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Abstract 
 

Imputation methods deal with item nonresponse to solve the missing data problem. A new imputation method and 

corresponding point estimators for population mean have been proposed under two situations: using the response rate and the 

constant that gives the minimum mean square error for the estimator.  The biases and mean square errors of the proposed 

estimators are derived. The performance of this method is compared with some existing methods via simulations and an 

application to fine particulate matter data. The results show that the proposed estimator, which uses the optimum value of a 

constant, performs the best. It performs the second best when using the response rate in the estimator, which is free of known 

parameters. The estimated fine particulate matter in Kanchana Phisek Road in Bangkok using the best method is equivalent to 

42.22 micrograms per cubic meter with a mean square error of 0.34 micrograms per cubic meter squared. 
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1. Introduction  
 

 Missing data or nonresponse usually occurs in 

sample surveys, in which some sampling units refuse to 

respond sometimes, or are unable to participate in the sample 

surveys. This is a serious problem for researchers. If a dataset 

contains missing values, it leads to a negative effect on the 

results obtained from standard statistical methods such as 

population mean, population total, and population variance 

estimates. To solve this problem, one of the most popular 

methods is imputation using available data as a tool for the 

replacement of missing observations. In the case of a full 

response, several researchers have worked on estimating the 

population mean of the study variable Y by utilizing the 

information on an auxiliary variable X to increase the 

efficiency of the estimator. For example, Cochran (1940) 

applied auxiliary information to mean estimation and 

proposed a ratio estimator under a simple random sampling 

without replacement (SRSWOR) scheme as follows: 
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where 

ny   is sample mean of Y, and X  and 
nx  

are the 

population mean and sample mean of X, respectively. 

Srivenkatarmana (1980) was the first who proposed 

the transformation of an auxiliary variable and 

Bandyopadhyay (1980) suggested the transformation of an 

auxiliary variable to improve the population mean estimator as 

the dual to product estimator, for estimating the population 

mean as follows: 
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where * ,n
n

NX nx
x

N n





 and N and n are the sizes of 

population and sample. 

             Bahl and Tuteja (1991) proposed a new ratio type 

exponential method for estimating population mean under the 

SRSWOR scheme and their method is more efficient than the 



1110 K. Chodjuntug, & N. Lawson / Songklanakarin J. Sci. Technol. 44 (4), 1109-1118, 2022 

 

common methods: mean and ratio methods. Motivated by 

Bahl and Tuteja (1991), Singh and Pal (2015) proposed a 

chain ratio-ratio type exponential method which is more 

efficient than the common estimators including the mean, 

ratio and ratio type exponential estimators. This method 

replaces a sample mean of Y with 
Ry  . They defined the 

method for population mean estimation as follows: 

 

exp .n
CR n

n n

X xX
y y

x X x
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(3) 

 

             The estimators described above cannot be used to 

estimate the population mean when a dataset contains missing 

values. In the case of nonresponse, imputation is one of the 

methods to handle missing data and uses the available data as 

a source to draw assumptions to make reasonably accurate 

replacements for the missing observations. Moreover, a 

corresponding point estimator of population mean is obtained 

from the imputation method. Consequently, some researchers 

have investigated the imputation method to improve the 

efficiency of the estimator obtained from the imputation 

method. Many statisticians have applied information on an 

auxiliary variable to develop the imputation method. For 

example, Singh and Horn (2000) suggested a new imputation 

method called the compromised imputation method which 

contains a constant in the linear combination of main 

information and auxiliary information under the SRSWOR 

scheme.  

            Singh et al. (2014) proposed an exponential-type 

compromised imputation method which was motivated by 

Bahl and Tuteja (1991). They suggested the procedure as 

follows: 
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where k is a suitably chosen constant, 
rx  and 

ry are the 

response mean of X and Y respectively, X  is the population 

mean of auxiliary variable X, Y is an observed value of Y for 

the ith unit, and R and Rc are the sets of responding and non-

responding units, respectively.  

Under this method, the corresponding point 

estimator of population mean is defined as follows: 
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The mean square error of 
Expy  is given by 
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where ρ is the correlation coefficient between X and Y, and CX 

and CY are the coefficients of variation of X and Y, 

respectively. 

Their research showed the superiority of the Singh 

et al. (2014) method of imputation with 

2
1 2 ,  XY

XY X Y

X

C
k C C C

C
    over the common mean, ratio, and 

compromised imputation methods under certain conditions. 

 Recently, Chodjuntug and Lawson (2022) proposed 

an improved imputation method using the idea of Singh and 

Pal (2015) to improve Singh et al.’s (2014) alternative with 

the chain ratio estimator. In addition, their research suggested 

two constants (w1, w2) that replace k with w1 and (1-k)  with  

w2 in Singh et al.’s method.  The Chodjuntug and Lawson 

estimator is defined by  
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where w1 and w2 are suitably chosen constants. 

The point estimator of the population mean obtained 

from Chodjuntug and Lawson (2022) is  
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The mean square error of 
NExpy  is 
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where  
,

1 1
.r N

r N
    

 This method is more efficient than Singh et al.’s 

method of imputation, mean method of imputation, ratio 

method of imputation, or compromised method of imputation 

under conditions 
1

1 2
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 2 21 1YA MC     and .Y

X

C
K

C
   However, when each 

constant calculated by the different fomulas, this is 

complicated to apply for general researchers. 

In this study, we propose an improved exponential-

type imputation method using the ideas of Singh et al. (2014), 

and Chodjuntug and Lawson (2022) along with a 

corresponding estimator obtained from the proposed method, 

which we will consider under two situations; using the 

response rate and the constant that gives minimum mean 

square error of the estimator.  The biases and mean square 

errors of the proposed estimators are obtained up to the first 
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degree of approximation using a Taylor series. The mean 

square errors are used to compare the performances of the 

proposed estimators with some existing estimators in 

simulation studies, and in an application using the fine 

particulate matter 2.5 data from Kanchana Phisek road, 

Thailand. 

 

2. Materials and Methods 
 

This section reviews basic steps in our research. The 

procedures of the proposed imputation method are presented 

along with a corresponding point estimator, which is obtained 

from the proposed imputation method. In addition, the 

properties bias and mean square error of the proposed 

estimators are derived. 

 

2.1 Basic setup 
 

Let U = {U1, U2, . . . , UN} be a finite population of size N, yi and xi be values of study variable Y and auxiliary variable 

X, where i ϵ {1, 2, . . . , N}. Let 
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  be the population means of Y and X respectively. Let R 

and Rc be the sets of responding units and non-responding units. The value yi is observed for every i ϵ R,  but is missing for every 

i ϵ Rc. Based on a simple random sampling without replacement, s of size n with paired variables (X, Y) is selected from U and 

contains both r responding units and (n-r) non-responding units. Let 
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the sample mean of X and the response mean of X and Y, respectively. 

 

2.2 Proposed imputation method 
 

A new exponential-type imputation method is proposed following the ideas of Singh et al. (2014) and Chodjuntug and 

Lawson (2022). We propose to replace the ratio estimator  
r

r

X
y

x
  in equation (7) with the regression estimator   r ry b X x   

under the condition 
1 2 1.w w   The general form of imputation method is as follows: 
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Under the proposed imputation method, the point estimator of the population mean is  
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Corollary 1. Under simple random sampling without replacement with nonresponse in the study variable,  w1 + w2 = 1 and w1 = k, 

w2 = 1-k.  

To find the properties of the proposed estimator, we define  
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Next, writing 
RExpy  in terms of 

ie ’s, equation (11) takes the following form: 
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To find  RExpBias y , subtract Y  from equation (12), expanding and neglecting the higher order terms, and on taking 

expectations we have 
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To find  RExpMSE y , subtract Y  from equation (12) along with squaring, expanding and retaining the terms up to the 

first degree of approximation, and on taking expectations we have 
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Therefore, we get 
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From corollary 1, the constant w1 = k is unknown. We consider it under the two situations below.  

1) Use the response rate as a weight. We define  
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2) Find the optimum constant k, kopt which gives the minimum mean square error. To obtain the constant k, differentiate 

equation (14) with respect to k and equate the derivative to zero. 
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Note, that we can use 

 
2

2 1 ,
1

r

i r

i
y

y y

s
r









 

 
2

2 1

1

r

i r

i
x

x x

s
r









 and 

  
1

1

r

i r i r

i
xy

x x y y

s
r



 





 to estimate 2 2,  ,  Y X XYS S S  

when the parameters are unknown. Therefore, we suggest the estimator of kopt as follows: 
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2.3 Efficiency comparison of the proposed estimators  
 

In this section, the performances of the proposed estimators using k as the response rate and using k with the optimum 

value are compared with some existing estimators: 
Expy  and 

NExpy  using the mean square error in order to derive the conditions 

for when the proposed estimators 
.RExp kry  and 

.RExp kopty  are better than other mentioned estimators under the condition w1 + w2 

=1.   

 

2.3.1 Comparison of proposed estimator 
.RExp kry  with estimator 

Expy   
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When the condition in equation (21) is satisfied,  
.RExp kry  is more efficient than 

Expy . 

 

2.3.2 Comparison of proposed estimator  
.RExp kry  with estimator  

NExpy   

 

We have     .NExp RExp krMSE y MSE y  
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When the condition in equation (22) is satisfied,  .RExp kry  is more efficient than NExpy . 

 

2.3.3 Comparison of proposed estimator 
.RExp kopty  with estimator 

Expy   

 

We have      .Exp RExp koptMSE y MSE y  
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When the condition in equation (23) is satisfied,  .RExp kopty  is more efficient than Expy . 
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2.3.4 Comparison of proposed estimator  .RExp kopty  with estimator  NExpy   

 

We have     .NExp RExp koptMSE y MSE y   
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When the condition in equation (24) is satisfied,  .RExp kopty  is more efficient than NExpy . 

 

2.3.5 Comparison of proposed estimator .RExp kopty with estimator .RExp kry  
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When the condition in equation (25) is satisfied,  .RExp kopty  is more efficient than .RExp kry . 

 

3. Results and Discussion 
 

To see the performances of the corresponding estimator obtained from the proposed method for estimating population 

mean, we consider both simulation studies and an application to fine particulate matter data in Thailand using the R program (R 

Core Team (2021)). The details are as follows. 

 

3.1. Simulation studies  
 

In the simulation studies, we compare the performance of the new imputation method with the existing methods which 

are used to estimate the population mean in the presence of missing data, to support the theoretical findings. A paired (X, Y)  

dataset is generated from bivariate normal distribution with parameters 50,  200,  5,  100x yX Y S S     and ρ = 0.3, 0.5, 0.8  

where all the conditions in equations (21)-(25) are satisfied.  Random samples of sizes n(n = 100, 300, 600, 1000) are drawn from 

a population of size N=2,000 by the SRSWOR scheme. The study variable Y is missing completely at random at the three levels 

30, 20, and 10%, respectively. The simulation is repeated 10,000 times. We calculated the y  of each estimator, and then 

calculated the percentage relative efficiencies (PRE) of the estimators with respect to .Expy  The results are shown in Table 1. 

Table 1 shows that both proposed estimators give higher percentage relative efficiencies than the existing estimators. 

We can see big improvements in the proposed estimators when the correlation between Y and X is equal to 0.8 at all levels of 

missing values. The proposed estimator using the value of optimum k, 
.RExp kopty  performs the best and is followed by the 

proposed estimator using the response rate as the value of k, which is also an alternative estimator to use when some parameters 

are unknown.  

 

3.2. Case study  
  

 To assess the performance of the proposed estimator, fine particulate matter PM2.5(μg/m3) and  carbon monoxide CO 

(ppm) data from Kanchana Phisek Road in Bangkok, Thailand, in January 2020, are used in this study.   The data were collected 

as averages for every hour, and were obtained from the website of the Pollution Control Department of Thailand. PM2.5 is 

considered the study variable Y and CO is considered the auxiliary variable X. The parameters of the data are as follows: N = 708,  

46.4,Y   3.0,X   SY = 20.2, SX = 0.3, and ρ = 0.7 where all the conditions in equations (21)-(25) are satisfied.  Random 

sampling is used to select sample sizes n(n = 30, 50, 80) from the population. The data contain 20% of missing values of PM2.5. 

The results are shown in Figure 1 and Table 2.  



1116 K. Chodjuntug, & N. Lawson / Songklanakarin J. Sci. Technol. 44 (4), 1109-1118, 2022 

 

 Table 2 shows similar results to Table 1 in that the proposed estimator 
.RExp kopty  outperforms other existing estimators, 

followed by  
. .RExp kry   The proposed estimators works well with the PM2.5 data set. Therefore, it can be used to impute missing 

fine particulate matter and to estimate fine particulate matter in Kanchana Phisek Road in Bangkok, which is 42.22 micrograms 

per cubic meter with a mean squared error of 0.34 micrograms per cubic meter squared. 
 

Table 1. The percentage relative efficiencies of the estimators at different levels of sample size 
 

ρ n Estimator 

Percentage relative efficiency 

Missing 30% Missing 20% Missing 10% 

      

0.30 100 Expy  100.00 100.00 100.00 

  NExpy  103.02 102.34 101.20 

  .RExp kry  104.64 103.63 101.88 

  .RExp kopty  107.97 110.07 110.07 

 300 Expy  100.00 100.00 100.00 

  NExpy  103.23 102.30 101.24 

  .RExp kry  104.83 103.62 101.98 

  .RExp kopty  108.87 109.71 110.62 

 600 Expy  100.00 100.00 100.00 

  NExpy  103.25 102.25 101.22 

  .RExp kry  104.90 103.56 101.95 

  .RExp kopty  108.76 109.88 110.47 

 1,000 Expy  100.00 100.00 100.00 

  NExpy  103.18 102.22 101.15 

  .RExp kry  104.87 103.50 101.84 

  .RExp kopty  108.75 109.03 108.94 

0.50 100 Expy  100.00 100.00 100.00 

  NExpy  105.75 104.08 102.04 

  .RExp kry  115.02 110.77 105.39 

  .RExp kopty  130.94 135.59 135.53 

 300 Expy  100.00 100.00 100.00 

  NExpy  105.96 104.05 102.07 

  .RExp kry  115.35 110.69 105.52 

  .RExp kopty  132.39 133.27 134.78 

 600 Expy  100.00 100.00 100.00 

  NExpy  105.97 103.99 102.05 

  .RExp kry  115.36 110.57 105.46 

  .RExp kopty  130.83 133.73 133.99 

 1,000 Expy  100.00 100.00 100.00 

  NExpy  105.90 103.96 101.98 
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Table 1. Continued. 

 

ρ n Estimator 

Percentage relative efficiency 

Missing 30% Missing 20% Missing 10% 

      

0.50 1000 .RExp kry  115.17 110.39 105.26 

  .RExp kopty  130.14 129.95 129.13 

0.80 100 Expy  100.00 100.00 100.00 

  NExpy  110.26 106.83 103.32 

  .RExp kry  150.95 131.88 114.54 

  .RExp kopty  275.13 290.69 289.50 

 300 Expy  100.00 100.00 100.00 

  NExpy  110.42 106.83 103.35 

  .RExp kry  151.36 131.66 114.63 

  .RExp kopty  273.40 271.52 273.16 

 600 Expy  100.00 100.00 100.00 

  NExpy  110.45 106.76 103.33 

  .RExp kry  151.01 131.31 114.53 

  .RExp kopty  256.04 266.28 260.32 

 1,000 Expy  100.00 100.00 100.00 

  NExpy  110.36 106.71 103.27 

  .RExp kry  150.07 130.76 114.16 

  .RExp kopty  241.69 234.19 225.03 
      

 
Table 2. Mean square errors of the proposed estimators and the existing estimators 

 

Estimator 

Mean square error 

n = 30 n = 50 n = 80 

    

Expy  15.89 9.31 5.61 

NExpy  14.87 8.72 5.25 

.RExp kry  12.93 7.57 4.57 

.RExp kopty  7.91 4.64 2.79 

    

 

4. Conclusions 
  

 The chain regression exponential-type imputation 

method has been proposed for estimating population mean 

when nonresponse occurs in the study variable, using simple 

random sampling without replacement. The corresponding 

point estimators for population mean were also obtained from 

the proposed method of imputation under two situations. We 

suggested two alternatives to estimate the value of k; one is to 

use the response rate that is available on hand; and one is to 

use the optimum value of the constant that makes the mean 

square error its minimum. The properties of the proposed 

estimators, such as bias and mean squared error, were derived. 

We performed simulation studies and an application to fine 

particular matter observed in Bangkok to see the efficiency of 

the proposed estimator compared to other existing estimators. 

The results from both simulation studies and from the case 

study on fine particualte matter showed that the proposed 

method using the constant that makes mean squared error its 

optimum performed the best, and the second best was the one 

using the response rate, which is free from parameters. 

Therefore, this is an alternative approach to employ when 
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Figure 1. The scatter plot between PM2.5 and CO concentration data 

 

some parameters are not available in the study. 

       The proposed imputation method is an alternative 

method to handle missing data in the real world. It can be used 

to impute missing observations in order to create a completed 

data set and then to estimate the population mean or 

population total of the study variable. The obtained bias and 

mean square error formulas are easy to implement for 

researchers in order to measure the estimator’s efficiency. The 

proposed methods can be applied in complex survey designs 

such as two-phase sampling, stratified sampling, and cluster 

sampling, and can be extended to the case where both the 

study and auxiliary variables are missing. Other aspects in 

terms of population parameters can also be estimated such as 

total, proportion, and variance, that can be considered in 

future research.  
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