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Abstract 
 

In this study, the analytical solution of the Schrödinger equation for the Trigonometric Inversely Quadratic plus 

Coulombic Hyperbolic Potential via the methodology of the supersymmetric approach was obtained. The energy equation and its 

corresponding wave functions were fully calculated. The theoretic quantities such as Shannon entropy and Fisher information 

were calculated using the normalized radial wave function. The results obtained for Shannon entropy satisfied Beckner, 

Bialynicki-Birula and Mycieslki (BBM) principle and Cramer Rao uncertainty inequality for Fisher information. These results 

are in excellent agreement with those in the literature. The result of our study goes against the observation pointed out by Okon et 

al. in their recent paper, who claimed that information entropic measures cannot be studied under Trigonometric Inversely 

Quadratic plus Coulombic Hyperbolic Potential. 
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1. Introduction  
 

 The understanding of quantum mechanical systems 

is usually provided by the theoretic quantities such as entropic 

measures and Fisher information. These can be seen in the 

study of the electronic structure of atoms and molecules, 

characterization of complex signals of quantum mechanical 

systems in various areas of science (Howard, Sen, Borgoo & 

Geerlings, 2009; Ikhdair & Sever, 2008; Lopez-Ruiz, Nagy, 

Romera & Sanudo, 2009; Manzano, Yáñez, & Dehesa, 2010). 

The entropic uncertainty relations serve as alternatives to 

Heisenberg uncertainty relation and these have been tested by 

different authors (Angulo, Antolin, Zarzo & Cuchi, 1999; 

Bialynicki-Birula & Mycielski, 1975; Dehesa, Laguna & 

Sagar, 2010; Dehesa, Yáñez, Aptekarev, & Buyarov, 1998; 

Galindo & Pascual, 1978; Martínez-Finkelshtein, & Sorokin, 

 
2006; Orlowski, 1997; Sánchez-Ruiz, 1997; Shannon, 1948). 

Quantum information theory has a direct relationship with the 

Heisenberg uncertainty principle, which plays a very 

significant role in the simultaneous measurement of position 

and momentum of quantum mechanical particles. This 

entropic uncertainty relation relates to the position and 

momentum spaces obtained by Beckner, Bialynicki-Birula, 

and Mycieslki (BBM) (Lopez-Ruiz et al., 2009) is given by 

 

( ) ( ) (1 ),S S D log      (1) 

 

where D denotes the spatial dimension. In 1948, a new 

uncertainty relation, based on Shannon entropy, was 

established as a basic tool for investigating the fundamental 

limit of signal processing (Shannon, 1948). Recently, the 

theoretic quantities have been studied for different models 

using different physical potential terms due to its wider 

applications. For instance, Donga, Sunb, Dong, and Draayer 

(2014), studied Quantum information entropies for a squared 

tangent potential well, their result was seen to obey 
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Bialynicki-Birula, Mycielski inequality, Onate, Onyeaju, Ikot, 

Ebomwonyi, and Idiodi (2019), studied Fisher information 

and uncertainty relations for potential family. These authors 

deduced some uncertainty relations for Fisher information. 

Yahya, Oyewumi, and Sen (2014), in one of their papers, 

studied Information and complexity measures for the ring-

shaped modified Kratzer potential. Using Laguerre 

polynomials, Gegenbauer polynomials, and spherical 

harmonics, these authors calculated the Tsallis and Renyi 

entropies for q = 2. Najafizade, Hassanabadi, and Zarrinkamar 

(2016), investigated nonrelativistic Shannon information 

entropy for Kratzer potential. The result obtained satisfied 

BBM inequality. Sun, Dong, and Saad, (2013) calculated the 

position and momentum space information entropies using 

Asymmetric–trigonometric Rosen-Morse potential. Okon, 

Isonguyo, Antia, Ikot, and Popoola (2020a), studied Fisher 

and Shannon information entropies for a non-central inversely 

quadratic plus exponential Mie-type potential. These authors 

calculated expectation values and determined the Heisenberg 

uncertainty relation. Of all these studies and other works not 

captured in this paper, Okon, Akaninyene, Akaninyene, and 

Imeh (2020b) clearly stated that it has been a difficult task for 

authors to apply Trigonometric Inversely Quadratic plus 

Coulombic Hyperbolic Potential (TIQPCHP) to the study the 

information entropic measures. The authors claimed that the 

potential does not belong to the Pӧschl-Teller potential due to 

its combination, hence, they claimed the impossibility to 

obtain the theoretic quantities under the mentioned potential. 

They also pointed out that the potential is applicable only for a 

physical system where the bound state energies obtained can 

be used to study the motion of quarks, mesons, neutrinos and 

other elementary particles in high energy physics. Based on 

this argument, the present study wants to examine the Fisher 

information and Shannon entropy for the potential under 

consideration. The Trigonometric Inversely Quadratic plus 

Coulombic Hyperbolic Potential as given by Okon et al., 

(2020b) reads  
 

0

2
( ) ,

v sin Acosh
V r B

r r

 
    (2) 

               

where V0, A and B are constant and α is the screening 

parameter that characterizes the range of the potential. This 

potential can be reduced to another useful potential by giving 

numerical values to some of the potential parameters. 

 

 

2. Bound State Solutions 
 

For any physical quantum system, the original Schrӧdinger equation is given by Landau and Lifshitz (1977) and Schiff 

(1968). 

 

 
2

( ) ( ) ( ).
2

n m n n m

p
r E V r r 


   (3) 

                                                                                                 

Setting the wave function , ,( ) ( , )
( ) ,

n m

n m

R r Y
r

r

 
   the radial part of the Schrӧdinger equation is given as 

2 2
,

, ,2 2 2

( ) 2 ( 1)
( ) ( ),

2

n

n n

d R r
V r E R r

dr r





 
   

 

 
(4) 

 

where 
,nE is the non-relativistic energy, V(r) is the interacting potential, μ is the reduced mass,  is the reduced Planck’s 

constant, is the angular momentum quantum number, n is the quantum number and 
, ( )nR r is the wave function. The 

centrifugal term 
2

( 1)

r

  in Equation (6) can be approximated using Greene-Aldrich approximation scheme (Greene & Aldrich, 

1976). 

 
2

2 2

( 1) ( 1)
.

(1 )rr e 




 



 (5) 

 

This approximation scheme is valid for α << 1. Substituting Equation (2) and Equation (5) into Equation (4), the radial 

Schrӧdinger equation becomes 

 

1 2

3

2

,

,2 2

( )
( ),

(1 ) 1

r r

T Tn

T nr r

V e V ed R r
V R r

dr e e

 

 

 

 

 
   

   

 (6) 

 

where the following are used for mathematical simplicity. 

 

1

2
2 0

2

2
( 1) ,T

v sin
V

  
    (7) 
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2

2 0

2

2 (2 )
2 ( 1) ,T

v sin Acosh
V

   



    (8) 

 

3

,2 0

2 2

2 ( )2 ( )
( 1) .

n

T

B Ev sin Acosh
V

   



      (9) 

 

At this juncture, the methodology of supersymmetric quantum mechanics will be applied to obtain the energy equation of the 

radial Schrӧdinger equation. Thus, the ground state wave function for this system is written as 

 

 0, ( ) ( ) ,R r exp W r dr   (10) 

 

where W(r) in Equation (10) is called a superpotential function in supersymmetry quantum mechanics which gives a solution to 

the differential equation given in Equation (6). Substituting Equation (10) into Equation (6) leads to a Riccati equation of the 

form 

 

1 2

3

2

2

( )
( ) .

(1 ) 1

r r

T T

Tr r

V e V edW r
W r V

dr e e

 

 

 

 
   

 
 (11) 

 

For effective and accurate validity of a solution to Equation (6) and to validate the properties of both the left hand side and right 

hand side, a superpotential function of the form 

 

1
0( ) ,

1

r

r

e
W r

e











 


 (12) 

 

is proposed where 
0 and 

1 are two different constants that will soon be determined. In this work, it should be  noted that, the 

boundary conditions of the wave functions should be satisfied, i.e. 
, ( ) /n r r  becomes zero when r is infinite, and 

, ( ) /n r r  is 

finite when r goes to zero. Obviously, it is only when ,r   
, ( )n r is finite and 

, ( ) 0n r   at the origin point r = 0, the 

radial wave function can satisfy the boundary conditions. To make these regularity conditions, it requires that 
1 0,   

0 0   

and 
0 1.   The verification of these will soon be shown. Substituting Equation (12) into Equation (11), the two superpotential 

constants in Equation (12) can be determine as follows 

 

,2 2 0
0 2 2

2 ( )2 ( )
( 1) ,

nB Ev sin Acosh    
 


     (13) 

 

2 0
1 2

8
1 (1 2 ) ,

v sin 
 

 
     

 

 (14) 

 

2 20
12

0

1

2 (2 )
2 ( 1)

.
2

v sin Acosh   
 





  

  (15) 

 

The determination of the energy equation requires a partner potential constructed from the superpotential function. Thus, using 

Equation (12), the supersymmetric partner potentials in the form 2 ( )
( ) ( ) ,

dW r
V r W r

dr
   can be written as follows: 

 

2 1 0 1 1 1
0 2

(2 ) ( )
( ) ,

1 (1 )

r r

r r

e e
V r

e e

 

 

     


 

  

 
  

 
 (16) 

 

2 1 0 1 1 1
0 2

(2 ) ( )
( ) .

1 (1 )

r r

r r

e e
V r

e e

 

 

     


 

  

 
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 
 (17) 
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Equation (16) and Equation (17) satisfied the shape invariance condition via mapping of the form 
1 1 .     Now, putting 

1 0 ,a  a relationship can established between the partner potentials and a residual term 
1( )R a  that is independent of the 

variable r. Thus, 

 

0 1 1( , ) ( , ) ( ).V a r V a r R a    (18) 

 

The 
0a  is an old set of parameters while 1a is a new set of parameters uniquely determined from 

0a  via 
1 0( ) .aa f a a     

The relationship between the two sets of parameters occurs in a recurrence form as: 
2 0 2 ,a a  

3 0 3a a    and 

subsequently 
0 .na a n   On this note, Equation (18) can be written in a recurrence relation of the forms 

 
2 2

2 2 2 2. .
0 0 0 12 2 2 2

2 2

1 0 0

0 1

4 44 4
2 2

( ) ,
2 2

n nE EB B
a a

R a
a a
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 

 
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            
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         

 
(19) 
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            
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(20) 

 
2 2

2 2 2 2. .
0 2 0 32 2 2 2

2 2

3 0 0

2 3

4 44 4
2 2

( ) ,
2 2

n nE EB B
a a

R a
a a

  
 

 

         
              

            
      
      

         
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(23) 

 

Following the formalism of shape invariance and supersymmetric quantum mechanics approach in conjunction with the negative 

partner potential, the full energy level of the system can be written as 
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The corresponding wave function is given by 

 
0.5(1 ) (2 , )

,( ) (1 ) (1 2 ).u v u v

n nR y N y y P y    (26) 

 

where the following are used for mathematical simplicity 

 

2
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2

8
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v sin
v

 
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Detail of how the wave function in Equation (26) is obtained can be found in Appendix A. 

 

2.1 Normalization constant 
 

The parameter N in Equation (26) is a normalization factor which can easily be calculated using normalization 

condition. To calculate N, we recall the general condition. 

 

2

0

( ) 1.R r dr




 

(29) 

 

With the transformation ry e  and 1 2 ,x y   Equation (29) turns to 

 

             
1

2

1

1 2
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R x dx

x


 

 
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
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Substituting Equation (26) into Equation (30), leads to the following  

 
2 1

2, 2 1 1 (2 , )

1

(1 ) (1 ) ( ) 1,
2

n u v u v

n

N
x x P x dx





        (31) 

 

where a transformation of the form 1
1 1

2

x
x

 
   

 
 is defined. Using the appropriate integral in the appendix, the 

normalization factor becomes 

 

2

,

!2 (2 1)
.

(2 1) ( 2)
n

n u u v n
N

u v n

    
 
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 (32) 

 

3. Theoretic Quantities 
 

In this section, some theoretic quantities such as Shannon entropy and Fisher information are calculated using 

probability density function. Fisher information is a quantity of an efficient measurement procedure used for estimating an 

ultimate quantum limits which regulates how well it is possible to determine the internal structure of a system. The quantity 

determines the uncertainty relations of a constant mass quantum system and measures the local homogeneity of a system. Fisher 

information is used to predict the localization of a particle in a system while Shannon entropy is used to determine the stability of 

a system.  

 

3.1 Shannon entropy 
 

Shannon entropy for position space and momentum space respectively are given as (Onate, Adebimpe, Adebesin, & 

Lukman 2018) 
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Defining a transformation s = 1-y, Equation (33) becomes 
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where  
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Using the appropriate integral given in the Appendix B, Equation (35) is simplified to have Shannon entropy for the position 

space as 
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To obtain Shannon entropy for momentum space, we define x = -1+2y, and invoke it on Equation (34) to have 
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On correct substitutions using integral and formula in the Appendix B, the Shannon entropy for momentum space becomes 
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(40) 

 

3.2 Fisher information 
 

Fisher information for position space and momentum space respectively are given as Dehesa, Martinez-Finkelshtein, 

and SnchezRuiz (2001), Dehesa, Gonzalez-Ferez, and Sanchez-Moreno (2007), Romera, Sanchez-Moreno, and Dehesa (2005). 
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Following the same procedure for Shannon entropic in the position space, the Fisher information for position space is obtain as 
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 (43) 

where                             
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Using the integral in the Appendix B, the complete Fisher information is given as 
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To obtain the Fisher information for momentum space, the same steps for Shannon entropy in the momentum space were strictly 

followed to have 
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Using integral in the Appendix B, the Fisher information for the momentum space is given as 
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6. Discussion 
 

The variation of Shannon entropy for position space 

and momentum space against the parameter A are shown in 

Figures 1. A decrease in Shannon entropy for the momentum 

space corresponds to an increase in Shannon entropy for the 

position space and vice visa. As the parameter A increases, the 

Shannon entropy for position space featured out entropy 

squeezing. In the position space, there are more concentration 

of the wave function of the state as the parameter A increases 

resulting to a greater stability of the system. In Figure 2, the 

plots of Fisher information for position space and momentum 

space respectively against A are shown. As the parameter A 

increases in the position space, there is a decrease in the 

uncertainty of the system which increases the accuracy for 

predicting the localization of a particle in the system. This 

result is found to be opposite in the variation of the Fisher 

information for momentum space against the parameter A. 

The results for Shannon entropy and Fisher information 

respectively physically showed that a diffused density 

distribution γ(p) in momentum space is associated with a 

localized density distribution ( )r  in the position 

configuration. 

The comparison of the energy eigenvalues with the 

previous results is shown in Table 1. The two results are in 

fair agreement. The fairness of the agreement gets weaker as 

the quantum number increases linearly. Table 2 shows the 

presentation of the numerical computations of Shannon 

entropy for both the position space and momentum space. The 

results justified and confirmed Beckner, Bialynicki-Birula and 

Mycieslki (BBM) ( ) ( ) (1 ).S S D log      In this case, D 

= 1. Thus, the right hand side is 1+logπ = 1.497206180. This 

simply means that the sum of the entropies cannot go beyond 

1.497206180. The minimum bond for the sum of the entropies 

from the Table is 11.58371953, which is greater than 

1.497206180. From Table 2, it can be seen that the position 

Shannon entropy exhibits entropy squeezing as the quantum 

number increases linearly. The results of the position space 

and momentum space Fisher information are presented in 

Table 3. The two Fisher information varies inversely with one 

another. A squeezing effect is noted in the position space as 

αincreases steadily. The results in the Table 3 also confirmed 

the popular Cramer Rao uncertainty inequality 

( ) ( ) 36.I I    This inequality shows that the product of the 

Fisher information cannot go beyond 36. In our own case, as 

shown in Table 3, the minimum bound for the product of 

Fisher information is 49.88691549 which is greater than 36. 

This proves the accuracy of any result. The physical meaning 

of the inequality is that a decrease in Shannon entropy for 

position space corresponds to an increase in Shannon entropy 

for momentum space, this also applies to the Fisher 

information. Thus, a diffused density distribution γ(p) in 

momentum space is associated with a localized density 

distribution ( )r  in the position space or configuration space.  

 

7. Conclusions 
 

The study examined the manner of the energy 

eigenvalues, the wave function, Shannon entropy and Fisher 

information under the background of approximate solutions of    

 
 

Figure 1. Shannon entropy for momentum space and position space 

respectively against A with 
0 1B v      and 

0.15.   
 

 

              
Figure 2. Fisher information for momentum space and position 

space respectively against A with 
0 1,B v      

5   and 0.15.   
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Table 1. Comparison of the energy eigenvalues of the Trigonometric Inversely Quadratic plus Coulombic Hyperbolic Potential with 

0 1,v A      0.2B   and 0.1.     

 

n  SUSY (Okon et al., 2020b) n  SUSY (Okon et al., 2020b) 

        

0 0 0.202574496 0.1988204727 0 1 0.207595873 0.1999999965 

1 0 0.202563337 0.1987136453 1 1 0.207602790 0.1965293766 
2 0 0.200903711 0.1931126507 2 1 0.206358327 0.1887438717 

3 0 0.198825946 0.1845598182 3 1 0.204612314 0.1779319895 

4 0 0.196579945 0.1733752330 4 1 0.202615251 0.1644126026 
5 0 0.194249554 0.1596385566 5 1 0.200474627 0.1482951488 

6 0 0.191870838 0.1433772158 6 1 0.198244234 0.1296253900 

7 0 0.189461875 0.1246027028 7 1 0.195953973 0.1084252044 
8 0 0.187032725 0.1033205198 8 1 0.193621791 0.0847061215 

        

 

Table 2. Shannon entropy for various quantum number with 

0.15,    1,   5   and  
0 1B A v    

for the confirmation of Beekner, Bialynicki-Birula and 

Mycieslki (BBM) principle ( ) ( ) 1 .S S log      

 

n ( )S   ( )S   ( ) ( )S S   

    

0 2.614671605 11.54216753 14.15683914 
1 0.045045859 11.56295940 11.60800526 
2 0.000791654 11.58292787 11.58371953 
3 0.000014017 11.60212092 11.60213494 
4 0.000000248 11.62058285 11.62058310 
5 0.000000004 11.63835465 11.63835465 
    

 

Table 3. Fisher information at the ground state for position space 

and momentum space with 
0 1,v     

0,n  0.05,  0.1A    and 1B   for the 

confirmation of Cramer Rao relation ( ) ( ) 36.I I    

 

α ( )I   ( )I   ( ) ( )I I   

    

1 1.561567081 31.94670027 49.88691549 
2 0.109438724 477.0642202 52.20929952 
3 0.066042933 893.9385694 59.03832505 
4 0.028099201 2491.174037 69.99999999 
5 0.008564905 9573.153243 81.99314808 
6 0.004963984 21652.88253 107.4845624 
    

 

a one-dimensional Schrödinger equation with Trigonometric 

Inversely Quadratic plus Coulombic Hyperbolic Potential. 

The results of the energy eigenvalues agreed with the results 

of Okon et al. (2020b). The detailed study of the Shannon 

entropy and Fisher information gave the results that obeyed 

the BBM principle and Cramer Rao uncertainty inequality. 

These results are found to be in excellent agfigureement with 

those of the literature, thus, the application of information 

entropic measures under the Trigonometric Inversely 

Quadratic plus Coulombic Hyperbolic Potential is possible. 
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