3.1, 5.1-6.1, and 6.1-4.1. The solution is the optimum for 2

AGVs which stat at node 1 and node 3.1, because there are 2 subtours which are 1.1-

2.1-1.1 and 3.1-5.1-6.1-4.1-3.1.

For a single AGV, subtour elimination constraints will be added for creating

the single TSP tour. By applying the modified Eastman’s branch and bound algorithm

for the TSP, the procedure is to select the first subtour, eliminates each arc in the tour,

called de-link, and solves the corresponding assignment problem with alternative P/D

nodes. Base on the generated lower bound solution, a first found subtour, which is

 77

subtour 1-2-1, is selected and link 1-2 and 2-1 are de-linked, which are shown on table

20 and 22, and solved the assignment problem with alternative P/D nodes. The results

are shown on table 21and 23 as follows.

Table 20 The cost table of de-link 1-2 , by assigning the cost of the link 1-2 to ∞

Job i,
 Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2

1.1 ∞ ∞ 11 3 35 94 30 13 97
2.1 3 ∞ 57 73 86 23 21 61 83
3.1 85 27 ∞ ∞ ∞ 41 11 66 27
3.2 48 57 ∞ ∞ ∞ 52 46 73 52
3.3 80 66 ∞ ∞ ∞ 58 79 63 28
4.1 61 37 33 0 56 ∞ 88 87 9
5.1 72 16 68 14 20 485 ∞ 4 70
6.1 22 43 62 17 88 21 44 ∞ ∞
6.2 96 18 86 60 34 42 15 ∞ ∞

Table 21 The assignment solution of table 20

Job i,
 Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2 ()iz

1.1 ∞ 0 1 0 0 0 0 0 0 1
2.1 1 ∞ 0 0 0 0 0 0 0 1
3.1 0 0 ∞ ∞ ∞ 0 1 0 0 1
3.2 0 0 ∞ ∞ ∞ 0 0 0 0 0
3.3 0 0 ∞ ∞ ∞ 0 0 0 0 0
4.1 0 1 0 0 0 ∞ 0 0 0 1
5.1 0 0 0 0 0 0 ∞ 1 0 1
6.1 0 0 0 0 0 1 0 ∞ ∞ 1
6.2 0 0 0 0 0 0 0 ∞ ∞ 0

()jz 1 1 1 0 0 1 1 1 0

The assignment solution of table 20 is 1.1- 3.1- 5.1 - 6.1 - 4.1 - 2.1 - 1.1 with total

distance of 87 units. It implies the TSP tour which is stated and ended at node 1.

 78

Table 22 The cost table of de-link 2-1, by assigning the cost of the link 2-1 to ∞

Job i,
Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2
1.1 ∞ 2 11 3 35 94 30 13 97
2.1 ∞ ∞ 57 73 86 23 21 61 83
3.1 85 27 ∞ ∞ ∞ 41 11 66 27
3.2 48 57 ∞ ∞ ∞ 52 46 73 52
3.3 80 66 ∞ ∞ ∞ 58 79 63 28
4.1 61 37 33 0 56 ∞ 88 87 9
5.1 72 16 68 14 20 485 ∞ 4 70
6.1 22 43 62 17 88 21 44 ∞ ∞
6.2 96 18 86 60 34 42 15 ∞ ∞

Table 23 The The assignment solution of table 22

Job i,
Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2 ()iz

1.1 ∞ 1 0 0 0 0 0 0 0 1
2.1 0 ∞ 0 0 0 1 0 0 0 1
3.1 0 0 ∞ ∞ ∞ 0 1 0 0 1
3.2 0 0 ∞ ∞ ∞ 0 0 0 0 0
3.3 0 0 ∞ ∞ ∞ 0 0 0 0 0
4.1 0 0 1 0 0 ∞ 0 0 0 1
5.1 0 0 0 0 0 0 ∞ 1 0 1
6.1 1 0 0 0 0 0 0 ∞ ∞ 1
6.2 0 0 0 0 0 0 0 ∞ ∞ 0

()jz 1 1 1 0 0 1 1 1 0

The assignment solution of table 22 is 1.1- 2.1 - 4.1 - 3.1 - 5.1- 6.1 - 1.1 with the total

distance of 95 units. This solution implies the single TSP tour which stat at node 1,

but this solution is not better than the previous one. This heuristic would appear to

require a lot of memory and time of computation for solving the sequence of

assignment subproblems with alternative P/D nodes which is 0-1 IP. In fact, the

algorithm starts searching the first produced subtour and then goes to the next subtours

for saving running time, instead of searching from all found links (i, j) from the

solution in step 1, which may provides the better solution but takes much more time.

The results of some simulated problems are presented in the next chapter.

 79

3. The algorithms for solving the multi AGVsp-P/D

 The previous section provides the procedure for solving the case of single

AGVsp-P/D. The results from applying the procedure to solve the distance matrix are

sets of the single TSP tour. When the case of multi AGVsp-P/D is considered, a

specific number of AGVs is given to the problem. How can all vehicles will be

utilized is considered. The solutions of multi AGVsp-P/D are the sets of multi TSP

tours. The procedure of solving the MTSP from the existing TSP solutions will be

applied to form the sets of TSP tours from the single TSP tour. The research presents

two heuristic procedures as follows.

3.1 The heuristic of splitting a TSP tour for solving the lower bound of

 multi AGVsp-P/D

 Let assume that a regular AGV has speed equal to 1 meter/minute. If the

problem defines a special AGV that has speed equal to M meters /minute, it can

accomplish the same job (same total distance) faster than a regular AGV by the normal

mission time divided by M or can travels more distance by using the same amount of

time. Refer to table 8, let this table is the distance matrix of the regular AGV, which is

used for explaining the example of multi AGVsp-P/D as follows.

Table 24 The example of the regular AGV distance matrix for multi AGVsp-P/D

Job i,
Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2
1.1 ∞ 2 11 3 35 94 30 13 97
2.1 3 ∞ 57 73 86 23 21 61 83
3.1 85 27 ∞ ∞ ∞ 41 11 66 27
3.2 48 57 ∞ ∞ ∞ 52 46 73 52
3.3 80 66 ∞ ∞ ∞ 58 79 63 28
4.1 61 37 33 0 56 ∞ 88 87 9
5.1 72 16 68 14 20 485 ∞ 4 70
6.1 22 43 62 17 88 21 44 ∞ ∞
6.2 96 18 86 60 34 42 15 ∞ ∞

 80

The table shows that the regular AGV can travel from the starting point of job

1.1 to the starting point of job 2.1 by the total distance of 2 meters. From the

assumption of the regular AGV speed, that it takes 2 minutes. Let define that the

auxiliary problem, called Aux-problem, is the problem of the special AGV that the

traveling time from node i to node j equal to the original distance matrix divided by M.

The auxiliary cost matrix is used with the special AGV of M times faster. The

auxiliary cost matrix of 2 times faster AGVs (M = 2), called 2M-AGV, is shown on

table 25 as follows.

Table 25 The cost matrix of Aux-problem of 2 times faster AGVs

 Job i,
Alt a 1.1 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2
1.1 ∞ 1 5.5 1.5 17.5 47 15 6.5 48.5
2.1 1.5 ∞ 28.5 36.5 43 11.5 10.5 30.5 41.5
3.1 42.5 13.5 ∞ ∞ ∞ 20.5 5.5 33 13.5
3.2 24 28.5 ∞ ∞ ∞ 26 23 36.5 26
3.3 40 33 ∞ ∞ ∞ 29 39.5 31.5 14
4.1 30.5 18.5 16.5 0 28 ∞ 44 43.5 4.5
5.1 36 8 34 7 10 242.5 ∞ 2 35
6.1 11 21.5 31 8.5 44 10.5 22 ∞ ∞
6.2 48 9 43 30 17 21 7.5 ∞ ∞

The Aux-problem considers the traveling time (because the distance of each pair of

jobs is same as the regular AGV), not the distance. It can see that from the starting

point of job1.1 to the starting point of job2.1 takes 1 minute by 2M-AGV. It means

that this is the lower bound of the mission time for 2 regular AGVs, which are AGV-1

and AGV-2. If the mission time of the Aux- problem is splitted into two parts, the

explanation is shown as follows.

 Start 1 mim/2 m. Stop

 2M-AGV

 Aux-problem

 1 min/1 m 1 min/1 m

 AGV-1 AGV-2

 Original problem

 81

From the above chart, let assume that AGV-1 and AGV-2 can be started everywhere

and every time. Therefore, the relationship between the original problem and the Aux-

problem is:

 2M-AGV time ≤ AGV-1 time + AGV-2 time

For a given, the optimal TSP tour from the starting depot to all jobs and back to depots

of AGV-1 and AGV-2, both of tour distances can be added together and get the

optimal total distance. For explaining, the relationship of AGV-1, AGV-2 and 2M-

AGV is examined as follows.

AGV-1 X m. tour 1-2-3-4-5-1= X meters / X min

 X min.

AGV-2 Y m. tour 1-6-7-8-9-1=Y meters / Y min

 Y min

2M-AGV X+Y m.

 (X+Y)/2 min

Tour 1-2-3-4-5-1-6-7-8-9-1 = X+Y meters / (X+Y)/2 min

 Let a tour 1-2-3-4-5-6-7-8-9-1 of the Aux-problem is the optimal TSP tour.

The distance of X+Y (1-2-3-4-5-1-6-7-8-9-1) is ≥ the Aux-problem TSP tour distance

of 1-2-3-4-5-6-7-8-9-1. Assume that distance of X+Y is the optimal solution of the

original problem so that it can claim that the optimal tour of Aux-problem is the lower

bound of the original problem with 2 AGVs. If the TSP tour of the Aux-problem can

be solved, it can get the lower bound of problems with M number of AGVs for each

AGV by splitting the Aux-problem tour into M parts. Therefore, the original distance

value of M multiplied by Aux-tour distance is the lower bound distance of each regular

AGV.

 82

According to this point, solutions of a single TSP tour from the original

problem man provide M balance subtours, which is the lower bound of multi AGVsp-

P/D by splitting the optimal TSP tour distance of the Aux-problem into M parts, (M

subtours) and converting to the original distance of all subtours. The proof is shown

as follows.

Lemma: Let construct the Aux-problem of a single AGV where the Aux-problem

distance matrix [C’ij] = (1/M) × Cij ; Cij is the original distance matrix. If T*
AUX is the

optimal TSP tour for the single AGV of the Aux-problem, the length of the optimal

tour T*
AUX , l(T*

AUX), is a lower bound of the length of the optimal tour T*, l(T*), of the

original problem with M number of AGVs

That it is; M× l(T*
AUX) ≤ l(T*)

Proof: Given an optimal tour, T*, of M AGVs with the original distance matrix by

assuming that all AGVs are started at the starting depot and can start at the same time.

Let set S* is a set of subtour of the optimal tour T* which consists of subtours Ti = {T1,

T2, T3, … TM } for each AGV. Set S* can form the tours as the following diagram.

 D U1 V1 D ; T1 of AGV-1

 D U2 V2 D ; T2 of AGV-2

 S*

 D UM VM D ; TM of AGV-M

Set S* of subtours of the optimal tour T*

 83

 T1

 T*

 TM

 T2

Figure 4 Subtours Ti and tour T*

T* = T1 + T2 + T3 +…+ TM

l(T*) = 1
()

M

i
i

l T
=
∑

Consider any subtours Ti for all i = 1, 2, …, M, all of them have some common

jobs which are travel from last node (job) of subtours Ti to the starting depot, D, and

travel from the starting depot to the first job of subtours Ti+1. For example, tour T1

consists of the travel distance from the starting depot D to job U1 and go to the next

job, follows the optimal sequence, until finishing the last job V1 of this subtour and

then travel from V1 back to the starting depot D.

 Let U1, U2,…, UM be the first nodes after the starting node D and V1, V2,…, VM

be the last nodes before the starting node D. From Set S* of subtours of the optimal

tour T*, let construct a single tour T’’ by:

1. Disconnect the arcs from the last node, Vi to the starting node D of all

 subtours Ti for all i,

2. Disconnect the arcs from the starting node D to the first node, Ui of all

D

 84

 subtours Ti for all i, except for the arc from the starting node D to node U1

 and from VM to the starting node depot D , and then

3. Connect the node Vi to node Ui+1 for all subtours Ti for for all i.

A single tout T’’ is constructed which is a single AGV starts at depot, travels only one

time to the first node U1, continuous travels along the optimal sequence to the last

node VM , and travels back to the starting node D only one time.

 T1

 T’’

 TM

 T2

Figure 5 The TSP tour T”

Let the length between node i and node j is l(i, j). From the property of triangle

inequality,

l (V1, D) + l (D, U2) ≥ l (V1, U2)

D

 85

It can be derived that:

l (T’’) = 1
()

M

i
i

l T
=
∑ - [l (V1, D) + l (D, U2)] + l (V1, U2)

 - [l (V2, D) + l (D, U3)] + l (V2, U3)

 - [l (VM-1, D) + l (D, UM)] + l (VM-1, UM)

Because of -l (V1, D) - l (D, U2) + l (V1, U2) ≤ 0, so that

 l(T’’) ≤ l(T*)

Now procedure claim that M × l(T*
AUX) ≤ l(T’’) include every tours Ti of the original

problem that has length l(T*)/M in the Aux-problem. Since l(T*
AUX) is the optimal

length of tour of the Aux-problem, it can conclude that:

 l(T*
AUX) ≤ l(T’’) /M

Therefore, l(T*
AUX) ≤ l(T*)/M

 M × l(T*
AUX) ≤ l(T*)

 This heuristic can be used to split a single TSP tour to multi tours. Solutions of

the lower bound of multi AGVsp-P/D are the sets of multi tours, not the sets of multi

TSP tours or MTSP solution. The assumption of this algorithm is that vehicles can be

started and ended everywhere. Therefore, this heuristic can not satisfy the objective of

the multi AGVsp-P/D, which same as the objective of the MTSP, but can be used for

solving the lower bound of the multi AGVsp-P/D by splitting a single TSP tour to a set

of M routes for M AGVs. A set of M routes from splitting a single TSP tour to M parts

can be form a set of M tours, if the distance from the starting depot to the starting job

and the ending job to the starting depot of each route is added. Actually, the goal is

attempting to form the algorithm which can support the assumption of the MTSP,

which is shown on the next part. The experiment on the next chapter is performed to

 86

compare the solution of the algorithm of splitting a single TSP and the algorithm of

solving the MTSP as the standard TSP

3.2 The algorithm of solving the MTSP as the standard TSP

 Refer to Svestka and Huckfeldt (1973), if 2 AGVs are given for the multi

AGVsp-P/D, the problem on table 8 can be modified for using the algorithm of

solving the MTSP as the standard TSP. The new distances matrix [dij] are created

from the original distances matrix [cij], which is shown on table 26 as follows

Table 26 The MTSP distances matrix [dij]

 1.1 1.2 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2
1.1 ∞ ∞ 2 11 3 35 94 30 13 97
1.2 ∞ ∞ 2 11 3 35 94 30 13 97
2.1 3 3 ∞ 57 73 86 23 21 61 83
3.1 85 85 27 ∞ ∞ ∞ 41 11 66 27
3.2 48 48 57 ∞ ∞ ∞ 52 46 73 52
3.3 80 80 66 ∞ ∞ ∞ 58 79 63 28
4.1 61 61 37 33 0 56 ∞ 88 87 9
5.1 72 72 16 68 14 20 485 ∞ 4 70
6.1 22 22 43 62 17 88 21 44 ∞ ∞
6.2 96 96 18 86 60 34 42 15 ∞ ∞

 87

Table 27 The AGVsp-P/D solution of table 26

 1.1 1.2 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2
1.1 ∞ ∞ 0 0 0 0 0 1 0 0
1.2 ∞ ∞ 1 0 0 0 0 0 0 0
2.1 1 0 ∞ 0 0 0 0 0 0 0
3.1 0 0 0 ∞ ∞ ∞ 0 0 0 0
3.2 0 1 0 ∞ ∞ ∞ 0 0 0 0
3.3 0 0 0 ∞ ∞ ∞ 0 0 0 0
4.1 0 0 0 0 1 0 ∞ 0 0 0
5.1 0 0 0 0 0 0 0 ∞ 1 0
6.1 0 0 0 0 0 0 1 0 ∞ ∞
6.2 0 0 0 0 0 0 0 0 ∞ ∞

Table 28 The corresponding cost from the solution of table 27

 1.1 1.2 2.1 3.1 3.2 3.3 4.1 5.1 6.1 6.2
1.1 ∞ ∞ 0 0 0 0 0 30 0 0
1.2 ∞ ∞ 2 0 0 0 0 0 0 0
2.1 3 0 ∞ 0 0 0 0 0 0 0
3.1 0 0 0 ∞ ∞ ∞ 0 0 0 0
3.2 0 48 0 ∞ ∞ ∞ 0 0 0 0
3.3 0 0 0 ∞ ∞ ∞ 0 0 0 0
4.1 0 0 0 0 0 0 ∞ 0 0 0
5.1 0 0 0 0 0 0 0 ∞ 4 0
6.1 0 0 0 0 0 0 21 0 ∞ ∞
6.2 0 0 0 0 0 0 0 0 ∞ ∞

Table 26 shows that there is one additional first row and column, which is row and

column No. 1.2. They represent the dummy starting node for the problem of 2 AGVs.

The solution of AGVsp-P/D of table 26 is shown on table 27 with its corresponding

cost, which is shown on table 28.

From table 27, the assignment solution is 1.1 - 5 - 6.1 - 4 - 3.2 - 1.2 - 2 - 1.1

with the distance of 108 units. If the assignment solution is not a single TSP tour, the

modified Eastman’s algorithm for the TSP of the AGVsp-P/D is applied. By the

 88

solution from table 27, it shows that the assignment solution consists of 2 TSP tours

for 2 AGVs which are:

the TSP tour 1 for AGV-1 that is: 1.1 (depot) - 5.1 - 6.1 - 4.1 - 3.2 - 1.2 (depot) and

the TSP tour 2 for AGV-2that is: 1.2 (depot) - 2.1 - 1.1 (depot).

This algorithm provides the solution of the multi AGVsp-P/D by solving the single

TSP tour of the modified distance matrix [dij]. The running time of solving the TSP

and the MTSP may not different significantly when the number of AGVs (M)

increasing, because in the real world problems of n nodes, it may have the constraints

of the cost of increasing the number of salesman or vehicle. This algorithm is tested

for the implementation with many levels of problem sizes that are shown in the next

chapter.

All presented methods of this research can provide the results that satisfy the

research objectives. The single/multi AGVsp-P/D can be solved with some levels of

problem sizes. The results of all experiments are explained in the next chapter.

 89

RESULTS AND DISCUSSIONS

This chapter presents the results of all experiments of this research, which

includes the result analysis, conclusions and discussions.

Results

The detailed results of all tested problems are displayed in the form of tables and

graphs. Tested problems of the AGVsp-P/D are generated randomly as similar as the

example on table 6. The formulated mathematical model of AGVsp-P/D is programed

using MATLAB 7.0 for solving lower bound solutions, single TSP tours, and multi

TSP tours of the single/multi AGVsp-P/D.

1. The results of solving the lower bound of the AGVsp-P/D by

 integer linear programming

The simulated problems of the AGVsp-P/D with 10, 20, 30, 40, and 50 nodes

are generated randomly with some numbers of 2 alternative jobs and some numbers of

regular jobs. The running times of solving the lower bound solution is examined and

compared to the regular assignment problem of the same problem size. The simulated

problems are generated, which are:

1. 10 nodes with 5 jobs of 2 alternatives

2. 20 nodes with 5 jobs of 2 alternatives and 10 regular jobs

3. 30 nodes with 5 jobs of 2 alternatives and 20 regular jobs

4. 40 nodes with 5 jobs of 2 alternatives and 30 regular jobs

5. 50 nodes with 5 jobs of 2 alternatives and 40 regular jobs

that all for them are in a set of problems called 2Al-5 of n nodes (n = 10, 20, 30, 40

and 50). The other sets of simulated problems are:

 90

1. 10 nodes with 5 jobs of 2 alternatives, called 2Al-5

2. 20 nodes with 10 jobs of 2 alternatives, called 2Al-10

3. 30 nodes with 15 jobs of 2 alternatives, called 2Al-15

4. 40 nodes with 20 jobs of 2 alternatives, called 2Al-20

5. 50 nodes with 25 jobs of 2 alternatives, called 2Al-25

that all of them are in a set of problem, called 2Al-Max. The running time of 40

replications for each of the level of problem size are compared with the regular

assignment problems with 10, 20, 30, 40, and 50 jobs, which are solved using the

lower bound model with alternative P/D nodes.

According to this experiment, the main purpose is to examine that whether the

increasing of number of alternative jobs, from 2Al-5 to 2Al-Max, affects on the

average running time for solving the problem or not. The research assumes that the

type I error, α is 0.05. The hypothesis test will be examined after the experiments

done. The results of all experiments of this section using MATLAB 7.0 are shown as

follows.

 91

Table 29 The running time in seconds of simulated problems of 2Al-5

Problem No. 10node 20node 30node 40node 50node
1 0.237 0.920 2.188 5.375 12.437
2 0.253 0.527 2.887 6.286 15.814
3 1.073 0.576 5.770 6.535 14.133
4 0.383 0.605 1.900 5.567 11.435
5 0.420 0.618 1.930 4.850 12.047
6 0.391 0.599 1.711 5.333 16.538
7 0.436 0.551 3.743 5.025 16.167
8 0.396 0.531 2.101 5.243 12.177
9 0.737 1.292 1.752 8.186 16.165

10 0.282 0.910 3.618 4.745 11.653
11 0.224 0.615 2.014 4.731 11.587
12 0.511 0.598 1.919 4.845 11.054
13 0.546 0.997 1.798 5.535 12.677
14 0.701 0.584 3.584 5.097 25.688
15 0.231 0.574 2.930 4.584 10.257
16 0.340 0.635 1.890 5.754 22.572
17 0.217 0.560 3.757 8.197 12.422
18 0.952 0.543 1.810 5.010 10.695
19 0.558 1.693 1.522 4.68 13.052
20 0.615 0.994 1.712 4.397 10.861
21 0.286 0.546 2.014 4.961 12.478
22 0.219 0.691 1.921 5.064 37.135
23 0.175 0.976 1.960 4.912 11.232
24 0.797 0.622 1.982 4.980 11.485
25 0.257 0.513 1.860 4.760 11.323
26 0.662 0.633 1.804 5.06 12.594
27 0.456 0.648 1.701 5.659 11.331
28 0.230 0.575 1.709 5.266 11.463
29 0.401 0.548 1.723 4.806 11.872
30 1.009 0.938 3.833 9.179 10.668
31 0.269 0.617 1.924 5.584 14.824
32 1.000 0.619 2.126 4.993 13.29
33 0.204 0.565 2.017 5.161 10.866
34 0.256 0.941 2.695 5.546 11.880
35 0.293 0.662 2.114 4.855 10.570
36 0.767 0.582 3.601 4.328 11.755
37 1.320 0.575 3.692 6.780 11.946
38 0.284 0.638 1.883 5.005 17.767
39 0.209 0.619 2.031 4.477 15.268
40 0.377 0.555 1.644 4.475 11.330

 92

Table 30 The running time in seconds of simulated problems of 2Al-Max

Problem No. 10node 20node 30node 40node 50node
 (2Al-5) (2Al-10) (2Al-15) (2Al-20) (2Al-25)
1 0.237 1.500 4.293 29.315 59.497
2 0.253 1.065 6.390 19.752 13.864
3 1.073 2.014 9.446 36.411 31.589
4 0.383 1.944 4.504 36.797 91.136
5 0.420 2.376 9.662 28.656 22.187
6 0.391 2.968 11.68 37.923 49.681
7 0.436 0.756 13.357 43.830 115.214
8 0.396 3.570 13.681 43.389 12.944
9 0.737 3.641 3.714 7.674 27.961

10 0.282 1.590 3.274 12.666 59.073
11 0.224 0.988 2.236 14.049 13.920
12 0.511 0.662 6.230 6.591 31.656
13 0.546 0.637 5.866 7.332 91.336
14 0.701 2.794 7.680 21.991 22.085
15 0.231 1.904 6.577 22.744 49.614
16 0.340 2.329 3.328 12.535 115.064
17 0.217 2.423 3.827 11.762 12.787
18 0.952 1.152 5.813 12.317 70.256
19 0.558 1.015 3.427 8.901 21.932
20 0.615 3.729 7.756 4.899 37.877
21 0.286 2.248 2.926 26.677 16.208
22 0.219 0.743 8.94 89.939 74.394
23 0.175 0.584 2.934 9.427 26.248
24 0.797 3.570 9.691 8.390 32.616
25 0.257 1.246 2.077 37.673 39.466
26 0.662 2.793 3.898 8.304 29.349
27 0.456 2.446 6.359 57.296 78.340
28 0.230 1.424 6.765 16.613 67.905
29 0.401 3.164 7.865 84.195 11.305
30 1.009 2.868 14.005 41.498 71.857
31 0.269 1.430 6.913 64.475 37.215
32 1.000 1.614 2.805 32.793 80.843
33 0.204 3.288 3.748 16.388 66.105
34 0.256 1.410 6.405 25.121 46.362
35 0.293 1.168 5.972 25.765 64.666
36 0.767 1.473 9.716 10.831 23.741
37 1.320 3.505 9.225 32.688 77.782
38 0.284 2.327 4.920 5.297 63.787
39 0.209 3.745 9.378 26.874 89.043
40 0.377 0.741 7.505 7.965 57.916

 93

Table 31 The running time in second of the regular assignment problems

Problem No. 10node 20node 30node 40node 50node
1 0.1859 0.672 2.297 5.976 10.600
2 0.174 0.558 2.373 5.183 12.343
3 0.244 0.738 2.203 5.437 10.852
4 0.203 0.627 2.384 5.555 14.656
5 0.168 0.587 2.07 5.863 12.167
6 0.242 0.726 2.076 4.932 12.587
7 0.224 0.691 2.038 5.863 11.106
8 0.230 0.718 2.318 5.660 14.293
9 0.197 0.690 2.016 5.212 12.923

10 0.199 0.674 2.028 4.678 14.413
11 0.195 0.714 2.031 5.782 13.157
12 0.256 0.772 2.331 5.250 11.171
13 0.165 0.640 1.972 5.795 12.326
14 0.174 0.721 2.024 5.833 13.488
15 0.235 0.642 2.104 5.289 12.356
16 0.161 0.640 2.138 5.362 13.078
17 0.191 0.714 1.963 5.309 12.426
18 0.274 0.658 2.371 5.972 11.694
19 0.282 0.756 2.068 5.749 12.767
20 0.254 0.716 2.284 5.607 11.204
21 0.224 0.669 2.074 5.572 12.924
22 0.203 0.663 2.309 5.446 12.273
23 0.236 0.628 2.007 5.914 11.959
24 0.161 0.599 2.107 5.001 12.547
25 0.249 0.778 2.134 5.438 12.241
26 0.205 0.666 2.244 5.755 12.624
27 0.216 0.695 2.253 5.109 11.317
28 0.258 0.673 2.260 5.643 12.981
29 0.237 0.724 2.059 4.989 13.321
30 0.194 0.702 2.302 5.146 10.499
31 0.245 0.710 1.991 5.466 13.068
32 0.218 0.678 2.054 5.249 12.833
33 0.215 0.688 2.655 5.355 12.136
34 0.217 0.690 2.052 5.440 11.000
35 0.250 0.633 2.008 5.284 13.150
36 0.254 0.68 2.049 5.347 13.127
37 0.247 0.677 2.315 5.865 11.848
38 0.210 0.660 2.205 5.531 12.891
39 0.231 0.669 2.181 5.902 13.032
40 0.224 0.705 2.268 5.396 11.170

 94

Table 32 The summarized running time in seconds of solving the lower bound of

 AGVsp-P/D

Size Levels Assignment 2Al-5 2Al-Max
 Problems Problems Problems
 Mean 0.2186975 0.47435 0.47435

10 nodes S.D. 0.031660438 0.287858633 0.287858633
 Min 0.161 0.175 0.175
 Max 0.282 1.320 1.320
 Mean 0.681025 0.699625 2.0211

20 nodes S.D. 0.04663084 0.238417613 1.009444549
 Min 0.558 0.513 0.584
 Max 0.778 1.693 3.745
 Mean 2.1654 2.36925 6.6197

30 nodes S.D. 0.152020545 0.906358924 3.189694184
 Min 1.963 1.522 2.077
 Max 2.655 5.770 14.005
 Mean 5.478875 5.39565 26.193575

40 nodes S.D. 0.318063144 1.05462081 20.3977164
 Min 4.678 4.328 4.899
 Max 5.976 9.179 89.939
 Mean 12.4137 13.7627 50.120525

50 nodes S.D. 0.999490388 4.941659133 28.89604306
 Min 10.499 10.257 11.305
 Max 14.656 37.135 115.214

The running time of simulated problems

0

10

20

30

40

50

60

1 2 3 4 5

No. of Nodes x 10

Se
c.

Assignment
2Al-5
2Al-Max

Figure 6 The graph of running time in second for obtaining the lower bound of

 AGVsp-P/D

 95

 Let consider the data set of tables 29, 30 and 31 of 50 nodes, the normal

probability plot results using Minitab are performed sequentially as follows.

Average: 13.7627
StDev: 4.94166
N: 40

Anderson-Darling Normality Test
A-Squared: 5.076
P-Value: 0.000

10 20 30

.001
.01
.05

.20

.50

.80

.95

.99

.999

Pr
ob

ab
ilit

y

2Al-5

Normal Probability Plot

Figure 7 The normal probability plot of 2Al-5 data with 50 nodes

 from table 29

Average: 50.1205
StDev: 28.8960
N: 40

Anderson-Darling Normality Test
A-Squared: 0.686
P-Value: 0.068

20 70 120

.001

.01

.05

.20

.50

.80

.95

.99

.999

Pr
ob

ab
ilit

y

2Al-max

Normal Probability Plot

Figure 8 The normal probability plot of the 2Al-Max data with 50 nodes

 from table 30

 96

Average: 12.4137
StDev: 0.999490
N: 40

Anderson-Darling Normality Test
A-Squared: 0.528
P-Value: 0.167

10.5 11.5 12.5 13.5 14.5

.001
.01
.05

.20

.50

.80

.95

.99

.999

Pr
ob

ab
ilit

y

Ass

Normal Probability Plot

Figure 9 The normal probability plot of the regular assignment data with 50 nodes

 from table 31

The results of the normal probability plot show that the data set of 2Al-5 of 50

nodes, figure 7, is not statistically normal distribution, because the P-value less than

0.05. Before performing any statistical analysis, the data should be transformed or

adjusted to be the normal distributed data set. The Box-Cox transformation function

in Minitab is used to adjust and transform the data set from the experimental results

for forming the normal probability data set. The data set from the figure 7 is

transformed using the Box-Cox transformation function and tested the normality by

performing the normal probability plot of the transformed data set. The result of the

normality test of the transformed data set of the figure 7 is shown on figure 10 as

follows.

 97

P-Value: 0.046
A-Squared: 0.751

Anderson-Darling Normality Test

N: 40
StDev: 0.0002778
Average: 0.0006360

0.00100.00050.0000

.999

.99

.95

.80

.50

.20

.05

.01

.001

P
ro

ba
bi

lit
y

2Al-5_Transf

Normal Probability Plot

Figure 10 The normal probability plot of the Box-Cox transformation data of

 2Al-5 with 50 nodes of table 29

The normal probability plot on figure 10 shows that the transformed data set of 2Al-5

with 50 nodes is still not the normal probability distribution, because the P-value is

still less than 0.05. Therefore, the data of table 29, 30 and 31 will be analyzed by

using nonparametric statistics. The analysis can be performed using the Kruskal-

Wallis test. This test offers a nonparametric statistic of the one-way analysis of

variance.

According to the experimental results, because the effect of increasing on the

number of alternative jobs with a specific size level of problem is considered, research

wish to test the hypothesis that the mean values of running times of assignment

(µAssignment), 2Al-5 (µ2AL-5), and 2Al-Max (µ2AL-Max) experiments are equal or not. Let

consider the size level of 50 nodes experiments with 40 replications and type I error of

α = 0.05, the Kruskal-Wallis hypotheses can be formally stated as:

 H0: µAssignment = µ2AL-5 = µ2AL-Max (µ1 = µ2 = µ3)

 H1: µ i ≠ µ j for at least one pair of all i, j, where i, j = 1, 2 and 3

The Kruskal-Wallis test is used for analyzing data sets on tables 28, 29 and 30

for 3 treatments of assignment (Ass), 2Al-5, and 2Al-Max of 50 nodes (k = 3) and 40

replications (ni = 40 and N = 120). The result from Minitab is shown as follows.

 98

Figure 11 The Kruskal-Wallis test of the data set on Ass, 2Al-5, and 2Al-Max of 50

 nodes

If the type I error of α = 0.05, the result from figure 11 obtains that the P-value

of the Kruskal-Wallis test of data sets on Ass, 2Al-5, and 2Al-Max of 50 nodes equal

to 0.000, which less than 0.05. Therefore, the hypothesis H0: µAssignment = µ2AL-5 =

µ2AL-Max can be rejected and can conclude base on the inference statistics that the

increasing on the number of alternative jobs with a specific size level of problem

affects on the average running time.

2. The results of solving the lower bound by the alternative selection heuristics

 This part attempts to test all heuristics for selecting the alternative nodes. The

30 tested problems are generated randomly to verify the quality of solution for all 3

heuristics (Heu-i Sol. for all i = 1, 2 and 3) by consider the deviation (Dev) of the

heuristic solutions from the IP solutions in a form of the percent deviations (% Dev).

The tested problems are the distance matrix, which has the same format as the

example on table 6. The assignment problem with alternative P/D nodes can by

solved by selecting the appropriate alternative jobs (Alt. Sel.) for job No. 3, and job

No. 6 first and then solve the regular assignment problem. The research tries to

evaluate which heuristic can perform the best solution. The appropriate heuristic

should provide the minimum average of % Dev.

Kruskal-Wallis Test: C6 versus C7

Kruskal-Wallis Test on C6

C7 N Median Ave Rank Z
2Al-five 40 12.00 42.3 -4.05
2Al-max 40 47.99 96.3 7.97
Ass 40 12.49 42.9 -3.92
Overall 120 60.5

H = 63.56 DF = 2 P = 0.000

 99

Refer to the section 2.4 for the materials and methods chapter, all 3 heuristics

are applied to select the alternatives of 30 tested problems and then the assignment

solution of the selected alternative problem is solved and compared to the IP solution

(IP Sol.) of the master problem. The result of solutions and the %Dev between the

heuristics and the IP solutions are shown as follows.

Table 33 The %Dev of alternative selection Heuristic-1 solutions

 from the IP solutions

Problem No. IP Sol. Alt. Sel. Heu-1 Sol. Dev Alt. Sel. %Dev
1 74 3.1,6.1 76 2 3.2,6.1 2.7027
2 99 3.3,6.2 110 11 3.2,6.2 11.1111
3 138 3.2,6.2 144 6 3.2,6.1 4.34783
4 138 3.1,6.2 218 80 3.2,6.1 57.971
5 109 3.1,6.2 121 12 3.3,6.2 11.0092
6 98 3.2,6.1 98 0 3.2,6.1 0
7 148 3.2,6.1 172 24 3.3,6.1 16.2162
8 71 3.3,6.1 76 5 3.2,6.1 7.04225
9 72 3.2,6.1 100 28 3.3,6.1 38.8889

10 83 3.3,6.1 105 22 3.3,6.2 26.506
11 129 3.1,6.2 129 0 3.1,6.2 0
12 81 3.3,6.2 97 16 3.3,6.1 19.7531
13 60 3.2,6.1 60 0 3.2,6.1 0
14 77 3.2,6.1 88 11 3.3,6.1 14.2857
15 95 3.1,6.2 95 0 3.1,6.2 0
16 127 3.2,6.1 133 6 3.1,6.1 4.72441
17 68 3.1,6.1 79 11 3.3,6.1 16.1765
18 146 3.1,6.1 154 8 3.2,6.2 5.47945
19 82 3.3,6.1 85 3 3.2,6.1 3.65854
20 91 3.3,6.1 94 3 3.2,6.1 3.2967
21 104 3.1,6.1 104 0 3.1,6.1 0
22 54 3.1,6.1 54 0 3.1,6.1 0
23 143 3.1,6.2 143 0 3.1,6.2 0
24 67 3.1,6.2 111 44 3.2,6.2 65.6716
25 72 3.1,6.1 72 0 3.1,6.1 0
26 122 3.2,6.1 139 17 3.3,6.2 13.9344
27 111 3.1,6.1 111 0 3.1,6.1 0
28 65 3.2,6.1 65 0 3.2,6.1 0
29 98 3.1,6.2 98 0 3.1,6.2 0
30 217 3.1,6.2 217 0 3.1,6.2 0

 100

Table 34 The %Dev of alternative selection Heuristic-2 solutions

 from the IP solutions

Problem No. IP Sol. Alt. Sel. Heu-2 Sol. Dev Alt. Sel. %Dev
1 74 3.1,6.1 74 0 3.1,6.1 0
2 99 3.3,6.2 110 11 3.2,6.2 11.1111
3 138 3.2,6.2 144 6 3.2,6.1 4.34783
4 138 3.1,6.2 152 14 3.1,6.1 10.1449
5 109 3.1,6.2 143 34 3.2,6.2 31.1927
6 98 3.2,6.1 98 0 3.2,6.1 0
7 148 3.2,6.1 148 0 3.2,6.1 0
8 71 3.3,6.1 76 5 3.2,6.1 7.04225
9 72 3.2,6.1 97 25 3.1,6.1 34.7222

10 83 3.3,6.1 126 43 3.2,6.1 51.8072
11 129 3.1,6.2 129 0 3.1,6.2 0
12 81 3.3,6.2 97 16 3.3,6.1 19.7531
13 60 3.2,6.1 63 3 3.1,6.1 5
14 77 3.2,6.1 122 45 3.2,6.2 58.4416
15 95 3.1,6.2 95 0 3.1,6.2 0
16 127 3.2,6.1 133 6 3.1,6.1 4.72441
17 68 3.1,6.1 89 21 3.1,6.2 30.8824
18 146 3.1,6.1 154 8 3.2,6.2 5.47945
19 82 3.3,6.1 106 24 3.1,6.1 29.2683
20 91 3.3,6.1 94 3 3.2,6.1 3.2967
21 104 3.1,6.1 120 16 3.1,6.2 15.3846
22 54 3.1,6.1 91 37 3.2,6.2 68.5185
23 143 3.1,6.2 149 6 3.3,6.2 4.1958
24 67 3.1,6.2 67 0 3.1,6.2 0
25 72 3.1,6.1 72 0 3.1,6.1 0
26 122 3.2,6.1 160 38 3.2,6.2 31.1475
27 111 3.1,6.1 111 0 3.1,6.1 0
28 65 3.2,6.1 65 0 3.2,6.1 0
29 98 3.1,6.2 98 0 3.1,6.2 0
30 217 3.1,6.2 249 32 3.2,6.1 14.7465

 101

Table 35 The %Dev of alternative selection Heuristic-3 solutions

 from the IP solutions

The interested result is considered that the %Dev of all 3 alternatives selection

heuristics, which are shown on table 36. A summary of the %Dev is shown on table

37 as follows.

Problem No. IP Sol. Alt. Sel. Heu-3 Sol. Dev Alt. Sel. %Dev
1 74 3.1,6.1 74 0 3.1,6.1 0
2 99 3.3,6.2 110 11 3.2,6.2 11.1111
3 138 3.2,6.2 138 0 3.2,6.2 0
4 138 3.1,6.2 152 14 3.1,6.1 10.1449
5 109 3.1,6.2 121 12 3.3,6.2 11.0092
6 98 3.2,6.1 98 0 3.2,6.1 0
7 148 3.2,6.1 164 16 3.1,6.1 10.8108
8 71 3.3,6.1 76 5 3.2,6.1 7.04225
9 72 3.2,6.1 72 0 3.2,6.1 0

10 83 3.3,6.1 105 22 3.3,6.2 26.506
11 129 3.1,6.2 129 0 3.1,6.2 0
12 81 3.3,6.2 81 0 3.3,6.2 0
13 60 3.2,6.1 63 3 3.1,6.1 5
14 77 3.2,6.1 88 11 3.3,6.1 14.2857
15 95 3.1,6.2 95 0 3.1,6.2 0
16 127 3.2,6.1 133 6 3.1,6.1 4.72441
17 68 3.1,6.1 68 0 3.1,6.1 0
18 146 3.1,6.1 152 6 3.1,6.2 4.10959
19 82 3.3,6.1 85 3 3.2,6.1 3.65854
20 91 3.3,6.1 91 0 3.3,6.1 0
21 104 3.1,6.1 104 0 3.1,6.1 0
22 54 3.1,6.1 89 35 3.2,6.1 64.8148
23 143 3.1,6.2 143 0 3.1,6.2 0
24 67 3.1,6.2 67 0 3.1,6.2 0
25 72 3.1,6.1 72 0 3.1,6.1 0
26 122 3.2,6.1 139 17 3.3,6.2 13.9344
27 111 3.1,6.1 111 0 3.1,6.1 0
28 65 3.2,6.1 77 12 3.3,6.1 18.4615
29 98 3.1,6.2 98 0 3.1,6.2 0
30 217 3.1,6.2 217 0 3.1,6.2 0

 102

Table 36 The comparison of the %Dev for all 3 heuristics

Problem No. IP Sol. %Dev of %Dev %Dev
 Heuristic-1 Heuristic-2 Heuristic-3

1 74 2.7027 0 0
2 99 11.1111 11.1111 11.1111
3 138 4.34783 4.34783 0
4 138 57.971 10.1449 10.1449
5 109 11.0092 31.1927 11.0092
6 98 0 0 0
7 148 16.2162 0 10.8108
8 71 7.04225 7.04225 7.04225
9 72 38.8889 34.7222 0

10 83 26.506 51.8072 26.506
11 129 0 0 0
12 81 19.7531 19.7531 0
13 60 0 5 5
14 77 14.2857 58.4416 14.2857
15 95 0 0 0
16 127 4.72441 4.72441 4.72441
17 68 16.1765 30.8824 0
18 146 5.47945 5.47945 4.10959
19 82 3.65854 29.2683 3.65854
20 91 3.2967 3.2967 0
21 104 0 15.3846 0
22 54 0 68.5185 64.8148
23 143 0 4.1958 0
24 67 65.6716 0 0
25 72 0 0 0
26 122 13.9344 31.1475 13.9344
27 111 0 0 0
28 65 0 0 18.4615
29 98 0 0 0
30 217 0 14.7465 0

 103

Table 37 The summary of the %Dev for all 3 heuristics

According to the experimental results, the hypothesis is to test whether the

mean values of the %Dev of the solution from the different alternative selection

heuristics are equal or not. The hypothesis can be formally stated as:

 H0: µHeuristic-1 = µHeuristic-2 = µHeuristic-3 (µ1 = µ2 = µ3)

 H1: µ i ≠ µ j for at least one pair of all i, j, where i, j = 1, 2 and 3

 Let consider the results on table 36 with 30 replications and the error of α =

0.05. The normal probability plots of the data set on table 36 are performed as follow.

Average: 10.7592
StDev: 16.7390
N: 30

Anderson-Darling Normality Test
A-Squared: 3.358
P-Value: 0.000

0 10 20 30 40 50 60

.001

.01

.05

.20

.50

.80

.95

.99

.999

P
ro

ba
bi

lit
y

%Dev_H1

Normal Probability Plot

Figure 12 The normal probability plot of the %Dev of Heuristic-1 from table 36

 % Dev of % Dev of % Dev of
 Heuristic-1 Heuristic-2 Heuristic-3

Mean 10.7592 15.2925 6.85378
S.D. 16.739 18.8379 12.8988
Min 0 0 0
Max 65.67164 68.51852 64.814815

 104

Average: 15.2925
StDev: 18.8380
N: 30

Anderson-Darling Normality Test
A-Squared: 2.130
P-Value: 0.000

0 10 20 30 40 50 60 70

.001

.01

.05

.20

.50

.80

.95

.99

.999

P
ro

ba
bi

lit
y

%Dev_H2

Normal Probability Plot

Figure 13 The normal probability plot of the %Dev of Heuristic-2 from table 36

Average: 6.8538
StDev: 12.8989
N: 30

Anderson-Darling Normality Test
A-Squared: 3.922
P-Value: 0.000

0 10 20 30 40 50 60

.001

.01

.05

.20

.50

.80

.95

.99

.999

P
ro

ba
bi

lit
y

%Dev_H3

Normal Probability Plot

Figure 14 The normal probability plot of the %Dev of Heuristic-3 from table 36

The normal probability plots show that all 3 sets of data from table 36 are not

the normally distributed. The Box-Cox transformation function in Minitab is used to

transform the data set from the experimental results. After all 3 sets of data from

table 36 are transformed, and then normality tests by the normal probability plot are

performed, which are shown as follows.

 105

Average: 0.743245
StDev: 0.229235
N: 30

Anderson-Darling Normality Test
A-Squared: 2.020
P-Value: 0.000

0.4 0.5 0.6 0.7 0.8 0.9 1.0

.001

.01

.05

.20

.50

.80

.95

.99

.999
P

ro
ba

bi
lit

y

%Dev_H1_Tran

Normal Probability Plot

Figure 15 The normal probability plot of the Box-Cox transformation data of the

 %Dev of Heuristic-1 from table 36

Average: 0.815335
StDev: 0.136927
N: 30

Anderson-Darling Normality Test
A-Squared: 1.487
P-Value: 0.001

0.7 0.8 0.9 1.0

.001

.01

.05

.20

.50

.80

.95

.99

.999

P
ro

ba
bi

lit
y

%Dev_H2_Tran

Normal Probability Plot

Figure 16 The normal probability plot of the Box-Cox transformation data of the

 %Dev of Heuristic-2 from table 36

 106

Average: 0.741729
StDev: 0.288681
N: 30

Anderson-Darling Normality Test
A-Squared: 3.485
P-Value: 0.000

0.22 0.32 0.42 0.52 0.62 0.72 0.82 0.92 1.02

.001

.01

.05

.20

.50

.80

.95

.99

.999
P

ro
ba

bi
lit

y

%Dev_H3_Tran

Normal Probability Plot

Figure 17 The normal probability plot of the Box-Cox transformation data of the

 %Dev of Heuristic-3 from table 36

Normal probability plots on figures 14, 15 and 16 show that all sets of

transformed data are not normal distributed so that all data sets will be analyzed by

using nonparametric statistics. The Kruskal-Wallis test is used for analyzing the data

sets on figures 11, 12 and 13 for 3 treatments of Heuristic-1, Heuristic-2 and Heuristic-

3 (k = 3) and 30 replications (ni = 30 and N = 90). The result from Minitab is shown

as follows.

Figure 18 The Kruskal-Wallis test of the %Dev for all 3 heuristics

Kruskal-Wallis Test: %Dev versus Heu-

Kruskal-Wallis Test on %Dev

Heu- N Median Ave Rank Z
1 30 4.00E+00 45.3 -0.05
2 30 6.26E+00 52.7 1.85
3 30 0.00E+00 38.5 -1.80
Overall 90 45.5

H = 4.44 DF = 2 P = 0.108
H = 4.78 DF = 2 P = 0.092 (adjusted for ties)

 107

If the type I error of α = 0.05 is specified, then the result of from the Kruskal-Wallis

test provides P-value = 0.092 > 0.05. The H0: µHeuristic-1 = µHeuristic-2 = µHeuristic-3

cannot be rejected and can be concluded base on the inference statistics that the

average value of the %Dev of each alternative selection heuristic is not significantly

different.

According to the results, all heuristics will be used appropriately for solving

the large scale problem because the IP problem may requires too much memory and

take too much time than solving the regular assignment problem with some heuristics

of alternative selection. From the result on table 36, there are some cases that having

much %Dev such as the tested problem No.22 of Heuristic-3, which has the %Dev of

64.815. The heuristic for improving the alternative selection heuristic is applied. The

same 30 tested problems on table 33, 34 and 35 are used to verify the quality of

solutions for the heuristic of alternative selection improvement heuristics by

considering the deviation of solutions.

Let consider the tested problems on tables 33, 34 and 35 that have the

deviation value grater than zero such as case numbers 2, 4, 5, and so on. The

alternative selection improvement heuristic is applied and the results of solutions of

the deviation of alternative selection heuristics, the deviation of alternative selection

improvement heuristic solutions (Imp. Heu) and the IP solutions (IP Sol.) are shown as

follows.

 108

Table 38 The result of alternative selection improvement for Heuristic-1

No. IP Sol. Alt. Sel. Heu-1 Sol. Dev Alt. Sel. %Dev Imp. Heu Dev Alt. Sel. Iterations
1 74 3.1,6.1 76 2 3.2,6.1 2.7027 74 0 3.1,6.1 2
2 99 3.3,6.2 110 11 3.2,6.2 11.1111 99 0 3.3,6.2 2
3 138 3.2,6.2 144 6 3.2,6.1 4.34783 138 0 3.2,6.2 3
4 138 3.1,6.2 218 80 3.2,6.1 57.971 138 0 3.1,6.2 2
5 109 3.1,6.2 121 12 3.3,6.2 11.0092 109 0 3.1,6.2 3
6 98 3.2,6.1 98 0 3.2,6.1 0
7 148 3.2,6.1 172 24 3.3,6.1 16.2162 148 0 3.2,6.1 2
8 71 3.3,6.1 76 5 3.2,6.1 7.04225 71 0 3.3,6.1 2
9 72 3.2,6.1 100 28 3.3,6.1 38.8889 72 0 3.2,6.1 3

10 83 3.3,6.1 105 22 3.3,6.2 26.506 83 0 3.3,6.1 3
11 129 3.1,6.2 129 0 3.1,6.2 0
12 81 3.3,6.2 97 16 3.3,6.1 19.7531 81 0 3.3,6.2 3
13 60 3.2,6.1 60 0 3.2,6.1 0
14 77 3.2,6.1 88 11 3.3,6.1 14.2857 77 0 3.2,6.1 3
15 95 3.1,6.2 95 0 3.1,6.2 0
16 127 3.2,6.1 133 6 3.1,6.1 4.72441 127 0 3.2,6.1 2
17 68 3.1,6.1 79 11 3.3,6.1 16.1765 68 0 3.1,6.1 2
18 146 3.1,6.1 154 8 3.2,6.2 5.47945 146 0 3.1,6.1 2
19 82 3.3,6.1 85 3 3.2,6.1 3.65854 82 0 3.3,6.1 2
20 91 3.3,6.1 94 3 3.2,6.1 3.2967 91 0 3.3,6.1 2
21 104 3.1,6.1 104 0 3.1,6.1 0
22 54 3.1,6.1 54 0 3.1,6.1 0
23 143 3.1,6.2 143 0 3.1,6.2 0
24 67 3.1,6.2 111 44 3.2,6.2 65.6716 67 0 3.1,6.2 2
25 72 3.1,6.1 72 0 3.1,6.1 0
26 122 3.2,6.1 139 17 3.3,6.2 13.9344 122 0 3.2,6.1 3
27 111 3.1,6.1 111 0 3.1,6.1 0
28 65 3.2,6.1 65 0 3.2,6.1 0
29 98 3.1,6.2 98 0 3.1,6.2 0
30 217 3.1,6.2 217 0 3.1,6.2 0

 109

Table 39 The result of alternative selection improvement for Heuristic-2

No. IP Sol. Alt. Sel. Heu-2 Dev Alt. Sel. %Dev Imp. Heu Dev Alt. Sel. Iteration
1 74 3.1,6.1 74 0 3.1,6.1 0
2 99 3.3,6.2 110 11 3.2,6.2 11.1111 99 0 3.3,6.2 2
3 138 3.2,6.2 144 6 3.2,6.1 4.34783 138 0 3.2,6.2 3
4 138 3.1,6.2 152 14 3.1,6.1 10.1449 138 0 3.1,6.2 2
5 109 3.1,6.2 143 34 3.3,6.2 31.1927 109 0 3.1,6.2 3
6 98 3.2,6.1 98 0 3.2,6.1 0
7 148 3.2,6.1 148 0 3.2,6.1 0
8 71 3.3,6.1 76 5 3.2,6.1 7.04225 71 0 3.3,6.1 2
9 72 3.2,6.1 97 25 3.1,6.1 34.7222 72 0 3.2,6.1 2

10 83 3.3,6.1 126 43 3.2,6.1 51.8072 83 0 3.3,6.1 2
11 129 3.1,6.2 129 0 3.1,6.2 0
12 81 3.3,6.2 97 16 3.3,6.1 19.7531 81 0 3.3,6.2 3
13 60 3.2,6.1 63 3 3.1,6.1 5 60 0 3.2,6.1 2
14 77 3.2,6.1 122 45 3.2,6.2 58.4416 77 0 3.2,6.1 3
15 95 3.1,6.2 95 0 3.1,6.2 0
16 127 3.2,6.1 133 6 3.1,6.1 4.72441 127 0 3.2,6.1 2
17 68 3.1,6.1 89 21 3.1,6.2 30.8824 68 0 3.1,6.1 3
18 146 3.1,6.1 154 8 3.2,6.2 5.47945 146 0 3.1,6.1 3
19 82 3.3,6.1 106 24 3.1,6.1 29.2683 82 0 3.3,6.1 3
20 91 3.3,6.1 94 3 3.2,6.1 3.2967 91 0 3.3,6.1 2
21 104 3.1,6.1 120 16 3.1,6.2 15.3846 104 0 3.1,6.1 2
22 54 3.1,6.1 91 37 3.2,6.2 68.5185 54 0 3.1,6.1 2
23 143 3.1,6.2 149 6 3.3,6.2 4.1958 143 0 3.1,6.2 2
24 67 3.1,6.2 67 0 3.1,6.2 0
25 72 3.1,6.1 72 0 3.1,6.1 0
26 122 3.2,6.1 160 38 3.2,6.2 31.1475 122 0 3.2,6.1 3
27 111 3.1,6.1 111 0 3.1,6.1 0
28 65 3.2,6.1 65 0 3.2,6.1 0
29 98 3.1,6.2 98 0 3.1,6.2 0
30 217 3.1,6.2 249 32 3.2,6.1 14.7465 217 0 3.1,6.2 2

 110

Table 40 The result of alternative selection improvement for Heuristic-3

No. IP Sol. Alt. Sel. Heu-3 Dev Alt. Sel. %Dev Imp. Heu Dev Alt. Sel. Iteration
1 74 3.1,6.1 74 0 3.1,6.1 0
2 99 3.3,6.2 110 11 3.2,6.2 11.1111 99 0 3.3,6.2 2
3 138 3.2,6.2 138 0 3.2,6.2 0
4 138 3.1,6.2 152 14 3.1,6.1 10.1449 138 0 3.1,6.2 3
5 109 3.1,6.2 121 12 3.3,6.2 11.0091 109 0 3.1,6.2 3
6 98 3.2,6.1 98 0 3.2,6.1 0
7 148 3.2,6.1 164 16 3.1,6.1 10.8108 148 0 3.2,6.1 3
8 71 3.3,6.1 104 33 3.2,6.1 46.4788 71 0 3.3,6.1 2
9 72 3.2,6.1 72 0 3.2,6.1 0

10 83 3.3,6.1 105 22 3.3,6.2 26.5060 83 0 3.3,6.1 3
11 129 3.1,6.2 129 0 3.1,6.2 0
12 81 3.3,6.2 81 0 3.3,6.2 0
13 60 3.2,6.1 63 3 3.1,6.1 5 60 0 3.2,6.1 2
14 77 3.2,6.1 88 11 3.3,6.1 14.2857 77 0 3.2,6.1 3
15 95 3.1,6.2 95 0 3.1,6.2 0
16 127 3.2,6.1 133 6 3.1,6.1 4.72440 127 0 3.2,6.1 2
17 68 3.1,6.1 68 0 3.1,6.1 0
18 146 3.1,6.1 152 6 3.1,6.2 4.1095 146 0 3.1,6.1 3
19 82 3.3,6.1 85 3 3.2,6.1 3.6585 82 0 3.3,6.1 2
20 91 3.3,6.1 91 0 3.3,6.1 0
21 104 3.1,6.1 104 0 3.1,6.1 0
22 54 3.1,6.1 89 35 3.2,6.1 64.8148 54 0 3.1,6.1 2
23 143 3.1,6.2 143 0 3.1,6.2 0
24 67 3.1,6.2 67 0 3.1,6.2 0
25 72 3.1,6.1 72 0 3.1,6.1 0
26 122 3.2,6.1 139 17 3.3,6.2 13.9344 122 0 3.2,6.1 2
27 111 3.1,6.1 111 0 3.1,6.1 0
28 65 3.2,6.1 77 12 3.3,6.1 18.4615 65 0 3.2,6.1 2
29 98 3.1,6.2 98 0 3.1,6.2 0
30 217 3.1,6.2 217 0 3.1,6.2 0

The results from table 38, 39 and 40 show all heuristics of improving

alternative selection can be performed well for all tested problems. All heuristics can

provide the same solution as the IP model. For example, when consider tested

problem No.2, the alternative selection Heuristic-3 provide the solution with the

deviation of 11 units from the IP solution and then the result of alternative selection

improvement heuristic shows that the solution is 99 units, which equal to the IP

solution. The deviation becomes zero on the iteration 2 of running. The heuristic of

alternative selection improvement appropriates for solving the lower bound of

AGVsp-P/D with all alternative selection heuristics.

 111

According to the experimental results, the hypothesis is to test whether the

mean values of the %Dev of the solutions from the different alternative selection

heuristics with the alternative selection improvement heuristic are equal or not. The

hypothesis can be formally stated as:

 H0: µHeuristic-1+Imp = µHeuristic-2+Imp = µHeuristic-3+Imp (µ1 = µ2 = µ3)

 H1: µ i ≠ µ j for at least one pair of all i, j, where i, j = 1, 2 and 3

The data sets of the number of iterations from tables 38, 39 and 40 are not the

normally distributed obviously, because the data are discrete numbers. The data set

will be analyzed by using the nonparametric statistics. The Kruskal-Wallis test is used

for analyzing data sets of the numbers of iterations from tables 38, 39 and 40 for 3

treatments of all heuristics (k = 3) and 30 replications (ni = 30 and N = 90). The result

from Minitab is showed as follows.

Figure 19 The Kruskal-Wallis test of the %Dev for all 3 heuristics with the

 alternatives selection improvement heuristic

If a type I error of α = 0.05, the results provide P-value = 0.382 which is > 0.05. The

H0: µHeuristic-1+Imp = µHeuristic-2+Imp = µHeuristic-3+Imp cannot be rejected and can be

concluded base on the inference statistics that all 3 alternative selection heuristics with

the alternative selection improvement heuristic are not different significantly.

Kruskal-Wallis Test: No. of Iteration versus Heu-

Kruskal-Wallis Test on No. of I

Heu- N Median Ave Rank Z
1 30 2.00E+00 46.3 0.20
2 30 2.00E+00 49.4 1.01
3 30 0.00E+00 40.8 -1.21
Overall 90 45.5

H = 1.68 DF = 2 P = 0.432
H = 1.92 DF = 2 P = 0.382 (adjusted for ties)

 112

3. The results of solving the single TSP tour of the AGVsp-P/D using the modified

 Eastman’s algorithm

The research attempts to implement the modified Eastman’s algorithm for the

TSP with lower the bound model of assignment problems with alternative P/D nodes

on MATLAB 7. The 40 simulated problems with 10, 20, 30, 40, and 50 nodes, which

consist of one job of 2 alternatives, one job of 3 alternatives and some regular jobs, are

generated randomly. The running time of solving the single TSP tour of AGVsp-P/D,

using the modified Eastman’s algorithm, of the simulated problems are shown on table

41 and compared with the running time of solving the regular assignment problem

with 10, 20, 30, 40, and 50 jobs, shown on table 42.

 113

Table 41 The running time in second of solving the TSP tour of AGVsp-P/D

Problem No. 10 nodes 20 nodes 30 nodes 40 nodes 50 nodes
1 1.693 14.436 66.797 231.027 766.072
2 3.335 14.641 137.112 247.091 639.657
3 1.808 14.026 67.063 5.240 636.986
4 1.856 13.612 207.756 235.259 712.353
5 0.258 57.574 352.885 241.898 704.137
6 1.877 27.765 62.591 214.908 701.258
7 1.828 0.739 328.193 225.427 647.43
8 1.651 0.713 69.698 224.664 656.990
9 3.392 0.7111 79.219 219.988 668.780

10 1.682 14.103 69.182 6.183 734.886
11 0.226 55.339 134.911 241.618 734.411
12 0.262 16.011 67.598 719.097 744.121
13 0.283 27.951 304.586 204.507 679.370
14 1.825 14.284 73.322 236.092 642.580
15 1.859 13.929 80.206 425.945 637.226
16 0.298 14.475 73.39 474.657 639.772
17 1.832 13.888 76.527 231.260 708.768
18 1.698 15.442 65.905 237.361 711.008
19 0.307 15.025 64.765 224.364 712.425
20 1.692 0.769 64.591 252.56 657.413
21 1.747 30.800 70.174 226.488 636.859
22 1.674 28.348 71.670 236.647 732.089
23 1.740 0.792 114.147 231.182 647.651
24 0.284 13.745 64.398 246.789 676.477
25 0.285 32.151 69.559 5.246 732.258
26 0.263 13.072 70.199 235.618 734.277
27 1.757 65.791 2.161 261.750 732.742
28 0.237 13.280 78.426 237.382 673.567
29 1.652 58.381 72.749 255.169 640.159
30 0.211 13.693 75.813 205.515 625.663
31 0.290 41.085 65.514 266.024 629.462
32 1.719 14.342 64.394 6.832 625.209
33 1.731 14.264 64.568 266.383 702.128
34 1.717 56.760 69.746 787.577 681.357
35 0.229 0.721 71.241 232.691 682.662
36 1.713 0.672 113.415 246.183 771.671
37 0.314 13.932 64.098 426.096 764.973
38 1.796 14.332 69.131 475.67 770.507
39 1.841 14.932 70.087 230.799 708.948
40 0.198 53.106 2.160 235.654 647.383

 114

Table 42 The comparison of the running time in second of solving the single TSP

 tour and the regular assignment problem

Size Levels Statistics Assignment TSP Tour
 Problem Problem
 Mean 0.2186975 1.2765

10 nodes S.D. 0.031660438 0.870312
 Min 0.161 0.198
 Max 0.282 3.392
 Mean 0.681025 20.9908

20 nodes S.D. 0.04663084 18.14552
 Min 0.558 0.672
 Max 0.778 65.791
 Mean 2.1654 94.74868

30 nodes S.D. 0.152020545 74.87147
 Min 1.963 2.16
 Max 2.655 352.885
 Mean 5.478875 260.371

40 nodes S.D. 0.318063144 153.5101
 Min 4.678 5.24
 Max 5.976 787.577
 Mean 12.4137 688.7921

50 nodes S.D. 0.999490388 45.38168
 Min 10.499 625.209
 Max 14.656 771.671

Figure 20 The graph of running time in second of solving the single TSP tour of the

 AGVsp- P/D

The running time of simulated problem

0
100
200
300
400
500
600
700
800

1 2 3 4 5

No. of Nodes x10

Se
c. Avg.TSP

Avg.ASS

 115

 Consider the graph on figure 20, the graph shows that the running time of

solving the single TSP tour of the AGVsp-P/D increases dramatically when the

number of AGVs is increased. This result shows that the heuristic can be used to

solve the case of single AGVsp-P/D.

4. Results of solving the multi AGVsp-P/D

 This part of the experiment of solving multi AGVsp-P/D using the heuristic of

solving the MTSP as the standard TSP is performed. The solution of multi AGVsp-

P/D is the sets of multi TSP tours. The heuristic is programmed on MATLAB 7.0.

The 50 simulated problems with 10, 20, 30, 40, and 50 nodes, which consist of one job

of 2 alternatives, one job of 3 alternatives and some regular jobs for all cases of single

AGV (M = 1), 2 AGVs (M = 2) and 3 AGV (M = 3) are generated randomly. The

data sets of running time of solving the multi AGVsp-P/D by considering only the

calculation time, not include the problem set up time, are shown on table 43, 45 and 47.

According to this experiment, the main purpose is to examine that whether the

increasing of the number of AGVs affects on the average running time of solving the

multi AGVsp-P/D or not. The hypothesis test will be examined after all experiments

done

 116

Table 43 The running time in second of 10 nodes MTSP for the multi AGVsp-P/D

 Problem No. 10 nodes
 M = 1 M = 2 M = 3

1 0.5781 0.4963 0.3187
2 1.3044 0.4534 1.3768
3 0.245 0.5547 0.2213
4 0.2081 0.2613 0.3131
5 0.8105 0.3016 0.6008
6 1.2781 0.844 2.0474
7 0.223 0.4001 1.026
8 0.4473 0.6251 0.9685
9 0.2722 3.6764 0.6313

10 0.8397 0.4283 0.4077
11 1.1375 0.4061 0.7901
12 0.2273 1.7481 0.2893
13 0.1793 0.3521 0.7662
14 0.470 0.4544 0.5212
15 0.9578 0.364 0.9125
16 0.25105 0.238 0.9261
17 0.6137 0.3895 0.4226
18 0.7162 0.6538 0.7331
19 1.122 1.3593 0.5414
20 0.266 0.2857 2.3444
21 0.3687 0.4212 1.0174
22 0.473 0.272 1.0084
23 0.2933 0.4277 2.5028
24 1.0118 0.3127 0.2272
25 0.4057 0.4355 0.8508
26 0.1926 1.598 0.7059
27 1.3251 0.2247 0.7774
28 0.6122 0.2395 2.2004
29 0.2553 0.375 1.1827
30 0.2766 3.846 0.5311
31 0.516 0.2879 0.403
32 0.7142 1.756 0.2493
33 0.2956 0.8841 0.8959
34 0.208 0.6551 0.8793
35 0.6997 0.3407 0.4914
36 0.3625 0.4416 4.081
37 0.2044 0.7505 0.7278
38 0.3185 0.8979 0.302
39 0.5303 0.5229 1.9412
40 0.5628 0.773 0.4439

 117

Table 43 (Continued)

 Problem No. 10 nodes
 M = 1 M = 2 M = 3

41 0.3808 0.698 0.5543
42 0.258 0.6145 0.3318
43 0.3888 0.889 3.0799
44 0.259 0.6725 0.7411
45 0.506 1.2406 0.8989
46 0.2321 0.7288 1.071
47 0.2642 0.823 1.9991
48 0.4068 0.3143 0.498
49 0.3919 0.8437 2.5709
50 0.536 0.1283 1.134

Table 44 The summary of 10 nodes MTSP for the multi AGVsp-P/D

10 Nodes

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3

No. of m

A
vg

.R
un

ni
ng

 ti
m

e
(S

ec
.)

Avg.

Figure 21 The graph of the average running time in second of 10 nodes MTSP

 10 nodes
 M = 0 M = 1 M = 2

Mean 0.507943 0.734138 1.009128
S.D. 0.31895549 0.72995078 0.816217924
Min 0.1793 0.1283 0.2213
Max 1.3251 3.846 4.081

 118

Table 45 The running time in second of 20 nodes MTSP for the multi AGVsp-P/D

 Problem No. 20 nodes
 M = 1 M = 2 M = 3

1 7.2711 1.4687 10.4991
2 5.3215 4.666 1.4812
3 0.6562 9.2695 4.9078
4 2.4304 7.9018 9.1667
5 1.6493 10.6857 4.6736
6 1.2746 1.3451 1.4609
7 2.2308 8.7386 9.7711
8 9.3824 5.4041 1.4887
9 3.9393 2.3899 9.8529

10 2.9384 31.7611 5.4141
11 1.9332 3.9518 0.8323
12 8.9992 15.4405 6.7089
13 6.9871 1.296 27.2017
14 20.3591 2.1797 19.8646
15 1.1316 4.7616 6.8771
16 21.499 2.6524 57.4077
17 7.4028 7.9937 7.7732
18 1.2898 4.4645 25.7845
19 6.4044 4.7286 6.7818
20 5.7406 25.9307 20.7878
21 3.406 4.2891 0.8185
22 3.5275 13.9361 11.7984
23 2.284 2.0237 13.7122
24 0.653 13.2995 12.4737
25 1.3032 11.3131 5.241
26 1.1372 17.0743 5.1957
27 24.5203 12.4049 4.4442
28 2.6884 7.6847 6.9935
29 2.662 10.4358 7.4455
30 1.7965 8.6316 17.0687
31 1.2876 45.5607 8.242
32 7.5661 13.0314 4.9419
33 3.0469 5.3899 0.7621
34 1.7372 14.5202 14.315
35 13.2586 12.085 11.0408
36 7.1424 4.5083 3.7207
37 8.8102 6.4901 12.2831
38 27.3407 7.4976 19.7948
39 3.8289 41.4066 0.8236
40 1.363 4.8039 8.2879

 119

Table 45 (Continued)

 Problem No. 20 nodes
 M = 1 M = 2 M = 3

41 23.9681 1.3514 23.1394
42 1.7786 11.9583 18.5901
43 2.2326 2.8668 4.8258
44 7.5768 9.2478 14.582
45 2.5632 21.5848 28.713
46 1.3223 2.5375 39.9687
47 15.2526 4.4379 26.2798
48 4.7328 7.7225 8.5443
49 12.6934 2.7995 6.5797
50 5.1685 10.4343 8.324

Table 46 The summary of 20 nodes MTSP for the multi AGVsp-P/D

20 Nodes

0

2

4

6

8

10

12

14

1 2 3

No. of m

A
vg

.R
un

ni
ng

 ti
m

e
(S

ec
.)

Avg.

Figure 22 The graph of the average running time in second of 20 nodes MTSP

 20 nodes
 M = 1 M = 2 M = 3

Mean 6.309788 9.767146 11.753716
S.D. 6.76525129 9.38018444 10.7872062
Min 0.653 1.296 0.7621
Max 27.3407 45.5607 57.4077

 120

Table 47 The running time in second of 30 nodes MTSP for the multi AGVsp-P/D

 Problem No. 30 nodes
 M = 1 M = 2 M = 3

1 14.468 25.7828 33.311
2 96.8074 31.2256 11.646
3 17.1893 133.2994 81.8107
4 136.9473 10.0478 28.5088
5 102.1074 33.8301 5.4162
6 22.7224 16.1166 178.181
7 42.1609 43.8518 18.4791
8 54.9581 40.2743 31.0544
9 23.0809 16.9561 19.5557

10 61.138 20.6118 12.8187
11 24.7432 78.939 71.4472
12 32.4986 14.7052 89.8392
13 75.8807 34.8351 84.0734
14 23.8733 46.0669 138.6934
15 14.4361 174.4891 30.6783
16 10.9639 46.729 82.247
17 129.4007 21.0921 14.3649
18 4.0006 39.324 42.9922
19 62.6249 96.6452 26.1129
20 27.143 17.8762 47.5797
21 65.4614 33.1484 6.8357
22 29.9751 24.1449 23.0791
23 28.8981 28.4337 8.9306
24 11.624 22.0013 51.8817
25 13.7934 43.0344 65.8268
26 25.5864 50.598 25.8491
27 14.9759 68.6874 163.0203
28 7.876 24.099 24.2744
29 74.7315 27.4172 27.8802
30 6.5012 26.2887 25.8394
31 43.0726 90.2681 94.7307
32 12.4687 14.7459 59.423
33 155.261 52.2774 66.3459
34 10.0452 42.5896 30.3738
35 6.1793 102.03667 10.0852
36 23.533 19.4913 26.7812
37 6.7356 2.2572 94.643
38 26.025 14.2288 117.7158
39 28.208 58.6066 20.4345
40 35.1858 32.0658 27.4943

 121

Table 47 (Continued)

 Problem No. 30 nodes
 M = 1 M = 2 M = 3

41 37.3528 19.2568 31.293
42 19.916 2.1943 41.5333
43 10.3684 36.4643 62.6321
44 6.0149 4.5291 35.7456
45 10.421 63.5197 42.5076
46 32.1945 141.0189 15.1661
47 16.7367 29.7821 81.5883
48 127.6941 93.0225 28.6096
49 37.7534 69.2408 96.3396
50 5.4234 38.6061 76.6012

Table 48 The summary of 30 nodes MTSP for the multi AGVsp-P/D

30 Nodes

0

10

20

30

40

50

60

1 2 3

No. of m

A
vg

.R
un

ni
ng

 ti
m

e
(S

ec
.)

Avg.

Figure 23 The graph of the average running time in second of 30 nodes MTSP

 30 nodes
 M = 1 M = 2 M = 3

Mean 38.143142 44.3350614 50.645418
S.D. 37.5907785 36.4018846 40.0213276
Min 4.0006 2.1943 5.4162
Max 155.261 174.4891 178.181

 122

According to the experimental results, the hypothesis is to test whether the

mean values of the running time from solving the multi AGVsp-P/D of the different

number of AGVs are equal or not. The hypothesis can be formally stated as:

 H0: µ M=1 = µ M=2 = µ M=3 (µ1 = µ2 = µ3)

 H1: µ i ≠ µ j for at least one pair of all i, j, where i, j = 1, 2 and 3

 Let consider experiments of M = 1, M = 2 and M = 3 of 30 nodes simulated

problems with 50 replications and the type I error of α = 0.05. The normal probability

plots of data sets on table 47 are performed as follow.

Average: 38.1431
StDev: 37.5908
N: 50

Anderson-Darling Normality Test
A-Squared: 3.942
P-Value: 0.000

0 50 100 150

.001

.01

.05

.20

.50

.80

.95

.99

.999

P
ro

ba
bi

lit
y

m=1

Normal Probability Plot

Figure 24 The normal probability plot of the average running time of M =1

 from table 47

 123

Average: 44.3351
StDev: 36.4019
N: 50

Anderson-Darling Normality Test
A-Squared: 2.716
P-Value: 0.000

0 50 100 150

.001

.01

.05

.20

.50

.80

.95

.99

.999
P

ro
ba

bi
lit

y

m=2

Normal Probability Plot

Figure 25 The normal probability plot of the average running time of M =2

 from table 47

Average: 50.6454
StDev: 40.0213
N: 50

Anderson-Darling Normality Test
A-Squared: 2.203
P-Value: 0.000

0 50 100 150

.001

.01

.05

.20

.50

.80

.95

.99

.999

P
ro

ba
bi

lit
y

m=3

Normal Probability Plot

Figure 26 The normal probability plot of the average running time of M =3

 from table 47

The normal probability plots show that all data sets of table 47 are not

normally distributed. The Box-Cox transformation function in Minitab is used to

transform all data sets from experimental results. All data sets of table 47 are

transformed, which are M = 1-Trans, M = 2-Trans and M = 3-Trans, shown on table 49.

The normality tests by normal probability plots are performed, which are shown on

figures 27, 28 and 29 as follows.

 124

Table 49 The data set from Box-Cox transformation of table 47

 Problem No. 30 nodes
 M = 1-Trans M = 2-Trans M = 3-Trans
1 0.739668 2.07227 1.48538
2 0.596858 2.16321 1.31925
3 0.725420 2.99521 1.64391
4 0.573944 1.67758 1.45951
5 0.593279 2.20241 1.21005
6 0.702929 1.86506 1.79486
7 0.655561 2.33434 1.38982
8 0.636240 2.29022 1.47367
9 0.701688 1.88642 1.39873

10 0.628634 1.97083 1.33362
11 0.696202 2.66323 1.61897
12 0.675105 1.82713 1.66137
13 0.613492 2.21692 1.64898
14 0.699020 2.36028 1.74482
15 0.739852 3.18161 1.47165
16 0.763185 2.36784 1.64490
17 0.577627 1.98104 1.35087
18 0.855154 2.27799 1.52878
19 0.626931 2.78686 1.44513
20 0.688966 1.90890 1.54637
21 0.623805 2.19238 1.24226
22 0.681292 2.04200 1.42512
23 0.684112 2.11825 1.28031
24 0.758166 1.99987 1.56155
25 0.743665 2.32452 1.60407
26 0.693574 2.41046 1.44347
27 0.736793 2.58145 1.77694
28 0.792216 2.04113 1.43327
29 0.614550 2.10103 1.45585
30 0.809554 2.08132 1.44341
31 0.653981 2.74453 1.67134
32 0.752188 1.82826 1.58565
33 0.565871 2.42817 1.60550
34 0.770760 2.31911 1.46999
35 0.814207 2.82099 1.29800
36 0.700153 1.94629 1.44925
37 0.806324 1.20027 1.67117
38 0.692245 1.81369 1.71283
39 0.685980 2.49119 1.40568
40 0.669079 2.17612 1.45356

 125

Table 49 (Continued)

 Problem No. 30 nodes
 M = 1-Trans M = 2-Trans M = 3-Trans

41 0.664582 1.94101 1.47494
42 0.713465 1.19268 1.52283
43 0.768011 2.23976 1.59509
44 0.816689 1.40311 1.49726
45 0.767572 2.53657 1.52682
46 0.675822 3.03326 1.35917
47 0.727608 2.14037 1.64341
48 0.578494 2.76309 1.46010
49 0.663782 2.58609 1.67452
50 0.826286 2.26860 1.63175

Average: 0.698812
StDev: 0.0730298
N: 50

Anderson-Darling Normality Test
A-Squared: 0.229
P-Value: 0.801

0.56 0.66 0.76 0.86

.001

.01

.05

.20

.50

.80

.95

.99

.999

P
ro

ba
bi

lit
y

m=1_Trans

Normal Probability Plot

Figure 27 The normal probability plot of Box-Cox transformation data of

 M = 1 from table 49

 126

Average: 2.21590
StDev: 0.418101
N: 50

Anderson-Darling Normality Test
A-Squared: 0.397
P-Value: 0.357

1.2 2.2 3.2

.001

.01

.05

.20

.50

.80

.95

.99

.999
P

ro
ba

bi
lit

y

m=2_Trans

Normal Probability Plot

Figure 28 The normal probability plot of Box-Cox transformation data of

 M = 2 from table 49

Average: 1.51092
StDev: 0.138970
N: 50

Anderson-Darling Normality Test
A-Squared: 0.370
P-Value: 0.412

1.2 1.3 1.4 1.5 1.6 1.7 1.8

.001

.01

.05

.20

.50

.80

.95

.99

.999

P
ro

ba
bi

lit
y

m=3_Trans

Normal Probability Plot

Figure 29 The normal probability plot of Box-Cox transformation data of

 M = 3 from table 49

The normal probability plots on figures 27, 28 and 29 show all transformed data sets

are normally distributed. According to this point, all data sets of table 49 on figures

27, 28 and 29 can be used to perform the hypothesis test by using regular statistic

methods. The ANOVA is used for analyzing the transformed data set of table 49 for 3

treatments, which are M = 1-Trans, M = 2-Trans and M = 3-Trans, (k = 3) and 50

 127

experiments (ni = 50 and N = 150), that implies the analysis of original data set. The

ANOVA table is shown as follows.

Table 50 The ANOVA table of the data set on table 49

Source of Sum of Degree of Mean F statistic

Variation Squares Freedom Squares (f0)

Treatment 57.63443 2 28.8172149 433.441717
Error 9.773242 147 0.06648464
Total 67.40767 149

If the type I error of α = 0.05 is specified, the result from the ANOVA table provides

the value of f0 = 433.441. From the statistical table of F distribution, the value of f 0.05,

v1, v2 of this ANOVA is f 0.05, 2, 147 = 3.057. The result of the ANOVA is f0 >f 0.05, 2, 147.

Therefore, the H0: µ M=1 = µ M=2 = µ M=3 (µ1 = µ2 = µ3)can be rejected (f0 >f 0.05, 2, 147)

and can conclude base on the inference statistics that the different number of AGVs

affects on the mean value of the running time of solving multi AGVsp-P/D.

The results show that the mean values of the running time of solving the multi

AGVsp-P/D with the different numbers of AGVs are not equal, at the type I error α =

0.05, because this heuristic solves the MTSP as solving the standard TSP with the

additional dummy rows and columns. According to this point, this heuristic can be

used to solve the multi AGVsp-P/D with the specific number of AGVs.

 128

5. The result of the heuristic of splitting the single TSP tour for solving

 the multi AGVsp-P/D

 From the previous section, when the number of AGVs is increased, the average

running time of solving multi AGVsp-P/D increases. If the larger problem of AGVsp-

P/D with a lot of AGVs (vehicles) is considered, it may take a lot of computational

time and memory to solve the problem. The large numbers of AGVs (M) may cause

the running out of memory of MATLAB 7.0. The heuristic of splitting the single TSP

tour is used for solving the lower bound solution of multi AGVsp-P/D. The lower

bound of multi AGVsp-P/D solutions is the sets of multi tours, not multi TSP tours.

The 30 simulated problems with 10 nodes, which consist of one job of 2 alternatives,

one job of 3 alternatives and 5 regular jobs are generated randomly for the cases of 2

AGVs (M =2). The solution of M TSP tours from solving the MTSP as the standard

TSP and the solutions of M tours from the heuristic of splitting a single TSP tour are

compare. The %Dev of the solutions from both methods is examined as follows.

 129

Table 51 The solutions of multi tours from the heuristic of splitting a TSP tour

 (Spliting TSP Heu) and the solutions of multi TSP tours from the heuristic of

 solving MTSP as a standard TSP(MTSP Heu)

No. MTSP Heu Spliting TSP Heu Dev %Dev
1 152 236 84 55.263
2 96 169 73 76.042
3 170 223 53 31.176
4 165 221 56 33.939
5 96 157 61 63.542
6 102 102 0 0.000
7 177 225 48 27.119
8 168 226 58 34.524
9 155 198 43 27.742

10 170 239 69 40.588
11 119 177 58 48.739
12 178 190 12 6.742
13 135 168 33 24.444
14 142 185 43 30.282
15 219 234 15 6.849
16 134 156 22 16.418
17 195 288 93 47.692
18 138 179 41 29.710
19 164 198 34 20.732
20 171 213 42 24.561
21 119 170 51 42.857
22 178 210 32 17.978
23 135 214 79 58.519
24 142 185 43 30.282
25 219 236 17 7.763
26 134 156 22 16.418
27 155 224 69 44.516
28 74 87 13 17.568
29 171 213 42 24.561
30 132 203 71 53.788

Table 52 The statistical summary of table 51

 MTSP Heu Spliting TSP Heu Dev %Dev
Mean 150.167 196.067 45.900 32.012
S.D. 34.097 40.914 23.307 18.251
Min 74.000 87.000 0.000 0.000
Max 219.000 288.000 93.000 76.042

 130

From the result, the splitting heuristic can be used to form the multi tours for M

AGVs from the single TSP tour of the single AGV. The % deviation of the splitting

TSP Heu and MTSP Heu solutions show that the solutions of Spliting TSP Heu

deviate so much, about 32% on the average, from the MTSP Heu, but the Spliting TSP

Heu can generate the feasible solution easily and quickly for the large AGVsp-P/D

systems with the large number of AGVs.

Results Analysis Based on the Tested Problem

This section presents the analysis of experimental results based on all results of

all tested problems. The analysis will be conducted following the sequences, which

are 1. analysis of the lower bound solution of AGVsp-P/D by integer programming, 2.

analysis of the lower bound solution of AGVsp-P/D by alternative selection heuristics,

3. analysis of results of solving the single TSP tour of the AGVsp-P/D by the modified

Eastman’s algorithm, and 4. analysis of results of solving the multi AGVsp-P/D.

1. Analysis of the lower bound solution of AGVsp-P/D by integer programming

 Recall table 32, it is the statistical summary of the running time in seconds of

the lower bound solution of the AGVsp-P/D and figure 6, which is the graph of table

32. The analysis of this section is based on the 40 generated problems. The result of

the average running time of all cases, which are assignment, 2Al-5 and 2Al-Max

problems, increases when the numbers of nodes are increased. The increasing in each

case is not linearly proportional to the number of nodes, which the trend is much more

rapidly increasing. The formulated 0-1 IP of the lower bound model can provide the

solution well but may required a lot of memory take too much time for the large

problem. Based on the experiment of 2Al-Max, the problem size of 50 nodes takes

50.12 seconds to run by MATLAB 7.0 on average, but for the 30 nodes problems

takes only 6.61 seconds. The increasing of the average running time grow rapidly,

because problems are 0-1 IP model that are solved by branch and bound approach.

More number of nodes means more variable to solve, which form more branching.

 131

When the problem is larger than 50 nodes, the average running time may increase

dramatically as same as the required memory, which is used to solve the problem. The

experiment did not go further more 50 nodes because the MATLAB 7.0 will give the

warning of “out of MEMORY” on the “bintprog” function.

 Another point of consideration is the number of alternative jobs. The research

does the testing on no-alternative jobs (the regular assignment problems), 2Al-5, and

2Al-Max. The graph in figure 6 shows that the number of alternative jobs affects so

much on the increasing of the average running time. Consider the problems of 50

nodes of the regular assignment problem, 2Al-5 (five pairs of alternative jobs and 40

normal jobs) and 2Al-Max (twenty five pairs of alternative jobs and no normal jobs)

the number of 2 alternative jobs is increased from 0 to 5 jobs and from 5 to 25 jobs.

The average running time is increased from 12.41 to 13.76 seconds and from 13.76 to

50.12 seconds. From the inference statistic, the result expresses the same conclusion

as the descriptive statistic, which is mentioned previously that the same size of

problem but with a different number of alternative jobs may provide the different

average running time. Because the lower bound model is solved by branch and bound

approach, more alternative numbers form more branching of alternative selections for

the same size of problems.

2. Analysis of the lower bound solution of AGVsp-P/D by alternative

 selection heuristics

 From table 37, the comparison of results of the % deviation (%Dev) of all

alternatives selection heuristics is analyzed. From the descriptive statistics show that

Heuristic-3 provides the minimum value of the %Dev on the average, standard

deviation of the %Dev and the maximum number of problems, which obtain the

heuristic solution the same as the IP solution. Considering the inference statistic, the

Kruskal-Wallis test shows that all heuristics do not perform differently in term of the

mean value of the % Dev. The results of testing shows that all heuristics can be used

equivalently, but the descriptive statistics shows that the Heuristic-3 is the most

efficient (based on table 37). Heuristic-3 provides better solutions than the others on

 132

the average but it is also the most complex approach. The %Dev is the main

consideration because the research wants to find the solutions from the alternative

selection heuristics as close as the IP solution of the same problem. The experiment

does not mention about the running time of all heuristics because all heuristics are not

the complicated algorithm and do not take many steps. When all heuristics are applied,

the main part of running time will be taken by running the assignment problem, not

from the methods of alternative selection from heuristics. It can conclude that all

heuristics can provide the solutions close to IP solutions by solving the regular

assignment problems that it is efficiently for the large problem.

There are some cases having too much %Dev and the research attempts to test

the heuristic for improving the alternative selection heuristics. The research applies

the alternative selection improvement heuristic to all alternative selection heuristics

and considers the improvement of the reduction of the %Dev. The results show that

all cases can provide the heuristic solution same as the IP solution after applying the

alternative selection improvement heuristic to the initial solution from alternative

selection heuristics, but different number of iterations. The improvement heuristic is

the searching heuristic so that some cases may search all possible alternatives. If the

initial solution is not the optimum, this heuristic can provides the better solution

exactly.

3. Analysis of results of solving the single TSP tour of the AGVsp-P/D

 by the modified Eastman’s algorithm

 When the modified Eastman’s algorithm is applied to the lower bound

solutions of the AGVsp-P/D, the assignment solutions become the TSP tours. This

searching procedure is the branch and bound approach so that the running time

increases dramatically when the problem size is increased because the 0-1 IP

subproblems are solved for all branches. The objective of this experiment is the

modified Eastman’s algorithm. The research shows that this algorithm performs well

but takes quite a lot of computation time and required memory for solving the AGVsp-

P/D using MATLAB 7.0.

 133

Now the research found the TSP tour solutions for the AGVsp-P/D by solving

the 0-1 IP subproblem with the modified Eastman’s algorithm for the TSP. Table 42

and figure 20 show that the average running time of the 50 nodes problem is 688.79

seconds. This result leads to the conclusion that the average running time will grow

dramatically and not linear proportion when the number of nodes is inceased.

4. Analysis of the results from solving the multi AGVsp-P/D

This analysis focuses the effect of the running time, when the additional AGVs

are added to the system of the AGVsp-PD. Let’s consider the results on table 51 and

52, the ANOVA of the experiment and the descriptive statistic show that the

increasing of the number of AGVs affects on the average running time that consider

only the calculation time. The average running time of 10 nodes AGVsp-P/D

increases about 0.3 seconds when the number of AGVs is increased from 2 AGVs to 3

AGVs, but when the 30 node problems are considered, the running time will be

increased about 5 seconds. This algorithm performs adding one node to the problem

when one additional AGV is added. The MTSP can be solved as the standard TSP of

the problem with some additional nodes. The running time of solving the MTSP does

not increase much compared to solving the TSP of same problem size. It can say that

this algorithm performs well on solving multi AGVsp-P/D and provides the solution,

which is the set of TSP tours. If the problem is very large and uses a lot of AGVs, the

heuristic of splitting the single TSP tour may be used appropriately. The solution of

the multi AGVsp-P/D in the form of multi tours, not multi TSP tours, may suitable for

the large manufacturing system.

 134

Discussions

Based on research results, this research accomplishes all research objectives,

which are studying the problem of single/multi AGVsp-P/D, developing the

algorithms to solve the problem and creating some computer programs for solving

single/multi AGVsp-P/D for testing the quality of the model. This section discusses

many issues such as the weaknesses of all algorithms of this research on the objective

s perspective, real world applications of AGVsp-P/D and difficulties on the

implementation of AGVsp-P/D model.

1. Problem of Single/Multi AGVsp-P/D

This AGVsp-P/D is a special case of TSP in both cases of single and

multisalesman. Bases on literature search results, there are not shown any literature

that explains about the TSP with the special structure of alternative P/D nodes. The

research generated the mathematical model for the AGVsp-P/D in the form of

modified TSP/MTSP. The generated model can provide a solution in the form of the

schedule of jobs for the AGV with alternative selection nodes but this model does not

consider many constraints in the real world. The assumptions of the static job list and

fixed plaint layout make the model inflexible for some kinds of product layout

manufacturing. Many manufacturing process concepts such as “just in time” or lean

system may produce response to the changing of demand by minimizing the stock.

This AGV system that cannot support the dynamic demand provides a poor solution in

a real production system. Therefore, the research model appropriates for applying to

the manufacturing layout in which the product items do different steps in different

departments with static environments. Another issue is about the problem size. The

generated AGV system in the form of the 0-1 IP lower bound model with modified

Eastman’s algorithm may take too much time for implementing in the real world

situations because of the size of problem. Although the model can provide the

solutions well, on average, they are suitable for problems of static layout that are not

larger than 50 nodes.

 135

2. The weakness of the model of AGVsp-P/D

There are two weaknesses of the formulated model of AGVsp-P/D, which are

1. problem size and 2. computation time.

 The first weakness is the problem size. The current approach uses the 0-1 IP

approach for forming the mathematical model of AGVsp-P/D. The research creates

the heuristics to support the larger problem size. However, the result still illustrates

preferences of the IP model because of the obtained solution quality. The branch and

bound is used to solve the TSP tour of the AGVsp-P/D by using modified Eastman’s

algorithm. Generally, branch and bound approach is an exhaustive search that is used

to solve the 0-1 IP. The research use MATLAB 7.0 that has the function to solve the

0-1 IP. This software can provide a stable running condition up to about 50 nodes for

this research model. Because of the nature of 0-1 IP, the problem takes a lot of

memory for computing on MATLAB 7.0, which is limited on the regular personal

computer with 2 GB RAM. This research uses MATLAB 7.0 because it provides the

flexibility to program and can run automatically through the algorithms. For future

improvement, because the bintprog function of solving 0-1 IP is the main consuming

of required memory, the way to program the model of AGVsp-P/D should be changed

by improving the program structure of solving the 0-1 IP without using the binprog

function to avoid the “out of MEMORY” for extending to support the larger problems.

The second weakness is about the computation time. The combinatorial nature

of the TSP/MTSP affects on the computation time of the problem obviously. Because

the generated model of the AGVsp-P/D is a special case of the TSP, the increasing of

running time is not the polynomial function, exactly. From the results, the model

takes about 10 minutes, on the average, to solve 50 nodes for the TSP solution of the

AGVsp-P/D. For the real implementation, the software for programming the AGVsp-

P/D may be much more powerful than MATLAB 7.0. The average running time may

be improved by reprogramming the model on the other software.

 136

3. The application of AGVsp-P/D

In some applications of the regular AGV systems, only few numbers of

vehicles and jobs are involved. The aim of the regular AGV scheduling is to dispatch

a set of AGVs to achieve the goals for a batch of pick up and delivery jobs under the

certain constraints such as batch size, deadlines, priority and etc. The goals are

normally related to the processing time or utilization of resources, such as minimizing

the total traveling time or distance of all vehicles. Qiu and Hsu (2002) proposed the

survey paper of the AGV scheduling. The paper showed that most of current AGV

system uses simple scheduling algorithms. Jobs are usually handled in a first-come-

first-serve (FCFS) fashion, and the nearest idle vehicle is usually chosen to serve a

next job. When the problem of scheduling of AGVs in the real manufacturing situation

is different from the conventional path problem such as this AGVsp-P/D, the AGV

systems still operate under the human monitoring and decision making, not exactly

automatic.

The AGVsp-P/D model is developed directly under the real manufacturing

application that is automated materials handling systems. For example, the AGV

starts at the recharging depot then goes to pick up its first job at some process station,

such as pick up the items from a drilling station, and goes to deliver the items at some

process station, such as a milling station. Because the factory may have many milling

stations, the AGV has to select the appropriate milling station for minimizing the total

traveling distance. Askin and Standridge (1993) illustrated some examples of

applications of the AGV system. Many real world applications descried below are the

versatilities, which the AGVsp-P/D system can be applied to solve the problem.

 3.1. Satellite signal transferring

 Consider the signal transferring systems, the signal is sent from the ground

station to the satellite and comes back to the station. The signal is generated from the

main controller device and transferred to the ground transition posts having multiple

routers. Next, the signal will being into one router that transfers the signal to the next

 137

nearest ground transition post until be transferred reaching the satellite transition

station of the specific satellite. Then, the signal is sent to the satellite to operate the

equipments and backs to the main controller device. On the path of signal traveling,

there are so many posts and routers to choose in the transferring system. The first-

come-first-serve (FCFS) fashion, and the nearest idle router may be usually chosen to

serve a transferring, but it may not provides good efficiency. According to this

problem structure, the AGVsp-P/D can be applied to the signal transferring problems.

3.2. Circuit board wiring

 This kind of problem appears normally in the design of any wiring such as

the car’s computers and the other digital systems. A system consists of the numbers of

modules and several pins that are located on each module. A given set of pins has to

be connected by the wire. Some modules, which have sever common pins such as a

ground pin, have alternative pins to be selected for connecting to other modules in the

circuit. In order to avoid the signal crossing and to minimize the length of wire, the

AGVsp-P/D model can be applied to this problem also.

3.3. Messenger scheduling

 The following type of problem occurs repeatedly in the decision making

process of the messengers, for example in a financial agent. The messenger job is

similar to the AGV job that starts at the office and goes to pick up the financial

documents, such as the checks or cash, from one customer and deliver them to the

specific bank (or post office) and goes to the next customer until all customers are

served then goes back to the office. There are so many banks for serving the customer

needs, for example the messenger has to go to deliver the checks of one customer to

KBank. There are many KBanks that messenger can select to deliver the documents

and then goes to the next job. It is similar to the AGVsp-P/D model. A simulated

example of this application is showed in an appendix.

 138

4. The difficulty on the implementation of the AGVsp-P/D model

The first difficulty is concerned with how the user can apply the model of

AGVsp-P/D to solve the real world situation. The research is created based on many

assumptions that make it possible for solving by some mathematical approaches. The

research does the AGVsp-P/D model with specific kinds of variables and many

constraints, because the research want to capture the real world situation as much as

possible, but there are many real world situations that hard to be formed into the

mathematical model. For example, some real conditions that are the AGVs speed, the

pick up and delivery period, the traffic jam conditions or the maintenance activities are

not considered in this research. When the model is implemented, the obtained

solutions should be adjusted to avoid the infeasible implementation. The suitable set

up of the material handling system should be considered concomitantly with

implementing the AGVsp-P/D system.

Secondly, based on the result of the tested problems of the multi AGVsp-P/D,

when the additional AGVs are added to the problem, the running time is increased but

not much. However, the research does not consider the cost of additional AGVs. The

model considers solving the problem by minimizing the total traveling distance with

the specific numbers of AGVs, but without considers the operating cost, which is an

important factor in the real world situation. Users should conduct the trade off

analysis between the optimum solutions and the appropriate implementation

conditions.

 139

CONCLUSION AND RECOMMENDATION

Conclusion

In this research, the mathematical model of the AGVsp-P/D and the relaxation

model which is the assignment problem with alternative P/D nodes are proposed with

the solving approaches by integer linear programming, Benders’decomposition and

both constructive and improvement heuristics. The assignment problem with

alternative P/D nodes is solved for finding the lower bound of the AGVsp-P/D. This

study is conducted because the assignment problem is the subproblem that has to be

solved in all iterations of solving the TSP/MTSP by a branch and bound approach.

This research creates a knowledge base for studying the TSP/MTSP with alternative

nodes that cab be applied for solving the AGVsp-P/D.

 The assignment problem with alternative P/D nodes has a special structure that

is different from the original assignment problem and cannot be solved by the

traditional solving approach of the original assignment problem. This special structure

creates an effect on the unimodular property of the assignment problem, which the 0-1

IP model of original assignment problem can be solved as a regular linear

programming without concerning the 0-1 integer constraints. When the alternative P/D

nodes constraints are added, the model will lose the unimodular property. The

research creates a new mathematical model for formulating the assignment problem

with alternative P/D nodes, which is the lower bound of AGVsp-P/D by modifying the

original assignment problem structure. The created model is still the 0-1 IP, look like

the assignment problem, and can be solved by using branch and bound approach that

can be programmed on MATLAB 7.0 for solving the problem. The procedure of

solving 0-1 IP requires a lot of memory to run on MATLAB 7.0 and makes the

program cannot solve the lower bound of AGVsp-P/D beyond 50 nodes, because

MATLAB 7.0 shows “out of MEMORY” for solving the binary problem using the

“bintprog” function.

 140

For solving larger problem size, the research creates the heuristics for solving

the lower bound of the AGVsp-P/D without solving the created 0-1 IP model, but

solving the linear programming or the regular assignment problem with some heuristic

methods. Benders’decomposition approach is applied to solve the lower bound model

of AGVsp-P/D. The created algorithm of solving the lower bound of AGVsp-P/D by

Benders’decomposition is a complicate procedure and still solving the 0-1 IP in the

Benders partial mater problem, but the problem sizes of the 0-1 IP is smaller than the

direct method. This method can be use to solve the lower bound of the AGVsp-P/D,

which larger than 50 nodes. Then, the research attempts to create other heuristics

without solving the 0-1 IP model. The created heuristics consist of three alternatives

selection heuristics and one alternative selection improvement heuristic. All

alternatives selection heuristics are the constructive heuristic methods that can

provides the initial solution of assignment problem with alternative P/D nodes, which

is the initial lower bound then, the initial solution is improve by the alternative

selection improvement heuristic that can provide the improved solutions, which is the

better lower bound solution of the AGVsp-P/D.

After that the modified Eastman’s algorithm for TSP is applied to the lower

bound solution of the AGVsp-P/D, which can provide the single TSP tour for the cases

of single AGVsp-P/D. Finally, the heuristics for solving the multi AGVsp-P/D are

created by using the TSP tours solution. Two heuristics that are the heuristic of

solving the MTSP as the standard TSP and the heuristic of solving multi tours from

splitting a single TSP tour are compared to show that the heuristic of solving the

MTSP as the standard TSP can provide the solution of multi TSP tours with less total

tour distance than the solution of multi tours from the heuristic of splitting a single

TSP. The advantage of the heuristic of splitting a single TSP is that the heuristic can

provide the feasible solution quickly for a larger problem size that the heuristic of

solving the MTSP as the standard TSP cannot run on MATLAB 7.0.

The simulated problem is generated to verify and validate the quality of the

AGVsp-P/D model by using MATLAB 7.0. All results from experiments are analyzed

by statistical methods with type I error α = 0.05. The results of average running time

 141

of solving the lower bound model of AGVsp-P/D with different size levels of problem

using the 0-1 IP model are analyzed using statistical methods. The conclusion is that

the averaging running time increases when the number of node is increased. The

experiments of solving the lower bound model of AGVsp-P/D using three alternatives

selection heuristics and alternative selection improvement heuristic focuses on the

%Dev of heuristic solutions from IP solutions. The statistical analysis results show

that all three created heuristics provide not different on the mean value of the %Dev of

heuristic solutions from IP solutions, which imply all heuristics can by used to solve

the lower bound solution of AGVsp-P/D equivalently. When the modified Eastman’s

algorithm for TSP is applied to the lower bound solution of the AGVsp-P/D, the result

is the TSP tour solution of AGVsp-P/D. The average running time of 50 nodes

problem is about 688 seconds. For multi AGVsp-P/D cases, the average running time

of solving the problem using the heuristic of solving MTSP as the standard TSP of 30

nodes problem with 3 AGVs is about 50 seconds. The statistical analysis shows that

the average running time is increased not much when one AGV is added to the system,

but it is significant at the type I error α = 0.05. When the heuristic of splitting a single

TSP tour for multi tours of the multi AGVsp-P/D is applied, the average %Dev of this

heuristic solutions and the heuristic of solving MTSP as the standard TSP solutions is

about 32%. The heuristic of splitting a single TSP tour provided much %Dev of the

solution but it can provide the solution quickly for the larger size of AGVsp-P/D.

According to this point, all solutions and analysis results from all simulated problems

satisfy all model constraints, can provide the solution of AGVsp-P/D and can be

applied to use in the real situations.

 142

Recommendation

The AGVsp-P/D model is formulated by applying the TSP approach that the

created model is the 0-1 IP model. This research conducts the study and analysis to

create the knowledge bases of AGV problem with some special structure. The created

model attempts to capture the structure of alternative P/D nodes, but ignore many real

world constraints so that the model may feasible for some real applications by relaxing

unconsidered constraints, but may not feasible for many cases. This model is suitable

for the fixed layout of traveling path, fixed job list and constant AGV speed that are

not compatible with many real flexible manufacturing systems. The implementations

of this created AGVsp-P/D model will success when the obtained solutions should be

adjusted to handle the realistic situations.

The objective of the single/multi AGVsp-P/D is to minimize the total traveling

distance, which is total tour/tours length. When the multi AGVsp-P/D cases are

considered, the obtained solutions are the route of multi TSP tours, which is the

minimum total traveling distance, but not balance the length of each TSP tour. For the

real situation, if the additional AGVs are supplied to the system, all AGVs should be

utilized equivalently because the additional AGV make the increasing of operating

cost. For example, the solution may provide two TSP tour for 10 nodes problem with

2 AGVs that consists of one TSP tour of seven nodes and another TSP tour of three

nodes. One AGV may still running, but another AGV is already finished and

becomes the unutilized at the same period time. For the suitable implementation, all

AGVs should be scheduled and utilized equivalently. The solution of multi AGVsp-

P/D provides the minimum total traveling distance, but not provides the maximum

AGV utilization and the minimum operating cost that is the most important issue in

any real world situations. When the multi AGVsp-P/D model is implementing to the

real manufacturing or applications, the obtained solutions should be analyzed and

concerned about the operating cost. All considered AGVs should be utilized as

equivalent as possible. The obtained solutions from solving the AGVsp-P/D should

conduct the trade-off analysis between the minimum total traveling distance and the

minimum operating cost.

 143

The problem of the single/multi AGVsp-P/D with 50 nodes can be solved by

MATLAB 7.0 on a personal computer with 2 GB RAM, but the research found that

most of problems having more than 50 nodes cause MATLAB 7.0 to be “out of

MEMORY” in solving the 0-1 IP. The model works well for solving single/multi

AGVsp-P/D with fewer nodes. If the larger problem sizes are considered, the

heuristics of alternative selection and improvement or Benders’ decomposition

approach should be applied.

From the limitation previously, the future research should extend to cover more

realistic situation for more accuracy and reality of the obtained solution. The other

solving approaches should be considered instead of branch and bound approach. The

cost of operation and the dynamic job list constraints should be studied. The

researcher believes that this research can be modified to cover the more realistic

events and can still be solved under some mathematical approaches.

 144

LITERATURE CITED

Ahuja, R.K., T.L. Magnanti and J.B. Orlin. 1993. Network Flows: Theory,

Algorithms, and Applications. Prentice-Hall International, Inc., New

Jersey.

Askin, R. G. and C. R. Standridge. 1993. Modeling and Analysis of Manufacturing

Systems. John Wiley and Sons, Inc., New York.

Bellmore, M. and S. Hong. 1974. Transformation of the multisalesmen problem to

the standard traveling salesman problem. J. Assoc. Comput. Mach. 21:

500-504.

Bellmore, M. and G.L. Nemhauser. 1968. The traveling salesman problem: A survey.

Oper. Res. 16: 538-558.

Benders, J.F. 1962. Partitioning procedure for solving mixed-variable programming

problems. Numer. Math. 4: 238-252.

Blair, E.L., P. Charnsethikul and A. Vasques. 1987. Optimal routing of driverless

vehicles to support flexible manufacturing. Material Flow. 4: 73-83.

Charnsethikul, P. 1993. The multi-traveling salesman problem with balancing criteria.

Thai Journal of Development Administration 33: 217-229.

Chartrand, G. and O.R. Oellerman. 1993. Applied and Algorithmic Graph Theory.

McGraw-Hill, Inc., New York.

Clarke, G. and J.W. Wright. 1964. Scheduling of vehicles from a central depot to a

number of delivery points. Oper. Res. 12: 568-581.

 145

Claus, A. 1984. A new formulation for the traveling salesman problem. SIAM J.

Alg. Disc. Math. 5: 21-25.

Dantzig, G.B., D.R. Fulkerson and S.M. Johnson. 1954. Solution of a large-scale

traveling salesman problem. Oper. Res. 2: 393-410.

Dantzig, G.B., D.R. Fulkerson and S.M. Johnson. 1959. On a linear-programming,

combinatorial approach to the traveling salesman problem. Oper. Res. 7:

58-66.

Dantzig, G.B. and J.H. Ramser. 1959. The truck dispatching problem. Management

Sci. 6: 80-91.

Eastman, W.L. 1958. Linear Programming with Pattern Constraints. Ph.D.

Thesis, Harvard University.

Egbelu, P.J. 1986. Pull versus push strategy for automated guided vehicle load

movement in a batch manufacturing system. J. Manu. Sys. 6: 209-220.

Egbelu, P.J. 1987. The use of non-simulation approach in estimating vehicle

requirements in an automated guided vehicle based transport system.

Material Flow 4: 4-16.

Egbelu, P.J. and J.M.A. Tanchoco. 1984. Characterizations of automated guided

vehicle dispatching rules. Int. J. Prod. Res. 22: 359-374.

Gaskins, R.J. and J.M.A. Tanchoco. 1987. Flow path design for automated guided

vehicle systems. Int. J. Prod. Res. 25: 667-676.

Gavish, B. and S.C. Graves. 1987. The Traveling Salesman Problem and Related

Problems. Working Paper OR-078-78. Operations Research Center, MIT.

 146

Gillete, B.E. 1976. Introduction to Operations Research. McGraw-Hill, Inc., New

York.

Hamilton, W.R. 1856. Memorandum respecting a new system of roots of unity (The

Icosian Calculus). Philos. Mag. 12: 446.

Kaspi, M., U. Kesselman and J.M.A. Tanchoco 2002. Optimal solution for the flow

path design problem of a balance unidirectional AGV system. Int. J. Prod.

Res. 40: 389-401.

Kaspi, M. and J.M.A. Tanchoco 1990. Optimal flow path design of unidirectional

AGV systems. Int. J. Prod. Res. 28: 1023-1030.

Kirkman, T.P. 1856. On the representation of polyhedral. Philos. Trans. Roy. Soc.

London Ser. A. 146: 413-418.

Koff, G.A. 1987. Automated guided vehicle systems: Applications, controls and

planning. Material Flow 4: 3-16.

Laporte, G. 1997. Modeling and solving several classes of arc routing problems as

traveling salesman problems. Comput. Oper. Res. 24: 1057-1061.

Lawler, E.L., J.K. Lenstra, A.H.G. R. Kan and D.B. Shmoys. 1995. The Traveling

Salesman Problem. John Wiley and Sons, Inc., Chichester.

Lin, S. and B.W. Kernighan 1973. An effective heuristic algorithm for the traveling

salesman problem. Oper. Res. 21: 498-516.

Little, J.D.C., K.G. Murty, D.W. Sweeney and C. Karel. 1963. An algorithm for the

traveling salesman problem. Oper. Res. 11: 972-989.

 147

Maxwell, W.L. 1981. Solving material handling design problems with OR.

Industrial Engineering 4: 58-69.

Maxwell, W.L. and J. A. Muckstadt. 1982. Design of automated guided vehicle

systems. IIE Transactions. 14: 114-124.

Miller, C.E., A.W. Tucker and R.A. Zemlin. 1960. Integer programming formulation

of traveling salesman problems. J. Assoc. Comput. Mach. 7: 326-329.

Montgomery, D. C. and G. C. Runger. 2002. Applied Statistics and Probability for

Engineers. 4th ed. John Wiley and Sons, Inc., New York.

Orloff, C.S. 1974. A fundamental problem in vehicle routing. Networks 4: 35-64.

Orman, A.J. and H.P. Williams. 2004. A Survey Report of Different Integer

Programming Formulations of the Traveling Salesman Problem.

Working Paper No. LSEOR 04.67. London School of Economics and

Political Science, London.

Padberg, M. and T.Y. Sung. 1991. An analysis comparison of different formulations

of the traveling salesman problems. Math. Programming 52: 315-352.

Shapiro, D.M. 1966. Algorithm for the Solution of the Optimal Cost and

 Bottleneck Traveling Salesman Problems, Sc.D. Thesis, Washington

 University.

Svestka, J. A. and V. E. Huckfeldt 1973. Computational experience with an m-

salesman traveling salesman algorithm. Management Sci. 19: 790-799.

Tanchoco, J.M.A. and C.L. Moodie. 1987. Automated guided vehicle systems:

Special issue. Material Flow 4: 1-126.

 148

APPENDIX

 149

This part shows some simulated examples that can help to understand some

content of this research. There are two examples, the example of lower bound of

AGVsp-P/D by Benders’ decomposition approach, and the example of application of

AGVsp-P/D that are shown as follows.

1. The example of solving the lower bound of the AGVsp-P/D

 by the Benders’decomposition approach

Refer to the result section of solving the lower bound of the AGVsp-P/D by

integer programming, most of problems which have more than 50 nodes causes

MATLAB 7.0 out of memory in calculation of binary problems but the

Benders’decomposition approach can be applied for a larger problem that the direct

solving method using branch and bound on MATLAB 7.0 can not generate solutions.

Let consider the generated problem of 60 nodes with 60 of variables Z that are

55 regular jobs, one of the 2 alternatives job and one of the 3 alternatives job. The

distance matrix of 60 nodes problem can be shown as follows.

Columns 1 through 10

∞ 54 85 16 71 74 19 61 2 88

26 ∞ 66 46 29 34 91 64 12 52

52 91 ∞ 29 47 13 82 80 43 41

29 47 61 ∞ 43 87 33 94 57 39

33 61 56 88 ∞ 58 87 56 29 1

23 18 86 97 93 ∞ 24 96 51 15

39 86 75 99 28 68 ∞ 13 57 41

 3 64 27 71 97 65 81 ∞ 92 47

30 79 85 17 76 91 49 80 ∞ 10

78 3 40 90 33 91 68 94 85 ∞

11 60 43 43 63 59 33 21 44 27

96 64 40 49 93 52 45 80 53 68

30 34 79 13 85 57 14 8 51 36

 150

 9 15 45 75 61 13 30 41 64 83

52 39 46 25 98 42 32 75 64 29

51 23 73 6 46 13 92 62 49 57

71 60 69 91 31 70 7 86 71 87

 1 76 27 23 55 82 4 53 95 71

69 12 74 29 5 9 69 26 71 93

98 98 7 4 31 31 58 60 46 26

73 71 90 10 1 71 76 94 7 88

17 18 32 19 68 43 29 7 95 67

48 90 11 68 83 23 24 82 27 69

 4 14 85 28 83 29 91 83 52 86

31 40 29 91 67 35 75 64 3 76

57 40 89 77 43 34 91 89 82 15

18 33 23 30 28 37 45 38 25 20

86 60 66 41 46 93 49 48 75 65

 0 45 65 65 99 94 18 79 1 10

67 30 10 66 34 91 22 52 98 84

75 52 7 79 45 14 26 6 34 48

74 93 21 4 28 40 45 84 14 96

45 75 84 56 37 4 2 16 24 76

95 45 69 56 96 69 83 65 48 37

41 87 63 36 53 2 95 74 16 86

 5 63 70 38 77 2 66 36 13 63

46 24 57 8 22 78 93 92 35 88

67 19 31 64 64 47 20 79 81 16

49 91 94 26 62 48 10 12 57 53

39 73 60 4 13 47 34 33 15 95

33 91 2 2 90 16 82 79 14 55

57 37 29 83 12 32 61 76 42 60

93 58 66 91 94 71 42 73 49 40

73 22 60 48 44 47 25 89 85 45

 6 8 96 52 0 87 71 17 97 13

 151

67 38 82 81 74 58 58 36 1 4

27 23 4 76 4 45 32 98 97 4

85 75 26 66 85 83 2 80 53 31

63 48 7 97 65 82 88 81 32 59

93 51 22 68 94 77 66 70 3 83

 5 42 82 22 87 58 78 58 3 85

97 43 23 75 38 49 64 9 93 17

41 41 60 11 74 68 48 3 21 15

71 52 69 52 22 76 24 20 12 77

44 97 44 80 29 52 61 54 25 59

90 91 26 57 87 29 35 24 99 18

86 98 41 94 32 77 38 20 95 73

50 27 54 45 27 34 12 78 52 73

50 36 41 55 20 32 24 26 86 96

46 65 37 18 45 5 44 30 78 50

Columns 11 through 20

13 65 27 17 35 59 14 32 35 91

91 83 18 8 50 71 58 31 76 51

13 46 59 77 26 16 71 56 57 33

15 28 75 50 67 19 10 24 81 39

79 38 28 98 52 35 45 93 19 36

51 79 15 50 68 91 58 98 50 79

 6 78 13 7 46 44 91 69 78 26

10 18 45 14 81 74 33 97 67 77

 3 58 81 74 12 63 11 97 57 14

47 38 24 59 83 65 65 74 9 9

 ∞ 12 73 84 97 61 55 59 88 93

 98 ∞ 48 32 83 8 84 75 30 76

 44 33 ∞ 28 9 93 58 66 42 8

 36 13 89 ∞ 54 97 46 57 43 27

 40 89 30 66 ∞ 68 73 19 68 12

 152

 98 5 49 10 31 ∞ 71 34 84 33

 50 69 74 30 51 45 ∞ 52 15 94

 4 2 21 9 32 3 97 ∞ 74 56

 5 33 34 62 55 25 48 37 ∞ 27

 4 53 24 54 52 85 7 12 98 ∞

 89 73 48 11 89 92 80 64 67 19

 47 70 95 18 44 53 33 5 40 34

 9 32 67 36 49 60 60 98 37 90

 96 76 85 69 69 52 0 72 73 88

 26 96 71 33 76 49 45 62 2 64

 57 35 57 92 88 75 44 34 7 84

 97 89 43 65 12 20 70 75 97 11

 94 5 72 59 33 1 29 98 45 31

 40 97 17 24 84 83 17 18 98 95

 87 32 17 61 77 18 48 58 56 59

 53 28 86 56 88 64 67 26 94 62

 84 59 92 7 50 47 2 53 24 82

 25 88 21 93 69 1 51 74 37 50

 32 55 78 84 51 50 13 14 26 31

 22 17 12 56 88 40 8 87 12 93

 58 55 53 15 2 92 74 13 49 81

 80 65 12 70 73 3 59 50 39 98

 64 59 10 46 8 58 24 19 99 28

 84 54 70 58 52 95 1 61 24 92

 72 42 63 24 82 0 43 10 26 11

 74 34 72 33 40 39 93 40 28 86

 69 8 98 91 79 44 49 13 30 59

 59 77 92 32 83 84 68 84 53 17

 28 64 19 78 48 71 75 97 12 83

 22 71 10 59 77 48 82 98 41 51

 16 43 35 98 14 34 2 76 9 7

 71 6 76 95 18 65 76 68 38 40

 153

 12 8 39 98 15 50 32 70 85 11

 67 70 88 74 13 36 75 31 35 24

 41 11 70 88 36 37 92 82 51 13

 33 59 10 3 55 79 64 13 83 88

 69 82 33 79 3 9 65 43 50 54

 8 32 2 78 20 54 81 49 7 62

 89 66 66 44 79 56 90 28 35 65

 22 10 26 62 51 56 73 79 97 98

 1 1 63 47 59 55 83 25 12 47

 48 64 67 74 75 95 82 27 97 24

 43 93 78 36 7 87 97 86 13 21

 67 32 46 45 85 2 56 16 0 71

 16 61 27 75 38 7 81 45 69 68

Columns 21 through 30

67 56 76 19 0 4 62 9 95 38

72 49 41 29 23 83 22 46 91 65

76 73 83 3 41 7 5 56 14 60

21 8 16 97 48 94 12 66 81 41

 8 4 48 84 26 22 25 16 33 80

63 14 98 77 93 15 70 32 60 23

31 85 77 13 62 43 91 97 29 75

43 76 25 50 70 1 19 58 82 25

39 79 38 39 58 20 95 23 22 83

90 77 15 11 22 71 34 23 65 26

81 14 72 96 77 22 69 71 15 33

65 31 65 38 33 1 47 79 46 52

17 15 23 73 84 77 50 95 40 55

42 3 9 89 39 44 88 72 45 81

95 10 45 94 4 47 88 22 65 52

22 26 76 89 57 28 23 80 42 60

80 18 97 93 0 4 30 40 43 92

 154

87 11 29 95 80 79 45 1 7 12

84 13 95 96 28 17 83 81 46 55

97 56 86 84 38 81 34 72 24 3

 ∞ 43 30 22 57 62 27 74 13 84

 4 ∞ 12 88 92 31 98 48 28 56

 60 80 ∞ 37 65 48 83 66 91 28

 32 50 35 ∞ 91 24 77 62 96 97

 51 97 22 6 ∞ 31 8 4 6 28

 23 79 25 3 96 ∞ 67 38 3 41

 39 11 87 86 96 10 ∞ 3 94 81

 92 48 22 53 11 12 15 ∞ 53 27

 40 25 33 79 42 90 88 77 ∞ 50

 33 27 31 68 80 67 83 79 95 ∞

 70 42 34 1 45 65 33 16 58 37

 75 53 29 69 93 84 73 41 16 30

 9 32 22 14 40 58 59 74 93 26

 73 24 70 88 54 79 82 71 59 73

 2 26 37 11 96 94 8 71 67 3

 18 36 70 34 40 73 20 77 15 45

 28 5 15 46 73 64 72 51 76 95

 76 88 82 33 65 15 47 95 0 92

 95 97 43 18 89 5 16 11 3 51

 17 77 55 1 59 79 21 55 96 24

 14 18 2 90 64 56 27 98 76 32

 9 2 43 51 95 48 61 45 53 88

 0 34 13 1 15 67 39 21 74 67

 88 40 14 62 80 79 24 44 26 65

 42 47 55 92 83 86 47 39 86 81

 57 14 90 68 7 97 27 66 98 8

 45 82 45 33 51 52 4 71 42 65

 17 88 51 64 22 89 65 56 46 98

 60 61 21 62 67 20 89 57 30 32

 155

 92 29 15 57 61 86 67 74 83 32

 96 64 54 68 5 50 48 58 11 16

 61 73 93 41 47 31 93 47 18 26

 66 65 33 90 16 67 78 23 13 48

 97 96 51 74 39 3 25 73 8 82

 79 67 75 81 55 7 10 15 86 36

 29 63 59 56 2 92 20 77 82 90

 50 26 63 54 15 98 15 91 93 64

 95 43 8 89 53 50 48 65 9 75

 54 9 32 8 77 20 29 43 49 73

 71 9 50 61 90 90 74 82 89 98

 Columns 31 through 40

 8 82 63 35 36 11 40 90 10 60

 53 19 45 62 64 37 58 50 86 18

 20 12 40 7 97 57 1 68 81 86

 12 16 34 73 35 11 12 71 74 11

 56 68 74 21 81 32 46 34 69 97

 58 85 51 3 51 48 74 48 6 49

 98 9 78 35 70 13 23 39 76 97

 66 62 63 11 78 9 33 84 94 20

 72 88 50 45 86 27 89 14 38 42

 45 64 18 46 53 61 41 41 67 92

 20 3 37 72 36 98 49 45 57 93

 0 24 8 99 93 98 63 9 97 13

 40 19 24 92 11 1 14 46 9 31

 63 83 20 80 91 74 36 2 91 11

 48 76 48 78 36 22 80 92 77 62

 50 9 57 61 70 33 60 63 17 37

 35 39 74 9 49 69 44 3 71 26

 31 17 10 3 36 1 57 91 20 92

 70 45 32 72 25 8 94 23 23 15

 156

 53 86 75 41 80 9 57 74 39 67

 51 19 25 34 33 3 87 83 33 89

 7 57 62 67 4 91 2 7 29 70

 80 42 67 66 93 96 63 18 18 65

 17 77 13 1 79 13 10 86 91 55

 18 9 33 5 32 4 57 5 10 12

 41 36 72 50 29 27 78 84 50 79

 27 89 1 53 21 77 52 85 78 54

 88 18 1 11 91 71 57 90 8 26

 8 15 61 17 61 91 18 47 79 48

 0 53 62 11 69 51 1 24 21 88

 ∞ 42 72 83 35 52 10 93 72 51

 21 ∞ 73 48 97 71 23 2 75 57

 92 34 ∞ 48 10 5 28 73 60 60

 65 96 92 ∞ 15 48 30 49 9 17

 72 51 1 98 ∞ 84 2 94 63 72

 11 81 18 58 24 ∞ 26 68 42 82

 28 41 71 18 46 69 ∞ 90 50 68

 69 97 26 35 52 79 43 ∞ 82 85

 75 51 23 58 24 48 62 24 ∞ 75

 46 69 93 9 38 88 18 97 65 ∞

 27 12 75 76 43 75 74 56 11 21

 34 58 95 19 30 20 87 72 77 89

 59 43 29 2 40 56 71 59 93 32

 97 26 91 8 13 53 74 96 68 12

 77 78 68 76 42 7 96 46 57 37

 30 18 89 92 49 94 12 44 15 10

 95 47 67 12 69 32 82 78 79 98

 65 22 91 72 50 4 75 57 95 92

 54 28 17 81 27 63 10 68 67 82

 96 27 3 68 78 64 72 38 66 79

 45 92 70 86 36 86 50 95 95 48

 157

 61 96 30 67 85 51 27 53 52 67

 2 26 79 47 43 90 6 85 43 8

 48 48 92 44 96 67 40 95 93 41

 33 58 16 63 14 53 64 61 3 87

 62 45 11 24 52 2 51 98 13 66

 69 57 48 4 30 78 41 34 89 10

 72 97 50 48 16 63 42 72 89 19

 10 40 21 93 97 32 19 30 72 13

 93 11 50 51 20 71 90 29 4 45

 Columns 41 through 50

 37 23 35 83 72 11 35 43 76 74

 72 1 61 99 92 88 79 81 42 30

 33 59 87 20 35 46 31 8 32 18

 94 43 62 11 10 80 79 85 6 42

 32 17 18 81 80 1 32 17 37 1

 52 85 17 50 57 43 41 31 37 50

 44 33 30 16 5 86 41 82 35 44

 65 72 88 33 73 78 38 70 84 58

 54 76 5 35 58 94 35 67 2 81

 4 91 41 0 33 22 57 77 29 22

 25 68 44 36 50 19 41 92 49 71

 2 97 67 26 15 47 54 86 36 41

 51 50 25 36 98 43 97 62 60 16

 11 0 2 25 38 17 43 45 34 74

 80 61 41 77 8 24 14 49 63 84

 35 38 45 30 70 62 68 15 91 63

 57 1 68 12 12 54 76 1 7 3

 61 60 41 37 79 40 75 9 88 91

 93 4 48 95 12 52 13 97 81 35

 82 39 19 58 65 63 28 22 20 21

 21 20 75 33 94 30 1 86 98 39

 158

 7 25 37 2 95 27 74 81 91 70

 43 65 84 81 30 44 78 55 89 88

 38 70 45 85 57 45 69 62 36 10

 54 74 75 86 57 6 63 14 52 82

 36 63 39 54 45 55 84 10 10 61

 0 76 24 66 11 6 17 22 25 51

 12 73 95 51 18 89 43 90 9 27

 81 6 39 95 48 37 57 93 98 59

 47 5 58 35 4 12 64 22 52 52

 63 74 43 55 43 7 82 73 65 13

 12 97 97 45 7 3 24 68 64 83

 8 38 72 80 23 57 35 87 4 25

 3 85 5 70 59 28 59 60 4 67

 87 5 74 77 23 43 44 54 52 25

 80 15 42 77 61 49 53 14 7 33

 8 44 36 66 8 72 54 35 1 97

 91 62 46 80 11 82 28 93 99 60

 28 15 16 56 29 51 43 62 5 51

 31 19 38 65 79 59 27 66 52 10

 ∞ 99 67 95 77 24 81 96 84 62

 2 ∞ 24 53 67 67 38 19 69 46

 15 21 ∞ 60 79 35 49 71 84 77

 46 32 2 ∞ 94 89 28 8 23 36

 52 96 33 59 ∞ 20 60 59 32 89

 69 67 10 22 94 ∞ 28 63 56 64

 86 81 94 56 11 64 ∞ 9 98 74

 75 67 12 56 55 82 88 ∞ 19 23

 84 12 22 64 88 77 18 70 ∞ 39

 62 1 91 62 25 73 46 20 72 ∞

 4 92 65 17 64 47 50 25 97 58

 51 38 50 82 67 37 98 82 29 2

 30 9 31 51 73 47 75 8 24 20

 159

 54 66 62 42 70 20 11 67 74 73

 85 39 54 88 40 24 39 84 55 9

 65 7 93 55 58 14 36 53 24 69

 42 18 1 5 67 47 23 69 86 94

 69 99 7 41 66 24 3 61 67 92

 2 39 9 54 1 97 48 63 8 60

 21 31 92 56 66 67 85 57 78 95

 Columns 51 through 60

 94 92 46 31 39 13 15 93 63 47

 13 95 45 57 83 71 35 46 90 35

 74 74 20 76 37 81 37 45 37 55

 74 97 10 35 73 35 56 67 81 70

 7 27 41 71 75 16 64 41 71 72

 6 93 52 88 73 9 70 51 72 88

 56 17 57 71 39 82 33 64 19 35

 5 84 58 51 47 74 16 7 29 16

 69 98 48 58 92 14 14 71 77 18

 54 86 45 71 33 41 19 82 86 61

 98 63 2 51 40 25 35 1 22 39

 40 53 1 85 37 19 63 29 93 56

 46 83 6 28 62 20 87 15 85 95

 13 59 60 13 40 3 72 47 90 24

 93 78 33 20 19 16 13 63 91 18

 28 66 74 11 34 87 6 73 25 48

 25 31 90 76 95 77 54 60 24 14

 62 47 89 38 27 48 33 2 47 78

 15 99 56 48 55 87 34 62 56 8

 79 8 80 6 37 63 75 56 52 25

 31 2 96 83 86 15 6 75 62 43

 56 54 60 56 62 63 65 42 11 98

 75 8 5 27 38 6 78 79 27 18

 160

 78 98 7 15 75 4 64 41 12 50

 1 35 29 27 95 93 40 93 77 85

 29 62 45 66 10 57 0 73 49 49

 12 5 62 60 8 45 49 62 41 24

 26 28 10 92 82 1 77 97 16 85

 94 18 52 44 76 17 93 31 76 77

 79 66 34 31 1 38 48 6 28 46

 74 21 54 43 5 20 87 98 40 71

 20 85 46 5 55 21 80 51 75 9

 56 18 20 75 7 78 70 19 4 92

 13 85 15 17 9 70 10 53 68 75

 99 30 52 56 96 22 13 49 27 81

 77 67 16 9 85 61 79 21 53 58

 33 52 43 72 79 76 24 25 43 67

 51 60 39 21 81 80 38 68 93 70

 32 1 25 2 4 87 26 54 59 58

 68 17 77 0 54 90 36 22 75 92

 20 71 54 39 59 69 41 85 44 61

 5 94 59 26 81 74 82 40 64 28

 53 16 13 72 75 9 75 31 5 16

 82 15 89 22 52 88 66 13 2 74

 51 40 28 48 78 27 87 35 15 88

 55 88 31 60 70 83 78 17 9 10

 54 42 78 80 62 32 30 5 60 22

 14 31 93 57 22 45 55 52 28 30

 78 61 35 26 61 19 44 5 86 51

 73 14 2 47 74 31 4 5 10 23

 ∞ 29 9 4 34 8 28 59 5 48

 75 ∞ 23 78 45 71 68 72 9 40

 48 76 ∞ 14 48 57 21 41 33 46

 1 99 97 ∞ 5 42 12 92 60 90

 10 46 87 38 ∞ 11 20 71 63 47

 161

 45 85 89 83 14 ∞ ∞ 96 78 91

 63 66 72 75 20 ∞ ∞ 99 28 56

 22 17 80 8 35 25 23 ∞ ∞ ∞

 77 40 62 82 77 32 18 ∞ ∞ ∞

 81 73 97 82 66 98 54 ∞ ∞ ∞

When considering the Benders’algorithm for solving this example, the process is

explained as follows.

Iteration 1:

Step 1: Initialization:

Let set v (Z) = 0, select v (Z = [Z(1), Z(2),…, Z(60)]T), set j = 1 and set k = 1

For this example, from node No.1 to node No. 55 are the normal jobs. Node No. 56

and No. 57 are the component of a 2 alternatives job. Node No. 58, No. 59 and No. 60

are the component of a 3 alternatives job. Therefore, all variables of Z(1) to Z(55) equal

to 1 and the rest of them are Z(i) ∈ {0, 1}, i = 56, 57, …, 60. The first v (Z = [Z(1),

Z(2),…, Z(60)]T) is:

v (Z1 = [1(1), 1(2),…, 1(56), 1(56), 0(57), 1(58), 0(59) , 0(60)]T)

Step 2: Solve the Benders’subproblem:

The first the Benders’subproblem of this example is:

Maximize v1 (Z1) = Maximize {(b – B Z1) T u 1 │ AT u 1 ≤ c, u 1 ≥ 0},

is solved. The maximum occurs at the vector of extreme point u 1 and the maximum

value of v1 (Z1) =115.

Step 3: Stopping Criterion:

Now the value of v (Z) = 0, v1 (Z1) =115 ≠ v (Z) then go to step 4

 162

Step 4: Improve the approximations function:

Using the dual extreme point u 1 generates the approximations function (v (Z)),

with the Benders’cut, for the Benders’partial master problem of the iteration 1. The

Benders’partial master problem is:

Minimize v (Z) = dTZ + maximize { [(b – BZ) T u 1]1}

 Subject to Z ∈ Z

The Benders’cut of the iteration 1 is [(b – BZ) T u 1]1 that is:

[u1
(1)Z(1)+ u1

(2)Z(2)+…+ u1
(60)Z(60)]1

Because a vector d is a zero vector, the Benders’partial master problem for

iteration 1 is:

Minimize v (Z) = maximize { [u1
(1)Z(1)+ u1

(2)Z(2)+…+ u1
(60)Z(60)]1}

Subject to Z ∈ Z

Step 5: Solve the Benders’partial master problem:

Update j = 2, k = 2 and the value of v (Z) from solving the Benders’partial

master problem = 143 with is new vector Z =

Z2 = [1(1), 1(2),…, 1(56), 1(56), 0(57), 0(58), 1(59) , 0(60)]T

Iteration 2:

Step 2: Solve the Benders’subproblem:

The Benders’subproblem of iteration 2 is:

Maximize v2 (Z2) = Maximize {(b – B Z2) T u 2 │ AT u 2 ≤ c, u 2 ≥ 0},

is solved. The maximum occurs at the vector of extreme point u 2 and the maximum

value of v2 (Z2) =153.

Step 3: Stopping Criterion:

Now the current value of v (Z) = 143. Because v2 (Z2) =153 ≠ v (Z), not

terminate, then go to step 4

 163

Step 4: Improve the approximations function:

Using the dual extreme point u 2 generates the approximations function (v (Z)),

with the Benders’cut, for the Benders’partial master problem of the iteration 2. The

Benders’partial master problem is:

Minimize v (Z) = dTZ + maximize {[(b – BZ) T u 1]1, [(b – BZ) T u 2]2}

 Subject to Z ∈ Z

The Benders’cut of the iteration 2 is [(b – BZ) T u 2]2 that is:

[u2
(1)Z(1)+ u2

(2)Z(2)+…+ u2
(60)Z(60)]2

Because a vector d is a zero vector, the Benders’partial master problem for

iteration 2 is:

Minimize v (Z) = maximize { [u1
(1)Z(1)+ u1

(2)Z(2)+…+ u1
(60)Z(60)]1,

 [u2
(1)Z(1)+ u2

(2)Z(2)+…+ u2
(60)Z(60)]2}

Subject to Z ∈ Z

Step 5: Solve the Benders’partial master problem:

Update j = 3, k = 3 and the value of v (Z) from solving the Benders’partial

master problem = 149 with is new vector Z =

Z3 = [1(1), 1(2),…, 1(56), 1(56), 0(57), 0(58), 0(59) , 1(60)]T

Iteration 3:

Step 2: Solve the Benders’subproblem:

The Benders’subproblem of iteration 3 is:

Maximize v3 (Z3) = Maximize {(b – B Z3) T u 3 │ AT u 2 ≤ c, u 3 ≥ 0},

is solved. The maximum occurs at the vector of extreme point u 3 and the maximum

value of v3 (Z3) =159.

Step 3: Stopping Criterion:

Now the current value of v (Z) = 149. Because v3 (Z3) =159 ≠ v (Z), not

terminate, then go to step 4

 164

Step 4: Improve the approximations function:

Using the dual extreme point u 3 generates the approximations function (v (Z)),

with the Benders’cut, for the Benders’partial master problem of the iteration 3. The

Benders’partial master problem is:

Minimize v (Z) = dTZ + maximize {[(b – BZ) T u 1]1, [(b – BZ) T u 2]2,

 [(b – BZ) T u 3]3}

 Subject to Z ∈ Z

The Benders’cut of the iteration 3 is [(b – BZ) T u 3]3 that is:

[u3
(1)Z(1)+ u3

(2)Z(2)+…+ u3
(60)Z(60)]3

Because a vector d is a zero vector, the Benders’partial master problem for

iteration 3 is:

Minimize v (Z) = maximize { [u1
(1)Z(1)+ u1

(2)Z(2)+…+ u1
(60)Z(60)]1,

 [u2
(1)Z(1)+ u2

(2)Z(2)+…+ u2
(60)Z(60)]2

 [u3
(1)Z(1)+ u3

(2)Z(2)+…+ u3
(60)Z(60)]3}

Subject to Z ∈ Z

Step 5: Solve the Benders’partial master problem:

Update j = 4, k = 4 and the value of v (Z) from solving the Benders’partial

master problem = 150 with is new vector Z =

Z4 = [1(1), 1(2),…, 1(56), 1(56), 0(57), 0(58), 1(59) , 0(60)]T

Iteration 4:

Step 2: Solve the Benders’subproblem:

The Benders’subproblem of iteration 4 is:

Maximize v4 (Z4) = Maximize {(b – B Z4) T u 4 │ AT u 4 ≤ c, u 4 ≥ 0},

is solved. The maximum occurs at the vector of extreme point u 3 and the maximum

value of v4 (Z4) =152.

Step 3: Stopping Criterion:

Now the current value of v (Z) = 150. Because v4 (Z4) =152 ≠ v (Z), not

terminate, then go to step 4

 165

Step 4: Improve the approximations function:

Using the dual extreme point u 4 generates an approximations function (v (Z)),

with the Benders’cut, for the Benders’partial master problem of the iteration 4. The

Benders’partial master problem is:

Minimize v (Z) = dTZ + maximize {[(b – BZ) T u 1]1, [(b – BZ) T u 2]2,

 [(b – BZ) T u 3]3, [(b – BZ) T u 4]4}

 Subject to Z ∈ Z

The Benders’cut of the iteration 4 is [(b – BZ) T u 4]4 that is:

[u4
(1)Z(1)+ u4

(2)Z(2)+…+ u4
(60)Z(60)]4

Because a vector d is a zero vector, the Benders’partial master problem for

iteration 4 is:

Minimize v (Z) = maximize { [u1
(1)Z(1)+ u1

(2)Z(2)+…+ u1
(60)Z(60)]1,

 [u2
(1)Z(1)+ u2

(2)Z(2)+…+ u2
(60)Z(60)]2

 [u3
(1)Z(1)+ u3

(2)Z(2)+…+ u3
(60)Z(60)]3

 [u4
(1)Z(1)+ u4

(2)Z(2)+…+ u4
(60)Z(60)]4}

Subject to Z ∈ Z

Step 5: Solve the Benders’partial master problem:

Update j = 5, k = 5 and the value of v (Z) from solving the Benders’partial

master problem = 152 with is new vector Z =

Z5 = [1(1), 1(2),…, 1(56), 1(56), 0(57), 0(58), 1(59) , 0(60)]T

Iteration 5:

Step 2: Solve the Benders’subproblem:

The Benders’subproblem of iteration 4 is:

Maximize v5 (Z5) = Maximize {(b – B Z5) T u 5 │ AT u 5 ≤ c, u 5 ≥ 0},

is solved. The maximum occurs at the vector of extreme point u 5 and the maximum

value of v5 (Z5) =152.

 166

Step 3: Stopping Criterion:

Now the current value of v (Z) = 152. Because v5 (Z5) =152, stop

This example can be solved by using the Benders’decomposition as above.

2. The example of the application of the AGVsp-P/D

Refer to the problem of messenger scheduling, one of the proposed application

of the AGVsp-P/D. This problem occurs repeatedly in the decision making process of

the messenger of any agent such as the government agent, the financial business agent,

the private postal service agent and etc.

For example, the messenger of the engineering faculty has a job list for one

round as follows.

1. get the document at the Faculty office(ENG) and deliver at ME department

2. pick up the document at Financial office(FIN) and deliver to EE department

3. pick up the printed sheets at Copy shop(CPY) and deliver at Library(LBY)

4. pick up the document at IE department and deliver to graduated school(GRD)

5. buy some cashier checks at either TBank or Abank and go to pay at Computer

 training center (COM)

6. buy some stamps at the post office or shop1 or shop2 and deliver at the faculty

The messenger job list for one round can be shown as follows.

Job No. Pick up Department Delivery Department
1. ENG ME
2. FIN EE
3. CPY LBY
4. IE GRD
5. TBank or ABank COM
6. Post or Shop1 or Shop2 ENG

 167

Suppose the distances among all of locations are known and transformed into a

form of the TSP distance table, by same method of table 5 that is explained previously.

The distance table of this problem is shown as follows.

 To
From

Job No. (h)

1 2 3 4 5

6

Job No.

Alternative
(job i, alt. a)

 1.1 2.1 3.1 4.1 5.1 5.2 6.1 6.2 6.3

 n 1 2 3 4 5 6 7 8 9
1 1.1 1 ∞ 31 25 43 83 18 50 45 32
2 2.1 2 38 ∞ 75 87 45 79 13 6 37
3 3.1 3 37 48 ∞ 34 25 58 52 16 48
4 4.1 4 49 83 80 ∞ 60 56 61 10 16

5.1 5 41 55 27 78 ∞ ∞ 58 55 20
5 5.2 6 9 92 26 20 ∞ ∞ 54 9 63

6.1 7 44 7 37 25 92 62 ∞ ∞ ∞
6.2 8 43 97 9 52 54 28 ∞ ∞ ∞

6

6.3 9 83 14 17 7 82 13 ∞ ∞ ∞

 This simulated problem is programmed in MATLAB 7.0 and solved by

AGVsp-P/D model. The result is the schedule of the messenger that is the sequence of

1 - 6 - 4 - 8 - 3 - 2 - 1 according to number of nodes n with the total distance of 143

units. The result of solving this problem using the AGVsp-P/D model on MATLAB

7.0 is shown as follows.

 168

cnew =

 ∞ 31 25 43 83 18 50 45 32
 38 ∞ 75 87 45 79 13 6 37
 37 48 ∞ 34 25 58 52 16 48
 49 83 80 ∞ 60 56 61 10 16
 41 55 27 78 ∞ ∞ 58 55 20
 9 92 26 20 ∞ ∞ 54 9 63
 44 7 37 25 92 62 ∞ ∞ ∞
 43 97 9 52 54 28 ∞ ∞ ∞
 83 14 17 7 82 13 ∞ ∞ ∞

Optimization terminated.

Xnod =

 (2,1) 1
 (3,2) 1
 (8,3) 1
 (6,4) 1
 (1,6) 1
 (4,8) 1

fval =

 143

The Optimal TSP Tour is
tour =

 1
 6
 4
 8
 3
 2
 1

subtour =

 0

Elapsed time is 0.384500 seconds.

 169

CURRICULUM VITAE

NAME : Mr. Chatpun Khamyat

BIRTH DATE : August 19, 1978

BIRTH PLACE : Bangkok, Thailand

EDUCATION : YEAR INSTITUTE DEGREE/DEPLOMA

 2000 Kasetsart Univ. B.Eng (Industrial)

 2002 Kasetsart Univ. M.Eng (Industrial)

POSITION/TITLE : Lecturer

WORK PLACE : Faculty of Engineering, Kasetsart University

SCHOLARSHIP/AWARDS : Thai Government Scholarship 2000-2005

	1. The work center initiated task assignment problems: a typical machining center in an AGV system consists of one or more machines, an incoming unit load queue, and an outgoing unit load queue. The unit loads are drawn from the incoming queue, processed, and released into the output queue at the same rate. The deposition of a unit load into the output queue also initiates a request by the department for an unassigned vehicle for the immediate removal of the deposited load. Several heuristic rules can be employed to assign the priority of vehicles for dispatching such as Random Vehicle rule, Nearest Vehicle rule, Farthest Vehicle rule, Longest Idle Vehicle rule, and Least Utilized Vehicle rule.
	2. Vehicle initiated task assignment problems: from an operational point of view, the most desirable level of handling effectiveness is to ensure that unit loads completed at a work center are removed promptly and transported to their subsequent destinations with a minimum of delays. Like the work center initiated task assignment problem, several heuristic rules are available for ranking work centers requesting unassigned vehicles. Possible assignment rules are:

