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Abstract
In this paper, we obtained some formulas for the integer solutions of the Pell equation
x?—Dy?=N and the negative Pell equation x?>—-Dy?=—N where D >1 is a non-square integer

and N is a positive integer.
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1. Introduction

The equation x? —Dy? =N is called
Pell equation with D, N are integers and x,y
are unknowns. If D is negative, it can have only
a finite number of solutions. If D is a square
number, for D=k?, the equation reduces to
(x=ky)(x+ky)=N and again there is only a
finite number of solutions. If D is a non-square
integer, it can have infinitely many solutions.

Let R denotes the sequence of

convergent to the regular continued fraction
expansion of /D . Then the pair (x,,y,)
solving Pell equation satisfies x, =F, and
y, = L,, forsome n is positive integer. This pair
is called the fundamental solution. Thus, the
fundamental solution may be found by
performing the continued fraction expansion and
testing each successive convergent until a
solution to Pell equation is found. Once the
fundamental solution is found, all remaining
solutions may be calculated algebraically from

(X1 + yl,\/B)m =x, +y,JD expanding the

left side, equating coefficients of /D on both
sides, and equating the other terms on both sides.

For completeness we recall that there
are many papers in which are considered
different types of Pell equation. Many authors
such as Tekcan (6), Kaplan & Williams (2),
Matthews (3) and the others consider some
specific Pell equations and their integer
solutions. In 2007, Tekcan (7) obtained some
formulas for the integer solutions the Pell
equation x* — Dy® =#4. In 2008, Shabani (5)
proved two conjectures related to Pell equation
x? — Dy? = +4. In 2011, Chandoul (1) obtained
some formulas for the integer solutions the Pell
equation x* — Dy? =+k? . In 2015, Ramyaetal.
(5) obtained some formulas for the integer
solutions the Pell equation x*-Dy?=
+390625 .

In this paper, we obtain some formulas
for the integer solutions of the Pell equation
x*—Dy*=+N where D>1 is a non-square
integer and N is a positive integer.
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2. Preliminaries
In this section, we will prove that
(Xons1 Yonse) 1S sOlution of Pell equation

x> —Dy*=+N where D>1 is a non-square
integer and N is a positive integer.

Lemma 2.1 Let (x,y,) be the fundamental

solution of the Pell equation x*—-Dy*=N and
let

(u2n+lj — (Xl Dle2n+1(lJ (2 1)
v2n+l Yl Xl 0 '

for n>0. Then the integer solutions of the Pell

equation x*—Dy*’=N are (X1 Yons)
where

u2n+1 V2n+1
Xonsws Yonia) = = g0 2.2
(Xzns1s Yonat) ( N N j (2.2)
for u,,., and v,,,, are multiplesof N".

Proof. We prove theorem by mathematical
induction on n. For n =0, we have from (2.1),
(u,v,)=(x,y,) which is the fundamental
solution of x> — Dy” = N . With the assumption
that the Pell equation x> — Dy® = N is satisfied
for n>0, that is

-DV?

2
mamloN(29)

— _—2n+1
2n+1 Dy2n+1

To prove that the Pell equation x*> —Dy* =N is
true for n+1.

u2n+3 _ X1 Dy1 o 1
V2n+3 X1 0
( 26T
Yi i X 0
(x Dyljz[uml
i X Voni

£

(X + Dyl u2n+1 +2Dx y1V2n+1

2X;YyUzn,s + X + DY1) 2n+1

Next, we will show that (x,,.s, Y,,,5) iS solution

2n+31
of Pell equation x> —Dy? =N
Hence, by (2.2) we obtain

2 2
U, Von,
2n+3 Dy2n+3 =(ﬁ] —D(ﬁ]

1 2 2
TN (u2n+3 - DV2n+3)

= W{(( X} + Dyj.z)u2n+l + 2DX1Y1V2n+1)2

- D(2X1y1U2n+1 +(X12 + DY12)V2n+1)2:l

1 2
=w[( X+ Dyf) W
+4( Xl2 + Dylz) DX1y1u2n+1V2n+1 + 4D2X2y12V22n+1

2,,2, .2

—ADX; Y Uy, g — 4(X12 + Dylz) DX, Y1U4Von
2
D+ Dy) Vi |
1 2 2\?, 2 2,222
TN (X1 +Dy1) Uzn,g +4D7X; Y1 Van
2,22 2 2\2. 2
_4DX yl u2n+1 D(Xl + Dyl) V2n+1}
1
:W[((Xlz + DY12) _4DX1 VA )U22n+1
2 2)\?
_((x1 +Dy1) — 4Dx’ yl) ZM}

2
((Xlz + Dylz) _4DX Y1)( 2n+1 DV22n+l)
= N 2n+2
2
(X.‘Lz - Dylz) (u22n+1 - DV§n+1>
= N2n+2 ’
By (2.3) we have uZ,,—DvZ =N and
since (x,,y,) is the fundamental solution of the

Pell equation x*>-Dy*>=N. Hence, we

conclude that
(Xl Dyl) ( 2n+1 DV22n+1)
N2n+2

2n+3 Dy2n+3 =

N ZN 2n+1
= N 22
This complete the proof.

=N.

Example 2.1 Consider the Pell equation
x?—-3y?=6. The fundamental solution is

(%, ¥,) =(3,1) . By (2.1) we have
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(- - 300
(£)- J06 -0
(8- 66 e
(- ok 30

PPN

And by (2.2) we obtain
(xlv yl) = (u1'V1) =@GBD
u, V.
(X37 ys) = (6_31?} = (915)
Us Vs
(X5, ¥s5) = (62 ' sz (3319)
X2n+l _ 1 u2n+1 _ 2 3 " 3
y2n+1 - 6n V2n+1 - 1 2 1 .
Hence
u? —3v:=6"=6
—3v2=6°=216

—3v2=6°=7776

2 2 2n+1
Ujnyg —3Von, =6 .
And

2n+1 3y2n+1
for n>0.

Lemma 2.2 Let (x,y,) be the fundamental
solution of the Pell equation x* — Dy? =—N and

let

Uznia _ X Dyl o 1
bt G
for n>0. Then the integer solutions of the Pell
equation x*>—Dy?’=-N are (X1 Yonu1)
where
n+ Vn+
O Yoro) ={ it Y2

H n
for u,,,, and v, ., are multiplesof N".

Proof. This lemma can be proved as in the same
way that lemma 2.1 was proved.

Example 2.2 Consider the Pell equation
x?—6y*=—2. The fundamental solution is
(X, ¥,) =(2,1) . By (2.1) we have

)G GG S EHC)
o) 226 2JC)-)
bRt o)== %) (0)-(e)
R I H s M [ ]

And by (2.2) we obtain
(% Y1) = (W, v) =(2.2)

(X0 ¥5) = (; ;j (22,9)
(%, ¥e) = (“g , 2] (218,89)
272
Xona) 1 (Upa) (5 12)'(2

(yZnHJ B F(VZI‘HIJ B [2 5 ] [1] .

Hence
—6v?=—2'=-2

u; —6v:=-2°=-8

Ui —6vi =-2°=-32

u22n+1 6V2n+1 _22”1
And

X = 6Yipas =2
for n>0.

3. Main results

In this section, we will find the
solutions of Pell equation x*—Dy?=+N
where D >1 isanon-square integerand N isa
positive integer.

Theorem 3.1 Let (x,,y,) be the fundamental

solution of the Pell equation x*> —Dy® =N then
(%7 +DYf ) Xy 1 +2DX, Y Y04
X2n+l = N
2%, %01+ (¢ + DY) Yo 4
Yona = N
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and

X2n+1 X2n—1
y2n+1 y2n—1
for n>1, where (2.1) and (2.2) hold.

:72X1y1

Proof. By (2.1) we have
Upnr = (X12 + Dylz)UZn—l +2DX, YV, 4

2 2
Vania = 2% Yilpn s +(X1 + Dy; )VZn—l

and by (2.2) we have
Upns = N"%50

n
v2n+1 = N y2n+1 "
We get
N Ir\X2n+1 =Upa

= (X12 + Dyf)Uanl +2DXY1Vn

= (% + DY )N "%, 4 + 2D%,y,N "y,

(X + DY? ) Xon 1 +2DX, Y, Y50 4

X2n+l = N

and
N " y2n+l = V2n+1

2 2
= 2% Y1z +(X1 + Dy, )VZn—l

=2Dx,Y,N "%, 1+ (X + DY )Ny,

2%, X0 1+ (X + DY} ) Yans
Yonaa = N :

Hence,
X2n+l X2nfl

y2n+1 yZn—l
_ {(Xlz + Dyf) Xan1 +2DX Y1 Y0 ]
- 2n-1

= Xons1Yan-1 — XonaYona

N

2%, X0 1+ (X + DY) Vo s
—Xona N

— 2DX1y1y22n71 - 2X1y1X22n71

N
2X1y1(X22n71 - DyZZn—l)

N

- 2x,Y;,(N)

N
=-2XY; .
This complete the proof.

Theorem 3.2 Let (x,,y,) be the fundamental

solution of the Pell equation x?—Dy?*=-N
then

(5 + DY ) Xy 1 +2DX, Y Y04

Xons1 = N
2%, X0 1+ (¢ + DY) Yo 4
Yonua = N
and
Xana Yo =2XY,
y2n+1 yanl

for n>1, where (2.1) and (2.2) hold.

Proof. This theorem can be proved as in the
same way that theorem 3.1 was proved.

Theorem 3.3 Let (x,,y,) be the fundamental

solution of the Pell equation x*> —Dy® =N then
(Xope1s Yoney) Satisfy the following recurrence
relations

4
X2n+1 = (_ X12 +S X2n71
N

+[—%(s +2)X7 +2s+ 3) Xon_g + (S +2) X, 5
(A X2 +s
Yonu = Nt Yanaa
4 2
J{—W(s +2)X; +2s5+ 3) Yons T (S+2) Y, 5
(3.4)

for n>3 and s is an integer
where (2.1) and (2.2) hold,

X
X, :N—lz(16x14 —20NX; +5N?)

Ys :%(16@4 —12Nx? + N2) .

Proof. We prove theorem by mathematical
induction on n . By theorem 3.1, we have

L (X +Dy? )%, +2Dx,y
-
N
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xl(xf +3Dyf)
N

= (4x? -3N)

2x7y, + (X + Dyl )y,

Y3 =

_ﬂ(xfmyf)(%@xf_m))
Jrszlyl(%(ul2 - N)H

:%[(2&2— N)(4x2-3N)

+2(xffN)(4xffN)}

- %(mxf ~ 20Nx? +5N?)

2%,Y,%, +(X{ +Dy? ),
N

_1 |:2X1y1( % (ax2 - 3N)]
+(x12 + Dyf)(%@xf -N )H
:%[2x3(4x5 ~3N)

H2¢ -N)(4x¢-N)]

:%(16xf—12Nxf+ N2).

Ys =

And
§ (% +Dy7 ) %, +2Dx, Y,
.
N

- %[(fo ~ N )(16x¢ — 20Nx? +5N?)
+2(x2 — N )(16x¢ ~12Nx? + NZ)J
- %(64xf ~112Nx{ +56N2x? ~7N°)

2%Y,% + (X + DY} ) s
N

{2x y{ % (16%¢ — 20NX? +5N )j

Y: =

1
N

+(x2+ Dyl)( Y  (16%¢ ~12Nx? + N )H
:%[fo(lfixf—ZONxf +5N?)
+(2x2 — N)(16% ~12Nx? + NZ)}

- (64x ~8ONX; +24Nx? ~N°).

For n=23, we have
4 2 4 2
WX1+S X + _W(S+2)X1+25+3 X,

+(s+2)x,

4 X
_(W X2+ SJ(N—E(IGX{‘ —20Nx;? +5N 2)}

4 2 X, 2
+(—W(s+2)x1 +25+3j(ﬁ(4x1 —3N)j
+(s+2)x,

_ (ﬂxﬁ 112 o 56X12_7J

NG TN TN
= 24 (64x¢ ~112Nx{ + 56N X2 ~7N°?)
N3 1 1 1
:)(7
(%xf+3Jy5+(—%(3+2)xf+25+3jy3
+(s+2)y,
_(% xZ + sj(%(lfo —-12Nx? + N 2))
4
+(—W(s+2)xf+2$+3j(%(4xf—N)]

{(X1+Dy1)( (16x1 20Nx12+5N2)j Hs+2)y,

= yl(ﬂxs_ﬂxf_kﬁxf 1)

+2Dx1yl(%(16xf12Nxf+N2)H NERCREVERC RN
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_ Y% 6 4 2,2 N3 1 4
= N3(64x1 80NX; +24N*x/ —N ) :W|:2X1yl([WX12+SjX2n_l
=Y 4
+(——(s +2)X2 + 25+ SJ Xon s +(S+ 2)x2n5j
Therefore (3.4) is true for n=3. With the N

assumption that (3.4) is satisfied for n>3. ) ) 4 ,
To prove that (3.4) is true for n+1. +(X1 +Dy; ) N X +S ) Yona
X 1y 23
— X +S [ X | ——(S+2)X +25+3 |X,,_
(N 1 2n+1 N 1 2n-1 + _%(5+2)x12+23+3jy2n3+(5+2)yZn5]:|
+(S+2) X, 5
2 2
4 (X12 n Dyf) Xo 1+ 2DX, Y, Yor s _ (2X1Y1) Xonya (Xl +Dy; )y2n+1
= [— xZ + SJ N
N
= Yonys -
+(7i(s+ 2t 425 +3][(><f + DY} )%, 5 + ZDxlylym} This complete the proof.
N ! N
5 ) Example 3.1 From example 2.1, by theorem 3.3
+(S " 2) (X1 + DY1 )XZn—S + 2DX1Y1y2n75 with s =-2 we have
N X =3y =1
X
X; =—+(4x?-3N
=%{(xf+Dyf)U%xf+s)x2nl * N< ' )
3 2
A = g(4(3) -3(6))
+(_W(S+Z)X12+ZS+3JX2"3+(s+2)x2”5j _9
Y1 2
=—=:(4x; - N
+2Dx1y1([% X2+ sj Yons Yo =N ( -N)
= 1(4(3)2 -6)
4 2 6
+ —W(s+2)x1 +25+3 |V, 3+ (5+2) Y, 5 -5

x
A

X
(X2 +DY?) Xt + (2D%,Y, ) Yo =7 (16X 20N +5N?)

N

3 4 2 2
x = §(16(3) —~20(6)(3)" +5(6)°)

4 4
[W X2+ sj Vorus + (—W(s +2)X2+ 25+ 3] Yors

+(S + 2) y2n—3

=33
Ve =%(16x;‘ ~12Nx? +N?)

1
=—(16(3)* —12(6)(3)* + (6)*
B
= =x2+s
N N =19
2 24 Dy? X —[ixz—ij -X
+(:(S+2)X12+28+3j[ leleﬂ*S*(:ll* yl)y2"3] 7 N T 578

4 2 B
_(8(3) 2}(33) 9
=123

Y7 —[%Xf_zjﬁ_ys
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4, ., Example 3.2 From example 2.2, by theorem 3.4
= (5(3) - 2}(19) -5 with s=2 we have
-7 X, =2y =1
X 2
X, ( 2))(7 X, =W1(4xl +3N)
= %(4(2)2 +3(2))
3)"-2|(123)-33
( €} j( ) - 9
—E59 =L (ax o)
~ X - 2] Y — 1
==(4(2)*+2
(427 +2)
( (3% - j(?l) -19 =9
X
_ 265 Xs :N—g(lﬁxf+20Nxf+5N2)
Hence 2 ) , ,
Xania = HXan 1 = X 3 = - (162)" + 202)(2)" +5(2)")
Yonss =4Yon1— Yans =218
for n>3.

y, = yl A (16%¢ +12Nx + N?)

Theorem 3.4 Let , be the fundamental
_ o %) =i2(16(2)4+12(2)(2)2+(2)2)
solution of the Pell equation x*—Dy?=— 2

then  (X,,.1, Yon,)  Satisfy the following =89
recurrence relations X, = ixf £2]%-x
%, = 2245 |x N
2n+1 T N 1 2n-1
4 ( 2"+ 2](218) 22
+(——(s —2)x2 —2s+ Sj Xpn g+ (S —2) Xy s
N =2158
A 4 X2 +s|y 4 o
2n+1 N 1 2n-1 y7 = W X1 +2 y5 - y3
4 2
+[—W(S—2) Xl —25+3j y2n73 +(S—2) yZn—S :[%(2)2 2)(89)_9
for n>3 and s is an integer g8l
where (2.1) and (2.2) hold, B
Xy (142 x, =[2x2+2)x -x
X3=W(4X1+3N) 9 N 5 A3
Y, =2 (ax? +N) (222 +2|(2158)- 218
N 2
Xg = Ni(lex +20NX? +5N?) = 21362
4 o
= —X +2|Ys—
Ys = L(lGx +12Nx? +N ) Yo [N ' jys ¥
N?
= [E(Z)2 + 2)(881) -89
Proof. This theorem can be proved as in the 2
same way that theorem 3.3 was proved. =8721

Hence
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Xons1 =10X50 3 = X3 References
Yy, .. =10y, .-V 1. Chanduol A. The Pell Equation
o R x? — Dy? =+k? . Adv Pure Math. 2011; 1:
for n>3.

4. Conclusions

In this paper, we considered the Pell
equation x*—Dy?=+N where D>1 is a
non-square integer and N is a positive integer,
and obtained some formulas its integer solutions.
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