
EVALUATING CREDIT SCORING MODELS

Vesarach Aumeboonsuke

A Dissertation Submitted in Partial

Fulfillment of the Requirements for the Degree of

Doctor of Philosophy (Finance)

School of Business Administration

National Institute of Development Administration

2011

ABSTRACT

Title of Dissertation Evaluating Credit Scoring Models

Author Miss Vesarach Aumeboonsuke

Degree Doctor of Philosophy (Finance)

Year 2011

Evaluating the credit worthiness of credit seekers is a crucial process for

financial institutions simply because their existence largely depends on how such a

process is conducted. Financial institutions use a variety of credit scoring methods

and a variety of criteria to select the best credit scoring methods. The primary purpose

of this research is to evaluate the performance of some of the existing popular credit

scoring methods that are widely used by financial institutions. The credit scoring

methods to be considered for comparison purpose include logistic regression,

discriminant analysis, and recursive partitioning. Several statistical criteria to be

considered for evaluation include the Kolmogorov-Smirnov statistic (K-S), the Gini

coefficient, and odds ratio at various cut-offs.

Much research in the past has compared credit scoring methods through using

sets of real-world data. In this paper, however, the comparison of the credit scoring

methods has been done by using a set of data generated through simulation in order to

acquire extensively representative and sufficiently effective samples; in this way, it is

possible to compare and validate the performance of the classification models on the

population.

This paper simulates the data sets of the population, draw samples from each

population set, runs each credit scoring method on each data set, computes the K-S,

Gini, and odds ratio for each model for each data set, compares the cross-validation

with the K-S, Gini, and odds ratio at various cut-off points, and evaluates the

performance of different credit scoring models across different methods, across

iv

samples with different ratios of “goods” to “bads”, and across samples drawn from the

population with different characteristics.

The findings of this research will be useful for financial institutions, especially

commercial banks, because they present evidence of how well each credit scoring

method can predict the credit score of loan applicants. Banks make lending decisions

based on such credit scoring systems, and the lending decision is crucial because it is

the source of their revenue. If the bank accepts the applicant that is going into default,

then it will have a bad loan, which results in loan losses. On the other hand, if the

bank rejects the applicant that is not going into default, then the bank has lost the

opportunity to gain more revenue from that applicant. Therefore, ideally, banks would

like to use a credit scoring model that has a stable and reliable predictive power across

different characteristics of populations and sample sets.

ACKNOWLEDGEMENTS

First and foremost I offer my sincerest gratitude to my advisor, Associate

Professor Dr. Arthur Lance Dryver, for his encouragement, advice, and support.

Without him this thesis would not have been completed or written. One simply could

not wish for a better or friendlier advisor.

I am grateful to my family especially my parents, Kasem Aumeboonsuke and

Ma. Laarni C. Aumeboonsuke, for their love and encouragements throughout my life.

I would like to thank my teachers at Assumption University, especially Dr.

Cherdpong Siboonruang, for his motivation and guidance. I remember the generosity

and inspiration of Dr. Tareque Nasser and Dr. Wiyada Nittayakasetwat, who

introduced me to the fascinating world of finance. I would also like to thank Dr.

Pathathai Sinliamtong for being a very supportive and understanding supervisor.

I would like to acknowledge the financial and academic support of the NIDA

Business School, particularly in the award of a full Ph.D. scholarship. I would like to

thank the committee members, Asst. Prof. Dr. Viput Ongsakul and Asst. Prof. Dr.

Sarayut Nathaphan for their constructive criticism and insightful comments.

I have been aided by Danai Likitratcharoen, my senior in the Ph.D. program,

for many months in running the R codes. I would also like to thank Nopphon

Tangjitprom for his friendship and support; in many ways I have learnt much from

and because of him.

I am also indebted to the contributors to the “Open Source” R programming

community for providing the numerous tools and systems I have used to produce my

thesis results.

My sincere thanks are due to the wonderful editor, Dr. Bruce Leeds, for his

detailed review and excellent advice.

Lastly, I offer my regards and blessings to my teachers and all of those who

supported me in any respect during the completion of this thesis.

Vesarach Aumeboonsuke

 April 2012

TABLE OF CONTENTS

 Page

ABSTRACT iii

ACKNOWLEDGEMENTS v

TABLE OF CONTENTS vi

LIST OF TABLES viii

LIST OF FIGURES ix

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 CREDIT SCORING IN THE LITERATURES 4

CHAPTER 3 CREDIT SCORING METHODS 8

3.1 Logistic Regression 9

3.2 Linear Discriminant Analysis 11

3.3 Recursive Partitioning 18

CHAPTER 4 METHODOLOGY 22

4.1 Step 1: Simulate Nine Data Sets of Populations 22

4.2 Step 2: Draw 3,000 Data Sets of Samples from Each Population 23

4.3 Step 3: Estimate Three Credit Scoring Models Per Each 24

Sample Set

4.4 Step 4: Test the Model by Using it to Predict the Credit 26

Scores of the Population and Use the Predicted Credit

Scores to Compute the K-S, Gini, and Odds Ratio.

4.5 Step 5: Construct the Confusion Matrix at Each Cut-Off Point 28

for Each Model

4.6 Step 6: Compare the Cross-Validation with the K-S, Gini, and 29

Odds Ratio

 vii

4.7 Step 7: Evaluate the Performance of Different Credit Scoring 30

Models Across Different Methods and Across Samples with

Different Characteristics.

CHAPTER 5 ANALYSIS OF RESULTS 31

CHAPTER 6 CONCLUDING REMARKS 65

BIBLIOGRAPHY 72

APPENDICES 77

Appendix A The R Codes 78

Appendix B The JAVA Codes 109

BIOGRAPHY 122

 viii

LIST OF TABLES

Tables Page

2.1 The Contradictory Findings in Previous Literature 5

3.1 Cross Validation 9

4.1 The Numbers of Sample Set to Construct the Four Models 24

4.2 Confusion Matrix 29

5.1 Average Actual Cut-Off for the Recursive Partitioning Models 33

5.2 Average Performance of Each Model at 10% Cut-Off 36

5.3 Average Performance of Each Model at 20% Cut-Off 40

5.4 The Model Performance Based on the Accuracy at 10% Cut-Off 46

5.5 The Model Performance Based on the Accuracy at 20% Cut-Off 48

5.6 The Model Performance Based on Type I Error at 10% Cut-Off 50

5.7 The Model Performance Based on Type I Error at 20% Cut-Off 51

5.8 Kolmogorov-Smirnov Statistics for Each Data Set and Each Model 54

5.9 Gini Coefficients for Each Data Set and Each Model 56

5.10 Odds Ratio of Each Data Set and Each Model for Cut-Off at 5% 59

5.11 Odds Ratio of Each Data Set and Each Model for Cut-Off at 10% 60

5.12 Odds Ratio of Each Data Set and Each Model for Cut-Off at 20% 61

5.13 Odds Ratio of Each Data Set and Each Model for Cut-Off at 30% 62

5.14 The Optimal Model Based on Each Criterion in Each Scenario 63

 ix

LIST OF FIGURES

Figures Page

1.1 The Ontology of the Credit Scoring Model 1

2.1 The Argument for Using Synthetic Data. 6

 3.1 Logistic Function 10

3.2 Linear Regression Function 17

3.3 Recursive Partitioning (Decision Tree) 19

4.1 Probability Distribution Functions and Cumulative Distribution 27

Functions

4.2 Kolmogorov-Smirnov Statistic (K-S) 27

4.3 Lorentz Diagram and Gini Coefficient 28

4.4 Procedure Employed in This Research 30

CHAPTER 1

INTRODUCTION

Credit scoring is the set of decision models and their underlying techniques

that aid lenders in the granting of consumer credit (Thomas, Edelman and Crook,

2002). The ontology of the credit scoring model is illustrated in Figure 1. According

to Figure 1, many loan applicants approach a bank to request loans, and these

applicants are required to submit information such as age, gender, employment,

residential status, number of dependents, etc. to the bank. Consequently, the bank will

use the credit scoring model to process the information and compute the credit score

of each loan applicant. The credit score is an interval scale that varies from zero to

any number depending on the user’s predetermined range. It can be scaled to range

from zero to one, so that it represents the probability that the loan applicant will not

default on the loan. The bank will set the critical credit score as a benchmark such

that, the bank will accept any loan applicant whose score falls above the critical score.

On the other hand, the bank will reject any loan applicant whose score falls between

zero and the critical score. In addition, the bank may perform further manual

intervention, thus overriding the credit score results.

Figure 1.1 The Ontology of the Credit Scoring Model

2

Evaluating the credit worthiness of credit seekers is a crucial process for

financial institutions simply because their existence largely depends on how such a

process is conducted. Financial institutions use a variety of credit scoring methods

and a variety of criteria to select the best credit scoring methods. The primary purpose

of this research is to evaluate the performance of some of the existing popular credit

scoring methods that are widely used by financial institutions. The credit scoring

methods to be considered for comparison purposes include the following:

1) Logistic regression

2) Discriminant analysis

3) Recursive partitioning

The criterion to be used for comparing the performances of these methods is

their predictability or explanatory power, which is the number of times a given

method identifies correctly credit-worthy customers, or correctly rejects non-credit-

worthy customers. Thomas, Edelman and Crook (2002) have suggested several

statistical criteria to be considered for evaluation purposes including:

1) Kolmogorov-Smirnov statistic (K-S)

2) Gini coefficient (Gini)

3) Odds ratio

Much of the past research has compared credit scoring methods by using sets

of real-world data. In this paper, however, the comparison of the credit scoring

methods has been done by using a set of data generated through simulation. The

reasons for using this set of simulated data are as follows: first, it is illegal in some

countries for banks to provide the personal information of their clients to outsiders, so

researchers are unable to obtain real data from the banks. The second reason for

generating data is to acquire extensively representative and sufficiently effective

samples because the purpose of this research is to compare and validate the

performance of the classifications models so population data are needed in order to

validate the models estimated from the samples and then to test the models with

reference to the population. Finally, real-world data creates a biased comparison

because it contains two sets of data; the first set contains observations that are

accepted by the banks, but the second set of data contains observations that are

rejected by the banks. The first set of data can be classified into good loans when the

3

person pays the loan back and a bad loan when the person defaults; however, the

second set of data cannot be classified because the person has not been accepted in the

first place. As a result, it is impossible to know whether each observation in the

second set of data falls into the good loan group or bad loan group. In this case,

whether the observation in the second set of data is in the category of either the good

loan group or the bad loan group is left unknown. For these reasons, it is more

appropriate to use synthetic data.

The findings of this research will be useful for financial institutions, especially

commercial banks, because evidence is presented concerning how well each credit

scoring method can predict the credit score of the loan applicant. Banks make lending

decisions based on such credit scoring systems, and the lending decision is crucial

because it is the source of their revenue (Altman, 1980; Mester, 1997; Atiya, 2001). If

the bank accepts the applicant that is going into default, then the bank will have a bad

loan, which results in loan losses. Contrariwise, if the bank rejects the applicant that is

not going into default, then the bank has lost the opportunity to gain more revenue

from that applicant. In this case, the bank experiences an opportunity cost. Therefore,

ideally, the banks would like to use a credit scoring model that can predict or

distinguish good loan applicants from bad loan applicants.

CHAPTER 2

CREDIT SCORING IN THE LITERATURES

There are many credit scoring methods that have been proposed and used in

the pertinent literature, for example, multiple linear regression (Hand and Henley,

1996, 1997; Mayers and Forgy, 1963; Orgler, 1970), discriminant analysis (Abdou,

Pointon and El-Masry, 2008; Desai, Crook and Overstreet, 1996; Eisenbeis, 1987;

Hand and Henley, 1996, 1997; Kolesar and Showers, 1985; Mayers and Forgy 1963;

Orgler 1970; Press and Wilson, 1978; Reichert, Cho and Wagner, 1983; Ripley, 1994;

Rosenberg and Gleit, 1994; Srinivasan and Kim, 1987; West, 2000; Wiginton, 1980),

logistic regression (Abdou, Point and El-Masry, 2008; Desai, Crook and Overstreet,

1996; Eisenbeis, 1987; Galindo and Tamayo, 2000; Hand and Henley, 1996, 1997;

Press and Wilson, 1978; Srinivasan and Kim, 1987; West, 2000; Wiginton, 1980),

neural networks (Abdou, Point and El-Masry, 2008; Baesens et al., 2003; Desai,

Crook and Overstreet, 1996; Galindo and Tamayo, 2000; Hand and Henley, 1996, 1997;

Hsieh, 2005; Ripley, 1994; West, 2000), data envelopment analysis (Emel et al.,

2003), and some non-parametric methods such as the k-nearest neighbor (Galindo and

Tamayo, 2000; Hand and Henley, 1996, 1997), and the decision tree (recursive

partitioning) (Galindo and Tamayo, 2000; Hand and Henley, 1996, 1997; Rosenberg

and Gleit, 1994).

Discriminant analysis was first introduced to credit scoring by Durand (1941),

followed by Mayers and Forgy (1963), who produced evidence that the performance

of discriminant analysis was better compared to stepwise multiple linear regression

analysis, and Wiginton (1980), who found that logistic regression gave superior

predictability when compared with discriminant analysis.

Ripley (1994) and Rosenberg and Gleit (1994) introduced the applications of

neural networks to credit decisions and fraud detection. Later on, many researchers

employed neural networks in their studies. The study of Hand and Henley (1996,

5

1997), for example, suggested that the K-nearest neighbor was the best model, while

Galindo and Tamayo (2000) found that the decision tree was the best model.

However, West (2000) showed that neural networks had less predictive power when

compared with the traditional methods in general. In addition, West (2000) also

suggested that logistic regression was superior to neural networks in particular. On the

other hand, Abdou, Point and El-Masry (2008) found that the neural networks

approach was superior to other models, such as logistic regression and discriminant

analysis.

The contradicting findings offered by Hand and Henley (1996, 1997), Galindo

and Tamayo (2000), West (2000) and Abdou, Point and El-Masry (2008) put these

approaches as to which one was superior, suggesting the need for more in-depth study

in order to reach decisive conclusions. Table 2.1 offers conclusions regarding the

contradictory findings of the four studies mentioned above. According to Table 2.1,

these contradictory results may come from using different data sets, different sample

sizes, different ratios of bad-to-good, or different numbers of independent variables.

Table 2.1 The Contradictory Findings in Previous Literature

Literature Best model Data
Sample

Size Good: Bad # of X

Hand & Henley
(1996, 1997)

K-nearest
neighbor

Mail order company,
UK

15,054
4,132

54.5 : 45.5
54.7 : 45.3

16

Galindo &
Tamayo (2000)

Decision tree Home mortgage
loans from one
financial institution,
Mexico

4,000 50.8 : 49.2 24

West (2000) Logistic

regression
German data,
Australian data

1,000
690

70 : 30
44.5 : 55.5

14

Abdou et al.
(2008)

Neural
network

4-year personal
loans from one
bank, Egypt

581 74.5 : 25.5 20

This study would like to reconcile the contradictory evidence from previous

studies concerning the performance of each model. In order to achieve this purpose,

6

population sets with different ratios of good loans to bad loans are formed, and

various sample groups are drawn from each population with different ratios of good

loans to bad loans. In this way, the research is able to test if the ratio of good loans to

bad loans and the sample size will affect the performance of each model.

Many researchers in the past, as mentioned above, used real-world data.

However the real data used in these studies reflect some bias in the sense that the

sample set of data contains the observations that are accepted by the banks but does

not contain the observations that are rejected by the banks. Wiginton (1980) has stated

that “…The data were presensored. That is, the credit applications had already been

screened by credit officers who rejected the ‘bad risks,’ thus removing much of the

variability of interest in the data and leaving only the pathological cases, which would

tend to confound any modeling effort….” This argument is presented in Figure 2.1,

where the credit scoring model is formed based on the sample set, including “bad

accepted” and “good accepted,” but excluding “bad rejected” and “good rejected.”

However, the “bad rejected” group is the most crucial group to include in the model

because the purpose of the model is to correctly identify bad borrowers so that the

bank does not have a bad loan.

Figure 2.1 The Argument for Using Synthetic Data.

Therefore, the researcher of this study believes that using real-world data to

evaluate the models of interest yields biased results. Moreover, the real-world data

represent the sample set. This research would like to assess how well each

7

classification model performs using the sample set as a training set and using the

population set as a test set. However, the real-world data do not contain enough

information about the population. In order to overcome this disadvantage, the

simulation technique is used to generate the data used in evaluating the credit scoring

models. Some simulations related to credit scoring models have been produced by

Dryver (2011) and Dryver and Jantra Sukkasem (2009). Dryver (2011) simulated two

populations and showed that the K-S statistic can be used for model comparison and

selection but it may lack sensitivity in some cases. Dryver and Jantra Sukkasem

(2009) simulated three populations and used logistic regression to investigate the

precision of the K-S statistic, the Gini coefficient, and odds at various cut-off points.

CHAPTER 3

CREDIT SCORING METHODS

Many credit scoring methods have been proposed and used in the literature, as

mentioned in the literature review. However, this research concentrates on the

following methods:

1) Logistic Regression

2) Discriminant Analysis

3) Recursive Partitioning

One important requirement for a practical and legitimate credit scoring model

is that the model can also offer the reason why it rejects or accepts loan applicants.

This kind of model feature enables banks to provide support that justifies their

decisions regarding loan applications. As a result, although there are many statistical

models that can predict y-value as “yes” or “no,”: this research only uses the models

that satisfy the requirement mentioned above.

According to Galindo and Tamayo (2000), another important issue for

financial decision making is the transparency or degree of interpretability of models.

Transparent models are those that are conceptually understood by the decision maker,

such as a decision tree expressed in term of profiles or rule sets. By contrast, while

neural networks can act as accurate black boxes, they are opaque and not able to

provide simple clues about the basis for their classifications or predictions. Elder and

Pregibon (1996) argue that if accuracy is acceptable, a more interpretable model is

more useful than a “black box.”

Moreover, it is feasible to use multiple linear regression, logistic regression,

and discriminant analysis to predict the credit score and to rank the applicants based

on their scores without any additional adjusting procedure to make a meaningful

comparison. Apart from these three models, recursive partitioning (decision tree) can

categorize the observations into many groups based on the credit scores. Although the

9

observations within the same group are given equal credit scores, each group is given

a different credit score so it is feasible to rank different groups of observations.

However, the k nearest neighbor can only estimate the predicted y as “yes” (accept) or

“no” (reject). In this case, it is impossible to use these two models to rank the

applicants. In addition, if there are two classes for the dependent variables, multiple

linear regression and discriminant analysis will produce identical results (Flury and

Riedwyl, 1985; Lawrence et al., 2010).

As a result of this observation, this research only focuses on logistic

regression, discriminant analysis, and recursive partitioning where it is transparent,

not redundant, and possible to rank the observations based on their predicted

probability of being a credit worthy client, so it is reasonable to use the K-S, Gini, and

odds ratio to compare and contrast the models.

In addition to the K-S, Gini, and odds ratio, the research also validates the

models by conducting cross validation at various cut-off scores in order to determine

the percent at which the model predicts correctly (that is the predicted y = yes is the

same as the actual y = not default and the predicted y = no is the same as the actual y

= default). In other words, the cross validation reports the type I and type II errors of

each model. Table 3.1 presents information on the cross validation, where the good

model is the model that correctly classifies each loan applicant and minimizes type I

and type II errors.

Table 3.1 Cross Validation

Data Set Actual
Bad Good

Predicted Bad Correct Assessment Type II Error
Good Type I Error Correct Assessment

3.1 Logistic Regression

Logistic regression (logit) is used for predicting the probability of the

occurrence of an event by fitting data into a logistic curve. It is a generalized linear

model used for binomial regression. Similar to linear regression analysis, it makes use

10

of several predictor variables that may be either numerical or categorical (Hosmer and

Lemeshow, 2000). For example, the probability that a person will default on his or her

bank loan might be predicted from the person's marital status (categorical, for

example, “single” = class “1,” “married” = class “2”), and number of dependents

(numerical, for example, 0, 1, 2, 3, etc.).

Figure 3.1 Logistic Function

 (1)

where (2)

A graph of the logistic function is shown in Figure 3.1 The logistic function is

defined as equation (1) and the variable z is usually defined as equation (2), where β0

is the intercept and β1, β2, β3, …,βk are the regression coefficients of x1, x2, x3,…,xk,

respectively. The intercept is the value of z when the value of all independent

variables is zero (e.g. the value of z is someone with no risk factors). Each of the

regression coefficients describes the weight or size of the contribution of that factor.

In equation (2), the sum of the product between each explanatory variable and its

weight is “z,” which is similar to the predicted value from multiple linear regression.

Then, the “z” is substituted into equation (1) to compute “f(z),” which is the predicted

value for the logistic function. The logistic function is practical in terms of predicting

the probability because it can take any value of explanatory variables from negative

11

infinity to positive infinity, whereas the predicted value “f(z)” is limited to the range

of zero and one, which makes it reasonable to represent the value of the probability of

a particular outcome.

A positive regression coefficient means that that explanatory variable

increases the probability of the outcome, while a negative regression coefficient

means that the variable decreases the probability of that outcome; a large regression

coefficient means that the risk factor strongly influences the probability of that

outcome, while a near-zero regression coefficient means that that risk factor has little

influence on the probability of that outcome.

Logistic regression is a useful way of describing the relationship between one

or more independent variables (e.g., age, sex, etc.) and a binary response variable that

has only two possible values such as defaulting on a loan (the observation has a

response variable equal to “0” if that observation is the person that “defaults,” and the

observation has a response variable equal to “1” if that observation is the person that

“does not default”).

According to equation (1), the logistic function has the predicted value (or

predicted credit score) f(z), which is expressed as the predicted probability that a

person will “not default,” and f(z) can take any value in the range of [0,1]. In order to

utilize the predicted value from the logistic function to make a proper loan approval

decision, the bank will set the cut-off score “c,” which serves as the critical value to

classify the applicants as “bad” or “good.” In this case, the loan applicant whose

predicted credit score f(z) falls into the range of [0,c] will be given a response variable

equal to “0” (will default) and the bank will reject the loan application. On the other

hand, the loan applicant whose predicted credit score f(z) falls into the range of (c,1]

will be given a response variable equal to “1” (will not default) and the bank will

approve the loan.

3.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is the statistical method for finding a

linear combination of features which characterize or separate two or more mutually-

exclusive and exhaustive classes of objects or events based on a set of measurable

object’s features.

12

LDA is closely related to ANOVA (analysis of variance) and linear regression

analysis, which also attempt to express one dependent variable as a linear

combination of a set of independent variables. (Fisher, 1936) In the ANOVA and

regression analysis, the dependent variable is a numerical quantity, while for LDA it

is a categorical variable. Logistic regression is similar to LDA in the sense that the

dependent variable is also a categorical variable. In LDA, the dependent variable (Y)

is the group and the independent variables (X) are the object features that might

describe the group. The dependent variable is always a category (nominal scale)

variable while the independent variables can be any measurement scale (i.e. nominal,

ordinal, interval, or ratio). LDA assumes that the groups can be separated by a linear

combination of features that describe the objects.

The objective of LDA is to minimize total error of classification. In order to

achieve this objective, the classification rule is to assign an object to the class with the

highest conditional probability. For example, the object will be classified in the

“good” class if, given a set of applicant features (), the probability that an object

belongs to the “good” class is higher that the probability that an observation belongs

to the “bad” class; that is, .

The bank would like to know , which is unknown: however, the

value of , the probability that an observation belongs to a particular set

of features given that the observation comes from a “good” class is known.

According the Bayes Theorem, there is a relationship between

and , as shown in equation (6).

 (6)

13

where P(good) = Ng / N = the probability that the observation is in the “good” class,

P(bad) = Nb / N = the probability that the observation is in the “bad” class,

Ng = the number of observations in the “good” class,

Nb = the number of observations in the “bad” class, and

N = Ng + Nb = the number of total observations.

However, to use the Bayes rule directly is impractical because in order to

obtain and so much data are acquired to obtain the relative

frequencies of each group for each measurement. It is more practical to assume the

distribution and obtain the probability theoretically. If we assume that each class has

multivariate normal distribution and each class has the same covariance matrix, we

can obtain the Linear Discriminant Analysis (LDA) function (Friedman, 1989; Hastie

and Tibshirani, 1996).

The following example shows how we can obtain the LDA function and how

LDA can be applied to credit scoring. Consider the case in which the bank would like

to know whether a loan applicant is good (will pay back on time) or bad (will not pay

back on time) based on several measurements of the loan applicant, such as age,

average monthly income, average monthly spending, marital status, etc. The object

(observation) is a loan applicant. Each measurement of the loan applicant is the

features that describe the object. These several features serve as the independent

variables. The class category “good” and “bad” of the loan applicant is what the bank

is looking for. This class category is the dependent variable. Assume that there are

two data sets, as shown in equation (3) and equation (4). Data set A, the “good”

borrowers, consists of “p” observations, while data set B, the “bad” borrowers,

consists of “q” observations, and a set of features contains “k” features (i.e. there are

“k” explanatory factors, or independent variables).

A = (3)

14

B = (4)

From equation (3) and equation (4), we can find the mean of each feature in

each class, as shown in equation (5) and equation (6), and the global mean (mean of

each feature based on the whole data set is presented in equation (7).

 (5)

 (6)

 (7)

where

Equation (8) and equation (9) represent the deviation between the actual value

of each feature in each observation and its mean value.

 (8)

15

 (9)

 (10)

 (11)

According to equation (10), , the k x k matrix, is the covariance matrix

of the data set in the class “good.” Similarly, in equation (11), , the matrix with

the same dimension as , is the covariance matrix of the data set in the class

“bad.”

Based on equation (10) and equation (11), we can find , the covariance

matrix of the whole data set, as shown in equation (12).

 (12)

where

 is the element in row “r” and column “s” of the covariance matrix ,

 is the element in row “r” and column “s” of the covariance matrix

, and is the element in row “r” and column “s” of the

covariance matrix .

The final step is to compute the Linear Discriminant Function () of each pre-

specified class “i,” Based on our example, there are two classes (“good” and “bad”) so

16

there will be two values of ; and , as shown in equation (13) and equation

(14).

 (13)

 (14)

where , is the matrix showing the values of features that

belong to object (or observation) “n.” For example is the value of feature “1” of

observation “n.”

In order to decide whether loan applicant (observation) “n” falls into the

“good” or “bad” class, the bank will compare the value of and . The rule is

to assign observation “n” to class “i” that has a maximum value of .

In a special case where there are two classes for the dependent variables, Flury

and Riedwyl (1985) and Lawrence et al. (2010) showed that the linear discriminant

analysis will be mathematically equivalent to the multiple linear regression.

3.2.1 Multiple Linear Regression

Multiple linear regression attempts to model the relationship between two or

more explanatory variables (independent) and a response variable (dependent) by

fitting a linear equation with the observed data. Every value of the independent

variable x is associated with the value of the dependent variable y. The regression line

for p number of explanatory variables x1, x2, ... , xp is expressed by equation (15).

 for i = 1, …, n (15)

These n equations can be written in vector form as shown by equation (16).

 (16)

17

where

Figure 3.2 Linear Regression Function

Figure 3.2 shows the best-fitting line of the linear regression function. In the

linear regression model, the best-fitting line for the observed data is calculated by

minimizing the sum of the squares of the vertical deviations from each data point to

the line. Because the deviations are squared, then summed, there are no cancellations

between positive and negative values. The least-squares estimates b0, b1, ... bp are the

values fit by the equation (17) and residuals εi are equal to the difference between the

observed and fitted values. The sum of the residuals is equal to zero. Multiple linear

regression can be used to model the credit scores, as can be seen from Mayers and

Forgy (1963) and Orgler (1970). Normally in practice, when banks use linear

regression, the predicted value represents the credit score that can take the value from

negative infinity to positive infinity and can be scaled to take the value from zero to

one. The banks have their own cut-off score to determine if the applicant’s score will

pass or fail.

18

 (17)

where is the fitted value of observation i

is the value of the independent variable j for observation i

is the estimated coefficient of each independent variable j

3.3 Recursive Partitioning

Recursive partitioning is a non parametric statistical method developed by

Breiman and Friedman in 1973. This method creates a decision tree that strives to

correctly classify members of the population based on binary dependent variables

(Breiman et al., 1984). It has been widely applied for classification in many scientific

fields such as biomedical field (Goldman et al., 1996, 1988; Zhang et al., 2001),

engineering (Bahl et al., 1989), astronomy (Owens, Griffiths and Ratnatunga, 1996),

and chemistry (Chen, Rusinko and Young, 1998). Recursive partitioning has an

advantage that it has the feature of transparency; it can be represented as a set of rules

in almost plain English. This makes it ideal for economic and financial applications.

The main characteristic of recursive partitioning is that the feature space, i.e.

the space spanned by all predictor variables, is recursively partitioned into a set of

rectangular areas. The partition is created such that observations with similar response

values are grouped. After the partition is completed, a constant value of the response

variable is predicted within each area. The partition produces a decision tree

(classification tree) that expresses a sequential classification process in which a case

(described by a set of attributes) is assigned to one of a disjoint set of classes. Each

leaf of a tree denotes a class (Quinlan, 1987).

The rationale of the decision tree can be explained in more detail by means of

a credit scoring example, as shown in . This example was taken from a book by

Thomas, Edelman and Crook (2002). Given information on the set of the determinants

of the credit quality of the loan applicants, the bank’s aim is to predict whether the

loan applicants will turn out to be “good” or “bad” (binary response variable) from a

19

set of binary explanatory factors (whether the residential status of the loan applicant is

that of an owner or not, whether the loan applicant has been a customer at the bank for

more or less than two years, whether the loan applicant has children or not, whether

the employment of the loan applicant is professional or not, whether the age of the

loan applicant is more or less than 26 and 21 years, and if the loan applicant is not the

owner of the house, whether the loan applicant lives with parents or not).

Figure 3.3 Recursive Partitioning (Decision Tree)

 Figure 3.3 illustrates a decision tree that can be obtained from using the
recursive partitioning model to classify the loan applicants into different groups. The
set of loan application data is first split into two subsets, so that looking at the sample
of previous applicants, these two new subsets of application attributes are far more
homogeneous regarding the default risk of the applicants than the original set. Each of
these sets is then again split into two to produce even more homogeneous subsets, and
the process is repeated. This is why the approach is called recursive partitioning. The
process stops when the subsets meet the requirements to be terminal nodes of the tree.
Each terminal node is then classified as a “good” or “bad” borrower and the whole
procedure can be presented graphically as the tree in. Figure 3.3.

Three decisions make up the classification tree procedure:
1) How to assign terminal nodes into good and bad categories
2) What rule to use to split the sets into two – the splitting rule
3) How to decide that a set is a terminal node – the stopping rule

20

The good-bad assignment decision can be made by computing the percentage

of good cases which represents the probability that any random case in the node is a

good case. This probability can be treated as a credit score that ranges from zero to

one. If the credit score is less than the cut-off score, then all the cases in the node will

be assigned into the bad category.

Zhang (2004) uses two steps in tree construction (growing and pruning) to

constitute the splitting rule and stopping rule. Suppose that we have observed p

covariates, denoted by a p-vector , and a response for individuals. For the th

individual, the measurements are

 (18)

The objective is to model the probability distribution of P (|) or a

function of this conditional distribution. The growing step begins with the root node,

which is the entire learning sample. The root node is the box on top of the tree in .

The most fundamental step in tree growing is to partition the root node into two

subgroups, referred to as daughter nodes, such that one daughter node contains mostly

bad borrowers (observations with y=0) and the other daughter node mostly good

borrowers (observations with y=1). Such a partition is chosen from all possible binary

splits based on the profiles of all loan applicants via questions such as: “Is the loan

applicant a home owner?” A loan applicant is assigned to the right or left daughter

according to whether the answer is yes or no. When all of the loan applicants are

assigned to either the left or right daughter nodes, the distribution in terms of the

credit score is assessed for both the left and right nodes using typically a node

impurity. One such criterion is entropy function

 (19)

where is the proportion of bad loan applicants in a specified node t. This function

is at its lowest level when = 0 or 1. 5310131027

other nodes are referred to as internal nodes. More precisely, the quality of a tree,

denoted by T, is reflected by the quality of its terminal nodes as follows:

 (20)

where is the set of terminal nodes of tree and the within-node

misclassification cost of node .

21

The ultimate objective of tree pruning is to select a sub-tree of the saturated

tree so that the misclassification cost of the selected sub-tree is the lowest on an

independent, identically-distributed sample, called a test sample. In practice, we rarely

have a test sample. Breiman et al. (1984) proposed using cross validation based on

cost-complexity. They defined the number of the terminal nodes of , denoted by | |, as

the complexity of . A penalizing cost, the so-called complexity parameter, is

assigned to a one unit increase in complexity, i.e., one extra terminal node. The sum

of all costs becomes the penalty for the tree complexity, and the cost-complexity of a

tree is:

 (21)

where (> 0) is the complexity parameter.

A useful and interesting result from Breiman et al. (1984) is that, for a given

complexity parameter, there is a unique smallest sub-tree of the saturated tree that

minimizes the cost-complexity measure (3). Furthermore, if 1 > 2, the optimally

pruned sub-tree corresponding to 1 is a sub-tree of the one corresponding to 2.

Therefore, increasing the complexity parameter produces a finite sequence of nested

optimally-pruned sub-trees, which makes the selection of the desirably-sized sub-tree

feasible.

Although the introduction of misclassification cost and cost complexity

provides a solution to tree pruning, it is usually a subjective and difficult decision to

choose the misclassification costs for different errors. Moreover, the final tree can be

heavily dependent on such a subjective choice. From a methodological point of view,

generalizing the concept of misclassification cost is difficult when we have to deal

with more complicated responses. For these reasons, a simpler way for pruning, as

described by Segal (1988) and Zhang and Singer (1999), is more preferable. The

impurity function can be defined as

 (22)

for a J-level y. Everything else in the tree growing step, as described above, is

applicable. For tree pruning, the only change to be made is to define the

misclassification cost from level k to level j, j, k = 1, . . . , J.

CHAPTER 4

METHODOLOGY

The comparison of the credit scoring methods has been done using the

following steps:

4.1 Step 1: Simulate Nine Data Sets of Populations.

4.2 Step 2: Draw 3,000 Data Sets of Samples from Each Population.

4.3 Step 3: Estimate Three Credit Scoring Models Per Each Sample Set.

4.4 Step 4: Test the Model by Using it to Predict the Credit Scores of the

Population and Use the Predicted Credit Scores to Compute the K-S, Gini, and Odds

Ratio.

4.5 Step 5: Construct a Confusion Matrix at Each Cut-Off Point for Each

Model.

4.6 Step 6: Compare the Cross-Validation with the K-S, Gini, and Odds

Ratio.

4.7 Step 7: Evaluate the Performance of Different Credit Scoring Models

Across Different Methods and Across Samples with Different Characteristics.

The details of each step are presented as follows:

4.1 Step 1: Simulate Nine Data Sets of Populations.

In the first step, nine sets of populations were created; each population set

consisted of “good” borrowers and “bad” borrowers. The actual y value for “good”

borrowers was “1” and the actual y value for “bad” borrowers was “0.” Then a set of

information was created. This set of information consisted of ten factors (independent

variables) for each borrower (x1, x2, …, x10). Each factor was randomly generated

following proper distribution with proper value of parameter. For example; if x1

represented the income of the applicants, it may have followed normal distribution; if

x2 represented residential status (either own or not), it may have followed the

23

Bernoulli distribution; and if x3 represented the length of time of employment, it may

have followed exponential distribution, etc. (Dryver and Jantra Sukkasem, 2009).

These factors represent the personal attributes of the loan applicants and it can be any

factors that the bank believed more or less predict whether the loan applicants will default

or not.

This research did not specify the factors in the model because the purpose of

was not to construct a model but to compare and evaluate the performance of each

credit applicant classification model, so that in practice, different banks can choose

different sets of factors they believe are important in determining the credit scoring of

the applicants. Moreover, it is also flexible for banks to change the sets of influential

factors across time.

The results from step 1 are the nine population sets (three different K-S

statistics by three different “good” to “bad” ratios). There are three population types

based on the parameters used in the simulation so that each population type has a

different K-S statistic (high K-S, mid K-S, and low K-S population with K-S statistics

equal to 75%, 50%, and 25%, respectively). And for each population type, there are

three population sets with different “good” to “bad” ratios:

1) Population 1: 700,000 goods and 300,000 bads (70:30)

2) Population 2: 800,000 goods and 200,000 bads (80:20)

3) Population 3: 900,000 goods and 100,000 bads (90:10)

4.2 Step 2: Draw 3,000 Data Sets of Samples from Each Population

In step 2, various sample sizes (the estimation sample) were drawn from each

set of population with 1,000 iterations each.

From each population set, draw 3,000 sets of samples:

1) 1,000 sets of sample 1: 1,000 goods and 1,000 bads

2) 1,000 sets of sample 2: 4,000 goods and 1,000 bads

3) 1,000 sets of sample 3: 9,000 goods and 1,000 bads

Drawing the observations within the same sample set was without

replacement. After each sample set was drawn, all of the observations were replaced

into the population before drawing the next sample set. For example, Sample 1 was

24

drawn from population set 1, following the proportion of sample type 1 (1,000 goods

and 1,000 bads). This step yielded 1,000 sets of sample 1, 1,000 sets of sample 2, and

1,000 sets of sample 3.

Using the same procedure as with population set 1 to draw 3,000 sets of

samples from each of the remaining 8 population sets, the research obtained 27,000

sample sets from the nine population sets.

4.3 Step 3: Estimate Three Credit Scoring Models Per Each Sample Set

In step 3, the researcher estimated each credit scoring model by using each

sample set as a training set.

The four credit scoring models are

1) LR (Logistic regression)

2) DA (Discriminant analysis)

3) RP1 (Recursive partitioning with restriction on tree growing)

4) RP2 (Recursive partitioning without restriction)

In this step, the research obtained 9 population sets * 3 sample sets per

population * 1,000 iterations per sample set * 4 models per iteration. Each of the

27,000 sample sets was used as a training set to estimate each of the 4 models.

In the end, there were 108,000 models formed based on 27,000 sample sets.

The numbers of sample sets for each case are summarized in Table 4.1.

Table 4.1 The Numbers of Sample Set to Construct the Four Models

K-S Numbers of Sample Set

High K-S
Population 1 (70:30)
 Sample 1: 2,000 observations (1,000 goods and 1,000 bads) 1,000
 Sample 2: 5,000 observations (4,000 goods and 1,000 bads) 1,000
 Sample 3: 10,000 observations (9,000 goods and 1,000 bads) 1,000
Population 2 (80:20)
 Sample 1: 2,000 observations (1,000 goods and 1,000 bads) 1,000
 Sample 2: 5,000 observations (4,000 goods and 1,000 bads) 1,000
 Sample 3: 10,000 observations (9,000 goods and 1,000 bads) 1,000

25

Table 4.1 (Continued)

K-S Numbers of Sample Set

Population 3 (90:10)
 Sample 1: 2,000 observations (1,000 goods and 1,000 bads) 1,000
 Sample 2: 5,000 observations (4,000 goods and 1,000 bads) 1,000
 Sample 3: 10,000 observations (9,000 goods and 1,000 bads) 1,000

Mid K-S
Population 1 (70:30)
 Sample 1: 2,000 observations (1,000 goods and 1,000 bads) 1,000
 Sample 2: 5,000 observations (4,000 goods and 1,000 bads) 1,000
 Sample 3: 10,000 observations (9,000 goods and 1,000 bads) 1,000
Population 2 (80:20)
 Sample 1: 2,000 observations (1,000 goods and 1,000 bads) 1,000
 Sample 2: 5,000 observations (4,000 goods and 1,000 bads) 1,000
 Sample 3: 10,000 observations (9,000 goods and 1,000 bads) 1,000
Population 3 (90:10)
 Sample 1: 2,000 observations (1,000 goods and 1,000 bads) 1,000
 Sample 2: 5,000 observations (4,000 goods and 1,000 bads) 1,000
 Sample 3: 10,000 observations (9,000 goods and 1,000 bads) 1,000

Low K-S
Population 1 (70:30)
 Sample 1: 2,000 observations (1,000 goods and 1,000 bads) 1,000
 Sample 2: 5,000 observations (4,000 goods and 1,000 bads) 1,000
 Sample 3: 10,000 observations (9,000 goods and 1,000 bads) 1,000
Population 2 (80:20)
 Sample 1: 2,000 observations (1,000 goods and 1,000 bads) 1,000
 Sample 2: 5,000 observations (4,000 goods and 1,000 bads) 1,000
 Sample 3: 10,000 observations (9,000 goods and 1,000 bads) 1,000
Population 3 (90:10)
 Sample 1: 2,000 observations (1,000 goods and 1,000 bads) 1,000
 Sample 2: 5,000 observations (4,000 goods and 1,000 bads) 1,000
 Sample 3: 10,000 observations (9,000 goods and 1,000 bads) 1,000

26

4.4 Step 4: Test the Model by Using it to Predict the Credit Scores of the

Population and Use the Predicted Credit Scores to Compute the K-S,

Gini, and Odds Ratio.

In step 4, the predicted y-values (credit scores) for each sample and its

population were computed based on the models estimated from each particular sample

set. Then, the K-S, Gini, and odds ratio for each model was computed based on the

predicted y-value of each observation. After the K-S, Gini, and odds ratios were

computed, it was possible to validate the performance of each model by comparing

the K-S, Gini, and odds ratio of each model. For example, to validate the logistic

regression model, the performance of the K-S, Gini, and odds ratio of logistic

regression models based on different sample sets that were drawn from the same

population set was compared with the performance of the other models when used to

predict the credit scores of that particular population set.

To compute the K-S, the probability distribution functions (pdf) of the

predicted credit scores for the “bad” group and the “good” group were constructed, as

illustrated in Figure 4.1. According to Figure 4.1 , the horizontal axis is the predicted

credit scores and the vertical axis is the frequency of observing a particular score. The

pdf(bad) is right-skewed (the right tail is longer) because most of the bad applicants

should get relatively low predicted credit scores, and as a result, the mass of the

distribution is concentrated on the left of the figure. On the contrary, the pdf(good) is

left-skewed (the left tail is longer) because the majority of the good applicants should

get relatively high predicted credit scores, and as a result, the mass of the distribution

is concentrated on the right of the figure. Subsequently, the cumulative distribution

functions (cdf) of the “bad” group and the “good” group were derived based on their

respective pdf.

27

Figure 4.1 Probability Distribution Functions and Cumulative Distribution Functions

Figure 4.2 was formed by combining the cdf(bad) and cdf(good) in Figure 4.1.

Consequently, the K-S statistic was calculated from the maximum distance between

the two curves. The larger the K-S was, the better the model was able to distinguish

between “bad” and “good” borrowers.

Figure 4.2 Kolmogorov-Smirnov Statistic (K-S)

Finally, the solid curve of the Lorentz diagram was obtained by formulating a

scatter plot between the cdf(bad) and the cdf(good), as illustrated in Figure 4.3. The

diagonal dotted line represents the points where the cdf(bad) was equal to the

cdf(good). If the model had a better performance in terms of distinguishing between

the “good” and “bad” borrowers, then the curve was more convex and lay further

away from the diagonal line. In this case, the area between the line and the curve will

28

be larger. The Gini coefficient was computed by two times of the area. In conclusion,

the higher the Gini coefficient was, the better the model performed.

Figure 4.3 Lorentz Diagram and Gini Coefficient

The odds ratio was computed using the number of goods accepted divided by

the number of bads accepted.

4.5 Step 5: Construct the Confusion Matrix at Each Cut-Off Point for

Each Model

In this step, the performance of each model was compared by constructing the

confusion (misclassification) matrix at each cut-off point using the predicted y-value

from step 3 and the actual (true) y-value from step 1 and step 2.

The cut-off points were assumed based on what banks use when making a

decision on fraud and approving credit cards. For fraud, often banks reject the bottom-

scoring 5%. For credit cards, it is between the bottom 10%, 20%, 30%, depending on

the bank (Dryver and Jantra Sukkasem, 2009; Dryver, 2011). Thus, assume 4 cut-off

points (5%, 10%, 20%, and 30%) to check the percentage of goods and bads rejected

at each cut-off point. For example, if we assume a 10% cut-off point, the confusion

matrix is formed as shown in Table 4.2. The observation whose predicted credit score

is below the cut-off point will be rejected, and the observation whose predicted credit

score is above the cut-off point will be accepted.

29

Table 4.2 Confusion Matrix

Data Set Predicted
Good Bad

Actual Good True Positive False Negative
Bad False Positive True Negative

Where True Positive = Acceptance of goods

False Positive = Acceptance of bads

True Negative = Rejection of bads

False Negative = Rejection of goods

Based on Table 4.2, it is possible to compute four measures that can be used to

gauge the level of misclassification and to compare the performance of different

models.

1) Accuracy: (True positives and negatives)/(Total cases)

2) Error rate: (False positives and negatives)/(Total cases)

3) Sensitivity: (True positives)/(Total actual positives)

4) Specificity: (True negatives)/(Total actual negatives)

Based on these measures, a bank can decide, for example, to maximize the

rejection of bads (maximize the specificity). In this case, the bank aims to reduce

losses. In another case where the bank wishes to get a higher market share and does

not mind approving some bads, it can minimize the rejection of goods by choosing the

model that maximizes sensitivity (Siddiqi, 2006).

4.6 Step 6: Compare the Cross-Validation with the K-S, Gini, and Odds

Ratio

In step 6, the research compares the cross-validation with the K-S, Gini, and

odds ratio to assess how informative the K-S, Gini, and odds ratios are. Also, the

research investigates the relationships among the K-S, Gini, and odds ratio for the

estimation sample and the model performance for validation using the entire

population.

30

4.7 Step 7: Evaluate the Performance of Different Credit Scoring Models

Across Different Methods and Across Samples with Different

Characteristics.

In the final step, the research evaluates the performance of each model by

going back to the results obtained from step 4 – 6. The procedure is illustrated in

Figure 4.4. According to Figure 4.4 , after drawing sample sets from each population

set, each sample set was used to estimate the different credit scoring models (namely,

logistic regression, discriminant analysis, and recursive partitioning). Then the

coefficient set from each model was tested on the population data to predict the credit

scores. Subsequently, the K-S, Gini, and odds ratios were computed based on the

predicted scores. Finally, for each of the three models, the K-S, Gini, odds ratios, and

specificity of each model were evaluated across different population “good” to “bad”

ratios, sample “good” to “bad” ratios, characteristics of the population, and models.

This procedure was repeated for different distribution parameters (high, mid, and low

K-S statistics), different “good” to “bad” ratios of populations (population 1, 2, and

3), and different “good” to “bad” ratios of samples (sample 1, 2, and 3).

The R and Java codes for all steps are provided in the appendix. The R codes

were written based on Crawley (2007) and the Java codes were written based on

Press, Teukolsky, Vetterling, and Flannery (1992).

Figure 4.4 Procedure Employed in This Research

CHAPTER 5

ANALYSIS OF RESULTS

This section includes some of the preliminary results as to the degree to which

each credit scoring method identifies correctly credit worthy customers. The results

are as follows.

The recursive partitioning methods classify the observations into groups and

assign the same predicted credit score to the observations that belong in the same

group. Logically, the observations with the same predicted credit score should be

treated in the same way. So, for the recursive partitioning models, the observations are

ranked based on their predicted credit score; then the observations that have a

predicted credit score less than or equal to the score at each pre-specified percentage

cut-off will be rejected. As a result, the actual percentage cut-offs in many of the

iterations are not equal to the pre-specified percentage cut-offs.

Table 5.1 shows the average actual percentage cut-off for each recursive

partitioning model. According to this table, RP1 is the recursive partitioning model

with the restriction that the tree will stop growing if further growth does not increase

the R-squared of the model by more than one percent. RP2 is the recursive

partitioning model without such restriction so the tree for RP2 will grow more than

the tree for RP1. As a result, RP2 models produce more final nodes and therefore

divide the observations into more groups. For this reason, the average actual

percentage cut-offs of the RP2 models are much closer to the pre-specified percentage

cut-offs compared to those of the RP1 models. A closer look into the average actual

percentage cut-offs of the RP2 models reveals that most of them are just about the

same as the pre-specified percentage cut-offs. The few exceptions are all of sample

type 1, sample type 2 of high KS population type 1 and 2 at 5% cut-off, and some

(70H, 70M, 80H, and 80M) of sample type 1 at a 10% cut-off.

32

In Table 5.1, the two numbers after RP1 or RP2 (70, 80, 90) represent the type

of population. 70 is population type one, which has a good:bad ratio equals to 70:30;

80 is population type two, which has a good:bad ratio equals to 80:20; and 90 is

population type three, which has a good:bad ratio equals to 90:10. The following

letter represents the degree to which the characteristics of “good” set and “bad” set are

different from each other. H is high KS, which means they are highly different (KS =

75%), M is mid KS (KS = 50%), and L is low KS (KS = 25%). The last digit

represents the type of sample. 1 is sample type 1, 2 is sample type 2, and 3 is sample

type 3.

In Table 5.1, some RP1 models running on a population with a low K-S are

reported at 100%. The reason for these models to have a 100% percentage cut-off is

that when the trees stop growing, there are not enough final nodes to classify the

observations based on the pre-determined cut-off percentage. For example, at 10%

cut-off, if the tree produces one big final node with members more than 90% of the

total observation, when ranking the observations based on the predicted score, using

the cut-off score at 10th percentile would result in rejecting all observations. Based on

these observations, it is not appropriate to compare the recursive partitioning models

to those of the other two models in terms of confusion matrix, accuracy rate, or type I

error rate because the actual percentage cut-off rates of the recursive partitioning

models are different from those of the other two models.

33

Table 5.1 Average Actual Cut-Off for the Recursive Partitioning Models

Cut-Off 5% 10% 20% 30% Cut-Off 5% 10% 20% 30%

RP170H1 18.25% 18.35% 23.48% 32.89% RP270H1 18.95% 18.95% 20.48% 30.55%

RP170H2 11.03% 12.18% 22.40% 34.65% RP270H2 10.32% 10.61% 20.31% 30.41%

RP170H3 8.20% 11.79% 22.25% 36.08% RP270H3 6.77% 10.27% 20.30% 30.94%

RP170M1 17.66% 17.94% 24.02% 37.03% RP270M1 14.90% 14.90% 20.69% 30.70%

RP170M2 10.16% 12.70% 23.48% 40.22% RP270M2 5.68% 10.35% 20.66% 30.54%

RP170M3 8.44% 12.77% 25.71% 37.42% RP270M3 5.24% 10.27% 20.55% 31.35%

RP170L1 5.76% 40.25% 43.81% 47.92% RP270L1 9.33% 10.72% 20.74% 30.88%

RP170L2 5.57% 46.76% 47.12% 47.28% RP270L2 5.37% 10.47% 20.71% 30.63%

RP170L3 5.55% 100% 100% 100% RP270L3 5.47% 10.34% 20.62% 30.94%

RP180H1 13.96% 14.17% 23.12% 32.78% RP280H1 14.27% 14.27% 20.45% 30.72%

RP180H2 8.04% 11.79% 22.14% 35.22% RP280H2 7.34% 10.28% 20.34% 30.41%

RP180H3 6.46% 11.50% 24.69% 38.73% RP280H3 5.19% 10.22% 20.32% 30.18%

RP180M1 14.40% 15.04% 24.87% 36.70% RP280M1 12.12% 12.14% 20.59% 30.67%

RP180M2 8.27% 12.76% 30.99% 38.31% RP280M2 5.24% 10.33% 20.46% 30.65%

RP180M3 7.22% 13.69% 35.38% 35.81% RP280M3 5.20% 10.29% 20.44% 30.31%

RP180L1 34.09% 38.00% 42.04% 48.28% RP280L1 8.44% 10.59% 20.75% 30.92%

RP180L2 45.47% 45.77% 46.48% 57.60% RP280L2 5.34% 10.51% 20.61% 30.79%

33

34

 Table 5.1 (Continued)

Cut-Off 5% 10% 20% 30% Cut-Off 5% 10% 20% 30%

RP180L3 100% 100% 100% 100% RP280L3 5.49% 10.33% 20.47% 30.55%

RP190H1 9.60% 11.79% 22.25% 35.27% RP290H1 9.63% 10.41% 20.51% 30.71%

RP190H2 6.13% 11.60% 25.73% 36.81% RP290H2 5.16% 10.22% 20.43% 30.31%

RP190H3 5.96% 11.67% 28.38% 35.11% RP290H3 5.14% 10.18% 20.31% 100%

RP190M1 11.25% 13.43% 26.81% 37.26% RP290M1 9.19% 10.44% 20.68% 30.94%

RP190M2 6.76% 13.35% 32.62% 34.63% RP290M2 5.21% 10.33% 20.57% 30.47%

RP190M3 6.69% 12.78% 27.27% 81.64% RP290M3 5.18% 10.24% 20.46% 69.79%

RP190L1 34.11% 35.98% 40.57% 47.95% RP290L1 7.62% 10.61% 20.80% 30.94%

RP190L2 56.37% 57.08% 61.45% 67.64% RP290L2 5.37% 10.49% 20.51% 30.74%

RP190L3 100% 100% 100% 100% RP290L3 5.26% 10.36% 20.42% 30.47%

34

35

Table 5.2 shows the results of cross-validation at the 10% cut-off point on

each iteration group from the population sets with high KS, mid KS, and low KS.

The top left and the bottom right cells of each iteration group show the

percentage at which the model classifies the observations correctly. According to the

confusion matrix, the top left cell and the bottom right cell are also known as the true

negative and the true positive, respectively. The other two cells show the percentage

at which the model classifies the observations incorrectly. Specifically, the top right

cell represents a type I error, where the model suggests that the bank approve the loan

to the applicant that actually is a bad borrower (false positive), and the bottom left cell

represents a type II error, where the model suggests that the bank reject the good

borrower (false negative). The model can be ranked based on one of these four cells

or based on the combination of the top left and the bottom right cells (the accuracy)

when comparing the performance of each model.

Vertical analysis of the Tables compares the performance of each model

across three population types and across three sample types. Vertical analysis across

the three population types provides an idea of how different proportions of good

borrowers to bad borrowers in a population affect the performance of each model. For

example, based on Table 5.2 Panel A, for all types of sample sets, as the ratio of good

borrowers to bad borrowers in the population set increases, the percentage of the true

positive increases, which means that all of the models can identify “good” borrowers

better. However, as the ratio of “good” borrowers to “bad” borrowers in the

population set increases, all of the models have worse ability to identify the “bad”

borrowers, which is shown by the decrease in the percentage of the true negative.

Vertical analysis across the three different sample types reveals that changing

the good:bad ratio of the sample sets does not affect the performance of LR and DA

models, of which the average actual cut-offs are approximately equal to the pre-

specified cut-offs.

Horizontal analysis of the tables compares the performance of each model

within one group of sample at a time. This analysis provides an idea of how each

model performs within each population and sample set regime.

The top right cell of each model in Table 5.2 represents a type 1 error, where

the model accepts “bad” borrowers. The results show that logistic regression models

have the lowest type 1 error for all of the sample types that are drawn from all of the

36

populations with a high KS (from Table 5.2 Panel A). The results are mixed for the

populations with a mid KS (from Table 5.2 Panel B). And lastly, the discriminant

analysis models have the lowest type 1 error for all of the sample types that are drawn

from all the populations with a low KS (from Table 5.2 Panel C).

Similar analysis can be done on Table 5.3. The results from Table 5.3 also

shows that logistic regression models perform best (in terms of having the lowest type

1 error) when the populations have a high KS (Table 5.3 Panel A), but the

discriminant analysis models perform best when the populations have a low KS. In

the mid KS regime, the logistic regression performs best in sample type 1 (when the

ratio of good:bad is 1,000:1,000) regardless of the population type; however, the

discriminant analysis performs best in sample type 2 (good:bad ratio is 4,000:1,000)

and in sample type 3 (good:bad ratio is 9,000:1,000). The ratio of “good” to “bad” in

the population does not affect the relative performance of each model.

Table 5.3 shows the results of cross-validation at the 20% cut-off point on

each iteration group from the population sets with high KS, mid KS, and low KS,

respectively. The interpretation of Table 5.3 is the same as that of Table 5.2. The

difference between Table 5.3 and Table 5.2 is the percentage cut-off point.

Table 5.2 Average Performance of Each Model at 10% Cut-Off

3 Types of Sample by
KS

LR Predicted DA Predicted
Y = 0

Y = 1

Y = 0

Y = 1

Panel A: (High KS)

Sample 1 (1,000 Goods)
(pop70:30)

Actual
Y = 0 9.6932% 20.3068% 9.6913% 20.3087%
Y = 1 0.3068% 69.6932% 0.3087% 69.6913%

Sample 1 (1,000 Goods)
(pop80:20)

Actual
Y = 0 9.1220% 10.8780% 9.1124% 10.8876%
Y = 1 0.8780% 79.1220% 0.8876% 79.1124%

37

Table 5.2 (Continued)

3 Types of Sample by

KS

LR Predicted DA Predicted
Y = 0

Y = 1

Y = 0

Y = 1

Panel A: (High KS)

Sample 1 (1,000 Goods)
(pop90:10)

Actual
Y = 0 6.6052% 3.3948% 6.5818% 3.4182%
Y = 1 3.3948% 86.6052% 3.4182% 86.5818%

Sample 2 (4,000 Goods)
(pop70:30)

Actual
Y = 0 9.6985% 20.3015% 9.6872% 20.3128%
Y = 1 0.3015% 69.6985% 0.3128% 69.6872%

Sample 2 (4,000 Goods)
(pop80:20)

Actual
Y = 0 9.1336% 10.8664% 9.0952% 10.9048%
Y = 1 0.8664% 79.1336% 0.9048% 79.0952%

Sample 2 (4,000 Goods)
(pop90:10)

Actual
Y = 0 6.6225% 3.3775% 6.5375% 3.4625%
Y = 1 3.3775% 86.6225% 3.4625% 86.5375%

Sample 3 (9,000 Goods)
(pop70:30)

Actual
Y = 0 9.7001% 20.2999% 9.6843% 20.3157%
Y = 1 0.2999% 69.7001% 0.3157% 69.6843%

Sample 3 (9,000 Goods)
(pop80:20)

Actual
Y = 0 9.1373% 10.8627% 9.0863% 10.9137%
Y = 1 0.8627% 79.1373% 0.9137% 79.0863%

Sample 3 (9,000 Goods)
(pop90:10)

Actual
Y = 0 6.6278% 3.3722% 6.5182% 3.4818%
Y = 1 3.3722% 86.6278% 3.4818% 86.5182%

38

Table 5.2 (Continued)

3 Types of Sample by

KS

LR Predicted DA Predicted
Y = 0

Y = 1

Y = 0

Y = 1

Panel B: (Mid KS)

Sample 1 (1,000 Goods)
(pop70:30)

Actual
Y = 0 8.4649% 21.5351% 8.4638% 21.5362%
Y = 1 1.5351% 68.4649% 1.5362% 68.4638%

Sample 1 (1,000 Goods)
(pop80:20)

Actual
Y = 0 7.2740% 12.7260% 7.1390% 12.8610%
Y = 1 2.7260% 77.2740% 2.8610% 77.1390%

Sample 1 (1,000 Goods)
(pop90:10)

Actual
Y = 0 4.6857% 5.3143% 4.5224% 5.4776%
Y = 1 5.3143% 84.6857% 5.4776% 84.5224%

Sample 2 (4,000 Goods)
(pop70:30)

Actual
Y = 0 8.5004% 21.4996% 8.4617% 21.5383%
Y = 1 1.4996% 68.5004% 1.5383% 68.4617%

Sample 2 (4,000 Goods)
(pop80:20)

Actual
Y = 0 7.2512% 12.7488% 7.2884% 12.7116%
Y = 1 2.7488% 77.2512% 2.7116% 77.2884%

Sample 2 (4,000 Goods)
(pop90:10)

Actual
Y = 0 4.6353% 5.3647% 4.7075% 5.2925%
Y = 1 5.3647% 84.6353% 5.2925% 84.7075%

Sample 3 (9,000 Goods)
(pop70:30)

Actual
Y = 0 8.4950% 21.5050% 8.3828% 21.6172%
Y = 1 1.5050% 68.4950% 1.6172% 68.3828%

Sample 3 (9,000 Goods)
(pop80:20)

Actual
Y = 0 7.2019% 12.7981% 7.2690% 12.7310%
Y = 1 2.7981% 77.2019% 2.7310% 77.2690%

39

Table 5.2 (Continued)

3 Types of Sample by

KS

LR Predicted DA Predicted
Y = 0

Y = 1

Y = 0

Y = 1

Panel B: (Mid KS)

Sample 3 (9,000 Goods)
(pop90:10)

Actual
Y = 0 4.5851% 5.4149% 4.7409% 5.2591%
Y = 1 5.4149% 84.5851% 5.2591% 84.7409%

Panel C: (Low KS)

Sample 1 (1,000 Goods)
(pop70:30)

Actual
Y = 0 5.4589% 24.5411% 5.4598% 24.5402%
Y = 1 4.5411% 65.4589% 4.5402% 65.4598%

Sample 1 (1,000 Goods)
(pop80:20)

Actual
Y = 0 4.0538% 15.9462% 4.0546% 15.9454%
Y = 1 5.9462% 74.0538% 5.9454% 74.0546%

Sample 1 (1,000 Goods)
(pop90:10)

Actual
Y = 0 2.2473% 7.7527% 2.2478% 7.7522%
Y = 1 7.7527% 82.2473% 7.7522% 82.2478%

Sample 2 (4,000 Goods)
(pop70:30)

Actual
Y = 0 5.4850% 24.5150% 5.4890% 24.5110%
Y = 1 4.5150% 65.4850% 4.5110% 65.4890%

Sample 2 (4,000 Goods)
(pop80:20)

Actual
Y = 0 4.0779% 15.9221% 4.0835% 15.9165%
Y = 1 5.9221% 74.0779% 5.9165% 74.0835%

Sample 2 (4,000 Goods)
(pop90:10)

Actual
Y = 0 2.2612% 7.7388% 2.2637% 7.7363%
Y = 1 7.7388% 82.2612% 7.7363% 82.2637%

40

Table 5.2 (Continued)

3 Types of Sample by

KS

LR Predicted DA Predicted
Y = 0

Y = 1

Y = 0

Y = 1

Panel C: (Low KS)

Sample 3 (9,000 Goods)
(pop70:30)

Actual
Y = 0 5.5055% 24.4945% 5.5086% 24.4914%
Y = 1 4.4945% 65.5055% 4.4914% 65.5086%

Sample 3 (9,000 Goods)
(pop80:20)

Actual
Y = 0 4.0980% 15.9020% 4.1034% 15.8966%
Y = 1 5.9020% 74.0980% 5.8966% 74.1034%

Sample 3 (9,000 Goods)
(pop90:10)

Actual
Y = 0 2.2698% 7.7302% 2.2724% 7.7276%
Y = 1 7.7302% 82.2698% 7.7276% 82.2724%

Note: 1. Recursive Partitioning (RP1 and PR2) has been Excluded because their
 Actual Cut-off Percentages are not Comparable.

2. All Samples have Constant 1,000 bads.

Table 5.3 Average Performance of Each Model at 20% Cut-Off

3 Types of Sample by
KS

LR Predicted DA Predicted
Y = 0

Y = 1

Y = 0

Y = 1

Panel A: (High KS)

Sample 1 (1,000 Goods)
(pop70:30)

Actual
Y = 0 18.1073% 11.8927% 18.0800% 11.9200%
Y = 1 1.8927% 68.1073% 1.9200% 68.0800%

Sample 1 (1,000 Goods)
(pop80:20)

Actual
Y = 0 14.9386% 5.0614% 14.9026% 5.0974%
Y = 1 5.0614% 74.9386% 5.0974% 74.9026%

41

Table 5.3 (Continued)

3 Types of Sample by
KS

LR Predicted DA Predicted
Y = 0

Y = 1

Y = 0

Y = 1

Panel A: (High KS)
Sample 1 (1,000 Goods)

(pop90:10)

Actual
Y = 0 8.5237% 1.4763% 8.5134% 1.4866%
Y = 1 11.4763% 78.5237% 11.4866% 78.5134%

Sample 2 (4,000 Goods)
(pop70:30)

Actual
Y = 0 18.1298% 11.8702% 18.0286% 11.9714%
Y = 1 1.8702% 68.1298% 1.9714% 68.0286%

Sample 2 (4,000 Goods)
(pop80:20)

Y = 0 Y = 1 Y = 0 Y = 1

Actual
Y = 0 14.9651% 5.0349% 14.8351% 5.1649%
Y = 1 5.0349% 74.9651% 5.1649% 74.8351%

Sample 2 (4,000 Goods)
(pop90:10)

Actual
Y = 0 8.5355% 1.4645% 8.4821% 1.5179%
Y = 1 11.4645% 78.5355% 11.5179% 78.4821%

Sample 3 (9,000 Goods)
(pop70:30)

Actual
Y = 0 18.1363% 11.8637% 18.0041% 11.9959%
Y = 1 1.8637% 68.1363% 1.9959% 68.0041%

Sample 3 (9,000 Goods)
(pop80:20)

Actual
Y = 0 14.9726% 5.0274% 14.8044% 5.1956%
Y = 1 5.0274% 74.9726% 5.1956% 74.8044%

Sample 3 (9,000 Goods)
(pop90:10)

Actual
Y = 0 8.5384% 1.4616% 8.4653% 1.5347%
Y = 1 11.4616% 78.5384% 11.5347% 78.4653%

42

Table 5.3 (Continued)

3 Types of Sample by
KS

LR Predicted DA Predicted
Y = 0

Y = 1

Y = 0

Y = 1

Panel B: (Mid KS)

Sample 1 (1,000 Goods)
(pop70:30)

Actual
Y = 0 15.0841% 14.9159% 14.7617% 15.2383%
Y = 1 4.9159% 65.0841% 5.2383% 64.7617%

Sample 1 (1,000 Goods)
(pop80:20)

Actual
Y = 0 11.6509% 8.3491% 11.3351% 8.6649%
Y = 1 8.3491% 71.6509% 8.6649% 71.3351%

Sample 1 (1,000 Goods)
(pop90:10)

Actual
Y = 0 6.5926% 3.4074% 6.4001% 3.5999%
Y = 1 13.4074% 76.5926% 13.5999% 76.4001%

Sample 2 (4,000 Goods)
(pop70:30)

Actual
Y = 0 14.9776% 15.0224% 15.1276% 14.8724%
Y = 1 5.0224% 64.9776% 4.8724% 65.1276%

Sample 2 (4,000 Goods)
(pop80:20)

Actual
Y = 0 11.5411% 8.4589% 11.6992% 8.3008%
Y = 1 8.4589% 71.5411% 8.3008% 71.6992%

Sample 2 (4,000 Goods)
(pop90:10)

Actual
Y = 0 6.5227% 3.4773% 6.6213% 3.3787%
Y = 1 13.4773% 76.5227% 13.3787% 76.6213%

Sample 3 (9,000 Goods)
(pop70:30)

Actual
Y = 0 14.8761% 15.1239% 15.2100% 14.7900%
Y = 1 5.1239% 64.8761% 4.7900% 65.2100%

Sample 3 (9,000 Goods)
(pop80:20)

Y = 0 Y = 1 Y = 0 Y = 1

Actual
Y = 0 11.4407% 8.5593% 11.7898% 8.2102%
Y = 1 8.5593% 71.4407% 8.2102% 71.7898%

43

Table 5.3 (Continued)

3 Types of Sample by

KS

LR Predicted DA Predicted
Y = 0

Y = 1

Y = 0

Y = 1

Panel B: (Mid KS)

Sample 3 (9,000 Goods)
(pop90:10)

Actual
Y = 0 6.4643% 3.5357% 6.6865% 3.3135%
Y = 1 13.5357% 76.4643% 13.3135% 76.6865%

Panel C: (Low KS)
Sample 1 (1,000 Goods)

(pop70:30)

Actual
Y = 0 9.7630% 20.2370% 9.7634% 20.2366%
Y = 1 10.2370% 59.7630% 10.2366% 59.7634%

Sample 1 (1,000 Goods)
(pop80:20)

Actual
Y = 0 7.0218% 12.9782% 7.0224% 12.9776%
Y = 1 12.9782% 67.0218% 12.9776% 67.0224%

Sample 1 (1,000 Goods)
(pop90:10)

Actual
Y = 0 3.7775% 6.2225% 3.7778% 6.2222%
Y = 1 16.2225% 73.7775% 16.2222% 73.7778%

Sample 2 (4,000 Goods)
(pop70:30)

Actual
Y = 0 9.7969% 20.2031% 9.7999% 20.2001%
Y = 1 10.2031% 59.7969% 10.2001% 59.7999%

Sample 2 (4,000 Goods)
(pop80:20)

Actual
Y = 0 7.0532% 12.9468% 7.0573% 12.9427%
Y = 1 12.9468% 67.0532% 12.9427% 67.0573%

Sample 2 (4,000 Goods)
(pop90:10)

Actual
Y = 0 3.7950% 6.2050% 3.7963% 6.2037%
Y = 1 16.2050% 73.7950% 16.2037% 73.7963%

Sample 3 (9,000 Goods)
(pop70:30)

Actual
Y = 0 9.8159% 20.1841% 9.8174% 20.1826%
Y = 1 10.1841% 59.8159% 10.1826% 59.8174%

44

Table 5.3 (Continued)

3 Types of Sample by

KS

LR Predicted DA Predicted
Y = 0

Y = 1

Y = 0

Y = 1

Panel C: (Low KS)

Sample 3 (9,000 Goods)
(pop80:20)

Actual
Y = 0 7.0690% 12.9310% 7.0727% 12.9273%
Y = 1 12.9310% 67.0690% 12.9273% 67.0727%

Sample 3 (9,000 Goods)
(pop90:10)

Actual
Y = 0 3.8026% 6.1974% 3.8028% 6.1972%
Y = 1 16.1974% 73.8026% 16.1972% 73.8028%

Note: 1. Recursive Partitioning (RP1 and PR2) has been Excluded because their

Actual Cut-off Percentages are not Comparable.

2. All samples have constant 1,000 bads.

Table 5.4 shows the comparison of two models using the cross-validation

method at a 10% cut-off point. According to Table 5.4, for populations with high KS,

the logistic regression performs best in all population types and all sample types. For

a population with mid KS, the logistic regression performs best in all sample types

drawn from population type 1 or in sample type 1 drawn from any population type.

The discriminant analysis performs best in other sample types. And finally, for a

population with a low KS, the discriminant analysis performs best in all population

types and sample types.

In Table 5.5, two models are compared using the cross-validation method at a

20% cut-off point. According to Table 5.5, for populations with a high KS, the

logistic regression performs best in all population types and all sample types. For

population with a mid KS, the logistic regression performs best in samples of type 1

drawn from any population type; however, the discriminant analysis performs best in

sample type 2 and 3. And finally, for a population with a low KS, the discriminant

analysis performs best in all population types and sample types.

45

The last column of Table 5.4 and Table 5.5 represents the percentage of

number of times that the logistic regression has a higher accuracy rate than the

discriminant analysis. For example, in Table 5.4, when using models from sample 1

(1,000 Goods) and testing on population 70:30, high K-S, there are 701 iterations out

of 1,000 iterations (70.10% of times) when the logistic regression model obtains a

higher accuracy than the discriminant analysis.

Table 5.6 and Table 5.7 depict the type I error (the acceptance of bads) of each

model. The last column shows the model that has the lowest error. Comparing Table 5.4

and Table 5.6, the model that performs best based on the accuracy level is also the

model that performs best in terms of having the lowest type I error. Comparing Table 5.5

and Table 5.7 yields the same conclusion.

46

Table 5.4 The Model Performance Based on the Accuracy at 10% Cut-Off

KS LR DA Highest Accuracy %LR win over DA
High KS
Population 1 (70:30)
Sample 1 (1,000 Goods) 79.3863% 79.3825% LR 70.10%
Sample 2 (4,000 Goods) 79.3969% 79.3744% LR 99.20%
Sample 3 (9,000 Goods) 79.4002% 79.3685% LR 100.00%
Population 2 (80:20)
Sample 1 (1,000 Goods) 88.2441% 88.2248% LR 82.20%
Sample 2 (4,000 Goods) 88.2672% 88.1904% LR 99.90%
Sample 3 (9,000 Goods) 88.2746% 88.1727% LR 100.00%
Population 3 (90:10)
Sample 1 (1,000 Goods) 93.2104% 93.1635% LR 89.60%
Sample 2 (4,000 Goods) 93.2450% 93.0750% LR 99.90%
Sample 3 (9,000 Goods) 93.2556% 93.0363% LR 100.00%
Mid KS
Population 1 (70:30)
Sample 1 (1,000 Goods) 76.9299% 76.9277% LR 53.40%
Sample 2 (4,000 Goods) 77.0007% 76.9234% LR 94.80%
Sample 3 (9,000 Goods) 76.9901% 76.7655% LR 99.50%
Population 2 (80:20)
Sample 1 (1,000 Goods) 84.5479% 84.2780% LR 99.70%
Sample 2 (4,000 Goods) 84.5023% 84.5768% DA 4.70%
Sample 3 (9,000 Goods) 84.4039% 84.5380% DA 7.50%

46

47

Table 5.4 (Continued)

KS LR DA Highest Accuracy %LR win over DA
Population3 (90:10)
Sample 1 (1,000 Goods) 89.3713% 89.0447% LR 100.00%
Sample 2 (4,000 Goods) 89.2706% 89.4149% DA 0.00%
Sample 3 (9,000 Goods) 89.1701% 89.4819% DA 0.00%
Low KS
Population 1 (70:30)
Sample 1 (1,000 Goods) 70.9178% 70.9196% DA 36.60%
Sample 2 (4,000 Goods) 70.9699% 70.9780% DA 23.60%
Sample 3 (9,000 Goods) 71.0110% 71.0172% DA 29.50%
Population 2 (80:20)
Sample 1 (1,000 Goods) 78.1077% 78.1092% DA 38.30%
Sample 2 (4,000 Goods) 78.1558% 78.1669% DA 15.20%
Sample 3 (9,000 Goods) 78.1960% 78.2068% DA 20.70%
Population3 (90:10)
Sample 1 (1,000 Goods) 84.4947% 84.4957% DA 36.00%
Sample 2 (4,000 Goods) 84.5223% 84.5275% DA 23.60%
Sample 3 (9,000 Goods) 84.5396% 84.5448% DA 25.10%

Note: 1. Exclude Recursive Partitioning (RP1 and PR2) because their Actual Cut-off Percentages are not

Comparable.

 2. All Samples have Constant 1,000 Bads

47

48

Table 5.5 The Model Performance Based on the Accuracy at 20% Cut-Off.

KS LR DA Highest Accuracy %LR win over DA
High KS
Population 1 (70:30)
Sample 1 (1,000 Goods) 86.2146% 86.1600% LR 88.60%
Sample 2 (4,000 Goods) 86.2596% 86.0571% LR 100.00%
Sample 3 (9,000 Goods) 86.2726% 86.0081% LR 100.00%
Population 2 (80:20)
Sample 1 (1,000 Goods) 89.8772% 89.8052% LR 87.00%
Sample 2 (4,000 Goods) 89.9302% 89.6701% LR 100.00%
Sample 3 (9,000 Goods) 89.9452% 89.6087% LR 100.00%
Population 3 (90:10)
Sample 1 (1,000 Goods) 87.0473% 87.0267% LR 72.50%
Sample 2 (4,000 Goods) 87.0710% 86.9642% LR 99.50%
Sample 3 (9,000 Goods) 87.0769% 86.9305% LR 100.00%
Mid KS
Population 1 (70:30)
Sample 1 (1,000 Goods) 80.1682% 79.5234% LR 100.00%
Sample 2 (4,000 Goods) 79.9551% 80.2553% DA 0.00%
Sample 3 (9,000 Goods) 79.7522% 80.4200% DA 0.00%
Population 2 (80:20)
Sample 1 (1,000 Goods) 83.3017% 82.6703% LR 100.00%
Sample 2 (4,000 Goods) 83.0822% 83.3984% DA 0.00%
Sample 3 (9,000 Goods) 82.8814% 83.5796% DA 0.00%

48

49

Table 5.5 (Continued)

KS LR DA Highest Accuracy %LR win over DA
Mid KS
Population 3 (90:10)
Sample 1 (1,000 Goods) 83.1851% 82.8002% LR 100.00%
Sample 2 (4,000 Goods) 83.0454% 83.2426% DA 0.00%
Sample 3 (9,000 Goods) 82.9286% 83.3729% DA 0.00%
Low KS
Population 1 (70:30)
Sample 1 (1,000 Goods) 69.5261% 69.5268% DA 42.70%
Sample 2 (4,000 Goods) 69.5939% 69.5999% DA 32.60%
Sample 3 (9,000 Goods) 69.6318% 69.6349% DA 39.50%
Population 2 (80:20)
Sample 1 (1,000 Goods) 74.0436% 74.0447% DA 40.60%
Sample 2 (4,000 Goods) 74.1065% 74.1146% DA 27.60%
Sample 3 (9,000 Goods) 74.1381% 74.1455% DA 32.20%
Population 3 (90:10)
Sample 1 (1,000 Goods) 77.5550% 77.5557% DA 39.90%
Sample 2 (4,000 Goods) 77.5901% 77.5926% DA 39.90%
Sample 3 (9,000 Goods) 77.6052% 77.6057% DA 48.40%

Note: 1. Recursive Partitioning (RP1 and PR2) has been Excluded Because their Actual Cut-off Percentages
are not Comparable.

 2. All samples have constant 1,000 bads.

49

50

Table 5.6 The Model Performance Based on Type I Error at 10% Cut-Off

KS LR DA Lowest error

High KS
Population 1 (70:30)
Sample 1 (1,000 Goods) 20.3068% 20.3087% LR
Sample 2 (4,000 Goods) 20.3015% 20.3128% LR
Sample 3 (9,000 Goods) 20.2999% 20.3157% LR
Population 2 (80:20)
Sample 1 (1,000 Goods) 10.8780% 10.8876% LR
Sample 2 (4,000 Goods) 10.8664% 10.9048% LR
Sample 3 (9,000 Goods) 10.8627% 10.9137% LR
Population 3 (90:10)
Sample 1 (1,000 Goods) 3.3948% 3.4182% LR
Sample 2 (4,000 Goods) 3.3775% 3.4625% LR
Sample 3 (9,000 Goods) 3.3722% 3.4818% LR
Mid KS
Population 1 (70:30)
Sample 1 (1,000 Goods) 21.5351% 21.5362% LR
Sample 2 (4,000 Goods) 21.4996% 21.5383% LR
Sample 3 (9,000 Goods) 21.5050% 21.6172% LR
Population 2 (80:20)
Sample 1 (1,000 Goods) 12.7260% 12.8610% LR
Sample 2 (4,000 Goods) 12.7488% 12.7116% DA
Sample 3 (9,000 Goods) 12.7981% 12.7310% DA
Population 3 (90:10)
Sample 1 (1,000 Goods) 5.3143% 5.4776% LR
Sample 2 (4,000 Goods) 5.3647% 5.2925% DA
Sample 3 (9,000 Goods) 5.4149% 5.2591% DA
Low KS
Population 1 (70:30)
Sample 1 (1,000 Goods) 24.5411% 24.5402% DA
Sample 2 (4,000 Goods) 24.5150% 24.5110% DA
Sample 3 (9,000 Goods) 24.4945% 24.4914% DA
Population 2 (80:20)
Sample 1 (1,000 Goods) 15.9462% 15.9454% DA
Sample 2 (4,000 Goods) 15.9221% 15.9165% DA
Sample 3 (9,000 Goods) 15.9020% 15.8966% DA

51

Table 5.6 (Continued)

KS LR DA Lowest error
Population 3 (90:10)
Sample 1 (1,000 Goods) 7.7527% 7.7522% DA
Sample 2 (4,000 Goods) 7.7388% 7.7363% DA
Sample 3 (9,000 Goods) 7.7302% 7.7276% DA

Note: 1. Recursive Partitioning (RP1 and PR2) has been Excluded Because their

Actual Cut-off Percentages are not Comparable.

2. All Samples have Constant 1,000 bads.

Table 5.7 The Model Performance Based on Type I Error at 20% Cut-Off

KS LR DA Lowest error
High KS
Population 1 (70:30)
Sample 1 (1,000 Goods) 11.8927% 11.9200% LR
Sample 2 (4,000 Goods) 11.8702% 11.9714% LR
Sample 3 (9,000 Goods) 11.8637% 11.9959% LR
Population 2 (80:20)
Sample 1 (1,000 Goods) 5.0614% 5.0974% LR
Sample 2 (4,000 Goods) 5.0349% 5.1649% LR
Sample 3 (9,000 Goods) 5.0274% 5.1956% LR
Population 3 (90:10)
Sample 1 (1,000 Goods) 1.4763% 1.4866% LR
Sample 2 (4,000 Goods) 1.4645% 1.5179% LR
Sample 3 (9,000 Goods) 1.4616% 1.5347% LR
Mid KS
Population 1 (70:30)
Sample 1 (1,000 Goods) 14.9159% 15.2383% LR
Sample 2 (4,000 Goods) 15.0224% 14.8724% DA
Sample 3 (9,000 Goods) 15.1239% 14.7900% DA
Population 2 (80:20)
Sample 1 (1,000 Goods) 8.3491% 8.6649% LR
Sample 2 (4,000 Goods) 8.4589% 8.3008% DA
Sample 3 (9,000 Goods) 8.5593% 8.2102% DA

52

Table 5.7 (Continued)

KS LR DA Lowest error
Population 3 (90:10)
Sample 1 (1,000 Goods) 3.4074% 3.5999% LR
Sample 2 (4,000 Goods) 3.4773% 3.3787% DA
Sample 3 (9,000 Goods) 3.5357% 3.3135% DA
Low KS
Population 1 (70:30)
Sample 1 (1,000 Goods) 20.2370% 20.2366% DA
Sample 2 (4,000 Goods) 20.2031% 20.2001% DA
Sample 3 (9,000 Goods) 20.1841% 20.1826% DA
Population 2 (80:20)
Sample 1 (1,000 Goods) 12.9782% 12.9776% DA
Sample 2 (4,000 Goods) 12.9468% 12.9427% DA
Sample 3 (9,000 Goods) 12.9310% 12.9273% DA
Population 3 (90:10)
Sample 1 (1,000 Goods) 6.2225% 6.2222% DA
Sample 2 (4,000 Goods) 6.2050% 6.2037% DA
Sample 3 (9,000 Goods) 6.1974% 6.1972% DA

Note: 1. Recursive Partitioning (RP1 and PR2) has been Excluded Because their

Actual Cut-off Percentages are not Comparable.

 2. All Samples have Constant 1,000 bads.

Table 5.8 and Table 5.9 compare four models using Kolmogorov-Smirnov

Statistics and Gini coefficients, respectively.

The results from Table 5.8 and Table 5.9 show that, comparing four models

under different regimes, the model with the highest KS statistic also has the highest

Gini coefficient.

In the high KS population, the logistic regression model has the highest KS

statistic and Gini coefficient regardless of the good:bad ratio of the population and the

sample.

The mid KS and the low KS populations show opposite results. In the mid KS

population, the logistic regression model has the highest KS and Gini in sample type 1

regardless of the population type. But the discriminant analysis model has the highest

KS and Gini in sample type 2 and 3.

53

However, in the low KS population, the discriminant analysis model has the

highest KS and Gini in sample type 1, whereas the logistic regression model has the

highest KS and Gini in sample type 2 and 3. A change in population type does not

alter the results.

Column 7 to column 12 of Table 12 and Table 13 represents the percentage of

number of times that one model has a higher K-S than another model. For example, in

Table 5.8, when using models from sample 1 (1,000 Goods) and testing on population

70:30 with a high K-S, there are 751 iterations out of 1,000 iterations (75.10% of

times) when the logistic regression model obtains a higher K-S than the discriminant

analysis, 100% of the time when the logistic regression model obtains a higher K-S

than the recursive partitioning models, 100% of the time when the discriminant

analysis obtains a higher K-S than the recursive partitioning models, and 23.4% of the

time when the restricted recursive partitioning obtains a higher K-S than the

unrestricted recursive partitioning.

Based on Table 5.8, in the high K-S population scenario, logistic regression

always obtains a higher K-S relative to the discriminant analysis, with a probability of

more than 70%, regardless of the population good:bad ratio or the sample good:bad

ratio.

In the mid K-S regime, the sample good:bad ratio does affect the results.

Logistic regression always obtains a higher K-S relative to the discriminant analysis

only in sample 1 (1,000 goods and 1,000 bads), with 100% probability. However, if

the sample good:bad ratio varies to be sample 2 (4,000 goods and 1,000 bads) or

sample 3 (9,000 goods and 1,000 bads), then the discriminant analysis always obtains

a higher K-S, with 100% probability.

The results in the low K-S are opposite from those in the mid K-S regime. In

sample 2 (4,000 goods and 1,000 bads) and sample 3 (9,000 goods and 1,000 bads),

logistic regression obtains a higher K-S than discriminant 65% to 76% of the total

iterations. However, in sample 1 (1,000 goods and 1,000 bads), logistic regression

obtains a higher K-S than discriminant only 44% to 46% of the total iterations.

54

Table 5.8 Kolmogorov-Smirnov Statistics for Each Data Set and Each Model

KS LR DA RP1 RP2 Highest K-S LR WIN DA LR WIN RP1 LR WIN RP2 DA WIN RP1 DA WIN RP2 RP1 WIN RP2

High KS
Population 1 (70:30)

Sample 1 (1,000 Goods) 72.3987% 72.2803% 62.8430% 63.6740% LR 75.10% 100.00% 100.00% 100.00% 100.00% 23.40%
Sample 2 (4,000 Goods) 72.5133% 71.9729% 60.6272% 63.6111% LR 100.00% 100.00% 100.00% 100.00% 100.00% 2.90%

Sample 3 (9,000 Goods) 72.5396% 71.7923% 58.1788% 61.8741% LR 100.00% 100.00% 100.00% 100.00% 100.00% 2.40%
Population 2 (80:20)

Sample 1 (1,000 Goods) 72.5801% 72.4397% 62.7316% 63.7673% LR 78.10% 100.00% 100.00% 100.00% 100.00% 95.50%
Sample 2 (4,000 Goods) 72.7057% 72.1062% 60.5565% 63.6844% LR 99.60% 100.00% 100.00% 100.00% 100.00% 96.90%

Sample 3 (9,000 Goods) 72.7394% 71.9381% 57.9825% 62.0103% LR 100.00% 100.00% 100.00% 100.00% 100.00% 99.20%
Population 3 (90:10)

Sample 1 (1,000 Goods) 72.5273% 72.4215% 62.9245% 63.9401% LR 73.30% 100.00% 100.00% 100.00% 100.00% 94.00%

Sample 2 (4,000 Goods) 72.6524% 72.0955% 60.8177% 63.8571% LR 99.40% 100.00% 100.00% 100.00% 100.00% 99.50%

Sample 3 (9,000 Goods) 72.6837% 71.9150% 58.2382% 62.2018% LR 100.00% 100.00% 100.00% 100.00% 100.00% 29.90%

Mid KS

Population 1 (70:30)
Sample 1 (1,000 Goods) 52.3734% 50.5660% 46.1017% 42.8599% LR 100.00% 100.00% 100.00% 100.00% 100.00% 19.90%

Sample 2 (4,000 Goods) 51.7477% 52.6577% 45.1975% 41.7045% DA 0.00% 100.00% 100.00% 100.00% 100.00% 2.10%
Sample 3 (9,000 Goods) 51.1789% 53.2783% 44.4041% 39.4519% DA 0.00% 100.00% 100.00% 100.00% 100.00% 1.50%

Population 2 (80:20)
Sample 1 (1,000 Goods) 52.2946% 50.5532% 45.9664% 42.7891% LR 100.00% 100.00% 100.00% 100.00% 100.00% 95.50%

Sample 2 (4,000 Goods) 51.7134% 52.5819% 45.0159% 41.5933% DA 0.00% 100.00% 100.00% 100.00% 100.00% 96.90%
Sample 3 (9,000 Goods) 51.1658% 53.2110% 44.1232% 39.3684% DA 0.00% 100.00% 100.00% 100.00% 100.00% 99.10%

54

55

Table 5.8 (Continued)

KS LR DA RP1 RP2 Highest K-S LR WIN DA LR WIN RP1 LR WIN RP2 DA WIN RP1 DA WIN RP2 RP1 WIN RP2

Mid KS

Population 3 (90:10)
Sample 1 (1,000 Goods) 52.4615% 50.6524% 46.1998% 43.0115% LR 100.00% 100.00% 100.00% 100.00% 100.00% 94.40%

Sample 2 (4,000 Goods) 51.8495% 52.7508% 45.1455% 41.8454% DA 0.00% 100.00% 100.00% 100.00% 100.00% 96.20%
Sample 3 (9,000 Goods) 51.2999% 53.3257% 44.6899% 39.7526% DA 0.00% 100.00% 100.00% 100.00% 100.00% 22.50%

Low KS
Population 1 (70:30)

Sample 1 (1,000 Goods) 23.2939% 23.2967% 16.9416% 14.0439% DA 44.10% 100.00% 100.00% 100.00% 100.00% 23.40%
Sample 2 (4,000 Goods) 23.4752% 23.4523% 16.0681% 13.4905% LR 66.90% 100.00% 100.00% 100.00% 100.00% 3.00%

Sample 3 (9,000 Goods) 23.4845% 23.4464% 11.7243% 12.0834% LR 72.60% 100.00% 100.00% 100.00% 100.00% 1.50%
Population 2 (80:20)

Sample 1 (1,000 Goods) 23.3639% 23.3649% 17.1838% 14.3138% DA 46.60% 100.00% 100.00% 100.00% 100.00% 95.90%

Sample 2 (4,000 Goods) 23.5654% 23.5341% 16.0695% 13.6851% LR 71.90% 100.00% 100.00% 100.00% 100.00% 98.00%

Sample 3 (9,000 Goods) 23.5675% 23.5171% 11.9050% 12.4318% LR 75.90% 100.00% 100.00% 100.00% 100.00% 99.10%
Population 3 (90:10)

Sample 1 (1,000 Goods) 23.5133% 23.5134% 17.3244% 14.3629% DA 48.40% 100.00% 100.00% 100.00% 100.00% 93.40%
Sample 2 (4,000 Goods) 23.6704% 23.6484% 14.9799% 13.8151% LR 65.70% 100.00% 100.00% 100.00% 100.00% 72.10%

Sample 3 (9,000 Goods) 23.7046% 23.6656% 11.8352% 12.6605% LR 71.70% 100.00% 100.00% 100.00% 100.00% 11.90%

Note: All Samples have Constant 1,000 bads.

55

56

Table 5.9 Gini Coefficients for Each Data Set and Each Model

KS LR DA RP1 RP2 Highest Gini LR WIN DA LR WIN RP1 LR WIN RP2 DA WIN RP1 DA WIN RP2 RP1 WIN RP2

High KS

Population 1 (70:30)

Sample 1 (1,000 Goods) 87.2937% 87.2328% 74.4482% 76.1894% LR 71.60% 100.00% 100.00% 100.00% 100.00% 7.30%

Sample 2 (4,000 Goods) 87.3715% 87.0702% 72.2831% 74.1779% LR 98.30% 100.00% 100.00% 100.00% 100.00% 11.30%

Sample 3 (9,000 Goods) 87.3833% 86.9589% 70.3399% 69.5488% LR 99.90% 100.00% 100.00% 100.00% 100.00% 65.80%

Population 2 (80:20)

Sample 1 (1,000 Goods) 87.3898% 87.3197% 74.4873% 76.2870% LR 73.70% 100.00% 100.00% 100.00% 100.00% 88.30%

Sample 2 (4,000 Goods) 87.4623% 87.1468% 72.2323% 74.2565% LR 98.80% 100.00% 100.00% 100.00% 100.00% 77.30%

Sample 3 (9,000 Goods) 87.4807% 87.0473% 70.4567% 70.0991% LR 99.80% 100.00% 100.00% 100.00% 100.00% 99.40%

Population 3 (90:10)

Sample 1 (1,000 Goods) 87.4189% 87.3603% 74.5482% 76.4176% LR 71.10% 100.00% 100.00% 100.00% 100.00% 98.20%

Sample 2 (4,000 Goods) 87.4978% 87.1930% 72.3784% 74.4513% LR 98.30% 100.00% 100.00% 100.00% 100.00% 99.60%

Sample 3 (9,000 Goods) 87.5165% 87.0910% 70.5213% 69.9040% LR 100.00% 100.00% 100.00% 100.00% 100.00% 0.10%

Mid KS

Population 1 (70:30)

Sample 1 (1,000 Goods) 68.0491% 66.4155% 56.2124% 54.2028% LR 100.00% 100.00% 100.00% 100.00% 100.00% 7.00%

Sample 2 (4,000 Goods) 67.5423% 68.3015% 53.2435% 51.7001% DA 0.00% 100.00% 100.00% 100.00% 100.00% 7.90%

Sample 3 (9,000 Goods) 67.0286% 68.7361% 51.4390% 46.2540% DA 0.00% 100.00% 100.00% 100.00% 100.00% 58.40%

Population 2 (80:20)

Sample 1 (1,000 Goods) 67.9479% 66.3292% 56.2622% 54.0921% LR 100.00% 100.00% 100.00% 100.00% 100.00% 90.90%

Sample 2 (4,000 Goods) 67.4527% 68.2010% 53.7675% 51.5161% DA 0.00% 100.00% 100.00% 100.00% 100.00% 90.70%

Sample 3 (9,000 Goods) 66.9339% 68.6187% 52.3335% 46.1942% DA 0.00% 100.00% 100.00% 100.00% 100.00% 100.00%

56

57

Table 5.9 (Continued)

KS LR DA RP1 RP2 Highest Gini LR WIN DA LR WIN RP1 LR WIN RP2 DA WIN RP1 DA WIN RP2 RP1 WIN RP2

Mid KS

Population 3 (90:10)

Sample 1 (1,000 Goods) 68.1108% 66.4534% 56.3188% 54.3443% LR 100.00% 100.00% 100.00% 100.00% 100.00% 98.50%

Sample 2 (4,000 Goods) 67.5932% 68.3563% 54.2205% 51.8294% DA 0.00% 100.00% 100.00% 100.00% 100.00% 98.00%

Sample 3 (9,000 Goods) 67.0815% 68.7771% 51.2208% 46.6166% DA 0.00% 100.00% 100.00% 100.00% 100.00% 0.00%

Low KS

Population 1 (70:30)

Sample 1 (1,000 Goods) 32.5636% 32.5680% 22.6521% 18.6774% DA 43.60% 100.00% 100.00% 100.00% 100.00% 6.90%

Sample 2 (4,000 Goods) 32.8199% 32.7844% 20.7682% 17.5938% LR 71.70% 100.00% 100.00% 100.00% 100.00% 7.90%

Sample 3 (9,000 Goods) 32.8692% 32.8053% 11.7243% 14.4598% LR 77.10% 100.00% 100.00% 100.00% 100.00% 61.40%

Population 2 (80:20)

Sample 1 (1,000 Goods) 32.6888% 32.6928% 22.9470% 19.0403% DA 43.80% 100.00% 100.00% 100.00% 100.00% 89.30%

Sample 2 (4,000 Goods) 32.9684% 32.9288% 21.0094% 17.8651% LR 72.70% 100.00% 100.00% 100.00% 100.00% 93.60%

Sample 3 (9,000 Goods) 33.0090% 32.9407% 11.9050% 14.9179% LR 79.00% 100.00% 100.00% 100.00% 100.00% 98.70%

Population 3 (90:10)

Sample 1 (1,000 Goods) 32.7931% 32.7975% 23.1164% 19.0913% DA 41.30% 100.00% 100.00% 100.00% 100.00% 98.80%

Sample 2 (4,000 Goods) 33.0194% 32.9829% 18.7647% 18.0132% LR 71.30% 100.00% 100.00% 100.00% 100.00% 71.60%

Sample 3 (9,000 Goods) 33.0822% 33.0191% 11.8352% 15.1823% LR 77.80% 100.00% 100.00% 100.00% 100.00% 0.00%

Note: All Samples have Constant 1,000 bads.

57

58

Table 5.10 to Table 5.13 show the odds at a 5%, 10%, 20%, and 30% cut-off

point respectively. Odds is the proportion with the numerator as the acceptance of

good loans (true positive) and the denominator as the acceptance of bad loans (false

positive). The numerator represents the power of the model and the denominator

represents the type I error of the model. Therefore, this ratio standardizes the error of

the model. The higher the ratio is, the better the performance of the model is.

It can be observed from Table 5.10 that in the high K-S population, the

logistic regression models have a relatively higher odds ratio when compared to other

three models except for one case (sample type 1 drawn from population type 1); in the

mid K-S population, the result is mixed; and in the low K-S population, discriminant

analysis models have a relatively higher odds ratio in all cases.

The results of the 10% cut-off in Table 5.11 and 20% cut-off in Table produce

a clear pattern for all types of populations. In the high K-S population, the logistic

regression models perform best in all cases, whereas in the low K-S populations, the

discriminant analysis models perform best in all cases. In the mid K-S population, the

logistic regression models perform best for either sample type 1 drawn from any

population type, or any sample type drawn from population type 1. The discriminant

analysis models perform best in the remaining cases.

Finally, Table 5.13, which shows the relative performance of each model at

30% cut-off, produces the same results for the high and mid K-S population cases

compared to the results from Table 5.11 and Table 5.12. Logistic regression models

perform best in all cases under a high K-S population. Under a mid K-S population,

logistic regression models perform best if the sample group is either sample type 1 or

population type 1. However, under a low K-S population, the results from Table are

different from those of Table 5.11 and Table 5.12. When the population has a low K-S,

discriminant analysis models perform best for sample type 1 drawn from any

population type; however, logistic analysis models perform best for sample type 3

drawn from any population type. The results are mixed in sample type 2.

59

Table 5.10 Odds Ratio of Each Data Set and Each Model for Cut-Off at 5%

KS DA LR RP1 RP2 Highest Odds
High KS
Population 1 (70:30)
Sample 1 (1,000 Goods)* 2.7899 2.7898 4.3926 4.6251 DA
Sample 2 (4,000 Goods)* 2.7899 2.7901 3.4435 3.3664 LR
Sample 3 (9,000 Goods)* 2.7899 2.7901 3.1100 2.9570 LR
Population 2 (80:20)
Sample 1 (1,000 Goods)* 5.2607 5.2608 7.5897 7.9552 LR
Sample 2 (4,000 Goods)* 5.2597 5.2618 5.9509 5.7894 LR
Sample 3 (9,000 Goods) 5.2589 5.2621 5.5255 5.2034 LR
Population 3 (90:10)
Sample 1 (1,000 Goods)* 15.4016 15.4199 17.1624 17.9832 LR
Sample 2 (4,000 Goods) 15.3631 15.4466 14.5787 13.9425 LR
Sample 3 (9,000 Goods) 15.3445 15.4553 14.7763 14.2569 LR
Mid KS
Population 1 (70:30)
Sample 1 (1,000 Goods)* 2.7211 2.7029 3.7234 3.3784 DA
Sample 2 (4,000 Goods) 2.7008 2.7134 3.1093 2.7454 LR
Sample 3 (9,000 Goods) 2.6892 2.7192 2.9855 2.7224 LR
Population 2 (80:20)
Sample 1 (1,000 Goods)* 4.9447 4.9129 6.3950 5.7913 DA
Sample 2 (4,000 Goods) 4.9079 4.9374 5.4155 4.8716 LR
Sample 3 (9,000 Goods) 4.8732 4.9458 5.2659 4.8952 LR
Population 3 (90:10)
Sample 1 (1,000 Goods)* 12.3741 12.4210 14.5247 13.0585 LR
Sample 2 (4,000 Goods) 12.4242 12.4495 12.6819 11.8318 LR
Sample 3 (9,000 Goods) 12.3048 12.4247 12.7825 11.9106 LR
Low KS
Population 1 (70:30)
Sample 1 (1,000 Goods)* 2.5165 2.5164 2.6529 2.5710 DA
Sample 2 (4,000 Goods) 2.5191 2.5187 2.6515 2.5120 DA
Sample 3 (9,000 Goods) 2.5212 2.5208 2.6506 2.5030 DA
Population 2 (80:20)
Sample 1 (1,000 Goods)* 4.3634 4.3631 5.3972 4.4194 DA
Sample 2 (4,000 Goods) 4.3693 4.3682 5.6629 4.3376 DA
Sample 3 (9,000 Goods) 4.3738 4.3727 NA 4.3287 DA
Population 3 (90:10)
Sample 1 (1,000 Goods)* 9.9380 9.9373 12.2691 9.9406 DA
Sample 2 (4,000 Goods) 9.9561 9.9530 NA 9.8255 DA
Sample 3 (9,000 Goods) 9.9659 9.9631 NA 9.7779 DA

Note: 1. Recursive Partitioning (RP1 and RP2) has been Excluded Due to Difference in

Percentage Cut-off.
2. All Samples have Constant 1,000 bads.

60

Table 5.11 Odds Ratio of Each Data Set and Each Model for Cut-Off at 10%

KS DA LR RP1 RP2 Highest Odds
High KS
Population 1 (70:30)
Sample 1 (1,000 Goods) 3.4316 3.4320 4.4129 4.6251 LR
Sample 2 (4,000 Goods) 3.4307 3.4332 3.5848 3.4033 LR
Sample 3 (9,000 Goods) 3.4301 3.4335 3.5638 3.3836 LR
Population 2 (80:20)
Sample 1 (1,000 Goods) 7.2663 7.2736 7.6535 7.9552 LR
Sample 2 (4,000 Goods) 7.2533 7.2824 7.1562 6.7743 LR
Sample 3 (9,000 Goods) 7.2465 7.2852 7.1899 6.8678 LR
Population 3 (90:10)
Sample 1 (1,000 Goods) 25.3311 25.5118 19.1854 18.7842 LR
Sample 2 (4,000 Goods) 24.9943 25.6473 21.0339 20.3455 LR
Sample 3 (9,000 Goods) 24.8497 25.6891 21.1507 20.4947 LR
Mid KS
Population 1 (70:30)
Sample 1 (1,000 Goods) 3.1790 3.1792 3.7472 3.3784 LR
Sample 2 (4,000 Goods) 3.1786 3.1861 3.3260 3.1051 LR
Sample 3 (9,000 Goods) 3.1633 3.1851 3.3578 3.1099 LR
Population 2 (80:20)
Sample 1 (1,000 Goods) 5.9980 6.0721 6.5045 5.7941 LR
Sample 2 (4,000 Goods) 6.0802 6.0595 6.2922 5.7105 DA
Sample 3 (9,000 Goods) 6.0694 6.0323 6.5433 5.7008 DA
Population 3 (90:10)
Sample 1 (1,000 Goods) 15.4315 15.9360 15.5737 13.4864 LR
Sample 2 (4,000 Goods) 16.0053 15.7769 16.3935 14.0468 DA
Sample 3 (9,000 Goods) 16.1134 15.6211 16.1816 13.8742 DA
Low KS
Population 1 (70:30)
Sample 1 (1,000 Goods) 2.6675 2.6673 3.2085 2.5905 DA
Sample 2 (4,000 Goods) 2.6718 2.6712 3.2737 2.5982 DA
Sample 3 (9,000 Goods) 2.6748 2.6743 NA 2.5719 DA
Population 2 (80:20)
Sample 1 (1,000 Goods) 4.6443 4.6440 5.5136 4.4718 DA
Sample 2 (4,000 Goods) 4.6545 4.6526 5.6709 4.4910 DA
Sample 3 (9,000 Goods) 4.6616 4.6597 NA 4.4475 DA
Population 3 (90:10)
Sample 1 (1,000 Goods) 10.6098 10.6090 12.4042 10.1089 DA
Sample 2 (4,000 Goods) 10.6336 10.6297 NA 10.1601 DA
Sample 3 (9,000 Goods) 10.6466 10.6427 NA 10.0652 DA

Note: 1. Recursive Partitioning (RP1 and PR2) has been Excluded Because their Actual

Cut-off Percentages are not Comparable.
2. All Samples have Constant 1,000 bads.

61

Table 5.12 Odds Ratio of Each Data Set and Each Model for Cut-Off at 20%

KS DA LR RP1 RP2 Highest Odds
High KS
Population 1 (70:30)
Sample 1 (1,000 Goods) 5.7115 5.7268 5.3534 4.9069 LR
Sample 2 (4,000 Goods) 5.6826 5.7396 5.4726 5.1432 LR
Sample 3 (9,000 Goods) 5.6690 5.7433 5.4453 5.1767 LR
Population 2 (80:20)
Sample 1 (1,000 Goods) 14.6954 14.8063 11.8015 10.7797 LR
Sample 2 (4,000 Goods) 14.4903 14.8892 11.8255 11.4815 LR
Sample 3 (9,000 Goods) 14.3985 14.9129 11.9785 11.2216 LR
Population 3 (90:10)
Sample 1 (1,000 Goods) 52.8220 53.1914 34.6144 33.0982 LR
Sample 2 (4,000 Goods) 51.7161 53.6265 35.2769 33.8799 LR
Sample 3 (9,000 Goods) 51.1366 53.7366 35.0524 31.3770 LR
Mid KS
Population 1 (70:30)
Sample 1 (1,000 Goods) 4.2501 4.3635 4.3458 3.7992 LR
Sample 2 (4,000 Goods) 4.3791 4.3255 4.4532 3.9252 DA
Sample 3 (9,000 Goods) 4.4091 4.2897 4.6063 3.8386 DA
Population 2 (80:20)
Sample 1 (1,000 Goods) 8.2335 8.5826 8.3668 7.0125 LR
Sample 2 (4,000 Goods) 8.6379 8.4580 9.6147 7.1733 DA
Sample 3 (9,000 Goods) 8.7440 8.3470 10.0897 6.9403 DA
Population 3 (90:10)
Sample 1 (1,000 Goods) 21.2264 22.4824 21.9376 17.3149 LR
Sample 2 (4,000 Goods) 22.6793 22.0091 24.0429 17.4797 DA
Sample 3 (9,000 Goods) 23.1439 21.6282 21.5374 16.7365 DA
Low KS
Population 1 (70:30)
Sample 1 (1,000 Goods) 2.9533 2.9532 3.2688 2.7118 DA
Sample 2 (4,000 Goods) 2.9604 2.9598 3.2789 2.7211 DA
Sample 3 (9,000 Goods) 2.9638 2.9635 NA 2.6760 DA
Population 2 (80:20)
Sample 1 (1,000 Goods) 5.1645 5.1643 5.6305 4.6912 DA
Sample 2 (4,000 Goods) 5.1811 5.1792 5.6903 4.6982 DA
Sample 3 (9,000 Goods) 5.1885 5.1867 NA 4.6243 DA
Population 3 (90:10)
Sample 1 (1,000 Goods) 11.8575 11.8568 12.7008 10.6062 DA
Sample 2 (4,000 Goods) 11.8956 11.8930 NA 10.6317 DA
Sample 3 (9,000 Goods) 11.9092 11.9087 NA 10.4702 DA

Note: 1. Recursive Partitioning (RP1 and PR2) has been Excluded Because their Actual

Cut-off Percentages are not Comparable.
2. All Samples have Constant 1,000 bads.

62

Table 5.13 Odds Ratio of Each Data Set and Each Model for Cut-Off at 30%

KS DA LR RP1 RP2 Highest Odds

High KS
Population 1 (70:30)
Sample 1 (1,000 Goods) 10.3915 10.4674 8.3365 7.6628 LR
Sample 2 (4,000 Goods) 10.2357 10.5275 8.3714 7.9318 LR
Sample 3 (9,000 Goods) 10.1596 10.5438 8.1985 7.6822 LR
Population 2 (80:20)
Sample 1 (1,000 Goods) 27.6742 27.8773 18.1650 17.4030 LR
Sample 2 (4,000 Goods) 27.1310 28.0721 17.0274 17.1616 LR
Sample 3 (9,000 Goods) 26.8625 28.1164 17.7956 16.0216 LR
Population 3 (90:10)
Sample 1 (1,000 Goods) 90.0091 90.2243 53.2787 50.4986 LR
Sample 2 (4,000 Goods) 88.7174 90.8999 47.3906 46.9354 LR
Sample 3 (9,000 Goods) 87.8906 91.0450 43.0406 NA LR
Mid KS
Population 1 (70:30)
Sample 1 (1,000 Goods) 5.5402 5.8055 5.8096 4.6606 LR
Sample 2 (4,000 Goods) 5.8486 5.7110 6.0808 4.6571 DA
Sample 3 (9,000 Goods) 5.9404 5.6279 5.6742 4.4592 DA
Population 2 (80:20)
Sample 1 (1,000 Goods) 10.7680 11.3825 10.7863 8.5983 LR
Sample 2 (4,000 Goods) 11.4886 11.1673 10.8136 8.4303 DA
Sample 3 (9,000 Goods) 11.7161 10.9740 10.1479 7.9669 DA
Population 3 (90:10)
Sample 1 (1,000 Goods) 27.5745 29.4682 26.2854 21.0197 LR
Sample 2 (4,000 Goods) 29.7699 28.8132 24.7275 20.2392 DA
Sample 3 (9,000 Goods) 30.4238 28.2390 NA NA DA
Low KS
Population 1 (70:30)
Sample 1 (1,000 Goods) 3.2460 3.2460 3.3327 2.8274 DA
Sample 2 (4,000 Goods) 3.2561 3.2558 3.2809 2.8244 DA
Sample 3 (9,000 Goods) 3.2587 3.2588 NA 2.7635 LR
Population 2 (80:20)
Sample 1 (1,000 Goods) 5.6889 5.6887 5.8079 4.8961 DA
Sample 2 (4,000 Goods) 5.7092 5.7102 5.8027 4.8758 LR
Sample 3 (9,000 Goods) 5.7132 5.7157 NA 4.7772 LR
Population 3 (90:10)
Sample 1 (1,000 Goods) 13.1137 13.1130 13.1787 11.0756 DA
Sample 2 (4,000 Goods) 13.1581 13.1600 NA 11.0369 LR
Sample 3 (9,000 Goods) 13.1681 13.1732 NA 10.8289 LR

Note: 1. Recursive Partitioning (RP1 and PR2) has been Excluded Because their Actual
 Cut-off Percentages are not Comparable.

2. All Samples have Constant 1,000 bads.

63

Table 5.14 The Optimal Model Based on Each Criterion in Each Scenario

 K-S Odds5% Acc10% Err10% Odds10% Acc20% Err20% Odds20% Odds30% KS Gini
High K-S
Population 1 (70:30)
Sample 1 (1,000 Goods) DA LR LR LR LR LR LR LR LR LR
Sample 2 (4,000 Goods) LR LR LR LR LR LR LR LR LR LR
Sample 3 (9,000 Goods) LR LR LR LR LR LR LR LR LR LR
Population 2 (80:20)
Sample 1 (1,000 Goods) LR LR LR LR LR LR LR LR LR LR
Sample 2 (4,000 Goods) LR LR LR LR LR LR LR LR LR LR
Sample 3 (9,000 Goods) LR LR LR LR LR LR LR LR LR LR
Population 3 (90:10)
Sample 1 (1,000 Goods) LR LR LR LR LR LR LR LR LR LR
Sample 2 (4,000 Goods) LR LR LR LR LR LR LR LR LR LR
Sample 3 (9,000 Goods) LR LR LR LR LR LR LR LR LR LR
Mid KS
Population 1 (70:30)
Sample 1 (1,000 Goods) DA LR LR LR LR LR LR LR LR LR
Sample 2 (4,000 Goods) LR LR LR LR DA DA DA DA DA DA
Sample 3 (9,000 Goods) LR LR LR LR DA DA DA DA DA DA
Population 2 (80:20)
Sample 1 (1,000 Goods) DA LR LR LR LR LR LR LR LR LR
Sample 2 (4,000 Goods) LR DA DA DA DA DA DA DA DA DA
Sample 3 (9,000 Goods) LR DA DA DA DA DA DA DA DA DA
Population 3 (90:10)
Sample 1 (1,000 Goods) LR LR LR LR LR LR LR LR LR LR
Sample 2 (4,000 Goods) LR DA DA DA DA DA DA DA DA DA
Sample 3 (9,000 Goods) LR DA DA DA DA DA DA DA DA DA

63

64

Table 5.14 (Continued)

K-S Odds5% Acc10% Err10% Odds10% Acc20% Err20% Odds20% Odds30% KS Gini

Low K-S
Population 1 (70:30)
Sample 1 (1,000 Goods) DA DA DA DA DA DA DA DA DA DA
Sample 2 (4,000 Goods) DA DA DA DA DA DA DA DA LR LR
Sample 3 (9,000 Goods) DA DA DA DA DA DA DA LR LR LR
Population 2 (80:20)
Sample 1 (1,000 Goods) DA DA DA DA DA DA DA DA DA DA
Sample 2 (4,000 Goods) DA DA DA DA DA DA DA LR LR LR
Sample 3 (9,000 Goods) DA DA DA DA DA DA DA LR LR LR
Population 3 (90:10)
Sample 1 (1,000 Goods) DA DA DA DA DA DA DA DA DA DA
Sample 2 (4,000 Goods) DA DA DA DA DA DA DA LR LR LR
Sample 3 (9,000 Goods) DA DA DA DA DA DA DA LR LR LR

Note: 1. Recursive Partitioning (RP1 and RP2) has been Excluded in Odds, Accuracy rate, and Error Rate Due to Difference in Actual

Percentage Cut-off.

2. All samples have constant 1,000 bads.

64

CHAPTER 6

CONCLUDING REMARKS

This chapter includes the underlying assumptions of this study, the discussion,

followed by the findings and suggestions regarding research ideas for the future.

The main assumption of this research was that modeling technique performance

is not data specific and that the key to understanding modeling technique performance

can be found in the following four factors.

1) Perspective

2) Sample size of good applicants and bad applicants

3) Proportion of good applicants and bad applicants in the population

4) Similarity of attributes between the good applicants and bad applicants

Regarding the first factor, perspective determines which goodness of fit test(s)

would be used, for example, whether to use a cut-off at 10%, 20%, K-S statistic, or

others. The choice of test depends on the application of the credit scoring model. A

fraud model may have a cut-off point of 5%, whereas a credit card application model

may have a 30% cut-off. This study aimed to understand modeling technique

performance across different perspectives by using various tools for evaluating the

models, including cross validation at 5%, 10%, 20%, and 30% cut-off, the K-S

statistic, and the Gini coefficient.

The second factor was due to the fact that sample size plays a significant role

in all statistical analysis. Hair, Black, Babin, and Anderson (2010) have stated that

“…the discussion of statistical power demonstrated the substantial impact sample size

plays in achieving statistical significance, both in small and large sample sizes…” and

that “…sample sizes affect the results when the analyses involve groups of

observations, such as discriminant analysis. Unequal sample sizes among groups

influence the results and require additional analysis...” Thus it is important to

determine the effect of sample size on the performance of the various modeling

techniques. This study strived to understand the modeling technique performance

66

across three sample sizes: balanced samples which had 1,000 good applicants and

1,000 bad applicants; unbalanced samples which had 4,000 good applicants and 1,000

bad applicants; and the more unbalanced samples which had 9,000 good applicants

and 1,000 bad applicants. The simulation results in this study have illustrated clearly

that sample size does influence credit scoring model performance.

The third factor was to represent the various populations in credit scoring such

as varying from prime to sub-prime applicants. When the economy is good, there will

be a high proportion of good applicants, whereas when the economy is in recession,

the proportion of bad applicants will increase once good applicants have turned bad

with the economic times. This study incorporated the effect of the proportion of good

applicants and bad applicants in the population on the choice of credit scoring models

by creating populations with three different proportions of good applicants and bad

applicants. The simulation results in this study also showed that this factor does affect

credit scoring model performance.

Finally, the fourth and most important factor was the similarity of the

attributes of the good and bad applicants. This factor relates to generalizing across the

different values of the independent variables. The variables in credit scoring models

will differ, sometimes even significantly. Credit scoring models are used for a variety

of applications related to extensions of credit, such as determining whether or not to

give a credit card, home loan, auto loan, fraud detection, etc. For example, the

variables for a fraud model would include the identification of variables, whereas

these variables would not be in a home loan model. It is not just the variables used

but also the number of variables in the model that will vary for each application and

from financial institution to financial institution. Some of this was seen in the

literature review where previous studies on real data varied in variables and in the

number of variables. Although the independent variables may differ, some variables

are correlated and may even overlap in nature, for example, the number of inquires for

credit in the past 12 months and the number of inquires for credit in the past 6 months.

It is impossible to investigate all possible variables and with all possible

parameters. Even if it were possible, the person reading the results would have to then

align his or her situation with the specific parameters used. Given the latter, this

fourth factor is considered a good proxy for the various possibilities of independent

67

variables. In order to obtain the simulated data that is generic and realistic, the

distributions and their parameters for the independent variables in the simulation

study were taken from Dryver and Jantra Sukkasem (2009).

There are ten independent variables with various distributions. Also the

independent variables have varying similarities of parameters from good applicants

and bad applicants. In addition, it was assumed that good applicants may have some

bad attributes and that bad applicants will have some good attributes, just as in real

life, thus adding to the complexity, but more important, to the reality of the

simulation. The similarity or lack of similarity between the goods and bads was used

as a proxy for obtaining a general view of the effect of the independent variables on

the model performance under various scenarios. The objective of any credit scoring

model is to differentiate between goods and bads. The fourth factor was incorporated

in this study in order to answer how models perform when good applicants and bad

applicants look very different versus how they perform when good applicants and bad

applicants look very similar. The logic was that varying the distributions in the

independent variables affects this part of the modeling by changing the degree of ease

(or lack of ease) in distinguishing between good applicants and bad applicants; thus,

the assumption that varying the similarity between good applicants and bad applicants

serves as a proxy for understanding the scenarios with various attributes of

independent variables.

In order to avoid the problem that the models will be specific only to the

sample data or “overfit” the sample, this study validated the models by using the

population data to test the models. This ensured that the results obtained from the

study were generalizable to the population data.

 Both linear discriminant analysis and logistic regression utilize maximum

likelihood estimation to obtain their parameter estimates. That is why it can be seen in

the simulation results that both methods yield very similar results in most scenarios.

Nevertheless, the two methods differ in their basic idea. Discriminant analysis relies

on the assumptions of multivariate normality and equal variance-covariance matrices

across groups, while logistic regression does not face these assumptions and is much

more robust when these assumptions are not met. However, if the assumptions of the

multivariate normality of the independent variables within each group of the

68

dependant variable are met, and each category has the same variance and covariance

for the predictors, the discriminant analysis might provide a more accurate

classification (Grimm and Yarnold, 1995; Tabachnick and Fidell, 1996).

Discriminant analysis was achieved by calculating the discriminant function in

order to maximize the differences between the groups. Discriminant function

produces discriminant Z scores and predicts group membership based on those scores.

The discriminant Z scores are the linear combinations of each independent variable

and its discriminant weight. They are not bounded by any range. Logistic regression

produces the likelihood of each observation being in the group that is coded as “1.”

The predicted scores from the logistic regression function are bounded by zero and

one (Hair et al., 2010; Worth and Cronin, 2003).

From the simulation results, it can be seen that in the scenarios where the

relative size of two groups in the sample does affect the relative model performance,

logistic regression is superior for the balanced-samples, while discriminant analysis is

superior for the unbalanced-samples. Moreover, logistic regression is superior when

the good applicants and bad applicants are highly different in attributes, whereas

discriminant analysis is superior when the good and bad applicants have similar

characteristics.

While logistic regression and discriminant analysis are similar in the sense that

they both employ the method of maximum likelihood estimations, the recursive

partitioning (decision tree) is different. Recursive partitioning employs the concept of

splitting (partitioning) the training set. During the process of decision tree induction,

every possible value of every possible feature within the training set represents a

potential split that could be used to divide all observations into groups. Any particular

node will have at most two paths leading from it to the next node(s) in the path. The

result is splitting the data at each node into two independent groups; this is

partitioning. Once the two new nodes linked to a previous node are formed, the

process is repeated for each new node independently using only the observations

present in that node; this is the recursive step. Recursive partitioning splits the

observations such that observations with similar response values are grouped. The

trees constructed from different samples usually have different numbers of final nodes

and each final node also has different sizes. Because all of the observations in the

69

same final node are given the same predicted response value, when using the

recursive partitioning approach to predict and rank the credit score of loan applicants,

the predicted score at the pre-specified cut-off percentile leads to the rejection of all

the other observations that have that same score. This was illustrated in the simulation

study—when using the recursive partitioning method, the percentage of rejection of

many recursive partitioning models was larger than the pre-specified percentage.

The findings of this simulation study, which are presented in Table 18, can be

summarized as follows.

For the high K-S population, three measures, namely Accuracy, Type I error,

and Odds ratio at 10% cut-off, were perfectly consistent with those at a 20% cut-off.

These three measures were also consistent with the K-S statistic and Gini coefficient.

All of the evaluation tools agreed that logistic regression is the best method in

predicting good and bad loan applicants.

For the mid K-S population, the three measures at 10% cut-off were consistent

with those at a 20% cut-off and with the K-S and Gini for all except in one case: when

sample type 2 and 3 were drawn from population type 1, the three measure at a 10%

cut-off were inconsistent with the other measures and with both evaluation tools.

When sample type 1 was drawn from any population type, all of the measures and

evaluation tools agreed that logistic regression was the best method, whereas when

sample type 2 and 3 were drawn from any population type, logistic regression as the

best method when evaluated at a 10% cut-off; however, discriminant analysis was the

best method when evaluated at a 20% cut-off.

For the low K-S population, discriminant analysis was the best method when

evaluated at both a 10% and 20% cut-off based on any of the three measures.

However, there was a conflict between the three measures and the K-S and Gini when

sample type 2 and 3 were drawn from any population. Although the three measures

perfectly suggested that discriminant analysis was the best method in all cases, the K-

S and Gini suggested that logistic regression was the best method when sample type 2

and 3 are drawn from any population.

With additional assumptions, the economic significance can be investigated

directly when comparing the difference in bad rate between the best and the second

best model. For example, when observing the bad rate at a 20% cut-off, under the mid

70

K-S population with a 70:30 good:bad ratio, when the logistic model was formed

based on sample type 1 (1,000 goods and 1,000 bads), it yielded an average of

18.64% bad rate; however, the discriminant analysis that was formed based on the

same sample yielded an average of 19.05% bad rate. The difference in the bad rate

between the two models was 0.41%. If we assume that the bank has a portfolio of ten

million personal loans, then it turns out that a loan decision based on the discriminant

model will result in accepting 41,000 more bad loans, relative to the logistic model. In

monetary terms, if we assume that a loss on one loan is only USD 10,000, then the

incremental losses will be USD 410 million. However, if the sample type changes to

be sample type 3 (9,000 goods and 1,000 bads), then with the same assumption, the

loan decision based on the logistic model, will result in an incremental loss of USD

417 million. These amounts can be considered as having high economic significance.

From these observations, it can be seen clearly that there is no perfect solution

to credit scoring. When banks and financial institutions build credit scoring models,

they should understand the nature of the population that they have to deal with and the

sample sets that they have on hand. Then, based on a particular population and sample

set, they can select the statistical method that performs relatively better compared to

other methods.

Some practitioners of credit scoring may compare the performance of different

credit scoring techniques on their sample sets to determine the optimal technique and

use it to construct a credit scoring model. In order to achieve this objective, different

techniques are tested based on limited data sets, and ultimately the selected model will

be implemented on the population. In this research, a simulation was performed in

order to overcome the limitations of data sets so as to achieve a thorough

understanding of how different techniques will perform on the population, and how

sensitive the relative performance of each technique is to the change in the

characteristics of populations and samples. As a result, the use of simulation in this

study yielded more insights, and practitioners should consider the methodology

applied in this research rather than simply testing multiple models and comparing

them on the limited samples.

Some research ideas for the future include testing these models on real data

sets, extending the simulation study by including more statistical methods or

71

combining more than one method into one model, or analyzing further why the K-S

and Gini are inconsistent with the confusion matrix measures in some scenarios.

In additions, the limitations of the recursive partitioning model found in this

study offer opportunity for further investigation. Future studies may consider

including different independent variables in order to investigate whether it is possible

for the recursive partitioning model to obtain an exact cut-off percentage. More

studies can be done on whether there is a significant trade-off between getting the

exact percentage cut-off and having an improvement in model performance.

BIBLIOGRAPHY

Abdou, H., Pointon, J., and El-Masry, A. 2008. Neural Nets Versus Conventional

Techniques in Credit Scoring in Egyptian Banking. Expert Systems with

Applications. 35: 1275 – 1292.

Altman, Edward I. 1980. Commercial Bank Lending: Process, Credit Scoring, and

Costs of Errors in Lending. Journal of Financial and Quantitative

Analysis. 15: 813 – 832.

Atiya, Amir F. 2001. Bankruptcy Prediction for Credit Risk Using Neural Networks:

a Survey and New Results. IEEE Transactions on Neural Networks.

12 (4): 929 – 935.

Baesens, B., Setiono, R., Mues, C., and Vanthienen, J. 2003. Using Neural Network

Rule Extraction and Decision Tables for Credit-Risk Evaluation.

Management Science. 49 (3): 312 – 329.

Bahl, L. R., Brown, P. F., de Sousa, P. V., Mercer, R. L. 1989. A Tree-Based

Language Model for Natural Language Speech Recognition. IEEE

Trans. On AS and SP. 37: 1001 – 1008.

Breiman, Leo et al. 1984. Classification and Regression Trees. Boca Raton:

Chapman & Hall/CRC.

Chen, X., Rusinko, A. and Young, S. S. 1998. Recursive Partitioning Analysis of a

Large Structure-Activity Data Set Using Three-Dimensional Descriptors.

Journal of Chemical Information and Computer Sciences. 38: 1054 –

1062.

Crawley, Michael J. 2007. The R Book. Chichester: Wiley.

Desai, V. S., Crook, J. N., and Overstreet, G. A. 1996. A Comparison of Neural

Networks and Linear Scoring Models in the Credit Union Environment.

European Journal of Operational Research. 95: 24 – 37.

Dryver, A. L. 2011. Focusing on the Lower Scoring Data in Order to Improve Credit

Scoring Model Selection. Advances and Applications in Statistics.

20 (1): 25 – 41.

73

Dryver, A. L. and Jantra Sukkasem. 2009. Validating Risk Models with a Focus on

Credit Scoring Models. Journal of Statistical Computation and

Simulation. 79 (2): 181 – 193.

Durand, D. 1941. Risk Elements in Consumer Installment Financing. New York,

NY: National Bureau of Economic Research.

Eisenbeis, R. A. 1987. A Comparative Analysis of Classification Procedures:

Discussion. Journal of Finance. 42 (3): 681 – 683.

Elder, J. F. and Pregibon, D. 1996. A Statistical Perspective on Knowledge

Discovery in Databases. In Advances in Knowledge Discovery and

Data Mining. Usama M. Fayyad, ed. Menlo Park, Calif.: AAAI

Press/The MIT Press.

Emel, A. B., Oral, M., Reisman, A. and Yolalan, R. 2003. A Credit Scoring

Approach for the Commercial Banking Sector. Socio-Economic

Planning Sciences. 37: 103 – 123.

Fisher, R. A. 1936. The Use of Multiple Measurements in Taxonomic Problems.

Annals of Eqgenics. 7 (2): 179 – 188.

Flury, Bernhard and Riedwyl, Hans. 1985. T2 tests, the Linear Two-Group

Discriminant Function, and Their Computation by Linear Regression.

American Statistician. 39 (1): 20 – 25.

Friedman, J. H. 1989. Regularized Discriminant Analysis. Journal of the

American Statistical Association. 84 (405): 165 – 175.

Galindo, J. and Tamayo, P. 2000. Credit Risk Assessment Using Statistical and

Machine Learning: Basic Methodology and Risk Modeling Applications.

Computational Economics. 15: 107 – 143.

Goldman, L., Cook, F., Johnson, P., Brand , D., Rouan, G. and Lee, T. 1996.

Prediction of the Need for Intensive Care in Patients Who Come to

Emergency Departments with Acute Chest Pain. The New England

Journal of Medicine. 334: 1498 – 504.

Goldman, L. et al. 1988. A Computer Protocol to Predict Myocardial Infarction in

Emergency Department Patients with Chest Pain. The New England

Journal of Medicine. 318 (13): 797-803.

74

Grimm, L. G. and Yarnold, P. R., eds. 1995. Reading and Understanding

Multivariate Statistics. Washington D.C.: American Psychological

Association.

Hair, Joseph F. Jr., Black, William C., Babin, Barry J. and Anderson, Rolph E. 2010.

Multivariate Data Analysis: A Global Perspective. New Jersey:

Pearson.

Hand, D. J. and Henley, W. E. 1996. A K-Nearest-Neighbour Classifier for

Assessing Consumer Credit Risk. Journal of the Royal Statistical

Society. Series D (The Statistician). 45 (1): 77 – 95.

Hand, D. J. and Henley, W. E. 1997. Statistical Classification Methods in Consumer

Credit Scoring: A Review. Journal of the Royal Statistical Society.

Series A (Statistics in Society). 160 (3): 523 – 541.

Hastie, Trevor and Tibshirani, Robert. 1996. Discriminant Analysis by Gaussian

Mixtures. Journal of the Royal Statistical Society. Series B

(Methodological). 58 (1): 155 – 176.

Hosmer, David W. and Lemeshow, Stanley. 2000. Applied Logistic Regression.

2nd ed. New York: Wiley.

Hsieh, N. 2005. Hybrid Mining Approach in the Design of Credit Scoring Models.

Expert Systems with Applications. 28: 655 – 665.

Kolesar, P. and Showers, J. L. 1985. A Robust Credit Screening Model Using

Categorical Data. Management Science. 31 (2): 123 – 133.

Lawrence, K., Pai, D., Klimberg, R., Kudbya, S. and Lawrence, S. 2010. Segmenting

Financial Services Market: An Empirical Study of Statistical and Non-

Parametric Methods. In Handbook of Quantitative Finance and Risk

Management. Cheng-Few Lee, Alice C. Lee and John Lee, eds.

New York: Springer. Pp. 1061-1066.

Mayers, J. H. and Forgy, E. W. 1963. The Development of Numerical Credit

Evaluation Systems. Journal of American Statistics Association.

58: 799 – 806.

Mester, L. J. 1997. What’s the Point of Credit Scoring?. Federal Reserve Bank of

Philadelphia Business Review. 3: 3 – 16.

75

Orgler, Y. E. 1970. A Credit Scoring Model for Commercial Loans. Journal of

Money, Credit and Banking. 2 (4): 435 – 445.

Owens, E. A., Griffiths, R. E. and Ratnatunga, K. U. 1996. Using Oblique Decision

Trees for the Morphological Classification of Galaxies. Monthly Notices

of the Royal Astronomical Society. 281: 153 – 157.

Press, S. J. and Wilson, S. 1978. Choosing Between Logistic Regression and

Discriminant Analysis. Journal of the American Statistical Association.

73 (364): 699 – 705.

Press, William H., Teukolsky, Saul A., Vetterling, William T. and Flannery, Brian P.

1992. Numerical Recipes in C: The Art of Scientific Computing.

Cambridge: Cambridge University Press.

Quinlan, J. R. 1987. Generating Production Rules from Decision Trees. In

Proceedings of the Tenth International Joint Conference on Artificial

Intelligence. San Francisco, CA: Morgan Kaufmann. Pp. 304-307.

Reichert, A. K., Cho, C. and Wagner, G. M. 1983. An Examination of the

Conceptual Issues Involved in Developing Credit-Scoring Models.

Journal of Business & Economic Statistics. 1 (2): 101 – 114.

Ripley, B. D. 1994. Neural Networks and Related Methods for Classification (with

Discussion). Journal of Research Statistics Society. Series B

(Methodological). 56: 409 – 456.

Rosenberg, E. and Gleit, A. 1994. Quantitative Methods in Credit Management: A

Survey. Operations Research. 42: 589 – 613.

Siddiqi, N. 2006. Credit Risk Scorecards: Developing and Implementing

Intelligent Credit Scoring. Hoboken, New Jersey: John Wiley and Sons,

Inc.

Srinivasan, V. and Kim, Y. H. 1987. Credit Granting: A Comparative Analysis of

Classification Procedures. Journal of Finance. 42 (3): 665 – 681.

Tabachnick, B. G. and Fidell, L. S. 1996. Using Multivariate Statistics. NY:

HarperCollins.

Thomas, L. C., Edelman, D. B. and Crook, J. N. 2002. Credit Scoring and Its

Applications. Philadelphia, PA: Society for Industrial and Applied

Mathematics.

76

Trippi, R. R. and Turban, E. 1993. Neural Networks in Finance and Investing:

Using Artificial Intelligence to Improve Real-World Performance.

Singapore: Heinemann Asia.

West, D. 2000. Neural Network Credit Scoring Models. Computers & Operations

Research. 27 (11 – 12): 1131 – 1152.

Wiginton, J. C. 1980. A Note on the Comparision of Logit and Discriminant Models

of Consumer Credit Behavior. Journal of Financial Quantitative

Analysis. 15: 757 – 770.

Worth, A. P. and Cronin, M. T. D. 2003. The Use of Discriminant Analysis, Logistic

Regression and Classification Tree Analysis in the Development of

Classification Models for Human Health Effects. Theochem. 622: 97-

111.

Zhang, H. P. 2004. Recursive Partitioning and Tree-Based Methods. In Handbook

of Computational Statistics. J. E. Gentle, W. Härdle and Y. Mori, eds.

Berlin: Springer. Pp. 813-840.

Zhang, H. P., Crowley, J., Sox, H. and Olshen, R. A. 2001. Tree Structural Statistical

Methods. In Encyclopedia of Biostatistics. Vol. 6. Chichester, West

Sussex: Wiley. Pp. 4561-4573.

Zhang, H. P. and Singer, B. 1999. Recursive Partitioning in the Health Sciences.

New York: Springer Verlag.

APPENDICES

78

Appendix A

The R Codes

1.1 Setting the Parameters for Each Population Type

1.1.1 pop7010.R

tg=700000 # obs of good (row)

tb=300000 # obs of bad (row)

n=1 # iterations (column)

1.1.2 pop8020.R

tg=800000 # obs of good (row)

tb=200000 # obs of bad (row)

n=1 # iterations (column)

1.1.3 pop9010.R

tg=900000 # obs of good (row)

tb=100000 # obs of bad (row)

n=1 # iterations (column)

1.1.4 ks_high.R

PIG=0.1

PIB=0.83

LAM1G=2

LAM1B=3.5

LAM2G=3.5

LAM2B=8

LAM3G=12

LAM3B=16

PI4G=0.2

PI4B=0.6

79

PI5G=0.04

PI5B=0.2

PI6G=0.2

PI6B=0.85

LAM7G=12

LAM7B=16

PI8G=0.3

PI8B=0.6

MU9G=5080

MU9B=5040

PI10G=0.4

PI10B=0.7

1.1.5 ks_mid.R

PIG=0.1

PIB=0.775

LAM1G=2

LAM1B=2.5

LAM2G=4.5

LAM2B=6

LAM3G=13.5

LAM3B=15

PI4G=0.2

PI4B=0.5

PI5G=0.04

PI5B=0.15

PI6G=0.25

PI6B=0.55

LAM7G=5

LAM7B=30

PI8G=0.3

PI8B=0.5

80

MU9G=5050

MU9B=5020

PI10G=0.23

PI10B=0.45

1.1.6 ks_low.R

PIG=0.1

PIB=0.7

LAM1G=2

LAM1B=2.5

LAM2G=5

LAM2B=6

LAM3G=13

LAM3B=14

PI4G=0.2

PI4B=0.5

PI5G=0.04

PI5B=0.09

PI6G=0.05

PI6B=0.15

LAM7G=25

LAM7B=30

PI8G=0.3

PI8B=0.5

MU9G=5030

MU9B=5018

PI10G=0.4

PI10B=0.5

81

1.2 Generating the Attributes of Populations (1_pop_gen.R)

yg =matrix(1,tg,n) # all one

zg1=matrix(rbinom(tg*n,1,PIG),tg,n)

zg2=matrix(rbinom(tg*n,1,PIG),tg,n)

zg3=matrix(rbinom(tg*n,1,PIG),tg,n)

zg4=matrix(rbinom(tg*n,1,PIG),tg,n)

zg5=matrix(rbinom(tg*n,1,PIG),tg,n)

zg6=matrix(rbinom(tg*n,1,PIG),tg,n)

zg7=matrix(rbinom(tg*n,1,PIG),tg,n)

zg8=matrix(rbinom(tg*n,1,PIG),tg,n)

zg9=matrix(rbinom(tg*n,1,PIG),tg,n)

zg10=matrix(rbinom(tg*n,1,PIG),tg,n)

The good attributes

 xg1=matrix(zg1*rpois(tg*n,LAM1G)+(1-zg1)*rpois(tg*n,LAM1B)+1,tg,n)

 xg2=matrix(zg2*rpois(tg*n,LAM2G)+(1-zg2)*rpois(tg*n,LAM2B)+1,tg,n)

 xg3=matrix(zg3*rpois(tg*n,LAM3G)+(1-zg3)*rpois(tg*n,LAM3B)+xg2,tg,n)

 xg4=matrix(zg4*(runif(tg*n,min=0,max=1)+PI4G)/(1+PI4G)+(1-zg4)*(runif

(tg*n,min=0,max=1)+PI4B)/(1+PI4B),tg,n)

 xg5=matrix(zg5*rbinom(tg*n,1,PI5G)+(1-zg5)*rbinom(tg*n,1,PI5B),tg,n)

xg6=matrix(zg6*rbinom(tg*n,1,PI6G)+(1-zg6)*rbinom(tg*n,1,PI6B),tg,n)

 xg7=matrix(zg7* rexp(tg*n,rate=LAM7G) + (1-zg7)* rexp(tg*n,rate=LAM7B),tg,n)

 xg8=matrix(zg8*rbinom(tg*n,1,PI8G) + (1-zg8)*rbinom(tg*n,1,PI8B),tg,n)

 xg9=matrix(zg9*rnorm(tg*n,mean=MU9G,sd=30)+(1-zg9)*rnorm

(tg*n,mean=MU9B,sd=30),tg,n)

xg10=matrix(zg10*rbinom(tg*n,1,PI10G) + (1-zg10)*rbinom(tg*n,1,PI10B),tg,n)

yb =matrix(0,tb,n) # all zero

zb1=matrix(rbinom(tb*n,1,PIB),tb,n)

zb2=matrix(rbinom(tb*n,1,PIB),tb,n)

82

zb3=matrix(rbinom(tb*n,1,PIB),tb,n)

zb4=matrix(rbinom(tb*n,1,PIB),tb,n)

zb5=matrix(rbinom(tb*n,1,PIB),tb,n)

zb6=matrix(rbinom(tb*n,1,PIB),tb,n)

zb7=matrix(rbinom(tb*n,1,PIB),tb,n)

zb8=matrix(rbinom(tb*n,1,PIB),tb,n)

zb9=matrix(rbinom(tb*n,1,PIB),tb,n)

zb10=matrix(rbinom(tb*n,1,PIB),tb,n)

The bad attributes

xb1=matrix(zb1*rpois(tb*n,LAM1G)+(1-zb1)*rpois(tb*n,LAM1B)+1,tb,n)

xb2=matrix(zb2*rpois(tb*n,LAM2G)+(1-zb2)*rpois(tb*n,LAM2B)+1,tb,n)

xb3=matrix(zb3*rpois(tb*n,LAM3G)+(1-zb3)*rpois(tb*n,LAM3B)+ xb2 ,tb,n)

xb4=matrix(zb4*(runif(tb*n,min=0,max=1)+PI4G)/(1+PI4G)+(1-

zb4)*(runif(tb*n,min=0,max=1)+PI4B)/(1+PI4B),tb,n)

xb5=matrix(zb5*rbinom(tb*n,1,PI5G)+(1-zb5)*rbinom(tb*n,1,PI5B),tb,n)

xb6=matrix(zb6*rbinom(tb*n,1,PI6G)+(1-zb6)*rbinom(tb*n,1,PI6B),tb,n)

xb7=matrix(zb7* rexp(tb*n,rate=LAM7G) + (1-zb7)* rexp(tb*n,rate=LAM7B),tb,n)

xb8=matrix(zb8*rbinom(tb*n,1,PI8G) + (1-zb8)*rbinom(tb*n,1,PI8B),tb,n)

xb9=matrix(zb9*rnorm(tb*n,mean=MU9G,sd=30)+(1-

zb9)*rnorm(tb*n,mean=MU9B,sd=30),tb,n)

xb10=matrix(zb10*rbinom(tb*n,1,PI10G) + (1-zb10)*rbinom(tb*n,1,PI10B),tb,n)

pop.g=cbind(yg,xg1,xg2,xg3,xg4,xg5,xg6,xg7,xg8,xg9,xg10)

#index.g=matrix(c(1:tg),tg,n)

#pop.good=cbind(index.g,pop.g)

pop.b=cbind(yb,xb1,xb2,xb3,xb4,xb5,xb6,xb7,xb8,xb9,xb10)

#index.b=matrix(c(1:tb),tb,n)

#pop.bad=cbind(index.b,pop.b)

83

1.3 Simulating Nine Population Sets (1010.R)

1.3.1 Population with 700,000 goods and 300,000 bads, high K-S

memory.limit(4095)

rm(list=ls(all=TRUE))

setwd("D:\\R\\")

library(abind)

source(file="pop7030.R")

source(file="ks_high.R")

source(file="1_pop_gen.R")

Apop=abind(pop.b,pop.g,along=1)

write.table(Apop, file = "70H_Apop.csv",quote=TRUE, sep = ",",

col.names=TRUE, row.names=TRUE, qmethod="double")

1.3.2 Population with 700,000 goods and 300,000 bads, mid K-S

memory.limit(4095)

rm(list=ls(all=TRUE))

setwd("D:\\R\\")

library(abind)

source(file="pop7030.R")

source(file="ks_mid.R")

source(file="1_pop_gen.R")

Apop=abind(pop.b,pop.g,along=1)

write.table(Apop, file = "70M_Apop.csv",quote=TRUE, sep = ",",

col.names=TRUE, row.names=TRUE, qmethod="double")

84

1.3.3 Population with 700,000 goods and 300,000 bads, low K-S

memory.limit(4095)

rm(list=ls(all=TRUE))

setwd("D:\\R\\")

library(abind)

source(file="pop7030.R")

source(file="ks_low.R")

source(file="1_pop_gen.R")

Apop=abind(pop.b,pop.g,along=1)

write.table(Apop, file = "70L_Apop.csv",quote=TRUE, sep = ",",

col.names=TRUE, row.names=TRUE, qmethod="double")

1.3.4 Population with 800,000 goods and 200,000 bads, high K-S

memory.limit(4095)

rm(list=ls(all=TRUE))

setwd("D:\\R\\")

library(abind)

source(file="pop8020.R")

source(file="ks_high.R")

source(file="1_pop_gen.R")

Apop=abind(pop.b,pop.g,along=1)

write.table(Apop, file = "80H_Apop.csv",quote=TRUE, sep = ",",

col.names=TRUE, row.names=TRUE, qmethod="double")

1.3.5 Population with 800,000 goods and 200,000 bads, mid K-S

memory.limit(4095)

85

rm(list=ls(all=TRUE))

setwd("D:\\R\\")

library(abind)

source(file=" pop8020.R")

source(file="ks_mid.R")

source(file="1_pop_gen.R")

Apop=abind(pop.b,pop.g,along=1)

write.table(Apop, file = "80M_Apop.csv",quote=TRUE, sep = ",",

col.names=TRUE, row.names=TRUE, qmethod="double")

1.3.6 Population with 800,000 goods and 200,000 bads, low K-S

memory.limit(4095)

rm(list=ls(all=TRUE))

setwd("D:\\R\\")

library(abind)

source(file=" pop8020.R")

source(file="ks_low.R")

source(file="1_pop_gen.R")

Apop=abind(pop.b,pop.g,along=1)

write.table(Apop, file = "80L_Apop.csv",quote=TRUE, sep = ",",

col.names=TRUE, row.names=TRUE, qmethod="double")

1.3.7 Population with 900,000 goods and 100,000 bads, high K-S

memory.limit(4095)

rm(list=ls(all=TRUE))

setwd("D:\\R\\")

86

library(abind)

source(file="pop9010.R")

source(file="ks_high.R")

source(file="1_pop_gen.R")

Apop=abind(pop.b,pop.g,along=1)

write.table(Apop, file = "90H_Apop.csv",quote=TRUE, sep = ",",

col.names=TRUE, row.names=TRUE, qmethod="double")

1.3.8 Population with 900,000 goods and 100,000 bads, mid K-S

memory.limit(4095)

rm(list=ls(all=TRUE))

setwd("D:\\R\\")

library(abind)

source(file=" pop9010.R")

source(file="ks_mid.R")

source(file="1_pop_gen.R")

Apop=abind(pop.b,pop.g,along=1)

write.table(Apop, file = "90M_Apop.csv",quote=TRUE, sep = ",",

col.names=TRUE, row.names=TRUE, qmethod="double")

1.3.9 Population with 900,000 goods and 100,000 bads, low K-S

memory.limit(4095)

rm(list=ls(all=TRUE))

setwd("D:\\R\\")

library(abind)

87

source(file=" pop9010.R")

source(file="ks_low.R")

source(file="1_pop_gen.R")

Apop=abind(pop.b,pop.g,along=1)

write.table(Apop, file = "90L_Apop.csv",quote=TRUE, sep = ",",

col.names=TRUE, row.names=TRUE, qmethod="double")

1.4 Sampling and Iterations

1.4.1 Sample with 1,000 goods and 1,000 bads (sample1.R)

mg=1000

mb=1000

1.4.2 Sample with 4,000 goods and 1,000 bads (sample2.R)

mg=4000

mb=1000

1.4.3 Sample with 9,000 goods and 1,000 bads (sample3.R)

mg=9000

mb=1000

1.4.4 Sampling, estimating the models, and testing the models (loop.R)

whb=sample(idb,mb)

whg=sample(idg,mg)

A=abind(Apop[whb,],Apop[whg,],along=1)

ID=c(whb,whg)

A=data.frame(ID,A)

88

colnames(A)=c("ID","Y","x1","x2","x3","x4","x5","x6","x7","x8","x9","x10")

rownames(A)=c(1:(mb+mg))

Use the sample to form LR, LG, RP1, and RP2

LR=glm(Y ~ x1+x2+x3+x4+x5+x6+x7+x8+x9+x10, data=A) # sample

LG=glm(Y ~ x1+x2+x3+x4+x5+x6+x7+x8+x9+x10, data=A ,

family=binomial(link="logit")) # sample

RP1=rpart(Y ~ x1+x2+x3+x4+x5+x6+x7+x8+x9+x10, data=A) # sample

RP2=rpart(Y ~ x1+x2+x3+x4+x5+x6+x7+x8+x9+x10, data=A,

control=rpart.control(cp=0)) # sample

Predict population

RPpredict1=predict(RP1,new=list(x1=Apop[,2],x2=Apop[,3],x3=Apop[,4],x4=Apop[

,5],x5=Apop[,6],x6=Apop[,7],x7=Apop[,8],x8=Apop[,9],x9=Apop[,10],x10=Apop[,1

1]))

RPpredict1=as.data.frame(RPpredict1)

ksRP1 =ks.test(RPpredict1[1:tb,],RPpredict1[(tb+1):(tb+tg),])[[1]][[1]]

aucRP1=roc.area(Apop[,1],RPpredict1[,1])$A

B1=data.frame(RPpredict1,Apop[,1])

colnames(B1)=c("YhatRP1","Y")

B1=B1[order(B1$YhatRP1),]

RPpredict2=predict(RP2,new=list(x1=Apop[,2],x2=Apop[,3],x3=Apop[,4],x4=Apop[

,5],x5=Apop[,6],x6=Apop[,7],x7=Apop[,8],x8=Apop[,9],x9=Apop[,10],x10=Apop[,1

1]))

89

RPpredict2=as.data.frame(RPpredict2)

ksRP2 =ks.test(RPpredict2[1:tb,],RPpredict2[(tb+1):(tb+tg),])[[1]][[1]]

aucRP2=roc.area(Apop[,1],RPpredict2[,1])$A

B2=data.frame(RPpredict2,Apop[,1])

colnames(B2)=c("YhatRP2","Y")

B2=B2[order(B2$YhatRP2),]

RP1 at 5% cut off point

Yhat1=B1

score=Yhat1[0.05*(tg+tb),1]

Yhat1$YhatRP1[Yhat1$YhatRP1>score]=1

Yhat1$YhatRP1[Yhat1$YhatRP1<=score]=0

R105=tg+tb-sum(Yhat1$YhatRP1)

GR105=sum(Yhat1$Y[1:R105])

rm(Yhat1,score)

RP1 at 10% cut off point

Yhat1=B1

score=Yhat1[0.1*(tg+tb),1]

Yhat1$YhatRP1[Yhat1$YhatRP1>score]=1

Yhat1$YhatRP1[Yhat1$YhatRP1<=score]=0

R110=tg+tb-sum(Yhat1$YhatRP1)

GR110=sum(Yhat1$Y[1:R110])

rm(Yhat1,score)

RP1 at 20% cut off point

Yhat1=B1

90

score=Yhat1[0.2*(tg+tb),1]

Yhat1$YhatRP1[Yhat1$YhatRP1>score]=1

Yhat1$YhatRP1[Yhat1$YhatRP1<=score]=0

R120=tg+tb-sum(Yhat1$YhatRP1)

GR120=sum(Yhat1$Y[1:R120])

rm(Yhat1,score)

RP1 at 30% cut off point

Yhat1=B1

score=Yhat1[0.3*(tg+tb),1]

Yhat1$YhatRP1[Yhat1$YhatRP1>score]=1

Yhat1$YhatRP1[Yhat1$YhatRP1<=score]=0

R130=tg+tb-sum(Yhat1$YhatRP1)

GR130=sum(Yhat1$Y[1:R130])

rm(Yhat1,score)

RP2 at 5% cut off point

Yhat2=B2

score=Yhat2[0.05*(tg+tb),1]

Yhat2$YhatRP2[Yhat2$YhatRP2>score]=1

Yhat2$YhatRP2[Yhat2$YhatRP2<=score]=0

R205=tg+tb-sum(Yhat2$YhatRP2)

GR205=sum(Yhat2$Y[1:R205])

rm(Yhat2,score)

RP2 at 10% cut off point

Yhat2=B2

score=Yhat2[0.1*(tg+tb),1]

Yhat2$YhatRP2[Yhat2$YhatRP2>score]=1

91

Yhat2$YhatRP2[Yhat2$YhatRP2<=score]=0

R210=tg+tb-sum(Yhat2$YhatRP2)

GR210=sum(Yhat2$Y[1:R210])

rm(Yhat2,score)

RP2 at 20% cut off point

Yhat2=B2

score=Yhat2[0.2*(tg+tb),1]

Yhat2$YhatRP2[Yhat2$YhatRP2>score]=1

Yhat2$YhatRP2[Yhat2$YhatRP2<=score]=0

R220=tg+tb-sum(Yhat2$YhatRP2)

GR220=sum(Yhat2$Y[1:R220])

rm(Yhat2,score)

RP2 at 30% cut off point

Yhat2=B2

score=Yhat2[0.3*(tg+tb),1]

Yhat2$YhatRP2[Yhat2$YhatRP2>score]=1

Yhat2$YhatRP2[Yhat2$YhatRP2<=score]=0

R230=tg+tb-sum(Yhat2$YhatRP2)

GR230=sum(Yhat2$Y[1:R230])

rm(Yhat2,score)

outputs for all

coefLR_i=data.frame(LR[[1]][[1]],LR[[1]][[2]],LR[[1]][[3]],LR[[1]][[4]],LR[[1]][[5]

],LR[[1]][[6]],LR[[1]][[7]],LR[[1]][[8]],LR[[1]][[9]],LR[[1]][[10]],LR[[1]][[11]])

coefLG_i=data.frame(LG[[1]][[1]],LG[[1]][[2]],LG[[1]][[3]],LG[[1]][[4]],LG[[1]][[5

]],LG[[1]][[6]],LG[[1]][[7]],LG[[1]][[8]],LG[[1]][[9]],LG[[1]][[10]],LG[[1]][[11]])

92

evaRPi=data.frame(ksRP1,aucRP1,ksRP2,aucRP2,GR105,GR110,GR120,GR130,GR

205,GR210,GR220,GR230,R105,R110,R120,R130,R205,R210,R220,R230)

coefLR=rbind(coefLR,coefLR_i)

coefLG=rbind(coefLG,coefLG_i)

evaRP=rbind(evaRP,evaRPi)

1.4.5 Removing the Previous Iteration (remove.R)

rm(whb,whg,A,ID,LR,LG,RP1,RP2,RPpredict1,RPpredict2,ksRP1,ksR

P2,aucRP1,aucRP2,B1,B2)

rm(GR105,GR110,GR120,GR130,GR205,GR210,GR220,GR230,R105,

R110,R120,R130,R205,R210,R220,R230,coefLR_i,coefLG_i,evaRPi)

1.4.6 Sampling and Iterations

memory.limit(4095)

setwd("D:\\RJib\\") # change file name to where you save the files

library(abind)

library(waveslim)

library(spam)

library(fields)

library(boot)

library(MASS)

library(CircStats)

library(verification)

library("rpart")

Apop=read.csv(file="70H_Apop.csv", head = TRUE, sep =",")

change file name to 70H, 70M, 70L, 80H, 80M, 80L, 90H, 90M, 90L

93

source(file="pop7030.R") #change to pop8020, pop9010

source(file="sample1.R") # change to sample2, sample3

idb=c(1:tb)

idg=c((tb+1):(tb+tg))

coefLR=data.frame()

coefLG=data.frame()

evaRP=data.frame()

source(file="loop.R")

source(file="remove.R")

repeat line “loop.R” and “remove.R” for 1,000 iterations

do this to avoid the loop command below

for (i in 1:1000) {

source(file="loop.R")

source(file="remove.R")

}

write.table(coefLR, file = "coefLR.csv",append=FALSE,quote=TRUE, sep = ",",

col.names = TRUE,row.names=TRUE,qmethod="double")

write.table(coefLG, file = "coefLG.csv",append=FALSE,quote=TRUE, sep = ",",

col.names = TRUE,row.names=TRUE,qmethod="double")

write.table(evaRP, file = "evaRP.csv",append=FALSE,quote=TRUE, sep = ",",

col.names = TRUE,row.names=TRUE,qmethod="double")

repeat this subsection for each population type and each sample type

94

1.5 The Codes for Linear Regression, Recursive Partitioning, K-S, and

Area Under ROC

1.5.1 Linear Regression (GLM)

function (formula, family = gaussian, data, weights, subset,

na.action, start = NULL, etastart, mustart, offset, control = list(...),

model = TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts =

NULL,

 ...)

{

call <- match.call()

if (is.character(family))

family <- get(family, mode = "function", envir = parent.frame())

if (is.function(family))

family <- family()

if (is.null(family$family)) {

print(family)

stop("'family' not recognized")

}

if (missing(data))

data <- environment(formula)

mf <- match.call(expand.dots = FALSE)

m <- match(c("formula", "data", "subset", "weights", "na.action",

"etastart", "mustart", "offset"), names(mf), 0L)

mf <- mf[c(1L, m)]

mf$drop.unused.levels <- TRUE

mf[[1L]] <- as.name("model.frame")

mf <- eval(mf, parent.frame())

if (identical(method, "model.frame"))

 return(mf)

if (!is.character(method) && !is.function(method))

 stop("invalid 'method' argument")

95

if (identical(method, "glm.fit"))

 control <- do.call("glm.control", control)

mt <- attr(mf, "terms")

Y <- model.response(mf, "any")

if (length(dim(Y)) == 1L) {

nm <- rownames(Y)

dim(Y) <- NULL

if (!is.null(nm))

names(Y) <- nm

}

X <- if (!is.empty.model(mt))

model.matrix(mt, mf, contrasts)

else matrix(, NROW(Y), 0L)

weights <- as.vector(model.weights(mf))

if (!is.null(weights) && !is.numeric(weights))

stop("'weights' must be a numeric vector")

if (!is.null(weights) && any(weights < 0))

stop("negative weights not allowed")

offset <- as.vector(model.offset(mf))

if (!is.null(offset)) {

if (length(offset) != NROW(Y))

stop(gettextf("number of offsets is %d should equal %d (number of

observations)",

length(offset), NROW(Y)), domain = NA)

}

mustart <- model.extract(mf, "mustart")

etastart <- model.extract(mf, "etastart")

fit <- eval(call(if (is.function(method)) "method" else method,

x = X, y = Y, weights = weights, start = start, etastart = etastart,

mustart = mustart, offset = offset, family = family,

control = control, intercept = attr(mt, "intercept") >

0L))

96

if (length(offset) && attr(mt, "intercept") > 0L) {

fit$null.deviance <- eval(call(if (is.function(method)) "method" else

method,

x = X[, "(Intercept)", drop = FALSE], y = Y, weights = weights,

offset = offset, family = family, control = control,

intercept = TRUE))$deviance

}

if (model)

fit$model <- mf

fit$na.action <- attr(mf, "na.action")

if (x)

fit$x <- X

if (!y)

fit$y <- NULL

fit <- c(fit, list(call = call, formula = formula, terms = mt,

data = data, offset = offset, control = control, method = method,

contrasts = attr(X, "contrasts"), xlevels = .getXlevels(mt,

mf)))

class(fit) <- c(fit$class, c("glm", "lm"))

fit

}

<environment: namespace:stats>

1.5.2 Recursive Partitioning (RPART)

function (formula, data, weights, subset, na.action = na.rpart,

method, model = FALSE, x = FALSE, y = TRUE, parms, control,

cost, ...)

{

call <- match.call()

if (is.data.frame(model)) {

m <- model

model <- FALSE

97

}

else {

m <- match.call(expand.dots = FALSE)

m$model <- m$method <- m$control <- NULL

m$x <- m$y <- m$parms <- m$... <- NULL

m$cost <- NULL

m$na.action <- na.action

m[[1L]] <- as.name("model.frame")

m <- eval(m, parent.frame())

}

Terms <- attr(m, "terms")

if (any(attr(Terms, "order") > 1L))

stop("Trees cannot handle interaction terms")

Y <- model.extract(m, "response")

wt <- model.extract(m, "weights")

if (length(wt) == 0L)

wt <- rep(1, nrow(m))

offset <- attr(Terms, "offset")

X <- rpart.matrix(m)

nobs <- nrow(X)

nvar <- ncol(X)

if (missing(method)) {

if (is.factor(Y) || is.character(Y))

method <- "class"

else if (inherits(Y, "Surv"))

method <- "exp"

else if (is.matrix(Y))

method <- "poisson"

else method <- "anova"

}

if (is.list(method)) {

mlist <- method

98

method <- "user"

if (missing(parms))

init <- mlist$init(Y, offset, wt = wt)

else init <- mlist$init(Y, offset, parms, wt)

method.int <- 4L

keep <- rpartcallback(mlist, nobs, init)

}

else {

method.int <- pmatch(method, c("anova", "poisson", "class",

"exp"))

if (is.na(method.int))

stop("Invalid method")

method <- c("anova", "poisson", "class", "exp")[method.int]

if (method.int == 4L)

method.int <- 2L

if (missing(parms))

init <- (get(paste("rpart", method, sep = ".")))(Y,

offset, , wt)

else init <- (get(paste("rpart", method, sep = ".")))(Y,

offset, parms, wt)

ns <- asNamespace("rpart")

if (!is.null(init$print))

environment(init$print) <- ns

if (!is.null(init$summary))

environment(init$summary) <- ns

if (!is.null(init$text))

environment(init$text) <- ns

}

Y <- init$y

xlevels <- attr(X, "column.levels")

cats <- rep(0, ncol(X))

if (!is.null(xlevels)) {

99

cats[match(names(xlevels), dimnames(X)[[2]])] <-

unlist(lapply(xlevels,

length))

}

extraArgs <- list(...)

if (length(extraArgs)) {

controlargs <- names(formals(rpart.control))

indx <- match(names(extraArgs), controlargs, nomatch = 0)

if (any(indx == 0))

stop("Argument ", names(extraArgs)[indx == 0], "not matched")

}

controls <- rpart.control(...)

if (!missing(control))

controls[names(control)] <- control

xval <- controls$xval

if (is.null(xval) || (length(xval) == 1L && xval == 0) ||

method == "user") {

xgroups <- 0

xval <- 0

}

else if (length(xval) == 1L) {

xgroups <- sample(rep(1:xval, length = nobs), nobs, replace = FALSE)

}

else if (length(xval) == nobs) {

xgroups <- xval

xval <- length(unique(xgroups))

}

else {

if (!is.null(attr(m, "na.action"))) {

temp <- as.integer(attr(m, "na.action"))

xval <- xval[-temp]

if (length(xval) == nobs) {

100

xgroups <- xval

xval <- length(unique(xgroups))

}

else stop("Wrong length for xval")

}

else stop("Wrong length for xval")

}

if (missing(cost))

cost <- rep(1, nvar)

else {

if (length(cost) != nvar)

stop("Cost vector is the wrong length")

if (any(cost <= 0))

stop("Cost vector must be positive")

}

tfun <- function(x) {

if (is.matrix(x))

rep(is.ordered(x), ncol(x))

else is.ordered(x)

}

isord <- unlist(lapply(m[attr(Terms, "term.labels")], tfun))

rpfit <- .C(C_s_to_rp, n = as.integer(nobs), nvarx = as.integer(nvar),

ncat = as.integer(cats * (!isord)), method = as.integer(method.int),

as.double(unlist(controls)), parms = as.double(unlist(init$parms)),

as.integer(xval), as.integer(xgroups), as.double(t(init$y)),

as.double(X), as.integer(!is.finite(X)), error = character(1),

wt = as.double(wt), as.integer(init$numy), as.double(cost),

NAOK = TRUE)

if (rpfit$n == -1)

stop(rpfit$error)

nodes <- rpfit$n

nsplit <- rpfit$nvarx

101

numcp <- rpfit$method

ncat <- rpfit$ncat[1]

numresp <- init$numresp

if (nsplit == 0)

xval <- 0

cpcol <- if (xval > 0 && nsplit > 0)

5L

else 3L

if (ncat == 0)

catmat <- 0

else catmat <- matrix(integer(1), ncat, max(cats))

rp <- .C(C_s_to_rp2, as.integer(nobs), as.integer(nsplit),

as.integer(nodes), as.integer(ncat), as.integer(cats *

 (!isord)), as.integer(max(cats)), as.integer(xval),

which = integer(nobs), cptable = matrix(double(numcp *

cpcol), nrow = cpcol), dsplit = matrix(double(1),

nsplit, 3), isplit = matrix(integer(1), nsplit, 3),

csplit = catmat, dnode = matrix(double(1), nodes, 3 +

numresp), inode = matrix(integer(1), nodes, 6))

tname <- c("<leaf>", dimnames(X)[[2]])

if (cpcol == 3)

temp <- c("CP", "nsplit", "rel error")

else temp <- c("CP", "nsplit", "rel error", "xerror", "xstd")

dimnames(rp$cptable) <- list(temp, 1L:numcp)

dn1 <- if (nsplit == 0L)

character(0L)

else tname[rp$isplit[, 1L] + 1L]

splits <- matrix(c(rp$isplit[, 2L:3L], rp$dsplit), ncol = 5L,

dimnames = list(dn1, c("count", "ncat", "improve", "index",

"adj")))

index <- rp$inode[, 2]

nadd <- sum(isord[rp$isplit[, 1L]])

102

if (nadd > 0) {

newc <- matrix(integer(1), nadd, max(cats))

cvar <- rp$isplit[, 1L]

indx <- isord[cvar]

cdir <- splits[indx, 2L]

ccut <- floor(splits[indx, 4L])

splits[indx, 2L] <- cats[cvar[indx]]

splits[indx, 4L] <- ncat + 1L:nadd

for (i in 1L:nadd) {

newc[i, 1L:(cats[(cvar[indx])[i]])] <- -1 * as.integer(cdir[i])

newc[i, 1L:ccut[i]] <- as.integer(cdir[i])

}

if (ncat == 0)

catmat <- newc

else catmat <- rbind(rp$csplit, newc)

ncat <- ncat + nadd

}

else catmat <- rp$csplit

if (nsplit == 0) {

frame <- data.frame(row.names = 1, var = "<leaf>", n = rp$inode[,

5L], wt = rp$dnode[, 3L], dev = rp$dnode[, 1L], yval = rp$dnode[,

4L], complexity = rp$dnode[, 2L], ncompete = pmax(0L,

rp$inode[, 3L] - 1L), nsurrogate = rp$inode[, 4L])

}

else {

temp <- ifelse(index == 0, 1, index)

svar <- ifelse(index == 0, 0, rp$isplit[temp, 1L])

frame <- data.frame(row.names = rp$inode[, 1L], var = factor(svar,

0:ncol(X), tname), n = rp$inode[, 5L], wt = rp$dnode[,

3L], dev = rp$dnode[, 1L], yval = rp$dnode[, 4L],

complexity = rp$dnode[, 2L], ncompete = pmax(0L,

rp$inode[, 3L] - 1L), nsurrogate = rp$inode[,

103

4L])

}

if (method.int == 3L) {

numclass <- init$numresp - 1L

temp <- rp$dnode[, -(1L:4L), drop = FALSE] %*%

diag(init$parms$prior *

sum(init$counts)/pmax(1, init$counts))

yprob <- temp/rowSums(temp)

yval2 <- matrix(rp$dnode[, -(1L:3L)], ncol = numclass +

1)

frame$yval2 <- cbind(yval2, yprob)

}

else if (init$numresp > 1L)

frame$yval2 <- rp$dnode[, -(1L:3L), drop = FALSE]

if (is.null(init$summary))

stop("Initialization routine is missing the summary function")

if (is.null(init$print))

functions <- list(summary = init$summary)

else functions <- list(summary = init$summary, print = init$print)

if (!is.null(init$text))

functions <- c(functions, list(text = init$text))

if (method == "user")

functions <- c(functions, mlist)

where <- rp$which

names(where) <- row.names(m)

if (nsplit == 0L) {

ans <- list(frame = frame, where = where, call = call,

terms = Terms, cptable = t(rp$cptable), method = method,

parms = init$parms, control = controls, functions = functions)

}

else {

ans <- list(frame = frame, where = where, call = call,

104

terms = Terms, cptable = t(rp$cptable), splits = splits,

method = method, parms = init$parms, control = controls,

functions = functions)

}

if (ncat > 0)

ans$csplit <- catmat + 2L

if (model) {

ans$model <- m

if (missing(y))

y <- FALSE

}

if (y)

ans$y <- Y

if (x) {

ans$x <- X

ans$wt <- wt

}

ans$ordered <- isord

if (!is.null(attr(m, "na.action")))

ans$na.action <- attr(m, "na.action")

if (!is.null(xlevels))

attr(ans, "xlevels") <- xlevels

if (method == "class")

attr(ans, "ylevels") <- init$ylevels

class(ans) <- "rpart"

ans

}

<environment: namespace:rpart>

1.5.3 KS (KS.TEST)

function (x, y, ..., alternative = c("two.sided", "less", "greater"),

exact = NULL)

105

{

pkolmogorov1x <- function(x, n) {

if (x <= 0)

return(0)

if (x >= 1)

return(1)

j <- seq.int(from = 0, to = floor(n * (1 - x)))

1 - x * sum(exp(lchoose(n, j) + (n - j) * log(1 - x -

j/n) + (j - 1) * log(x + j/n)))

}

alternative <- match.arg(alternative)

DNAME <- deparse(substitute(x))

x <- x[!is.na(x)]

n <- length(x)

if (n < 1L)

stop("not enough 'x' data")

PVAL <- NULL

if (is.numeric(y)) {

DNAME <- paste(DNAME, "and", deparse(substitute(y)))

y <- y[!is.na(y)]

n.x <- as.double(n)

n.y <- length(y)

if (n.y < 1L)

stop("not enough 'y' data")

if (is.null(exact))

exact <- (n.x * n.y < 10000)

METHOD <- "Two-sample Kolmogorov-Smirnov test"

TIES <- FALSE

n <- n.x * n.y/(n.x + n.y)

w <- c(x, y)

z <- cumsum(ifelse(order(w) <= n.x, 1/n.x, -1/n.y))

if (length(unique(w)) < (n.x + n.y)) {

106

warning("cannot compute correct p-values with ties")

z <- z[c(which(diff(sort(w)) != 0), n.x + n.y)]

TIES <- TRUE

}

STATISTIC <- switch(alternative, two.sided = max(abs(z)),

greater = max(z), less = -min(z))

nm_alternative <- switch(alternative, two.sided = "two-sided",

less = "the CDF of x lies below that of y", greater = "the CDF of x lies

above that of y")

if (exact && (alternative == "two.sided") && !TIES)

PVAL <- 1 - .C("psmirnov2x", p = as.double(STATISTIC),

as.integer(n.x), as.integer(n.y), PACKAGE = "stats")$p

}

else {

if (is.character(y))

y <- get(y, mode = "function")

if (mode(y) != "function")

stop("'y' must be numeric or a string naming a valid function")

if (is.null(exact))

exact <- (n < 100)

METHOD <- "One-sample Kolmogorov-Smirnov test"

TIES <- FALSE

if (length(unique(x)) < n) {

warning("cannot compute correct p-values with ties")

TIES <- TRUE

}

x <- y(sort(x), ...) - (0:(n - 1))/n

STATISTIC <- switch(alternative, two.sided = max(c(x,

1/n - x)), greater = max(1/n - x), less = max(x))

if (exact && !TIES) {

PVAL <- if (alternative == "two.sided")

1 - .C("pkolmogorov2x", p = as.double(STATISTIC),

107

as.integer(n), PACKAGE = "stats")$p

else 1 - pkolmogorov1x(STATISTIC, n)

}

nm_alternative <- switch(alternative, two.sided = "two-sided",

less = "the CDF of x lies below the null hypothesis",

greater = "the CDF of x lies above the null hypothesis")

}

names(STATISTIC) <- switch(alternative, two.sided = "D",

greater = "D^+", less = "D^-")

pkstwo <- function(x, tol = 1e-06) {

if (is.numeric(x))

x <- as.vector(x)

else stop("argument 'x' must be numeric")

p <- rep(0, length(x))

p[is.na(x)] <- NA

IND <- which(!is.na(x) & (x > 0))

if (length(IND)) {

p[IND] <- .C("pkstwo", as.integer(length(x[IND])),

p = as.double(x[IND]), as.double(tol), PACKAGE = "stats")$p

}

return(p)

}

if (is.null(PVAL)) {

PVAL <- ifelse(alternative == "two.sided", 1 - pkstwo(sqrt(n) *

STATISTIC), exp(-2 * n * STATISTIC^2))

}

RVAL <- list(statistic = STATISTIC, p.value = PVAL, alternative =

nm_alternative,

method = METHOD, data.name = DNAME)

class(RVAL) <- "htest"

return(RVAL)

}

<environment: namespace:stats>

108

1.5.4 Area Under ROC (ROC.AREA)

function (obs, pred)

{

id <- is.finite(obs) & is.finite(pred)

obs <- obs[id]

pred <- pred[id]

n1 <- sum(obs)

n <- length(obs)

A.tilda <- (mean(rank(pred)[obs == 1]) - (n1 + 1)/2)/(n -

 n1)

stats <- wilcox.test(pred[obs == 1], pred[obs == 0], alternative =

"great")

return(list(A = A.tilda, n.total = n, n.events = n1, n.noevents = sum(obs

==

0), p.value = stats$p.value))

}

109

Appendix B

The JAVA Codes

package jibck;

import java.io.*;

import java.util.Arrays;

//import org.apache.commons.math.stat.inference.*;

//import jsc.independentsamples.SmirnovTest.*;

//import jsc.*;

//import java.util.*;

//import java.math.*;

/**

 *

 * @author Arthur

 */

public class Jibck {

 //Given an array data1[1..n1], and an array data2[1..n2], this routine returns the K-S

//statistic d, and the significance level prob for the null hypothesis that the data sets

// are drawn from the same distribution.

//Small values of prob show that the cumulative distribution

//function of data1 is significantly different from that of data2.

//The arrays data1 and data2 are modified by being sorted into ascending order.

 public static double[] somersdetc(double data1[], double data2[]) {

 int n1 = data1.length;

 int n2 = data2.length;

 int j1 = 1, j2 = 1;

 int counter1 = 1;

110

 double ks = 0, d1, d2, dt, en1, en2, en, en3, fn1 = 0.0, fn2 = 0.0, fn3 = 0.0, t1, c1,

somer, tau, goodman;

 double eps2 = .002; //percent increase in cdf worth noting.

 double nc1, nd1, tied1;

 double nc2, nd2, tied2;

 double nc3, nd3, tied3;

 double prev1;

 /*

 double odds5=0,odds10=0,odds20=0,odds30=0;

 double podds5=0,podds10=0,podds20=0,podds30=0;

 double aodds5=0,aodds10=0,aodds20=0,aodds30=0;

 double apodds5=0,apodds10=0,apodds20=0,apodds30=0;

 double bodds5=0,bodds10=0,bodds20=0,bodds30=0;

 double bpodds5=0,bpodds10=0,bpodds20=0,bpodds30=0;

 */

 double[] oddscut = {0.05, 0.10, 0.20, 0.30};

 double[][] oddsinfo = new double[oddscut.length][2]; //the odds at the percent

 double[][] boddsinfo = new double[oddscut.length][2];//before the percent

 double[][] aoddsinfo = new double[oddscut.length][2];//after the percent

 double oddsme = 0.000001; //odds margin of error

 //if in the end it is negative one then something didnt workout, never within m.e.

 for (int i = 0; i < oddscut.length; i++) {

 oddsinfo[i][0] = -1;

 oddsinfo[i][1] = -1;

 }

 nc2 = 0;

 nd2 = 0;

 Arrays.sort(data1);

 Arrays.sort(data2);

 en1 = n1;

111

 en2 = n2;

 en3 = n1 + n2;

 prev1 = 0.0;

 nc1 = 0;

 nd1 = 0;

 tied1 = 0;

 while (j1 < n1 && j2 < n2) {

 //advance data

 d1 = data1[j1];

 d2 = data2[j2];

 if (d1 <= d2 && j1 < (n1)) {//Next step is in data1.

 j1++;

 }

 if (d2 <= d1 && j2 < (n2)) {//Next step is in data2.

 j2++;

 }

 //basically advance j1 and j2 with these loops to the next yhat value

 //as many yhat values repeat due to the same x values

 //if (j1>99990) {System.out.println("h1 j1=" + j1);}

 if (j1 < n1) {

 while ((data1[j1] == data1[j1 - 1]) && (j1 < (n1 - 1))) {

 //if (j1>99990) {System.out.println("h2 j1=" + j1);}

 j1++;

 }

 }

 if (j2 < n2) {

 while ((data2[j2] == data2[j2 - 1]) && (j2 < (n2 - 1))) {

 j2++;

 }

 }

112

 fn3 = (double) (j1 + j2) / en3;

 for (int i = 0; i < oddscut.length; i++) {

 if (Math.abs(fn3 - oddscut[i]) < oddsme) {

 oddsinfo[i][0] = (double) (n2 - j2) / (double) (n1 - j1);

 oddsinfo[i][1] = fn3;

 }

 }

 //for calc KS

 fn1 = (double) j1 / en1;

 fn2 = (double) j2 / en2;

 if ((dt = Math.abs(fn2 - fn1)) > ks) {

 ks = dt;

 }

 //fn are cdfs fn3 is combined cdf at this point - j1 and j2

 fn3 = (double) (j1 + j2) / en3;

 if (fn3 > (prev1 + eps2)) {

//if the combined cdf has increased by approx at least .2%

 prev1 = ((double) j1 + (double) j2) / en3;

//keep track of previous combined cdf

 if (counter1 >= 1) {

 tied1 = tied1 + (j1 - nc2) * (j2 - nd2);

//tied equals numbers within same combined cdf

 nd1 = nd1 + ((double) j1 - nc2) * ((double) n2 - (double) j2);

 nc2 = (double) j1;

 nd2 = (double) j2;

 }

 counter1 = counter1 + 1;

 }

 }

 //the next two while lopps are for when one dataset isnt done

113

 //like either data1 or data2 is still not at the end

 while (j1 < (n1)) {

 fn1 = (double) j1++ / en1;

 if ((((double) j1 + (double) j2) / en3) == 1) {

 if (counter1 >= 1) {

 tied1 = tied1 + ((double) j1 - nc2) * ((double) j2 - nd2);

 nd1 = nd1 + ((double) j1 - nc2) * ((double) n2 - (double) j2);

 nc2 = (double) j1;

 nd2 = (double) j2;

 //System.out.println("h3 j1=" + j1);

 }

 counter1 = counter1 + 1;

 }

 }

 while (j2 < (n2)) { //If we are not done...

 fn2 = (double) j2++ / en2;

 if ((((double) j1 + (double) j2) / en3) == 1) {

 if (counter1 >= 1) {

 tied1 = tied1 + ((double) j1 - nc2) * ((double) j2 - nd2);

 nd1 = nd1 + ((double) j1 - nc2) * ((double) n2 - (double) j2);

 nc2 = (double) j1;

 nd2 = (double) j2;

 //System.out.println("h3 j2=" + j2);

 }

 counter1 = counter1 + 1;

 }

 }

 //for calc KS

 fn1 = (double) j1 / en1;

 fn2 = (double) j2 / en2;

 if ((dt = Math.abs(fn2 - fn1)) > ks) {

 ks = dt;

114

 }

 fn3 = (double) (j1 + j2) / en3;

 for (int i = 0; i < oddscut.length; i++) {

 if (Math.abs(fn3 - oddscut[i]) < oddsme) {

 oddsinfo[i][0] = (double) (n2 - j2) / (double) (n1 - j1);

 oddsinfo[i][1] = fn3;

 }

 }

 t1 = (double) n1 * (double) n2;

 nc1 = t1 - nd1 - tied1;

 /*

 System.out.println("tied1= " + tied1);

 System.out.println("nc1= " + nc1);

 System.out.println("nd1= " + nd1);

 System.out.println("t1= " + t1);

 System.out.println("sum of parts= " + (tied1 + nc1 + nd1));

 */

 c1 = (nc1 + .5 * (t1 - nc1 - nd1)) / t1;

 somer = (nc1 - nd1) / t1;

 somer = Math.abs(somer);

// somer can be negative or positve but gini the positive of it.

 goodman = (nc1 - nd1) / (nc1 + nd1);

 tau = (nc1 - nd1) / (.5 * (en3 * (en3 - 1)));

 double[] someretc1 = new double[20];

 someretc1[0] = somer;

 someretc1[1] = c1;

 someretc1[2] = goodman;

 someretc1[3] = tau;

115

 someretc1[4] = ks; //want to calculate KS here to get better efficiency and not

use ks func

 int h = 5;

 for (int i = 0; i < oddscut.length; i++) {

 someretc1[h + i] = oddsinfo[i][0];

 h++;

 someretc1[h + i] = oddsinfo[i][1];

 }

 return someretc1;

 }

 public static double TwoSampKS(double[] data1, double[] data2) {

 //void kstwo(float data1[], unsigned long n1, float data2[], unsigned long n2,float

*d, float *prob)

 double theks = 0;

 int n1 = data1.length;

 int n2 = data2.length;

 Arrays.sort(data1);

 Arrays.sort(data2);

 int en1 = n1;

 int en2 = n2;

 double d = 0.0, d1 = 0, d2 = 0, fn1 = 0, fn2 = 0, dt = 0;

 int j1 = 0, j2 = 0;

 while (j1 < n1 && j2 < n2) {

 d1 = data1[j1];

 d2 = data2[j2];

 if (d1 <= d2) {

 j1++;

 fn1 = (double) j1 / (double) en1;

 }

 if (d2 <= d1) {

116

 j2++;

 fn2 = (double) j2 / (double) en2;

 }

 dt = Math.abs(fn2 - fn1);

 if (dt > d) {

 d = dt;

 }

 }

//en=sqrt(en1*en2/(en1+en2));

//*prob=probks((en+0.12+0.11/en)*(*d)); Compute significance.

 theks = d;

 return theks;

 }

 public static void writeresults(String thedir, String fname, double thestats[][]) {

 try {

 PrintStream writer = new PrintStream(thedir + fname);

 writer.print("Abs(SomersD),c-statistic,Goodman,Tau-alpha,KS-statistic,");

 writer.print("odds, percent, odds, percent, odds, percent, odds, percent, \n");

 for (int i = 0; i < thestats.length; i++) {

 for (int j = 0; j < thestats[i].length; j++) {

 writer.print(thestats[i][j]);

 if (j < thestats[j].length - 1) {

 writer.print(',');

 } else {

 writer.print('\n');

 }

 }

 }

 } catch (IOException e) {

 }

 }

117

 public static double[][] readdata(String fname, int nc, int nr, int sc) {

 //sc is column to start with

 double[][] thedata = new double[nr][nc];

 BufferedReader br = null;

 try {

 int h, i;

 br = new BufferedReader(new FileReader(fname));

 String line = null;

 h = 0;

 i = 0;

 line = br.readLine();

 System.out.println(line);

 while ((line = br.readLine()) != null) {

 String[] values = line.split(",");

 //Do necessary work with the values, here we just print them out

 for (String str : values) {

 if (i > (sc - 1)) {

 thedata[h][(i - sc)] = Double.parseDouble(str);

 }

 i++;

 //System.out.println(str);

 }

 i = 0;

 h++;

 //System.out.println();

 }

 } catch (FileNotFoundException ex) {

 } catch (IOException ex) {

 } finally {

 try {

118

 if (br != null) {

 br.close();

 }

 } catch (IOException ex) {

 }

 }

 return thedata;

 }

 /**

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 // TODO code application logic here

 String thedir = "C:/Documents and Settings/user/Desktop/Jib/";

 String fn = thedir + "90L_Apop.csv";

 int nrp = 1000000;

 int nc = 11;

 double[][] popdata1 = new double[nrp][nc];

 int sc = 0;

 popdata1 = readdata(fn, nc, nrp, sc);

 System.out.println("read data function done");

 for (int j = 0; j < 10; j++) {

 for (int k = 0; k < 11; k++) {

 System.out.print(" " + popdata1[j][k] + " ");

 }

 System.out.println();

 }

 System.out.println("done with loop");

 int nr = 1000;

119

 nc = 11;

 double[][] LRbetas = new double[nr][nc];

 double[][] LGbetas = new double[nr][nc];

 fn = thedir + "coefLR.csv";

 sc = 1;

 LRbetas = readdata(fn, nc, nr, sc);

 fn = thedir + "coefLG.csv";

 sc = 1;

 LGbetas = readdata(fn, nc, nr, sc);

 for (int j = 0; j < 10; j++) {

 for (int k = 0; k < 11; k++) {

 System.out.print(" " + LGbetas[j][k] + " ");

 }

 System.out.println();

 }

 int nrp0 = 100000;

 int nrp1 = 900000;

 int iters = 1000;

 //iters = 50;

 double LRtemphat = 0;

 double LGtemphat = 0;

 int r0 = 0;

 int r1 = 0;

 double[] LRpopyhats0 = new double[nrp0];

 double[] LRpopyhats1 = new double[nrp1];

 double[] LGpopyhats0 = new double[nrp0];

 double[] LGpopyhats1 = new double[nrp1];

 //double[] theks = new double[iters];

 double[] tempstats = new double[20];

 //only 14

 double[][] LGthestats = new double[iters][16];

 double[][] LRthestats = new double[iters][16];

120

 //calculating yhats for logistic regression

 for (int m0 = 0; m0 < iters; m0++) {

 r0 = 0;

 r1 = 0;

 for (int j = 0; j < nrp; j++) {

 LGtemphat = LGbetas[m0][0];

 LRtemphat = LRbetas[m0][0];

 for (int p = 1; p < nc; p++) {

 LGtemphat = LGtemphat + LGbetas[m0][p] * popdata1[j][p];

 LRtemphat = LRtemphat + LRbetas[m0][p] * popdata1[j][p];

 }

 if (j<100){System.out.println("LGtemphat="+LGtemphat);}

 if (popdata1[j][0] < .1) {

 //popyhats00[r0][m0] = Math.exp((LGtemphat / (LGtemphat + 1)));

 LGpopyhats0[r0] = (1.0 / (1.0 + Math.exp(-1.0 * LGtemphat)));

 //LGpopyhats0[r0] = LGtemphat;

 LRpopyhats0[r0] = LRtemphat;

 r0++;

 } else {

 //popyhats01[r1][m0] = Math.exp((LGtemphat / (LGtemphat + 1)));

 LGpopyhats1[r1] = (1.0 / (1.0 + Math.exp(-1.0 * LGtemphat)));

 //LGpopyhats1[r1] = LGtemphat;

 LRpopyhats1[r1] = LRtemphat;

 r1++;

 }

 }

 //first logistic regression

 tempstats = somersdetc(LGpopyhats0, LGpopyhats1);

 //System.out.println("The gini equals = " + tempstats[0]);

 //System.out.println("The KS equals from somers function = " + tempstats[4]);

 //theks[m0] = TwoSampKS(LGpopyhats0, LGpopyhats1);

 //System.out.println("The KS equals = " + theks[m0]);

121

 LGthestats[m0][0] = tempstats[0];

 LGthestats[m0][1] = tempstats[1];

 LGthestats[m0][2] = tempstats[2];

 LGthestats[m0][3] = tempstats[3];

 LGthestats[m0][4] = tempstats[4]; //not sure which func for KS to use

 //LGthestats[m0][4] = theks[m0]; //same results

 for (int h = 0; h < 10; h++) {

 //System.out.println("odds info stuff = " + tempstats[5 + h]);

 LGthestats[m0][5 + h] = tempstats[5 + h];

 }

 //second linear regression

 tempstats = somersdetc(LRpopyhats0, LRpopyhats1);

 //System.out.println("The gini equals = " + tempstats[0]);

 //System.out.println("The KS equals from somers function = " + tempstats[4]);

 //theks[m0] = TwoSampKS(LRpopyhats0, LRpopyhats1);

 //System.out.println("The KS equals = " + theks[m0]);

 LRthestats[m0][0] = tempstats[0];

 LRthestats[m0][1] = tempstats[1];

 LRthestats[m0][2] = tempstats[2];

 LRthestats[m0][3] = tempstats[3];

 LRthestats[m0][4] = tempstats[4]; //not sure which func for KS to use

 //LRthestats[m0][4] = theks[m0]; //same results

 for (int h = 0; h < 10; h++) {

 //System.out.println("odds info stuff = " + tempstats[5 + h]);

 LRthestats[m0][5 + h] = tempstats[5 + h];

 }

 }

 writeresults(thedir, "LGresults.csv", LGthestats);

 writeresults(thedir, "LRresults.csv", LRthestats);

 }

}

BIOGRAPHY

NAME Vesarach Aumeboonsuke

ACADEMIC BACKGROUND BBA, Finance Major, Assumption

University, Thailand

 MSc Finance & Investment, Brunel

University, UK

PRESENT POSITION Lecturer, Finance Department, Martin

De Tour School of Management &

Economics, Assumption University

EXPERIENCES Lecturer, Finance Department, Martin

De Tour School of Management &

Economics, Assumption University

	EVALUATING CREDIT SCORING MODELS
	ABSTRACT
	TABLE OF CONTENTS
	CHAPTER 1
INTRODUCTION
	CHAPTER 2
CREDIT SCORING IN THE LITERATURES
	CHAPTER 3
CREDIT SCORING METHODS
	CHAPTER 4
METHODOLOGY
	CHAPTER 5
ANALYSIS OF RESULTS
	CHAPTER 6
CONCLUDING REMARKS
	BIBLIOGRAPHY
	APPENDICES
	BIOGRAPHY

