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ABSTRACT 
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In sampling spatial populations, one part of the cost is due to the distance 

travelled to observe all of the units in a sample.  Cluster sampling is one such 
sampling design which is often used specifically to address this issue.  Even in cluster 
sampling, the researcher may have to travel great distances from the cluster to cluster 
selected.  In an optimal setting, when sampling costs are mainly a function of distance 
travelled, researchers could sample all of the units in the path travelled during the 
sampling.  For this reason, the authors are introducing a new sampling design, called 
“path sampling,” which offers exactly the latter ability to sample all of the units in the 
researcher’s path traversed during the sampling.  Path sampling is a design in which 
the researcher selects a path or paths from start to finish, as opposed to selecting units. 
By applying the Horvitz-Thompson estimator, path sampling offers unbiased 
estimators for both mean and variance.  This dissertation covers the pros and cons of 
path sampling in comparison to simple random sampling, cluster sampling, and 
random walk sampling. 

The simulation results show that path sampling gives the smallest value of the 
expected number of units traveled for the same sample size among four sampling 
designs.  Thus, path sampling has less traveling or less cost. However, path sampling 
is less efficient than cluster sampling, simple random sampling without replacement, 
and random walk sampling in the population with low variation of y-values among 
clusters. On the other hand, path sampling is more efficient than random walk 
sampling in a population with high variation of y-values among clusters. Moreover, 
path sampling is more efficient than cluster sampling and SRSWOR in a population 
with high variation of y-values among clusters with the path starting or ending point 
on high y-values. 
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CHAPTER 1 

 

INTRODUCTION 
 

1.1  Statement of the Problem 
 

Many of the sample survey methods have been applied to natural populations 

for the purpose of estimating total numbers or population density (Seber, 1986: 267, 

1992: 129; Thompson, 2002: 6, 289). The population study area is divided into spatial 

units (plots) generally of the same size, and the numbers of animals or organisms are 

counted on a selection of the units. There are many sampling designs that can be used, 

for example, simple random sampling, cluster sampling, systematic sampling, or 

adaptive sampling in the case of rare or clustered populations. The sampler may use 

simple random sampling in a spatial population because it is not a complicated design 

and the estimators are easy to calculate. 

In simple random sampling, the sample consists of n units randomly selected 

from the N units in the spatial population. At each selection step, each unit has an 

equal chance of selection (Thompson, 2002: 11). Thus, the simple random sample 

may select units all over the study region, as shown in Figure 1.1 (a). Unfortunately, 

traveling from place to place to observe every unit selected can be costly, as the 

distance traveled can be quite long. For example, we have to visit 34 units to 

investigate a simple random sample of 10 units, as shown in Figure 1.1(b). 

 Cluster sampling is used in practice because it is usually much cheaper and 

more convenient to select clusters of units than randomly selected units in the 

population. In cluster sampling, a primary unit consists of a cluster of secondary units, 

usually in close proximity to each other. A sampling unit is a primary unit.  For the 

spatial setting, cluster primary units include spatial arrangements as square collections 

of adjacent plots or long narrow strips of adjacent units (Thompson, 2002: 129). In 

one-stage cluster sampling, a simple random sample of n primary units is taken from 
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N primary units in the population, and the elements observed are all secondary units 

within the clusters (Lohr, 1999: 134).  

 

(a) A Simple Random Sample    (b) Sampling Travel Visiting 34 Units 

        
 
Figure 1.1  A Simple Random Sample of 10 Units from a Population of 100  

         Units 
 

  The advantage of cluster sampling is that it is often less costly to sample a 

collection of units in a cluster than to sample an equal number of secondary units 

selected at random from the population (Thompson, 2002: 139). However, cluster 

samples, a simple random sample of primary units, may cover all of the study region. 

It takes a lot of time and a high cost of sampling to travel from cluster to cluster.  

It can be seen that the problem in simple random sampling and cluster 

sampling is that a sample may cover all of the region since each sampling unit has an 

equal chance of selection. Thus, traveling from place to place to sample every unit 

selected for sampling can be costly, as the distance traveled can be quite long. 

Therefore, path sampling is a new sampling design proposed in this dissertation to 

overcome this disadvantage. 

 Path sampling, as proposed in this study, is a sampling design in which p 

distinct paths are selected by simple random sampling without replacement 

(SRSWOR) from the q paths in the population, and the sample consists of all units in 

the selected paths. A path is defined as the course of sampling from the starting unit to 

the finishing unit.  
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Every unit in the sampled paths will be observed, as shown in Figure 1.2. This 

sampling scheme eliminates or at least reduces the distance travelled over units that 

are not to be sampled. Cost is considered as a function of distance traveled by 

counting units traveled to observe all units in the sample. In other words, we consider 

the number of units traveled. For example, to investigate a path sample of 26 units in 

Figure 1.2 (a), we visit only 26 units, as shown in Figure 1.2 (b). 

Path sampling utilizes all of the observations of the units traveled. Thus, when 

the main cost of sampling a unit is the distance traveled, path sampling may be a very 

cost-effective design. 

 

(a) A Path Sample    (b) Sampling Travel 

                                                           
 

Figure 1.2  A Path Sample With Only One Path Selected 

 

1.2  Objectives of the Study 
 

This dissertation focuses on finding a new sampling design which is cost 

effective and convenient under certain circumstances. This new sampling is named 

path sampling. The objectives of the study are as follows: 

1) To propose a new cost-effective and convenient sampling design, 

named path sampling, for the spatial setting population 

2) To find an estimator of the population mean and its variance for 

path sampling 



4 

  

3) To investigate the cost and relative efficiencies of path sampling as 

opposed to other sampling designs  

 

1.3  Scope of the Study 
 

 The scope of the study is as follows. This study considers sampling in a study 

area that can be divided into spatial units of equal size. The new sampling design, 

path sampling, will be studied in the spatial setting. A path sampling scheme is 

proposed. The parameter considered in this study is the population mean. An 

estimator of the mean for the path sampling is proposed, and the properties of the 

proposed estimator, such as unbiasedness and variance, are investigated. Simulation is 

used to investigate the relative efficiencies of path sampling in relation to other 

sampling design–simple random sampling, cluster sampling and random walks 

sampling. Cost is considered as a function of distance traveled or the number of units 

traveled to observe all of the units in a sample. The number of units travelled of path 

sampling, simple random sampling, cluster sampling and random walk sampling are 

compared through simulation. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

CHAPTER 2 

 

LITERATURE REVIEW 

 
The main purpose of this dissertation is to propose a new cost-effective 

sampling design that can be applied to a spatial setting population. The previous 

sampling designs should be reviewed first however. 

Sampling consists of selecting some part of a population to observe so that one 

may estimate something about the whole population. The objective in sampling is to 

estimate some characteristics of the population, such as the mean or the total.  

Sampling design is the procedure by which a sample of units is selected from 

the population. The design is determined by assigning to each possible sample s the 

probability P(s) (Thompson, 2002: 2). 

 

2.1  Review of Methods of Sampling and Estimation 

 

The theory of independent random sampling was developed by Bernoulli more 

than 200 years ago. Poisson considered the theory of stratification. Later, Lexis 

provided the theory of cluster sampling. In the early 1900’s, the theory of sampling a 

finite population with equal probabilities and without replacement was developed. 

The estimation of the mean for simple random sampling was proposed by Splawa-

Neyman (1925: 472-479).  

Neyman (1934: 558-625) introduced the concept of the optimum allocation of 

sampling units to different strata. Stratified sampling and purposive sampling were 

compared. In 1938, Neyman proposed double sampling, which provides a better 

estimator by using an auxiliary variable. 

Hansen and Hurwitz’s (1943: 333-362) paper was the first to introduce 

unequal probabilities to select the sampling unit in order to increase the precision of 

the estimators. They considered the sampling scheme under the population made up 
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of strata. Each stratum contained primary sampling units consisting of secondary 

units. They proposed the selection of only one primary unit per stratum with 

probabilities proportionate to some measure of their size. The secondary units were 

selected from the selected primary unit, with equal probabilities without replacement. 

Note that this method was confined to samples of only one primary unit per stratum.  

Midzuno (1950: 149-156) generalized the Hansen and Hurwitz approach to 

sampling a combination of n units with a probability proportional to some measure of 

the size of the combination. Madow (1949: 333-354) made a contribution to the 

theory of the systematic selection of several clusters of sampling units with the idea of 

probability proportional to a measure of size. 

Horvitz and Thompson (1952: 663-685) mentioned the limitations of the 

Hansen and Hurwitz scheme, that an unbiased estimate of the sampling variance of 

the estimator cannot be obtained from the sample elements. Horvitz and Thompson 

provided a general method for dealing with sampling without replacement from a 

finite population when unequal selection probabilities are used. They proposed an 

unbiased estimator of the total of a finite population, now called the Horvitz-

Thompson estimator, and also estimated the variance of the estimator. The general 

nature of this approach to sampling a finite population without replacement was 

illustrated by considering Horvitz-Thompson’s estimator and its variance for simple 

random, systematic, and stratified random sampling procedure.  

The formula of the Horvitz-Thompson (1952) estimator is shown in the 

following. For any design, with or without replacement (Thompson 2002: 53), giving 

probability i  that unit i is included in the sample, for i = 1, 2, …, N,  an unbiased 

estimator of the population total is 

    








1
ˆ

k i

i
HT

y
 ,    (2.1) 

 

where   is the number of distinct units in the sample. This estimator does not depend 

on the number of times a unit may be selected. Each distinct unit of the sample is 

utilized only once. 
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Note that if  



N

i
iii yy

1
/ , then HT̂  will have zero variance and the sampling will 

be optimum. 

The variance of the estimator is  

 

                      
 














 








 


N

i ii
ii

ii

iiii
N

i
k

i

i
HT yyyv

11

21)ˆ(




 .  (2.2) 

 

This formula is applied only when every element has a positive inclusion probability. 

 

Let ii   be the probability that both units i and unit i  are included in the sample. An 

unbiased estimator of this variance is  

 

 
 





























11

2
2

1111)ˆ(ˆ
i ii

ii
iiiii

i
ii

HT yyyv .  (2.3) 

 

It is unbiased if all of the joint inclusion probabilities are greater than zero. This 

variance estimate may be negative in some designs. Rao and Singh (1973: 95-104) 

studied 34 natural populations, selecting samples of size n=2. They found that 

)ˆ(ˆ HTv  frequently resulted in negative estimates. 

 From the fact that if 



N

i
iii yy

1
/ , then HT̂  will have zero variance and the 

sampling will be optimum, as noted by Horvitz and Thompson (1952). Thus, if the 

inclusion probabilities i  can be chosen approximately proportional to the value iy , 

the variance of the Horvitz-Thompson estimator would be low. Since iy ’s are 

unknown, if related auxiliary information on a characteristic ix  is available, then the 

suitable choice for a design would be one for which i  is proportionate to ix . 
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Sen (1953: 119-127); Yates and Grundy (1953: 253-261) have suggested, 

independently, that the Horvitz and Thompson variance estimator can be of negative 

values. Thus, they proposed an alternative variance estimator, 

 


  






















 








1

2

2
1)ˆ(ˆ

i ii i

i

i

i

ii

iiii
HTYGS

yy
v  ,  (2.4)

  

which may be negative. )ˆ(ˆ HTv  and )ˆ(ˆ HTYGSv   give different value, and it is believed 

that )ˆ(ˆ HTYGv  is less often negative than )ˆ(ˆ HTv  . 

Since the disadvantage of )ˆ(ˆ HTv   and )ˆ(ˆ HTYGSv   is that they can take a 

negative value and the inclusion probabilities are not easy to compute, Raj (1956: 

269-284) proposed unbiased estimators of the population total whose estimated 

variance is always positive and utilizes the conditional probability of selection, given 

the units selected previously, instead of inclusion probabilities. The value of the 

estimator depends on the order in which the units in the sample are selected. Thus, 

Raj’s estimator is an ordered estimator, that is, an estimator which takes into account 

the order in which the units are drawn. It is not claimed that this estimator is 

necessarily more efficient than the Horvitz-Thompson estimator, although this has 

been found to be the case in several examples. He also showed that the estimator of 

variance given by Yates and Grundy (1953) is positive in at least two important 

situations:  

1)  When the first unit is selected with probabilities proportional to 

some measure of size and the remaining units are selected with equal probability 

                 2)  When the first unit is selected with probabilities proportional to 

some measure of size and the second unit with probabilities proportional to the sizes 

of the remaining units, for the sample of size 2 

Murthy (1957: 379-390) improved this estimator by removing the dependence on 

order, but the improved estimator is not easy to compute. Murthy (1957) showed that 

corresponding to any biased or unbiased ordered, there exists an unordered estimator, 

which is more efficient, in sampling with varying probabilities without replacement. 
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The technique of improving the ordered estimators by unordered ones is also 

explained in this paper. This method is applied to the set of estimators given by Raj’s 

estimators, which provide unbiased estimates of the population total. 

Brewer and Donadio (2003: 189-196) have shown that, under conditions of 

high entropy, the variance of Horvitz-Thompson estimator depends almost entirely on 

inclusion probabilities.  

Sampling of a rare population can be tedious and expensive; many sampling 

designs have been proposed for this type of population. Such sampling designs 

include inverse sampling, capture-recapture sampling, line-intercept sampling, and the 

link-tracing design: network sampling, snowball sampling, random walk sampling, 

and adaptive sampling. Briefly the details of these sampling designs are as follows. 

1) Inverse sampling 

Haldane (1945: 222-225) introduced a sampling technique to handle 

sampling in rare populations. In sampling for a rare attribute, a sample of fixed size 

may result in having no individuals with the attribute presented in the sample. An 

inverse sample is selected unit by unit using simple random sampling until a specified 

number of m units possessing the rare attribute is selected. Haldane considered the 

infinite population case; the sample size is a random variable in this case and its 

probability distribution were derived. An unbiased estimator of the proportion and the 

variance of the estimate were presented. 

2)  Capture-recapture sampling 

Capture-recapture sampling was developed by Seber (1973). In 

capture-recapture sampling, in order to estimate the total number of individuals in a 

population, an initial sample is obtained and the individuals in that sample are 

marked. A second sample is obtained independently and the marked individuals are 

counted. If the second sample is representative of the population as a whole, the 

sample proportion of marked individuals should be about the same as the population 

proportion of the marked individuals. From this relationship, the total number of 

individuals in the population can be estimated (Thompson, 2002: 233; Lindberg and 

Rexstad, 2002: 251-262). 
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3) Line-Intercept sampling 

Line-intercept sampling (Lucas and Seber, 1977: 618-622) is 

appropriate for sampling in a rare population for the purpose of estimating the 

population total. It is a sampling design in which n transect lines are selected at 

random by selecting n positions along a baseline of length b that traverses the width 

of the study region and a transect is run across the study area perpendicular to the 

baseline at each of the selected points. Whenever an object of the population is 

intersected by one or more of the sample lines, a variable of interest associated with 

that object is recorded. 

4) Link-tracing design 

A link-tracing design is a design in which links or connections between 

units are used to obtain the sample. The link-tracing design explained here includes 

network sampling, snowball sampling, random walk sampling, and adaptive sampling 

(Thompson, 2002: 182; Felix-Medina and Monjardin, 2009:491). 

1)  Network sampling  

Network sampling, or multiplicity sampling, can be a useful 

technique used to increase the efficiencies of sample surveys in a rare population. The 

network-based design was first introduced for the study of social networks by 

Coleman (1958: 28-36). In network sampling, a simple random sample or stratified 

random sample of units (selection units) is selected, and all of the observation units 

linked to any of the units selected are included or observed (Nafiu and Adewara, 

2007: 5-9). A network is defined to be a set of observation units with a given linkage 

pattern. Birnbaum and Sirken (1965) proposed unbiased estimators for network 

sampling. 

2)  Snowball sampling 

Snowball sampling was proposed by Goodman (1961: 148-

170). Here, individuals in the random sample are asked to identify a fix number of 

other individuals, who in turn are asked to identify other individuals for a fixed 

number of stages for the purpose of estimating the number of mutual relationships in 

the population. 
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3)  Random walk sampling 

Random walk design is a sampling design for obtaining a 

probability sample of a large social network (Klovdahl et al., 1977: 169). The initial 

unit is selected by probability sampling. If unit i is selected at wave k, then one of the 

units linked from i is selected at random until n waves are reached. The random walk 

sample of size n is then obtained.  

Assume that the initial unit is selected at random from the 

population of size N. Let ijd  take value 1 if unit i links to unit j; otherwise, it is 0. Let 

.id  be the number of links out from unit i, where .
1

N

i ij
j

d d


 . Thus, the probability 

that the initial unit is selected is 1
1q
N

 . Suppose unit i is the current unit in wave k-

1; the probability that unit j is selected in the next wave k is 
.

ij

ij
k

i

d
q

d
 . The selection 

probability for the ordered sample s of size n is 1 2
( )

ij

n

kk
P s q q


  . An estimator of the 

mean is the sample mean 

1
1

n

i
i

y
y

n



     (2.5) 

using data from a random walk sample. This is not an unbiased estimator (Thompson, 

2006b: 6). This is not a good estimator. However, one can obtain an approximately 

unbiased estimator based on the Hansen-Hurwitz estimator 

1

1

ˆ
1

n
i

i i
rws n

i i

y
du

d









                         (2.6) 

 
(Salganik and Heckathorn, 2004: 217-218). This is the ratio estimator of two Hanson-

Hurwitz estimators, and it is an asymptotically unbiased estimator with a bias on the 

order of n-1, where n is the sample size. Generally, this bias is considered negligible 

in samples of moderate size. 
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   4)  Adaptive sampling 

Adaptive sampling design is a sampling design in which the 

procedure for selecting the units to be included in the sample may depend on values 

of the variable of interest observed during the survey. An adaptive procedure was 

proposed by Thompson and Ramsey in 1983. Thompson (1990: 1050-1059) proposed 

adaptive cluster sampling for rare, clustered populations. 

Thompson (2006a: 1-24) proposed a new adaptive sampling 

design, called the adaptive web sampling (AWS) design, for sampling in network and 

spatial settings. In the designs, selections are made sequentially with a mixture 

distribution based on an active set that changes as the sampling progresses, using 

network or spatial relationships as well as sample values. This design has certain 

advantages compared with the previously-existing adaptive and link-tracing designs, 

including control over sample sizes. 

Snowball type designs, for example, typically occur in waves, 

with a whole set of links selected from the previous wave of units or from all the units 

selected to that point. AWS designs have more flexibility than random walk designs 

by not being confined to only one unit at a time in the active set. They are more 

flexible than ordinary network, snowball, and adaptive cluster sampling designs by 

not requiring every link to be followed from a particular wave; nor do connected 

components intersected by the sample need to be sampled completely. This flexibility 

can be used to seek a balance between going deep into the population, following links 

for many waves, or going wide, with only one or a few waves (Thompson, 2006a: 1-

24). 

 

2.2  The Horvitz-Thompson Estimator and Its Application 

 

The Horvitz-Thompson (1952) theorem provides a general theory and 

methodology for design-based inference from probability samples. The theorem 

prescribes an estimator to use with any probability sample, and its application to a 

variety of designs is a powerful heuristic in teaching the similarities and differences 

among these designs (Overton and Stehman, 1995: 261-268).  
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Godambe and Joshi (1965: 1707-1722) gave a class of estimators to have a 

uniformly smaller mean square error than that of the Horvitz-Thompson estimator in 

the case of (i) unbiasedness and (ii) when fixed sample size requirements are relaxed.  

Deshpande (1985: 290-291) showed an estimator based on a non-fixed sample 

size design which had a smaller mean square error than that of the Horvitz-Thompson 

estimator. 

Taga (1993: 163-173) generalized the Horvitz-Thompson estimator by 

redefining inclusion probabilities so that the generalized Horvitz-Thompson estimator 

and its variance formula could be represented in the same form in both cases, with 

replacement sampling and without replacement sampling. Then, he showed, in the 

case of a fixed sample size n design, that a given strategy with replacement sampling 

could be improved over a strategy without replacement sampling under suitable 

conditions. 

Godambe (1955: 269-278) established that for any sampling design there does 

not exist a uniformly minimum variance unbiased estimator of the population total in 

the class of all linear unbiased estimators. He used the superpopulation concept 

introduced by Cochran (1946: 164-177) and established that under the class of 

distribution satisfying g
iiiiii XXYEaXXYE 2)|(,)|(   and 0),|,( jiji XXYYC , an 

optimum strategy (with g =2) for which 

 

 

 

 

 

 

This result opened up the construction of PS  sampling designs, which 

insisted on non-negative variance estimation. 

Hanurav (1962: 429-436) obtained a class of optimal sampling designs best 

suited for the use of the Horvitz-Thompson estimator and termed them as PS  ( i ’s 

Proportional to Size) sampling designs; these estimate the population total when 

(i) the inclusion probability of each unit is proportional    

            to the value of the auxiliary information taken on that unit, 

(ii)       every sample has n distinct units, and 

(iii) the estimator used is the corresponding Horvitz-Thompson 

estimator exists which has a minimum expected variance. 
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auxiliary information is available for all of the units. Since there does not exist a 

design in which the variance is uniformly minimum, optimal designs are obtained by 

minimizing the expected variance under a realistic superpopulation set-up. He also 

showed that when g =2, the Horvitz-Thompson strategy is better than the symmetrised 

Des Raj strategy. 

Vijayan (1966: 87-92) proved that in the usual superpopulation model, the 

symmetrised Des Raj strategy is superior to the Horvitz-Thompson strategy when g = 

1 and inferior when g = 2, except when all ip 's are equal, in which case the two 

strategies coincide. Note that 
X
X

p i
i  . 

Other  ps designs are proposed in much of the literature, for example, by 

Brewer (1963). The Horvitz-Thompson estimator is used in these  PS designs. 

 

2.3  Sampling Design Using Horvitz-Thompson Estimator 

 

The Horvitz-Thompson estimator is used in the following sampling designs. 

 

2.3.1  Simple Latin Square Sampling  k Designs 

Borkowski (2003: 215-237) proposed simple Latin square sampling  k 

designs, which is a new class of probability sampling designs that ensure that the 

sample is well-distributed over the study region when spatial correlation is present. 

This design improves the estimation of population abundance. Assume that the study 

region is partitioned into quadrats which represent the sampling units. A simple Latin 

square sample +k is composed of a simple Latin square sample (Munholland and 

Borkowski, 1996) and additional units selected in a systematic fashion. The inclusion 

probabilities are determined. The Horvitz-Thompson estimator is used in this design. 

 

2.3.2  Adaptive Cluster Sampling 

To estimate the population total, the population study area is divided into 

spatial units (plots) that are generally of the same size (Thompson and Seber, 1996: 

8). Adaptive cluster sampling was motivated by the problem of sampling a rare, 
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clustered population. With adaptive cluster sampling, an initial sample of units is 

selected and, whenever the value of the variable of interest satisfies the condition, 

neighboring units are added to the sample. 

 The usual designed estimators for adaptive cluster sampling with an initial 

sample taken by with or without replacement are of a Hansen-Hurvitz and Horvitz-

Thompson type (Thompson, 1990: 1050-1059).  Dryver and Thompson (2005: 157-

166) proposed an improved unbiased estimator in adaptive cluster sampling, which is 

derived by taking the expected value of the usual estimator conditional on a sufficient 

statistic which is not minimally sufficient. Moreover, Dryver and Chao (2006: 607-

620) proposed new ratio estimators under adaptive cluster sampling. 

 Moreover, the estimator for systematic and strip adaptive cluster sampling and 

stratified adaptive cluster sampling is also of a Hansen-Hurvitz and Horvitz-

Thompson type (Thompson, 1991a: 1103-1115; 1991b: 389-397). 

 

2.3.3  Inverse Sampling 

 Inverse sampling design is generally considered to be an appropriate technique 

when the population is divided into two subpopulations, one of which contains only a 

few units.  It is considered to be an efficient strategy to estimate the population total 

when only a few units represent the characteristic of interest. Mohammadi and Salehi 

(2011: 1-14) derived the Horvitz-Thompson estimator for the population mean under 

inverse sampling designs, where subpopulation sizes are known. The formula of 

inclusion probabilities and joint inclusion probabilities are obtained. 

 

2.3.4  Network Sampling 

In network sampling, a simple random sample or stratified random sample of 

units (selection units) is selected, and all observation units linked to any of the units 

selected are included or observed. A network is defined to be a set of observation 

units with a given linkage pattern. The inclusion probability for each network, which 

is in fact the inclusion probability for any of the observational units within such a 

network, can be obtained. The Horvitz-Thompson estimator is applied to estimate the 

population total. 
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2.3.5  Line-Intercept Sampling 

 Line-intercept sampling (Lucas and Seber, 1977: 618-622) is appropriate for 

sampling in a rare population for the purpose of estimating the population total. The 

inclusion probabilities and joint inclusion probabilities can be obtained by utilizing 

the width of the shadow cast by an object on the baseline. The Hansen-Hurwitz 

estimator and Horvitz-Thompson estimator are used in this sampling design. 

 It can be seen that the Horvitz-Thompson estimator can be applied in a 

sampling design in which inclusion probabilities and joint inclusion probabilities can 

be obtained. 

 

2.4  Sampling in Spatial Population 

 

2.4.1  The Spatial Population 

A spatial setting can be depicted as a geographical area partitioned into single 

units. For example, in the simulated spatial population presented in Figure 2.1, each 

unit is represented by a square, and the yi variables take on the count of the number of 

point-objects in the square (Vincent, 2008: 4-5). 

 

 

           (a) Population                     (b) Population y-values 

            
 

Figure 2.1  A Simulated Spatial Population 
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Sampling in a spatial population, and there are many designs that can be used, 

for example, simple random sampling, stratified sampling, cluster sampling, and 

systematic sampling or adaptive sampling in case of rare or clustered population. 

 

2.4.2  Simple Random Sampling in a Spatial Population 

Simple random sampling is the most basic form of probability sampling and 

provides the theoretical basis for the more complicated forms (Lohr, 1999: 30).  

Simple random sampling is a sampling design in which n units are randomly 

selected from the N units in the population. At each selection step, each unit has an 

equal chance of selection (Thompson, 2002: 11). 

There are two ways for taking a simple random sampling: with replacement, in 

which the same unit may be included more than once in the sample, and without 

replacement, in which all units in the sample are distinct (Lohr, 1999: 30).  

For a given sample of size n, simple random sampling with replacement, 

SRSWR, is inherently less efficient than simple random sampling without 

replacement-SRSWOR, (Thompson, 2002: 19). In addition, in a finite population 

sampling, sampling the same unit twice provides no additional information. We 

usually prefer to sample without replacement, so that the sample contains no 

duplicates (Lohr, 1999: 30). Hence, now we consider only SRSWOR. 

  Simple random sampling without replacement is a sampling design in which n 

distinct units are selected from the N units in the population in such a way that every 

possible combination of n units is equally likely to be the sample selected. The sample 

may be obtained through n selections in which at each step every unit of the 

population not already selected has an equal chance of selection. Equivalently, one 

may make a sequence of independent selections from the whole population, each unit 

having equal probability of selection at each step, discarding repeat selections and 

counting until n distinct units are obtained. 

A simple random sample of n = 10 units from a population of N = 100 units 

is depicted in Figure 2.2. Another simple random sample is shown in Figure 2.3. Each 

such combination of 10 units has an equal probability of being the sample selected. 

With simple random sampling, the probability that the thi unit of the population is 
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included in the sample is Nni / , so that the inclusion probability is the same for 

each unit. Additionally, each possible sample of n units has the same probability. That 

is, the probability of selecting a sample s is 











n
N

sP 1)( . The unbiased estimator of 

the population mean is the sample mean y , which is the average of the y-values in the 

sample of size n. That is,  





n

i
iy

n
y

1

1      (2.7) 

 

The variance of the estimator y is 

nN
nyv

2
1)( 







  ,    (2.8) 

 

where 
2

1

2 )(
1

1 






N

i
iy

N
 is the population variance.  An unbiased estimator of 

this variance is 

n
s

N
nyv

2
1)(ˆ 






  ,    (2.9) 

where 
2

1

2 )(
1

1 






n

i
i yy

n
s is the sample variance, which is an unbiased estimator of  

2 .  

Notice that the simple random samples in Figure 2.2 and 2.3 cover all of the 

study region. To observe all sample units, the sampler must travel from unit to unit 

until every unit is observed. Unfortunately, it may be costly due to sampling travel if 

the population is quite a large region. Thus, this paper proposes a new sampling 

design, path sampling, to overcome this drawback.  
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Figure 2.2  A Simple Random Sample of 10 Units from a Population of 100 Units 
 
 

                    
                    
                    
                    
                    
                    
                    
                    
                    
                    

 
 
Figure 2.3  Another Simple Random Sample of 10 Units. 
 
 

2.4.3  Stratified Sampling in a Spatial Population 

In stratified sampling, the population is partitioned into regions or strata, and a 

sample is selected by some design within each stratum. Because the selections in 

different strata are made independently, the variance of estimators for individual strata 

can be added together to obtain variances of estimators for the whole population. 

Since only the within-stratum variances enter into the variances of the estimator, the 

principle of stratification is to partition the population in such a way that units within 

a stratum are as similar as possible. Then, even though one stratum may differ 

markedly from another, a stratified sample with the desired number of units from each 

stratum in the population will tend to be “representative” of the population as a whole. 
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 A geographical region may be stratified into similar areas by means of some 

known variable, such as habitat type, elevation, or soil type. Even if a large 

geographic study area appears to be homogeneous, stratification into blocks can help 

ensure that the sample is spread out over the entire study area. Human populations 

may be stratified on the basis of geographic region, city size, sex, or socioeconomic 

factors (Thompson, 2002: 117-118).  

 In the following, it is assumed that a sample is selected by some probability 

design from each of the strata in the population, with selections in different strata 

independent of each other.  

 The design is called stratified random sampling if the design within each 

stratum is simple random sampling. Figure 2.4 shows a stratified random sample from 

a population of N = 400 units. The size of the L = 4 strata are 1N = 200, 2N = 100, 

3N = 4N = 50. Within each stratum, a random sample without replacement has been 

selected independently. The total sample size of 40 has been allocated proportional to 

stratum size, so that 1n = 20, 2n = 10, and 3n = 4n = 5. 

 

 
Figure 2.4  Stratified Random Sample in a Spatial Population 
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2.4.4  Cluster and Systematic Sampling in a Spatial Population 

 Although systematic sampling and cluster sampling seem on the surface to be 

opposites, the two designs share the same structure. The population is partitioned into 

a primary unit, each primary unit being composed of secondary units. Whenever a 

primary unit is included in the sample, the y-values of every secondary unit within it 

are observed (Thompson, 2002: 129-132). 

 In systematic sampling, a single primary unit consists of secondary units 

spaced in a systematic fashion throughout the population. In cluster sampling, a 

primary unit consists of a cluster of secondary units, usually in close proximity to 

each other.  In the spatial setting, a systematic sample primary unit may be composed 

of a collection of plots in a grid pattern over the study area. Cluster primary units 

include such spatial arrangements as square collections of adjacent plots or long, 

narrow strips of adjacent units.  A cluster sample consisting of a simple random 

sample of 40 primary units, each consisting of eight secondary units, is shown in 

Figure 2.5. A systematic sample with two randomly selected units is shown in Figure 

2.6. The systematic sample consists of two primary units, each with 16 secondary 

units.  

 The key point in any of the systematic or clustered arrangements is that 

whenever any secondary unit of a primary unit is included in the sample, all of the 

secondary units of that primary unit are included. Even though the actual 

measurements may be made on secondary units, it is the primary units that are 

selected.  

 In systematic sampling, it is not uncommon to have a sample size of 1; that is, 

a single primary unit (Thompson, 2002: 129). 
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Figure 2.5  Cluster Sample 

 

 
 

Figure 2.6  A Systematic Sample with Two Starting Points 
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Let pN  be the number of primary units in the population,  pn  be the number 

of primary units in the sample, and iM  be the number of secondary unit in the thi  

primary unit. The total number of secondary units in the population is 



N

i
iMM

1
. 

Let ijy  denote the value of the variable of interest of the  thj  secondary unit in the thi  

primary unit. The total of the y-values in the thi  primary unit is denoted by
1

iM

i ij
j

y y


 . 

The population total is   
1 1 1

iMN N

ij i
i j i

y y
  

   . The population mean per primary unit 

is 1
pN

  . The population mean per secondary unit is
M
  .  

 

The unbiased estimator of the mean per secondary unit is (Thompson, 2002: 132)

   

ˆ p
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N y
M

  ,               (2.10) 
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p

y
y

n



 is the sample mean of the primary unit totals.  The variance of  ˆcls  

is  
2

2ˆ( ) ( ) u
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p
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 The advantage of cluster sampling is that it is often less costly to sample a 

collection of units in a cluster than to sample an equal number of secondary units 

selected at random from the population.  

 

 

 



 

CHAPTER 3 

 

PATH SAMPLING DESIGN AND ESTIMATION 
 

 This chapter details the definition of all possible paths in the spatial 

population, the path sampling scheme, and estimation. 

Suppose the researcher’s goal is to estimate the population mean of a study 

variable. Initially, it will be assumed that the study region can be partitioned into an 

cr  (r rows and c columns) grid of rc quadrats or secondary units. The population 

consists of rc spatial units. Each population unit is labeled with 2 coordinates, say (i, 

j), which are the row and column of the unit, respectively, for i = 1, 2, 3,…, r and j = 

1, 2, 3, …, c. Associated with each unit (i, j) , the value of the population variable of 

interest is denoted as 
),( ji

y .  The parameter of interest in this paper is the population 

mean of y,  

 

 
  ),(

),(
1 1

),(
11

jiall
ji

r

i

c

j
ji y

rc
y

rc
 .    (3.1) 

 

Path sampling design is a sampling design in which p distinct paths are 

selected by simple random sampling without replacement from q possible paths in the 

population, and the sample consists of all units in the selected paths. Thus, a path(s) is 

chosen instead of units. In this study, path sampling is used for the spatial population.   

 

3.1  All Possible Paths in the Spatial Population 
 

 A path is basically the path or route taken from start to finish. Let q be the 

number of all possible paths. Let kP  denote the path k for k = 1, 2, 3, …, q. A path 

will be defined to start from row 1 and column j*; that is, a unit labeled (1, j*) is a 

starting unit, and ends at a unit (1, j*+1). If a starting unit is inside a region, a 
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researcher has to travel from the edge of a region to such a starting unit, which is time 

consuming and of more distance without observing the units in the sample. We start 

sampling at an edge, at unit (1, j*), of a region because it is more convenient and less 

expensive than starting inside or in the middle of a region. The path k taken will be 

from such a starting unit and then goes to a particular row, say row k, to the end of 

that row on the left and then goes along row k+1 and comes back to the starting unit. 

That is, the path k taken will be from (1, j*) to (2, j*) then to (k, j*)  to (k, j*-1)  to (k, 

j*-2)  to (k, 1)  to (k+1, 1) to (k+1, 2) to (k+1, c)   to (k, c)  to  (k, c-1) to (k, c-2)  to (k, 

j*+1) to (k,-1 j*+1) to  (k,-2 j*+1) and finally to (1, j*+1).  Thus, for a spatial 

population of r rows, there are q = r-1 possible paths. In general, a path k in the 

spatial setting population of r rows and c columns can be written as 

 

1 2 3 1 2 1 1 1

1 2 1 1 2 1 1 1
2 1 1, 1

* * * * * *
k

* *

*

P (( , j ), ( , j ), ( , j ),...,(k, j ), (k, j ), (k, j ),..., (k, ) ,(k , ),

(k , ),...,(k ,c),(k,c), (k,c ), (k,c ), ..., (k, j ), (k , j ),
(k , j ), ..., (  j* ))

   

      

  

 

for k = 1, 2, 3,…, q = r-1. 

 

 The number of units belonging to path kP is 2c + 2(k-1). All possible paths are 

shown in Figure 3.1. Notice that the numbers of units in each path are not the same. 

We can see that the paths overlap in column j* and j*+1, which are in the going-out 

and coming-back column, respectively. Also, the paths next to each other overlap in 

the row between them. Thus, it can be said that path k-1 and path k overlap in row k 

for k = 2, 3,…, q = r-1. It is assumed that the units are sampled in a logical manner 

such that all units will only be observed once. Finally, the researcher can define the 

rows and columns arbitrarily; thus, path sampling is not limited in its starting and 

ending position 

 In addition, there are four different edges in the rectangular region, so there 

may be four different starting points to be chosen. However, it can be rotated to set 

the starting unit at a starting unit (1, j*). 
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Figure 3.1  All Possible Paths with a Starting Unit (1, j*) and Each Unit Labeled with 

2 Coordinates 

 

Example: Define all possible paths when the starting unit (1, j*) is (1, 1) 

In this example, a path will be defined as starting from row 1 and column 1, 

that is the unit labeled (1,1). That is j* = 1. A row will be randomly selected from all 

rows, say row k. Then the path taken will be from (1, 1) to (2, 1) then to (k+1, 1) to 

(k+1, 2) to (k+1, c)  to (k, c)  to (k, c-1) to (k, 2) to (k-1, 2)   to (2,2) and to (2, 1). 

From kP  on page 25, path k in the spatial population of r rows and c columns with 

starting unit (1, 1) or j* = 1 can be written as 

 

((1,1), (2,1), (3,1),..., ( 1,1), ( 1,2), ( 1,3),..., ( 1, ), ( , ), ( , 1),
( , 2), ..., ( ,2), ( 1,2), ( 2, 2), ..., (1,2))

kP k k k k c k c k c
k c k k k

     

  
 

for k = 1, 2, 3,…, q = r-1.  

 

 The number of units belonging to kP  is 2c + 2(k-1). All possible paths are 

shown in Figure 3.2. There are q = r-1 possible paths. We can see that the paths 

Path1 

Path2 

Path r-1 

Path3 

Path4 
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overlap in the first and second column. Also, the paths next to each other overlap in 

the row between them.  

 

 
 

Figure 3.2  All Possible Paths with Starting Unit (1,1) and Each Unit Labeled with 2 

Coordinates 

 

To illustrate paths, the spatial setting population of 8 rows and 4 columns is 

considered, as shown in Figure 3.3. So, we have r = 8 and c = 4. Hence, there are q = 

r-1 = 7 possible paths, which have the same starting and ending unit. Notice that the 

seven paths overlap in the first and second columns. Path 1 and path 2 overlap in row 

2; path 2 and path 3 overlap in row 3; path 3 and path 4 overlap in row 4 and so on.  

 The paths and labeled units belonging to them are shown in Table 3.1. Notice 

that the numbers of units in the seven paths are different. Now we consider the sample 

paths of size 2. Suppose that path 3 and path 4 are selected in the sample. They 

overlap in column 1 and 2 and in row 4. Thus, the overlap units, which are (1, 1), (1, 

Path1 

Path2 

Path4 

Path5 

Path r-1 

Path3 
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2), (2, 1), (2, 2), (3, 1), and (3, 2), are repeat observations. It is assumed that the repeat 

observation has the same value each time observed.  

 

 
 

Figure 3.3  The Population Units Labeled with 2 Coordinates and All Possible Paths 

in a Population of 8 Rows and 4 Columns 
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Table 3.1  All Possible Paths and Their Units Labeled With Starting Unit (1,1) 

 
All possible paths in the population 

1P  2P  3P  4P  5P  6P  7P  

(1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) 

(2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) 

(2,2) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) 

(2,3) (3,2) (4,1) (4,1) (4,1) (4,1) (4,1) 

(2,4) (3,3) (4,2) (5,1) (5,1) (5,1) (5,1) 

(1,4) (3,4) (4,3) (5,2) (6,1) (6,1) (6,1) 

(1,3) (2,4) (4,4) (5,3) (6,2) (7,1) (7,1) 

(1,2) (2,3) (3,4) (5,4) (6,3) (7,2) (8,1) 

 (2,2) (3,3) (4,4) (6,4) (7,3) (8,2) 
 (1,2) (3,2) (4,3) (5,4) (7,4) (8,3) 
  (2,2) (4,2) (5,3) (6,4) (8,4) 
  (1,2) (3,2) (5,2) (6,3) (7,4) 
    (2,2) (4,2) (6,2) (7,3) 
    (1,2) (3,2) (5,2) (7,2) 

     (2,2) (4,2) (6,2) 

     (1,2) (3,2) (5,2) 
       (2,2) (4,2) 
       (1,2) (3,2) 
        (2,2) 
        (1,2) 

 

 Example: Define All Possible Paths When the Starting Unit (1, j*) is (1,3) 

To illustrate paths, the spatial population of 8 rows and 6 columns is 

considered, as shown in Figure 3.4. So, we have r = 8 and c = 6. Hence, there are q = 

r-1 = 7 possible paths, which have the same starting and ending unit. Suppose that 

unit (1, 3) is the starting point. Notice that the seven paths overlap in column 3 and 4. 

Path 1 and path 2 overlap in row 2; path 2 and path 3 overlap in row 3; path 3 and 

path 4 overlap in row 4 and so on.  

The paths and the labeled units belonging to them are shown in Table 3.2. 

Notice that the numbers of units in the seven paths are different.  
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Now we consider the sample paths of size 2. Suppose path 3 and path 4 are 

selected in the sample. They overlap in column 3 and 4 and in row 4. Thus, the 

overlapping units, which are (1, 3), (2, 3), (3, 3), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 

6), (3, 4), (2, 4), and (1,4), are repeat observations. It is assumed that the repeat 

observation has the same value each time observed. 

 

 
 

Figure 3.4  The Population Units Labeled with 2 Coordinates and All Possible Paths 

 

  

 

 

 

 

 

 

Path1 

Path4 

Path5 

Path2 

Path3 
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Table 3.2  All Possible Paths and Their Units Labeled 

 
All possible paths in the population 

1P  2P  3P  4P  5P  6P  7P  

(1,3) (1,3) (1,3) (1,3) (1,3) (1,3) (1,3) 

(1,2) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3) 

(1,1) (2,2) (3,3) (3,3) (3,3) (3,3) (3,3) 

(2,1) (2,1) (3,2) (4,3) (4,3) (4,3) (4,3) 

(2,2) (3,1) (3,1) (4,2) (5,3) (5,3) (5,3) 

(2,3) (3,2) (4,1) (4,1) (5,2) (6,3) (6,3) 

(2,4) (3,3) (4,2) (5,1) (5,1) (6,2) (7,3) 

(2,5) (3,4) (4,3) (5,2) (6,1) (6,1) (7,2) 

(2, 6) (3,5) (4,4) (5,3) (6,2) (7,1) (7,1) 
(1, 6) (3,6) (4,5) (5,4) (6,3) (7,2) (8,1) 

(1, 5) (2,6) (4,6) (5,5) (6,4) (7,3) (8,2) 

(1, 4) (2,5) (3,6) (5,6) (6,5) (7,4) (8,3) 

 (2,4) (3,5) (4,6) (6,6) (7,5) (8,4) 

 (1,4) (3,4) (4,5) (5,6) (7,6) (8,5) 

  (2,4) (4,4) (5,5) (6,6) (8,6) 

  (1,4) (3,4) (5,4) (6,5) (7,6) 
   (2,4) (4,4) (6,4) (7,5) 

   (1,4) (3,4) (5,4) (7,4) 
    (2,4) (4,4) (6,4) 
    (1,4) (3,4) (5,4) 

     (2,4) (4,4) 

     (1,4) (3,4) 

      (2,4) 

      (1,4) 
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3.2  Path Sampling Design 
 

The spatial population of r rows and c columns consists of units labeled (i,j) 

for i=1, 2, 3, …, r and j = 1, 2, 3, …, c. There are q = r-1 possible paths in the 

population denoted by qPPPP ...,,,, 321 . By applying SRSWOR, p paths are selected 

from q possible paths in the population. Let kp  denote path k in the sample for k = 1, 

2, 3, …, p. The sample consists of all units in the selected paths. The sample is 

represented as 

)...,,,,( 321 ps ppppp  . 

 

The probability of selecting a sample is 








 












p
r

p
q

sP
1

11)(  since paths are selected 

by SRSWOR and the inclusion probability of path k is 
1


r

p
q
p

k . That is, each 

path has an equal probability of selection. There are overlapping of paths, so there are 

repeat observations. Assume that the repeat observation has the same value each time 

it is observed.  

  

3.2.1  Inclusion Probability 

Suppose a unit (1, j*) is the starting unit. The inclusion probability of each unit 

is the probability that a unit is included in the sample. In path sampling, the inclusion 

probability of unit (i, j) is denoted as ),( ji . 

Since paths overlap in rows and columns, the probabilities that units are 

included in the sample are not equal. That is, the inclusion probabilities of each unit in 

a path are not equal. All paths overlap in column j*and j*+1, and some paths overlap 

in row. Thus, the inclusion probabilities can be divided into three cases due to the 

overlapping of paths.  
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2

1 1 2 3 1

2

1 2 3 1 1 2 3 1 2 3 ,

1

1 1 1 2 3 1 2 3 ,

i
p

i , , , ...,r and j j* and j*
q
p

q
p

π i , , ...,r and j , , , , j* - , j* , j* , c (i, j) q
p

q
p

i , r and j , , , , j* - , j* , j* , c
q
p

  
  

     
  

 
 




 
           
   
 

 
 
       
 
 
 











          (3.2) 

Note that, for any constant a < b, it is defined that 0







b
a

. 

 According to equation (3.2), each case of the formula is the inclusion 

probability for each type of unit. That is, the first case is the inclusion probability for 

the units in column j*and j*+1 (units of type 1). The second is for the units not in 

column j*and j*+1and not in the first or last row (units of type 2); and the third are for 

units in the first row and last row but not in column j*and j*+1 (units of type 3). Units 

of type 1, 2, and 3 in the population are shown in Figure 3.5. A proof of the inclusion 

probability in equation (3.2) can be found in the next section.  

 3.2.1.1  Proof of the Inclusion Probability 

Case 1:  For units in column j*and j*+1 (units of type 1), all paths 

overlap in column j*and j*+1, so the inclusion probabilities for the units in these 

columns are higher than in other columns. The inclusion probabilities for units of type 

1can be written as 

( , ) ( ( , ) )
1 ( ( , ) )

( , )1

i j P unit i j is in the sample
P unit i j is not in the sample
Thenumber of sample not containing unit i j

The number of all possible sample

 

 

 

 

for i = 1, 2, 3, …, r   and j= j*  and  j*+1. 
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The number of paths not containing units of type 1 (i, j) is i-2. A proof of this is 

shown in section 3.2.1.2. Thus, the number of samples not containing such units 

is 






 
p

i 2
.  

Then, we have 

















 



p
q
p

i

ji

2

1),( .     (3.3) 

 

Note that, for any constant a < b, it is defined that 0







b
a

. 

Case 2:  For units not in column j*or j*+1 and not in the first row or the 

last row (units of type 2), the paths next to each other overlap in the row between 

them. That is, Path k-1 and path k overlap in row k for k = 2, 3,…, q = r-1. Thus, units 

of type 2 belong to two consecutive paths. Thus, the number of paths not containing 

such units is q-2, the proof of which is shown in section 3.1.1.2, and then the number 

of samples not containing such units is 






 
p

q 2
. Hence, the inclusion probabilities for 

units of type 2 are 

 

( , )
( , )1

2

1

i j
The number of samplenot containing unit i j

The number of all possible sample
q

p
q
p

  

 
 
  
 
 
 

   (3.4) 

for i = 2, 3, …, r-1   and j = 1, 2, 3,…, j*-1, j*+2, j*+3,…, c. 

   

Case3: For the units in the first row and last row but not in column j*or 

j*+1 (units of type 3), they belong to only one path. That is, unit (1, 1), (1, 2), (1, 3), 



 

 

36

 

…, (1, j*-1), (1, j*+2), (1, j*+3), …, (1, c-1), (1, c) belong to only one path, which is 

path 1. Also, units (r, 1), (r, 2), (r, 3), …, (r, j*-1), (r, j*+2), (r, j*+3), …, (r, c-1), (r, c) 

belong to only one path, which is path r-1. Thus, the number of paths not containing 

such units is q-1. The number of samples not containing such units is 






 
p

q 1
. Hence, 

for i = 1 and  r   and j = 1, 2, 3,…, j*-1, j*+2, j*+3,…, c. 

 

                           

( , )
( , )1

1

1

i j
Thenumber of samplenot containing unit i j

Thenumber of all possible sample
q

p
q
p

  

 
 
  
 
 
 

           (3.5) 

3.2.1.2 Proof of the Number of Paths not Containing Units of Type 1    

    is i-2 

According to the principle of mathematical induction, it will be shown 

that the number of paths not containing a unit (i, j) type 1 is i-2 for i ≥ 1. 

Base case: i = 1. A unit (1, j) of type 1 belongs to 1321 ...,,,, rPPPP . Note 

that the negative number of the number of paths not containing unit (1, j*) is set equal 

to 0. Thus, the number of paths not containing unit (1, j*) is i-2 =-1, which is equal to 

0. 

Induction step: suppose the number of paths not containing a unit (i, j) 

is i-2; we need to prove the number of paths not containing unit (i+1, j) is i+1-2= i–1. 

Unit (i+1, j*) belongs to 121 ...,,,,  riii PPPP . It is not in 1321 ...,,,, iPPPP . Thus, the 

number of paths not containing unit (i, j*) is i-1. 

3.2.1.3  Proof of the Number of Paths not Containing Units of Type 2  

             is  q-2 

For unit (i, j) where i = 2, 3, …, r-1 and j = 1, 2, 3,…, j*-1, j*+2, 

j*+3,…, c, unit (i, j) belongs to 1iP  and iP . In general, the number of paths containing 

unit (i, j) is 2; thus the number of paths not containing such a unit is q-2.  
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3.2.1.4  Example: The Inclusion Probabilities in the Path with Starting 

Unit (1, j*)=(1, 1) 

With starting unit (1, 1), all paths overlap in column 1 and 2, and some 

paths overlap in the row. Thus, the inclusion probabilities for the three cases due to 

the overlapping of paths are as follows. 

Case 1:  The Inclusion Probabilities for Units of Type 1 

All paths overlap in column 1 and 2, so the inclusion probabilities for 

the units in these columns are higher than in the other columns. The inclusion 

probabilities for the units in column 1 and 2 can be written as 

( , ) ( ( , ) )
1 ( ( , ) )

( , )1

i j P unit i j is in the sample
P unit i j is not in the sample
Thenumber of sample not containing unit i j

The number of all possible sample

 

 

 

 

for i = 1, 2, 3, …, r   and j= 1 and 2. 

The number of paths not containing units (i, j) in column 1 and 2 is i-2. 

For example, the number of paths not containing unit (2, 1) is i-2 = 2-2 = 0. Notice 

that unit (2, 1) belongs to every path. Unit (3, 1) belongs to all paths except path 1; 

thus the number of paths not containing such a unit is 1= i-2 = 3-2. Unit (5, 1) does 

not belong to path 1, 2 or 3; thus the number of paths not containing such a unit is 3= 

i-2 = 5-2.  Consequently, the number of paths not containing any unit (i, j ) not in 

column 1 and 2 is i-2. The number of samples not containing such units is 






 
p

i 2
. 

Hence, 





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
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




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i

ji

2

1),(  

for i = 1, 2, 3, …, r   and j= 1 and 2. 

 

Note that, for any constant a < b, it is defined that 0







b
a

 



 

 

38

 

(a) Units in Column j*and j*+1 (Units of type 1) 

 
 

(b) Units not in Column j*and j*+1and Not in the First Row or Last Row 

 (Units of type 2) 

 
 

(c) Units in the First row and Last Row but Not in Column j*and j*+1 (Units of type 

3) 

 
 

Figure 3.5  Units of Type 1, 2, and 3 
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Case 2:  The Inclusion Probabilities for Units of Type 2 

The paths next to each other overlap in the row between them. That is, 

Path k-1 and path k overlap in row k for k = 2, 3,…, q = r-1. Thus, the units not in 

column 1 and 2 and not in the first row and the last row belong to two consecutive 

paths. As a result, the number of paths not containing such units is q-2, and the 

number of samples not containing such units is 






 
p

q 2
. Hence, the inclusion 

probabilities for the units not in column 1 or 2 and not in the first or last row are 

 

( , ) ( ( , ) )
1 ( ( , ) )

( , )1

2

1

i j P unit i j is in the sample
P unit i j is not in the sample
Thenumber of sample not containing unit i j

The number of all possible sample
q

p
q
p

 

 

 

 
 
  
 
 
 

 

for i = 2, 3, …, r-1   and j = 3, 4, 5,…, c. 

 

We can see that such units have the same inclusion probabilities. 

Case 3:  The Inclusion Probabilities for Units of Type 3 

The units in the first row and the last row and not in column 1 and 2 

belong to only one path. That is, units (1, 3), (1, 4), (1, 5),…, (1, c) belong to only one 

path, which is path 1. Also, units (r, 3), (r, 4), (r, 5),…, (r, c) belong to only one path, 

which is path r-1. Thus, the number of paths not containing such units is q-1. The 

number of samples not containing such units is 






 
p

q 1
. 

 Hence, for i = 1 and  r   and j = 3, 4, 5,…, c 



 

 

40

 


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We can see that such units have the same inclusion probabilities. 

According to the three cases of inclusion probabilities due to 

overlapping, the inclusion probability of a unit (i, j) can be written, in generic 

formula, as 
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which is equation (3.2) when  j* =1. Next, the inclusion probabilities are calculated 

when starting unit (1, j*) = (1, 1) in a small population. The calculation of the 

inclusion probability of each unit in the spatial population of 8 rows and 4 columns, as 

shown in Figure 3.3, will be shown. The number of all possible paths is q = r – 1 = 8 

– 1 = 7. Suppose that the number of sample paths is two; that is, p = 2.  
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First, the inclusion probabilities for the units in column 1 and 2 (case 

1) will be calculated. 

From 


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Next, we will calculate the inclusion probabilities for the units not in 

column 1 or 2 and not in the first or last row (case 2). 
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Finally, the inclusion probabilities for the units in the first and last row 

will be calculated, but not in column 1 or 2 (case 3). 
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All inclusion probabilities are shown Figure 3.6. 

 

3.2.1.5  Example:  Calculating the Inclusion Probabilities When the 

Starting unit (1, j*) = (1, 3) in a Small Population 

The calculation of the inclusion probability of each unit in a spatial 

population of 8 rows and 6 columns, as shown in Figure 3.4, will be shown. The 

number of all possible paths is q = r – 1 = 8 – 1 = 7. Suppose that the number of 

sample paths is 2; that is, p = 2 and the starting point is unit (1, 3), or j*=3. 
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Figure 3.6  Inclusion Probabilities for the Population for 8 Rows and 4 Columns 

Note:  The unit in yellow is unit of type 1, green is unit of type 2, and pink is unit of 

type 3. 

 

Using equation (3.2), first,  the inclusion probabilities for the units in 

column 3 and 4 (case 1) will be calculated. For i = 1, 2, 3, …, 8   and j= 3and 4, we 

have 
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Next, the inclusion probabilities for the units not in column 3 and 4 

will be calculated, and not in the first or last row (case 2). 
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Finally, the inclusion probabilities for the units in the first row and last 

row will be calculated, but not in column 3 or 4 (case 3). 

 

For i = 1 and  8   and j = 1, 2, 5,6 
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All inclusion probabilities are shown Figure 3.7. 

 

 
 

Figure 3.7  Inclusion Probabilities of the Population of 8 Rows and 6 Columns 
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3.2.2 Joint Inclusion Probability 

 Let the probability that both units (i, j) and ),( ji   are included in the sample 

be denoted by ),(),,( jiji  , also called the joint inclusion probability. A formula for 

calculating under path sampling is  

),(),,( jiji  = ),( ji + ),( ji  -(1-
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q
p
f

 ),    (3.6) 

where f  is the number of paths not containing either units (i, j) or ),( ji  , and 

f  is divided into 6 cases. 

Case1:  For Units of Type 1 

For i, i   = 1, 2, 3, …, r   and j, j= j*and j*+1 

 

2),min(  iif     (3.7)

  

Note that if f < 0, then it is set that  f = 0. 

 

Case 2:  For Units of Type 1 and 2 

For i = 1, 2, 3, …, r   and j= j*and j*+1 

     i = 2, 3, …, r-1 and j= 1, 2, 3,…, j*-1, j*+2, j*+3,…, c 

 

2
3 1
4 2

i if i i
f i if i i

i if i i

 
    
   

   (3.8) 

 

Note that if f < 0, then it is set that f = 0. 

 

Case 3:  For Units of Type 1 and 3 

For i = 1, 2, 3, …, r   and j= j*and j*+1 

     i = 1 and  r   and j= 1, 2, 3,…, j*-1, j*+2, j*+3,…, c 
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
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f
3
2

    (3.9) 

 

Note that if f < 0, then it is set that f = 0. 

 

Case 4:  For Units of Type 2 

 For   i, i = 2, 3, …, r-1 and  j, j= 1, 2, 3,…, j*-1, j*+2, j*+3,…, c 
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Note that if f < 0, then it is set that f = 0. 

 

Case 5:  For Units of Type 2 and 3 

For i = 2, 3, …, r-1 and  j = 1, 2, 3,…, j*-1, j*+2, j*+3,…, c 

     i = 1 and  r   and j= 1, 2, 3,…, j*-1, j*+2, j*+3,…, c 
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Note that if f < 0, then it is set that f = 0. 

 

Case 6:  For Units of Type 3 

For i, i = 1 and  r   and  j, j= 1, 2, 3,…, j*-1, j*+2, j*+3,…, c 
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Proof of the joint inclusion probability is shown in the next section. 

 



 

 

48

 

   3.2.2.1  Proof of Joint Inclusion Probability 

  Joint inclusion probability is defined as 

( , ),( , )    ( , ) ( , )     

( , ) ( , )
i j i j a probability that both unit i j and i j are included in the sample

the number of samples containing both unit i j and i j
the number of all possible samples

    

 


 

Let A be an event that unit (i, j) is included in a sample. Thus P(A)= ),( ji . Let B be 

an event that unit ),( ji   is included in a sample. Thus P(B)= ),( ji  . AB is an 

event that both unit (i, j) and ),( ji   are included in the sample. Thus, P(AB) = 

),(),,( jiji  . Thus,    

),(),,( jiji  = P(AB) 

     = P(A)+P(B)-P(AB) 

     = ),( ji + ),( ji  -P(AB)  since P(A)= ),( ji  and P(B)= ),( ji   

     = ),( ji + ),( ji  -(1-P(AB)c ) 

 

Since (AB)c = (A c   B c) = an event that unit (i, j) is not included in a sample and 

unit ),( ji   is not included in the sample. Thus, 

 

),(),,( jiji  = ),( ji + ),( ji  -(1-P(A c B c)), 

 

where 

P(A c B c)= P(an event that unit (i, j) and ),( ji   are not included in the same       

                          sample) 

     =  ( ,  ) or ( , )The number of sample not containing either units i j i j
The number of all possible sample

 
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where f = the number of paths not containing either units (i, j) or ),( ji  . Hence, 

 

),(),,( jiji  = ),( ji + ),( ji  -(1-
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 ) 

 

Next is derivation of f for 6 cases. 

Case 1:  For Units of Type 1 

For i, i  = 1, 2, 3, …, r and j, j= j*and j*+1, the number of 

paths not containing unit (i, j) is i-2, and the number of paths not containing unit 

),( ji   is i -2. 

Let C1 be a set of paths containing unit (i, j). Thus, C1 = { 111 ...,,,,  riii PPPP }. 

Let D1 be a set of paths containing unit ),( ji  . Thus, D1 = { 111 ...,,,,  riii PPPP }. 

When i < i , D1 is a subset of C1; that is D1  C1. A set of 

paths containing either unit (i, j) or ),( ji   is C1D1=C1. Thus, the number of paths 

not containing unit (i, j) and ),( ji   is i-2. 

When  i  < i, C1 is a subset of D1; that is C1  D1. A set of 

paths containing either unit (i, j) or ),( ji   is C1D1=D1. Thus, the number of paths 

not containing unit (i, j) and ),( ji   is 2i . 

In conclusion, the number of paths not containing units (i, j) or ),( ji   is 2),min( ii  

That is, 

 

2),min(  iif     

 

Case 2:  For Units of Type 1 and 2 

For i = 1, 2, 3, …, r   and j= j*and j*+1, the number of paths not 

containing unit (i, j) is i-2. For i = 2, 3, …, r-1 and j= 1, 2, 3,…, j*-1, j*+2, j*+3,…, 

c, unit ),( ji   belongs to ii PP  and1 . Let C2 be a set of paths containing unit (i, j). 
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Thus, C2 = { 111 ...,,,,  riii PPPP }. Let D2 be a set of paths containing unit ),( ji  . 

Thus, D2 = { ii PP  ,1 }. 

When i i , D2 is a subset of C2; that is D2  C2. A set of 

paths containing either unit (i, j) or ),( ji   is C2 D2=C2. Thus, the number of paths 

not containing unit (i, j) or ),( ji   is i-2. Thus, f = i-2 when i i . 

When 1 ii , this means that unit (i, j) is in row i and unit 

),( ji  is in row 1 ii . Then, unit (i, j) belongs to 111 ...,,,,  riii PPPP . Unit ),( ji   

belongs to 2 1andi iP P  . The paths containing either unit (i, j) or ),( ji   is 

1112 ...,,,,,  riiii PPPPP .  

So, the paths not containing unit (i, j) or ),( ji   is 

3321 ...,,,, iPPPP . Thus, the number of paths not containing unit (i, j) or ),( ji   is i-3. 

Hence,  f = i-3 when 1 ii . 

When 2 ii , D2 is not a subset of C2, and D2 C2=. A set 

of paths containing either unit (i, j) or ),( ji   is C2  D2 

= 111,1 ...,,,,,  riiiii PPPPPP . Thus, the number of paths not containing unit (i, j) or 

),( ji   is (i-2)-2= i-4. Thus, f = i-4 when 2 ii . Thus, 

2
3 1
4 2

i if i i
f i if i i

i if i i

 
    
   

 

 

Case 3:  For Units of Type 1 and 3 

For i = 1, 2, 3, …, r  and j= j*and j*+1, unit (i, j) belongs 

to 111 ...,,,,  riii PPPP . For  i = 1  and j= 1, 2, 3,…, j*-1, j*+2, j*+3,…, c, unit ),( ji   

belongs to only one path, which is 1P . For  i = r  and j= 1, 2, 3,…, j*-1, j*+2, 

j*+3,…, c, unit ),( ji   belongs to only one path, which is 1rP . Let C3 be a set of 

paths containing unit (i, j). Thus, C3 = { 111 ...,,,,  riii PPPP }. Let D3 be a set of paths 

containing unit ),( ji  . Thus, D3 = { 1P } if  i = 1  . D3 = { 1rP } if  i = r. 
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For i = 1 and i = 1, 2 we have C3 = { 1321 ...,,,, rPPPP } and D3 

= { 1P }. We can see that D3  C3. A set of paths containing either unit (i, j) or ),( ji   

is C3  D3 = C3 = a set of all possible paths. Thus, the number of paths not 

containing unit (i, j) and ),( ji   is zero. 

For i = r and i = 1,2,3,…r we have C3 = { 111 ...,,,,  riii PPPP } 

and D3 = { 1rP }. We can see that D3  C3. A set of paths containing either unit (i, j) 

or ),( ji   is C3  D3 =C3. Thus, the number of paths not containing unit (i, j) or 

),( ji   is i-2. 

For i = 1 and i = 3, 4, 5…r we have C3 = 

{ 111 ...,,,,  riii PPPP } and D3 = { 1P }. We can see that D3 is not a subset of C3 and 

that  C3  D3 =. A set of paths containing either unit (i, j) or ),( ji   is C3  D3 

={ 1P , 111 ...,,,,  riii PPPP }. Thus, the number of paths not containing unit (i, j) or 

),( ji   is (i-2)-1= (i-3). Hence, 

riandiif
riandriif

iandiif
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Case 4:  For Units of Type 2 

For  i, i = 2, 3, …, r-1 and  j, j= 1, 2, 3,…, j*-1, j*+2, j*+3,…, 

c, unit (i, j)  belongs to ii PP and1 . Unit ),( ji   belongs to ii PP  and1 . For two units 

(i, j) and ),( ji  in the same row, that is ii  , they are in the same paths ii PP and1 .  

Consequently, the number of paths containing either unit (i, j) or ),( ji   is 2. Thus, 

the number of paths not containing unit (i, j) and ),( ji   is q-2. Hence, for ii  , or 

| ii  |=0, we have f=q-2.  

For two units (i, j) and ),( ji  in different but consecutive rows, 

| ii  |=1. When ii  =1, we have i= 1i . Unit (i, j) is in path 1and  ii PP . Unit 

),( ji  is in path ii PP  and1 . A set of paths containing either unit (i, j) or ),( ji   
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is{ 11 ,,  iii PPP }. So, the number of paths either containing unit (i, j) or ),( ji   is 3. 

Thus, the number of paths not containing unit (i, j) or ),( ji   is q-3. 

When ii  =-1, we have i= 1i . Unit (i, j) is in path 2iP and 

1iP . Unit ),( ji  is in path ii PP  and1 . A set of paths containing either unit (i, j) or 

),( ji   is{ iii PPP  ,, 12 }. So, the number of paths either containing unit (i, j) or ),( ji   

is 3. Thus, the number of paths not containing unit (i, j) or ),( ji   is q-3. Hence, for 

| ii  |=1, we have f=q-3.  

For the two units (i, j) and ),( ji  in different and non-

consecutive rows, | ii  |≥2. Unit (i, j) is in path 1and ii PP . Unit ),( ji  is in path 

ii PP  and1 . A set of paths containing either unit (i, j) or ),( ji   is{ iiii PPPP ,,, 11  }. 

So, the number of paths either containing unit (i, j) or ),( ji   is 4. Thus, the number of 

paths not containing unit (i, j) or ),( ji   is q-4. Hence, for | ii  |≥2, we have f=q-4.   

Hence,   
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Case 5:  For Units of Type 2 and 3 

For   i = 2, 3, …, r-1 and  j= 1, 2, 3,…, j*-1, j*+2, j*+3,…, c, 

unit (i, j)  belongs to ii PP and1 . For  i = 1  and j= 1, 2, 3,…, j*-1, j*+2, j*+3,…, c, 

unit ),( ji   belongs to only one path, which is 1P . For  i = r  and j= 1, 2, 3,…, j*-1, 

j*+2, j*+3,…, c, a unit ),( ji   belongs to only one path, which is 1rP . 

1)  For the two units (i, j) and ),( ji  in different row but   

consecutive rows, | ii  |=1. 

For i = 1 and i=2, that is ii  = 1, we have unit 

),( ji  = ),1( j  in path 1P  and unit  (i, j) =(2,j) in path 21, PP . A set of paths containing 

either unit (i, j) or ),( ji   is { 21, PP }. So, the number of paths either containing unit (i, 

j) or ),( ji   is 2. Thus, the number of paths not containing unit (i, j) or ),( ji   is q-2. 
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For i = r and i= r-1, that is ii  = -1, we have unit (i, j) =(r-1,j) in path 

1,2  rr PP  and unit ),( ji  = ),( jr   in path 1rP . A set of paths containing either unit (i, 

j) or ),( ji   is{ 1,2  rr PP }. So, the number of paths either containing unit (i, j) or 

),( ji   is 2. Thus, the number of paths not containing unit (i, j) or ),( ji   is q-2. 

2)  For two units (i, j) and ),( ji  in different and non-

consecutive rows, | ii  |≥2. 

For i = 1 and i = 3, 4,…r, that is ii  ≥2, we have unit 

),( ji  = ),1( j  in path { 1P }=C5 and unit  (i, j) in path { ii PP ,1 }=D5. C5 is not a 

subset of D5 or  C5  D5 =. A set of paths containing either unit (i, j) or ),( ji   is 

C5  D5 ={ 1P , ii PP ,1 }. So, the number of paths either containing unit (i, j) or ),( ji   

is 3. Thus, the number of paths not containing unit (i, j) and ),( ji   is q-3. 

For i = r and i=1, 2, 3,…r-2, that is ii  ≤ -2, we have 

unit ),( ji  = ),( jr   in path { 1rP }=C5 and unit  (i, j) in path { ii PP ,1 }=D5. C5 is not 

a subset of D5 and  C5  D5 =. A set of paths containing either unit (i, j) or ),( ji   

is C5  D5 ={ ii PP ,1 , 1rP } So, the number of paths either containing unit (i, j) or 

),( ji   is 3. Thus, the number of paths not containing unit (i, j) or ),( ji   is q-3. 

Hence,  
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Case 6:  For Units of Type 3 

1)  For the two units (i, j) and ),( ji   in the same row, 

ii  . 

In row 1, (i, j)= (1, j) is in path 1P  and ),( ji  = ),1( j  is 

also in path 1P . Both units (i, j) and ),( ji  are in 1P , only one path. Thus, the number 

of paths not containing unit (i, j) or ),( ji   is q-1. In row r, (i, j)= (r, j) in path 1rP  

and ),( ji  = )( jr   is also in path 1rP . Both unit s(i, j) and ),( ji  are in 1rP , only one 

path. 
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Thus, the number of paths not containing unit (i, j) or ),( ji   is q-1. Hence, f=q-1 

when ii  . 

2)  For the two units (i, j) and ),( ji    in the different 

rows, ii  . 

For i=1, a unit (i, j)= (1, j) is in path 1P . For i =r and 

),( ji  = )( jr   they are also in path 1rP . The paths containing either units (i, j) or 

),( ji   are 1P , 1rP . Thus, the number of paths not containing unit (i, j) or ),( ji   is q-

2. On the other hand, for i=r , unit (i, j)= (r, j) is in path 1rP . For i =1, ),( ji  = )1( j  

is also in path 1P . The paths containing either unit (i, j) or ),( ji  are 1P , 1rP . Thus, the 

number of paths not containing unit (i, j) or ),( ji   is q-2. Hence, f=q-2 when ii  . 

Hence, 
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






iiq
iiq

f
2
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3.3  Estimation of the Population Mean 

 
Horvitz-Thompson (1952: 663-685) have proposed that with any design, with 

or without replacement, giving probability k  that unit k is included in the sample, 

the unbiased estimator of the population total is 

    
1

ˆ k
HT

k k

y




 ,              (3.13) 

where   is the number of distinct units in the sample. 

The variance of the estimator is  
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The unbiased estimator of this variance is  
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if all of the joint inclusion probabilities are greater than zero. Note that if there are 

zero joint inclusion probabilities, this estimator of variance may be not unbiased. This 

variance estimate may be negative in some designs.  

 The unbiased estimator of the population mean is  
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having variance 
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and estimated variance proposed by Horvitz and Thompson (1952)  
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Now, we want to find the estimator of the mean for path sampling.  Let 

)...,,,,( 321 ps ppppp  denote the sample of paths selected. Let s denote the set of 

distinct units in the sample. By using the Horvitz-Thompson estimator (Horvitz and 

Thompson, 1952), the unbiased estimator of the population mean under path sampling 

is        
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Let ),( jiI  be the indicator function taking the value one if unit ),( ji  is selected in the 

sample and 0 otherwise. It can be written as 
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Therefore, ps̂ can be written in the alternative form  
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ps̂ is the unbiased estimator for the population mean  .  
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Each of the ),( jiI  is a (Bernoulli) random variable, with expected value  
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Hence, the expected value of ps̂ is 

   









 








r

i

c

j
ji

jiall
ji

jiall ji

jiji

jiall ji

jiji
ps

y
rc

y
rc

y
rc

IEy
rc

E

1 1
),(

),(
),(

),( ),(

),(),(

),( ),(

),(),(

1

1

1

1ˆ








 

                                                          



 

 

57

 

Another way to prove that ps̂ is an unbiased estimator for   is the following. 

Proof. By definition 
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The sum extends over all 
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
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
p
q

samples. To evaluate this sum, we find out in how many 

samples any specific value ),( jiy  appears. Now, let ),( jia  be the number of samples 

containing unit (i, j). Then, we have 
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From the inclusion probabilities ),( ji  for the 3 cases in equation (3.2), we have   
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After each term is canceled out, then we have 
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The variance of ps̂ , applied equation (3.17), is  
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         (3.21)  

and the estimated variance, applied equation (3.18),  is  
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         (3.22)  

It is unbiased if all of the joint inclusion probabilities are greater than zero. This 

variance may be negative. A researcher may use an alternative variance estimator, 

such as that proposed by Sen (1953) and Yate and Grundy (1953); see equation (2.4). 

It is claimed that it is less often negative. Suppose X is an auxiliary variable. Based on 

the population coefficient of the variation of ratios Y/X, denoted as C. V. (Y/X), the 
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variance estimator proposed by Sen, Yate and Grundy is better when C. V. (Y/X) is 

very small. On the other hand, the variance estimator of Horvitz-Thompson is better 

when C. V. (Y/X) is larger (Stephan and Overton, 1987). 

 

3.4  An Illustrative Example 

 

Now the population of 4 rows and 6 columns will be considered, as shown in 

Figure 3.8. The population mean and variance are 8.208 and 549.6, respectively. The 

objective is to estimate the population mean by using path sampling. First, all possible 

paths are created. The number of rows in this population is r = 4, and the number of 

columns is c = 6. Thus, the number of all possible paths is q = r-1=4-1=3. In general, 

a path k in the spatial setting population of r rows and c columns is written as 
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   
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for k = 1, 2, 3,…, q = r-1. 

 

Let the starting unit be (1, 3), so j* = 3. Thus, we have all possible paths with their 

labeled units as follows: 

 

1P = ((1, 3),(1, 2),(1, 1),(2, 1),(2, 2),(2, 3),(2, 4),(2, 5),(2, 6),(1, 6),(1, 5),(1, 4)) 

2P = ((1, 3),(2, 3),(2, 2),(2, 1),(3, 1),(3, 2),(3, 3),(3, 4),(3, 5),(3, 6),(2, 6),(2, 5), (2, 4),(1, 4)) 

3P = ((1, 3),(2, 3),(3, 3),(3, 2),(3, 1),(4, 1),(4, 2),(4, 3),(4, 4),(4, 5),(4, 6),(3, 6),(3, 5), (3, 4),  

         (2, 4),(1, 4)) 

 

 Since the number of units belonging to kP  is 2c + 2(k-1), the number of units 

belonging to 1P  is 2(6)+ 2(1-1) = 12  units, the number of units belonging to 2P  is 
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2(6)+ 2(2-1) = 14  units, and the number of units belonging to 3P  is 2(6)+ 2(3-1) = 16  

units.  

 Suppose the number of sampled paths is 2. According to the SRSWOR, p = 2 

sample paths are selected. There are 3 possible samples, which are 1sp = ( 1P , 2P ), 2sp = 

( 1P , 3P ) and 3sp =( 2P , 3P ). Since there is overlapping of paths, each sample is reduced 

to the set of distinct units in the sample for the purpose of applying the Horvitz-

Thompson estimator as follows: 

1sp =( 1P , 2P ) reduces to 1s = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2,1), (2, 

2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)} 

2sp =( 1P , 3P ) reduces to 2s = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2,1), (2, 

2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 

3), (4, 4), (4, 5), (4, 6)} 

3sp =( 2P , 3P ) reduces to 3s = {(1, 3), (1, 4), (2,1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 

6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)} 

 

Next, the inclusion probabilities are calculated by the formula from equation (3.2). 

First, we will calculate the inclusion probabilities for the units in column 3 and 4 

(units of type 1). For i = 1, 2, 3, 4   and j = 3 and 4, we have 

 


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Then, we get 
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)4,3()3,3( 101

2
3
2

23
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Next, the inclusion probabilities for the units not in the column 3 and 4 will be 

calculated and not in the first row or the last row (units of type 2). For i = 2, 3   and j 

= 1, 2, 5, 6 
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Then, we get 
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Finally, the inclusion probabilities for the units in the first row and the last row will be 

calculated, but not in column 3 or 4 (units of type 3). For i = 1 and 4   and j = 1, 2, 5, 6 
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Then, we get 
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)6,4()5,4()2,4()1,4()6,1()5,1()2,1()1,1( 3
2

3
11

2
3
2
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The inclusion probabilities are shown in Figure 3.9. The estimates of the mean for all 

possible samples are shown in Table 3.3. We can see that ps̂  is an unbiased 

estimator since its bias is zero. 

 

 
 

Figure 3.8  All Possible Paths of the Spatial Population of the 4 Rows and 6 Columns 

with the y-value of Each Unit 

 

 
 

Figure 3.9  The Inclusion Probabilities of the Population of 4 Rows and 6 Columns 
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Table 3.3  Estimates of the Mean and Variance Estimator for all Possible Samples 

 

 

 

 

 

 

 

 

 

 

The calculation of the estimate of the mean for sample 1sp = ( 1P , 2P ) is shown in Table 

3.4. 1sp = ( 1P , 2P ) reduces to 1s = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2,1), (2, 

2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)} corresponding 

to y = {8, 7, 30, 24, 6, 5, 0, 10, 112, 35, 5, 8, 7, 7, 32, 0, 0, 5}. According to Table 3.4, 

201
1),( ),(

),( 
sji ji

jiy


. By using equation (3.19), 

1

( , ) (1,1) (1,2) (3,6)

( , ) ( , ) (1,1) (1,2) (3,6)

1 1 1 8 0 5ˆ .... ....
4(6) 24 2 / 3 2 / 3 1

201 8.375
24

i j
ps

i j s i j

y y y y
rc


   

                 

 


 

To calculate )ˆ(ˆ psv   of this sample and )ˆ( psv  , the joint inclusion is calculated using 

the formula in equation (3.6). 

),(),,( jiji  = ),( ji + ),( ji  -(1-


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
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


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



p
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 ) 

                                                        = ),( ji + ),( ji  -(1-














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



2
3
2
f

 )      since p = 2 and q = 3         

Sample ps̂  
Sample 

size )ˆ(ˆ psv   

1sp =( 1P , 2P ) 8.375 18 0.083 

2sp =( 1P , 3P ) 8.375 24 0.083 

3sp  =( 2P , 3P ) 7.875 20 0.000 

Mean 8.208 20.67 0.056 

Bias 0  0 

Variance 0.056   
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                = ),( ji + ),( ji  -(1-
3
2 







 f

 ),  

where f = the number of paths not containing unit (i, j) and ),( ji  . Note that if f < p, 

then it is set that 0







p
f

. 

Case 1: For Units of Type 1 

For i, i   = 1, 2, 3, …, r   and j, j= j*and j*+1 

 

2),min(  iif  

 

Note that if f < 0, then it is set that f = 0. Here, j* = 3 and j*+1= 4. The units of type 1 

are the units in column 3 and 4, which are (1, 3), (2, 3), (3, 3), (4, 3), (1, 4), (2, 4), (3, 

4), (4, 4). The calculation of the joint inclusion probabilities for units of type 1 is 

shown in Table 3.5. 

 

Table 3.4  The Calculation of the Estimate of the Mean for Sample 1s  

 

i j ),( jiy  ),( ji  ),( jiy / ),( ji  

1 1 8 0.67 12 
1 2 0 0.67 0 
1 3 30 1 30 
1 4 0 1 0 
1 5 0 0.67 0 
1 6 0 0.67 0 
2 1 0 1 0 
2 2 0 1 0 
2 3 112 1 112 
2 4 35 1 35 
2 5 0 1 0 
2 6 0 1 0 
3 1 7 1 7 
3 2 0 1 0 
3 3 0 1 0 
3 4 0 1 0 
3 5 0 1 0 
3 6 5 1 5 

   sum 201 
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Table 3.5  The Calculation of Joint Inclusion Probabilities for Units of type 1 (Case 1) 

 

i j i' j' f 





2
f  

3
2

1











f

 
),( ji  ),( ji   ),(),,( jiji   

1 3 1 3 0 0 1.00 1.00 1.00 1.00 
1 3 2 3 0 0 1.00 1.00 1.00 1.00 
1 3 3 3 0 0 1.00 1.00 1.00 1.00 
1 3 4 3 0 0 1.00 1.00 0.67 0.67 
1 3 1 4 0 0 1.00 1.00 1.00 1.00 
1 3 2 4 0 0 1.00 1.00 1.00 1.00 
1 3 3 4 0 0 1.00 1.00 1.00 1.00 
1 3 4 4 0 0 1.00 1.00 0.67 0.67 
2 3 1 3 0 0 1.00 1.00 1.00 1.00 
2 3 2 3 0 0 1.00 1.00 1.00 1.00 
2 3 3 3 0 0 1.00 1.00 1.00 1.00 
2 3 4 3 0 0 1.00 1.00 0.67 0.67 
2 3 1 4 0 0 1.00 1.00 1.00 1.00 
2 3 2 4 0 0 1.00 1.00 1.00 1.00 
2 3 3 4 0 0 1.00 1.00 1.00 1.00 
2 3 4 4 0 0 1.00 1.00 0.67 0.67 
3 3 1 3 0 0 1.00 1.00 1.00 1.00 
3 3 2 3 0 0 1.00 1.00 1.00 1.00 
3 3 3 3 1 0 1.00 1.00 1.00 1.00 
3 3 4 3 1 0 1.00 1.00 0.67 0.67 
3 3 1 4 0 0 1.00 1.00 1.00 1.00 
3 3 2 4 0 0 1.00 1.00 1.00 1.00 
3 3 3 4 1 0 1.00 1.00 1.00 1.00 
3 3 4 4 1 0 1.00 1.00 0.67 0.67 
4 3 1 3 0 0 1.00 0.67 1.00 0.67 
4 3 2 3 0 0 1.00 0.67 1.00 0.67 
4 3 3 3 1 0 1.00 0.67 1.00 0.67 
4 3 4 3 2 1 0.67 0.67 0.67 0.67 
4 3 1 4 0 0 1.00 0.67 1.00 0.67 
4 3 2 4 0 0 1.00 0.67 1.00 0.67 
4 3 3 4 1 0 1.00 0.67 1.00 0.67 
4 3 4 4 2 1 0.67 0.67 0.67 0.67 
1 4 1 3 0 0 1.00 1.00 1.00 1.00 
1 4 2 3 0 0 1.00 1.00 1.00 1.00 
1 4 3 3 0 0 1.00 1.00 1.00 1.00 
1 4 4 3 0 0 1.00 1.00 0.67 0.67 
1 4 1 4 0 0 1.00 1.00 1.00 1.00 
1 4 2 4 0 0 1.00 1.00 1.00 1.00 
1 4 3 4 0 0 1.00 1.00 1.00 1.00 
1 4 4 4 0 0 1.00 1.00 0.67 0.67 
2 4 1 3 0 0 1.00 1.00 1.00 1.00 
2 4 2 3 0 0 1.00 1.00 1.00 1.00 
2 4 3 3 0 0 1.00 1.00 1.00 1.00 
2 4 4 3 0 0 1.00 1.00 0.67 0.67 
2 4 1 4 0 0 1.00 1.00 1.00 1.00 
2 4 2 4 0 0 1.00 1.00 1.00 1.00 
2 4 3 4 0 0 1.00 1.00 1.00 1.00 
2 4 4 4 0 0 1.00 1.00 0.67 0.67 
3 4 1 3 0 0 1.00 1.00 1.00 1.00 
3 4 2 3 0 0 1.00 1.00 1.00 1.00 
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Table3.5  (Continued) 

 

i j i' j' f 


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
2
f  

3
2

1




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





f

 
),( ji  ),( ji   ),(),,( jiji   

3 4 3 3 1 0 1.00 1.00 1.00 1.00 
3 4 4 3 1 0 1.00 1.00 0.67 0.67 
3 4 3 4 1 0 1.00 1.00 1.00 1.00 
3 4 4 4 1 0 1.00 1.00 0.67 0.67 
4 4 1 3 0 0 1.00 0.67 1.00 0.67 
4 4 2 3 0 0 1.00 0.67 1.00 0.67 
4 4 3 3 1 0 1.00 0.67 1.00 0.67 
4 4 4 3 2 1 0.67 0.67 0.67 0.67 
4 4 1 4 0 0 1.00 0.67 1.00 0.67 
4 4 2 4 0 0 1.00 0.67 1.00 0.67 
4 4 3 4 1 0 1.00 0.67 1.00 0.67 
4 4 4 4 2 1 0.67 0.67 0.67 0.67 

 

Case 2: For Units of Type 1 and 2 

For i = 1, 2, 3, …, r   and  j = j*and j*+1 and i = 2, 3, …, r-1 and j= 1, 2, 

3,…, j*-1, j*+2, j*+3,…, c 

 



















1
1

4
3
2

iiif
iiif
iiif

i
i
i

f  

 

Note that if f < 0, then it is set that f = 0. Units of type 1 are unit (i,j) = (1, 3), (2, 3), 

(3, 3), (4, 3), (1, 4), (2, 4),(3, 4), (4, 4). Units of type 2 are unit ),( ji  = (2,1), (2,2), 

(2,5), (2,6), (3,1), (3,2), (3,5), (3,6). The calculation of the joint inclusion probabilities 

for units of type 1 and 2 is shown in Table 3.6. 
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Table 3.6  The Calculation of Joint Inclusion Probabilities for Units of type 1 and 2 (Case 2) 

 

i j i' j' f 





2
f  

3
2

1











f

 
),( ji  ),( ji   ),(),,( jiji   

1 3 2 1 0 0 1.00 1.00 1.00 1.00 
1 3 2 2 0 0 1.00 1.00 1.00 1.00 
1 3 2 5 0 0 1.00 1.00 1.00 1.00 
1 3 2 6 0 0 1.00 1.00 1.00 1.00 
1 3 3 1 0 0 1.00 1.00 1.00 1.00 
1 3 3 2 0 0 1.00 1.00 1.00 1.00 
1 3 3 5 0 0 1.00 1.00 1.00 1.00 
1 3 3 6 0 0 1.00 1.00 1.00 1.00 
2 3 2 1 0 0 1.00 1.00 1.00 1.00 
2 3 2 2 0 0 1.00 1.00 1.00 1.00 
2 3 2 5 0 0 1.00 1.00 1.00 1.00 
2 3 2 6 0 0 1.00 1.00 1.00 1.00 
2 3 3 1 0 0 1.00 1.00 1.00 1.00 
2 3 3 2 0 0 1.00 1.00 1.00 1.00 
2 3 3 5 0 0 1.00 1.00 1.00 1.00 
2 3 3 6 0 0 1.00 1.00 1.00 1.00 
3 3 2 1 0 0 1.00 1.00 1.00 1.00 
3 3 2 2 0 0 1.00 1.00 1.00 1.00 
3 3 2 5 0 0 1.00 1.00 1.00 1.00 
3 3 2 6 0 0 1.00 1.00 1.00 1.00 
3 3 3 1 1 0 1.00 1.00 1.00 1.00 
3 3 3 2 1 0 1.00 1.00 1.00 1.00 
3 3 3 5 1 0 1.00 1.00 1.00 1.00 
3 3 3 6 1 0 1.00 1.00 1.00 1.00 
4 3 2 1 0 0 1.00 0.67 1.00 0.67 
4 3 2 2 0 0 1.00 0.67 1.00 0.67 
4 3 2 5 0 0 1.00 0.67 1.00 0.67 
4 3 2 6 0 0 1.00 0.67 1.00 0.67 
4 3 3 1 1 0 1.00 0.67 1.00 0.67 
4 3 3 2 1 0 1.00 0.67 1.00 0.67 
4 3 3 5 1 0 1.00 0.67 1.00 0.67 
4 3 3 6 1 0 1.00 0.67 1.00 0.67 
1 4 2 1 0 0 1.00 1.00 1.00 1.00 
1 4 2 2 0 0 1.00 1.00 1.00 1.00 
1 4 2 5 0 0 1.00 1.00 1.00 1.00 
1 4 2 6 0 0 1.00 1.00 1.00 1.00 
1 4 3 1 0 0 1.00 1.00 1.00 1.00 
1 4 3 2 0 0 1.00 1.00 1.00 1.00 
1 4 3 5 0 0 1.00 1.00 1.00 1.00 
1 4 3 6 0 0 1.00 1.00 1.00 1.00 
2 4 2 1 0 0 1.00 1.00 1.00 1.00 
2 4 2 2 0 0 1.00 1.00 1.00 1.00 
2 4 2 5 0 0 1.00 1.00 1.00 1.00 
2 4 2 6 0 0 1.00 1.00 1.00 1.00 
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Table3.6  (Continued) 

 

i j i' j' f 





2
f  

3
2

1











f

 
),( ji  ),( ji   ),(),,( jiji   

2 4 3 1 0 0 1.00 1.00 1.00 1.00 
2 4 3 2 0 0 1.00 1.00 1.00 1.00 
2 4 3 5 0 0 1.00 1.00 1.00 1.00 
2 4 3 6 0 0 1.00 1.00 1.00 1.00 
3 4 2 1 0 0 1.00 1.00 1.00 1.00 
3 4 2 2 0 0 1.00 1.00 1.00 1.00 
3 4 2 5 0 0 1.00 1.00 1.00 1.00 
3 4 2 6 0 0 1.00 1.00 1.00 1.00 
3 4 3 1 1 0 1.00 1.00 1.00 1.00 
3 4 3 2 1 0 1.00 1.00 1.00 1.00 
3 4 3 5 1 0 1.00 1.00 1.00 1.00 
3 4 3 6 1 0 1.00 1.00 1.00 1.00 
4 4 2 1 0 0 1.00 0.67 1.00 0.67 
4 4 2 2 0 0 1.00 0.67 1.00 0.67 
4 4 2 5 0 0 1.00 0.67 1.00 0.67 
4 4 2 6 0 0 1.00 0.67 1.00 0.67 
4 4 3 1 1 0 1.00 0.67 1.00 0.67 
4 4 3 2 1 0 1.00 0.67 1.00 0.67 
4 4 3 5 1 0 1.00 0.67 1.00 0.67 
4 4 3 6 1 0 1.00 0.67 1.00 0.67 

 

Case 3: For Units of Type 1 and 3 

For i = 1, 2, 3, …, r   and j= j*and j*+1 and i = 1 and  r   and j= 1, 2, 3,…, j*-1, j*+2, 

j*+3,…, c 

 










iii
iii

f
3
2

 

 

Note that if f < 0, then it is set that f = 0. Units of type 1 are unit (i,j) = (1, 3), (2, 3), 

(3, 3), (4, 3), (1, 4), (2, 4),(3, 4), (4, 4). Units of type 3 are unit ),( ji  = (1,1), (1,2), 

(1,5), (1,6), (4,1), (4,2), (4,5), (4,6). The calculation of the joint inclusion probabilities 

for units of type 1 and 3 is shown in Table 3.7. 
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Table 3.7  The Calculation of Joint Inclusion Probabilities for Units of type 1 and 3 (Case 3) 

 

i j i' j' f 





2
f  

3
2

1




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





f

 
),( ji  ),( ji   ),(),,( jiji   

1 3 1 1 0 0 1.00 1.00 0.67 0.67 
1 3 1 2 0 0 1.00 1.00 0.67 0.67 
1 3 1 5 0 0 1.00 1.00 0.67 0.67 
1 3 1 6 0 0 1.00 1.00 0.67 0.67 
1 3 4 1 0 0 1.00 1.00 0.67 0.67 
1 3 4 2 0 0 1.00 1.00 0.67 0.67 
1 3 4 5 0 0 1.00 1.00 0.67 0.67 
1 3 4 6 0 0 1.00 1.00 0.67 0.67 
2 3 1 1 0 0 1.00 1.00 0.67 0.67 
2 3 1 2 0 0 1.00 1.00 0.67 0.67 
2 3 1 5 0 0 1.00 1.00 0.67 0.67 
2 3 1 6 0 0 1.00 1.00 0.67 0.67 
2 3 4 1 0 0 1.00 1.00 0.67 0.67 
2 3 4 2 0 0 1.00 1.00 0.67 0.67 
2 3 4 5 0 0 1.00 1.00 0.67 0.67 
2 3 4 6 0 0 1.00 1.00 0.67 0.67 
3 3 1 1 0 0 1.00 1.00 0.67 0.67 
3 3 1 2 0 0 1.00 1.00 0.67 0.67 
3 3 1 5 0 0 1.00 1.00 0.67 0.67 
3 3 1 6 0 0 1.00 1.00 0.67 0.67 
3 3 4 1 1 0 1.00 1.00 0.67 0.67 
3 3 4 2 1 0 1.00 1.00 0.67 0.67 
3 3 4 5 1 0 1.00 1.00 0.67 0.67 
3 3 4 6 1 0 1.00 1.00 0.67 0.67 
4 3 1 1 1 0 1.00 0.67 0.67 0.33 
4 3 1 2 1 0 1.00 0.67 0.67 0.33 
4 3 1 5 1 0 1.00 0.67 0.67 0.33 
4 3 1 6 1 0 1.00 0.67 0.67 0.33 
4 3 4 1 2 1 0.67 0.67 0.67 0.67 
4 3 4 2 2 1 0.67 0.67 0.67 0.67 
4 3 4 5 2 1 0.67 0.67 0.67 0.67 
4 3 4 6 2 1 0.67 0.67 0.67 0.67 
1 4 1 1 0 0 1.00 1.00 0.67 0.67 
1 4 1 2 0 0 1.00 1.00 0.67 0.67 
1 4 1 5 0 0 1.00 1.00 0.67 0.67 
1 4 1 6 0 0 1.00 1.00 0.67 0.67 
1 4 4 1 0 0 1.00 1.00 0.67 0.67 
1 4 4 2 0 0 1.00 1.00 0.67 0.67 
1 4 4 5 0 0 1.00 1.00 0.67 0.67 
1 4 4 6 0 0 1.00 1.00 0.67 0.67 
2 4 1 1 0 0 1.00 1.00 0.67 0.67 
2 4 1 2 0 0 1.00 1.00 0.67 0.67 
2 4 1 5 0 0 1.00 1.00 0.67 0.67 
2 4 1 6 0 0 1.00 1.00 0.67 0.67 
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Table3.7  (Continued) 

 

i j i' j' f 





2
f  

3
2

1











f

 
),( ji  ),( ji   ),(),,( jiji   

          
2 4 4 1 0 0 1.00 1.00 0.67 0.67 
2 4 4 2 0 0 1.00 1.00 0.67 0.67 
2 4 4 5 0 0 1.00 1.00 0.67 0.67 
2 4 4 6 0 0 1.00 1.00 0.67 0.67 
3 4 1 1 0 0 1.00 1.00 0.67 0.67 
3 4 1 2 0 0 1.00 1.00 0.67 0.67 
3 4 1 5 0 0 1.00 1.00 0.67 0.67 
3 4 1 6 0 0 1.00 1.00 0.67 0.67 
3 4 4 1 1 0 1.00 1.00 0.67 0.67 
3 4 4 2 1 0 1.00 1.00 0.67 0.67 
3 4 4 5 1 0 1.00 1.00 0.67 0.67 
3 4 4 6 1 0 1.00 1.00 0.67 0.67 
4 4 1 1 1 0 1.00 0.67 0.67 0.33 
4 4 1 2 1 0 1.00 0.67 0.67 0.33 
4 4 1 5 1 0 1.00 0.67 0.67 0.33 
4 4 1 6 1 0 1.00 0.67 0.67 0.33 
4 4 4 1 2 1 0.67 0.67 0.67 0.67 
4 4 4 2 2 1 0.67 0.67 0.67 0.67 
4 4 4 5 2 1 0.67 0.67 0.67 0.67 
4 4 4 6 2 1 0.67 0.67 0.67 0.67 

 

Case 4: For Units of Type 2 

 For   i, i = 2, 3, …, r-1 and  j, j= 1, 2, 3,…, j*-1, j*+2, j*+3,…, c 

 


















2||
1||
0||

4
3
2

iiif
iiif
iiif

q
q
q

f  

 

Units of type 2 are (2,1), (2,2), (2,5), (2,6), (3,1), (3,2), (3,5), (3,6). The calculation of 

the joint inclusion probabilities for units of type 2 is shown in Table 3.8. 
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Table 3.8  The Calculation of Joint Inclusion Probabilities for Units of type 2 (case 4) 

 

i j i' j' f 





2
f  

3
2

1











f

 
),( ji  ),( ji   ),(),,( jiji   

2 1 2 1 1 0 1 1 1 1 
2 1 2 2 1 0 1 1 1 1 
2 1 2 5 1 0 1 1 1 1 
2 1 2 6 1 0 1 1 1 1 
2 1 3 1 0 0 1 1 1 1 
2 1 3 2 0 0 1 1 1 1 
2 1 3 5 0 0 1 1 1 1 
2 1 3 6 0 0 1 1 1 1 
2 2 2 1 1 0 1 1 1 1 
2 2 2 2 1 0 1 1 1 1 
2 2 2 5 1 0 1 1 1 1 
2 2 2 6 1 0 1 1 1 1 
2 2 3 1 0 0 1 1 1 1 
2 2 3 2 0 0 1 1 1 1 
2 2 3 5 0 0 1 1 1 1 
2 2 3 6 0 0 1 1 1 1 
2 5 2 1 1 0 1 1 1 1 
2 5 2 2 1 0 1 1 1 1 
2 5 2 5 1 0 1 1 1 1 
2 5 2 6 1 0 1 1 1 1 
2 5 3 1 0 0 1 1 1 1 
2 5 3 2 0 0 1 1 1 1 
2 5 3 5 0 0 1 1 1 1 
2 5 3 6 0 0 1 1 1 1 
2 6 2 1 1 0 1 1 1 1 
2 6 2 2 1 0 1 1 1 1 
2 6 2 5 1 0 1 1 1 1 
2 6 2 6 1 0 1 1 1 1 
2 6 3 1 0 0 1 1 1 1 
2 6 3 2 0 0 1 1 1 1 
2 6 3 5 0 0 1 1 1 1 
2 6 3 6 0 0 1 1 1 1 
3 1 2 1 0 0 1 1 1 1 
3 1 2 2 0 0 1 1 1 1 
3 1 2 5 0 0 1 1 1 1 
3 1 2 6 0 0 1 1 1 1 
3 1 3 1 1 0 1 1 1 1 
3 1 3 2 1 0 1 1 1 1 
3 1 3 5 1 0 1 1 1 1 
3 1 3 6 1 0 1 1 1 1 
3 2 2 1 0 0 1 1 1 1 
3 2 2 2 0 0 1 1 1 1 
3 2 2 5 0 0 1 1 1 1 
3 2 2 6 0 0 1 1 1 1 
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Table3.8  (Continued) 

 

i j i' j' f 





2
f  

3
2

1











f

 
),( ji  ),( ji   ),(),,( jiji   

3 2 3 1 1 0 1 1 1 1 
3 2 3 2 1 0 1 1 1 1 
3 5 2 1 0 0 1 1 1 1 
3 5 2 2 0 0 1 1 1 1 
3 5 2 5 0 0 1 1 1 1 
3 5 2 6 0 0 1 1 1 1 
3 5 3 1 1 0 1 1 1 1 
3 5 3 2 1 0 1 1 1 1 
3 5 3 5 1 0 1 1 1 1 
3 5 3 6 1 0 1 1 1 1 
3 6 2 1 0 0 1 1 1 1 
3 6 2 2 0 0 1 1 1 1 
3 6 2 5 0 0 1 1 1 1 
3 6 2 6 0 0 1 1 1 1 
3 6 3 1 1 0 1 1 1 1 
3 6 3 2 1 0 1 1 1 1 
3 6 3 5 1 0 1 1 1 1 
3 6 3 6 1 0 1 1 1 1 

 

Case 5:  For Units of Type 2 and 3 

For i = 2, 3, …, r-1 and  j = 1, 2, 3,…, j*-1, j*+2, j*+3,…, c and i = 1 and  r   

and j= 1, 2, 3,…, j*-1, j*+2, j*+3,…, c 

 









2||3
1||2

iiq
iiq

f  

 

Units of type 2 are unit (i,j) = (2,1), (2,2), (2,5), (2,6), (3,1), (3,2), (3,5), (3,6). Units 

of type 3 are unit ),( ji  = (1,1), (1,2), (1,5), (1,6), (4,1), (4,2), (4,5), (4,6). The 

calculation of the joint inclusion probabilities for units of type 2 and 3 is shown in 

Table 3.9. 
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Table 3.9  The Calculation of Joint Inclusion Probabilities for Units of type 2 and 3 (Case 5) 

 

i j i' j' f 





2
f  

3
2

1











f

 
),( ji  ),( ji   ),(),,( jiji   

2 1 1 1 1 0 1 1.00 0.67 0.67 
2 1 1 2 1 0 1 1.00 0.67 0.67 
2 1 1 5 1 0 1 1.00 0.67 0.67 
2 1 1 6 1 0 1 1.00 0.67 0.67 
2 1 4 1 0 0 1 1.00 0.67 0.67 
2 1 4 2 0 0 1 1.00 0.67 0.67 
2 1 4 5 0 0 1 1.00 0.67 0.67 
2 1 4 6 0 0 1 1.00 0.67 0.67 
2 2 1 1 1 0 1 1.00 0.67 0.67 
2 2 1 2 1 0 1 1.00 0.67 0.67 
2 2 1 5 1 0 1 1.00 0.67 0.67 
2 2 1 6 1 0 1 1.00 0.67 0.67 
2 2 4 1 0 0 1 1.00 0.67 0.67 
2 2 4 2 0 0 1 1.00 0.67 0.67 
2 2 4 5 0 0 1 1.00 0.67 0.67 
2 2 4 6 0 0 1 1.00 0.67 0.67 
2 5 1 1 1 0 1 1.00 0.67 0.67 
2 5 1 2 1 0 1 1.00 0.67 0.67 
2 5 1 5 1 0 1 1.00 0.67 0.67 
2 5 1 6 1 0 1 1.00 0.67 0.67 
2 5 4 1 0 0 1 1.00 0.67 0.67 
2 5 4 2 0 0 1 1.00 0.67 0.67 
2 5 4 5 0 0 1 1.00 0.67 0.67 
2 5 4 6 0 0 1 1.00 0.67 0.67 
2 6 1 1 1 0 1 1.00 0.67 0.67 
2 6 1 2 1 0 1 1.00 0.67 0.67 
2 6 1 5 1 0 1 1.00 0.67 0.67 
2 6 1 6 1 0 1 1.00 0.67 0.67 
2 6 4 1 0 0 1 1.00 0.67 0.67 
2 6 4 2 0 0 1 1.00 0.67 0.67 
2 6 4 5 0 0 1 1.00 0.67 0.67 
2 6 4 6 0 0 1 1.00 0.67 0.67 
3 1 1 1 0 0 1 1.00 0.67 0.67 
3 1 1 2 0 0 1 1.00 0.67 0.67 
3 1 1 5 0 0 1 1.00 0.67 0.67 
3 1 1 6 0 0 1 1.00 0.67 0.67 
3 1 4 1 1 0 1 1.00 0.67 0.67 
3 1 4 2 1 0 1 1.00 0.67 0.67 
3 1 4 5 1 0 1 1.00 0.67 0.67 
3 1 4 6 1 0 1 1.00 0.67 0.67 
3 2 1 1 0 0 1 1.00 0.67 0.67 
3 2 1 2 0 0 1 1.00 0.67 0.67 
3 2 1 5 0 0 1 1.00 0.67 0.67 
3 2 1 6 0 0 1 1.00 0.67 0.67 
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Table3.9  (Continued) 

 

i j i' j' f 





2
f  

3
2

1











f

 
),( ji  ),( ji   ),(),,( jiji   

3 2 4 1 1 0 1 1.00 0.67 0.67 
3 2 4 2 1 0 1 1.00 0.67 0.67 
3 5 1 1 0 0 1 1.00 0.67 0.67 
3 5 1 2 0 0 1 1.00 0.67 0.67 
3 5 1 5 0 0 1 1.00 0.67 0.67 
3 5 1 6 0 0 1 1.00 0.67 0.67 
3 5 4 1 1 0 1 1.00 0.67 0.67 
3 5 4 2 1 0 1 1.00 0.67 0.67 
3 5 4 5 1 0 1 1.00 0.67 0.67 
3 5 4 6 1 0 1 1.00 0.67 0.67 
3 6 1 1 0 0 1 1.00 0.67 0.67 
3 6 1 2 0 0 1 1.00 0.67 0.67 
3 6 1 5 0 0 1 1.00 0.67 0.67 
3 6 1 6 0 0 1 1.00 0.67 0.67 
3 6 4 1 1 0 1 1.00 0.67 0.67 
3 6 4 2 1 0 1 1.00 0.67 0.67 
3 6 4 5 1 0 1 1.00 0.67 0.67 
3 6 4 6 1 0 1 1.00 0.67 0.67 

 

Case 6: For Units of Type 3 

For i, i = 1 and  r   and  j, j= 1, 2, 3,…, j*-1, j*+2, j*+3,…, c 

 










iiq
iiq

f
2
1

 

 

Note that if f < 0, then it is set that f = 0. Units of type 3 are (1,1), (1,2), (1,5), (1,6), 

(4,1), (4,2), (4,5), (4,6). The calculation of the joint inclusion probabilities for units of 

type 3 is shown in Table 3.10. 
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Table 3.10  The Calculation of  Joint Inclusion Probabilities for Units of type 3 (Case 6) 

 

i j i' j' f 





2
f  

3
2

1











f

 
),( ji  ),( ji   ),(),,( jiji   

1 1 1 1 2 1 0.67 0.67 0.67 0.67 
1 1 1 2 2 1 0.67 0.67 0.67 0.67 
1 1 1 5 2 1 0.67 0.67 0.67 0.67 
1 1 1 6 2 1 0.67 0.67 0.67 0.67 
1 1 4 1 1 0 1.00 0.67 0.67 0.33 
1 1 4 2 1 0 1.00 0.67 0.67 0.33 
1 1 4 5 1 0 1.00 0.67 0.67 0.33 
1 1 4 6 1 0 1.00 0.67 0.67 0.33 
1 2 1 1 2 1 0.67 0.67 0.67 0.67 
1 2 1 2 2 1 0.67 0.67 0.67 0.67 
1 2 1 5 2 1 0.67 0.67 0.67 0.67 
1 2 1 6 2 1 0.67 0.67 0.67 0.67 
1 2 4 1 1 0 1.00 0.67 0.67 0.33 
1 2 4 2 1 0 1.00 0.67 0.67 0.33 
1 2 4 5 1 0 1.00 0.67 0.67 0.33 
1 2 4 6 1 0 1.00 0.67 0.67 0.33 
1 5 1 1 2 1 0.67 0.67 0.67 0.67 
1 5 1 2 2 1 0.67 0.67 0.67 0.67 
1 5 1 5 2 1 0.67 0.67 0.67 0.67 
1 5 1 6 2 1 0.67 0.67 0.67 0.67 
1 5 4 1 1 0 1.00 0.67 0.67 0.33 
1 5 4 2 1 0 1.00 0.67 0.67 0.33 
1 5 4 5 1 0 1.00 0.67 0.67 0.33 
1 5 4 6 1 0 1.00 0.67 0.67 0.33 
1 6 1 1 2 1 0.67 0.67 0.67 0.67 
1 6 1 2 2 1 0.67 0.67 0.67 0.67 
1 6 1 5 2 1 0.67 0.67 0.67 0.67 
1 6 1 6 2 1 0.67 0.67 0.67 0.67 
1 6 4 1 1 0 1.00 0.67 0.67 0.33 
1 6 4 2 1 0 1.00 0.67 0.67 0.33 
1 6 4 5 1 0 1.00 0.67 0.67 0.33 
1 6 4 6 1 0 1.00 0.67 0.67 0.33 
4 1 1 1 1 0 1.00 0.67 0.67 0.33 
4 1 1 2 1 0 1.00 0.67 0.67 0.33 
4 1 1 5 1 0 1.00 0.67 0.67 0.33 
4 1 1 6 1 0 1.00 0.67 0.67 0.33 
4 1 4 1 2 1 0.67 0.67 0.67 0.67 
4 1 4 2 2 1 0.67 0.67 0.67 0.67 
4 1 4 5 2 1 0.67 0.67 0.67 0.67 
4 1 4 6 2 1 0.67 0.67 0.67 0.67 
4 2 1 1 1 0 1.00 0.67 0.67 0.33 
4 2 1 2 1 0 1.00 0.67 0.67 0.33 
4 2 1 5 1 0 1.00 0.67 0.67 0.33 
4 2 1 6 1 0 1.00 0.67 0.67 0.33 
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Table3.10  (Continued) 

 

i j i' j' f 





2
f  

3
2

1











f

 
),( ji  ),( ji   ),(),,( jiji   

4 2 4 1 2 1 0.67 0.67 0.67 0.67 
4 2 4 2 2 1 0.67 0.67 0.67 0.67 
4 5 1 1 1 0 1.00 0.67 0.67 0.33 
4 5 1 2 1 0 1.00 0.67 0.67 0.33 
4 5 1 5 1 0 1.00 0.67 0.67 0.33 
4 5 1 6 1 0 1.00 0.67 0.67 0.33 
4 5 4 1 2 1 0.67 0.67 0.67 0.67 
4 5 4 2 2 1 0.67 0.67 0.67 0.67 
4 5 4 5 2 1 0.67 0.67 0.67 0.67 
4 5 4 6 2 1 0.67 0.67 0.67 0.67 
4 6 1 1 1 0 1.00 0.67 0.67 0.33 
4 6 1 2 1 0 1.00 0.67 0.67 0.33 
4 6 1 5 1 0 1.00 0.67 0.67 0.33 
4 6 1 6 1 0 1.00 0.67 0.67 0.33 
4 6 4 1 2 1 0.67 0.67 0.67 0.67 
4 6 4 2 2 1 0.67 0.67 0.67 0.67 
4 6 4 5 2 1 0.67 0.67 0.67 0.67 
4 6 4 6 2 1 0.67 0.67 0.67 0.67 

         

The estimated variance, using equation (3.22), for sample 1s , is  
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where 1s = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2,1), (2, 2), (2, 3), (2, 4), (2, 5), 

(2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)}. 

 

To calculate ˆ ˆ( ),psv  ( , ) ,i jy ),( ji  and ),(),,( jiji   in sample 1s  are used in that formula. 

Only units with a y-value greater than zero are utilized in the formula; otherwise each 

term in the formula yields zero. The calculation of )ˆ(ˆ psv  is shown in Table 3.11. 

We get  
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
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= 48. 

Thus, 

)ˆ(ˆ psv  = )48(
)24(

1
2

= 0.083    

 

To calculate ˆ( ),psv  ( , ) ,i jy ),( ji  and ),(),,( jiji   in the population are used in the 

formula from equation (3.21). 
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Only units with a y-value greater than zero are utilized in the formula; otherwise each 

term in the formula yields zero. The calculation is shown in Table 3.12. We get  
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Table 3.11 The Calculation of  )ˆ(ˆ psv   

 

i j ),( jiy  ),( ji  i  j  )','( jiy  )','( ji  ),(),,( jiji   ),(
),(),(

),(
),,(),(

11
ji

jiji

yy ji
jiji



















 

1 1 8 0.67 1 1 8 0.67 0.67 48 
1 1 8 0.67 1 3 30 1 0.67 0 
1 1 8 0.67 2 3 112 1 0.67 0 
1 1 8 0.67 2 4 35 1 0.67 0 
1 1 8 0.67 3 1 7 1 0.67 0 
1 1 8 0.67 3 6 5 1 0.67 0 
1 3 30 1 1 1 8 0.67 0.67 0 
1 3 30 1 1 3 30 1 1 0 
1 3 30 1 2 3 112 1 1 0 
1 3 30 1 2 4 35 1 1 0 
1 3 30 1 3 1 7 1 1 0 
1 3 30 1 3 6 5 1 1 0 
2 3 112 1 1 1 8 0.67 0.67 0 
2 3 112 1 1 3 30 1 1 0 
2 3 112 1 2 3 112 1 1 0 
2 3 112 1 2 4 35 1 1 0 
2 3 112 1 3 1 7 1 1 0 
2 3 112 1 3 6 5 1 1 0 
2 4 35 1 1 1 8 0.67 0.67 0 
2 4 35 1 1 3 30 1 1 0 
2 4 35 1 2 3 112 1 1 0 
2 4 35 1 2 4 35 1 1 0 
2 4 35 1 3 1 7 1 1 0 
2 4 35 1 3 6 5 1 1 0 
3 1 7 1 1 1 8 0.67 0.67 0 
3 1 7 1 1 3 30 1 1 0 
3 1 7 1 2 3 112 1 1 0 
3 1 7 1 2 4 35 1 1 0 
3 1 7 1 3 1 7 1 1 0 
3 1 7 1 3 6 5 1 1 0 
3 6 5 1 1 1 8 0.67 0.67 0 
3 6 5 1 1 3 30 1 1 0 
3 6 5 1 2 3 112 1 1 0 
3 6 5 1 2 4 35 1 1 0 
3 6 5 1 3 1 7 1 1 0 
3 6 5 1 3 6 5 1 1 0 

        sum 48 
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Table 3.12  The Calculation of  )ˆ( psv   

 

i  j  ),( jiy  ),( ji  i  j  )','( jiy  )','( ji  ),(),,( jiji   ),(
),(),(

),(),(),(),,(
),( ji

jiji

jijijiji yy
ji 














 



  

1 1 8 0.67 1 1 8 0.67 0.67 32 
1 1 8 0.67 1 3 30 1 0.67 0 
1 1 8 0.67 2 3 112 1 0.67 0 
1 1 8 0.67 2 4 35 1 0.67 0 
1 1 8 0.67 3 1 7 1 0.67 0 
1 1 8 0.67 3 6 5 1 0.67 0 
1 3 30 1 1 1 8 0.67 0.67 0 
1 3 30 1 1 3 30 1 1 0 
1 3 30 1 2 3 112 1 1 0 
1 3 30 1 2 4 35 1 1 0 
1 3 30 1 3 1 7 1 1 0 
1 3 30 1 3 6 5 1 1 0 
2 3 112 1 1 1 8 0.67 0.67 0 
2 3 112 1 1 3 30 1 1 0 
2 3 112 1 2 3 112 1 1 0 
2 3 112 1 2 4 35 1 1 0 
2 3 112 1 3 1 7 1 1 0 
2 3 112 1 3 6 5 1 1 0 
2 4 35 1 1 1 8 0.67 0.67 0 
2 4 35 1 1 3 30 1 1 0 
2 4 35 1 2 3 112 1 1 0 
2 4 35 1 2 4 35 1 1 0 
2 4 35 1 3 1 7 1 1 0 
2 4 35 1 3 6 5 1 1 0 
3 1 7 1 1 1 8 0.67 0.67 0 
3 1 7 1 1 3 30 1 1 0 
3 1 7 1 2 3 112 1 1 0 
3 1 7 1 2 4 35 1 1 0 
3 1 7 1 3 1 7 1 1 0 
3 1 7 1 3 6 5 1 1 0 
3 6 5 1 1 1 8 0.67 0.67 0 
3 6 5 1 1 3 30 1 1 0 
3 6 5 1 2 3 112 1 1 0 
3 6 5 1 2 4 35 1 1 0 
3 6 5 1 3 1 7 1 1 0 
3 6 5 1 3 6 5 1 1 0 

        sum 32 
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3.5  Path Sampling in a Non-rectangular Region 
 

Previously, path sampling was used for the rectangular study region. Now, the 

non-rectangular study region is considered. An example of such a region is shown in 

Figure 3.10.  

To apply path sampling in a non-rectangular study region, the first step is to 

try to create a rectangular region around the non-rectangular region, as shown in 

Figure 3.11. Then, ordinary path sampling can be used. 

Next, the new rectangular region is partitioned into an cr  (r rows and c 

columns) grid of rc quadrats or secondary units, as shown in Figure 3.12. Units with 

no area in the non-rectangular region, which are unit (1, 6), (3, 1), (5, 1), (5, 2), and 

(5, 6), are called “artificial units” from the rectangular region.  

Next step is creating all possible paths as shown in Figure 3.14. The created 

paths look like ordinary paths, as shown Figure 3.13; however, they are different in 

that the artificial units will not be visited. This means that the artificial units will not 

be in any path and will also not be observed. 

To estimate the population mean and total, the inclusion probabilities can be 

calculated by using the formula from (3.2), as with ordinary path sampling. 
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They are not affected by an artificial unit because the inclusion probability of unit (i, 

j) is a function of i, p, and q. Then, the Horvitz-Thompson estimator can be applied.   

To illustrate, the population y-value with a total of 264 and a mean of 10.56 is 

considered, as shown in Figure 3.15, and let the number of sample paths be p = 2. 

Then the inclusion probability of each unit is shown in Figure 3.16.  The estimates for 

each sample are shown in Table 3.13. 

 

           

           

           

            

         

 

Figure 3.10  A Non-rectangular Region 

 

 

           

           

           

            

         

 

Figure 3.11  New Rectangular Region 

 

            

            

            

            

            

 

Figure 3.12  New Rectangular Region Partitioned into 5x6 
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Figure 3.13  All Ordinary Possible Paths for Rectangular Region 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.14  All New Possible Paths for Non-rectangular Region 
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Figure 3.15  Population y-values with a Total of 264 and a Mean of 10.56 

  

 
 

Figure 3.16  Inclusion Probabilities of Non-rectangular Region 

 

Table 3.13  Estimates of the Mean and Variance Estimator for All Possible Samples 

                    for Non-rectangular Region 

 

 

 

 

 

 

 

 

 

Sample ps̂  ps̂  

1s =( 1P , 2P ) 6.34 304.18 

2s =( 1P , 3P ) 7.48 359.16 

3s =( 1P , 4P ) 8.10 388.86 

4s =( 2P , 3P ) 5.59 268.16 

5s =( 2P , 4P ) 6.96 334.13 

6s =( 3P , 4P ) 6.05 290.22 

Mean 10.56 264 

Bias 0 0 



 

CHAPTER 4 

 

COMPARSION OF THE SAMPLING DESIGNS 

 

 In this chapter, path sampling will be compared to cluster sampling, 

SRSWOR, and random walk sampling. Details of these sampling designs were 

discussed in chapter 2. Cluster sampling is used in practice because it is usually much 

cheaper and more convenient to sample in a cluster than randomly in a population; 

also, it is cost saving. Path sampling is a new sampling design proposed with the 

objective of being cost effective and convenient for sampling travel-it is more 

convenient and cost effective to sample and travel along the paths than randomly in 

the population. Thus, to investigate the efficiency of path sampling, it is compared to 

cluster sampling and SRSWOR in the present study. For the random walk design in a 

spatial setting, each unit links to the adjacent units, as shown in Figure 4.1 (a). Since 

sampling travel in random walk sampling for a spatial setting is from the initial unit to 

another adjacent unit until the last unit in the sample, which is like a route, as shown 

figure 4.1 (b), path sampling is compared to random walk sampling. 

 

(a) Population and Links    (b) Random Walk Sample 

                                 
 

Figure 4.1  Random Walk Sampling 
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4.1  Simulation Study 
 

Rare and non-rare population data are used in a simulation to examine the 

performance of path sampling compared to comparable sampling design, which in this 

research are SRSWOR, cluster sampling, and random walk sampling. For path 

sampling, SRSWOR, and cluster sampling, the estimator of the mean is unbiased, but 

for random walk sampling it is biased. It is known that 2ˆ ˆ ˆ( ) ( ) ( ( ))MSE V bias    . 

If ̂  is unbiased, then ˆ ˆ( ) ( )MSE V  since ˆ( )bias  = 0. Thus, for a simulation of 

1000 iterations, the formula used to estimate the MSE for four sampling designs is  

 
1000

2

1

1ˆ ˆ ˆ( ) ( )
1000 i

i
MSE   



              (4.1) 

 

4.1.1  Simulation Study for Rare Population  

Blue-winged teal data are used (Smith et al, 1995: 777-778) in Figure 4.2. for 

part of the simulation study, as it is a rare population; that is, most of the units have 

zero y-value.  

In cluster sampling, let a cluster be an entire column, consisting of 10 

secondary units, as shown in Figure 4.3. It is a cluster of size 10. The expected sample 

size of path sampling will be denoted as ( )E  , and the sample size used in the other 

designs is set equal the ceiling of the ( )E   for path sampling.  For cluster sampling, 

the number of clusters samples is set equal to the ceiling of 
10

)(E  for comparison 

purposes. Let cm  be the number of secondary units in a cluster sample.  Let the C.V. 

among clusters be the coefficient of variation of cluster totals. Let the total of cluster i 

be .iy . The formula of C.V. among clusters is .

.

v( )
( )

i

i

y
mean y

. In this population data, the 

C.V. among clusters is 4.26. 

 In SRSWOR, the sample size is set equal to ( )E   in order to compare it to 

path sampling. The sampling unit is each unit (i, j). For random walk sampling, the 
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link is defined as a link of adjacent units, and the number of waves for random walk 

sampling is set equal to ( )E  for comparison purposes. 

 The results from the simulations are shown in Table 4.1. According to these 

results, for starting units (1, 1) and (1, 10), path sampling is more efficient than cluster 

sampling since the relative efficiency is greater than 1. Noticeably, the y-values in 

columns 17, 18 and 19 are much higher than the others, so there is high variation 

among clusters in this population. This makes cluster sampling less efficient. 

However, path sampling is less efficient than SRSWOR since the relative efficiency is 

less than 1. Notice that when the starting unit is in a high–value column, as in unit 

(1,17), path sampling is more efficient than SRSWOR since the relative efficiency is 

greater than 1, and much more efficient than cluster sampling since the relative 

efficiency is greater than 4. Moreover, for any p and any starting unit, path sampling 

is more efficient than random walk sampling since the relative efficiency is greater 

than 1. 

  

 4.1.2  Simulation Study for a Non-Rare Population  

Two simulated data are considered. First, the simulated data in Figure 4.4 are 

used.  Each unit is Poisson distributed with a mean of 50. To compare path sampling 

to cluster sampling, let a cluster be an entire column. In this population, the C.V. 

among clusters is 0.04. The simulation results are shown in Table 4.2. 

 According to the simulation results in Table 4.2, path sampling is less 

efficient than cluster sampling, SRSWOR, and random walk sampling because the 

relative efficiency is less than 1. Noticeably, there is small variation of y-values, so 

there is a low variation among clusters (C.V. among clusters is 0.04) in this 

population. This makes cluster sampling more efficient. 

Next, simulated data are used, as shown in Figure 4.5. All units are the same 

as the population data in Figure 4.4, except column 6, 10, and 15. The y-values in 

these 3 columns are replaced with higher values. To compare path sampling to cluster 

sampling, let a cluster be an entire column. This population data have high variation 

among clusters, with a C.V among clusters at 1.46. The simulation results are shown 

in Table 4.3. 



 

 

88

 
 

Figure 4.2  Blue-winged Teal Data With C.V. among Clusters 4.26 

 

 
 

Figure 4.3  Clusters in Blue-winged Teal Data 
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Figure 4.4  Simulated Data: Each Unit is Poisson Distributed with a Mean of 50 with 

C.V. among Clusters of 0.04 

 

 

 
 

Figure 4.5  Simulated Data: Poisson Distributed with a Mean of 50 and Change 3 Columns 

with High Value with C.V. among Clusters of 1.46 
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Table 4.1  Results from the Simulations on Blue-winged Teal Data 
 
 
 
 
 
 
 
 
 
 

 
Table 4.1  (Continued) 

 
 
 
 

 

 

 

 

 

Note: The number in parentheses is the number of clusters selected in cluster sampling.     

          * means that such a starting unit is on a high y-value column j* or has high y-value column j*+1  

 R.E.cls = ˆ ˆ( )clsMSE  / ˆ ˆ( )psMSE   

R.E.srs = ˆ ˆ( )srsMSE  / ˆ ˆ( )psMSE   

p )(E  cm  

ˆ ˆ( )psMSE   
ˆ ˆ( )clsMSE 

 

ˆ ˆ( )srsMSE 
 

ˆ ˆ( )rwsMSE 
 

(1,1) (1, 10) 

(1,1) (1, 10) (1,17)* R.E.cls R.E.srs R.E. 
rws R.E.cls R.E.srs R.E. rws 

1 48 50 (5) 10389.35 11235.81 2728.62 13719.06 7445.01 36491.29 1.32 0.72 3.51 1.22 0.66 3.25 
2 83.33 90 (9) 4147.10 4385.75 452.91 5520.17 3256.30 25471.09 1.33 0.79 6.14 1.26 0.74 5.81 
3 113 120 (12) 2124.90 2092.34 106.04 3038.16 1774.36 22842.35 1.43 0.84 10.75 1.45 0.85 10.92 
4 138 140(14) 1043.16 1017.37 10.45 2010.08 1024.95 17174.65 1.93 0.98 16.46 1.98 1.01 16.88 
5 158.6 160 (16) 496.88 557.02 0.27 1124.91 628.68 17189.50 2.26 1.27 34.59 2.02 1.13 30.86 

p )(E  cm  

ˆ ˆ( )psMSE   
ˆ ˆ( )clsMSE 

 

ˆ ˆ( )srsMSE 
 

ˆ ˆ( )rwsMSE 
 

(1,17)* 

(1,1) (1, 10) (1,17)* R.E.cls R.E.srs R.E. rws 

1 48 50 (5) 10389.35 11235.81 2728.62 13719.06 7445.01 36491.29 5.03 2.73 13.37 
2 83.33 90 (9) 4147.10 4385.75 452.91 5520.17 3256.30 25471.09 12.19 7.19 56.24 
3 113 120 (12) 2124.90 2092.34 106.04 3038.16 1774.36 22842.35 28.65 16.73 215.42 
4 138 140(14) 1043.16 1017.37 10.45 2010.08 1024.95 17174.65 192.29 98.05 1642.99 
5 158.6 160 (16) 496.88 557.02 0.27 1124.91 628.68 17189.50 4233.67 2366.08 64693.61 

R.E.rws = ˆ ˆ( )rwsMSE  / ˆ ˆ( )psMSE 
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                   Table 4.2  Results from the Simulation on Non-rare Population with Low C.V. among Clusters 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

p )(E  cm  

ˆ ˆ( )psMSE   
ˆ ˆ( )clsMSE   ˆ ˆ( )srsMSE   ˆ ˆ( )rwsMSE   

(1,10) (1, 17) 

(1,10) (1, 17) R.E. cls R.E. srs R.E. rws R.E. cls R.E. srs R.E. rws 

1 48 50 (5) 92.46 94.72 0.80 0.86 2.71 0.0086 0.0093 0.0293 0.0084 0.0091 0.0286 
2 83.33 90 (9) 71.43 65.38 0.31 0.39 1.71 0.0043 0.0055 0.0239 0.0047 0.0060 0.0262 
3 113 120 (12) 51.82 55.73 0.15 0.21 1.43 0.0030 0.0041 0.0276 0.0028 0.0038 0.0257 
4 138 140(14) 40.21 39.49 0.11 0.12 1.13 0.0027 0.0031 0.0281 0.0027 0.0032 0.0286 
5 158.6 160 (16) 30.55 30.63 0.06 0.07 0.99 0.0021 0.0023 0.0324 0.0021 0.0023 0.0323 

91 
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 According to the simulation results in Table 4.3, for starting units (1, 2) and 

(1, 17), path sampling is more efficient than cluster sampling because the relative 

efficiency is greater than 1. Noticeably, the y-values in column 6, 10 and 15 are much 

higher than others, so there is high variation among clusters (C.V. of 1.46) in this 

population. This makes cluster sampling less efficient. Notice that when the starting 

unit is in a high-value column, as in units (1, 5), (1, 10), and (1, 15), path sampling is 

much more efficient than cluster sampling since the relative efficiency is greater than 

2. 

For starting units (1, 2) and (1, 17), path sampling is less efficient than 

SRSWOR since the relative efficiency is less than 1 for any p. However, for the 

starting unit in a high-value column, as with units (1, 5), (1, 10), and (1, 15), path 

sampling is more efficient than SRSWOR for p = 1 since the relative efficiency is 

greater than 1; however, it is less efficient than SRSWOR for p > 2 because the 

relative efficiency is less than 1. Moreover, path sampling is more efficient than 

random walk sampling since the relative efficiency is greater than 1 for any p and all 

starting units. 

 

4.1.3  Simulation Results Summary 

 In this simulation, for a rare population and a non-rare population with high 

variation of y-values among clusters, path sampling is more efficient than random 

walk sampling. With the starting or ending point on high y-value column for this kind 

of population, path sampling is more efficient than cluster sampling but less efficient 

than SRSWOR. However, for a non-rare population with low variation of y-values 

among clusters, path sampling is less efficient than cluster sampling, SRSWOR, or 

random walk sampling. 

Now we want to investigate the value C.V. among clusters that makes path 

sampling more efficient than cluster sampling, SRSWOR, and random walk sampling.  

According to the simulation on the population data with C.V. among clusters from 0.3 

to 2.4 and the path starting or ending point on a high y-value column, the results are 

shown in Figure 4.6. and appendix A. 
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Table 4.3  Results from Simulation on Non-rare Population with High C.V. among Clusters 

 

p ( )E   cm  
ˆ ˆ( )psMSE   

ˆ ˆ( )clsMSE   ˆ ˆ( )srsMSE 
 

ˆ ˆ( )rwsMSE 
(1,2) (1,5)* (1, 10)* 

(1,2) (1,5)* (1, 10)* (1, 15)* (1,17) R.E.cls R.E.srs R.E.rws R.E.cls R.E.srs R.E.rws R.E.cls R.E.srs R.E.rws 

1 48 50 (5) 1025.19 803.89 275.34 795.22 1084.99 4708.79 880.05 4564.87 4.59 0.86 4.45 5.86 1.09 5.68 17.10 3.20 16.58 

2 83.33 90 (9) 657.02 586.39 297.47 567.97 671.26 1960.08 387.34 2786.88 2.98 0.59 4.24 3.34 0.66 4.75 6.59 1.30 9.37 

3 113 120 (12) 478.45 354.00 239.42 361.43 460.14 1114.89 206.29 2297.49 2.33 0.43 4.80 3.15 0.58 6.49 4.66 0.86 9.60 

4 138 140(14) 368.14 264.31 160.38 262.70 320.87 700.68 115.73 1853.33 1.90 0.31 5.03 2.65 0.44 7.01 4.37 0.72 11.56 

5 158.6 160 (16) 266.58 198.86 130.28 207.81 271.03 413.80 70.07 1710.16 1.55 0.26 6.42 2.08 0.35 8.60 3.18 0.54 13.13 

 

Table 4.3  (Continued) 

 

p ( )E   cm  
ˆ ˆ( )psMSE   

ˆ ˆ( )clsMSE   ˆ ˆ( )srsMSE 
 

ˆ ˆ( )rwsMSE   
(1,15) * (1,17) 

(1,2) (1,5)* (1, 10)* (1, 15)* (1,17) R.E.cls R.E.srs R.E.rws R.E.cls R.E.srs R.E.rws 

1 48 50 (5) 1025.19 803.89 275.34 795.22 1084.99 4708.79 880.05 4564.87 5.92 1.11 5.74 4.34 0.81 4.21 

2 83.33 90 (9) 657.02 586.39 297.47 567.97 671.26 1960.08 387.34 2786.88 3.45 0.68 4.91 2.92 0.58 4.15 

3 113 120 (12) 478.45 354.00 239.42 361.43 460.14 1114.89 206.29 2297.49 3.08 0.57 6.36 2.42 0.45 4.99 

4 138 140(14) 368.14 264.31 160.38 262.70 320.87 700.68 115.73 1853.33 2.67 0.44 7.05 2.18 0.36 5.78 

5 158.6 160 (16) 266.58 198.86 130.28 207.81 271.03 413.80 70.07 1710.16 1.99 0.34 8.23 1.53 0.26 6.31 
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From this simulation, with the path starting or ending point on high a y-value 

column, when the C.V. among clusters is greater than 1, path sampling is more 

efficient than cluster sampling. When the C.V. among clusters is greater than 0.5, path 

sampling is more efficient than random walk sampling. When the C.V. among 

clusters is greater than or equal to 2.0, path sampling is more efficient than SRSWOR. 

 

4.1.4  Efficiency of Path Sampling 

          4.1.4.1  The number of sample paths (p) 

From the simulation, it can be seen that the greater the number of 

sample paths the more efficient is path sampling. 

          4.1.4.2  The starting and ending point 

From the simulation, we notice that if the starting or ending point is on 

high y-value column, then path sampling is more efficient. This can be explained by 

the following. The Horvitz-Thompson estimator, used in path sampling, is more 

efficient when inclusion probabilities are proportional to the y-value (Horvitz and 

Thompson, 1952: 663-685). Under path sampling, all units in the column with the 

starting unit, say starting column j*, have higher inclusion probabilities than those of 

units in other columns because in every path, column j* is the way out from the 

starting unit to observe data, while column j*+1 is the way back to the starting unit. 

Thus, the units in column j* and j*+1 have high probabilities to be included in the 

sample. Therefore, if column j* or j*+1 have high y-value, then path sampling is more 

efficient.  If a researcher could set a starting point in a high y-value column, path 

sampling would be more efficient. Since y-value is unknown, an auxiliary variable 

can be used to identify the high-value column. 

          4.1.4.3  The population data 

According to the simulation of the non-rare population with low 

variation of y-value among clusters, path sampling is not efficient, while in the rare 

and non-rare population data with high variation of y-value among cluster with the 

starting or ending point on high y-values, path sampling is efficient.  
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Figure 4.6  The Estimated MSE of Path Sampling, Cluster Sampling, SRSWOR, and 

Random Walk Sampling for Different C.V. among Clusters 
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4.2  Comment on the Case p = 1 
 

An unbiased estimator of variance )ˆ( HTv   is )ˆ(ˆ HTv   if all of the joint 

inclusion probabilities are greater than zero (Horvitz and Thompson, 1952: 670). In 

path sampling, there exist zero joint inclusion probabilities when the number of 

sampled paths is set equal to 1; that is p = 1. To investigate the biasedness of the 

estimator of variance in this case, 10 simulated population data were studied. The 

results are shown in Table 4.4. 

From the simulation results in Table 4.4, when p = 1, it can be seen that there 

exist zero joint inclusion probabilities, except for a population of two columns. Thus, 

ˆ ˆ( )psv  is a biased estimator for variance when p=1, except for a population of two 

columns. 
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Table 4.4  Unbiasedness of  ˆ ˆ( )psv   When p =1 

 

population r c q p All ( , )i j >0 
Unbiasedness of  

ˆ ˆ( )psv   

1 3 2 2 1 yes ue 
2 4 2 3 1 yes ue 
    2 yes ue 

3 5 2 4 1 yes ue 
    2 yes ue 
    3 yes ue 

4 3 3 2 1 no be 
5 4 3 3 1 no be 
    2 yes ue 

6 5 3 4 1 no be 
    2 yes ue 
    3 yes ue 

7 6 3 5 1 no be 
    2 yes ue 
    3 yes ue 
    4 yes ue 

8 7 3 6 1 no be 
    2 yes ue 
    3 yes ue 
    4 yes ue 

9 8 6 7 1 no  be 
    2 yes ue 
    3 yes ue 
    4 yes ue 

10 10 20 9 1 no  be 
    2 yes ue 
    3 yes ue 
    4 yes ue 

 
Note: r is the number of population columns. 
          c is the number of population rows. 
           q is the number of population paths 
           p is the number of paths selected. 
           ue means that ˆ ˆ( )psv   is unbiased. 
           be means that ˆ ˆ( )psv  is biased. 
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4.3  Comparison of Cost of Path Sampling, SRSWOR, Cluster Sampling, 

and  Random Walk Sampling 

 

 We consider cost as a function of the distance traveled by counting the units 

traveled to observe all units in a sample. In other words, we consider the number of 

units traveled.  

 Let pd , sd , cd  and rd be the number of units traveled to observe all units in a 

sample under path sampling, SRSWOR, cluster sampling, and random walk sampling, 

respectively.  

 

 4.3.1  Comparison of the Cost of Path Sampling to SRSWOR  

 When the samples from the two sampling designs for the sample same size are 

obtained, we want to know which one is more cost effective. Since a sample size of 

path sampling varies from sample to sample, the sample size under SRSWOR will be 

set equal to the expected sample size under path sampling for comparison purposes.  

 Let ( , )i jI  take the value 1 when a unit (i, j) is included in the sample, and 0 

otherwise. The expectation of ( , )i jI  is E( ( , )i jI ) = ( , )( 1)i jP I  .The number of distinct 

units,  , is a random variable; namely,  

    ( , )
1 1

r c

i j
i j

I
 

                          (4.3) 

 

If ),( ji is the probability that unit (i, j) is included in the sample, then 

)()1( ),(),(),( jijiji IEIP  . The expected sample size under path sampling is  

 

    
 


r

i

c

j
jiE

1 1
),()(               (4.4) 

 (Thompson and Seber, 1996). 
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The number of units traveled to observe all units in a sample under path sampling is 

the expected sample size. It can be written as 

 

    )( pdE = )(E .              (4.5) 

 

On the other hand, a simple random sample without replacement of size ( )E   is 

taken. To observe all units in a simple random sample, other units not in the sample 

must be traveled.   

 Let sc be the number of additional units, not included in the sample, traveled 

to observe all )(E  units in the simple random sample. sc is always greater than or 

equal to zero, so )( scE ≥ 0. Thus, the number of units traveled to observe all units in a 

sample under SRSWOR is 

 

    sd = ( ) sE c                (4.6) 

 

Then, its expectation is 

 

)( sdE = )()( scEE   

                                               = )()( sp cEdE   since )()( EdE p   

                         ≥ )( pdE   since )( scE ≥0 

 

( )sE d = ( )pE d  if sc = 0. Moreover, sc = 0 when the sample size is equal to the 

population size. ( )sE d > ( )pE d . If sc > 0. Moreover, sc > 0 when the sample size is 

less than the population size.  

When the sample size is less than the population size, for the same sample 

size, path sampling yields the smaller number of units traveled than SRSWOR. Thus, 

path sampling is more cost effective. 
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 4.3.2  Comparison Cost of Path Sampling to Cluster Sampling 

Suppose that a population of r rows and c columns consists of cN clusters. 

Each cluster consists of M units. That is, rcMNc  . A cluster sample is a simple 

random sample of cn clusters. 

To compare the cost of path sampling to cluster sampling, a final sample size 

under cluster sampling will be set equal to the expected sample size under path 

sampling for comparison purposes. That is, ( )cn M E  . 

For the same sample size, which sampling design is more cost effective? To 

observe all of the units in a cluster sample, the units outside a sample must be 

traveled. Let cc be the number of additional units, not included in the sample, traveled 

to observe all units in a cluster sample. cc is always greater than or equal to zero. 

So, )( ccE ≥ 0. Thus, the number of units traveled to observe all units in a cluster 

sample is  

 

    ( )c cd E c                (4.7) 

 

and the expectation number is  

 

( ) ( ) ( )c cE d E E c   

                                                              )()( cp cEdE   since )()( EdE p   

                                                    ≥ )( pdE  since )( ccE ≥ 0 

 

( )cE d = ( )pE d  if cc = 0. Moreover, cc = 0 when the sample size is equal to the 

population size. ( )cE d > ( )pE d . If cc > 0. Moreover, cc > 0 when the sample size is 

less than the population size.  

When the sample size is less than the population size, for the same sample 

size, path sampling yields the smaller number of units traveled than cluster sampling. 

Thus, path sampling is more cost effective. 



 

 

102

 

4.3.3  Comparison of the Cost of Path Sampling to Random Walk 

Sampling 

 The sample size under random walk sampling will be set equal to the expected 

sample size under path sampling, ( )E  , for comparison purposes. The initial unit is 

selected by simple random sampling. To continue a random walk in each wave, the 

next unit is randomly selected from the adjacent units of the current unit until 

the )(E th wave is reached. Finally, the random walk sample of size )(E  is obtained.  

 To observe all units in the random walk sample, other units not included in the 

sample must be traveled.  The starting point for traveling is the unit on edge of the 

rectangular region nearest the initial unit of random walk sample. Ending point is the 

unit on the edge of the region nearest the unit in the last wave. Let rc  be the number 

of additional units, not included in the sample, traveled to observe all )(E  units in 

the random walk sample. rc  is always greater than or equal to zero, so ( )rE c ≥ 0. 

Thus, the number of units traveled to observe all units in a sample under the random 

walk sample is 

 

    rd = ( ) rE c                (4.8) 

Then, its expectation is 

( )rE d = ( ) ( )rE E c   

                                               = ( ) ( )p rE d E c  since )()( EdE p   

                         ≥ )( pdE   since ( )rE c ≥0 

 

( )rE c = ( )pE d  if rc = 0. Moreover, rc = 0 when the sample size is equal to 

the population size. ( )rE c > ( )pE d . If rc > 0. Moreover, rc > 0 when the sample size 

is less than the population size.  

When the sample size is less than the population size, for the same sample 

size, path sampling yields a smaller number of units traveled than random walk 

sampling. Thus, path sampling is more cost effective. 
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4.4  Cost Simulation 
 

The simulation consists of 1000 iterations by using R program to examine the 

efficiency of path sampling, SRSWOR, cluster sampling, and random walk sampling. 

Visual Basic program is used to examine the number of units traveled for the cluster 

and simple random sample. 

To find the number of units traveled in a simple random sample and cluster 

sample, the starting unit is set to be the sampled unit nearest the edge of the region. 

Then, all possible traveling routes of all units in a sample are created. For each 

traveling route, the number of units traveled is counted.  The route with minimum 

number of units traveled will be used for comparison to path sampling. 

To find the number of units traveled in a random walk sample, the starting 

point for traveling is the unit on the edge of the rectangular region nearest the initial 

unit of the random walk sample. The ending point is the unit on the edge of the region 

nearest the unit in the last wave. 

The Longleaf Pin data in Figure 4.7, with a total abundance of 584, are used in 

the simulation. They consists of 400 secondary units and 100 primary units (clusters) 

of size 4. The simulation results are shown in Table 4.5   For p = 1 in path sampling, 

the expected number of units traveled for cluster sampling is 1.762 times the expected 

number of units traveled for path sampling. That is, the expected number of units 

traveled is 76% higher for cluster sampling. Also, the expected number of units 

traveled for SRSWOR is 4.373 times the expected number of units traveled for path 

sampling. The expected number of units traveled for random walk sampling is 1.091 

times the expected number of units traveled for path sampling.  From the table 4.5, we 

can see that among the four sampling designs, path sampling has the smallest value of 

the expected number of units traveled for any p. 

 However, for any p, the estimated variances of path sampling are greater than 

those of cluster sampling and SRSWOR, so path sampling is less efficient than cluster 

sampling and SRSWOR. Notice that in this population, there is a low variation of y-

values among clusters (C.V. among clusters of 0.77), so cluster sampling is more 



 

 

104

efficient. For this population, path sampling is more efficient than random walk 

sampling since path sampling gives smaller estimated variances (MSE) than random 

walk sampling.  

Consider the estimated variance multiplied by the expected number of units 

traveled. If this value is small, this means that the sampling design is more efficient 

and less distance is travelled. According to table 4.5, path sampling gives a slightly 

larger value of multiplication than cluster sampling and SRSWOR but smaller than 

random walk sampling. 

Note that the Horvitz-Thompson estimator is efficient when the y-value is 

proportional to an inclusion probability. In path sampling, the units in starting and 

ending column have high inclusion probabilities due to the overlapping of paths. 

Therefore, path sampling is more efficient when starting and ending columns have 

high y-value, as can be seen in the following simulation for the modified Longleaf Pin 

data. 

Next, the modified Longleaf Pin data shown in Figure 4.8 are used for 

simulation. This population has a higher y-value in column 10 than the original 

Longleaf Pin data. Moreover, these population data have high variation of y-values 

among clusters (C.V. among clusters of 2.02). The results of the simulation with 

starting units (1, 10), which is in the high y-value column, are shown in Table 4.6. 

According to the results in Table 4.6, the starting and ending columns have 

high y-value and high inclusion probabilities. Thus, for any p, the estimated variance 

for path sampling is smaller than cluster sampling and SRSWOR, and the relative 

efficiencies are greater than 1. Hence, path sampling is more efficient than cluster 

sampling and SRSWOR. Random walk sampling has a larger MSE than path 

sampling, so path sampling is more efficient than random walk sampling for this 

population. 

For p = 1 in path sampling, the expected number of units traveled for cluster 

sampling is 1.779 times the expected number of units traveled for path sampling. 

Also, the expected number of units traveled for SRSWOR is 4.479 times the expected 

number of units traveled for path sampling. The expected number of units traveled for 

random walk sampling is 1.081 times the expected number of units traveled for path 
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sampling. From the table we can see that among the four sampling designs, path 

sampling has the smallest value of expected number of units traveled for any p.  

Consider the estimated variance multiplied by the expected number of units 

traveled. If this value is small, this means that the sampling design is more efficient 

and less distance is travelled. From table 4.6, path sampling gives the smallest value 

among the four sampling designs. 

Summary Results of Cost Simulation is following. From the simulation results, 

it can be seen that among the four sampling designs, path sampling has the smallest 

value of the expected number of units traveled for the same sample size.  Thus, path 

sampling yields less distance travelled. When the main cost of sampling is the number 

of units traveled, path sampling saves cost. However, path sampling is less efficient 

than cluster sampling and SRSWOR in a population data with low variation of y-

values among clusters (the Longleaf Pin data with C.V. among clusters of 0.77). On 

the other hand, in the case of population data with high variation of y-values among 

clusters (the modified Longleaf Pin data with C.V. among clusters of 2.02) with the  

path starting or ending on a high y-value column, path sampling is more efficient than 

cluster sampling and SRSWOR. 

Compared to random walk sampling, path sampling is more efficient for both 

original and modified Longleaf Pin data. The expected number of units traveled under 

random walk sampling is slightly greater than that of path sampling. 
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Figure 4.7  The Longleaf Pin Data with 100 Clusters of Size 4 and C.V. among    

Clusters of 0.77 

 
 

Figure 4.8  The Modified Longleaf Pin Data with 100 Clusters of Size 4 and C.V. 

among Clusters of 2.02
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Table 4.5  Estimated Variance and MSE and Expected Number of Units Traveled Under Path Sampling, SRSWOR, Cluster Sampling   

                  (Cluster size = 4) and Random Walk Sampling for Longleaf Pin Data with a Simulation of 1000 Iterations (with Starting Unit (1, 10)) 

p Expected sample size ˆ ˆ( )psMSE   ˆ ˆ( )clsMSE   ˆ ˆ( )srsMSE   ˆ ˆ( )rwsMSE   R.E.cls R.E.srs R.E.rws 
  PS Cls SRS 

1 58 56 (14) 58 0.188 0.074 0.057 0.456 0.394 0.300 2.421 
2 98.77 100(25) 99 0.100 0.037 0.029 0.310 0.372 0.293 3.115 
3 134.31 136(34) 135 0.066 0.027 0.019 0.299 0.402 0.294 4.519 
4 166.63 168(42) 167 0.048 0.018 0.013 0.238 0.368 0.271 4.917 
5 196.38 196(49) 196 0.039 0.013 0.010 0.200 0.333 0.249 5.102 
6 223.86 224(56) 224 0.029 0.010 0.007 0.189 0.338 0.241 6.408 
7 249.21 248(62) 249 0.024 0.008 0.006 0.177 0.334 0.236 7.273 

 

Table 4.5  (Continued) 

p Expected sample size Expected number of units traveled 
R.D.cls R.D.srs R.D.rws 

ˆMSE * Expected number of units 
traveled 

 PS Cls SRS PS Cls SRS RWS PS Cls SRS RWS 
1 58 56 (14) 58 58.4 102.9 255.4 63.7 1.762 4.373 1.091 10.998 7.638 14.431 29.047
2 98.77 100(25) 99 97.7 156.4 327.9 104.9 1.601 3.356 1.074 9.724 5.790 9.551 32.519
3 134.31 136(34) 135 135.3 191.3 350.2 140.8 1.414 2.588 1.041 8.952 5.094 6.819 42.099
4 166.63 168(42) 167 166.8 216.5 361.5 173.9 1.298 2.167 1.043 8.073 3.858 4.739 41.388
5 196.38 196(49) 196 196.4 241.6 372.4 201.8 1.230 1.896 1.027 7.699 3.158 3.635 40.360
6 223.86 224(56) 224 225.1 261.3 378.3 229.8 1.161 1.681 1.021 6.639 2.608 2.694 43.432
7 249.21 248(62) 249 247.8 281.5 381.7 253.8 1.136 1.540 1.024 6.031 2.287 2.193 44.923

 

Note: R.D. denotes the relative distance. 
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Table 4.6  Estimated Variance and Expected Number of Units Traveled Under Path Sampling, Cluster Sampling (Cluster size = 4) and    

                 Random Walk Sampling for the Modified Longleaf Pin Data with a Simulation of 1000 Iterations (with Starting Unit (1,10)) 

 

p Expected sample size ˆ ˆ( )psMSE   ˆ ˆ( )clsMSE   ˆ ˆ( )srsMSE   ˆ ˆ( )rwsMSE   R.E.cls R.E.srs R.E.rws 
  PS Cls SRS 
1 58 56 (14) 58 0.334 1.012 0.995 2.596 3.033 2.982 7.782 
2 98.77 100(25) 99 0.133 0.550 0.500 1.701 4.133 3.758 12.794 
3 134.31 136(34) 135 0.079 0.348 0.335 1.375 4.398 4.244 17.403 
4 166.63 168(42) 167 0.056 0.258 0.221 1.337 4.582 3.929 23.789 
5 196.38 196(49) 196 0.043 0.169 0.158 1.144 3.910 3.646 26.456 
6 223.86 224(56) 224 0.035 0.143 0.125 1.082 4.073 3.555 30.854 

7 249.21 248(62) 249 0.030 0.117 0.101 0.989 3.851 3.351 32.694 
  

Table 4.6  (Continued) 
 

p Expected sample size Expected number of units traveled 
R.D.cls R.D.srs R.D.rws 

ˆMSE * Expected number of units traveled 

 PS Cls SRS PS Cls SRS RWS PS Cls SRS RWS 
1 58 56 (14) 58 58.9 104.8 263.8 63.7 1.779 4.479 1.081 19.648 106.039 262.417 165.365
2 98.77 100(25) 99 98.7 156.7 325.2 104.8 1.588 3.295 1.062 13.123 86.113 162.477 178.265
3 134.31 136(34) 135 134.3 191.2 352.1 140.8 1.424 2.622 1.048 10.611 66.444 118.059 193.600
4 166.63 168(42) 167 167.1 216.3 362.8 173.0 1.294 2.171 1.035 9.392 55.704 80.124 231.301
5 196.38 196(49) 196 194.7 241.8 373.2 201.7 1.242 1.917 1.036 8.419 40.886 58.835 230.745
6 223.86 224(56) 224 224.9 262.3 379.8 229.8 1.166 1.689 1.022 7.887 37.465 47.345 248.644
7 249.21 248(62) 249 247.9 282.2 383.4 255.0 1.138 1.547 1.029 7.499 32.878 38.859 252.195
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CHAPTER 5 

 

SUMMARY DISCUSSION AND FUTURE RESEARCH 
 

5.1  Summary and conclusions 
 

 Consider the population region partitioned into an cr  (r rows and c 

columns) grid of rc quadrats or secondary units. The population consists of rc spatial 

units. Each population unit is labeled with 2 coordinates, say (i, j), which are the row 

and column of the unit, respectively, for i = 1, 2, 3,…, r and j = 1, 2, 3, …, c. 

Associated with each unit (i, j) , the value of the population variable of interest is 

denoted as 
),( ji

y .  The parameter of interest in this paper is the population mean  

 

 
  ),(

),(
1 1

),(
11

jiall
ji

r

i

c

j
ji y

rc
y

rc
 .             (5.1) 

 

 For a spatial population of r rows, there are q = r-1 possible paths. In general, 

a path k in the spatial setting population of r rows and c columns with the starting unit 

(1, j*) can be written as 

 

1 2 3 1 2 1 1 1

1 2 1 1 2 1 1 1
2 1 1, 1

* * * * * *
k

* *

*

P (( , j ), ( , j ), ( , j ),...,(k, j ), (k, j ), (k, j ),..., (k, ) ,(k , ),

(k , ),...,(k ,c),(k,c), (k,c ), (k,c ), ..., (k, j ), (k , j ),
(k , j ), ..., (  j* ))

   

      

  

 

for k = 1, 2, 3,…, q = r-1. 

 

p paths are selected by SRSWOR from q all possible paths in the population. Let kp  

denote a path k in the sample for k = 1, 2, 3, …, p. The sample consists of all units in 

the selected paths. The sample is represented as )...,,,,( 321 ps ppppp  . 
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The probability of selecting a sample is 



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11)(  since paths are selected 

by SRSWOR, and the inclusion probability of path k is
1


r

p
q
p

k . Although each 

path has an equal probability of selection, the units do not have an equal probability of 

selection, as the same unit may be in one or more paths. There is an overlapping of 

paths. It is assumed that the units are sampled in a logical manner such that all units 

will only be observed once.  Finally, the researcher can define the rows and columns 

arbitrarily; thus, path sampling is not limited in its starting or ending position. 

The inclusion probability of a unit (i, j) can be written, in generic formula, as 
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Note that, for any constant a < b, it is defined that 0







b
a

. 

The joint inclusion probabilities is 
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f  can be found as follows. 

Case1:  For Units of Type 1 

For i, i   = 1, 2, 3, …, r   and j, j= j*and j*+1 

 

2),min(  iif              (5.4) 

  

Note that if f < 0, then it is set that f = 0.  

 

Case 2:  For Units of Type 1 and 2 

For i = 1, 2, 3, …, r   and j= j*and j*+1 and i = 2, 3, …, r-1 and j= 1, 2, 3,…, 

j*-1, j*+2, j*+3,…, c 

 

2
3 1
4 2

i if i i
f i if i i

i if i i

 
    
   

             (5.5) 

 

Note that if f < 0, then it is set that f = 0.  

 

Case 3:  For Units of Type 1 and 3 

For i = 1, 2, 3, …, r   and j= j*and j*+1 and i = 1 and  r   and j= 1, 2, 3,…, j*-

1, j*+2, j*+3,…, c 
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             (5.6) 

 

Note that if f < 0, then it is set that f = 0.  

 

Case 4:  For Units of Type 2 

 For   i, i = 2, 3, …, r-1 and  j, j= 1, 2, 3,…, j*-1, j*+2, j*+3,…, c 
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Note that if f < 0, then it is set that f = 0.  

 

Case 5:  For Units of Type 2 and 3 

For i = 2, 3, …, r-1 and  j = 1, 2, 3,…, j*-1, j*+2, j*+3,…, c and      i = 1 and  r   

and j= 1, 2, 3,…, j*-1, j*+2, j*+3,…, c 
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Note that if f < 0, then it is set that f = 0.  

 

Case 6:  For Units of Type 3 

For i, i = 1 and  r   and  j, j= 1, 2, 3,…, j*-1, j*+2, j*+3,…, c 

 










iiq
iiq

f
2
1

           (5.9) 

 

Let )...,,,,( 321 ps ppppp  denote the sampled paths. Let s denote the set of distinct 

units in the sample. By using the Horvitz-Thompson estimator (Horvitz-Thompson, 

1952), the unbiased estimator of the population mean under path sampling is    

    

             



sji ji

ji
ps

y
rc ),( ),(

),(1ˆ


 .           (5.10) 

  

Let ),( jiI  be the indicator function taking the value of one if unit ),( ji  is selected in 

the sample and 0 otherwise. It can be written as 
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




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sampletheinincludedisjiunitif
I ji 0

),(1
),(          (5.11) 

 

Therefore, ps̂ can be written in the alternative form  
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ps̂ is the unbiased estimator for population mean  . The variance of ps̂  is  
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and the estimated variance is  
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It is unbiased.  This variance estimate may be negative. A researcher may use an 

alternative variance estimator, such as that proposed by Sen (1953) and Yate and 

Grundy (1953), which is claimed to be less often negative. 

According to the study, when p = 1, there exist zero joint inclusion 

probabilities, except for a population of two columns. Thus, ˆ ˆ( )psv  is a biased 

estimator for variance ˆ( )psv  when p = 1, except for a population of two columns. 

 To apply path sampling in a non-rectangular region, the first step is to try to 

create a rectangular region around non-rectangular region. Then ordinary path 

sampling is applied. 
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5.2  Discussion 
 
Path sampling utilizes all of the observations over the units traveled, while 

other sampling methods, such as SRSWOR and cluster sampling, travel from place to 

place to observe all of the units in the sample. Thus, for the same sample size, path 

sampling yields a smaller number of units traveled to observe all units in the sample 

than cluster sampling, SRSWOR, and random walk sampling. 

Path sampling can be very cost effective for sampling many units.  This is true 

when cost is mainly a function of distance travelled, as the number of units sampled 

equals the number of units travelled.  In the simulations in the present study the 

number of units sampled for all sampling designs were comparable; however, in 

situations with budget constraints it is possible that a researcher could sample more 

units with path sampling, thus giving it an added advantage in this respect.  

Unfortunately, for path sampling the number of units in the final sample is random 

and can vary a lot as a result of the number of units in each path.  Therefore the 

expense of sampling when cost is a function of distance travelled would also be 

random, possibly creating budget problems.  In this study, path sampling was used in 

the case of objects that could not move, such as trees and rocks. 

To investigate efficiency, path sampling was compared to cluster sampling, 

SRSWOR, and random walk sampling. From the results of the simulation, it was seen 

that for rare and non-rare populations with high variation of y-values among clusters, 

path sampling was more efficient than random walk sampling. With the path starting 

or ending point on a high y-value column for this kind of population, path sampling is 

more efficient than cluster sampling and SRSWOR. However, for a non-rare 

population with low variation of y-value among clusters, path sampling is less 

efficient than cluster sampling, SRSWOR, and random walk sampling. 

The simulation results with the path starting or ending point on the high y-

value column show that when the C.V. among clusters is greater than 1.0, path 

sampling is more efficient than cluster sampling. When the C.V. among clusters is 

greater than 0.5, path sampling is more efficient than random walk sampling. When 
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the C.V. among clusters is greater than or equal to 2.0, path sampling is more efficient 

than SRSWOR. 

In this study, it was found that, if a starting point could be set in a high-value 

column, path sampling would be more efficient. Since the y-value is unknown, the 

auxiliary variable can be used to identify the high-value column. 

The cost of path sampling is compared to cluster sampling, SRSWOR, and 

random walk sampling. The cost is considered as the number of units traveled to 

observe all of the units in a sample. According to the simulation results, path sampling 

has a smaller value of the expected number of units traveled than cluster sampling and 

SRSWOR for any p, but a little smaller than random walk sampling.  

Path sampling is good in the situation where traveling from place to place is 

difficult and of high cost. Assume, for example, that one wants to estimate the number 

of plants in a pond. With SRSWOR or cluster sampling, travel by boat from place to 

place for sampling is not convenient and is time consuming. Using path sampling, one 

can travel in the sample paths by boat, which is more convenient and saves time. 

Moreover, one may use random walk sampling since one can travel in the route or 

path to observe all of the sampled units, which is convenient, as with path sampling. 

However, travelling from the edge of the region to the starting unit and travelling 

back from the last unit in a wave results in more units traveled, and are more time 

consuming than with path sampling. Path sampling should be implemented when two 

conditions are met–when the cost of the sampling is mainly a function of the distance 

travelled, and when it is believed that the y-values are positively correlated with the 

probability of selection.   

 

5.3  Recommendations for Future Research 
 

In this study, all possible paths are created in a certain way, so that inclusion 

probabilities and joint inclusion probabilities can be obtained and the Horvitz-

Thompson estimator can be applied. Another form of path could be created that is 

more convenient and less expensive. Moreover, other estimators could be created to 

improve the precision. In a rare and clustered population, adaptive path sampling 

could be of interest. 
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Appendix A 

Estimated Variance, Mean Squared Error Estimated, and Relative 

Efficiency of Path Sampling (ps), Cluster Sampling (cls), SRSWOR (srs), and Random Walk Sampling (rws) with 

starting unit in high y-value column (1, 15) 

 

C.V. p E( ) cm  ˆ ( )psMSE   ˆ ( )clsMSE   ˆ ( )srsMSE   ˆ ( )rwsMSE   R.E.cls R.E.srs 
R.E.rws 

0.3 1 48 50 (5) 222.09 43.26 13.52 64.57 0.19 0.06 0.29 

2 83.33 90 (9) 128.57 16.72 6.18 56.53 0.13 0.05 0.44 

3 113 120 (12) 87.67 9.17 3.46 43.22 0.10 0.04 0.49 

4 138 140(14) 61.78 5.65 2.09 40.22 0.09 0.03 0.65 

5 158.6 160 (16) 44.66 3.56 1.21 39.27 0.08 0.03 0.88 

0.4 1 48 50 (5) 193.91 74.51 27.21 113.12 0.38 0.14 0.58 

2 83.33 90 (9) 132.13 29.54 11.97 75.25 0.22 0.09 0.57 

3 113 120 (12) 84.75 16.24 6.29 71.16 0.19 0.07 0.84 

4 138 140(14) 62.52 10.50 3.51 59.23 0.17 0.06 0.95 

5 158.6 160 (16) 41.67 6.64 2.20 53.33 0.16 0.05 1.28 
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(Continued) 

C.V. p E( ) cm  ˆ ( )psMSE   ˆ ( )clsMSE   ˆ ( )srsMSE   ˆ ( )rwsMSE   R.E.cls R.E.srs R.E.rws 

0.5 1 48 50 (5) 285.17 123.94 32.25 235.1 0.43 0.11 0.82 

2 83.33 90 (9) 159.74 50.09 15.57 144.77 0.31 0.10 0.91 

3 113 120 (12) 103.75 27.49 9.14 103.11 0.26 0.09 0.99 

4 138 140(14) 70.46 16.99 4.78 98.34 0.24 0.07 1.40 

5 158.6 160 (16) 50.79 10.53 2.93 92.54 0.21 0.06 1.82 

0.6 1 48 50 (5) 239.85 190.96 37.83 242 0.80 0.16 1.01 

2 83.33 90 (9) 135.45 73.76 17.12 164.21 0.54 0.13 1.21 

3 113 120 (12) 91.71 40.36 9.58 102.22 0.44 0.10 1.11 

4 138 140(14) 60.63 25.60 5.95 111.5 0.42 0.10 1.84 

5 158.6 160 (16) 43.77 15.84 3.23 86.96 0.36 0.07 1.99 

0.7 1 48 50 (5) 238.26 278.66 42.14 302.83 1.17 0.18 1.27 

2 83.33 90 (9) 134.31 107.17 19.69 207.61 0.80 0.15 1.55 

3 113 120 (12) 89.59 58.52 9.92 167.53 0.65 0.11 1.87 

4 138 140(14) 61.63 36.39 61.63 137.36 0.59 1.00 2.23 

5 158.6 160 (16) 43.23 22.78 3.69 121.8 0.53 0.09 2.82 
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(Continued) 

C.V. p E( ) cm  ˆ ( )psMSE   ˆ ( )clsMSE   ˆ ( )srsMSE   ˆ ( )rwsMSE   R.E.cls R.E.srs R.E.rws 

0.8 1 48 50 (5) 325.96 332.77 56.16 445.05 1.02 0.17 1.37 

2 83.33 90 (9) 195.16 131.49 27.07 292.59 0.67 0.14 1.50 

3 113 120 (12) 116.99 72.68 116.99 230.51 0.62 1.00 1.97 

4 138 140(14) 82.03 8.04 8.04 187.12 0.10 0.10 2.28 

5 158.6 160 (16) 52.26 4.79 4.79 179.3 0.09 0.09 3.43 

0.9 1 48 50 (5) 392.98 503.16 64.44 527.1 1.28 0.16 1.34 

2 83.33 90 (9) 207.04 199.09 25.94 357 0.96 0.13 1.72 

3 113 120 (12) 120.20 108.06 15.25 311.98 0.90 0.13 2.60 

4 138 140(14) 90.31 67.64 8.49 257.83 0.75 0.09 2.86 

5 158.6 160 (16) 54.33 42.74 5.33 233.19 0.79 0.10 4.29 

1.0 1 48 50 (5) 680.67 847.11 115.05 721.55 1.24 0.17 1.06 

2 83.33 90 (9) 333.35 342.93 56.56 442.86 1.03 0.17 1.33 

3 113 120 (12) 199.19 177.43 30.84 369.55 0.89 0.15 1.86 

4 138 140(14) 145.71 114.44 16.08 317.74 0.79 0.11 2.18 

5 158.6 160 (16) 91.23 69.69 9.48 245.58 0.76 0.10 2.69 

 



 

 

 

 

 

126 

(Continued) 

C.V. p E( ) cm  ˆ ( )psMSE   ˆ ( )clsMSE   ˆ ( )srsMSE   ˆ ( )rwsMSE   R.E.cls R.E.srs R.E.rws 

1.1 1 48 50 (5) 549.40 1096.92 146.02 892.14 2.00 0.27 1.62 

2 83.33 90 (9) 318.00 456.90 62.65 504.27 1.44 0.20 1.59 

3 113 120 (12) 198.21 232.21 37.98 450.42 1.17 0.19 2.27 

4 138 140(14) 139.31 152.31 20.83 379.57 1.09 0.15 2.72 

5 158.6 160 (16) 92.61 92.90 13.10 309.16 1.00 0.14 3.34 

1.2 1 48 50 (5) 971.60 2197.71 411.30 1897.4 2.26 0.42 1.95 

2 83.33 90 (9) 524.25 931.62 171.78 1209.16 1.78 0.33 2.31 

3 113 120 (12) 330.02 463.00 102.33 981.04 1.40 0.31 2.97 

4 138 140(14) 225.01 304.73 56.41 778.94 1.35 0.25 3.46 

5 158.6 160 (16) 145.21 191.57 31.65 722.51 1.32 0.22 4.98 

1.4 1 48 50 (5) 992.62 3921.42 583.56 2602.58 3.95 0.59 2.62 

2 83.33 90 (9) 517.33 1544.92 260.50 1649.18 2.99 0.50 3.19 

3 113 120 (12) 326.87 885.29 150.89 1280.47 2.71 0.46 3.92 

4 138 140(14) 216.99 565.70 80.38 1211.06 2.61 0.37 5.58 

5 158.6 160 (16) 139.16 285.02 53.12 1044.11 2.05 0.38 7.50 
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(Continued) 

C.V. p E( ) cm  ˆ ( )psMSE   ˆ ( )clsMSE   ˆ ( )srsMSE   ˆ ( )rwsMSE   R.E.cls R.E.srs R.E.rws 

1.6 1 48 50 (5) 1924.32 6951.18 1313.09 5355.34 3.61 0.68 2.78 

2 83.33 90 (9) 1042.90 2955.36 644.38 3197.78 2.83 0.62 3.07 

3 113 120 (12) 640.77 1715.54 342.57 2668.85 2.68 0.53 4.17 

4 138 140(14) 419.66 1097.71 193.45 2240.85 2.62 0.46 5.34 

5 158.6 160 (16) 268.09 599.92 122.94 2238.1 2.24 0.46 8.35 

1.8 1 48 50 (5) 1494.76 11399.61 1657.03 9636.85 7.63 1.11 6.45 

2 83.33 90 (9) 959.53 4850.70 745.82 5760.54 5.06 0.78 6.00 

3 113 120 (12) 647.79 2535.40 462.57 4396.89 3.91 0.71 6.79 

4 138 140(14) 460.33 1620.48 251.24 4039.48 3.52 0.55 8.78 

5 158.6 160 (16) 301.15 955.87 149.13 4086.27 3.17 0.50 13.57 

2.0 1 48 50 (5) 204926.00 675254.70 246886.90 1505684 3.30 1.20 7.35 

2 83.33 90 (9) 90773.99 266261.20 109102.30 842355.3 2.93 1.20 9.28 

3 113 120 (12) 53918.19 133291.50 59779.90 631202.34 2.47 1.11 11.71 

4 138 140(14) 31208.34 92419.92 35123.77 639559.8 2.96 1.13 20.49 

5 158.6 160 (16) 18682.83 57969.27 19985.13 524275.7 3.10 1.07 28.06 
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C.V. p E( ) cm  ˆ ( )psMSE   ˆ ( )clsMSE   ˆ ( )srsMSE   ˆ ( )rwsMSE   R.E.cls R.E.srs R.E.rws 

2.2 1 48 50 (5) 198023.00 873207.10 269798.40 1779027 4.41 1.36 8.98 

2 83.33 90 (9) 91425.72 352873.80 125139.70 1200783.71 3.86 1.37 13.13 

3 113 120 (12) 58314.68 205389.10 65553.19 904518.9 3.52 1.12 15.51 

4 138 140(14) 34407.61 120223.80 37576.56 796036.5 3.49 1.09 23.14 

5 158.6 160 (16) 20390.92 67493.85 21693.10 848517.9 3.31 1.06 41.61 

2.4 1 48 50 (5) 202116.20 1483137.00 315018.80 2871031.21 7.34 1.56 14.20 

2 83.33 90 (9) 101762.70 582591.50 137557.50 2135696.54 5.73 1.35 20.99 

3 113 120 (12) 61595.53 325623.30 84768.76 1337381.46 5.29 1.38 21.71 

4 138 140(14) 37563.94 209380.90 48411.94 1285569.7 5.57 1.29 34.22 

5 158.6 160 (16) 26651.64 118284.20 28041.72 1239168.9 4.44 1.05 46.50 
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