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Abstract 
 

In this paper, we introduced a mixture Weibull-Rayleigh (MWR) distribution, which was generated by the two-

component mixture distribution, i.e., Weibull-Rayleigh and length-biased Weibull-Rayleigh distributions. We studied its 

properties such as the rth moment, the survival function and the sub-model of the MWR distribution. We used the maximum 

likelihood estimation, the maximum product of spacing estimators, the Anderson-Darling minimum distance estimators and the 

Cramer-von Mises minimum distance estimators to estimate the parameters of the MWR distribution. Comparing with the 

lognormal, Weibull-Rayleigh, length-biased Weibull-Rayleigh, mixture generalized gamma and mixture exponentiated inverted 

Weibull distributions, we present an application of the MWR distribution on fitting hydrological datasets. We found that the 

MWR distribution provided a better fitting among these distributions. Therefore, we applied the MWR distribution to predict the 

return periods of such data. 

 

Keywords: Weibull-Rayleigh distribution, maximum product of spacing estimators, Anderson-Darling minimum distance  

                      estimators 

 

 

1. Introduction  
 

 Hydrological data, such as rain, runoff, streamflow 

rate, flow velocity and water surface elevation, are important 

to monitor the water situation. They are also used to analyze 

or predict the water situation in order to make decisions in 

planning and managing water in each area (Chow, Maidment, 

& Mays, 1988; Rittima, 2018). Hydrological data are usually 

random variables (Rittima, 2018) and could be right-skewed 

or left-skewed or symmetric, which depend on the spatial and 

temporal dimensions of the study. In addition, extreme values 

of hydrological data can be found when natural phenomena 

such as droughts or floods happen (Chow et al., 1988; 

Rittima, 2018). Thus, various researchers have attempted to fit

 
several distributions or models for hydrological data (Boonma 

& Tasaduak, 2021; Chaito, Khamkong, & Murnta, 2019; 

Cordeiro, Mansoor, & Provost, 2019; Yue & Hashino, 2007). 

Various statistical distributions have been used to model 

hydrological data such as lognormal (Boonma & Tasaduak, 

2021; Chaito et al., 2019), Weibull (Chaito et al., 2019), 

gamma (Chaito et al., 2019), Pareto (Cordeiro et al., 2019), 

Pearson type III (Boonma & Tasaduak, 2021; Yue & Hashino, 

2007), log-Pearson Type III (Yue & Hashino, 2007),  and 

generalized extreme value (Cordeiro et al., 2019) 

distributions.   

Among these studies, the Weibull distribution, 

which is positively skewed and a heavy-tailed distribution, is 

often applied to such data. Therefore, various researchers have 

developed new distributions by mixing the Weibull 

distribution with other distributions to provide better fitting of 

the data. For example, the Weibull-Pareto (Alzaatreh, 

Famoye, & Lee, 2013), the Weibull-exponential (Oguntunde, 

Balogun, Okagbue, & Bishop, 2015), and the Weibull-Fréchet 
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(Afify, Yousof, Cordeiro, Ortega, & Nofal, 2016) distributions that have been used to fit reliability and lifetime data. However, 

as far as we know, only the Weibull-Rayleigh distribution (Ganji, Bevrani, Hami Golzar, & Zabihi, 2016) has been used to fit 

flood data. 

Weibull-Rayleigh (WR) distribution was introduced by Ganji et al. (2016). Let X be a WR random variable, denoted by 

X~WR (α, β, δ), then the probability density function (pdf) is given by 
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where 0x  , 0    is a shape parameter, and 0   and 0   are scale parameters. The cumulative distribution function 

(cdf) can be written as 
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 Ganji et al., (2016) showed that, among beta-Pareto, generalized exponential, Weibull, three-parameter Weibull, and 

Pareto distributions, the WR distribution can provide a better fit for the exceedance of flood peaks data of the Wheaton River 

near Carcross in Yukon Territory, Canada.  

 Later, Chaito and Khamkong (2021) presented the length-biased Weibull-Rayleigh (LBWR) distribution, which was 

modified from the WR distribution using the length–biased distribution. Let X be a LBWR random variable, denoted by                     

X~LBWR (α, β, δ), then the pdf can be written as 
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where x > 0, α > 0is a shape parameter, and β > 0 and δ > 0 are scale parameters. The cdf is given by   
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where   1

0

uu e du


     is a gamma function,   1

0
,

x
ux u e du      is a lower incomplete gamma function. In their study, 

the LBWR distribution performed better fitting of the flood data than the Rayleigh, Weibull, Pareto, and WR distributions. 

Nevertheless, there is still room for improvement.  

There are various methods for developing statistical distributions. Mixture distribution method is commonly and widely 

used to create statistical distributions for economic, environmental and reliable data (Nanuwong, 2015; Seenoi, 2014). The 

mixture distribution can be formed of a mixture of two or more probability distributions. Afterwards, Newcomb (1886) 

introduced the finite mixture distribution. This method is a mixture of a finite number of distributions in different proportions of 

distribution via a mixture weight. An advantage of the finite mixture distribution is that it can be easily modified to create an 

appropriate distribution for the data (Ghosh, Hamedani, Bansal, & Maadooliat, 2018). Various researchers have applied the finite 

mixture distribution to improve distributions for fitting data, such as the mixture exponentiated inverted Weibull (MEIW) 

distribution (Seenoi, 2014), the mixture Pareto distribution (Nanuwong, Bodhisuwan, & Pudprommarat, 2015) and the mixture 

Weibull and Pareto (IV) distribution (Ghosh et al., 2018), all of which were used to fit lifetime data. Meanwhile, the mixture 

generalized gamma (MGG) distribution (Suksaengrakcharoen & Bodhisuwan, 2014), the mixture beta-Pareto distribution 

(Nanuwong, 2015) and the mixture gamma Weibull distribution (Chen, 2020) were applied to hydrological data for fitting 

hydrological data.  

The contribution of this study is to propose a new distribution called the mixture Weibull-Rayleigh (MWR) 

distribution, which is a mixture of WR and LBWR distributions. The MWR distribution will be compared the efficiency for 

fitting hydrological data with the following distributions, i.e., lognormal, WR, LBWR, MGG and MEIW distributions. 

Furthermore, the MWR distribution will be used to predict the return period to determine the risk of flooding. To do so, the 

article is organized as follows. Section 2 gives the pdf, the cdf and properties of the MWR distribution. The parameter estimation 

methods of the MWR distribution are described in Section 3. Section 4 presents simulation studies of comparing the efficiency 

for estimating parameters of the MWR distribution. Section 5 shows the results of applying the MWR distribution to hydrological 

data and the outcomes of the return period of hydrological data. Section 6 concludes the study. 
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2. The MWR Distribution 
 

In this section, we introduce the pdf, the cdf and properties of the MWR distribution. Before that, we will state the pdf 

and the cdf of the two-component mixture distribution.  

 

Definition 1. Let f1(x) and f2(x) be the pdfs of random variables X1 and X2, respectively. If p ϵ [0, 1], is a mixture weight (or a 

mixture parameter), then the pdf of two-component mixture distribution for a random variable X can be written as  
 

       1 21 , 0.f x pf x p f x x     (5) 

 

Definition 2.  Let F1(x) and F2(x) be the cdfs of random variables X1 and X2, respectively. If p ϵ [0, 1], then the cdf of two-

component mixture distribution for a random variable X is given by 
 

       1 21 , 0.F x pF x p F x x     (6) 

 

2.1 The pdf and the cdf of the MWR distribution 
 

The two-component mixture distribution will be used to construct the MWR distribution as follows. 

 

Theorem 1.  Let X be a random variable of the MWR distribution with parameters p, α, β, and δ, denoted by X~MWR (p, α, β, 

δ), then the pdf of the MWR distribution is given by 
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where x > 0, 0 ≤ p ≤ 1 is a mixture parameter, α > 0 is a shape parameter, and β > 0 and δ > 0 are scale parameters. 

 

Proof.  By substituting the pdf of the WR distribution in Equation (1) as f1(x) and the pdf of the LBWR distribution in Equation 

(3) as f2(x) into Equation (5), then the pdf of the MWR can be written as 
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Theorem 2. Let X be a random variable of the MWR distribution, then the cdf of the MWR distribution can be given as 
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(7) 

 

Proof. The cdf of the MWR distribution can be directly obtained by substituting the cdf of the WR and LBWR distributions in 

Equations (2) and (4) into Equation (6). 

Figure 1 (a) illustrates the pdf behaviors of the MWR distribution for several values of p, α, β, and δ. The MWR pdf 

has various shapes such as the right-skewed shape and close to symmetric shape. Figure 1 (b) displays the MWR cdf curves for 

several values of p, α, β, and δ as a non-decreasing function. Figure 2 shows the pdf behaviors of the WR, LBWR and MWR 

distributions for several values of parameters.  
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(a) (b) 

 

Figure 1. (a) MWR pdfs with vary parameter values and (b) MWR cdfs with vary parameter values 

 
 

Figure 2. WR, LBWR and MWR pdfs with vary parameter values 

 

2.2 The survival function 
 

The survival function of random variable X with cdf F(x) is given as follows: 

 

   1S x F x   (8) 

 

By substituting Equation (7) into Equation (8), the survival function of the MWR distribution is 

 

   

2

2
2

2

1
1 ,

2 2
1 1 exp 1 .

12
1

2

x

x
S x p p






 





    
                         

                
    

 

(8) 

 

2.3 The rth moment 
 

Let X be a random variable of the MWR distribution, then the rth moment of X is given by 

 

     2 2

1
1

2
2 1 1 ,   1,2,3, . 

12

2

 

1

r
r

r

r
E X p p r








  
              
        

 
(9) 

 

Proof. If f1(x) and f2(x) be the pdfs of random variables X1 and X2, respectively, then the rth moment of two-component mixture 

distribution for a random variable X is  
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If X~MWR (p, α, β, δ), then the rth moment of X becomes 
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From the rth moment of the MWR distribution in Equation (9), we can obtain the mean and the variance of the MWR 

distribution, respectively, as 
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Moreover, the skewness and the kurtosis of the MWR distribution are respectively expressed as  
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2.4 The sub-model of the MWR distribution 
 

Note that the MWR distribution can be transformed to the following distributions with specific parameters. 

1. If X~MWR (p = 0, α, β, δ), then the MWR distribution becomes the LBWR distribution with the pdf in Equation (3). 
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2. If X~MWR (p = 0, α = 1, β = 1, δ), then the MWR distribution becomes the length-biased Rayleigh distribution. 

3. If X ~MWR (p = 1, α, β, δ), then the MWR distribution becomes the WR distribution with the pdf in Equation (1). 

4. If X ~MWR (p = 1, α = 1, β = 1, δ), then the MWR distribution becomes the Rayleigh distribution. 

5. Let X~MWR (p, α, β, δ). If p = 1, then a random variable 
2

22
Y

X


  is Weibull distributed, that is Y~ Weibull (α, β). 

 

3. Parameter Estimation Methods for the MWR Distribution 
 

To estimate the parameters of the MWR distribution, we will use the maximum likelihood estimation (MLE), the 

maximum product of spacing estimators (MPSE), the Anderson-Darling minimum distance estimators (ADE) and the Cramer-

von Mises minimum distance estimators (CMVE). Therefore, in this section, we will explain these methods. 

 

3.1 Maximum likelihood estimation 
 

Let X1, X2, . . ., Xn be independent and identically distributed random variables from the MWR distribution with a 

parameter vector θ = (p, α, β, δ), and let x1, x2, . . ., xn be the observed values, then the likelihood function is given by 
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The log-likelihood function can be obtained as follows: 
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The maximum likelihood estimates of p, α, β and δ are obtained by differentiating the log-likelihood function in 

Equation (10) with respect to p, α, β and δ and setting the results equal to zero: 
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where  
 

 
( )

yd
y y

dy y



  


 is a logarithmic derivative of the gamma function. The maximum likelihood estimates of the 

parameters p, α, β and δ can be obtained numerically from the non-linear equations Equation (11) - Equation (14).  We solve the 

system of equations in order to calculate MLEs with the Newton-Raphson method using the mle function in stats4 package in R 

program (R Core Team, 2020). 

 

3.2 The maximum product spacing estimators  
 

The maximum product spacing estimators (MPSE) method was proposed by Cheng and Amin (1983). Later, Ranneby 

(1984) developed the MPSE method to be an approximation to the Kullback-Leibler measure of information. The MPSE method 

can be a good choice for MLE to estimate the unknown parameters of continuous univariate distributions (Al-Mofleh, Afify, & 

Ibrahim, 2020). Let X1, X2, . . ., Xn be random samples from MWR distribution having the cdf F(p, α, β, δ) and X(1) < X(2) < . . . < 

Xn represent the corresponding ordered samples, then the geometric mean of the spacings can be defined as  
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The MPSE of parameters p, α, β and δ can be obtained by differentiating the logarithm of the geometric mean of 

sample spacings in Equation (15) with respect to p, α, β and δ and setting them equal to zero: 
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and 
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where  ( ) w
d

w
dw

    is a derivative of the gamma function and  ( ) z
d

z
dz

   is a derivative of the lower incomplete 

gamma function.  The MPSE of parameters p, α, β and δ can be obtained numerically from the non-linear Equation (16). We 

solve the system of equations in order to calculate MPSEs with the Newton-Raphson method using the optim function in stats 

package in R program (R Core Team, 2020). 
 

3.3 The Anderson-Darling minimum distance estimators  
 

  The Anderson-Darling estimator (ADE), a type of minimum distance estimator, is based on an Anderson-Darling (AD) 

statistic (Anderson & Darling, 1952) and classified as quadratic empirical distribution function (EDF) statistics. Let X1, X2, . . ., 

Xn be random samples from MWR distribution having the cdf F(p, α, β, δ) and X(1) < X(2) < . . . < Xn represent the corresponding 

ordered samples, then the ADE of the MWR parameters are obtained by minimizing 
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The ADE can be obtained by taking derivative Equation (21) with respect to p, α, β and δ and setting them equal to 

zero:  
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where  1 , , ,p    ∣ ,  2 , , ,p    ∣ ,  3 , , ,p    ∣ and  4 , , ,p    ∣  are defined in Equation (17) - Equation (20). The 

ADE of the parameters p, α, β and δ are obtained by solving Equation (22). We solve the system of equations in order to calculate 

ADEs with the Newton-Raphson method using the optim function in stats package in R program (R Core Team, 2020). 

 

3.4 The Cramer-von Mises minimum distance estimators 
 

The Cramer-von Mises minimum distance estimators (CMVE) is another type of minimum distance estimator and is 

based on a Cramer-von Mises (CVM) statistic. The CMVE method has less bias of the estimator than the other minimum 

distance estimators (Al-Mofleh et al., 2020). Let X1, X2, . . ., Xn be random samples from MWR distribution having the cdf F(p, α, 

β, δ) and X(1) < X(2) < . . . < Xn represent the corresponding ordered samples, then the CMVE of the MWR parameters are 

obtained by minimizing 
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The CMVE can be obtained by taking derivative Equation (23) with respect to p, α, β, and δ and setting them equal to 

zero: 
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where  1 , , ,p    ∣ ,  2 , , ,p    ∣ ,  3 , , ,p    ∣  and  4 , , ,p    ∣  are defined in Equation (17) - Equation (20). The 

CMVE of the parameters p, α, β, and δ can be derived by solving Equation (24). We solve the system of equations in order to 

calculate CMVEs with the Newton-Raphson method using the optim function in stats package in R program (R Core Team, 

2020). 

 

4. Simulation Studies 
 

In this section, we will generate the MWR random variables and comparing the efficiencies of the parameter estimation 

methods for MWR distribution. 
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4.1 The generating MWR random variables 
 

To generate random data xi, i = 1, 2, . . ., n that are MWR distributed, we use the inverse transformation method as in 

the following steps: 

1. Generate uniform variable  ~ 0,1 , 1,2, ,iU U i n  . 

2. Generate a random variable Vi~WR (α, β, δ), i = 1, 2, . . ., n by taking    
1

1

WR 2 log(1 ) ,i i iv F U U       

where 
1

WRF 
 is the inverse function of the cdf in Equation (2). 

3. Generate a random variable iw ~LBWR (α, β, δ), i = 1, 2, . . ., n by taking  
1

1

LBWR , 2i iw F U A   where 

1

LBWRF  is inverse function of the cdf in Equation (4) and 1 1 1
1 , 1

2 2
iA U

 

   
     

  

, when 1  is inverted of the lower 

incomplete gamma function and   is the gamma function. To compute 1  , we use Igamma.Inv function in zipfR package in R 

program (R Core Team, 2020).” 

4. For each i = 1, 2, . . ., n,  if 
iU p , then set 

i ix w , otherwise, set 
i ix v . 

 

4.2 Comparing the efficiencies of the parameter estimation methods for MWR distribution 
 

We will conduct a simulation to compare the performance of the four parameter estimation methods for estimating 

parameters of the MWR distribution. We perform a simulation study as follows: 

1. Set the sample size n and the parameter vector θ = (p, α, β, δ) 

2. Generate a random sample from the MWR distribution using various parameters and sample size with R program (R 

Core Team, 2020). 

3. Estimate the parameters of the MWR distributions using the MLE, MPSE, ADE and CMVE methods. The estimated 

parameters will be collected in a parameter vector only if they are inside the parameter space.  

4. Repeat steps (1) to (3) until we have 1000 estimated parameter vectors. 

5. Calculate the MSE and AvRB values of these methods and select the best method with the lowest values of the MSE 

and AvRB. 

Throughout this simulation, we will consider the cases of p = 0.3, 0.5 and 0.7 α = 0.8, β = 5, and δ = 10. For each case, 

we varied the sample sizes of xi for i = 1, 2, . . ., n where n =15, 30, 50, 100, and 200. Next, for each case, we estimate parameters 

of the MWR distribution. To perform MLE method, we use built-in functions called mle in stats4 package in R program to 

estimate parameters of the MWR distribution. On the other hand, to perform MPSE, ADE and CMVE methods, we use another 

built-in function called optim to estimate parameters of the MWR distribution. Then, we use the mean square error (MSE) and 

the average relative bias (AvRB) to evaluate the performance of the estimators. The formular of these criteria are provided as 

fllows: 
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 θ θ θ  

 

The MSE and AvRB values for each method are results and are shown in Table 1 - Table 3. According to the results, if 

the number of sample sizes n is increasing, then most of the values of MSE and AvRB are decreasing. When we fixed α, β, δ  and 

changed the value of p to be p = 0.3 and p = 0.5, we found that in the case of the sample size is smaller than 50, the ADE method 

provided the lowest values of AvRB, but the MLE method provided the lowest values of AvRB when p = 0.7 and the sample is 

smaller than 100. Nevertheless, there is no obvious method that provide the lowest value of MSE in such case. In the case that the 

sample size is either 100 or 200, we found that the CMVE method gave the lowest values of both MSE and AvRB except the 

case that p = 0.5 and sample size is 200 where there is no obvious method. Overall, we can conclude that the ADE method is 

recommended to estimate the parameters from the given data in the case that the number of observations is smaller. For the case 

that the number of observations is large, the CMVE method could be a recommended choice.  

In Section 5.2 we will consider the annual maximum runoff data which contain less than 100 record observations, so 

we will use the ADE method to estimate the parameters. 

 

5. Applications of the MWR Distribution 
 

In this section, the MWR distribution will be applied to fit the hydrological dataset and to predict the return periods of 

the hydrological dataset. 
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Table 1. Simulation results of parameter estimates for the MWR distribution with parameters: p= 0.3,  α= 0.8, β= 5 and δ= 10. 
 

n Parameter 

MSE AvRB 

MLE MPSE ADE CMVE MLE MPSE ADE CMVE 

          

15 p̂  0.2381 0.2599 0.1437 0.1787 0.2337 0.1973 0.1201 0.1701 

 ̂  0.0739 0.1738 0.0499 0.1024 0.1299 0.2948 0.0399 0.1190 

 ̂  1.3252 1.2215 1.2286 1.2860 0.4664 0.6079 0.1693 0.3043 

 ̂  1.3256 1.2079 1.2233 1.2843 0.4698 0.6063 0.1722 0.3068 
30 p̂  0.1984 0.2482 0.1364 0.1545 0.1776 0.1982 0.1217 0.1230 

 ̂  0.0334 0.0576 0.0278 0.0392 0.0738 0.1574 0.0236 0.0621 

 ̂  1.0544 0.9951 1.0853 1.0850 0.3415 0.4640 0.2020 0.2635 

 ̂  1.0550 0.9961 1.0822 1.0843 0.3443 0.4657 0.2039 0.2652 

50 p̂  0.1854 0.2387 0.1143 0.1472 0.1669 0.2060 0.0937 0.1279 

 ̂  0.0240 0.0312 0.0205 0.0254 0.0535 0.1004 0.0155 0.0429 

 ̂  1.0542 1.0149 0.9165 0.9599 0.2873 0.4057 0.1729 0.2405 

 ̂  1.0539 1.0157 0.9138 0.9583 0.2894 0.4072 0.1740 0.2419 

100 p̂  0.1567 0.2189 0.1144 0.1271 0.1379 0.2008 0.0863 0.0858 

 ̂  0.0144 0.0235 0.0150 0.0171 0.0291 0.0793 0.0075 0.0262 

 ̂  0.8636 1.0283 0.8680 0.8629 0.2373 0.4012 0.1930 0.1350 

 ̂  0.8627 1.0294 0.8656 0.8608 0.2384 0.4028 0.1937 0.1362 
200 p̂  0.1419 0.1946 0.1154 0.1070 0.1249 0.1713 0.1228 0.0623 

 ̂  0.0116 0.0158 0.0100 0.0119 0.0223 0.0491 0.0119 0.0072 
 ̂  0.7606 0.9596 0.7715 0.7367 0.1888 0.3174 0.2998 0.0612 

 ̂  0.7603 0.9606 0.7704 0.7344 0.1893 0.3184 0.2999 0.0621 
          

 

Note: The number in bold presents the lowest of MSE and AvRB values. 
 

Table 2. Simulation results of parameter estimates for the MWR distribution with parameters: p= 0.5,  α= 0.8, β= 5 and δ= 10. 
 

n Parameter 

MSE AvRB 

MLE MPSE ADE CMVE MLE MPSE ADE CMVE 

          

15 p̂  0.1717 0.2126 0.1356 0.1490 0.1039 0.1310 -0.0075 0.0572 

 ̂  0.0624 0.1351 0.0457 0.1125 0.1156 0.2441 0.0109 0.1048 

 ̂  1.0209 0.9322 1.0558 1.0529 0.2414 0.3350 -0.1015 0.1302 

 ̂  1.0252 0.9335 1.0508 1.0504 0.2469 0.3393 -0.0976 0.1334 

30 p̂  0.1579 0.1964 0.1308 0.1295 0.0797 0.1333 0.0101 0.0385 

 ̂  0.0227 0.0443 0.0218 0.0285 0.0449 0.1355 -0.0037 0.0282 

 ̂  0.8910 0.7127 0.7998 0.7675 0.1536 0.2938 -0.0290 0.0664 

 ̂  0.8921 0.7158 0.7995 0.7677 0.1567 0.2971 -0.0277 0.0681 

50 p̂  0.1508 0.1802 0.1235 0.1294 0.1032 0.1678 0.0039 0.0403 

 ̂  0.0165 0.0244 0.0143 0.0171 0.0366 0.0893 -0.0193 0.0095 
 ̂  0.7786 0.7508 0.7425 0.7171 0.1791 0.3272 -0.0596 0.0471 

 ̂  0.7786 0.7531 0.7411 0.7163 0.1810 0.3296 -0.0589 0.0484 
100 p̂  0.1376 0.1696 0.1106 0.1159 0.0824 0.1648 0.0046 0.0202 

 ̂  0.0107 0.0156 0.0104 0.0103 0.0146 0.0637 -0.0269 -0.0037 
 ̂  0.7773 0.7895 0.7132 0.6668 0.1353 0.3497 -0.0384 0.0137 

 ̂  0.7766 0.7917 0.7114 0.6659 0.1364 0.3516 -0.0379 0.0145 
200 p̂  0.1218 0.1537 0.1023 0.1083 0.0759 0.1637 0.0245 -0.0203 

 ̂  0.0078 0.0104 0.0079 0.0083 0.0066 0.0406 -0.0256 -0.0198 
 ̂  0.6694 0.7448 0.6484 0.6788 0.0943 0.3103 0.0187 -0.1049 

 ̂  0.6690 0.7465 0.6476 0.6762 0.0948 0.3114 0.0189 -0.1041 
          

 

Note: The number in bold presents the lowest of MSE and AvRB values. 

 

5.1 Applications of the MWR distribution to hydrological data 
 

We will consider two hydrological datasets and then apply MWR distribution to the data.  The first data that we will 

consider is October rainfall data measured at Mueang Phrae station located in Phrae, Thailand, collected during 1957 to 2018 by 

the Upper Northern Region Irrigation Hydrology Center, Thailand (Upper Northern Region Irrigation Hydrology Center, 2020) 

(Table 4). Another hydrological data that we will consider is the annual maximum runoff data collected at Muang, Phayao,
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Table 3. Simulation results of parameter estimates for the MWR distribution with parameters: p= 0.7,  α= 0.8, β= 5 and δ= 10. 
 

n Parameter 

MSE AvRB 

MLE MPSE ADE CMVE MLE MPSE ADE CMVE 

          

15 p̂  0.1268 0.1641 0.1407 0.1233 0.0128 0.0154 -0.0955 -0.0397 

 ̂  0.0467 0.1171 0.0329 0.0711 0.0950 0.2141 -0.0197 0.0635 

 ̂  0.8964 0.6920 1.0292 0.8628 0.0414 0.0717 -0.2675 -0.1528 

 ̂  0.8977 0.6900 1.0261 0.8574 0.0476 0.0766 -0.2638 -0.1484 
30 p̂  0.1140 0.1212 0.1271 0.1134 0.0004 0.0691 -0.0977 -0.0488 

 ̂  0.0187 0.0349 0.0171 0.0280 0.0304 0.1129 -0.0253 0.0128 

 ̂  0.6959 0.5054 0.7225 0.5863 -0.0181 0.1129 -0.2777 -0.0878 

 ̂  0.6945 0.5062 0.7209 0.5862 -0.0150 0.1159 -0.2766 -0.0857 

50 p̂  0.1146 0.1049 0.1165 0.0983 0.0018 0.0940 -0.0962 -0.0264 

 ̂  0.0133 0.0186 0.0119 0.0132 0.0194 0.0744 -0.0323 -0.0079 

 ̂  0.6622 0.4622 0.6350 0.5257 -0.0068 0.1866 -0.2300 -0.1131 

 ̂  0.6621 0.4635 0.6341 0.5247 -0.0049 0.1885 -0.2293 -0.1114 

100 p̂  0.0904 0.0833 0.0928 0.0964 0.0174 0.1199 -0.0334 -0.0300 

 ̂  0.0076 0.0095 0.0068 0.0074 0.0073 0.0484 -0.0278 -0.0137 

 ̂  0.5200 0.4063 0.5068 0.4538 0.0220 0.2331 -0.1043 -0.0891 

 ̂  0.5196 0.4070 0.5065 0.4533 0.0230 0.2341 -0.1040 -0.0886 

200 p̂  0.0837 0.0763 0.0814 0.0762 0.0104 0.1006 -0.0121 0.0039 

 ̂  0.0052 0.0057 0.0050 0.0044 -0.0015 0.0313 -0.0261 -0.0064 
 ̂  0.4780 0.3768 0.4501 0.3603 -0.0102 0.1922 -0.0364 -0.0085 

 ̂  0.4778 0.3770 0.4504 0.3602 -0.0097 0.1928 -0.0365 -0.0084 
          

 

Note: The number in bold presents the lowest of MSE and AvRB values. 
 

Table 4. October rainfall data of the Mueang Phrae station from 1957 to 2018 and annual maximum runoff data of I.17 station from 1993 to 

2020 arranged from left to right, and top to bottom. 
 

October rainfall data (mm.) 

 

23.9 16.3 50.4 70.4 144.6 317.1 253.2 144.2 79.5 24.1 

53.2 86.7 95.0 125.4 52.8 122.3 124.9 71.6 111.2 47.6 

57.9 92.8 49.1 98.8 157.8 266.5 59.8 94.4 85.4 100.0 
72.9 96.2 34.6 48.5 120.6 121.9 84.7 70.2 137.9 71.6 

118.2 3.2 1.1 53.0 182.4 81.1 26.7 70.9 79.6 68.9 

98.1 35.3 112.5 80.5       
          

Annual maximum runoff data (m3/s) 

 

66.4 77.2 54.3 42.0 26.2 18.8 47.0 49.2 50.3 33.4 

0.8 76.0 106.3 64.1 30.8 0.9     
          

 

Thailand. The data were collected during 1993 to 2020 by the Upper Northern Region Irrigation Hydrology Center, Thailand 

(Upper Northern Region Irrigation Hydrology Center, 2020) (Table 4). 

To determine whether the MWR distribution can be a better fitting than other distributions in the literature or not, we 

use the Kolmogorov-Smirnov (KS) test, the Akaike information criterion (AIC) (Akaike, 1973) and Bayesian information 

criterion (BIC) (Schwarz, 1978) to be criteria for testing their performance and the results were shown in Table 5. It summarizes 

the parameter estimates based on the MLE method for the October rainfall data for each distribution. As we can see, the KS test 

and AIC values of the MWR distribution were lower than the lognormal, WR, LBWR, MGG and MEIW distributions. 

Meanwhile, Figure 3 presents a comparison of fitting the data on histograms and theoretical densities and the empirical data and 

theoretical cdfs based on the MLE method of the data. The results in both Table 5 and Figure 3 show that the MWR distribution 

was the best fitting to October rainfall data among our comparison. 

Table 6 presents the parameter estimates based on the MLE, MPSE, ADE and CMVE methods for October rainfall 

data. The results show that the CMVE gave smaller values of the KS test than other methods. 

The parameter estimates based on the MLE for the annual maximum runoff data are reported in Table 5. The results 

show that the AIC, and BIC values for the MWR distribution were lower than the lognormal, WR, LBWR, MGG and MEIW 

distributions. The comparison of fitting of the histogram and theoretical densities and empirical data and theoretical cdfs of the 

data is presented in Figure 4. 

Table 6 presents the parameter estimates based on the MLE, MPSE, ADE and CMVE methods for the annual 

maximum runoff data. The results show that the ADE provided a smaller KS test than other methods. 
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Table 5. The parameter estimates under MLE and goodness of fit statistics for the October rainfall data and the annual maximum runoff data. 
 

 
Distribution 

Lognormal WR LBWR MGG MEIW MWR 

October rainfall data 

 

Estimates ̂ = 4.2335 

̂ = 0.8940 

̂ = 0.7507 

̂ = 14.8200 

̂ = 18.3871 

̂ = 0.5193 

̂ = 10.7230 

̂ = 10.2858 

p̂ = 0.0569 

̂ = 1.0272 

̂ = 0.8602 

̂ = 0.0274 

p̂ = 0.1745 

̂ = 1.3730 

̂ = 16.3154 

p̂ = 0.1286 

̂ = 0.5756 

̂ = 11.5522 

̂ = 11.9017 

KS test 0.1728 0.1136 0.1082 0.1592 0.3682 0.1057 

p-value 0.0494 0.4009 0.4623 0.0865 <0.001 0.4923 
AIC 691.0005 673.9509 674.2292 677.4453 793.3728 673.8835 

BIC 695.2547 680.3323 680.6106 685.9538 799.7542 682.3920 
       

Annual maximum runoff data 

 

Estimates ̂ = 3.4798 

̂ = 1.3599 

̂ = 0.5746 

̂ = 14.0714 

̂ = 18.6015 

̂ = 0.4225 

̂ = 2.4957 

̂ = 8.6434 

p̂ = 0.1907 

̂ = 3.5578 

̂ = 0.4347 

̂ = 1.0804 

p̂ = 0.0694 

̂ = 1.3541 

̂ = 5.5391 

p̂ = 0.3396 

̂ = 0.5935 

̂ = 5.6589 

̂ = 10.6613 

KS test 0.2708 0.3593 0.1865 0.1942 0.3290 0.2368 

p-value 0.1175 0.0138 0.5006 0.4498 0.0309 0.2260 
AIC 191.4239 189.4127 184.6287 187.0308 221.1213 181.5431 

BIC 193.2046 192.0838 187.2998 190.5923 223.7925 185.1046 
       

 

 
Figure 3. Plots of the observed histogram and estimated pdfs of the fitted distributions (the left column) and the empirical data and estimated 

cdfs of the fitted distributions (the right column) for the October rainfall data. The horizontal axis represents the October rainfall data 
(mm). The vertical axis in the left column represents densities while the vertical axis in the right column represents cdfs. The label 

indicates different distributions. 

 
Table 6. The parameter estimates under MLE, MPSE, ADE and CMVE, and goodness of fit statistics for the October rainfall data and the 

annual maximum runoff data. 
 

Method p̂  ̂  ̂  ̂  KS test p–value 

October rainfall data 

 

MLE 0.1286 0.5756 11.5522 11.9017 0.1057 0.4923 
MPSE 0.0032 0.4941 9.9820 9.9639 0.1210 0.3246 

ADE 0.1749 0.5290 8.7651 12.8235 0.1559 0.0982 

CMVE 0.0908 0.7670 8.8832 15.8535 0.0855 0.7551 
       

Annual maximum runoff data 

 

MLE 0.3396 0.5935 5.6589 10.6613 0.2368 0.2260 

MPSE 0.3625 0.7476 6.6119 11.6203 0.2271 0.2679 

ADE 0.2828 0.6139 6.0441 11.0480 0.1833 0.5218 
CMVE 0.6228 0.9267 8.1082 13.1096 0.2708 0.1176 
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Figure 4. Plots of the observed histogram and the estimated pdfs of the fitted distributions (the left column) and the empirical data and the 

estimated cdfs of the fitted distributions (the right column) for the annual maximum runoff data. The horizontal axis represents the 
annual maximum runoff data (m3/s). The vertical axis in the left column represents densities while the vertical axis in the right column 

represents cdfs. The label indicates different distributions. 

 

5.2 The return periods of the MWR distribution 
 

A return period (T) is an average time or an estimated average time between events such as floods, or earthquakes to 

occur (Chow et al., 1988). The return period of events means the period that events will occur once in T years. The return period 

is  

 
1

T
P X c




, 

 

where P is the probability of the occurrence of an extreme event which is defined as having occurred when random variable  X is 

greater than or equal to level C. T is return period, C  is threshold value or flood risk value, F(x) is the cdf of the distribution. The 

return periods of the MWR distribution can be calculated as follows: 

 

 

 
1

,
ˆ ˆˆˆ1 ; , , ,

T
F x c p   


 

 

 

where T is return period, c  is threshold value or flood risk value, F(x) is the cdf of the MWR distributions in Equation (7) with 

the estimated parameters p̂ , ̂ , ̂  and ̂  from the previous subsection. 

Note that we have only the threshold value of the annual maximum runoff data, so we use only the annual maximum 

runoff data to predict the return periods. Moreover, the results of the simulation studies show that ADE gave much lower MSE 

and AvRB values than other methods and the goodness of fit test in Table 6, the ADE method provided the small KS test values 

compared to other methods. Therefore, the return period can be predicted via estimated parameters using the ADE in Table 6. 

The threshold value or capacity value of I.17 station is 118 m3/s, which this reported by the Upper Northern Region 

Irrigation Hydrology Center, Thailand (Upper Northern Region Irrigation Hydrology Center, 2020). If the annual maximum 

runoff at this station exceeds the capacity value, then this station has a chance of flooding. The return periods based on the MWR 

distribution of the annual maximum runoff data of I.17 station is 

 

 

 
1 1

18.69.
ˆ ˆ 1 0.9465ˆˆ1 118; 0.2828, 0.6139, 6.0441, 11.0480

T
F x p   

  
     

  

  

The return period of the annual maximum runoff data of I.17 station is 18.69, which means that the period that flood 

will occur once in 18.69 years. 

 

6. Conclusions 
 

In this study, we proposed the MWR distribution and investigated the survival function and the rth moment and the sub-

model of the MWR distribution. The MLE, MPSE, ADE and CMVE methods were used to estimate parameters of the MWR 

distribution. The simulation study showed that the ADE outperforms other estimation methods. Application of the MWR 

distribution was conducted on two hydrological datasets, that is, the October rainfall data and annual maximum runoff data. 
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Based on the KS test, AIC, and BIC values, we found that the 

MWR distribution gave the best fit for two hydrological 

datasets. Furthermore, the CMVE was shown to be the best 

estimation method for the October rainfall dataset, while the 

ADE was found to be the best estimation method for the 

annual maximum runoff dataset.  We also calculated the 

return period of the annual maximum runoff data of the station 

in Muang Phayao based on the MWR distribution. The return 

period showed that there could be a flood in around 18 years. 

Finally, we are hopeful and certain that the MWR distribution 

can be used for the modeling and analysis of hydrological 

data. 
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