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Evaluating the credit worthiness of credit seekers is a crucial process for 

financial institutions simply because their existence largely depends on how such a 

process is conducted. Financial institutions use a variety of credit scoring methods 

and a variety of criteria to select the best credit scoring methods. The primary purpose 

of this research is to evaluate the performance of some of the existing popular credit 

scoring methods that are widely used by financial institutions. The credit scoring 

methods to be considered for comparison purpose include logistic regression, 

discriminant analysis, and recursive partitioning. Several statistical criteria to be 

considered for evaluation include the Kolmogorov-Smirnov statistic (K-S), the Gini 

coefficient, and odds ratio at various cut-offs. 

Much research in the past has compared credit scoring methods through using 

sets of real-world data. In this paper, however, the comparison of the credit scoring 

methods has been done by using a set of data generated through simulation in order to 

acquire extensively representative and sufficiently effective samples; in this way, it is 

possible to compare and validate the performance of the classification models on the 

population.  

This paper simulates the data sets of the population, draw samples from each 

population set, runs each credit scoring method on each data set, computes the K-S, 

Gini, and odds ratio for each model for each data set, compares the cross-validation 

with the K-S, Gini, and odds ratio at various cut-off points, and evaluates the 

performance of different credit scoring models across different methods, across 
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samples with different ratios of “goods” to “bads”, and across samples drawn from the 

population with different characteristics. 

The findings of this research will be useful for financial institutions, especially 

commercial banks, because they present evidence of how well each credit scoring 

method can predict the credit score of loan applicants. Banks make lending decisions 

based on such credit scoring systems, and the lending decision is crucial because it is 

the source of their revenue. If the bank accepts the applicant that is going into default, 

then it will have a bad loan, which results in loan losses. On the other hand, if the 

bank rejects the applicant that is not going into default, then the bank has lost the 

opportunity to gain more revenue from that applicant. Therefore, ideally, banks would 

like to use a credit scoring model that has a stable and reliable predictive power across 

different characteristics of populations and sample sets. 
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CHAPTER 1 

  

INTRODUCTION 

 
Credit scoring is the set of decision models and their underlying techniques 

that aid lenders in the granting of consumer credit (Thomas, Edelman and Crook, 

2002). The ontology of the credit scoring model is illustrated in Figure 1. According 

to Figure 1, many loan applicants approach a bank to request loans, and these 

applicants are required to submit information such as age, gender, employment, 

residential status, number of dependents, etc. to the bank. Consequently, the bank will 

use the credit scoring model to process the information and compute the credit score 

of each loan applicant. The credit score is an interval scale that varies from zero to 

any number depending on the user’s predetermined range. It can be scaled to range 

from zero to one, so that it represents the probability that the loan applicant will not 

default on the loan. The bank will set the critical credit score as a benchmark such 

that, the bank will accept any loan applicant whose score falls above the critical score. 

On the other hand, the bank will reject any loan applicant whose score falls between 

zero and the critical score. In addition, the bank may perform further manual 

intervention, thus overriding the credit score results. 

 

 

 
Figure 1.1  The Ontology of the Credit Scoring Model 
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Evaluating the credit worthiness of credit seekers is a crucial process for 

financial institutions simply because their existence largely depends on how such a 

process is conducted. Financial institutions use a variety of credit scoring methods 

and a variety of criteria to select the best credit scoring methods. The primary purpose 

of this research is to evaluate the performance of some of the existing popular credit 

scoring methods that are widely used by financial institutions. The credit scoring 

methods to be considered for comparison purposes include the following: 

1) Logistic regression 

2) Discriminant analysis 

3) Recursive partitioning 

The criterion to be used for comparing the performances of these methods is 

their predictability or explanatory power, which is the number of times a given 

method identifies correctly credit-worthy customers, or correctly rejects non-credit-

worthy customers. Thomas, Edelman and Crook (2002) have suggested several 

statistical criteria to be considered for evaluation purposes including: 

1) Kolmogorov-Smirnov statistic (K-S) 

2) Gini coefficient (Gini) 

3) Odds ratio 

Much of the past research has compared credit scoring methods by using sets 

of real-world data. In this paper, however, the comparison of the credit scoring 

methods has been done by using a set of data generated through simulation. The 

reasons for using this set of simulated data are as follows: first, it is illegal in some 

countries for banks to provide the personal information of their clients to outsiders, so 

researchers are unable to obtain real data from the banks. The second reason for 

generating data is to acquire extensively representative and sufficiently effective 

samples because the purpose of this research is to compare and validate the 

performance of the classifications models so population data are needed in order to 

validate the models estimated from the samples and then to test the models with 

reference to the population. Finally, real-world data creates a biased comparison 

because it contains two sets of data; the first set contains observations that are 

accepted by the banks, but the second set of data contains observations that are 

rejected by the banks. The first set of data can be classified into good loans when the 
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person pays the loan back and a bad loan when the person defaults; however, the 

second set of data cannot be classified because the person has not been accepted in the 

first place. As a result, it is impossible to know whether each observation in the 

second set of data falls into the good loan group or bad loan group. In this case, 

whether the observation in the second set of data is in the category of either the good 

loan group or the bad loan group is left unknown. For these reasons, it is more 

appropriate to use synthetic data. 

The findings of this research will be useful for financial institutions, especially 

commercial banks, because evidence is presented concerning how well each credit 

scoring method can predict the credit score of the loan applicant. Banks make lending 

decisions based on such credit scoring systems, and the lending decision is crucial 

because it is the source of their revenue (Altman, 1980; Mester, 1997; Atiya, 2001). If 

the bank accepts the applicant that is going into default, then the bank will have a bad 

loan, which results in loan losses. Contrariwise, if the bank rejects the applicant that is 

not going into default, then the bank has lost the opportunity to gain more revenue 

from that applicant. In this case, the bank experiences an opportunity cost. Therefore, 

ideally, the banks would like to use a credit scoring model that can predict or 

distinguish good loan applicants from bad loan applicants.  

 



 
CHAPTER 2 

  

CREDIT SCORING IN THE LITERATURES 

 
There are many credit scoring methods that have been proposed and used in 

the pertinent literature, for example, multiple linear regression (Hand and Henley, 

1996, 1997; Mayers and Forgy, 1963; Orgler, 1970), discriminant analysis (Abdou, 

Pointon and El-Masry, 2008; Desai, Crook and Overstreet, 1996; Eisenbeis, 1987; 

Hand and Henley, 1996, 1997; Kolesar and Showers, 1985; Mayers and Forgy 1963; 

Orgler 1970; Press and Wilson, 1978; Reichert, Cho and Wagner, 1983; Ripley, 1994; 

Rosenberg and Gleit, 1994; Srinivasan and Kim, 1987; West, 2000; Wiginton, 1980), 

logistic regression (Abdou, Point and El-Masry, 2008; Desai, Crook and Overstreet, 

1996; Eisenbeis, 1987; Galindo and Tamayo, 2000; Hand and Henley, 1996, 1997; 

Press and Wilson, 1978; Srinivasan and Kim, 1987; West, 2000; Wiginton, 1980), 

neural networks (Abdou, Point and El-Masry, 2008; Baesens et al., 2003; Desai, 

Crook and Overstreet, 1996; Galindo and Tamayo, 2000; Hand and Henley, 1996, 1997; 

Hsieh, 2005; Ripley, 1994; West, 2000), data envelopment analysis (Emel et al., 

2003), and some non-parametric methods such as the k-nearest neighbor (Galindo and 

Tamayo, 2000; Hand and Henley, 1996, 1997), and the decision tree (recursive 

partitioning) (Galindo and Tamayo, 2000; Hand and Henley, 1996, 1997; Rosenberg 

and Gleit, 1994).  

Discriminant analysis was first introduced to credit scoring by Durand (1941), 

followed by Mayers and Forgy (1963), who produced evidence that the performance 

of discriminant analysis was better compared to stepwise multiple linear regression 

analysis, and Wiginton (1980), who found that logistic regression gave superior 

predictability when compared with discriminant analysis. 

Ripley (1994) and Rosenberg and Gleit (1994) introduced the applications of 

neural networks to credit decisions and fraud detection. Later on, many researchers 

employed neural networks in their studies. The study of Hand and Henley (1996, 
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1997), for example, suggested that the K-nearest neighbor was the best model, while 

Galindo and Tamayo (2000) found that the decision tree was the best model. 

However, West (2000) showed that neural networks had less predictive power when 

compared with the traditional methods in general. In addition, West (2000) also 

suggested that logistic regression was superior to neural networks in particular. On the 

other hand, Abdou, Point and El-Masry (2008) found that the neural networks 

approach was superior to other models, such as logistic regression and discriminant 

analysis.  

The contradicting findings offered by Hand and Henley (1996, 1997), Galindo 

and Tamayo (2000), West (2000) and Abdou, Point and El-Masry (2008) put these 

approaches as to which one was superior, suggesting the need for more in-depth study 

in order to reach decisive conclusions. Table 2.1 offers conclusions regarding the 

contradictory findings of the four studies mentioned above. According to Table 2.1, 

these contradictory results may come from using different data sets, different sample 

sizes, different ratios of bad-to-good, or different numbers of independent variables. 

 

Table 2.1  The Contradictory Findings in Previous Literature 

 

Literature Best model Data 
Sample 

Size Good: Bad # of X 

Hand & Henley 
(1996, 1997) 

K-nearest 
neighbor  

Mail order company, 
UK  

15,054   
4,132 

54.5 : 45.5 
54.7 : 45.3 

16 

 
Galindo & 
Tamayo (2000)  

Decision tree  Home mortgage 
loans from one 
financial institution, 
Mexico  

4,000 50.8 : 49.2 24 

 

 
West (2000)  Logistic 

regression  
German data, 
Australian data  

1,000        
690 

70 : 30    
44.5 : 55.5 

14 

 
Abdou et al. 
(2008)  

Neural 
network  

4-year personal 
loans from one 
bank, Egypt  

581 74.5 : 25.5 20 

 

This study would like to reconcile the contradictory evidence from previous 

studies concerning the performance of each model. In order to achieve this purpose, 
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population sets with different ratios of good loans to bad loans are formed, and 

various sample groups are drawn from each population with different ratios of good 

loans to bad loans. In this way, the research is able to test if the ratio of good loans to 

bad loans and the sample size will affect the performance of each model.  

Many researchers in the past, as mentioned above, used real-world data. 

However the real data used in these studies reflect some bias in the sense that the 

sample set of data contains the observations that are accepted by the banks but does 

not contain the observations that are rejected by the banks. Wiginton (1980) has stated 

that “…The data were presensored. That is, the credit applications had already been 

screened by credit officers who rejected the ‘bad risks,’ thus removing much of the 

variability of interest in the data and leaving only the pathological cases, which would 

tend to confound any modeling effort….” This argument is presented in Figure 2.1, 

where the credit scoring model is formed based on the sample set, including “bad 

accepted” and “good accepted,” but excluding “bad rejected” and “good rejected.” 

However, the “bad rejected” group is the most crucial group to include in the model 

because the purpose of the model is to correctly identify bad borrowers so that the 

bank does not have a bad loan. 

 

 

 

Figure 2.1  The Argument for Using Synthetic Data. 

 

Therefore, the researcher of this study believes that using real-world data to 

evaluate the models of interest yields biased results. Moreover, the real-world data 

represent the sample set. This research would like to assess how well each 
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classification model performs using the sample set as a training set and using the 

population set as a test set. However, the real-world data do not contain enough 

information about the population. In order to overcome this disadvantage, the 

simulation technique is used to generate the data used in evaluating the credit scoring 

models. Some simulations related to credit scoring models have been produced by 

Dryver (2011) and Dryver and Jantra Sukkasem (2009). Dryver (2011) simulated two 

populations and showed that the K-S statistic can be used for model comparison and 

selection but it may lack sensitivity in some cases. Dryver and Jantra Sukkasem 

(2009) simulated three populations and used logistic regression to investigate the 

precision of the K-S statistic, the Gini coefficient, and odds at various cut-off points. 



 
 

 
CHAPTER 3 

  

CREDIT SCORING METHODS 

 
Many credit scoring methods have been proposed and used in the literature, as 

mentioned in the literature review. However, this research concentrates on the 

following methods: 

1) Logistic Regression 

2) Discriminant Analysis 

3) Recursive Partitioning 

One important requirement for a practical and legitimate credit scoring model 

is that the model can also offer the reason why it rejects or accepts loan applicants. 

This kind of model feature enables banks to provide support that justifies their 

decisions regarding loan applications. As a result, although there are many statistical 

models that can predict y-value as “yes” or “no,”: this research only uses the models 

that satisfy the requirement mentioned above.   

According to Galindo and Tamayo (2000), another important issue for 

financial decision making is the transparency or degree of interpretability of models. 

Transparent models are those that are conceptually understood by the decision maker, 

such as a decision tree expressed in term of profiles or rule sets. By contrast, while 

neural networks can act as accurate black boxes, they are opaque and not able to 

provide simple clues about the basis for their classifications or predictions. Elder and 

Pregibon (1996) argue that if accuracy is acceptable, a more interpretable model is 

more useful than a “black box.” 

Moreover, it is feasible to use multiple linear regression, logistic regression, 

and discriminant analysis to predict the credit score and to rank the applicants based 

on their scores without any additional adjusting procedure to make a meaningful 

comparison. Apart from these three models, recursive partitioning (decision tree) can 

categorize the observations into many groups based on the credit scores. Although the 
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observations within the same group are given equal credit scores, each group is given 

a different credit score so it is feasible to rank different groups of observations. 

However, the k nearest neighbor can only estimate the predicted y as “yes” (accept) or 

“no” (reject). In this case, it is impossible to use these two models to rank the 

applicants. In addition, if there are two classes for the dependent variables, multiple 

linear regression and discriminant analysis will produce identical results (Flury and 

Riedwyl, 1985; Lawrence et al., 2010).   

As a result of this observation, this research only focuses on logistic 

regression, discriminant analysis, and recursive partitioning where it is transparent, 

not redundant, and possible to rank the observations based on their predicted 

probability of being a credit worthy client, so it is reasonable to use the K-S, Gini, and 

odds ratio to compare and contrast the models.  

In addition to the K-S, Gini, and odds ratio, the research also validates the 

models by conducting cross validation at various cut-off scores in order to determine 

the percent at which the model predicts correctly (that is the predicted y = yes is the 

same as the actual y = not default and the predicted y = no is the same as the actual y 

= default). In other words, the cross validation reports the type I and type II errors of 

each model. Table 3.1 presents information on the cross validation, where the good 

model is the model that correctly classifies each loan applicant and minimizes type I 

and type II errors.  

 

Table 3.1  Cross Validation 
 

Data Set Actual 
Bad Good 

Predicted Bad Correct Assessment Type II Error 
Good Type I Error Correct Assessment 

 

3.1  Logistic Regression 
 

Logistic regression (logit) is used for predicting the probability of the 

occurrence of an event by fitting data into a logistic curve. It is a generalized linear 

model used for binomial regression. Similar to linear regression analysis, it makes use 
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of several predictor variables that may be either numerical or categorical (Hosmer and 

Lemeshow, 2000). For example, the probability that a person will default on his or her 

bank loan might be predicted from the person's marital status (categorical, for 

example, “single” = class “1,” “married” = class “2”), and number of dependents 

(numerical, for example, 0, 1, 2, 3, etc.).  

 

 

Figure 3.1  Logistic Function 

 

                    (1) 

where      (2) 

A graph of the logistic function is shown in Figure 3.1  The logistic function is 

defined as equation (1) and the variable z is usually defined as equation (2), where β0 

is the intercept and β1, β2, β3, …,βk are the regression coefficients of x1, x2, x3,…,xk, 

respectively. The intercept is the value of z when the value of all independent 

variables is zero (e.g. the value of z is someone with no risk factors). Each of the 

regression coefficients describes the weight or size of the contribution of that factor. 

In equation (2), the sum of the product between each explanatory variable and its 

weight is “z,” which is similar to the predicted value from multiple linear regression. 

Then, the “z” is substituted into equation (1) to compute “f(z),” which is the predicted 

value for the logistic function. The logistic function is practical in terms of predicting 

the probability because it can take any value of explanatory variables from negative 
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infinity to positive infinity, whereas the predicted value “f(z)” is limited to the range 

of zero and one, which makes it reasonable to represent the value of the probability of 

a particular outcome.  

A positive regression coefficient means that that explanatory variable 

increases the probability of the outcome, while a negative regression coefficient 

means that the variable decreases the probability of that outcome; a large regression 

coefficient means that the risk factor strongly influences the probability of that 

outcome, while a near-zero regression coefficient means that that risk factor has little 

influence on the probability of that outcome. 

Logistic regression is a useful way of describing the relationship between one 

or more independent variables (e.g., age, sex, etc.) and a binary response variable that 

has only two possible values such as defaulting on a loan (the observation has a 

response variable equal to “0” if that observation is the person that “defaults,” and the 

observation has a response variable equal to “1” if that observation is the person that 

“does not default”).  

According to equation (1), the logistic function has the predicted value (or 

predicted credit score) f(z), which is expressed as the predicted probability that a 

person will “not default,” and f(z) can take any value in the range of [0,1]. In order to 

utilize the predicted value from the logistic function to make a proper loan approval 

decision, the bank will set the cut-off score “c,” which serves as the critical value to 

classify the applicants as “bad” or “good.” In this case, the loan applicant whose 

predicted credit score f(z) falls into the range of [0,c] will be given a response variable 

equal to “0” (will default) and the bank will reject the loan application. On the other 

hand, the loan applicant whose predicted credit score f(z) falls into the range of (c,1] 

will be given a response variable equal to “1” (will not default) and the bank will 

approve the loan. 

 

3.2  Linear Discriminant Analysis 
 

Linear Discriminant Analysis (LDA) is the statistical method for finding a 

linear combination of features which characterize or separate two or more mutually- 

exclusive and exhaustive classes of objects or events based on a set of measurable 

object’s features.  
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LDA is closely related to ANOVA (analysis of variance) and linear regression 

analysis, which also attempt to express one dependent variable as a linear 

combination of a set of independent variables. (Fisher, 1936) In the ANOVA and 

regression analysis, the dependent variable is a numerical quantity, while for LDA it 

is a categorical variable. Logistic regression is similar to LDA in the sense that the 

dependent variable is also a categorical variable. In LDA, the dependent variable (Y) 

is the group and the independent variables (X) are the object features that might 

describe the group. The dependent variable is always a category (nominal scale) 

variable while the independent variables can be any measurement scale (i.e. nominal, 

ordinal, interval, or ratio). LDA assumes that the groups can be separated by a linear 

combination of features that describe the objects.  

The objective of LDA is to minimize total error of classification. In order to 

achieve this objective, the classification rule is to assign an object to the class with the 

highest conditional probability. For example, the object will be classified in the 

“good” class if, given a set of applicant features ( ), the probability that an object 

belongs to the “good” class is higher that the probability that an observation belongs 

to the “bad” class; that is, . 

The bank would like to know , which is unknown: however, the 

value of , the probability that an observation belongs to a particular set 

of features  given that the observation comes from a “good” class is known. 

According the Bayes Theorem, there is a relationship between 

and , as shown in equation (6). 

 

   (6) 
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where  P(good) = Ng / N = the probability that the observation is in the “good” class, 

P(bad) = Nb / N = the probability that the observation is in the “bad” class, 

Ng = the number of observations in the “good” class, 

Nb = the number of observations in the “bad” class, and   

N = Ng + Nb = the number of total observations. 

 

However, to use the Bayes rule directly is impractical because in order to 

obtain and so much data are acquired to obtain the relative 

frequencies of each group for each measurement. It is more practical to assume the 

distribution and obtain the probability theoretically. If we assume that each class has 

multivariate normal distribution and each class has the same covariance matrix, we 

can obtain the Linear Discriminant Analysis (LDA) function (Friedman, 1989; Hastie 

and Tibshirani, 1996). 

The following example shows how we can obtain the LDA function and how 

LDA can be applied to credit scoring. Consider the case in which the bank would like 

to know whether a loan applicant is good (will pay back on time) or bad (will not pay 

back on time) based on several measurements of the loan applicant, such as age, 

average monthly income, average monthly spending, marital status, etc. The object 

(observation) is a loan applicant. Each measurement of the loan applicant is the 

features that describe the object. These several features serve as the independent 

variables. The class category “good” and “bad” of the loan applicant is what the bank 

is looking for. This class category is the dependent variable. Assume that there are 

two data sets, as shown in equation (3) and equation (4). Data set A, the “good” 

borrowers, consists of “p” observations, while data set B, the “bad” borrowers, 

consists of “q” observations, and a set of features contains “k” features (i.e. there are 

“k” explanatory factors, or independent variables). 

 

A =      (3) 
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B =       (4) 

 

From equation (3) and equation (4), we can find the mean of each feature in 

each class, as shown in equation (5) and equation (6), and the global mean (mean of 

each feature based on the whole data set is presented in equation (7). 

 

                    (5) 

 

                    (6) 

 

                    (7) 

 

where 

 
 

Equation (8) and equation (9) represent the deviation between the actual value 

of each feature in each observation and its mean value. 

 

                  (8) 
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                  (9) 

 

                  (10) 

 

                   (11) 

 

According to equation (10), , the k x k matrix, is the covariance matrix 

of the data set in the class “good.” Similarly, in equation (11), , the matrix with 

the same dimension as , is the covariance matrix of the data set in the class 

“bad.”  

Based on equation (10) and equation (11), we can find , the covariance 

matrix of the whole data set, as shown in equation (12). 

 

                (12) 

 

where 

 is the element in row “r” and column “s” of the covariance matrix , 

 is the element in row “r” and column “s” of the covariance matrix 

, and  is the element in row “r” and column “s” of the 

covariance matrix . 

 

The final step is to compute the Linear Discriminant Function ( ) of each pre-

specified class “i,” Based on our example, there are two classes (“good” and “bad”) so 
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there will be two values of ; and , as shown in equation (13) and equation 

(14).  

            (13) 

             (14) 

 

where , is the matrix showing the values of features that 

belong to object (or observation) “n.” For example is the value of feature “1” of 

observation “n.” 

In order to decide whether loan applicant (observation) “n” falls into the 

“good” or “bad” class, the bank will compare the value of and   . The rule is 

to assign observation “n” to class “i” that has a maximum value of .  

In a special case where there are two classes for the dependent variables, Flury 

and Riedwyl (1985) and Lawrence et al. (2010) showed that the linear discriminant 

analysis will be mathematically equivalent to the multiple linear regression.  

 

3.2.1  Multiple Linear Regression  

Multiple linear regression attempts to model the relationship between two or 

more explanatory variables (independent) and a response variable (dependent) by 

fitting a linear equation with the observed data. Every value of the independent 

variable x is associated with the value of the dependent variable y. The regression line 

for p number of explanatory variables x1, x2, ... , xp is expressed by equation (15). 

 

 for i = 1, …, n            (15) 

These n equations can be written in vector form as shown by equation (16). 

                                                                            (16) 
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where 

   

 

Figure 3.2  Linear Regression Function 

 

Figure 3.2 shows the best-fitting line of the linear regression function. In the 

linear regression model, the best-fitting line for the observed data is calculated by 

minimizing the sum of the squares of the vertical deviations from each data point to 

the line. Because the deviations are squared, then summed, there are no cancellations 

between positive and negative values. The least-squares estimates b0, b1, ... bp are the 

values fit by the equation (17) and residuals εi are equal to the difference between the 

observed and fitted values. The sum of the residuals is equal to zero. Multiple linear 

regression can be used to model the credit scores, as can be seen from Mayers and 

Forgy (1963) and Orgler (1970). Normally in practice, when banks use linear 

regression, the predicted value represents the credit score that can take the value from 

negative infinity to positive infinity and can be scaled to take the value from zero to 

one. The banks have their own cut-off score to determine if the applicant’s score will 

pass or fail.  
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                               (17) 

 

where      is the fitted value of observation i 

is the value of the independent variable j for observation i 

is the estimated coefficient of each independent variable j 

 

3.3  Recursive Partitioning 

 

Recursive partitioning is a non parametric statistical method developed by 

Breiman and Friedman in 1973. This method creates a decision tree that strives to 

correctly classify members of the population based on binary dependent variables 

(Breiman et al., 1984).  It has been widely applied for classification in many scientific 

fields such as biomedical field (Goldman et al., 1996, 1988; Zhang et al., 2001), 

engineering (Bahl et al., 1989), astronomy (Owens, Griffiths and Ratnatunga, 1996), 

and chemistry (Chen, Rusinko and Young, 1998). Recursive partitioning has an 

advantage that it has the feature of transparency; it can be represented as a set of rules 

in almost plain English. This makes it ideal for economic and financial applications.  

The main characteristic of recursive partitioning is that the feature space, i.e. 

the space spanned by all predictor variables, is recursively partitioned into a set of 

rectangular areas. The partition is created such that observations with similar response 

values are grouped. After the partition is completed, a constant value of the response 

variable is predicted within each area. The partition produces a decision tree 

(classification tree) that expresses a sequential classification process in which a case 

(described by a set of attributes) is assigned to one of a disjoint set of classes. Each 

leaf of a tree denotes a class (Quinlan, 1987). 

The rationale of the decision tree can be explained in more detail by means of 

a credit scoring example, as shown in . This example was taken from a book by 

Thomas, Edelman and Crook (2002). Given information on the set of the determinants 

of the credit quality of the loan applicants, the bank’s aim is to predict whether the 

loan applicants will turn out to be “good” or “bad” (binary response variable) from a 
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set of binary explanatory factors (whether the residential status of the loan applicant is 

that of an owner or not, whether the loan applicant has been a customer at the bank for 

more or less than two years, whether the loan applicant has children or not, whether 

the employment of the loan applicant is professional or not, whether the age of the 

loan applicant is more or less than 26 and 21 years, and if the loan applicant is not the 

owner of the house, whether the loan applicant lives with parents or not).  
 

 

Figure 3.3  Recursive Partitioning (Decision Tree) 
 

 Figure 3.3 illustrates a decision tree that can be obtained from using the 
recursive partitioning model to classify the loan applicants into different groups. The 
set of loan application data is first split into two subsets, so that looking at the sample 
of previous applicants, these two new subsets of application attributes are far more 
homogeneous regarding the default risk of the applicants than the original set. Each of 
these sets is then again split into two to produce even more homogeneous subsets, and 
the process is repeated. This is why the approach is called recursive partitioning. The 
process stops when the subsets meet the requirements to be terminal nodes of the tree. 
Each terminal node is then classified as a “good” or “bad” borrower and the whole 
procedure can be presented graphically as the tree in. Figure 3.3. 

Three decisions make up the classification tree procedure: 
1) How to assign terminal nodes into good and bad categories 
2) What rule to use to split the sets into two – the splitting rule 
3) How to decide that a set is a terminal node – the stopping rule 
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The good-bad assignment decision can be made by computing the percentage 

of good cases which represents the probability that any random case in the node is a 

good case. This probability can be treated as a credit score that ranges from zero to 

one. If the credit score is less than the cut-off score, then all the cases in the node will 

be assigned into the bad category.  

Zhang (2004) uses two steps in tree construction (growing and pruning) to 

constitute the splitting rule and stopping rule. Suppose that we have observed p 

covariates, denoted by a p-vector , and a response  for  individuals. For the th 

individual, the measurements are  

              (18) 

The objective is to model the probability distribution of P (  | ) or a 

function of this conditional distribution. The growing step begins with the root node, 

which is the entire learning sample. The root node is the box on top of the tree in . 

The most fundamental step in tree growing is to partition the root node into two 

subgroups, referred to as daughter nodes, such that one daughter node contains mostly 

bad borrowers (observations with y=0) and the other daughter node mostly good 

borrowers (observations with y=1). Such a partition is chosen from all possible binary 

splits based on the profiles of all loan applicants via questions such as: “Is the loan 

applicant a home owner?” A loan applicant is assigned to the right or left daughter 

according to whether the answer is yes or no. When all of the loan applicants are 

assigned to either the left or right daughter nodes, the distribution in terms of the 

credit score is assessed for both the left and right nodes using typically a node 

impurity. One such criterion is entropy function  

               (19) 

where  is the proportion of bad loan applicants in a specified node t. This function 

is at its lowest level when  = 0 or 1. 5310131027 

other nodes are referred to as internal nodes. More precisely, the quality of a tree, 

denoted by T, is reflected by the quality of its terminal nodes as follows: 

                           (20) 

where  is the set of terminal nodes of tree  and  the within-node 

misclassification cost of node . 
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The ultimate objective of tree pruning is to select a sub-tree of the saturated 

tree so that the misclassification cost of the selected sub-tree is the lowest on an 

independent, identically-distributed sample, called a test sample. In practice, we rarely 

have a test sample. Breiman et al. (1984) proposed using cross validation based on 

cost-complexity. They defined the number of the terminal nodes of , denoted by | |, as 

the complexity of . A penalizing cost, the so-called complexity parameter, is 

assigned to a one unit increase in complexity, i.e., one extra terminal node. The sum 

of all costs becomes the penalty for the tree complexity, and the cost-complexity of a 

tree is: 

                                      (21) 

where  (> 0) is the complexity parameter. 

A useful and interesting result from Breiman et al. (1984) is that, for a given 

complexity parameter, there is a unique smallest sub-tree of the saturated tree that 

minimizes the cost-complexity measure (3). Furthermore, if 1 > 2, the optimally 

pruned sub-tree corresponding to 1 is a sub-tree of the one corresponding to 2. 

Therefore, increasing the complexity parameter produces a finite sequence of nested 

optimally-pruned sub-trees, which makes the selection of the desirably-sized sub-tree 

feasible. 

Although the introduction of misclassification cost and cost complexity 

provides a solution to tree pruning, it is usually a subjective and difficult decision to 

choose the misclassification costs for different errors. Moreover, the final tree can be 

heavily dependent on such a subjective choice. From a methodological point of view, 

generalizing the concept of misclassification cost is difficult when we have to deal 

with more complicated responses. For these reasons, a simpler way for pruning, as 

described by Segal (1988) and Zhang and Singer (1999), is more preferable. The 

impurity function can be defined as 

                       (22) 

for a J-level y. Everything else in the tree growing step, as described above, is 

applicable. For tree pruning, the only change to be made is to define the 

misclassification cost  from level k to level j, j, k = 1, . . . , J.  



 
 

 
CHAPTER 4 

  

METHODOLOGY 
 

The comparison of the credit scoring methods has been done using the 

following steps:  

4.1 Step 1: Simulate Nine Data Sets of Populations.  

4.2 Step 2: Draw 3,000 Data Sets of Samples from Each Population. 

4.3 Step 3: Estimate Three Credit Scoring Models Per Each Sample Set. 

4.4 Step 4: Test the Model by Using it to Predict the Credit Scores of the 

Population and Use the Predicted Credit Scores to Compute the K-S, Gini, and Odds 

Ratio. 

4.5 Step 5: Construct a Confusion Matrix at Each Cut-Off Point for Each 

Model. 

4.6 Step 6: Compare the Cross-Validation with the K-S, Gini, and Odds 

Ratio. 

4.7 Step 7: Evaluate the Performance of Different Credit Scoring Models 

Across Different Methods and Across Samples with Different Characteristics.  

The details of each step are presented as follows: 

 

4.1  Step 1: Simulate Nine Data Sets of Populations.  
 

In the first step, nine sets of populations were created; each population set 

consisted of “good” borrowers and “bad” borrowers. The actual y value for “good” 

borrowers was “1” and the actual y value for “bad” borrowers was “0.” Then a set of 

information was created. This set of information consisted of ten factors (independent 

variables) for each borrower (x1, x2, …, x10). Each factor was randomly generated 

following proper distribution with proper value of parameter. For example; if x1 

represented the income of the applicants, it may have followed normal distribution; if 

x2 represented residential status (either own or not), it may have followed the 
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Bernoulli distribution; and if x3 represented the length of time of employment, it may 

have followed exponential distribution, etc. (Dryver and Jantra Sukkasem, 2009). 

These factors represent the personal attributes of the loan applicants and it can be any 

factors that the bank believed more or less predict whether the loan applicants will default 

or not.  

This research did not specify the factors in the model because the purpose of 

was not to construct a model but to compare and evaluate the performance of each 

credit applicant classification model, so that in practice, different banks can choose 

different sets of factors they believe are important in determining the credit scoring of 

the applicants. Moreover, it is also flexible for banks to change the sets of influential 

factors across time.  

The results from step 1 are the nine population sets (three different K-S 

statistics by three different “good” to “bad” ratios). There are three population types 

based on the parameters used in the simulation so that each population type has a 

different K-S statistic (high K-S, mid K-S, and low K-S population with K-S statistics 

equal to 75%, 50%, and 25%, respectively). And for each population type, there are 

three population sets with different “good” to “bad” ratios:   

1) Population 1: 700,000 goods and 300,000 bads (70:30) 

2) Population 2: 800,000 goods and 200,000 bads (80:20) 

3) Population 3: 900,000 goods and 100,000 bads (90:10) 

 

4.2  Step 2: Draw 3,000 Data Sets of Samples from Each Population 
 

In step 2, various sample sizes (the estimation sample) were drawn from each 

set of population with 1,000 iterations each. 

From each population set, draw 3,000 sets of samples: 

1) 1,000 sets of sample 1: 1,000 goods and 1,000 bads 

2) 1,000 sets of sample 2: 4,000 goods and 1,000 bads 

3) 1,000 sets of sample 3: 9,000 goods and 1,000 bads 

Drawing the observations within the same sample set was without 

replacement. After each sample set was drawn, all of the observations were replaced 

into the population before drawing the next sample set. For example, Sample 1 was 
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drawn from population set 1, following the proportion of sample type 1 (1,000 goods 

and 1,000 bads). This step yielded 1,000 sets of sample 1, 1,000 sets of sample 2, and 

1,000 sets of sample 3. 

Using the same procedure as with population set 1 to draw 3,000 sets of 

samples from each of the remaining 8 population sets, the research obtained 27,000 

sample sets from the nine population sets. 

 

4.3  Step 3: Estimate Three Credit Scoring Models Per Each Sample Set  
 

In step 3, the researcher estimated each credit scoring model by using each 

sample set as a training set.  

The four credit scoring models are 

1) LR (Logistic regression) 

2) DA (Discriminant analysis) 

3) RP1 (Recursive partitioning with restriction on tree growing) 

4) RP2 (Recursive partitioning without restriction) 

In this step, the research obtained 9 population sets * 3 sample sets per 

population * 1,000 iterations per sample set * 4 models per iteration. Each of the 

27,000 sample sets was used as a training set to estimate each of the 4 models. 

In the end, there were 108,000 models formed based on 27,000 sample sets. 

The numbers of sample sets for each case are summarized in Table 4.1. 

 
Table 4.1  The Numbers of Sample Set to Construct the Four Models 
 

 

K-S                                                                                Numbers of Sample Set 

High K-S  
Population 1 (70:30)                                                                    
   Sample 1: 2,000 observations (1,000 goods and 1,000 bads) 1,000 
   Sample 2: 5,000 observations (4,000 goods and 1,000 bads) 1,000 
   Sample 3: 10,000 observations (9,000 goods and 1,000 bads) 1,000 
Population 2 (80:20)  
   Sample 1: 2,000 observations (1,000 goods and 1,000 bads) 1,000 
   Sample 2: 5,000 observations (4,000 goods and 1,000 bads) 1,000 
   Sample 3: 10,000 observations (9,000 goods and 1,000 bads) 1,000 
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Table 4.1  (Continued) 

 
 

K-S                                                                                Numbers of Sample Set 

Population 3 (90:10)  
   Sample 1: 2,000 observations (1,000 goods and 1,000 bads) 1,000 
   Sample 2: 5,000 observations (4,000 goods and 1,000 bads) 1,000 
   Sample 3: 10,000 observations (9,000 goods and 1,000 bads) 1,000 
  
Mid K-S  
Population 1 (70:30)                                                                  
   Sample 1: 2,000 observations (1,000 goods and 1,000 bads) 1,000 
   Sample 2: 5,000 observations (4,000 goods and 1,000 bads) 1,000 
   Sample 3: 10,000 observations (9,000 goods and 1,000 bads) 1,000 
Population 2 (80:20)  
   Sample 1: 2,000 observations (1,000 goods and 1,000 bads) 1,000 
   Sample 2: 5,000 observations (4,000 goods and 1,000 bads) 1,000 
   Sample 3: 10,000 observations (9,000 goods and 1,000 bads) 1,000 
Population 3 (90:10)  
   Sample 1: 2,000 observations (1,000 goods and 1,000 bads) 1,000 
   Sample 2: 5,000 observations (4,000 goods and 1,000 bads) 1,000 
   Sample 3: 10,000 observations (9,000 goods and 1,000 bads) 1,000 
  
Low K-S  
Population 1 (70:30)  
   Sample 1: 2,000 observations (1,000 goods and 1,000 bads) 1,000 
   Sample 2: 5,000 observations (4,000 goods and 1,000 bads) 1,000 
   Sample 3: 10,000 observations (9,000 goods and 1,000 bads) 1,000 
Population 2 (80:20)  
   Sample 1: 2,000 observations (1,000 goods and 1,000 bads) 1,000 
   Sample 2: 5,000 observations (4,000 goods and 1,000 bads) 1,000 
   Sample 3: 10,000 observations (9,000 goods and 1,000 bads) 1,000 
Population 3 (90:10)  
   Sample 1: 2,000 observations (1,000 goods and 1,000 bads) 1,000 
   Sample 2: 5,000 observations (4,000 goods and 1,000 bads) 1,000 
   Sample 3: 10,000 observations (9,000 goods and 1,000 bads) 1,000 
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4.4  Step 4: Test the Model by Using it to Predict the Credit Scores of the 

Population and Use the Predicted Credit Scores to Compute the K-S, 

Gini, and Odds Ratio. 
 

In step 4, the predicted y-values (credit scores) for each sample and its 

population were computed based on the models estimated from each particular sample 

set. Then, the K-S, Gini, and odds ratio for each model was computed based on the 

predicted y-value of each observation. After the K-S, Gini, and odds ratios were 

computed, it was possible to validate the performance of each model by comparing 

the K-S, Gini, and odds ratio of each model. For example, to validate the logistic 

regression model, the performance of the K-S, Gini, and odds ratio of logistic 

regression models based on different sample sets that were drawn from the same 

population set was compared with the performance of the other models when used to 

predict the credit scores of that particular population set. 

To compute the K-S, the probability distribution functions (pdf) of the 

predicted credit scores for the “bad” group and the “good” group were constructed, as 

illustrated in Figure 4.1. According to Figure 4.1 , the horizontal axis is the predicted 

credit scores and the vertical axis is the frequency of observing a particular score. The 

pdf(bad) is right-skewed (the right tail is longer) because most of the bad applicants 

should get relatively low predicted credit scores, and as a result, the mass of the 

distribution is concentrated on the left of the figure. On the contrary, the pdf(good) is 

left-skewed (the left tail is longer) because the majority of the good applicants should 

get relatively high predicted credit scores, and as a result, the mass of the distribution 

is concentrated on the right of the figure. Subsequently, the cumulative distribution 

functions (cdf) of the “bad” group and the “good” group were derived based on their 

respective pdf.  
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Figure 4.1  Probability Distribution Functions and Cumulative Distribution Functions 

 

Figure 4.2 was formed by combining the cdf(bad) and cdf(good) in Figure 4.1. 

Consequently, the K-S statistic was calculated from the maximum distance between 

the two curves. The larger the K-S was, the better the model was able to distinguish 

between “bad” and “good” borrowers.  

 

 

Figure 4.2  Kolmogorov-Smirnov Statistic (K-S) 

 

Finally, the solid curve of the Lorentz diagram was obtained by formulating a 

scatter plot between the cdf(bad) and the cdf(good), as illustrated in Figure 4.3. The 

diagonal dotted line represents the points where the cdf(bad) was equal to the 

cdf(good). If the model had a better performance in terms of distinguishing between 

the “good” and “bad” borrowers, then the curve was more convex and lay further 

away from the diagonal line. In this case, the area between the line and the curve will 
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be larger. The Gini coefficient was computed by two times of the area. In conclusion, 

the higher the Gini coefficient was, the better the model performed. 

 

 

Figure 4.3  Lorentz Diagram and Gini Coefficient 

 

The odds ratio was computed using the number of goods accepted divided by 

the number of bads accepted. 

 

4.5  Step 5: Construct the Confusion Matrix at Each Cut-Off Point for 

Each Model 
 

In this step, the performance of each model was compared by constructing the 

confusion (misclassification) matrix at each cut-off point using the predicted y-value 

from step 3 and the actual (true) y-value from step 1 and step 2.  

The cut-off points were assumed based on what banks use when making a 

decision on fraud and approving credit cards. For fraud, often banks reject the bottom- 

scoring 5%.  For credit cards, it is between the bottom 10%, 20%, 30%, depending on 

the bank (Dryver and Jantra Sukkasem, 2009; Dryver, 2011). Thus, assume 4 cut-off 

points (5%, 10%, 20%, and 30%) to check the percentage of goods and bads rejected 

at each cut-off point.   For example, if we assume a 10% cut-off point, the confusion 

matrix is formed as shown in Table 4.2. The observation whose predicted credit score 

is below the cut-off point will be rejected, and the observation whose predicted credit 

score is above the cut-off point will be accepted.  
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Table 4.2  Confusion Matrix 
 

Data Set Predicted 
Good Bad 

Actual Good True Positive False Negative 
Bad False Positive True Negative 

 

Where  True Positive = Acceptance of goods 

False Positive = Acceptance of bads 

True Negative = Rejection of bads 

False Negative = Rejection of goods 

 

Based on Table 4.2, it is possible to compute four measures that can be used to 

gauge the level of misclassification and to compare the performance of different 

models. 

1) Accuracy: (True positives and negatives)/(Total cases) 

2) Error rate: (False positives and negatives)/(Total cases) 

3) Sensitivity: (True positives)/(Total actual positives) 

4) Specificity: (True negatives)/(Total actual negatives) 

 

Based on these measures, a bank can decide, for example, to maximize the 

rejection of bads (maximize the specificity). In this case, the bank aims to reduce 

losses. In another case where the bank wishes to get a higher market share and does 

not mind approving some bads, it can minimize the rejection of goods by choosing the 

model that maximizes sensitivity (Siddiqi, 2006). 

 

4.6  Step 6: Compare the Cross-Validation with the K-S, Gini, and Odds 

Ratio 
 

In step 6, the research compares the cross-validation with the K-S, Gini, and 

odds ratio to assess how informative the K-S, Gini, and odds ratios are. Also, the 

research investigates the relationships among the K-S, Gini, and odds ratio for the 

estimation sample and the model performance for validation using the entire 

population.   
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4.7  Step 7: Evaluate the Performance of Different Credit Scoring Models 

Across Different Methods and Across Samples with Different 

Characteristics.  
 

In the final step, the research evaluates the performance of each model by 

going back to the results obtained from step 4 – 6. The procedure is illustrated in 

Figure 4.4. According to Figure 4.4 , after drawing sample sets from each population 

set, each sample set was used to estimate the different credit scoring models (namely, 

logistic regression, discriminant analysis, and recursive partitioning). Then the 

coefficient set from each model was tested on the population data to predict the credit 

scores.  Subsequently, the K-S, Gini, and odds ratios were computed based on the 

predicted scores. Finally, for each of the three models, the K-S, Gini, odds ratios, and 

specificity of each model were evaluated across different population “good” to “bad” 

ratios, sample “good” to “bad” ratios, characteristics of the population, and models. 

This procedure was repeated for different distribution parameters (high, mid, and low 

K-S statistics), different “good” to “bad” ratios of populations (population 1, 2, and 

3), and different “good” to “bad” ratios of samples (sample 1, 2, and 3). 

The R and Java codes for all steps are provided in the appendix. The R codes 

were written based on Crawley (2007) and the Java codes were written based on 

Press, Teukolsky, Vetterling, and Flannery (1992).  

 

Figure 4.4  Procedure Employed in This Research 

   

  



 
 

 
CHAPTER 5 

  

ANALYSIS OF RESULTS 

 
This section includes some of the preliminary results as to the degree to which 

each credit scoring method identifies correctly credit worthy customers. The results 

are as follows. 

The recursive partitioning methods classify the observations into groups and 

assign the same predicted credit score to the observations that belong in the same 

group. Logically, the observations with the same predicted credit score should be 

treated in the same way. So, for the recursive partitioning models, the observations are 

ranked based on their predicted credit score; then the observations that have a 

predicted credit score less than or equal to the score at each pre-specified percentage 

cut-off will be rejected. As a result, the actual percentage cut-offs in many of the 

iterations are not equal to the pre-specified percentage cut-offs.  

Table 5.1 shows the average actual percentage cut-off for each recursive 

partitioning model. According to this table, RP1 is the recursive partitioning model 

with the restriction that the tree will stop growing if further growth does not increase 

the R-squared of the model by more than one percent. RP2 is the recursive 

partitioning model without such restriction so the tree for RP2 will grow more than 

the tree for RP1. As a result, RP2 models produce more final nodes and therefore 

divide the observations into more groups. For this reason, the average actual 

percentage cut-offs of the RP2 models are much closer to the pre-specified percentage 

cut-offs compared to those of the RP1 models. A closer look into the average actual 

percentage cut-offs of the RP2 models reveals that most of them are just about the 

same as the pre-specified percentage cut-offs. The few exceptions are all of sample 

type 1, sample type 2 of high KS population type 1 and 2 at 5% cut-off, and some 

(70H, 70M, 80H, and 80M) of sample type 1 at a 10% cut-off. 
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In Table 5.1, the two numbers after RP1 or RP2 (70, 80, 90) represent the type 

of population. 70 is population type one, which has a good:bad ratio equals to 70:30; 

80 is population type two, which has a good:bad ratio equals to 80:20; and 90 is 

population type three, which has a good:bad ratio equals to 90:10. The following 

letter represents the degree to which the characteristics of “good” set and “bad” set are 

different from each other. H is high KS, which means they are highly different (KS = 

75%), M is mid KS (KS = 50%), and L is low KS (KS = 25%). The last digit 

represents the type of sample. 1 is sample type 1, 2 is sample type 2, and 3 is sample 

type 3. 

In Table 5.1, some RP1 models running on a population with a low K-S are 

reported at 100%. The reason for these models to have a 100% percentage cut-off is 

that when the trees stop growing, there are not enough final nodes to classify the 

observations based on the pre-determined cut-off percentage. For example, at 10% 

cut-off, if the tree produces one big final node with members more than 90% of the 

total observation, when ranking the observations based on the predicted score, using 

the cut-off score at 10th percentile would result in rejecting all observations. Based on 

these observations, it is not appropriate to compare the recursive partitioning models 

to those of the other two models in terms of confusion matrix, accuracy rate, or type I 

error rate because the actual percentage cut-off rates of the recursive partitioning 

models are different from those of the other two models.  
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Table 5.1  Average Actual Cut-Off for the Recursive Partitioning Models 

 
Cut-Off 5% 10% 20% 30% Cut-Off 5% 10% 20% 30% 

RP170H1 18.25% 18.35% 23.48% 32.89% RP270H1 18.95% 18.95% 20.48% 30.55% 

RP170H2 11.03% 12.18% 22.40% 34.65% RP270H2 10.32% 10.61% 20.31% 30.41% 

RP170H3 8.20% 11.79% 22.25% 36.08% RP270H3 6.77% 10.27% 20.30% 30.94% 

RP170M1 17.66% 17.94% 24.02% 37.03% RP270M1 14.90% 14.90% 20.69% 30.70% 

RP170M2 10.16% 12.70% 23.48% 40.22% RP270M2 5.68% 10.35% 20.66% 30.54% 

RP170M3 8.44% 12.77% 25.71% 37.42% RP270M3 5.24% 10.27% 20.55% 31.35% 

RP170L1 5.76% 40.25% 43.81% 47.92% RP270L1 9.33% 10.72% 20.74% 30.88% 

RP170L2 5.57% 46.76% 47.12% 47.28% RP270L2 5.37% 10.47% 20.71% 30.63% 

RP170L3 5.55% 100% 100% 100% RP270L3 5.47% 10.34% 20.62% 30.94% 

RP180H1 13.96% 14.17% 23.12% 32.78% RP280H1 14.27% 14.27% 20.45% 30.72% 

RP180H2 8.04% 11.79% 22.14% 35.22% RP280H2 7.34% 10.28% 20.34% 30.41% 

RP180H3 6.46% 11.50% 24.69% 38.73% RP280H3 5.19% 10.22% 20.32% 30.18% 

RP180M1 14.40% 15.04% 24.87% 36.70% RP280M1 12.12% 12.14% 20.59% 30.67% 

RP180M2 8.27% 12.76% 30.99% 38.31% RP280M2 5.24% 10.33% 20.46% 30.65% 

RP180M3 7.22% 13.69% 35.38% 35.81% RP280M3 5.20% 10.29% 20.44% 30.31% 

RP180L1 34.09% 38.00% 42.04% 48.28% RP280L1 8.44% 10.59% 20.75% 30.92% 

RP180L2 45.47% 45.77% 46.48% 57.60% RP280L2 5.34% 10.51% 20.61% 30.79% 

33 
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 Table 5.1  (Continued) 

   

Cut-Off 5% 10% 20% 30% Cut-Off 5% 10% 20% 30% 

RP180L3 100% 100% 100% 100% RP280L3 5.49% 10.33% 20.47% 30.55% 

RP190H1 9.60% 11.79% 22.25% 35.27% RP290H1 9.63% 10.41% 20.51% 30.71% 

RP190H2 6.13% 11.60% 25.73% 36.81% RP290H2 5.16% 10.22% 20.43% 30.31% 

RP190H3 5.96% 11.67% 28.38% 35.11% RP290H3 5.14% 10.18% 20.31% 100% 

RP190M1 11.25% 13.43% 26.81% 37.26% RP290M1 9.19% 10.44% 20.68% 30.94% 

RP190M2 6.76% 13.35% 32.62% 34.63% RP290M2 5.21% 10.33% 20.57% 30.47% 

RP190M3 6.69% 12.78% 27.27% 81.64% RP290M3 5.18% 10.24% 20.46% 69.79% 

RP190L1 34.11% 35.98% 40.57% 47.95% RP290L1 7.62% 10.61% 20.80% 30.94% 

RP190L2 56.37% 57.08% 61.45% 67.64% RP290L2 5.37% 10.49% 20.51% 30.74% 

RP190L3 100% 100% 100% 100% RP290L3 5.26% 10.36% 20.42% 30.47% 
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Table 5.2 shows the results of cross-validation at the 10% cut-off point on 

each iteration group from the population sets with high KS, mid KS, and low KS. 

The top left and the bottom right cells of each iteration group show the 

percentage at which the model classifies the observations correctly. According to the 

confusion matrix, the top left cell and the bottom right cell are also known as the true 

negative and the true positive, respectively. The other two cells show the percentage 

at which the model classifies the observations incorrectly. Specifically, the top right 

cell represents a type I error, where the model suggests that the bank approve the loan 

to the applicant that actually is a bad borrower (false positive), and the bottom left cell 

represents a type II error, where the model suggests that the bank reject the good 

borrower (false negative). The model can be ranked based on one of these four cells 

or based on the combination of the top left and the bottom right cells (the accuracy) 

when comparing the performance of each model.  

Vertical analysis of the Tables compares the performance of each model 

across three population types and across three sample types. Vertical analysis across 

the three population types provides an idea of how different proportions of good 

borrowers to bad borrowers in a population affect the performance of each model. For 

example, based on Table 5.2 Panel A, for all types of sample sets, as the ratio of good 

borrowers to bad borrowers in the population set increases, the percentage of the true 

positive increases, which means that all of the models can identify “good” borrowers 

better. However, as the ratio of “good” borrowers to “bad” borrowers in the 

population set increases, all of the models have worse ability to identify the “bad” 

borrowers, which is shown by the decrease in the percentage of the true negative. 

Vertical analysis across the three different sample types reveals that changing 

the good:bad ratio of the sample sets does not affect the performance of LR and DA 

models, of which the average actual cut-offs are approximately equal to the pre-

specified cut-offs. 

Horizontal analysis of the tables compares the performance of each model 

within one group of sample at a time. This analysis provides an idea of how each 

model performs within each population and sample set regime.  

The top right cell of each model in Table 5.2 represents a type 1 error, where 

the model accepts “bad” borrowers. The results show that logistic regression models 

have the lowest type 1 error for all of the sample types that are drawn from all of the 
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populations with a high KS (from Table 5.2 Panel A). The results are mixed for the 

populations with a mid KS (from Table 5.2 Panel B). And lastly, the discriminant 

analysis models have the lowest type 1 error for all of the sample types that are drawn 

from all the populations with a low KS (from Table 5.2 Panel C). 

Similar analysis can be done on Table 5.3. The results from Table 5.3 also 

shows that logistic regression models perform best (in terms of having the lowest type 

1 error) when the populations have a high KS (Table 5.3 Panel A), but the 

discriminant analysis models perform best when the populations have a low KS. In 

the mid KS regime, the logistic regression performs best in sample type 1 (when the 

ratio of good:bad is 1,000:1,000) regardless of the population type; however, the 

discriminant analysis performs best in sample type 2 (good:bad ratio is 4,000:1,000) 

and in sample type 3 (good:bad ratio is 9,000:1,000). The ratio of “good” to “bad” in 

the population does not affect the relative performance of each model. 

Table 5.3 shows the results of cross-validation at the 20% cut-off point on 

each iteration group from the population sets with high KS, mid KS, and low KS, 

respectively. The interpretation of Table 5.3 is the same as that of Table 5.2. The 

difference between Table 5.3 and Table 5.2 is the percentage cut-off point. 

 

Table 5.2  Average Performance of Each Model at 10% Cut-Off 

 

3 Types of Sample by  
KS 

 

LR Predicted DA Predicted 
Y = 0 

 
Y = 1 

 
Y = 0 

 
Y = 1 

 
Panel A: (High KS) 

Sample 1 (1,000 Goods) 
(pop70:30)     

Actual 
Y = 0 9.6932% 20.3068% 9.6913% 20.3087% 
Y = 1 0.3068% 69.6932% 0.3087% 69.6913% 

Sample 1 (1,000 Goods) 
(pop80:20) 

  
        

Actual 
Y = 0 9.1220% 10.8780% 9.1124% 10.8876% 
Y = 1 0.8780% 79.1220% 0.8876% 79.1124% 
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Table 5.2  (Continued) 
 

 
3 Types of Sample by  

KS 
 

LR Predicted DA Predicted 
Y = 0 

 
Y = 1 

 
Y = 0 

 
Y = 1 

 

Panel A: (High KS)     

Sample 1 (1,000 Goods) 
(pop90:10) 

  
        

Actual 
Y = 0 6.6052% 3.3948% 6.5818% 3.4182% 
Y = 1 3.3948% 86.6052% 3.4182% 86.5818% 

Sample 2 (4,000 Goods) 
(pop70:30) 

    
        

Actual 
Y = 0 9.6985% 20.3015% 9.6872% 20.3128% 
Y = 1 0.3015% 69.6985% 0.3128% 69.6872% 

Sample 2 (4,000 Goods) 
(pop80:20) 

    
        

Actual 
Y = 0 9.1336% 10.8664% 9.0952% 10.9048% 
Y = 1 0.8664% 79.1336% 0.9048% 79.0952% 

Sample 2 (4,000 Goods) 
(pop90:10) 

    
        

Actual 
Y = 0 6.6225% 3.3775% 6.5375% 3.4625% 
Y = 1 3.3775% 86.6225% 3.4625% 86.5375% 

Sample 3 (9,000 Goods) 
(pop70:30) 

    
        

Actual 
Y = 0 9.7001% 20.2999% 9.6843% 20.3157% 
Y = 1 0.2999% 69.7001% 0.3157% 69.6843% 

Sample 3 (9,000 Goods) 
(pop80:20) 

    
        

Actual 
Y = 0 9.1373% 10.8627% 9.0863% 10.9137% 
Y = 1 0.8627% 79.1373% 0.9137% 79.0863% 

Sample 3 (9,000 Goods) 
(pop90:10) 

    
      

Actual 
Y = 0 6.6278% 3.3722% 6.5182% 3.4818% 
Y = 1 3.3722% 86.6278% 3.4818% 86.5182% 
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Table 5.2  (Continued) 
 

 
3 Types of Sample by  

KS 
 

LR Predicted DA Predicted 
Y = 0 

 
Y = 1 

 
Y = 0 

 
Y = 1 

 
 
Panel B: (Mid KS) 

Sample 1 (1,000 Goods) 
(pop70:30) 

    
        

Actual 
Y = 0 8.4649% 21.5351% 8.4638% 21.5362% 
Y = 1 1.5351% 68.4649% 1.5362% 68.4638% 

Sample 1 (1,000 Goods) 
(pop80:20) 

    
        

Actual 
Y = 0 7.2740% 12.7260% 7.1390% 12.8610% 
Y = 1 2.7260% 77.2740% 2.8610% 77.1390% 

Sample 1 (1,000 Goods) 
(pop90:10) 

    
        

Actual 
Y = 0 4.6857% 5.3143% 4.5224% 5.4776% 
Y = 1 5.3143% 84.6857% 5.4776% 84.5224% 

Sample 2 (4,000 Goods) 
(pop70:30) 

    
        

Actual 
Y = 0 8.5004% 21.4996% 8.4617% 21.5383% 
Y = 1 1.4996% 68.5004% 1.5383% 68.4617% 

Sample 2 (4,000 Goods) 
(pop80:20) 

    
        

Actual 
Y = 0 7.2512% 12.7488% 7.2884% 12.7116% 
Y = 1 2.7488% 77.2512% 2.7116% 77.2884% 

Sample 2 (4,000 Goods) 
(pop90:10) 

    
        

Actual 
Y = 0 4.6353% 5.3647% 4.7075% 5.2925% 
Y = 1 5.3647% 84.6353% 5.2925% 84.7075% 

Sample 3 (9,000 Goods) 
(pop70:30) 

    
        

Actual 
Y = 0 8.4950% 21.5050% 8.3828% 21.6172% 
Y = 1 1.5050% 68.4950% 1.6172% 68.3828% 

Sample 3 (9,000 Goods) 
(pop80:20) 

    
        

Actual 
Y = 0 7.2019% 12.7981% 7.2690% 12.7310% 
Y = 1 2.7981% 77.2019% 2.7310% 77.2690% 
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Table 5.2  (Continued) 

 
3 Types of Sample by  

KS 
 

LR Predicted DA Predicted 
Y = 0 

 
Y = 1 

 
Y = 0 

 
Y = 1 

 

Panel B: (Mid KS) 

Sample 3 (9,000 Goods) 
(pop90:10) 

  
        

Actual 
Y = 0 4.5851% 5.4149% 4.7409% 5.2591% 
Y = 1 5.4149% 84.5851% 5.2591% 84.7409% 

 
Panel C: (Low KS) 

Sample 1 (1,000 Goods) 
(pop70:30) 

    
        

Actual 
Y = 0 5.4589% 24.5411% 5.4598% 24.5402% 
Y = 1 4.5411% 65.4589% 4.5402% 65.4598% 

Sample 1 (1,000 Goods) 
(pop80:20) 

    
        

Actual 
Y = 0 4.0538% 15.9462% 4.0546% 15.9454% 
Y = 1 5.9462% 74.0538% 5.9454% 74.0546% 

Sample 1 (1,000 Goods) 
(pop90:10) 

    
        

Actual 
Y = 0 2.2473% 7.7527% 2.2478% 7.7522% 
Y = 1 7.7527% 82.2473% 7.7522% 82.2478% 

Sample 2 (4,000 Goods) 
(pop70:30) 

    
        

Actual 
Y = 0 5.4850% 24.5150% 5.4890% 24.5110% 
Y = 1 4.5150% 65.4850% 4.5110% 65.4890% 

Sample 2 (4,000 Goods) 
(pop80:20) 

    
        

Actual 
Y = 0 4.0779% 15.9221% 4.0835% 15.9165% 
Y = 1 5.9221% 74.0779% 5.9165% 74.0835% 

Sample 2 (4,000 Goods) 
(pop90:10) 

    
        

Actual 
Y = 0 2.2612% 7.7388% 2.2637% 7.7363% 
Y = 1 7.7388% 82.2612% 7.7363% 82.2637% 
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Table 5.2  (Continued) 

 
3 Types of Sample by  

KS 
 

LR Predicted DA Predicted 
Y = 0 

 
Y = 1 

 
Y = 0 

 
Y = 1 

 
 
Panel C: (Low KS)     

Sample 3 (9,000 Goods) 
(pop70:30) 

    
        

Actual 
Y = 0 5.5055% 24.4945% 5.5086% 24.4914% 
Y = 1 4.4945% 65.5055% 4.4914% 65.5086% 

Sample 3 (9,000 Goods) 
(pop80:20) 

    
        

Actual 
Y = 0 4.0980% 15.9020% 4.1034% 15.8966% 
Y = 1 5.9020% 74.0980% 5.8966% 74.1034% 

Sample 3 (9,000 Goods) 
(pop90:10) 

    
        

Actual 
Y = 0 2.2698% 7.7302% 2.2724% 7.7276% 
Y = 1 7.7302% 82.2698% 7.7276% 82.2724% 

 
Note:  1. Recursive Partitioning (RP1 and PR2) has been Excluded because their    
                Actual Cut-off Percentages are not Comparable. 

2.  All Samples have Constant 1,000 bads. 
 
Table 5.3  Average Performance of Each Model at 20% Cut-Off 

 

3 Types of Sample by  
KS 

 

LR Predicted DA Predicted 
Y = 0 

 
Y = 1 

 
Y = 0 

 
Y = 1 

 
 

Panel A: (High KS) 

Sample 1 (1,000 Goods) 
(pop70:30) 

    
        

Actual 
Y = 0 18.1073% 11.8927% 18.0800% 11.9200% 
Y = 1 1.8927% 68.1073% 1.9200% 68.0800% 

Sample 1 (1,000 Goods) 
(pop80:20) 

    
        

Actual 
Y = 0 14.9386% 5.0614% 14.9026% 5.0974% 
Y = 1 5.0614% 74.9386% 5.0974% 74.9026% 
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Table 5.3  (Continued) 
 

3 Types of Sample by  
KS 

 

LR Predicted DA Predicted 
Y = 0 

 
Y = 1 

 
Y = 0 

 
Y = 1 

 

Panel A: (High KS)     
Sample 1 (1,000 Goods) 

(pop90:10) 
    

        

Actual 
Y = 0 8.5237% 1.4763% 8.5134% 1.4866% 
Y = 1 11.4763% 78.5237% 11.4866% 78.5134% 

Sample 2 (4,000 Goods) 
(pop70:30) 

    
        

Actual 
Y = 0 18.1298% 11.8702% 18.0286% 11.9714% 
Y = 1 1.8702% 68.1298% 1.9714% 68.0286% 

Sample 2 (4,000 Goods) 
(pop80:20) 

    
Y = 0 Y = 1 Y = 0 Y = 1 

Actual 
Y = 0 14.9651% 5.0349% 14.8351% 5.1649% 
Y = 1 5.0349% 74.9651% 5.1649% 74.8351% 

Sample 2 (4,000 Goods) 
(pop90:10) 

    
        

Actual 
Y = 0 8.5355% 1.4645% 8.4821% 1.5179% 
Y = 1 11.4645% 78.5355% 11.5179% 78.4821% 

Sample 3 (9,000 Goods) 
(pop70:30) 

    
        

Actual 
Y = 0 18.1363% 11.8637% 18.0041% 11.9959% 
Y = 1 1.8637% 68.1363% 1.9959% 68.0041% 

Sample 3 (9,000 Goods) 
(pop80:20) 

    
        

Actual 
Y = 0 14.9726% 5.0274% 14.8044% 5.1956% 
Y = 1 5.0274% 74.9726% 5.1956% 74.8044% 

Sample 3 (9,000 Goods) 
(pop90:10) 

    
        

Actual 
Y = 0 8.5384% 1.4616% 8.4653% 1.5347% 
Y = 1 11.4616% 78.5384% 11.5347% 78.4653% 
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Table 5.3  (Continued) 
 

3 Types of Sample by  
KS 

 

LR Predicted DA Predicted 
Y = 0 

 
Y = 1 

 
Y = 0 

 
Y = 1 

 
 
Panel B: (Mid KS) 

Sample 1 (1,000 Goods) 
(pop70:30) 

    
        

Actual 
Y = 0 15.0841% 14.9159% 14.7617% 15.2383% 
Y = 1 4.9159% 65.0841% 5.2383% 64.7617% 

Sample 1 (1,000 Goods) 
(pop80:20) 

    
        

Actual 
Y = 0 11.6509% 8.3491% 11.3351% 8.6649% 
Y = 1 8.3491% 71.6509% 8.6649% 71.3351% 

Sample 1 (1,000 Goods) 
(pop90:10) 

    
        

Actual 
Y = 0 6.5926% 3.4074% 6.4001% 3.5999% 
Y = 1 13.4074% 76.5926% 13.5999% 76.4001% 

Sample 2 (4,000 Goods) 
(pop70:30) 

    
        

Actual 
Y = 0 14.9776% 15.0224% 15.1276% 14.8724% 
Y = 1 5.0224% 64.9776% 4.8724% 65.1276% 

Sample 2 (4,000 Goods) 
(pop80:20) 

    
        

Actual 
Y = 0 11.5411% 8.4589% 11.6992% 8.3008% 
Y = 1 8.4589% 71.5411% 8.3008% 71.6992% 

Sample 2 (4,000 Goods) 
(pop90:10) 

    
        

Actual 
Y = 0 6.5227% 3.4773% 6.6213% 3.3787% 
Y = 1 13.4773% 76.5227% 13.3787% 76.6213% 

Sample 3 (9,000 Goods) 
(pop70:30) 

    
        

Actual 
Y = 0 14.8761% 15.1239% 15.2100% 14.7900% 
Y = 1 5.1239% 64.8761% 4.7900% 65.2100% 

Sample 3 (9,000 Goods) 
(pop80:20) 

    
Y = 0 Y = 1 Y = 0 Y = 1 

Actual 
Y = 0 11.4407% 8.5593% 11.7898% 8.2102% 
Y = 1 8.5593% 71.4407% 8.2102% 71.7898% 
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Table 5.3  (Continued) 

 
3 Types of Sample by  

KS 
 

LR Predicted DA Predicted 
Y = 0 

 
Y = 1 

 
Y = 0 

 
Y = 1 

 
 

Panel B: (Mid KS) 
     

Sample 3 (9,000 Goods) 
(pop90:10) 

    
        

Actual 
Y = 0 6.4643% 3.5357% 6.6865% 3.3135% 
Y = 1 13.5357% 76.4643% 13.3135% 76.6865% 

 

Panel C: (Low KS) 
Sample 1 (1,000 Goods) 

(pop70:30) 
    

        

Actual 
Y = 0 9.7630% 20.2370% 9.7634% 20.2366% 
Y = 1 10.2370% 59.7630% 10.2366% 59.7634% 

Sample 1 (1,000 Goods) 
(pop80:20) 

    
        

Actual 
Y = 0 7.0218% 12.9782% 7.0224% 12.9776% 
Y = 1 12.9782% 67.0218% 12.9776% 67.0224% 

Sample 1 (1,000 Goods) 
(pop90:10) 

    
        

Actual 
Y = 0 3.7775% 6.2225% 3.7778% 6.2222% 
Y = 1 16.2225% 73.7775% 16.2222% 73.7778% 

Sample 2 (4,000 Goods) 
(pop70:30) 

    
        

Actual 
Y = 0 9.7969% 20.2031% 9.7999% 20.2001% 
Y = 1 10.2031% 59.7969% 10.2001% 59.7999% 

Sample 2 (4,000 Goods) 
(pop80:20) 

    
        

Actual 
Y = 0 7.0532% 12.9468% 7.0573% 12.9427% 
Y = 1 12.9468% 67.0532% 12.9427% 67.0573% 

Sample 2 (4,000 Goods) 
(pop90:10) 

    
        

Actual 
Y = 0 3.7950% 6.2050% 3.7963% 6.2037% 
Y = 1 16.2050% 73.7950% 16.2037% 73.7963% 

Sample 3 (9,000 Goods) 
(pop70:30) 

    
        

Actual 
Y = 0 9.8159% 20.1841% 9.8174% 20.1826% 
Y = 1 10.1841% 59.8159% 10.1826% 59.8174% 
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Table 5.3  (Continued) 

 
3 Types of Sample by  

KS 
 

LR Predicted DA Predicted 
Y = 0 

 
Y = 1 

 
Y = 0 

 
Y = 1 

 
 

Panel C: (Low KS) 
     

Sample 3 (9,000 Goods) 
(pop80:20) 

    
        

Actual 
Y = 0 7.0690% 12.9310% 7.0727% 12.9273% 
Y = 1 12.9310% 67.0690% 12.9273% 67.0727% 

Sample 3 (9,000 Goods) 
(pop90:10) 

    
        

Actual 
Y = 0 3.8026% 6.1974% 3.8028% 6.1972% 
Y = 1 16.1974% 73.8026% 16.1972% 73.8028% 

 
Note:  1. Recursive Partitioning (RP1 and PR2) has been Excluded because their  

Actual Cut-off Percentages are not Comparable. 

2. All samples have constant 1,000 bads. 

 

Table 5.4 shows the comparison of two models using the cross-validation 

method at a 10% cut-off point. According to Table 5.4, for populations with high KS, 

the logistic regression performs best in all population types and all sample types. For 

a population with mid KS, the logistic regression performs best in all sample types 

drawn from population type 1 or in sample type 1 drawn from any population type. 

The discriminant analysis performs best in other sample types. And finally, for a 

population with a low KS, the discriminant analysis performs best in all population 

types and sample types. 

In Table 5.5, two models are compared using the cross-validation method at a 

20% cut-off point. According to Table 5.5, for populations with a high KS, the 

logistic regression performs best in all population types and all sample types. For 

population with a mid KS, the logistic regression performs best in samples of type 1 

drawn from any population type; however, the discriminant analysis performs best in 

sample type 2 and 3. And finally, for a population with a low KS, the discriminant 

analysis performs best in all population types and sample types. 
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The last column of Table 5.4 and Table 5.5 represents the percentage of 

number of times that the logistic regression has a higher accuracy rate than the 

discriminant analysis. For example, in Table 5.4, when using models from sample 1 

(1,000 Goods) and testing on population 70:30, high K-S, there are 701 iterations out 

of 1,000 iterations (70.10% of times) when the logistic regression model obtains a 

higher accuracy than the discriminant analysis.  

Table 5.6 and Table 5.7 depict the type I error (the acceptance of bads) of each 

model. The last column shows the model that has the lowest error. Comparing Table 5.4 

and Table 5.6, the model that performs best based on the accuracy level is also the 

model that performs best in terms of having the lowest type I error. Comparing Table 5.5 

and Table 5.7 yields the same conclusion. 
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Table 5.4  The Model Performance Based on the Accuracy at 10% Cut-Off  

 

KS LR DA Highest Accuracy %LR win over DA 
High KS         
Population 1 (70:30)       
Sample 1 (1,000 Goods) 79.3863% 79.3825% LR 70.10% 
Sample 2 (4,000 Goods) 79.3969% 79.3744% LR 99.20% 
Sample 3 (9,000 Goods) 79.4002% 79.3685% LR 100.00% 
Population 2 (80:20)       
Sample 1 (1,000 Goods) 88.2441% 88.2248% LR 82.20% 
Sample 2 (4,000 Goods) 88.2672% 88.1904% LR 99.90% 
Sample 3 (9,000 Goods) 88.2746% 88.1727% LR 100.00% 
Population 3 (90:10)       
Sample 1 (1,000 Goods) 93.2104% 93.1635% LR 89.60% 
Sample 2 (4,000 Goods) 93.2450% 93.0750% LR 99.90% 
Sample 3 (9,000 Goods) 93.2556% 93.0363% LR 100.00% 
Mid KS         
Population 1 (70:30)       
Sample 1 (1,000 Goods) 76.9299% 76.9277% LR 53.40% 
Sample 2 (4,000 Goods) 77.0007% 76.9234% LR 94.80% 
Sample 3 (9,000 Goods) 76.9901% 76.7655% LR 99.50% 
Population 2 (80:20)       
Sample 1 (1,000 Goods) 84.5479% 84.2780% LR 99.70% 
Sample 2 (4,000 Goods) 84.5023% 84.5768% DA 4.70% 
Sample 3 (9,000 Goods) 84.4039% 84.5380% DA 7.50% 
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Table 5.4  (Continued) 
 
 

KS LR DA Highest Accuracy %LR win over DA 
Population3 (90:10)       
Sample 1 (1,000 Goods) 89.3713% 89.0447% LR 100.00% 
Sample 2 (4,000 Goods) 89.2706% 89.4149% DA 0.00% 
Sample 3 (9,000 Goods) 89.1701% 89.4819% DA 0.00% 
Low KS         
Population 1 (70:30)       
Sample 1 (1,000 Goods) 70.9178% 70.9196% DA 36.60% 
Sample 2 (4,000 Goods) 70.9699% 70.9780% DA 23.60% 
Sample 3 (9,000 Goods) 71.0110% 71.0172% DA 29.50% 
Population 2 (80:20)       
Sample 1 (1,000 Goods) 78.1077% 78.1092% DA 38.30% 
Sample 2 (4,000 Goods) 78.1558% 78.1669% DA 15.20% 
Sample 3 (9,000 Goods) 78.1960% 78.2068% DA 20.70% 
Population3 (90:10)       
Sample 1 (1,000 Goods) 84.4947% 84.4957% DA 36.00% 
Sample 2 (4,000 Goods) 84.5223% 84.5275% DA 23.60% 
Sample 3 (9,000 Goods) 84.5396% 84.5448% DA 25.10% 

 
Note:  1.  Exclude Recursive Partitioning (RP1 and PR2) because their Actual Cut-off Percentages are not  

Comparable. 

           2.  All Samples have Constant 1,000 Bads 
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Table 5.5  The Model Performance Based on the Accuracy at 20% Cut-Off. 
  

KS LR DA Highest Accuracy %LR win over DA 
High KS         
Population 1 (70:30)      
Sample 1 (1,000 Goods) 86.2146% 86.1600% LR 88.60% 
Sample 2 (4,000 Goods) 86.2596% 86.0571% LR 100.00% 
Sample 3 (9,000 Goods) 86.2726% 86.0081% LR 100.00% 
Population 2 (80:20)       
Sample 1 (1,000 Goods) 89.8772% 89.8052% LR 87.00% 
Sample 2 (4,000 Goods) 89.9302% 89.6701% LR 100.00% 
Sample 3 (9,000 Goods) 89.9452% 89.6087% LR 100.00% 
Population 3 (90:10)       
Sample 1 (1,000 Goods) 87.0473% 87.0267% LR 72.50% 
Sample 2 (4,000 Goods) 87.0710% 86.9642% LR 99.50% 
Sample 3 (9,000 Goods) 87.0769% 86.9305% LR 100.00% 
Mid KS         
Population 1 (70:30)       
Sample 1 (1,000 Goods) 80.1682% 79.5234% LR 100.00% 
Sample 2 (4,000 Goods) 79.9551% 80.2553% DA 0.00% 
Sample 3 (9,000 Goods) 79.7522% 80.4200% DA 0.00% 
Population 2 (80:20)       
Sample 1 (1,000 Goods) 83.3017% 82.6703% LR 100.00% 
Sample 2 (4,000 Goods) 83.0822% 83.3984% DA 0.00% 
Sample 3 (9,000 Goods) 82.8814% 83.5796% DA 0.00% 
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Table 5.5  (Continued) 
 
 

KS LR DA Highest Accuracy %LR win over DA 
Mid KS         
Population 3 (90:10)       
Sample 1 (1,000 Goods) 83.1851% 82.8002% LR 100.00% 
Sample 2 (4,000 Goods) 83.0454% 83.2426% DA 0.00% 
Sample 3 (9,000 Goods) 82.9286% 83.3729% DA 0.00% 
Low KS         
Population 1 (70:30)       
Sample 1 (1,000 Goods) 69.5261% 69.5268% DA 42.70% 
Sample 2 (4,000 Goods) 69.5939% 69.5999% DA 32.60% 
Sample 3 (9,000 Goods) 69.6318% 69.6349% DA 39.50% 
Population 2 (80:20)       
Sample 1 (1,000 Goods) 74.0436% 74.0447% DA 40.60% 
Sample 2 (4,000 Goods) 74.1065% 74.1146% DA 27.60% 
Sample 3 (9,000 Goods) 74.1381% 74.1455% DA 32.20% 
Population 3 (90:10)       
Sample 1 (1,000 Goods) 77.5550% 77.5557% DA 39.90% 
Sample 2 (4,000 Goods) 77.5901% 77.5926% DA 39.90% 
Sample 3 (9,000 Goods) 77.6052% 77.6057% DA 48.40% 
 

Note:  1. Recursive Partitioning (RP1 and PR2) has been Excluded Because their Actual Cut-off Percentages  
are not Comparable. 

 2.  All samples have constant 1,000 bads. 
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Table 5.6  The Model Performance Based on Type I Error at 10% Cut-Off 

 
KS LR DA Lowest error 

High KS       
Population 1 (70:30)       
Sample 1 (1,000 Goods) 20.3068% 20.3087% LR 
Sample 2 (4,000 Goods) 20.3015% 20.3128% LR 
Sample 3 (9,000 Goods) 20.2999% 20.3157% LR 
Population 2 (80:20)       
Sample 1 (1,000 Goods) 10.8780% 10.8876% LR 
Sample 2 (4,000 Goods) 10.8664% 10.9048% LR 
Sample 3 (9,000 Goods) 10.8627% 10.9137% LR 
Population 3 (90:10)       
Sample 1 (1,000 Goods) 3.3948% 3.4182% LR 
Sample 2 (4,000 Goods) 3.3775% 3.4625% LR 
Sample 3 (9,000 Goods) 3.3722% 3.4818% LR 
Mid KS       
Population 1 (70:30)       
Sample 1 (1,000 Goods) 21.5351% 21.5362% LR 
Sample 2 (4,000 Goods) 21.4996% 21.5383% LR 
Sample 3 (9,000 Goods) 21.5050% 21.6172% LR 
Population 2 (80:20)       
Sample 1 (1,000 Goods) 12.7260% 12.8610% LR 
Sample 2 (4,000 Goods) 12.7488% 12.7116% DA 
Sample 3 (9,000 Goods) 12.7981% 12.7310% DA 
Population 3 (90:10)       
Sample 1 (1,000 Goods) 5.3143% 5.4776% LR 
Sample 2 (4,000 Goods) 5.3647% 5.2925% DA 
Sample 3 (9,000 Goods) 5.4149% 5.2591% DA 
Low KS       
Population 1 (70:30)       
Sample 1 (1,000 Goods) 24.5411% 24.5402% DA 
Sample 2 (4,000 Goods) 24.5150% 24.5110% DA 
Sample 3 (9,000 Goods) 24.4945% 24.4914% DA 
Population 2 (80:20)       
Sample 1 (1,000 Goods) 15.9462% 15.9454% DA 
Sample 2 (4,000 Goods) 15.9221% 15.9165% DA 
Sample 3 (9,000 Goods) 15.9020% 15.8966% DA 
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Table 5.6  (Continued) 
 
 

KS LR DA Lowest error 
Population 3 (90:10)       
Sample 1 (1,000 Goods) 7.7527% 7.7522% DA 
Sample 2 (4,000 Goods) 7.7388% 7.7363% DA 
Sample 3 (9,000 Goods) 7.7302% 7.7276% DA 
 

Note:  1. Recursive Partitioning (RP1 and PR2) has been Excluded Because their 

Actual Cut-off Percentages are not Comparable. 

2.  All Samples have Constant 1,000 bads. 

 

Table 5.7  The Model Performance Based on Type I Error at 20% Cut-Off 

 

KS LR DA Lowest error 
High KS       
Population 1 (70:30)       
Sample 1 (1,000 Goods) 11.8927% 11.9200% LR 
Sample 2 (4,000 Goods) 11.8702% 11.9714% LR 
Sample 3 (9,000 Goods) 11.8637% 11.9959% LR 
Population 2 (80:20)       
Sample 1 (1,000 Goods) 5.0614% 5.0974% LR 
Sample 2 (4,000 Goods) 5.0349% 5.1649% LR 
Sample 3 (9,000 Goods) 5.0274% 5.1956% LR 
Population 3 (90:10)       
Sample 1 (1,000 Goods) 1.4763% 1.4866% LR 
Sample 2 (4,000 Goods) 1.4645% 1.5179% LR 
Sample 3 (9,000 Goods) 1.4616% 1.5347% LR 
Mid KS       
Population 1 (70:30)       
Sample 1 (1,000 Goods) 14.9159% 15.2383% LR 
Sample 2 (4,000 Goods) 15.0224% 14.8724% DA 
Sample 3 (9,000 Goods) 15.1239% 14.7900% DA 
Population 2 (80:20)       
Sample 1 (1,000 Goods) 8.3491% 8.6649% LR 
Sample 2 (4,000 Goods) 8.4589% 8.3008% DA 
Sample 3 (9,000 Goods) 8.5593% 8.2102% DA 
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Table 5.7  (Continued) 
 

KS LR DA Lowest error 
Population 3 (90:10)       
Sample 1 (1,000 Goods) 3.4074% 3.5999% LR 
Sample 2 (4,000 Goods) 3.4773% 3.3787% DA 
Sample 3 (9,000 Goods) 3.5357% 3.3135% DA 
Low KS     
Population 1 (70:30)       
Sample 1 (1,000 Goods) 20.2370% 20.2366% DA 
Sample 2 (4,000 Goods) 20.2031% 20.2001% DA 
Sample 3 (9,000 Goods) 20.1841% 20.1826% DA 
Population 2 (80:20)       
Sample 1 (1,000 Goods) 12.9782% 12.9776% DA 
Sample 2 (4,000 Goods) 12.9468% 12.9427% DA 
Sample 3 (9,000 Goods) 12.9310% 12.9273% DA 
Population 3 (90:10)       
Sample 1 (1,000 Goods) 6.2225% 6.2222% DA 
Sample 2 (4,000 Goods) 6.2050% 6.2037% DA 
Sample 3 (9,000 Goods) 6.1974% 6.1972% DA 
 

Note:  1. Recursive Partitioning (RP1 and PR2) has been Excluded Because their 

Actual Cut-off Percentages are not Comparable. 

 2. All Samples have Constant 1,000 bads. 

 

Table 5.8 and Table 5.9 compare four models using Kolmogorov-Smirnov 

Statistics and Gini coefficients, respectively. 

The results from Table 5.8 and Table 5.9 show that, comparing four models 

under different regimes, the model with the highest KS statistic also has the highest 

Gini coefficient. 

In the high KS population, the logistic regression model has the highest KS 

statistic and Gini coefficient regardless of the good:bad ratio of the population and the 

sample. 

The mid KS and the low KS populations show opposite results. In the mid KS 

population, the logistic regression model has the highest KS and Gini in sample type 1 

regardless of the population type. But the discriminant analysis model has the highest 

KS and Gini in sample type 2 and 3.  
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However, in the low KS population, the discriminant analysis model has the 

highest KS and Gini in sample type 1, whereas the logistic regression model has the 

highest KS and Gini in sample type 2 and 3. A change in population type does not 

alter the results. 

Column 7 to column 12 of Table 12 and Table 13 represents the percentage of 

number of times that one model has a higher K-S than another model. For example, in 

Table 5.8, when using models from sample 1 (1,000 Goods) and testing on population 

70:30 with a high K-S, there are 751 iterations out of 1,000 iterations (75.10% of 

times) when the logistic regression model obtains a higher K-S than the discriminant 

analysis, 100% of the time when the logistic regression model obtains a higher K-S 

than the recursive partitioning models, 100% of the time when the discriminant 

analysis obtains a higher K-S than the recursive partitioning models, and 23.4% of the 

time when the restricted recursive partitioning obtains a higher K-S than the 

unrestricted recursive partitioning. 

Based on Table 5.8, in the high K-S population scenario, logistic regression 

always obtains a higher K-S relative to the discriminant analysis, with a probability of 

more than 70%, regardless of the population good:bad ratio or the sample good:bad 

ratio. 

In the mid K-S regime, the sample good:bad ratio does affect the results. 

Logistic regression always obtains a higher K-S relative to the discriminant analysis 

only in sample 1 (1,000 goods and 1,000 bads), with 100% probability. However, if 

the sample good:bad ratio varies to be sample 2 (4,000 goods and 1,000 bads) or 

sample 3 (9,000 goods and 1,000 bads), then the discriminant analysis always obtains 

a higher K-S, with 100% probability. 

The results in the low K-S are opposite from those in the mid K-S regime. In 

sample 2 (4,000 goods and 1,000 bads) and sample 3 (9,000 goods and 1,000 bads), 

logistic regression obtains a higher K-S than discriminant 65% to 76% of the total 

iterations. However, in sample 1 (1,000 goods and 1,000 bads), logistic regression 

obtains a higher K-S than discriminant only 44% to 46% of the total iterations. 
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Table 5.8  Kolmogorov-Smirnov Statistics for Each Data Set and Each Model 

 

KS LR DA RP1 RP2 Highest K-S  LR WIN DA LR WIN RP1 LR WIN RP2 DA WIN RP1 DA WIN RP2 RP1 WIN RP2 

High KS                        
Population 1 (70:30)                       

Sample 1 (1,000 Goods) 72.3987% 72.2803% 62.8430% 63.6740% LR 75.10% 100.00% 100.00% 100.00% 100.00% 23.40% 
Sample 2 (4,000 Goods) 72.5133% 71.9729% 60.6272% 63.6111% LR 100.00% 100.00% 100.00% 100.00% 100.00% 2.90% 

Sample 3 (9,000 Goods) 72.5396% 71.7923% 58.1788% 61.8741% LR 100.00% 100.00% 100.00% 100.00% 100.00% 2.40% 
Population 2 (80:20)                       

Sample 1 (1,000 Goods) 72.5801% 72.4397% 62.7316% 63.7673% LR 78.10% 100.00% 100.00% 100.00% 100.00% 95.50% 
Sample 2 (4,000 Goods) 72.7057% 72.1062% 60.5565% 63.6844% LR 99.60% 100.00% 100.00% 100.00% 100.00% 96.90% 

Sample 3 (9,000 Goods) 72.7394% 71.9381% 57.9825% 62.0103% LR 100.00% 100.00% 100.00% 100.00% 100.00% 99.20% 
Population 3 (90:10)                       

Sample 1 (1,000 Goods) 72.5273% 72.4215% 62.9245% 63.9401% LR 73.30% 100.00% 100.00% 100.00% 100.00% 94.00% 

Sample 2 (4,000 Goods) 72.6524% 72.0955% 60.8177% 63.8571% LR 99.40% 100.00% 100.00% 100.00% 100.00% 99.50% 

Sample 3 (9,000 Goods) 72.6837% 71.9150% 58.2382% 62.2018% LR 100.00% 100.00% 100.00% 100.00% 100.00% 29.90% 

Mid KS                       

Population 1 (70:30)                       
Sample 1 (1,000 Goods) 52.3734% 50.5660% 46.1017% 42.8599% LR 100.00% 100.00% 100.00% 100.00% 100.00% 19.90% 

Sample 2 (4,000 Goods) 51.7477% 52.6577% 45.1975% 41.7045% DA 0.00% 100.00% 100.00% 100.00% 100.00% 2.10% 
Sample 3 (9,000 Goods) 51.1789% 53.2783% 44.4041% 39.4519% DA 0.00% 100.00% 100.00% 100.00% 100.00% 1.50% 

Population 2 (80:20)                       
Sample 1 (1,000 Goods) 52.2946% 50.5532% 45.9664% 42.7891% LR 100.00% 100.00% 100.00% 100.00% 100.00% 95.50% 

Sample 2 (4,000 Goods) 51.7134% 52.5819% 45.0159% 41.5933% DA 0.00% 100.00% 100.00% 100.00% 100.00% 96.90% 
Sample 3 (9,000 Goods) 51.1658% 53.2110% 44.1232% 39.3684% DA 0.00% 100.00% 100.00% 100.00% 100.00% 99.10% 
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Table 5.8  (Continued) 
 
 

KS LR DA RP1 RP2 Highest K-S  LR WIN DA LR WIN RP1 LR WIN RP2 DA WIN RP1 DA WIN RP2 RP1 WIN RP2 

Mid KS                   

Population 3 (90:10)                       
Sample 1 (1,000 Goods) 52.4615% 50.6524% 46.1998% 43.0115% LR 100.00% 100.00% 100.00% 100.00% 100.00% 94.40% 

Sample 2 (4,000 Goods) 51.8495% 52.7508% 45.1455% 41.8454% DA 0.00% 100.00% 100.00% 100.00% 100.00% 96.20% 
Sample 3 (9,000 Goods) 51.2999% 53.3257% 44.6899% 39.7526% DA 0.00% 100.00% 100.00% 100.00% 100.00% 22.50% 

Low KS                       
Population 1 (70:30)                       

Sample 1 (1,000 Goods) 23.2939% 23.2967% 16.9416% 14.0439% DA 44.10% 100.00% 100.00% 100.00% 100.00% 23.40% 
Sample 2 (4,000 Goods) 23.4752% 23.4523% 16.0681% 13.4905% LR 66.90% 100.00% 100.00% 100.00% 100.00% 3.00% 

Sample 3 (9,000 Goods) 23.4845% 23.4464% 11.7243% 12.0834% LR 72.60% 100.00% 100.00% 100.00% 100.00% 1.50% 
Population 2 (80:20)                       

Sample 1 (1,000 Goods) 23.3639% 23.3649% 17.1838% 14.3138% DA 46.60% 100.00% 100.00% 100.00% 100.00% 95.90% 

Sample 2 (4,000 Goods) 23.5654% 23.5341% 16.0695% 13.6851% LR 71.90% 100.00% 100.00% 100.00% 100.00% 98.00% 

Sample 3 (9,000 Goods) 23.5675% 23.5171% 11.9050% 12.4318% LR 75.90% 100.00% 100.00% 100.00% 100.00% 99.10% 
Population 3 (90:10)                       

Sample 1 (1,000 Goods) 23.5133% 23.5134% 17.3244% 14.3629% DA 48.40% 100.00% 100.00% 100.00% 100.00% 93.40% 
Sample 2 (4,000 Goods) 23.6704% 23.6484% 14.9799% 13.8151% LR 65.70% 100.00% 100.00% 100.00% 100.00% 72.10% 

Sample 3 (9,000 Goods) 23.7046% 23.6656% 11.8352% 12.6605% LR 71.70% 100.00% 100.00% 100.00% 100.00% 11.90% 

 
Note:  All Samples have Constant 1,000 bads. 
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Table 5.9  Gini Coefficients for Each Data Set and Each Model 

 

KS LR DA RP1 RP2 Highest Gini  LR WIN DA LR WIN RP1 LR WIN RP2 DA WIN RP1 DA WIN RP2 RP1 WIN RP2 

High KS                   

Population 1 (70:30)                       

Sample 1 (1,000 Goods) 87.2937% 87.2328% 74.4482% 76.1894% LR 71.60% 100.00% 100.00% 100.00% 100.00% 7.30% 

Sample 2 (4,000 Goods) 87.3715% 87.0702% 72.2831% 74.1779% LR 98.30% 100.00% 100.00% 100.00% 100.00% 11.30% 

Sample 3 (9,000 Goods) 87.3833% 86.9589% 70.3399% 69.5488% LR 99.90% 100.00% 100.00% 100.00% 100.00% 65.80% 

Population 2 (80:20)                       

Sample 1 (1,000 Goods) 87.3898% 87.3197% 74.4873% 76.2870% LR 73.70% 100.00% 100.00% 100.00% 100.00% 88.30% 

Sample 2 (4,000 Goods) 87.4623% 87.1468% 72.2323% 74.2565% LR 98.80% 100.00% 100.00% 100.00% 100.00% 77.30% 

Sample 3 (9,000 Goods) 87.4807% 87.0473% 70.4567% 70.0991% LR 99.80% 100.00% 100.00% 100.00% 100.00% 99.40% 

Population 3 (90:10)                       

Sample 1 (1,000 Goods) 87.4189% 87.3603% 74.5482% 76.4176% LR 71.10% 100.00% 100.00% 100.00% 100.00% 98.20% 

Sample 2 (4,000 Goods) 87.4978% 87.1930% 72.3784% 74.4513% LR 98.30% 100.00% 100.00% 100.00% 100.00% 99.60% 

Sample 3 (9,000 Goods) 87.5165% 87.0910% 70.5213% 69.9040% LR 100.00% 100.00% 100.00% 100.00% 100.00% 0.10% 

Mid KS                       

Population 1 (70:30)                       

Sample 1 (1,000 Goods) 68.0491% 66.4155% 56.2124% 54.2028% LR 100.00% 100.00% 100.00% 100.00% 100.00% 7.00% 

Sample 2 (4,000 Goods) 67.5423% 68.3015% 53.2435% 51.7001% DA 0.00% 100.00% 100.00% 100.00% 100.00% 7.90% 

Sample 3 (9,000 Goods) 67.0286% 68.7361% 51.4390% 46.2540% DA 0.00% 100.00% 100.00% 100.00% 100.00% 58.40% 

Population 2 (80:20)                       

Sample 1 (1,000 Goods) 67.9479% 66.3292% 56.2622% 54.0921% LR 100.00% 100.00% 100.00% 100.00% 100.00% 90.90% 

Sample 2 (4,000 Goods) 67.4527% 68.2010% 53.7675% 51.5161% DA 0.00% 100.00% 100.00% 100.00% 100.00% 90.70% 

Sample 3 (9,000 Goods) 66.9339% 68.6187% 52.3335% 46.1942% DA 0.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
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Table 5.9  (Continued) 

 
KS LR DA RP1 RP2 Highest Gini  LR WIN DA LR WIN RP1 LR WIN RP2 DA WIN RP1 DA WIN RP2 RP1 WIN RP2 

Mid KS                 

Population 3 (90:10)                       

Sample 1 (1,000 Goods) 68.1108% 66.4534% 56.3188% 54.3443% LR 100.00% 100.00% 100.00% 100.00% 100.00% 98.50% 

Sample 2 (4,000 Goods) 67.5932% 68.3563% 54.2205% 51.8294% DA 0.00% 100.00% 100.00% 100.00% 100.00% 98.00% 

Sample 3 (9,000 Goods) 67.0815% 68.7771% 51.2208% 46.6166% DA 0.00% 100.00% 100.00% 100.00% 100.00% 0.00% 

Low KS                       

Population 1 (70:30)                       

Sample 1 (1,000 Goods) 32.5636% 32.5680% 22.6521% 18.6774% DA 43.60% 100.00% 100.00% 100.00% 100.00% 6.90% 

Sample 2 (4,000 Goods) 32.8199% 32.7844% 20.7682% 17.5938% LR 71.70% 100.00% 100.00% 100.00% 100.00% 7.90% 

Sample 3 (9,000 Goods) 32.8692% 32.8053% 11.7243% 14.4598% LR 77.10% 100.00% 100.00% 100.00% 100.00% 61.40% 

Population 2 (80:20)                       

Sample 1 (1,000 Goods) 32.6888% 32.6928% 22.9470% 19.0403% DA 43.80% 100.00% 100.00% 100.00% 100.00% 89.30% 

Sample 2 (4,000 Goods) 32.9684% 32.9288% 21.0094% 17.8651% LR 72.70% 100.00% 100.00% 100.00% 100.00% 93.60% 

Sample 3 (9,000 Goods) 33.0090% 32.9407% 11.9050% 14.9179% LR 79.00% 100.00% 100.00% 100.00% 100.00% 98.70% 

Population 3 (90:10)                       

Sample 1 (1,000 Goods) 32.7931% 32.7975% 23.1164% 19.0913% DA 41.30% 100.00% 100.00% 100.00% 100.00% 98.80% 

Sample 2 (4,000 Goods) 33.0194% 32.9829% 18.7647% 18.0132% LR 71.30% 100.00% 100.00% 100.00% 100.00% 71.60% 

Sample 3 (9,000 Goods) 33.0822% 33.0191% 11.8352% 15.1823% LR 77.80% 100.00% 100.00% 100.00% 100.00% 0.00% 

 
Note:  All Samples have Constant 1,000 bads.
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Table 5.10 to Table 5.13 show the odds at a 5%, 10%, 20%, and 30% cut-off 

point respectively. Odds is the proportion with the numerator as the acceptance of 

good loans (true positive) and the denominator as the acceptance of bad loans (false 

positive). The numerator represents the power of the model and the denominator 

represents the type I error of the model. Therefore, this ratio standardizes the error of 

the model. The higher the ratio is, the better the performance of the model is.  

It can be observed from Table 5.10  that in the high K-S population, the 

logistic regression models have a relatively higher odds ratio when compared to other 

three models except for one case (sample type 1 drawn from population type 1); in the 

mid K-S population, the result is mixed; and in the low K-S population, discriminant 

analysis models have a relatively higher odds ratio in all cases. 

The results of the 10% cut-off in Table 5.11 and 20% cut-off in Table  produce 

a clear pattern for all types of populations. In the high K-S population, the logistic 

regression models perform best in all cases, whereas in the low K-S populations, the 

discriminant analysis models perform best in all cases. In the mid K-S population, the 

logistic regression models perform best for either sample type 1 drawn from any 

population type, or any sample type drawn from population type 1. The discriminant 

analysis models perform best in the remaining cases. 

Finally, Table 5.13, which shows the relative performance of each model at 

30% cut-off, produces the same results for the high and mid K-S population cases 

compared to the results from Table 5.11 and Table 5.12. Logistic regression models 

perform best in all cases under a high K-S population. Under a mid K-S population, 

logistic regression models perform best if the sample group is either sample type 1 or 

population type 1. However, under a low K-S population, the results from Table  are 

different from those of Table 5.11 and Table 5.12. When the population has a low K-S, 

discriminant analysis models perform best for sample type 1 drawn from any 

population type; however, logistic analysis models perform best for sample type 3 

drawn from any population type. The results are mixed in sample type 2. 
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Table 5.10  Odds Ratio of Each Data Set and Each Model for Cut-Off at 5% 

 

KS DA LR RP1 RP2 Highest Odds 
High KS           
Population 1 (70:30)          
Sample 1 (1,000 Goods)* 2.7899 2.7898 4.3926 4.6251 DA 
Sample 2 (4,000 Goods)* 2.7899 2.7901 3.4435 3.3664 LR 
Sample 3 (9,000 Goods)* 2.7899 2.7901 3.1100 2.9570 LR 
Population 2 (80:20)          
Sample 1 (1,000 Goods)* 5.2607 5.2608 7.5897 7.9552 LR 
Sample 2 (4,000 Goods)* 5.2597 5.2618 5.9509 5.7894 LR 
Sample 3 (9,000 Goods) 5.2589 5.2621 5.5255 5.2034 LR 
Population 3 (90:10)          
Sample 1 (1,000 Goods)* 15.4016 15.4199 17.1624 17.9832 LR 
Sample 2 (4,000 Goods)  15.3631 15.4466 14.5787 13.9425 LR 
Sample 3 (9,000 Goods)  15.3445 15.4553 14.7763 14.2569 LR 
Mid KS          
Population 1 (70:30)          
Sample 1 (1,000 Goods)* 2.7211 2.7029 3.7234 3.3784 DA 
Sample 2 (4,000 Goods)  2.7008 2.7134 3.1093 2.7454 LR 
Sample 3 (9,000 Goods)  2.6892 2.7192 2.9855 2.7224 LR 
Population 2 (80:20)          
Sample 1 (1,000 Goods)* 4.9447 4.9129 6.3950 5.7913 DA 
Sample 2 (4,000 Goods)  4.9079 4.9374 5.4155 4.8716 LR 
Sample 3 (9,000 Goods)  4.8732 4.9458 5.2659 4.8952 LR 
Population 3 (90:10)          
Sample 1 (1,000 Goods)* 12.3741 12.4210 14.5247 13.0585 LR 
Sample 2 (4,000 Goods)  12.4242 12.4495 12.6819 11.8318 LR 
Sample 3 (9,000 Goods)  12.3048 12.4247 12.7825 11.9106 LR 
Low KS          
Population 1 (70:30)          
Sample 1 (1,000 Goods)* 2.5165 2.5164 2.6529 2.5710 DA 
Sample 2 (4,000 Goods)  2.5191 2.5187 2.6515 2.5120 DA 
Sample 3 (9,000 Goods)  2.5212 2.5208 2.6506 2.5030 DA 
Population 2 (80:20)          
Sample 1 (1,000 Goods)* 4.3634 4.3631 5.3972 4.4194 DA 
Sample 2 (4,000 Goods)  4.3693 4.3682 5.6629 4.3376 DA 
Sample 3 (9,000 Goods)  4.3738 4.3727 NA 4.3287 DA 
Population 3 (90:10)          
Sample 1 (1,000 Goods)* 9.9380 9.9373 12.2691 9.9406 DA 
Sample 2 (4,000 Goods)  9.9561 9.9530 NA 9.8255 DA 
Sample 3 (9,000 Goods)  9.9659 9.9631 NA 9.7779 DA 

 
Note:  1. Recursive Partitioning (RP1 and RP2) has been Excluded Due to Difference in 

Percentage Cut-off. 
2.  All Samples have Constant 1,000 bads. 
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Table 5.11  Odds Ratio of Each Data Set and Each Model for Cut-Off at 10% 
 

KS DA LR RP1 RP2 Highest Odds 
High KS           
Population 1 (70:30)          
Sample 1 (1,000 Goods)  3.4316 3.4320 4.4129 4.6251 LR 
Sample 2 (4,000 Goods)  3.4307 3.4332 3.5848 3.4033 LR 
Sample 3 (9,000 Goods)  3.4301 3.4335 3.5638 3.3836 LR 
Population 2 (80:20)          
Sample 1 (1,000 Goods)  7.2663 7.2736 7.6535 7.9552 LR 
Sample 2 (4,000 Goods)  7.2533 7.2824 7.1562 6.7743 LR 
Sample 3 (9,000 Goods)  7.2465 7.2852 7.1899 6.8678 LR 
Population 3 (90:10)          
Sample 1 (1,000 Goods)  25.3311 25.5118 19.1854 18.7842 LR 
Sample 2 (4,000 Goods)  24.9943 25.6473 21.0339 20.3455 LR 
Sample 3 (9,000 Goods)  24.8497 25.6891 21.1507 20.4947 LR 
Mid KS          
Population 1 (70:30)          
Sample 1 (1,000 Goods)  3.1790 3.1792 3.7472 3.3784 LR 
Sample 2 (4,000 Goods)  3.1786 3.1861 3.3260 3.1051 LR 
Sample 3 (9,000 Goods)  3.1633 3.1851 3.3578 3.1099 LR 
Population 2 (80:20)          
Sample 1 (1,000 Goods)  5.9980 6.0721 6.5045 5.7941 LR 
Sample 2 (4,000 Goods)  6.0802 6.0595 6.2922 5.7105 DA 
Sample 3 (9,000 Goods)  6.0694 6.0323 6.5433 5.7008 DA 
Population 3 (90:10)          
Sample 1 (1,000 Goods)  15.4315 15.9360 15.5737 13.4864 LR 
Sample 2 (4,000 Goods)  16.0053 15.7769 16.3935 14.0468 DA 
Sample 3 (9,000 Goods)  16.1134 15.6211 16.1816 13.8742 DA 
Low KS          
Population 1 (70:30)          
Sample 1 (1,000 Goods)  2.6675 2.6673 3.2085 2.5905 DA 
Sample 2 (4,000 Goods)  2.6718 2.6712 3.2737 2.5982 DA 
Sample 3 (9,000 Goods)  2.6748 2.6743 NA 2.5719 DA 
Population 2 (80:20)          
Sample 1 (1,000 Goods)  4.6443 4.6440 5.5136 4.4718 DA 
Sample 2 (4,000 Goods)  4.6545 4.6526 5.6709 4.4910 DA 
Sample 3 (9,000 Goods)  4.6616 4.6597 NA 4.4475 DA 
Population 3 (90:10)          
Sample 1 (1,000 Goods)  10.6098 10.6090 12.4042 10.1089 DA 
Sample 2 (4,000 Goods)  10.6336 10.6297 NA 10.1601 DA 
Sample 3 (9,000 Goods)  10.6466 10.6427 NA 10.0652 DA 

 
Note:  1. Recursive Partitioning (RP1 and PR2) has been Excluded Because their Actual  

Cut-off Percentages are not Comparable. 
2.  All Samples have Constant 1,000 bads. 
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Table 5.12  Odds Ratio of Each Data Set and Each Model for Cut-Off at 20% 
 

KS DA LR RP1 RP2 Highest Odds 
High KS           
Population 1 (70:30)        
Sample 1 (1,000 Goods)  5.7115 5.7268 5.3534 4.9069 LR 
Sample 2 (4,000 Goods)  5.6826 5.7396 5.4726 5.1432 LR 
Sample 3 (9,000 Goods)  5.6690 5.7433 5.4453 5.1767 LR 
Population 2 (80:20)        
Sample 1 (1,000 Goods)  14.6954 14.8063 11.8015 10.7797 LR 
Sample 2 (4,000 Goods)  14.4903 14.8892 11.8255 11.4815 LR 
Sample 3 (9,000 Goods)  14.3985 14.9129 11.9785 11.2216 LR 
Population 3 (90:10)        
Sample 1 (1,000 Goods)  52.8220 53.1914 34.6144 33.0982 LR 
Sample 2 (4,000 Goods)  51.7161 53.6265 35.2769 33.8799 LR 
Sample 3 (9,000 Goods)  51.1366 53.7366 35.0524 31.3770 LR 
Mid KS          
Population 1 (70:30)        
Sample 1 (1,000 Goods)  4.2501 4.3635 4.3458 3.7992 LR 
Sample 2 (4,000 Goods)  4.3791 4.3255 4.4532 3.9252 DA 
Sample 3 (9,000 Goods)  4.4091 4.2897 4.6063 3.8386 DA 
Population 2 (80:20)        
Sample 1 (1,000 Goods)  8.2335 8.5826 8.3668 7.0125 LR 
Sample 2 (4,000 Goods)  8.6379 8.4580 9.6147 7.1733 DA 
Sample 3 (9,000 Goods)  8.7440 8.3470 10.0897 6.9403 DA 
Population 3 (90:10)        
Sample 1 (1,000 Goods)  21.2264 22.4824 21.9376 17.3149 LR 
Sample 2 (4,000 Goods)  22.6793 22.0091 24.0429 17.4797 DA 
Sample 3 (9,000 Goods)  23.1439 21.6282 21.5374 16.7365 DA 
Low KS          
Population 1 (70:30)        
Sample 1 (1,000 Goods)  2.9533 2.9532 3.2688 2.7118 DA 
Sample 2 (4,000 Goods)  2.9604 2.9598 3.2789 2.7211 DA 
Sample 3 (9,000 Goods)  2.9638 2.9635 NA 2.6760 DA 
Population 2 (80:20)        
Sample 1 (1,000 Goods)  5.1645 5.1643 5.6305 4.6912 DA 
Sample 2 (4,000 Goods)  5.1811 5.1792 5.6903 4.6982 DA 
Sample 3 (9,000 Goods)  5.1885 5.1867 NA 4.6243 DA 
Population 3 (90:10)        
Sample 1 (1,000 Goods)  11.8575 11.8568 12.7008 10.6062 DA 
Sample 2 (4,000 Goods)  11.8956 11.8930 NA 10.6317 DA 
Sample 3 (9,000 Goods)  11.9092 11.9087 NA 10.4702 DA 

 
Note:  1. Recursive Partitioning (RP1 and PR2) has been Excluded Because their Actual  

Cut-off Percentages are not Comparable. 
2.  All Samples have Constant 1,000 bads. 
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Table 5.13  Odds Ratio of Each Data Set and Each Model for Cut-Off at 30% 

 
KS DA LR RP1 RP2 Highest Odds 

High KS           
Population 1 (70:30)        
Sample 1 (1,000 Goods)  10.3915 10.4674 8.3365 7.6628 LR 
Sample 2 (4,000 Goods)  10.2357 10.5275 8.3714 7.9318 LR 
Sample 3 (9,000 Goods)  10.1596 10.5438 8.1985 7.6822 LR 
Population 2 (80:20)        
Sample 1 (1,000 Goods)  27.6742 27.8773 18.1650 17.4030 LR 
Sample 2 (4,000 Goods)  27.1310 28.0721 17.0274 17.1616 LR 
Sample 3 (9,000 Goods)  26.8625 28.1164 17.7956 16.0216 LR 
Population 3 (90:10)        
Sample 1 (1,000 Goods)  90.0091 90.2243 53.2787 50.4986 LR 
Sample 2 (4,000 Goods)  88.7174 90.8999 47.3906 46.9354 LR 
Sample 3 (9,000 Goods)  87.8906 91.0450 43.0406 NA LR 
Mid KS          
Population 1 (70:30)        
Sample 1 (1,000 Goods)  5.5402 5.8055 5.8096 4.6606 LR 
Sample 2 (4,000 Goods)  5.8486 5.7110 6.0808 4.6571 DA 
Sample 3 (9,000 Goods)  5.9404 5.6279 5.6742 4.4592 DA 
Population 2 (80:20)        
Sample 1 (1,000 Goods)  10.7680 11.3825 10.7863 8.5983 LR 
Sample 2 (4,000 Goods)  11.4886 11.1673 10.8136 8.4303 DA 
Sample 3 (9,000 Goods)  11.7161 10.9740 10.1479 7.9669 DA 
Population 3 (90:10)        
Sample 1 (1,000 Goods)  27.5745 29.4682 26.2854 21.0197 LR 
Sample 2 (4,000 Goods)  29.7699 28.8132 24.7275 20.2392 DA 
Sample 3 (9,000 Goods)  30.4238 28.2390 NA NA DA 
Low KS          
Population 1 (70:30)        
Sample 1 (1,000 Goods)  3.2460 3.2460 3.3327 2.8274 DA 
Sample 2 (4,000 Goods)  3.2561 3.2558 3.2809 2.8244 DA 
Sample 3 (9,000 Goods)  3.2587 3.2588 NA 2.7635 LR 
Population 2 (80:20)        
Sample 1 (1,000 Goods)  5.6889 5.6887 5.8079 4.8961 DA 
Sample 2 (4,000 Goods)  5.7092 5.7102 5.8027 4.8758 LR 
Sample 3 (9,000 Goods)  5.7132 5.7157 NA 4.7772 LR 
Population 3 (90:10)        
Sample 1 (1,000 Goods)  13.1137 13.1130 13.1787 11.0756 DA 
Sample 2 (4,000 Goods)  13.1581 13.1600 NA 11.0369 LR 
Sample 3 (9,000 Goods)  13.1681 13.1732 NA 10.8289 LR 

 
Note:  1. Recursive Partitioning (RP1 and PR2) has been Excluded Because their Actual  
               Cut-off Percentages are not Comparable. 

2. All Samples have Constant 1,000 bads. 



63 
 

Table 5.14  The Optimal Model Based on Each Criterion in Each Scenario 
 

 K-S Odds5% Acc10% Err10% Odds10% Acc20% Err20% Odds20% Odds30% KS Gini 
High K-S                     
Population 1 (70:30)                     
Sample 1 (1,000 Goods) DA LR LR LR LR LR LR LR LR LR 
Sample 2 (4,000 Goods) LR LR LR LR LR LR LR LR LR LR 
Sample 3 (9,000 Goods) LR LR LR LR LR LR LR LR LR LR 
Population 2 (80:20)                     
Sample 1 (1,000 Goods) LR LR LR LR LR LR LR LR LR LR 
Sample 2 (4,000 Goods) LR LR LR LR LR LR LR LR LR LR 
Sample 3 (9,000 Goods) LR LR LR LR LR LR LR LR LR LR 
Population 3 (90:10)                     
Sample 1 (1,000 Goods) LR LR LR LR LR LR LR LR LR LR 
Sample 2 (4,000 Goods) LR LR LR LR LR LR LR LR LR LR 
Sample 3 (9,000 Goods) LR LR LR LR LR LR LR LR LR LR 
Mid KS                     
Population 1 (70:30)                     
Sample 1 (1,000 Goods) DA LR LR LR LR LR LR LR LR LR 
Sample 2 (4,000 Goods) LR LR LR LR DA DA DA DA DA DA 
Sample 3 (9,000 Goods) LR LR LR LR DA DA DA DA DA DA 
Population 2 (80:20)                     
Sample 1 (1,000 Goods) DA LR LR LR LR LR LR LR LR LR 
Sample 2 (4,000 Goods) LR DA DA DA DA DA DA DA DA DA 
Sample 3 (9,000 Goods) LR DA DA DA DA DA DA DA DA DA 
Population 3 (90:10)                     
Sample 1 (1,000 Goods) LR LR LR LR LR LR LR LR LR LR 
Sample 2 (4,000 Goods) LR DA DA DA DA DA DA DA DA DA 
Sample 3 (9,000 Goods) LR DA DA DA DA DA DA DA DA DA 
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Table 5.14  (Continued) 

 
K-S Odds5% Acc10% Err10% Odds10% Acc20% Err20% Odds20% Odds30% KS Gini 

Low K-S                     
Population 1 (70:30)                     
Sample 1 (1,000 Goods) DA DA DA DA DA DA DA DA DA DA 
Sample 2 (4,000 Goods) DA DA DA DA DA DA DA DA LR LR 
Sample 3 (9,000 Goods) DA DA DA DA DA DA DA LR LR LR 
Population 2 (80:20)                     
Sample 1 (1,000 Goods) DA DA DA DA DA DA DA DA DA DA 
Sample 2 (4,000 Goods) DA DA DA DA DA DA DA LR LR LR 
Sample 3 (9,000 Goods) DA DA DA DA DA DA DA LR LR LR 
Population 3 (90:10)                     
Sample 1 (1,000 Goods) DA DA DA DA DA DA DA DA DA DA 
Sample 2 (4,000 Goods) DA DA DA DA DA DA DA LR LR LR 
Sample 3 (9,000 Goods) DA DA DA DA DA DA DA LR LR LR 

 
Note:  1. Recursive Partitioning (RP1 and RP2) has been Excluded in Odds, Accuracy rate, and Error Rate Due to Difference in Actual  

Percentage Cut-off. 

2. All samples have constant 1,000 bads.

64 

  



 
 

 
CHAPTER 6 

  

CONCLUDING REMARKS 
 

This chapter includes the underlying assumptions of this study, the discussion, 

followed by the findings and suggestions regarding research ideas for the future.  

The main assumption of this research was that modeling technique performance 

is not data specific and that the key to understanding modeling technique performance 

can be found in the following four factors. 

1) Perspective 

2) Sample size of good applicants and bad applicants 

3) Proportion of good applicants and bad applicants in the population  

4) Similarity of attributes between the good applicants and bad applicants  

Regarding the first factor, perspective determines which goodness of fit test(s) 

would be used, for example, whether to use a cut-off at 10%, 20%, K-S statistic, or 

others. The choice of test depends on the application of the credit scoring model. A 

fraud model may have a cut-off point of 5%, whereas a credit card application model 

may have a 30% cut-off. This study aimed to understand modeling technique 

performance across different perspectives by using various tools for evaluating the 

models, including cross validation at 5%, 10%, 20%, and 30% cut-off, the K-S 

statistic, and the Gini coefficient.  

The second factor was due to the fact that sample size plays a significant role 

in all statistical analysis. Hair, Black, Babin, and Anderson (2010) have stated that 

“…the discussion of statistical power demonstrated the substantial impact sample size 

plays in achieving statistical significance, both in small and large sample sizes…” and 

that “…sample sizes affect the results when the analyses involve groups of 

observations, such as discriminant analysis. Unequal sample sizes among groups 

influence the results and require additional analysis...” Thus it is important to 

determine the effect of sample size on the performance of the various modeling 

techniques. This study strived to understand the modeling technique performance 
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across three sample sizes: balanced samples which had 1,000 good applicants and 

1,000 bad applicants; unbalanced samples which had 4,000 good applicants and 1,000 

bad applicants; and the more unbalanced samples which had 9,000 good applicants 

and 1,000 bad applicants. The simulation results in this study have illustrated clearly 

that sample size does influence credit scoring model performance. 

The third factor was to represent the various populations in credit scoring such 

as varying from prime to sub-prime applicants.  When the economy is good, there will 

be a high proportion of good applicants, whereas when the economy is in recession, 

the proportion of bad applicants will increase once good applicants have turned bad 

with the economic times. This study incorporated the effect of the proportion of good 

applicants and bad applicants in the population on the choice of credit scoring models 

by creating populations with three different proportions of good applicants and bad 

applicants. The simulation results in this study also showed that this factor does affect 

credit scoring model performance. 

Finally, the fourth and most important factor was the similarity of the 

attributes of the good and bad applicants. This factor relates to generalizing across the 

different values of the independent variables. The variables in credit scoring models 

will differ, sometimes even significantly.  Credit scoring models are used for a variety 

of applications related to extensions of credit, such as determining whether or not to 

give a credit card, home loan, auto loan, fraud detection, etc.   For example, the 

variables for a fraud model would include the identification of variables, whereas 

these variables would not be in a home loan model.  It is not just the variables used 

but also the number of variables in the model that will vary for each application and 

from financial institution to financial institution. Some of this was seen in the 

literature review where previous studies on real data varied in variables and in the 

number of variables. Although the independent variables may differ, some variables 

are correlated and may even overlap in nature, for example, the number of inquires for 

credit in the past 12 months and the number of inquires for credit in the past 6 months. 

It is impossible to investigate all possible variables and with all possible 

parameters. Even if it were possible, the person reading the results would have to then 

align his or her situation with the specific parameters used. Given the latter, this 

fourth factor is considered a good proxy for the various possibilities of independent 
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variables. In order to obtain the simulated data that is generic and realistic, the 

distributions and their parameters for the independent variables in the simulation 

study were taken from Dryver and Jantra Sukkasem (2009). 

There are ten independent variables with various distributions.  Also the 

independent variables have varying similarities of parameters from good applicants 

and bad applicants.  In addition, it was assumed that good applicants may have some 

bad attributes and that bad applicants will have some good attributes, just as in real 

life, thus adding to the complexity, but more important, to the reality of the 

simulation. The similarity or lack of similarity between the goods and bads was used 

as a proxy for obtaining a general view of the effect of the independent variables on 

the model performance under various scenarios.  The objective of any credit scoring 

model is to differentiate between goods and bads.  The fourth factor was incorporated 

in this study in order to answer how models perform when good applicants and bad 

applicants look very different versus how they perform when good applicants and bad 

applicants look very similar. The logic was that varying the distributions in the 

independent variables affects this part of the modeling by changing the degree of ease 

(or lack of ease) in distinguishing between good applicants and bad applicants; thus, 

the assumption that varying the similarity between good applicants and bad applicants 

serves as a proxy for understanding the scenarios with various attributes of 

independent variables.  

In order to avoid the problem that the models will be specific only to the 

sample data or “overfit” the sample, this study validated the models by using the 

population data to test the models. This ensured that the results obtained from the 

study were generalizable to the population data. 

 Both linear discriminant analysis and logistic regression utilize maximum 

likelihood estimation to obtain their parameter estimates. That is why it can be seen in 

the simulation results that both methods yield very similar results in most scenarios. 

Nevertheless, the two methods differ in their basic idea. Discriminant analysis relies 

on the assumptions of multivariate normality and equal variance-covariance matrices 

across groups, while logistic regression does not face these assumptions and is much 

more robust when these assumptions are not met. However, if the assumptions of the 

multivariate normality of the independent variables within each group of the 
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dependant variable are met, and each category has the same variance and covariance 

for the predictors, the discriminant analysis might provide a more accurate 

classification (Grimm and Yarnold, 1995; Tabachnick and Fidell, 1996). 

Discriminant analysis was achieved by calculating the discriminant function in 

order to maximize the differences between the groups. Discriminant function 

produces discriminant Z scores and predicts group membership based on those scores. 

The discriminant Z scores are the linear combinations of each independent variable 

and its discriminant weight. They are not bounded by any range. Logistic regression 

produces the likelihood of each observation being in the group that is coded as “1.” 

The predicted scores from the logistic regression function are bounded by zero and 

one (Hair et al., 2010; Worth and Cronin, 2003).  

From the simulation results, it can be seen that in the scenarios where the 

relative size of two groups in the sample does affect the relative model performance, 

logistic regression is superior for the balanced-samples, while discriminant analysis is 

superior for the unbalanced-samples. Moreover, logistic regression is superior when 

the good applicants and bad applicants are highly different in attributes, whereas 

discriminant analysis is superior when the good and bad applicants have similar 

characteristics. 

While logistic regression and discriminant analysis are similar in the sense that 

they both employ the method of maximum likelihood estimations, the recursive 

partitioning (decision tree) is different. Recursive partitioning employs the concept of 

splitting (partitioning) the training set. During the process of decision tree induction, 

every possible value of every possible feature within the training set represents a 

potential split that could be used to divide all observations into groups. Any particular 

node will have at most two paths leading from it to the next node(s) in the path. The 

result is splitting the data at each node into two independent groups; this is 

partitioning. Once the two new nodes linked to a previous node are formed, the 

process is repeated for each new node independently using only the observations 

present in that node; this is the recursive step. Recursive partitioning splits the 

observations such that observations with similar response values are grouped. The 

trees constructed from different samples usually have different numbers of final nodes 

and each final node also has different sizes. Because all of the observations in the 
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same final node are given the same predicted response value, when using the 

recursive partitioning approach to predict and rank the credit score of loan applicants, 

the predicted score at the pre-specified cut-off percentile leads to the rejection of all 

the other observations that have that same score. This was illustrated in the simulation 

study—when using the recursive partitioning method, the percentage of rejection of 

many recursive partitioning models was larger than the pre-specified percentage. 

The findings of this simulation study, which are presented in Table 18, can be 

summarized as follows. 

For the high K-S population, three measures, namely Accuracy, Type I error, 

and Odds ratio at 10% cut-off, were perfectly consistent with those at a 20% cut-off. 

These three measures were also consistent with the K-S statistic and Gini coefficient. 

All of the evaluation tools agreed that logistic regression is the best method in 

predicting good and bad loan applicants.  

For the mid K-S population, the three measures at 10% cut-off were consistent 

with those at a 20% cut-off and with the K-S and Gini for all except in one case: when 

sample type 2 and 3 were drawn from population type 1, the three measure at a 10% 

cut-off were inconsistent with the other measures and with both evaluation tools. 

When sample type 1 was drawn from any population type, all of the measures and 

evaluation tools agreed that logistic regression was the best method, whereas when 

sample type 2 and 3 were drawn from any population type, logistic regression as the 

best method when evaluated at a 10% cut-off; however, discriminant analysis was the 

best method when evaluated at a 20% cut-off. 

For the low K-S population, discriminant analysis was the best method when 

evaluated at both a 10% and 20% cut-off based on any of the three measures. 

However, there was a conflict between the three measures and the K-S and Gini when 

sample type 2 and 3 were drawn from any population. Although the three measures 

perfectly suggested that discriminant analysis was the best method in all cases, the K-

S and Gini suggested that logistic regression was the best method when sample type 2 

and 3 are drawn from any population. 

With additional assumptions, the economic significance can be investigated 

directly when comparing the difference in bad rate between the best and the second 

best model. For example, when observing the bad rate at a 20% cut-off, under the mid 
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K-S population with a 70:30 good:bad ratio, when the logistic model was formed 

based on sample type 1 (1,000 goods and 1,000 bads), it yielded an average of 

18.64% bad rate; however, the discriminant analysis that was formed based on the 

same sample yielded an average of 19.05% bad rate. The difference in the bad rate 

between the two models was 0.41%. If we assume that the bank has a portfolio of ten 

million personal loans, then it turns out that a loan decision based on the discriminant 

model will result in accepting 41,000 more bad loans, relative to the logistic model. In 

monetary terms, if we assume that a loss on one loan is only USD 10,000, then the 

incremental losses will be USD 410 million. However, if the sample type changes to 

be sample type 3 (9,000 goods and 1,000 bads), then with the same assumption, the 

loan decision based on the logistic model, will result in an incremental loss of USD 

417 million. These amounts can be considered as having high economic significance. 

From these observations, it can be seen clearly that there is no perfect solution 

to credit scoring. When banks and financial institutions build credit scoring models, 

they should understand the nature of the population that they have to deal with and the 

sample sets that they have on hand. Then, based on a particular population and sample 

set, they can select the statistical method that performs relatively better compared to 

other methods. 

Some practitioners of credit scoring may compare the performance of different 

credit scoring techniques on their sample sets to determine the optimal technique and 

use it to construct a credit scoring model. In order to achieve this objective, different 

techniques are tested based on limited data sets, and ultimately the selected model will 

be implemented on the population. In this research, a simulation was performed in 

order to overcome the limitations of data sets so as to achieve a thorough 

understanding of how different techniques will perform on the population, and how 

sensitive the relative performance of each technique is to the change in the 

characteristics of populations and samples. As a result, the use of simulation in this 

study yielded more insights, and practitioners should consider the methodology 

applied in this research rather than simply testing multiple models and comparing 

them on the limited samples. 

Some research ideas for the future include testing these models on real data 

sets, extending the simulation study by including more statistical methods or 
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combining more than one method into one model, or analyzing further why the K-S 

and Gini are inconsistent with the confusion matrix measures in some scenarios. 

In additions, the limitations of the recursive partitioning model found in this 

study offer opportunity for further investigation. Future studies may consider 

including different independent variables in order to investigate whether it is possible 

for the recursive partitioning model to obtain an exact cut-off percentage. More 

studies can be done on whether there is a significant trade-off between getting the 

exact percentage cut-off and having an improvement in model performance. 
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Appendix A 
 

The R Codes 

 

1.1 Setting the Parameters for Each Population Type 

 

1.1.1 pop7010.R 

tg=700000       # obs of good (row) 

tb=300000   # obs of bad (row) 

n=1               # iterations (column) 

 

1.1.2 pop8020.R 

tg=800000       # obs of good (row) 

tb=200000   # obs of bad (row) 

n=1               # iterations (column) 

 

1.1.3 pop9010.R 

tg=900000       # obs of good (row) 

tb=100000   # obs of bad (row) 

n=1               # iterations (column) 

 

1.1.4 ks_high.R 

PIG=0.1 

PIB=0.83 

LAM1G=2 

LAM1B=3.5 

LAM2G=3.5 

LAM2B=8 

LAM3G=12 

LAM3B=16 

PI4G=0.2 

PI4B=0.6 
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PI5G=0.04 

PI5B=0.2 

PI6G=0.2 

PI6B=0.85 

LAM7G=12 

LAM7B=16 

PI8G=0.3 

PI8B=0.6 

MU9G=5080 

MU9B=5040 

PI10G=0.4 

PI10B=0.7 

 

1.1.5 ks_mid.R 

PIG=0.1 

PIB=0.775 

LAM1G=2 

LAM1B=2.5 

LAM2G=4.5 

LAM2B=6 

LAM3G=13.5 

LAM3B=15 

PI4G=0.2 

PI4B=0.5 

PI5G=0.04 

PI5B=0.15 

PI6G=0.25 

PI6B=0.55 

LAM7G=5 

LAM7B=30 

PI8G=0.3 

PI8B=0.5 
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MU9G=5050 

MU9B=5020 

PI10G=0.23 

PI10B=0.45 

 

1.1.6 ks_low.R 

PIG=0.1 

PIB=0.7 

LAM1G=2 

LAM1B=2.5 

LAM2G=5 

LAM2B=6 

LAM3G=13 

LAM3B=14 

PI4G=0.2 

PI4B=0.5 

PI5G=0.04 

PI5B=0.09 

PI6G=0.05 

PI6B=0.15 

LAM7G=25 

LAM7B=30 

PI8G=0.3 

PI8B=0.5 

MU9G=5030 

MU9B=5018 

PI10G=0.4 

PI10B=0.5 
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1.2  Generating the Attributes of Populations (1_pop_gen.R) 
 

yg =matrix(1,tg,n)      # all one 

zg1=matrix( rbinom(tg*n,1,PIG),tg,n ) 

zg2=matrix( rbinom(tg*n,1,PIG),tg,n ) 

zg3=matrix( rbinom(tg*n,1,PIG),tg,n ) 

zg4=matrix( rbinom(tg*n,1,PIG),tg,n ) 

zg5=matrix( rbinom(tg*n,1,PIG),tg,n ) 

zg6=matrix( rbinom(tg*n,1,PIG),tg,n ) 

zg7=matrix( rbinom(tg*n,1,PIG),tg,n ) 

zg8=matrix( rbinom(tg*n,1,PIG),tg,n ) 

zg9=matrix( rbinom(tg*n,1,PIG),tg,n ) 

zg10=matrix( rbinom(tg*n,1,PIG),tg,n ) 

 

# The good attributes 

 

 xg1=matrix( zg1*rpois(tg*n,LAM1G)+(1-zg1)*rpois(tg*n,LAM1B)+1,tg,n )    

 xg2=matrix( zg2*rpois(tg*n,LAM2G)+(1-zg2)*rpois(tg*n,LAM2B)+1,tg,n )    

 xg3=matrix( zg3*rpois(tg*n,LAM3G)+(1-zg3)*rpois(tg*n,LAM3B)+xg2,tg,n )  

 xg4=matrix( zg4*(runif(tg*n,min=0,max=1)+PI4G)/(1+PI4G)+(1-zg4)*(runif 

(tg*n,min=0,max=1)+PI4B)/(1+PI4B),tg,n)  

 xg5=matrix( zg5*rbinom(tg*n,1,PI5G)+(1-zg5)*rbinom(tg*n,1,PI5B),tg,n )  

xg6=matrix( zg6*rbinom(tg*n,1,PI6G)+(1-zg6)*rbinom(tg*n,1,PI6B),tg,n )  

 xg7=matrix( zg7* rexp(tg*n,rate=LAM7G) + (1-zg7)* rexp(tg*n,rate=LAM7B),tg,n)  

 xg8=matrix( zg8*rbinom(tg*n,1,PI8G) + (1-zg8)*rbinom(tg*n,1,PI8B),tg,n )  

 xg9=matrix( zg9*rnorm(tg*n,mean=MU9G,sd=30)+(1-zg9)*rnorm 

(tg*n,mean=MU9B,sd=30),tg,n)  

xg10=matrix( zg10*rbinom(tg*n,1,PI10G) + (1-zg10)*rbinom(tg*n,1,PI10B),tg,n )  

 

yb =matrix(0,tb,n)      # all zero 

zb1=matrix( rbinom(tb*n,1,PIB),tb,n ) 

zb2=matrix( rbinom(tb*n,1,PIB),tb,n ) 
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zb3=matrix( rbinom(tb*n,1,PIB),tb,n ) 

zb4=matrix( rbinom(tb*n,1,PIB),tb,n ) 

zb5=matrix( rbinom(tb*n,1,PIB),tb,n ) 

zb6=matrix( rbinom(tb*n,1,PIB),tb,n ) 

zb7=matrix( rbinom(tb*n,1,PIB),tb,n ) 

zb8=matrix( rbinom(tb*n,1,PIB),tb,n ) 

zb9=matrix( rbinom(tb*n,1,PIB),tb,n ) 

zb10=matrix( rbinom(tb*n,1,PIB),tb,n ) 

 

# The bad attributes 

 

xb1=matrix( zb1*rpois(tb*n,LAM1G)+(1-zb1)*rpois(tb*n,LAM1B)+1,tb,n ) 

xb2=matrix( zb2*rpois(tb*n,LAM2G)+(1-zb2)*rpois(tb*n,LAM2B)+1,tb,n ) 

xb3=matrix( zb3*rpois(tb*n,LAM3G)+(1-zb3)*rpois(tb*n,LAM3B)+ xb2 ,tb,n )  

xb4=matrix( zb4*(runif(tb*n,min=0,max=1)+PI4G)/(1+PI4G)+(1-

zb4)*(runif(tb*n,min=0,max=1)+PI4B)/(1+PI4B),tb,n)  

xb5=matrix( zb5*rbinom(tb*n,1,PI5G)+(1-zb5)*rbinom(tb*n,1,PI5B),tb,n )  

xb6=matrix( zb6*rbinom(tb*n,1,PI6G)+(1-zb6)*rbinom(tb*n,1,PI6B),tb,n )  

xb7=matrix( zb7* rexp(tb*n,rate=LAM7G) + (1-zb7)* rexp(tb*n,rate=LAM7B),tb,n ) 

xb8=matrix( zb8*rbinom(tb*n,1,PI8G) + (1-zb8)*rbinom(tb*n,1,PI8B),tb,n ) 

xb9=matrix( zb9*rnorm(tb*n,mean=MU9G,sd=30)+(1-

zb9)*rnorm(tb*n,mean=MU9B,sd=30),tb,n)  

xb10=matrix( zb10*rbinom(tb*n,1,PI10G) + (1-zb10)*rbinom(tb*n,1,PI10B),tb,n )  

 

pop.g=cbind(yg,xg1,xg2,xg3,xg4,xg5,xg6,xg7,xg8,xg9,xg10) 

#index.g=matrix(c(1:tg),tg,n) 

#pop.good=cbind(index.g,pop.g) 

 

pop.b=cbind(yb,xb1,xb2,xb3,xb4,xb5,xb6,xb7,xb8,xb9,xb10) 

#index.b=matrix(c(1:tb),tb,n) 

#pop.bad=cbind(index.b,pop.b) 
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1.3  Simulating Nine Population Sets (1010.R) 
 

1.3.1 Population with 700,000 goods and 300,000 bads, high K-S 

memory.limit(4095) 

rm(list=ls(all=TRUE)) 

setwd("D:\\R\\") 

library(abind) 

 

source(file="pop7030.R")   

source(file="ks_high.R")    

 

source(file="1_pop_gen.R") 

Apop=abind(pop.b,pop.g,along=1) 

 

write.table(Apop, file = "70H_Apop.csv",quote=TRUE, sep = ",", 

col.names=TRUE, row.names=TRUE, qmethod="double")   

 

1.3.2 Population with 700,000 goods and 300,000 bads, mid K-S 

memory.limit(4095) 

rm(list=ls(all=TRUE)) 

setwd("D:\\R\\") 

library(abind) 

 

source(file="pop7030.R")   

source(file="ks_mid.R")    

 

source(file="1_pop_gen.R") 

Apop=abind(pop.b,pop.g,along=1) 

 

write.table(Apop, file = "70M_Apop.csv",quote=TRUE, sep = ",", 

col.names=TRUE, row.names=TRUE, qmethod="double")   
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1.3.3 Population with 700,000 goods and 300,000 bads, low K-S 

memory.limit(4095) 

rm(list=ls(all=TRUE)) 

setwd("D:\\R\\") 

library(abind) 

 

source(file="pop7030.R")   

source(file="ks_low.R")    

 

source(file="1_pop_gen.R") 

Apop=abind(pop.b,pop.g,along=1) 

 

write.table(Apop, file = "70L_Apop.csv",quote=TRUE, sep = ",", 

col.names=TRUE, row.names=TRUE, qmethod="double")   

 

1.3.4 Population with 800,000 goods and 200,000 bads, high K-S 

memory.limit(4095) 

rm(list=ls(all=TRUE)) 

setwd("D:\\R\\") 

library(abind) 

 

source(file="pop8020.R")   

source(file="ks_high.R")    

 

source(file="1_pop_gen.R") 

Apop=abind(pop.b,pop.g,along=1) 

 

write.table(Apop, file = "80H_Apop.csv",quote=TRUE, sep = ",", 

col.names=TRUE, row.names=TRUE, qmethod="double")   

 

1.3.5 Population with 800,000 goods and 200,000 bads, mid K-S 

memory.limit(4095) 
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rm(list=ls(all=TRUE)) 

setwd("D:\\R\\") 

library(abind) 

 

source(file=" pop8020.R")   

source(file="ks_mid.R")    

 

source(file="1_pop_gen.R") 

Apop=abind(pop.b,pop.g,along=1) 

 

write.table(Apop, file = "80M_Apop.csv",quote=TRUE, sep = ",", 

col.names=TRUE, row.names=TRUE, qmethod="double")   

 

1.3.6 Population with 800,000 goods and 200,000 bads, low K-S 

memory.limit(4095) 

rm(list=ls(all=TRUE)) 

setwd("D:\\R\\") 

library(abind) 

 

source(file=" pop8020.R")   

source(file="ks_low.R")    

 

source(file="1_pop_gen.R") 

Apop=abind(pop.b,pop.g,along=1) 

 

write.table(Apop, file = "80L_Apop.csv",quote=TRUE, sep = ",", 

col.names=TRUE, row.names=TRUE, qmethod="double")   

 

1.3.7 Population with 900,000 goods and 100,000 bads, high K-S 

memory.limit(4095) 

rm(list=ls(all=TRUE)) 

setwd("D:\\R\\") 
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library(abind) 

 

source(file="pop9010.R")   

source(file="ks_high.R")    

 

source(file="1_pop_gen.R") 

Apop=abind(pop.b,pop.g,along=1) 

 

write.table(Apop, file = "90H_Apop.csv",quote=TRUE, sep = ",", 

col.names=TRUE, row.names=TRUE, qmethod="double")   

 

1.3.8 Population with 900,000 goods and 100,000 bads, mid K-S 

memory.limit(4095) 

rm(list=ls(all=TRUE)) 

setwd("D:\\R\\") 

library(abind) 

 

source(file=" pop9010.R")   

source(file="ks_mid.R")    

 

source(file="1_pop_gen.R") 

Apop=abind(pop.b,pop.g,along=1) 

 

write.table(Apop, file = "90M_Apop.csv",quote=TRUE, sep = ",", 

col.names=TRUE, row.names=TRUE, qmethod="double")   

 

1.3.9 Population with 900,000 goods and 100,000 bads, low K-S 

memory.limit(4095) 

rm(list=ls(all=TRUE)) 

setwd("D:\\R\\") 

library(abind) 
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source(file=" pop9010.R")   

source(file="ks_low.R")    

 

source(file="1_pop_gen.R") 

Apop=abind(pop.b,pop.g,along=1) 

 

write.table(Apop, file = "90L_Apop.csv",quote=TRUE, sep = ",", 

col.names=TRUE, row.names=TRUE, qmethod="double") 

 

1.4  Sampling and Iterations 

 

1.4.1 Sample with 1,000 goods and 1,000 bads (sample1.R) 

mg=1000 

mb=1000       

 

1.4.2 Sample with 4,000 goods and 1,000 bads (sample2.R) 

mg=4000 

mb=1000 

 

1.4.3 Sample with 9,000 goods and 1,000 bads (sample3.R) 

mg=9000 

mb=1000       

            

1.4.4 Sampling, estimating the models, and testing the models (loop.R) 

whb=sample(idb,mb) 

whg=sample(idg,mg) 

 

A=abind(Apop[whb,],Apop[whg,],along=1) 

ID=c(whb,whg) 

A=data.frame(ID,A) 
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colnames(A)=c("ID","Y","x1","x2","x3","x4","x5","x6","x7","x8","x9","x10") 

rownames(A)=c(1:(mb+mg)) 

 

# Use the sample to form LR, LG, RP1, and RP2 

 

LR=glm(Y ~ x1+x2+x3+x4+x5+x6+x7+x8+x9+x10, data=A ) # sample 

LG=glm(Y ~ x1+x2+x3+x4+x5+x6+x7+x8+x9+x10, data=A , 

family=binomial(link="logit") ) # sample 

 

RP1=rpart(Y ~ x1+x2+x3+x4+x5+x6+x7+x8+x9+x10, data=A ) # sample  

RP2=rpart(Y ~ x1+x2+x3+x4+x5+x6+x7+x8+x9+x10, data=A, 

control=rpart.control(cp=0) ) # sample  

 

# Predict population  

 

RPpredict1=predict(RP1,new=list(x1=Apop[,2],x2=Apop[,3],x3=Apop[,4],x4=Apop[

,5],x5=Apop[,6],x6=Apop[,7],x7=Apop[,8],x8=Apop[,9],x9=Apop[,10],x10=Apop[,1

1])) 

 

RPpredict1=as.data.frame(RPpredict1) 

 

ksRP1 =ks.test(RPpredict1[1:tb,],RPpredict1[(tb+1):(tb+tg),])[[1]][[1]]  

aucRP1=roc.area(Apop[,1],RPpredict1[,1])$A 

 

B1=data.frame(RPpredict1,Apop[,1]) 

colnames(B1)=c("YhatRP1","Y") 

B1=B1[order(B1$YhatRP1),] 

 

RPpredict2=predict(RP2,new=list(x1=Apop[,2],x2=Apop[,3],x3=Apop[,4],x4=Apop[

,5],x5=Apop[,6],x6=Apop[,7],x7=Apop[,8],x8=Apop[,9],x9=Apop[,10],x10=Apop[,1

1])) 
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RPpredict2=as.data.frame(RPpredict2) 

 

ksRP2 =ks.test(RPpredict2[1:tb,],RPpredict2[(tb+1):(tb+tg),])[[1]][[1]]  

aucRP2=roc.area(Apop[,1],RPpredict2[,1])$A 

 

B2=data.frame(RPpredict2,Apop[,1]) 

colnames(B2)=c("YhatRP2","Y") 

B2=B2[order(B2$YhatRP2),] 

 

# RP1 at 5% cut off point 

 

Yhat1=B1 

score=Yhat1[0.05*(tg+tb),1] 

Yhat1$YhatRP1[Yhat1$YhatRP1>score]=1 

Yhat1$YhatRP1[Yhat1$YhatRP1<=score]=0 

R105=tg+tb-sum(Yhat1$YhatRP1) 

GR105=sum(Yhat1$Y[1:R105]) 

rm(Yhat1,score) 

 

# RP1 at 10% cut off point 

 

Yhat1=B1 

score=Yhat1[0.1*(tg+tb),1] 

Yhat1$YhatRP1[Yhat1$YhatRP1>score]=1 

Yhat1$YhatRP1[Yhat1$YhatRP1<=score]=0 

R110=tg+tb-sum(Yhat1$YhatRP1) 

GR110=sum(Yhat1$Y[1:R110]) 

rm(Yhat1,score) 

 

# RP1 at 20% cut off point 

 

Yhat1=B1 
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score=Yhat1[0.2*(tg+tb),1] 

Yhat1$YhatRP1[Yhat1$YhatRP1>score]=1 

Yhat1$YhatRP1[Yhat1$YhatRP1<=score]=0 

R120=tg+tb-sum(Yhat1$YhatRP1) 

GR120=sum(Yhat1$Y[1:R120]) 

rm(Yhat1,score) 

 

# RP1 at 30% cut off point 

 

Yhat1=B1 

score=Yhat1[0.3*(tg+tb),1] 

Yhat1$YhatRP1[Yhat1$YhatRP1>score]=1 

Yhat1$YhatRP1[Yhat1$YhatRP1<=score]=0 

R130=tg+tb-sum(Yhat1$YhatRP1) 

GR130=sum(Yhat1$Y[1:R130]) 

rm(Yhat1,score) 

 

# RP2 at 5% cut off point 

 

Yhat2=B2 

score=Yhat2[0.05*(tg+tb),1] 

Yhat2$YhatRP2[Yhat2$YhatRP2>score]=1 

Yhat2$YhatRP2[Yhat2$YhatRP2<=score]=0 

R205=tg+tb-sum(Yhat2$YhatRP2) 

GR205=sum(Yhat2$Y[1:R205]) 

rm(Yhat2,score) 

 

# RP2 at 10% cut off point 

 

Yhat2=B2 

score=Yhat2[0.1*(tg+tb),1] 

Yhat2$YhatRP2[Yhat2$YhatRP2>score]=1 
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Yhat2$YhatRP2[Yhat2$YhatRP2<=score]=0 

R210=tg+tb-sum(Yhat2$YhatRP2) 

GR210=sum(Yhat2$Y[1:R210]) 

rm(Yhat2,score) 

 

# RP2 at 20% cut off point 

 

Yhat2=B2 

score=Yhat2[0.2*(tg+tb),1] 

Yhat2$YhatRP2[Yhat2$YhatRP2>score]=1 

Yhat2$YhatRP2[Yhat2$YhatRP2<=score]=0 

R220=tg+tb-sum(Yhat2$YhatRP2) 

GR220=sum(Yhat2$Y[1:R220]) 

rm(Yhat2,score) 

 

# RP2 at 30% cut off point 

 

Yhat2=B2 

score=Yhat2[0.3*(tg+tb),1] 

Yhat2$YhatRP2[Yhat2$YhatRP2>score]=1 

Yhat2$YhatRP2[Yhat2$YhatRP2<=score]=0 

R230=tg+tb-sum(Yhat2$YhatRP2) 

GR230=sum(Yhat2$Y[1:R230]) 

rm(Yhat2,score) 

 

 

# outputs for all  

 

coefLR_i=data.frame(LR[[1]][[1]],LR[[1]][[2]],LR[[1]][[3]],LR[[1]][[4]],LR[[1]][[5]

],LR[[1]][[6]],LR[[1]][[7]],LR[[1]][[8]],LR[[1]][[9]],LR[[1]][[10]],LR[[1]][[11]]) 

coefLG_i=data.frame(LG[[1]][[1]],LG[[1]][[2]],LG[[1]][[3]],LG[[1]][[4]],LG[[1]][[5

]],LG[[1]][[6]],LG[[1]][[7]],LG[[1]][[8]],LG[[1]][[9]],LG[[1]][[10]],LG[[1]][[11]]) 
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evaRPi=data.frame(ksRP1,aucRP1,ksRP2,aucRP2,GR105,GR110,GR120,GR130,GR

205,GR210,GR220,GR230,R105,R110,R120,R130,R205,R210,R220,R230) 

 

coefLR=rbind(coefLR,coefLR_i) 

coefLG=rbind(coefLG,coefLG_i) 

 

evaRP=rbind(evaRP,evaRPi) 

 

 

1.4.5 Removing the Previous Iteration (remove.R) 

rm(whb,whg,A,ID,LR,LG,RP1,RP2,RPpredict1,RPpredict2,ksRP1,ksR

P2,aucRP1,aucRP2,B1,B2) 

 

rm(GR105,GR110,GR120,GR130,GR205,GR210,GR220,GR230,R105,

R110,R120,R130,R205,R210,R220,R230,coefLR_i,coefLG_i,evaRPi) 

 

1.4.6 Sampling and Iterations 

memory.limit(4095) 

setwd("D:\\RJib\\")  # change file name to where you save the files 

library(abind) 

library(waveslim) 

library(spam) 

library(fields) 

library(boot) 

library(MASS) 

library(CircStats) 

library(verification) 

library("rpart") 

 

Apop=read.csv(file="70H_Apop.csv", head = TRUE, sep =",")   

# change file name to 70H, 70M, 70L, 80H, 80M, 80L, 90H, 90M, 90L 
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source(file="pop7030.R")    #change to pop8020, pop9010 

source(file="sample1.R")    # change to sample2, sample3 

 

idb=c(1:tb) 

idg=c((tb+1):(tb+tg)) 

 

coefLR=data.frame() 

coefLG=data.frame() 

evaRP=data.frame() 

 

source(file="loop.R")  

source(file="remove.R")   

 

# repeat line “loop.R” and “remove.R” for 1,000 iterations 

# do this to avoid the loop command below 

# for (i in 1:1000) { 

# source(file="loop.R")  

# source(file="remove.R") 

# } 

 

write.table(coefLR, file = "coefLR.csv",append=FALSE,quote=TRUE, sep = ",", 

col.names = TRUE,row.names=TRUE,qmethod="double") 

 

write.table(coefLG, file = "coefLG.csv",append=FALSE,quote=TRUE, sep = ",", 

col.names = TRUE,row.names=TRUE,qmethod="double") 

 

write.table(evaRP, file = "evaRP.csv",append=FALSE,quote=TRUE, sep = ",", 

col.names = TRUE,row.names=TRUE,qmethod="double") 

 

# repeat this subsection for each population type and each sample type 
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1.5 The Codes for Linear Regression, Recursive Partitioning, K-S, and 

Area Under ROC 

 

1.5.1 Linear Regression (GLM) 

function (formula, family = gaussian, data, weights, subset,  

na.action, start = NULL, etastart, mustart, offset, control = list(...),  

model = TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts = 

NULL,  

    ...)  

{ 

call <- match.call() 

if (is.character(family))  

family <- get(family, mode = "function", envir = parent.frame()) 

if (is.function(family))  

family <- family() 

if (is.null(family$family)) { 

print(family) 

stop("'family' not recognized") 

} 

if (missing(data))  

data <- environment(formula) 

mf <- match.call(expand.dots = FALSE) 

m <- match(c("formula", "data", "subset", "weights", "na.action",  

"etastart", "mustart", "offset"), names(mf), 0L) 

mf <- mf[c(1L, m)] 

mf$drop.unused.levels <- TRUE 

mf[[1L]] <- as.name("model.frame") 

mf <- eval(mf, parent.frame()) 

if (identical(method, "model.frame"))  

    return(mf) 

if (!is.character(method) && !is.function(method))  

    stop("invalid 'method' argument") 
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if (identical(method, "glm.fit"))  

    control <- do.call("glm.control", control) 

mt <- attr(mf, "terms") 

Y <- model.response(mf, "any") 

if (length(dim(Y)) == 1L) { 

nm <- rownames(Y) 

dim(Y) <- NULL 

if (!is.null(nm))  

names(Y) <- nm 

} 

X <- if (!is.empty.model(mt))  

model.matrix(mt, mf, contrasts) 

else matrix(, NROW(Y), 0L) 

weights <- as.vector(model.weights(mf)) 

if (!is.null(weights) && !is.numeric(weights))  

stop("'weights' must be a numeric vector") 

if (!is.null(weights) && any(weights < 0))  

stop("negative weights not allowed") 

offset <- as.vector(model.offset(mf)) 

if (!is.null(offset)) { 

if (length(offset) != NROW(Y))  

stop(gettextf("number of offsets is %d should equal %d (number of 

observations)",  

length(offset), NROW(Y)), domain = NA) 

} 

mustart <- model.extract(mf, "mustart") 

etastart <- model.extract(mf, "etastart") 

fit <- eval(call(if (is.function(method)) "method" else method,  

x = X, y = Y, weights = weights, start = start, etastart = etastart,  

mustart = mustart, offset = offset, family = family,  

control = control, intercept = attr(mt, "intercept") >  

0L)) 
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if (length(offset) && attr(mt, "intercept") > 0L) { 

fit$null.deviance <- eval(call(if (is.function(method)) "method" else 

method,  

x = X[, "(Intercept)", drop = FALSE], y = Y, weights = weights,  

offset = offset, family = family, control = control,  

intercept = TRUE))$deviance 

} 

if (model)  

fit$model <- mf 

fit$na.action <- attr(mf, "na.action") 

if (x)  

fit$x <- X 

if (!y)  

fit$y <- NULL 

fit <- c(fit, list(call = call, formula = formula, terms = mt,  

data = data, offset = offset, control = control, method = method,  

contrasts = attr(X, "contrasts"), xlevels = .getXlevels(mt,  

mf))) 

class(fit) <- c(fit$class, c("glm", "lm")) 

fit 

} 

<environment: namespace:stats> 

 

1.5.2 Recursive Partitioning (RPART) 

function (formula, data, weights, subset, na.action = na.rpart,  

method, model = FALSE, x = FALSE, y = TRUE, parms, control,  

cost, ...)  

{ 

call <- match.call() 

if (is.data.frame(model)) { 

m <- model 

model <- FALSE 
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} 

else { 

m <- match.call(expand.dots = FALSE) 

m$model <- m$method <- m$control <- NULL 

m$x <- m$y <- m$parms <- m$... <- NULL 

m$cost <- NULL 

m$na.action <- na.action 

m[[1L]] <- as.name("model.frame") 

m <- eval(m, parent.frame()) 

} 

Terms <- attr(m, "terms") 

if (any(attr(Terms, "order") > 1L))  

stop("Trees cannot handle interaction terms") 

Y <- model.extract(m, "response") 

wt <- model.extract(m, "weights") 

if (length(wt) == 0L)  

wt <- rep(1, nrow(m)) 

offset <- attr(Terms, "offset") 

X <- rpart.matrix(m) 

nobs <- nrow(X) 

nvar <- ncol(X) 

if (missing(method)) { 

if (is.factor(Y) || is.character(Y))  

method <- "class" 

else if (inherits(Y, "Surv"))  

method <- "exp" 

else if (is.matrix(Y))  

method <- "poisson" 

else method <- "anova" 

} 

if (is.list(method)) { 

mlist <- method 
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method <- "user" 

if (missing(parms))  

init <- mlist$init(Y, offset, wt = wt) 

else init <- mlist$init(Y, offset, parms, wt) 

method.int <- 4L 

keep <- rpartcallback(mlist, nobs, init) 

} 

else { 

method.int <- pmatch(method, c("anova", "poisson", "class",  

"exp")) 

if (is.na(method.int))  

stop("Invalid method") 

method <- c("anova", "poisson", "class", "exp")[method.int] 

if (method.int == 4L)  

method.int <- 2L 

if (missing(parms))  

init <- (get(paste("rpart", method, sep = ".")))(Y,  

offset, , wt) 

else init <- (get(paste("rpart", method, sep = ".")))(Y,  

offset, parms, wt) 

ns <- asNamespace("rpart") 

if (!is.null(init$print))  

environment(init$print) <- ns 

if (!is.null(init$summary))  

environment(init$summary) <- ns 

if (!is.null(init$text))  

environment(init$text) <- ns 

} 

Y <- init$y 

xlevels <- attr(X, "column.levels") 

cats <- rep(0, ncol(X)) 

if (!is.null(xlevels)) { 
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cats[match(names(xlevels), dimnames(X)[[2]])] <- 

unlist(lapply(xlevels,  

length)) 

} 

extraArgs <- list(...) 

if (length(extraArgs)) { 

controlargs <- names(formals(rpart.control)) 

indx <- match(names(extraArgs), controlargs, nomatch = 0) 

if (any(indx == 0))  

stop("Argument ", names(extraArgs)[indx == 0], "not matched") 

} 

controls <- rpart.control(...) 

if (!missing(control))  

controls[names(control)] <- control 

xval <- controls$xval 

if (is.null(xval) || (length(xval) == 1L && xval == 0) ||  

method == "user") { 

xgroups <- 0 

xval <- 0 

} 

else if (length(xval) == 1L) { 

xgroups <- sample(rep(1:xval, length = nobs), nobs, replace = FALSE) 

} 

else if (length(xval) == nobs) { 

xgroups <- xval 

xval <- length(unique(xgroups)) 

} 

else { 

if (!is.null(attr(m, "na.action"))) { 

temp <- as.integer(attr(m, "na.action")) 

xval <- xval[-temp] 

if (length(xval) == nobs) { 
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xgroups <- xval 

xval <- length(unique(xgroups)) 

} 

else stop("Wrong length for xval") 

} 

else stop("Wrong length for xval") 

} 

if (missing(cost))  

cost <- rep(1, nvar) 

else { 

if (length(cost) != nvar)  

stop("Cost vector is the wrong length") 

if (any(cost <= 0))  

stop("Cost vector must be positive") 

} 

tfun <- function(x) { 

if (is.matrix(x))  

rep(is.ordered(x), ncol(x)) 

else is.ordered(x) 

} 

isord <- unlist(lapply(m[attr(Terms, "term.labels")], tfun)) 

rpfit <- .C(C_s_to_rp, n = as.integer(nobs), nvarx = as.integer(nvar),  

ncat = as.integer(cats * (!isord)), method = as.integer(method.int),  

as.double(unlist(controls)), parms = as.double(unlist(init$parms)),  

as.integer(xval), as.integer(xgroups), as.double(t(init$y)),  

as.double(X), as.integer(!is.finite(X)), error = character(1),  

wt = as.double(wt), as.integer(init$numy), as.double(cost),  

NAOK = TRUE) 

if (rpfit$n == -1)  

stop(rpfit$error) 

nodes <- rpfit$n 

nsplit <- rpfit$nvarx 
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numcp <- rpfit$method 

ncat <- rpfit$ncat[1] 

numresp <- init$numresp 

if (nsplit == 0)  

xval <- 0 

cpcol <- if (xval > 0 && nsplit > 0)  

5L 

else 3L 

if (ncat == 0)  

catmat <- 0 

else catmat <- matrix(integer(1), ncat, max(cats)) 

rp <- .C(C_s_to_rp2, as.integer(nobs), as.integer(nsplit),  

as.integer(nodes), as.integer(ncat), as.integer(cats *  

 (!isord)), as.integer(max(cats)), as.integer(xval),  

which = integer(nobs), cptable = matrix(double(numcp *  

cpcol), nrow = cpcol), dsplit = matrix(double(1),  

nsplit, 3), isplit = matrix(integer(1), nsplit, 3),  

csplit = catmat, dnode = matrix(double(1), nodes, 3 +  

numresp), inode = matrix(integer(1), nodes, 6)) 

tname <- c("<leaf>", dimnames(X)[[2]]) 

if (cpcol == 3)  

temp <- c("CP", "nsplit", "rel error") 

else temp <- c("CP", "nsplit", "rel error", "xerror", "xstd") 

dimnames(rp$cptable) <- list(temp, 1L:numcp) 

dn1 <- if (nsplit == 0L)  

character(0L) 

else tname[rp$isplit[, 1L] + 1L] 

splits <- matrix(c(rp$isplit[, 2L:3L], rp$dsplit), ncol = 5L,  

dimnames = list(dn1, c("count", "ncat", "improve", "index",  

"adj"))) 

index <- rp$inode[, 2] 

nadd <- sum(isord[rp$isplit[, 1L]]) 
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if (nadd > 0) { 

newc <- matrix(integer(1), nadd, max(cats)) 

cvar <- rp$isplit[, 1L] 

indx <- isord[cvar] 

cdir <- splits[indx, 2L] 

ccut <- floor(splits[indx, 4L]) 

splits[indx, 2L] <- cats[cvar[indx]] 

splits[indx, 4L] <- ncat + 1L:nadd 

for (i in 1L:nadd) { 

newc[i, 1L:(cats[(cvar[indx])[i]])] <- -1 * as.integer(cdir[i]) 

newc[i, 1L:ccut[i]] <- as.integer(cdir[i]) 

} 

if (ncat == 0)  

catmat <- newc 

else catmat <- rbind(rp$csplit, newc) 

ncat <- ncat + nadd 

} 

else catmat <- rp$csplit 

if (nsplit == 0) { 

frame <- data.frame(row.names = 1, var = "<leaf>", n = rp$inode[,  

5L], wt = rp$dnode[, 3L], dev = rp$dnode[, 1L], yval = rp$dnode[,  

4L], complexity = rp$dnode[, 2L], ncompete = pmax(0L,  

rp$inode[, 3L] - 1L), nsurrogate = rp$inode[, 4L]) 

} 

else { 

temp <- ifelse(index == 0, 1, index) 

svar <- ifelse(index == 0, 0, rp$isplit[temp, 1L]) 

frame <- data.frame(row.names = rp$inode[, 1L], var = factor(svar,  

0:ncol(X), tname), n = rp$inode[, 5L], wt = rp$dnode[,  

3L], dev = rp$dnode[, 1L], yval = rp$dnode[, 4L],  

complexity = rp$dnode[, 2L], ncompete = pmax(0L,  

rp$inode[, 3L] - 1L), nsurrogate = rp$inode[,  



103 
 

4L]) 

} 

if (method.int == 3L) { 

numclass <- init$numresp - 1L 

temp <- rp$dnode[, -(1L:4L), drop = FALSE] %*% 

diag(init$parms$prior *  

sum(init$counts)/pmax(1, init$counts)) 

yprob <- temp/rowSums(temp) 

yval2 <- matrix(rp$dnode[, -(1L:3L)], ncol = numclass +  

1) 

frame$yval2 <- cbind(yval2, yprob) 

} 

else if (init$numresp > 1L)  

frame$yval2 <- rp$dnode[, -(1L:3L), drop = FALSE] 

if (is.null(init$summary))  

stop("Initialization routine is missing the summary function") 

if (is.null(init$print))  

functions <- list(summary = init$summary) 

else functions <- list(summary = init$summary, print = init$print) 

if (!is.null(init$text))  

functions <- c(functions, list(text = init$text)) 

if (method == "user")  

functions <- c(functions, mlist) 

where <- rp$which 

names(where) <- row.names(m) 

if (nsplit == 0L) { 

ans <- list(frame = frame, where = where, call = call,  

terms = Terms, cptable = t(rp$cptable), method = method,  

parms = init$parms, control = controls, functions = functions) 

} 

else { 

ans <- list(frame = frame, where = where, call = call,  
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terms = Terms, cptable = t(rp$cptable), splits = splits,  

method = method, parms = init$parms, control = controls,  

functions = functions) 

} 

if (ncat > 0)  

ans$csplit <- catmat + 2L 

if (model) { 

ans$model <- m 

if (missing(y))  

y <- FALSE 

} 

if (y)  

ans$y <- Y 

if (x) { 

ans$x <- X 

ans$wt <- wt 

} 

ans$ordered <- isord 

if (!is.null(attr(m, "na.action")))  

ans$na.action <- attr(m, "na.action") 

if (!is.null(xlevels))  

attr(ans, "xlevels") <- xlevels 

if (method == "class")  

attr(ans, "ylevels") <- init$ylevels 

class(ans) <- "rpart" 

ans 

} 

<environment: namespace:rpart> 

 

1.5.3 KS (KS.TEST) 

function (x, y, ..., alternative = c("two.sided", "less", "greater"),  

exact = NULL)  
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{ 

pkolmogorov1x <- function(x, n) { 

if (x <= 0)  

return(0) 

if (x >= 1)  

return(1) 

j <- seq.int(from = 0, to = floor(n * (1 - x))) 

1 - x * sum(exp(lchoose(n, j) + (n - j) * log(1 - x -  

j/n) + (j - 1) * log(x + j/n))) 

} 

alternative <- match.arg(alternative) 

DNAME <- deparse(substitute(x)) 

x <- x[!is.na(x)] 

n <- length(x) 

if (n < 1L)  

stop("not enough 'x' data") 

PVAL <- NULL 

if (is.numeric(y)) { 

DNAME <- paste(DNAME, "and", deparse(substitute(y))) 

y <- y[!is.na(y)] 

n.x <- as.double(n) 

n.y <- length(y) 

if (n.y < 1L)  

stop("not enough 'y' data") 

if (is.null(exact))  

exact <- (n.x * n.y < 10000) 

METHOD <- "Two-sample Kolmogorov-Smirnov test" 

TIES <- FALSE 

n <- n.x * n.y/(n.x + n.y) 

w <- c(x, y) 

z <- cumsum(ifelse(order(w) <= n.x, 1/n.x, -1/n.y)) 

if (length(unique(w)) < (n.x + n.y)) { 
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warning("cannot compute correct p-values with ties") 

z <- z[c(which(diff(sort(w)) != 0), n.x + n.y)] 

TIES <- TRUE 

} 

STATISTIC <- switch(alternative, two.sided = max(abs(z)),  

greater = max(z), less = -min(z)) 

nm_alternative <- switch(alternative, two.sided = "two-sided",  

less = "the CDF of x lies below that of y", greater = "the CDF of x lies 

above that of y") 

if (exact && (alternative == "two.sided") && !TIES)  

PVAL <- 1 - .C("psmirnov2x", p = as.double(STATISTIC),  

as.integer(n.x), as.integer(n.y), PACKAGE = "stats")$p 

} 

else { 

if (is.character(y))  

y <- get(y, mode = "function") 

if (mode(y) != "function")  

stop("'y' must be numeric or a string naming a valid function") 

if (is.null(exact))  

exact <- (n < 100) 

METHOD <- "One-sample Kolmogorov-Smirnov test" 

TIES <- FALSE 

if (length(unique(x)) < n) { 

warning("cannot compute correct p-values with ties") 

TIES <- TRUE 

} 

x <- y(sort(x), ...) - (0:(n - 1))/n 

STATISTIC <- switch(alternative, two.sided = max(c(x,  

1/n - x)), greater = max(1/n - x), less = max(x)) 

if (exact && !TIES) { 

PVAL <- if (alternative == "two.sided")  

1 - .C("pkolmogorov2x", p = as.double(STATISTIC),  
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as.integer(n), PACKAGE = "stats")$p 

else 1 - pkolmogorov1x(STATISTIC, n) 

} 

nm_alternative <- switch(alternative, two.sided = "two-sided",  

less = "the CDF of x lies below the null hypothesis",  

greater = "the CDF of x lies above the null hypothesis") 

} 

names(STATISTIC) <- switch(alternative, two.sided = "D",  

greater = "D^+", less = "D^-") 

pkstwo <- function(x, tol = 1e-06) { 

if (is.numeric(x))  

x <- as.vector(x) 

else stop("argument 'x' must be numeric") 

p <- rep(0, length(x)) 

p[is.na(x)] <- NA 

IND <- which(!is.na(x) & (x > 0)) 

if (length(IND)) { 

p[IND] <- .C("pkstwo", as.integer(length(x[IND])),  

p = as.double(x[IND]), as.double(tol), PACKAGE = "stats")$p 

} 

return(p) 

} 

if (is.null(PVAL)) { 

PVAL <- ifelse(alternative == "two.sided", 1 - pkstwo(sqrt(n) *  

STATISTIC), exp(-2 * n * STATISTIC^2)) 

} 

RVAL <- list(statistic = STATISTIC, p.value = PVAL, alternative = 

nm_alternative,  

method = METHOD, data.name = DNAME) 

class(RVAL) <- "htest" 

return(RVAL) 

} 

<environment: namespace:stats> 
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1.5.4 Area Under ROC (ROC.AREA) 

function (obs, pred)  

{ 

id <- is.finite(obs) & is.finite(pred) 

obs <- obs[id] 

pred <- pred[id] 

n1 <- sum(obs) 

n <- length(obs) 

A.tilda <- (mean(rank(pred)[obs == 1]) - (n1 + 1)/2)/(n -  

        n1) 

stats <- wilcox.test(pred[obs == 1], pred[obs == 0], alternative = 

"great") 

return(list(A = A.tilda, n.total = n, n.events = n1, n.noevents = sum(obs 

==  

0), p.value = stats$p.value)) 

}
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Appendix B 
 

The JAVA Codes 

 

 

package jibck; 

 

import java.io.*; 

import java.util.Arrays; 

//import org.apache.commons.math.stat.inference.*; 

//import jsc.independentsamples.SmirnovTest.*; 

//import jsc.*; 

 

//import java.util.*; 

//import java.math.*; 

/** 

 * 

 * @author Arthur 

 */ 

public class Jibck { 

 

 //Given an array data1[1..n1], and an array data2[1..n2], this routine returns the K-S                                                                           

//statistic d, and the significance level prob for the null hypothesis that the data sets  

// are drawn from the same distribution.  

//Small values of prob show that the cumulative distribution                                                                   

//function of data1 is significantly different from that of data2.  

//The arrays data1 and data2 are modified by being sorted into ascending order.          

    public static double[] somersdetc(double data1[], double data2[]) { 

        int n1 = data1.length; 

        int n2 = data2.length; 

        int j1 = 1, j2 = 1; 

        int counter1 = 1; 
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        double ks = 0, d1, d2, dt, en1, en2, en, en3, fn1 = 0.0, fn2 = 0.0, fn3 = 0.0, t1, c1, 

somer, tau, goodman; 

        double eps2 = .002;  //percent increase in cdf worth noting. 

        double nc1, nd1, tied1; 

        double nc2, nd2, tied2; 

        double nc3, nd3, tied3; 

        double prev1; 

        /* 

        double odds5=0,odds10=0,odds20=0,odds30=0; 

        double podds5=0,podds10=0,podds20=0,podds30=0; 

        double aodds5=0,aodds10=0,aodds20=0,aodds30=0; 

        double apodds5=0,apodds10=0,apodds20=0,apodds30=0; 

        double bodds5=0,bodds10=0,bodds20=0,bodds30=0; 

        double bpodds5=0,bpodds10=0,bpodds20=0,bpodds30=0;    

         */ 

        double[] oddscut = {0.05, 0.10, 0.20, 0.30}; 

        double[][] oddsinfo = new double[oddscut.length][2]; //the odds at the percent 

        double[][] boddsinfo = new double[oddscut.length][2];//before the percent         

        double[][] aoddsinfo = new double[oddscut.length][2];//after the percent 

        double oddsme = 0.000001; //odds margin of error 

 

        //if in the end it is negative one then something didnt workout, never within m.e. 

        for (int i = 0; i < oddscut.length; i++) { 

            oddsinfo[i][0] = -1; 

            oddsinfo[i][1] = -1; 

        } 

 

        nc2 = 0; 

        nd2 = 0; 

        Arrays.sort(data1); 

        Arrays.sort(data2); 

        en1 = n1; 
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        en2 = n2; 

        en3 = n1 + n2; 

        prev1 = 0.0; 

        nc1 = 0; 

        nd1 = 0; 

        tied1 = 0; 

        while (j1 < n1 && j2 < n2) { 

            //advance data 

            d1 = data1[j1]; 

            d2 = data2[j2]; 

            if (d1 <= d2 && j1 < (n1)) {//Next step is in data1.  

                j1++; 

            } 

            if (d2 <= d1 && j2 < (n2)) {//Next step is in data2.  

                j2++; 

            } 

            //basically advance j1 and j2 with these loops to the next yhat value 

            //as many yhat values repeat due to the same x values 

 

            //if (j1>99990) {System.out.println("h1 j1=" + j1);} 

            if (j1 < n1) { 

                while ((data1[j1] == data1[j1 - 1]) && (j1 < (n1 - 1))) { 

                    //if (j1>99990) {System.out.println("h2 j1=" + j1);} 

                    j1++; 

                } 

            } 

            if (j2 < n2) { 

                while ((data2[j2] == data2[j2 - 1]) && (j2 < (n2 - 1))) { 

                    j2++; 

                } 

            } 
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            fn3 = (double) (j1 + j2) / en3; 

            for (int i = 0; i < oddscut.length; i++) { 

                if (Math.abs(fn3 - oddscut[i]) < oddsme) { 

                    oddsinfo[i][0] = (double) (n2 - j2) / (double) (n1 - j1); 

                    oddsinfo[i][1] = fn3; 

                } 

            } 

 

            //for calc KS 

            fn1 = (double) j1 / en1; 

            fn2 = (double) j2 / en2; 

            if ((dt = Math.abs(fn2 - fn1)) > ks) { 

                ks = dt; 

            } 

            //fn are cdfs fn3 is combined cdf at this point - j1 and j2 

            fn3 = (double) (j1 + j2) / en3; 

            if (fn3 > (prev1 + eps2)) {   

//if the combined cdf has increased by approx at least .2%                                                                   

                prev1 = ((double) j1 + (double) j2) / en3;  

//keep track of previous combined cdf 

                if (counter1 >= 1) { 

                    tied1 = tied1 + (j1 - nc2) * (j2 - nd2);    

//tied equals numbers within same combined cdf 

                    nd1 = nd1 + ((double) j1 - nc2) * ((double) n2 - (double) j2); 

                    nc2 = (double) j1; 

                    nd2 = (double) j2; 

                } 

                counter1 = counter1 + 1; 

            } 

        } 

 

        //the next two while lopps are for when one dataset isnt done 
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        //like either data1 or data2 is still not at the end 

        while (j1 < (n1)) { 

            fn1 = (double) j1++ / en1; 

            if ((((double) j1 + (double) j2) / en3) == 1) { 

                if (counter1 >= 1) { 

                    tied1 = tied1 + ((double) j1 - nc2) * ((double) j2 - nd2); 

                    nd1 = nd1 + ((double) j1 - nc2) * ((double) n2 - (double) j2); 

                    nc2 = (double) j1; 

                    nd2 = (double) j2; 

                    //System.out.println("h3 j1=" + j1); 

                } 

                counter1 = counter1 + 1; 

            } 

        } 

        while (j2 < (n2)) {  //If we are not done...                                                                                                         

            fn2 = (double) j2++ / en2; 

            if ((((double) j1 + (double) j2) / en3) == 1) { 

                if (counter1 >= 1) { 

                    tied1 = tied1 + ((double) j1 - nc2) * ((double) j2 - nd2); 

                    nd1 = nd1 + ((double) j1 - nc2) * ((double) n2 - (double) j2); 

                    nc2 = (double) j1; 

                    nd2 = (double) j2; 

                    //System.out.println("h3 j2=" + j2); 

                } 

                counter1 = counter1 + 1; 

            } 

        } 

        //for calc KS 

        fn1 = (double) j1 / en1; 

        fn2 = (double) j2 / en2; 

        if ((dt = Math.abs(fn2 - fn1)) > ks) { 

            ks = dt; 
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        } 

 

        fn3 = (double) (j1 + j2) / en3; 

        for (int i = 0; i < oddscut.length; i++) { 

            if (Math.abs(fn3 - oddscut[i]) < oddsme) { 

                oddsinfo[i][0] = (double) (n2 - j2) / (double) (n1 - j1); 

                oddsinfo[i][1] = fn3; 

            } 

        } 

 

        t1 = (double) n1 * (double) n2; 

        nc1 = t1 - nd1 - tied1; 

        /* 

        System.out.println("tied1= " + tied1); 

        System.out.println("nc1= " + nc1); 

        System.out.println("nd1= " + nd1); 

        System.out.println("t1= " + t1); 

        System.out.println("sum of parts= " + (tied1 + nc1 + nd1)); 

         */ 

        c1 = (nc1 + .5 * (t1 - nc1 - nd1)) / t1; 

        somer = (nc1 - nd1) / t1; 

        somer = Math.abs(somer);   

// somer can be negative or positve but gini the positive of it.  

 

        goodman = (nc1 - nd1) / (nc1 + nd1); 

        tau = (nc1 - nd1) / (.5 * (en3 * (en3 - 1))); 

        double[] someretc1 = new double[20]; 

        someretc1[0] = somer; 

        someretc1[1] = c1; 

        someretc1[2] = goodman; 

        someretc1[3] = tau; 
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        someretc1[4] = ks;  //want to calculate KS here to get better efficiency and not 

use ks func 

 

        int h = 5; 

        for (int i = 0; i < oddscut.length; i++) { 

            someretc1[h + i] = oddsinfo[i][0]; 

            h++; 

            someretc1[h + i] = oddsinfo[i][1]; 

        } 

        return someretc1; 

    } 

 

    public static double TwoSampKS(double[] data1, double[] data2) { 

        //void kstwo(float data1[], unsigned long n1, float data2[], unsigned long n2,float 

*d, float *prob) 

        double theks = 0; 

        int n1 = data1.length; 

        int n2 = data2.length; 

        Arrays.sort(data1); 

        Arrays.sort(data2); 

        int en1 = n1; 

        int en2 = n2; 

        double d = 0.0, d1 = 0, d2 = 0, fn1 = 0, fn2 = 0, dt = 0; 

        int j1 = 0, j2 = 0; 

        while (j1 < n1 && j2 < n2) { 

            d1 = data1[j1]; 

            d2 = data2[j2]; 

            if (d1 <= d2) { 

                j1++; 

                fn1 = (double) j1 / (double) en1; 

            } 

            if (d2 <= d1) { 
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                j2++; 

                fn2 = (double) j2 / (double) en2; 

            } 

            dt = Math.abs(fn2 - fn1); 

            if (dt > d) { 

                d = dt; 

            } 

        } 

//en=sqrt(en1*en2/(en1+en2)); 

//*prob=probks((en+0.12+0.11/en)*(*d)); Compute significance. 

 

        theks = d; 

        return theks; 

    } 

 

    public static void writeresults(String thedir, String fname, double thestats[][]) { 

        try { 

            PrintStream writer = new PrintStream(thedir + fname); 

            writer.print("Abs(SomersD),c-statistic,Goodman,Tau-alpha,KS-statistic,"); 

            writer.print("odds, percent, odds, percent, odds, percent, odds, percent, \n"); 

            for (int i = 0; i < thestats.length; i++) { 

                for (int j = 0; j < thestats[i].length; j++) { 

                    writer.print(thestats[i][j]); 

                    if (j < thestats[j].length - 1) { 

                        writer.print(','); 

                    } else { 

                        writer.print('\n'); 

                    } 

                } 

            } 

        } catch (IOException e) { 

        } 

    } 
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    public static double[][] readdata(String fname, int nc, int nr, int sc) { 

        //sc is column to start with 

        double[][] thedata = new double[nr][nc]; 

        BufferedReader br = null; 

 

        try { 

 

            int h, i; 

            br = new BufferedReader(new FileReader(fname)); 

            String line = null; 

            h = 0; 

            i = 0; 

            line = br.readLine(); 

            System.out.println(line); 

            while ((line = br.readLine()) != null) { 

                String[] values = line.split(","); 

                //Do necessary work with the values, here we just print them out 

                for (String str : values) { 

                    if (i > (sc - 1)) { 

                        thedata[h][(i - sc)] = Double.parseDouble(str); 

                    } 

                    i++; 

                    //System.out.println(str); 

                } 

                i = 0; 

                h++; 

                //System.out.println(); 

            } 

        } catch (FileNotFoundException ex) { 

        } catch (IOException ex) { 

        } finally { 

            try { 
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                if (br != null) { 

                    br.close(); 

                } 

            } catch (IOException ex) { 

            } 

 

        } 

 

        return thedata; 

    } 

 

    /** 

     * @param args the command line arguments 

     */ 

    public static void main(String[] args) { 

        // TODO code application logic here 

        String thedir = "C:/Documents and Settings/user/Desktop/Jib/"; 

        String fn = thedir + "90L_Apop.csv"; 

        int nrp = 1000000; 

        int nc = 11; 

        double[][] popdata1 = new double[nrp][nc]; 

        int sc = 0; 

        popdata1 = readdata(fn, nc, nrp, sc); 

        System.out.println("read data function done"); 

        for (int j = 0; j < 10; j++) { 

            for (int k = 0; k < 11; k++) { 

                System.out.print(" " + popdata1[j][k] + " "); 

            } 

            System.out.println(); 

        } 

        System.out.println("done with loop"); 

        int nr = 1000; 
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        nc = 11; 

        double[][] LRbetas = new double[nr][nc]; 

        double[][] LGbetas = new double[nr][nc]; 

        fn = thedir + "coefLR.csv"; 

        sc = 1; 

        LRbetas = readdata(fn, nc, nr, sc); 

        fn = thedir + "coefLG.csv"; 

        sc = 1; 

        LGbetas = readdata(fn, nc, nr, sc); 

        for (int j = 0; j < 10; j++) { 

            for (int k = 0; k < 11; k++) { 

                System.out.print(" " + LGbetas[j][k] + " "); 

            } 

            System.out.println(); 

        } 

        int nrp0 = 100000; 

        int nrp1 = 900000; 

        int iters = 1000; 

        //iters = 50; 

        double LRtemphat = 0; 

        double LGtemphat = 0; 

        int r0 = 0; 

        int r1 = 0; 

        double[] LRpopyhats0 = new double[nrp0]; 

        double[] LRpopyhats1 = new double[nrp1]; 

        double[] LGpopyhats0 = new double[nrp0]; 

        double[] LGpopyhats1 = new double[nrp1]; 

 

        //double[] theks = new double[iters]; 

        double[] tempstats = new double[20]; 

        //only 14  

        double[][] LGthestats = new double[iters][16]; 

        double[][] LRthestats = new double[iters][16]; 
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        //calculating yhats for logistic regression 

        for (int m0 = 0; m0 < iters; m0++) { 

            r0 = 0; 

            r1 = 0; 

            for (int j = 0; j < nrp; j++) { 

                LGtemphat = LGbetas[m0][0]; 

                LRtemphat = LRbetas[m0][0]; 

                for (int p = 1; p < nc; p++) { 

                    LGtemphat = LGtemphat + LGbetas[m0][p] * popdata1[j][p]; 

                    LRtemphat = LRtemphat + LRbetas[m0][p] * popdata1[j][p]; 

                } 

                if (j<100){System.out.println("LGtemphat="+LGtemphat);} 

                if (popdata1[j][0] < .1) { 

                    //popyhats00[r0][m0] = Math.exp((LGtemphat / (LGtemphat + 1))); 

                    LGpopyhats0[r0] = (1.0 / (1.0 + Math.exp(-1.0 * LGtemphat))); 

                    //LGpopyhats0[r0] = LGtemphat; 

                    LRpopyhats0[r0] = LRtemphat; 

                    r0++; 

                } else { 

                    //popyhats01[r1][m0] = Math.exp((LGtemphat / (LGtemphat + 1))); 

                    LGpopyhats1[r1] = (1.0 / (1.0 + Math.exp(-1.0 * LGtemphat))); 

                    //LGpopyhats1[r1] = LGtemphat; 

                    LRpopyhats1[r1] = LRtemphat; 

                    r1++; 

                } 

            } 

 

            //first logistic regression 

            tempstats = somersdetc(LGpopyhats0, LGpopyhats1); 

            //System.out.println("The gini equals = " + tempstats[0]); 

            //System.out.println("The KS equals from somers function = " + tempstats[4]); 

            //theks[m0] = TwoSampKS(LGpopyhats0, LGpopyhats1); 

            //System.out.println("The KS equals = " + theks[m0]); 
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            LGthestats[m0][0] = tempstats[0]; 

            LGthestats[m0][1] = tempstats[1]; 

            LGthestats[m0][2] = tempstats[2]; 

            LGthestats[m0][3] = tempstats[3]; 

            LGthestats[m0][4] = tempstats[4];  //not sure which func for KS to use        

            //LGthestats[m0][4] = theks[m0];  //same results  

            for (int h = 0; h < 10; h++) { 

                //System.out.println("odds info stuff = " + tempstats[5 + h]); 

                LGthestats[m0][5 + h] = tempstats[5 + h]; 

            } 
 

            //second linear regression 

            tempstats = somersdetc(LRpopyhats0, LRpopyhats1); 

            //System.out.println("The gini equals = " + tempstats[0]); 

            //System.out.println("The KS equals from somers function = " + tempstats[4]); 

            //theks[m0] = TwoSampKS(LRpopyhats0, LRpopyhats1); 

            //System.out.println("The KS equals = " + theks[m0]); 

            LRthestats[m0][0] = tempstats[0]; 

            LRthestats[m0][1] = tempstats[1]; 

            LRthestats[m0][2] = tempstats[2]; 

            LRthestats[m0][3] = tempstats[3]; 

            LRthestats[m0][4] = tempstats[4];  //not sure which func for KS to use        

            //LRthestats[m0][4] = theks[m0];   //same results 

            for (int h = 0; h < 10; h++) { 

                //System.out.println("odds info stuff = " + tempstats[5 + h]); 

                LRthestats[m0][5 + h] = tempstats[5 + h]; 

            } 

        } 

        writeresults(thedir, "LGresults.csv", LGthestats); 

        writeresults(thedir, "LRresults.csv", LRthestats); 

    } 

} 



 
 

BIOGRAPHY 
 

NAME Vesarach Aumeboonsuke 

 

ACADEMIC BACKGROUND BBA, Finance Major, Assumption 

University, Thailand 

 MSc Finance & Investment, Brunel 

University, UK 

 

PRESENT POSITION Lecturer, Finance Department, Martin 

De Tour School of Management & 

Economics, Assumption University 

 

EXPERIENCES Lecturer, Finance Department, Martin 

De Tour School of Management & 

Economics, Assumption University 

 


	EVALUATING CREDIT SCORING MODELS
	ABSTRACT
	TABLE OF CONTENTS
	CHAPTER 1 
INTRODUCTION
	CHAPTER 2 
CREDIT SCORING IN THE LITERATURES
	CHAPTER 3 
CREDIT SCORING METHODS
	CHAPTER 4 
METHODOLOGY
	CHAPTER 5 
ANALYSIS OF RESULTS
	CHAPTER 6 
CONCLUDING REMARKS
	BIBLIOGRAPHY
	APPENDICES
	BIOGRAPHY



