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Abstract 
 
Herein, we provide an approximated average run length (ARL) solved by applying integral equations for 
detecting shifts in the process mean on a modified exponentially weighted moving average (EWMA) control 
chart when the observations are from continuous distributions such as gamma or Weibull. We compared 
numerical approximations of the ARL using four quadrature rules: the composite midpoint, trapezoidal, and 
Simpson’s rules and the Gauss-Legendre rule. The shape and scale parameters of four continuous distributions 
of the observations: Gamma (2, 1), Gamma (3, 1), Weibull (2, 1), and Weibull (3, 1) were determined according 
to their skewness. The criterion for evaluating the performances of the four quadrature rules and control charts 
was the out-of-control ARL 1(ARL )  and CPU Time. Our analysis reveals that the accuracies of the four 

quadrature rules to approximate the ARL on a modified EWMA control chart with observations from either 
gamma or Weibull distributions were similar. However, the Gauss-Legendre rule provided the simplest ARL 
calculation and achieved the highest accuracy for the given number of nodes. Meanwhile, the results reveal the 
superiority of the modified EWMA control chart over the standard one in terms of detecting a shift in the 
process mean. In addition, the efficacies of the control charts using the approximated ARL solutions were also 
demonstrated using a continuous distribution of real observations. 

Keywords: Integral equations, ARL, Gamma distribution, Weibull distribution 
 
1. Introduction 
 

Control charts are extremely useful tools for statistical process control (SPC). Their main purpose is to 
enhance and ensure the quality of processes to satisfy and respond to customer requirements. To make the SPC 
process simpler, several control chart schemes have been proposed including the Shewhart [1], cumulative sum 
(CUSUM) [2], and exponentially weighted moving average (EWMA) control charts [3]. They have been used in 
many applications in several research fields and industrial processes [4-6]. Roberts [7] proposed the concept of 
the EWMA control chart, initially for normally distributed observations.  Currently, the method is extensively 
used for the online monitoring of analytical processes [8], industrial production processes [ 9] , public health 
surveillance [10] , among others, even when the observations are sequential and do not necessarily follow a 
normal distribution.  In terms of statistical performance, the EWMA control chart is a more powerful tool for 
detecting small-to-moderate shifts in the process mean than the Shewhart control chart.  The common form of 
the two-sided EWMA control chart has been provided by several scholars, including Montgomery [11].  The 
EWMA statistic is the exponentially weighted average of the previous and current observations. The 
representative weight parameter (or smoothing parameter)    ranges from 0 to 1, which works well for small 
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values in the range of 0.05 and 0.25 when monitoring production processes. There have been several published 
studies on the effectiveness of the EWMA control chart, such as [12-13]. 

Several researchers have made an effort to develop a useful technique for the detection of shifts in the 
process mean at an earlier stage to avoid losses incurred in manufacturing processes. To this end, the modified 
EWMA control chart was initially proposed by Gan [14] for the monitoring of binomial counts. Afterward, three 
modified EWMA statistics to detect smaller shifts in the process mean than is possible with the Shewhart 
control chart were introduced by Gan [ 15] .  Subsequently, the modified EWMA control chart for monitoring 
small shifts in the process mean when they are small and immediate was offered by Patel and Divecha [16] in 
2011.  Recently, to improve the rapid detecting ability of the EWMA statistic, Khan, et al [17] presented a 
modified EWMA statistic applied to independent normal observations. For the rapid detection of the small process 
shifts, a second parameter k was presented, which is different from the traditional EWMA statistic.  Based on the 
observations, the modified EWMA statistic can detect the smaller and more abrupt mean shifts than the traditional 
EWMA statistic. The modified EWMA control chart for monitoring time-series observations was first suggested 
by Herdiani, et al [18] and later extended by [19-21].  The conclusions from all of these articles state that the 
modified EWMA control chart can detect an early shift in a process parameter better than the traditional EWMA 
control chart. Likewise, a comparison of standard and modified EWMA control charts for monitoring a process 
shift is offered in this article. 

There are several continuous distributions for modeling lifetime data, such as exponential, gamma, and 
Weibull. The interest in this study is centered on gamma and Weibull distributions with two parameters since 
they are suitable for skewed data and can also be applied to model the time between events. Both distributions 
have been extensively applied in different fields. The gamma distribution is considered to be a good fit for life 
testing data. Many authors have reported the use of control chart charts for gamma-distributed observations; for 
instance, Sheu and Lin [22]  designed a control chart when the data of interest follow a gamma distribution. 
Bhaumik and Gibbons [23] applied a two-parameter gamma distribution for environment monitoring and control 
studies.  A random-shift model for measuring the average run length (ARL)  for a gamma distribution was 
proposed by Zhang, et al [24]. Recently, a control chart for a specific variable following a gamma distribution 
by using a neutrosophic statistical interval method was provided by Aslam, et al [25]. There are several studies 
on control charts for Weibull distributions. Nelson [26] designed various control charts for the Weibull process. 
Bai and Choi [27]  designed and range control charts to monitor the skewed data.  Hawkins and Olwell [28] 
proposed the CUSUM control chart to monitor the scale parameter of a Weibull distribution.  Chang and Bai 
[29] designed various control charts, including the EWMA control chart, using weighted standard deviations for 
skewed distributions. 

Control charts can be compared by determining their ARLs in various situations.  The average number of 
observations under the control limit for a process while it is in-control until a false signal for out-of-control 
occurs is denoted as ARL0.  The average number of observations under the control limit until a true out-of-
control signal occurs is denoted as ARL1. ARL0 should be sufficiently large to keep the false alarm signals at an 
acceptable level, while conversely, ARL1 should be kept as small as possible to capture a true out-of-control 
signal. 

The ARL can be evaluated by applying many methods, such as Monte Carlo simulation, the Markov Chain 
approach, the Martingale approach, and integral equations. Fredholm integral equations of the second kind [30] 
are used in the integral equations, which depend on numerical quadrature rules to measure the integrals.  The 
numerical integration (or quadrature) method is commonly applied as an approximation of the integral [31]. In 
this study, some of the basic quadrature rules, such as the composite midpoint, trapezoidal, and Simpson’s rules 
and the Gauss-Legendre rule, are used in the derivation of the ARL for the modified EWMA control chart when 
the observations are from gamma or Weibull distributions. 

The rest of this paper is organized as follows.  In the next section, background on observations following 
continuous distributions of the modified EWMA control chart and characteristics of the ARL are introduced. 
Integral equations for approximating the ARL of the modified EWMA control chart derived by using the four 
previously mentioned quadrature rules are also presented and proved. In Section 3, the comparative performance 
of the four approximated ARLs on standard and modified EWMA control charts are covered in Section 4.  In 
Section 5, applying the proposed approximated ARL using the Gauss-Legendre rule for monitoring the strength 
of single carbon fibers of gauge length 20 mm on the modified EWMA control chart is presented, while Section 
6 offers conclusions on the study. 

 
2. Continuous distributions of the observations on the modified EWMA control chart 
 

The objective of this research is to estimate the ARL for detecting shifts in the process mean on a 
modified EWMA control chart when the observations are continuously distributed. 
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2.1 Gamma and weibull distributions 
 

Assume that X as a two-parameter gamma or Weibull distributions with shape parameter ( 0)   and scale 

parameter ( 0).    

Definition 2.1 For gamma-distributed random variable X denoted as X ~ ( )Gamma , ,   the corresponding probability 

density function in the shape-scale parametrization [32] is 

 1 /1
( ; , ) ,for 0, , 0.

( )
 

   
 

   


xf x x e x                                              (1) 

Definition 2.2 For Weibull-distributed random variable X denoted as X ~ Weibull( , ),   the corresponding 

probability density function in the shape-scale parametrization [32] is 

  
1

/( ; , ) , for 0, , 0.xx
f x e x




   
 


 

   
 

                                               (2) 

 
2.2 Control charts with continuously distributed observations 

 
The standard and modified EWMA control charts and their characteristics are briefly discussed in this 

section. 
 

2.2.1 The standard EWMA control chart 
 

The concept of EWMA is to combine previous and current observations for detecting shifts in the process 
mean to enable more rapid detection than the Shewhart control chart, where the focus is only on the most 
current observations without considering the previous ones. This is achieved by applying weighting parameter

,  to determine the importance of each observation ( )tX  and assign the highest weight to the most current 

observation. The weights on the observations depend on the time series, with the first observations having the 
lowest weight. The average for the tht  period, for 1, 2,...t  , is defined as 

  

                11 ; 1, 2,... ,t t tZ X Z t       (3) 

where 0 1   and the starting value is 0 0 .Z   The upper control limit (UCL) and lower control limit (LCL) 

of the EWMA chart are  

  2

0UCL 1 1
2

t
L

  


   


  

and 

   2

0LCL 1 1 ,
2

t
L

  


   


 (4) 

respectively, where 0  is the target mean, 2  is the process variance and L  is a suitable control width limit.  

2.2.2 The modified EWMA control chart 
 

The properties of the modified EWMA control chart are user-friendliness and high effectiveness for 
detecting shifts in the process mean. Patel and Divecha [16] combined the useful properties of the Shewart and 
standard EWMA control charts for detecting small process changes from data from a single-order autocorrelated 
process. The modified EWMA control chart is defined as 

    1 11 ; 1,2,... ,t t t t tZ X Z X X t          (5) 

where tZ  is the average from the historical data,   is a sequence of weighted parameters from 0 to 1, tX  are 

observations from a gamma (or Weibull) distribution, 1tX   are the values of the previous observations, 1tZ  is 

the target, 0Z u  and 0X v  are the initial values. 
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The control limits of the Modified EWMA chart are  
 

 
0

2 1
UCL

2 2
L

 
 

 


  
 

  

and 

 
 

0

2 1
LCL ,

2 2
L

 
 

 


  
 

 (6) 

where 0  is the target mean, 2  is the process variance, and L  a suitable control width limit. 

The corresponding stopping time ( )b  for the out-of-control process can be written as 

  inf 0; , ,b tt Z b u b      (7) 

where b is a constant for the UCL. 
 
2.3 Control chart characteristics 

 
The ARL is a general characteristic of control charts. It is defined as the expectation of an alarm being sent 

to signify a possible change in a particular parameter’ s distribution.  In the in-control process, an acceptable 
ARL should be large enough to detect small changes in the parameter’s distribution. In this paper, the following 
notation is applied: 

  0ARL ARL( ), where ,bE u       (8) 

and (.)E  is the expectation depending on the target value that should be large enough and   is the change 

point time.  When the ARL process is out-of-control, it is called the average number of observations until the 
signal for a sequence with a constant expectation indicates the out-of-control state and is denoted by 1ARL .  

Herein, the following notation is applied: 

  1ARL 1| ,b bE         (9) 

where (.)E  is the expectation under the assumption that a change point occurs when given 1  . 

If 1X  is the control limit, then  

    10 (1 ) (1 ) .u X b          

The solution can be written in the form 

              
(1 )

1

(1 )

1

ARL( ) 1 ARL 1 1 ( ) .

b u

u

u u x f x dx

 


 


  

  


  


       

Let    1 1k u x        can be written as follows: (Crowder [12]) 

 
0

1 (1 )
ARL( ) 1 ARL( )

1 1

b
k u v

u k f dk


 
          (10) 

The function of the ARL cannot be evaluated exactly in its closed form, and so approximate numerical 
integration is required to evaluate it. Thus, we applied the composite midpoint, trapezoidal, and Simpson’s rules 
and the Gauss-Legendre rule to estimate the ARL. 

 
3. The approximated ARL via numerical integration on a modified EWMA control chart 

 
Numerical integration is a basic tool that can be applied to obtain an approximate answer for a definite 

integral by replacing it with the sum, while quadrature is equivalent to numerical integration in one dimension. 
Define  f t  as a function on closed interval  ,a b and the set of separated nodes  0 1 2, , ,..., .nt t t t Thus, the 

approximation of the numerical integration can be defined as 
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                                                   
0

,
b n

i i
ia

f t dt w f t


  (11) 

where it  are the quadrature nodes (or quadrature points) and iw  are the quadrature weights.  The definite 

integrals can be evaluated by applying numerical integration methods. In this study, we applied the composite 
midpoint, trapezoidal, and Simpson’s rules and the Gauss-Legendre rules [34]. 
 
3.1 The composite midpoint rules 

 
The midpoint of each subinterval is defined by how likely it is to be close to the average point. The midpoint 

rule uses the midpoint in the sum. The thi  interval  1 , ,i it t  referred to as midpoint ,it  is 

                                                               1 .
2

i i
i

t t
t  
  

Let 1i i it t t     be the length of each interval. Thus, we use the following formula to approximate the 

integral by using midpoints: 

                                                            
1

.
n

n i i
i

Mid f t t


   

For even spacing, ( )it h b a n    , for which the formula is  

   1 2
1

ˆ ˆ ˆ..., ,
n

n i n
i

Mid h f t h x x x


      

where  ˆ .i ix f t  According to the midpoint rule and given    1
,

1
j

j

a u
f A f

 


   
    

 the one-sided ARL on 

a modified EWMA control chart in Equation (10)  can be approximated by applying the following formula: 

      
1

1
ARL 1 ARL ,

1

n

Mid j j j
j

u w a f A
 

 
   (12) 

where j

b
w

n
  and 1

; 1,2,..., .
2ja j j n    

 
 

 
3.2 The composite trapezoidal rule 

 
The trapezoidal rule is obtained by integrating the first-order polynomial interpolation. It is written as: 

      .
2

b

a

b a
Int f t dt f b f a


       

Closed intervals  ,a b  can be separated into n  intervals with equal width .h  These nodes are

0 1 2, , ,..., na t t t t b  , where 0 ,it t ih   for all 1, 2,..., .i n  The value h  is given as ( ) .b a n   

The above intervaln   case is relevant for  

                    
1

1

2
2

b n

ia

h
Int f t dt f a f b f a ih





 
     

 
  

                         1 2 12 ... .
2 n

h
f a f b f t f t f t          

when    0 1,f a f f a h f    and   if a ih f   are replaced, the above case is relevant for 

   0 1 2 12 ... .
2

b

i i

a

h
Int f t dt f f f f f           
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According to the trapezoidal rule, given    1
,

1
j

j

a u
f A f

 


    
    

 the ARL in Equation (10)  can be 

approximated as 

      
1

1

1
ARL 1 ARL ,

1

n

jTrapi j j
j

u w a f A






 
   (13) 

where j ja jw  and ; 1,2,..., 1j

b
w j n

n
   , in other cases, .

2j

b
w

n
  

3.3 The composite simpson’s rule 
 

Simpson’s rule applies a first-order polynomial function and is used for equal data intervals with width .h  
For three points: 0 ,t a 1t a h  and 2 .t b  Simpson’s rule is defined as 

       0 2 14 .
3

b

a

h
Int f t dt f t f t f t       

Simpson's rule can accurately improve by separating closed intervals  ,a b  into sub-intervals as follows: 

       
2 1

2 1

2 4 .
3

n n

i i
i even i odd

h
Int f a f b f a ih f a ih

 

 
 

 
       
  

   

By setting  if f a ih   in the above relationship, the following formula is obtained: 

   0 2 4 2 1 3 12 ... 4 ... .
3 n n n

h
Int f f f f f f f f              

 
According to Simpson’s rule, the ARL in Equation (10)  can be estimated by 

      
2 1

1

1
ARL 1 ARL ,

1

n

Simp j j j
j

u w a f A






 
   (14) 

where j ja jw and
4

; 1,3,..., 2 1,
3 2j

b
w j n

n
    
 

2
; 2, 4,..., 2 2,

3 2j

b
w j n

n
    
 

 in other cases, 
1

.
3 2j

b
w

n
   
 

 

3.4 The gauss-legendre rule 
 
The above three numerical methods use points to calculate function  f t on closed intervals  ,a b  that are 

equally spaced. One of the approximating integral methods is the Gaussian quadrature rule. Special values of 
weights and abscissas (referred to as evaluation or Gauss points) applied in quadrature rules are usually pre-
computed and utilizable in most standard mathematical procedures. The two-point Gaussian quadrature rule for 
function ( )f t  can be calculated between fixed limits a and b as follows: 

                                                                  1 1 2 2 ,  
b

a

Int f t dt k f t k f t  

where 1 2 1, ,k k t and 2t are four unknown coefficients that must be defined by integrating exact cubic polynomial 
  3 2

3 2 1 0 .f t a t a t a t a    The results are more accurate when the number of Gaussian points is increased. 

Thus,  

              1 1 2 2 3 3 .
b

a

Int f t dt k f t k f t k f t     

Hence, n nodes are applied to approximate ( )f t  between fixed limits such that 

                     1 1 2 2 ... .
b

n n

a

Int f t dt k f t k f t k f t      



7 

Gaussian integration is based on the use of polynomials to approximate integrand ( )f x  on closed interval 

 1, 1 .  The coefficients of this polynomial are unknown variables that can be determined by using any optimal 

method. The basic form of the Gaussian quadrature rule is focused on uniform weighting over the interval, while 
specific nodes of ( )f x  are the roots of a particular class of Legendre polynomials over the interval. 

Gaussian quadrature formulas can be evaluated by using abscissae and weights.  In general, the integral on a 
general interval is used for variable t  on closed intervals  ,a b  this interval is linearly mapped for t on closed interval 

 1,1 for .x  A simple change of variable can be applied when the integral is not posted on closed interval  1,1 .  

To revise any one of closed intervals  ,a b  as an integral on closed interval  1,1 ,  let .t mx c  Moreover, 

1x    when t a  and 1x   when t b . Hence, .
2 2

b a b a
t x

 
   The following formula is arrived at after 

simplification: 

 
1

1 2 2 2

b

a

b a b a b a
Int f t dt f x dx



      
    

1

.
2 2 2

n

i i
i

b a b a b a
Int k f x



         
   

  

 
According to the Gauss-Legendre rule, the ARL in Equation (10)  can be approximated by 

                                                    
1

1
ARL 1 ARL ,

1

n

Gaus j j j
j

u w a f A
 

 
   (15) 

where j

b
w

n
  and 

1
; 1, 2,..., .

2j

b
a j j n

n
    
 

 

 
4. The performance of the approximated ARL and comparison of the standard and modified EWMA  
control charts 
 

In this section, the numerical values of the approximated ARL and the CPU times to calculate them using the 
four methods on the modified EWMA control chart when the observations are from a continuous distribution 
are compared.  The lowest ARL value with the shortest CPU time infers the best performance.  Furthermore, 
these performance measures were used to compare their efficacies on both the standard and EWMA control 
charts. We determined the ARL1 values of the process shift for ARL0 = 370 or 500 as the in-control parameter 
and various process mean shift sizes ( 0.001, 0.005, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5, and 1).  For the gamma and 

Weibull distributions, the scale parameter ( )  was varied from 2 to 3 and the shape parameter ( )  was set as 1. 

The results for ARL0 =  370 and 500 are given in Tables 2 and 3, respectively.  We used division point 
500m   nodes computed by using the Mathematica program.  Accordingly, all values of b ( the UCL of the 

modified EWMA control chart) for ARL0 = 370 or 500 were calculated by using Equations (12)-(15). 

Table 1 The values of the modified EWMA control limit ( )b  for continuous distributions. 
Continuous Distribution λ ARL0 

370 500 
Gamma (2, 1) 0.05 23.92000 24.22650 
 0.10 13.69800 13.88470 
Gamma (3, 1) 0.05 22.99230 23.19750 
 0.10 12.78770 12.90660 
Weibull (2, 1) 0.05 24.22650 24.22650 
 0.10 13.69735 13.88392 
Weibull (3, 1) 0.05 22.99070 23.19650 
 0.10 12.78720 12.90610 

 
The results for b  when ARL0 = 370 and  500  are reported in Table 1. It was found that as   increased, b  

decreased on the modified EWMA control chart for both gamma and Weibull-distributed observations. When   
was changed from 2 to 3, and   =  1, the findings indicate that   increased and b  decreased for both 

distributions. 
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Table 2 The ARL values solved via integral equations on the modified EWMA control chart for continuously 
distributed observations at ARL0 = 370. 
Continuous Distribution λ Methods   

   0.001 0.005 0.01 0.03 0.05 0.1 0.3 0.5 1 
Gamma (2, 1) 0.05 Midpoint 363.232 335.761 305.727 220.115 168.732 105.135 46.141 31.893 19.121 

     (2.28)    (2.18) (2.03)    (2.22) (2.20) (2.18) (2.25) (2.21) (2.25) 
 Trapezoidal 362.720 335.305 305.331 219.876 168.577 105.067 46.127 31.886 19.119 
     (2.03)    (2.06) (2.04)    (2.03) (2.05) (2.25) (2.31) (2.11) (2.19) 
 Simpson’s 363.042 335.591 305.58 220.026 168.674 105.11 46.136 31.890 19.120 
     (8.15)    (8.67) (9.04) (13.55) (10.25) (9.42) (9.71) (9.69) (10.16) 
 Gaussian 362.979 335.533 305.527 219.993 168.653 105.101 46.1341 31.890 19.120 
   (11.03)    (9.21) (10.37)  (10.31) (10.41) (12.55) (10.16) (10.50) (10.39) 
0.1 Midpoint 363.173 336.219 306.266 217.809 162.358 91.905 31.234 19.861 11.250 
     (2.42)    (2.72) (2.49)    (2.36) (2.31) (2.50) (2.39) (2.47) (2.39) 
 Trapezoidal 363.201 336.235 306.271 217.795 162.343 91.897 31.234 19.861 11.250 
     (2.42)    (2.56) (2.56)    (2.55) (2.44) (2.42) (2.53) (2.66) (2.66) 
 Simpson’s 363.184 336.226 306.270 217.805 162.354 91.903 31.234 19.861 11.250 
   (10.16)    (9.55) (8.84)    (9.20) (9.14) (9.03) (9.64) (9.58) (10.61) 
 Gaussian 363.165 336.208 306.253 217.795 162.348 91.901 31.234 19.861 11.250 
     (9.80) (9.92) (10.08)  (10.08) (10.86) (10.16) (10.55) (10.41) (9.80) 

Gamma (3, 1) 0.05 Midpoint 360.425 322.980 284.271 186.782 137.335 84.741 40.322 28.742 17.659 
  (19.41) (16.13) (17.89) (15.59) (15.74) (16.20) (16.81) (13.17) (12.08) 
 Trapezoidal 359.682 322.357 283.766 186.545 137.209 84.702 40.318 28.741 17.659 
  (15.34) (18.69) (14.80) (14.58) (15.34) (18.24) (15.02) (12.80) (12.94) 
 Simpson’s 360.177 322.771 284.102 186.703 137.293 84.728 40.320 28.742 17.659 
  (134.42) (132.11) (130.31) (129.48) (135.55) (122.25) (112.42) (109.30) (134.42) 
 Gaussian 360.177 322.772 284.102 186.703 137.293 84.728 40.320 28.742 17.659 
   (26.30) (27.38) (23.94)  (27.31) (23.75) (22.41) (23.55) (21.19) (20.64) 
0.1 Midpoint 360.050 322.240 282.346 177.908 122.969 65.196 24.445 16.519 9.833 
   (13.39) (15.44) (13.59) (13.72) (12.11) (12.75) (2.22) (3.38) (4.09) 
 Trapezoidal 359.650 321.898 282.063 177.768 122.894 65.174 24.443 16.519 9.833 
   (13.84) (11.52) (12.03) (13.11) (13.05) (12.52) (2.30) (2.36) (2.48) 
 Simpson’s 359.917 322.126 282.251 177.861 122.944 65.189 24.444 16.519 9.833 
  (122.11) (110.53) (109.34) (110.70) (109.67) (117.24) (109.47) (100.13) (120.83) 
 Gaussian 359.917 322.126 282.251 177.861 122.944 65.189 24.444 16.519 9.833 
  (20.38) (20.52) (20.08) (20.89) (22.25) (19.91) (9.55) (10.25) (10.06) 

Weibull (2, 1) 0.05 Midpoint 363.232 335.761 305.727 220.115 168.732 105.135 46.141 31.893 19.121 
  (2.89) (2.75) (2.80) (2.89) (2.81) (2.67) (2.92) (2.77) (3.34) 
 Trapezoidal 361.733 334.323 304.355 218.925 167.645 104.179 45.371 31.227 18.619 
    (2.95) (2.98) (2.86) (2.70) (2.77) (2.73) (2.67) (2.69) (2.70) 
 Simpson’s 363.049 335.591 305.580 220.026 168.674 105.110 46.136 31.890 19.120 
  (11.17)  (11.28) (11.36) (11.22) (11.50) (10.90) (11.09) (11.25) (10.94) 
 Gaussian 362.043 334.594 304.595 219.078 167.741 104.226 45.382 31.232 18.620 
  (11.19)  (11.05) (11.11) (11.13) (11.22) (11.69) (11.34) (11.25) (11.06) 
0.1 Midpoint 362.811 335.892 305.977 217.628 162.240 91.857 31.228 19.858 11.249 
    (2.74)    (2.66) (2.70) (2.81) (2.64) (2.70) (2.67) (2.69) (2.63) 
 Trapezoidal 361.928 335.000 305.079 216.727 161.353 91.014 30.516 19.239 10.781 
    (2.70)   (2.67) (2.63)    (2.66) (2.70) (2.67) (2.69) (2.70) (2.59) 
 Simpson’s 362.822 335.898 305.980 217.624 162.235 91.854 31.228 19.858 11.249 
  (10.45) (10.19) (10.50) (10.39) (10.02) (10.92) (10.52) (10.81) (10.81) 
 Gaussian 361.898 334.979 305.066 216.731 161.360 91.019 30.517 19.239 10.781 
   (10.94) (11.36) (10.97) (10.94) (10.92) (10.89) (10.91) (10.94) (10.94) 

Weibull (3, 1) 0.05 Midpoint 359.649 322.324 283.735 186.521 137.191 84.691 40.313 28.738 17.656 
   (18.36)  (18.50) (18.17) (18.45) (18.13) (17.49) (16.48) (17.20) (14.83) 
 Trapezoidal 357.946 320.745 282.279 185.349 136.146 83.773 39.558 28.080 17.158 
   (21.86)  (22.06) (24.14) (20.53) (20.16) (20.45) (18.86) (17.53) (16.11) 
 Simpson’s 359.401 322.116 283.567 186.442 137.148 84.678 40.312 28.737 17.657 
  (128.06) (125.00) (124.69) (123.38) (122.91) (121.67) (112.63) (106.99) (98.25) 
 Gaussian 358.442 321.161 282.616 185.508 136.231 83.799 39.561 28.081 17.158 
   (26.59) (26.66) (26.50) (26.42) (26.34) (25.78) (25.09) (24.48) (22.49) 
0.1 Midpoint 359.618 321.867 282.035 177.748 122.879 65.167 24.441 16.518 9.833 
  (14.08) (14.08) (14.20) (14.28) (14.70) (14.80) (2.89) (2.88) (2.83) 
 Trapezoidal 358.305 320.616 280.847 176.719 121.931 64.310 23.729 15.898 9.365 
  (16.55) (16.63) (18.52) (17.88) (18.55) (17.64) (3.44) (3.38) (3.37) 
 Simpson’s 359.484 321.753 281.941 177.701 122.854 65.159 24.441 16.517 9.833 
  (125.49) (130.42) (126.25) (121.30) (121.06) (127.44) (13.34) (13.58) (13.36) 
 Gaussian 358.571 320.843 281.035 176.812 121.981 64.324 23.730 15.898 9.365 
   (23.27)  (22.56) (23.02) (23.02) (22.13) (22.94) (11.19) (11.41) (11.30) 

The parentheses represent the CPU time in seconds.  
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Table 3 The ARL values solved via integral equation of the modified EWMA control chart for continuously 
distributed observations at ARL0 = 500. 
Continuous 
Distribution 

λ Methods   
0.001 0.005 0.01 0.03 0.05 0.1 0.3 0.5 1 

Gamma (2, 1) 0.05 Midpoint 489.451 447.449 402.016 275.892 203.358 118.616 48.241 32.864 19.517 
  (2.34) (2.27) (2.53) (2.63) (2.30) (2.42) (2.36) (2.38) (2.52) 
 Trapezoidal 488.729 446.809 401.462 275.565 203.151 118.529 48.224 32.856 19.514 
  (2.28) (2.53) (2.19) (2.31) (2.47) (2.44) (2.48) (2.41) (2.58) 
 Simpson’s 489.182 447.212 401.811 275.771 203.282 118.585 48.235 32.861 19.516 
  (9.39) (9.09) (8.98) (9.14) (9.69) (8.78) (9.56) (9.97) (9.30) 
 Gaussian 489.142 447.162 401.756 275.724 203.25 118.572 48.233 32.860 19.516 
  (10.05) (10.34) (10.02) (10.30) (9.80) (10.92) (10.58) (10.50) (10.27) 
0.1 Midpoint 490.027 450.381 406.626 279.634 202.241 107.770 33.181 20.617 11.513 
  (2.44) (2.27) (2.33) (2.16) (2.28) (2.63) (2.75) (2.77) (2.37) 
 Trapezoidal 489.446 449.883 406.214 279.427 202.128 107.738 33.180 20.617 11.513 
  (2.59) (2.05) (2.44) (2.45) (2.44) (2.72) (2.47) (2.39) (2.47) 
 Simpson’s 489.835 450.217 406.490 279.566 202.204 107.760 33.181 20.617 11.513 
  (8.78) (9.05) (9.19) (9.83) (9.31) (9.83) (9.44) (10.42) (9.31) 
 Gaussian 489.472 449.914 406.248 279.460 202.153 107.749 33.181 20.617 11.513 
  (10.14) (9.58) (9.66) (9.48) (9.72) (9.63) (10.08) (10.38) (10.00) 

Gamma (3, 1) 0.05 Midpoint 484.613 427.043 368.472 226.460 158.697 91.7628 41.4559 29.3061 17.9039 
  (16.33) (17.84) (15.27) (16.50) (14.72) (17.95) (14.55) (13.17) (12.11) 
 Trapezoidal 483.444 426.077 367.704 226.121 158.525 91.7146 41.4515 29.3048 17.9037 
  (19.03) (15.16) (16.83) (18.56) (14.92) (15.92) (15.14) (14.03) (14.66) 
 Simpson’s 484.222 426.72 368.215 226.347 158.639 91.7467 41.4544 29.3057 17.9038 
  (132.02) (131.36) (128.92) (132.48) (132.95) (132.20) (124.17) (113.11) (103.05) 
 Gaussian 484.224 426.722 368.216 226.347 158.64 91.7468 41.4544 29.3057 17.9038 
  (23.56) (24.36) (28.77) (27.11) (24.75) (24.69) (23.64) (24.80) (19.42) 
0.1 Midpoint 485.289 429.56 371.356 222.737 147.693 72.9242 25.3159 16.8943 9.97975 
  (14.08) (12.39) (12.36) (12.61) (15.17) (15.33) (11.53) (2.48) (2.58) 
 Trapezoidal 484.684 429.048 370.938 222.539 147.59 72.8961 25.314 16.8937 9.97967 
  (12.16) (17.94) (11.70) (12.23) (12.11) (16.58) (14.70) (2.09) (2.25) 
 Simpson’s 485.087 429.389 371.217 222.671 147.658 72.9148 25.3153 16.8941 9.97972 
  (110.64) (116.47) (107.75) (114.11) (112.64) (118.36) (118.28) (8.33) (8.91) 
 Gaussian 485.087 429.389 371.217 222.671 147.658 72.9148 25.3153 16.8941 9.97972 
  (22.22) (25.98) (21.69) (21.70) (22.42) (20.19) (19.69) (12.33) (9.67) 

Weibull (2, 1) 0.05 Midpoint 489.451 447.449 402.016 275.892 203.358 118.616 48.241 32.864 19.517 
  (2.672) (2.77) (2.67) (2.69) (2.70) (2.84) (2.78) (2.72) (2.73) 
 Trapezoidal 487.933 446.001 400.642 274.716 202.293 117.681 47.480 32.202 19.016 
  (2.97) (2.81) (2.88) (2.95) (2.98) (2.84) (2.83) (2.97) (2.84) 
 Simpson’s 489.182 447.212 401.811 275.771 203.282 118.585 48.235 32.861 19.516 
  (10.80) (10.69) (10.75) (10.78) (10.86) (11.83) (10.94) (10.58) (11.33) 
 Gaussian 488.135 446.163 400.766 274.763 202.312 117.681 47.476 32.200 19.015 
  (11.06) (11.46) (11.06) (11.02) (11.13) (11.16) (10.99) (10.95) (11.09) 
0.1 Midpoint 489.392 449.812 406.127 279.330 202.048 107.696 33.173 20.614 11.512 
  (2.66) (2.75) (2.73) (2.72) (2.77) (2.74) (2.69) (2.70) (2.70) 
 Trapezoidal 487.832 448.343 404.755 278.197 201.036 106.815 32.457 19.993 11.043 
  (2.69) (2.58) (2.66) (2.66) (2.07) (2.75) (2.79) (2.66) (2.67) 
 Simpson’s 489.202 449.649 405.993 279.263 202.011 107.685 33.172 20.614 11.512 
  (10.45) (10.41) (10.17) (10.19) (10.38) (10.39) (10.56) (10.25) (10.45) 
 Gaussian 487.918 448.429 404.838 278.264 201.085 106.838 32.460 19.994 11.043 
  (10.88) (10.94) (10.92) (10.92) (11.36) (11.17) (11.28) (11.28) (10.95) 

Weibull (3, 1) 0.05 Midpoint 483.868 426.423 367.975 226.232 158.577 91.726 41.450 29.303 17.903 
  (17.59) (18.17) (18.42) (18.47) (17.50) (16.78) (16.80) (15.47) (14.34) 
 Trapezoidal 481.739 424.501 366.254 224.959 157.488 90.798 40.695 28.646 17.404 
  (21.48) (22.24) (21.69) (21.44) (21.63) (21.61) (21.31) (19.77) (17.75) 
 Simpson’s 483.478 426.101 367.718 226.119 158.520 91.706 41.449 29.303 17.903 
  (127.81) (132.86) (129.05) (126.78) (126.41) (124.77) (116.30) (109.64) (101.49) 
 Gaussian 482.520 425.147 366.768 225.186 157.603 90.831 40.698 28.647 17.404 
  (25.92) (27.55) (27.38) (26.80) (27.50) (26.00) (24.19) (23.38) (21.78) 
0.1 Midpoint 484.655 429.019 370.910 222.516 147.573 72.888 25.312 16.893   9.979 
  (14.59) (14.67) (14.69) (14.98) (14.02) (14.14) (14.53) (2.88) (2.84) 
 Trapezoidal 483.138 427.598 369.587 221.430 146.597 72.025 24.599 16.273   9.511 
  (18.36) (17.75) (18.17) (21.05) (19.36) (19.66) (17.83) (3.38) (3.59) 
 Simpson’s 484.454 428.848 370.771 222.450 147.539 72.879 25.312 16.893   9.979 
  (106.91) (106.77) (114.39) (109.45) (107.66) (106.69) (107.02) (10.78) (11.06) 
 Gaussian 483.540 427.938 369.865 221.561 146.666 72.044 24.601 16.273   9.511 
  (22.81) (23.77) (23.02) (22.89) (22.80) (23.37) (21.70) (11.20) (11.53) 

The parentheses represent the CPU time in seconds. 

 
Tables 2 and 3 present results for the ARL values solved via integral equations using the four quadrature 

rules (the composite midpoint, trapezoidal, and Simpson’s rules and the Gauss-Legendre rule) obtained from the 
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modified EWMA control chart.   was fixed at either 0.05 or 0.10 to observe its effect on the UCL of the chart 
when the process was out-of-control ( 0.03 1).    The results signify that  = 0.10 was better for detecting 

shifts in the process mean than  = 0.05 for both distributions.  Similarly, from the numerical results for both 
gamma and Weibull distributions, 3   was better for detecting shifts in the process mean than 1   for all 
shift sizes.  Hence, the ARL values derived using the four quadrature rules obtained similar results for both 
gamma and Weibull-distributed observations. The CPU times for the four quadrature rules were similar in the 
following increasing order:  Gauss-Legendre > composite Simpson’ s > composite trapezoidal > composite 
midpoint. This ordering of CPU times agrees with the error estimates for the different quadrature rules given in 
Equation (15). Because the Gauss-Legendre rule achieved the highest accuracy for the given number of nodes, it 
was used in the rest of the computations. 
 
4.1 Comparison of the standard and modified EWMA control charts 

 
 The performances of the ARL values with the Gauss-Legendre rule of the standard and modified EWMA 

control charts for continuously distributed observations were compared. The out-of-control ARL was measured 
for both charts at various values of process mean shift as a performance measure.  The results of out-of-control 
ARL for ARL0 = 370 and 500 are provided in Tables 4 and 5, respectively. They reveal that the modified EWMA 
control chart slightly outperformed the standard one by producing smaller out‐ of‐ control ARL increases with 
increasing process mean shift when  = 0.10. However, when   = 0.05, the performance of the modified EWMA 
control chart was better than the standard one when shift sizes in the process mean ( )  were less than or equal to 

0.05 for Weibull(2, 1) and Weibull(3, 1) distributed observations. 
 
Table 4 The ARL values derived with the Gauss-Legendre rule of the standard and modified EWMA control 
charts for continuously distributed observations at ARL0 = 370. 
Continuous  
Distribution 

λ b Control Chart   

0.001 0.005 0.01 0.03 0.05 0.1 0.3 0.5 1 
Gamma  
(2, 1) 

0.05   2.50505 EWMA 364.620 344.208 321.029 248.764 199.463 129.193 53.229 35.143 20.162 
 24.2265 Modified EWMA 362.979 335.533 305.527 219.993 168.653 105.101 46.1341 31.890 19.120 
0.10   2.8851149 EWMA 365.031 346.036 324.139 253.391 202.664 126.461 42.2333 24.9347 13.0357 
 13.698 Modified EWMA 363.165 336.208 306.253 217.795 162.348   91.901 31.234 19.861 11.250 

Gamma  
(3, 1) 

0.05   3.60818 EWMA 363.573 351.196 312.550 232.412 181.242 113.768 47.670 32.143 18.802 
 22.9923 Modified EWMA 360.177 322.772 284.102 186.703 137.293   84.728 40.320 28.742 17.659 
0.10   4.05761 EWMA 364.030 341.407 315.734 235.980 182.118 107.359 35.087 21.357 11.590 
 12.7877 Modified EWMA 359.917 322.126 282.251 177.861 122.944   65.189 24.444 16.519   9.833 

Weibull 
(2, 1)  

0.05   1.0440182 EWMA 362.554 334.942 304.760 218.773 167.208 103.474 44.625 30.563 18.112 
 23.92 Modified EWMA 362.043 334.594 304.595 219.078 167.741 104.226 45.382 31.232 18.620 
0.10   1.15445 EWMA 362.860 335.844 305.826 217.199 161.663   91.141 30.532 19.245 10.782 
 13.69735 Modified EWMA 361.898 334.979 305.066 216.731 161.360   91.019 30.517 19.239 10.781 

Weibull 
(3, 1) 

0.05   0.99975 EWMA 359.403 321.819 282.974 185.189 135.635   83.006 38.801 27.413 16.652 
 22.9907 Modified EWMA 358.442 321.161 282.616 185.508 135.231   83.799 39.561 28.081 17.158 
0.10    1.07167 EWMA 359.584 321.716 281.763 177.187 122.192   64.393 23.738 15.902   9.366 
  12.7872 Modified EWMA 358.571 320.843 281.035 176.812 121.981   64.324 23.730 15.898   9.365 

 
Table 5 The ARL values derived with the Gauss-Legendre rule of the standard and modified EWMA control 
charts for continuously distributed observations at ARL0 = 500. 
Continuous  
Distribution 

λ b Control Chart   

0.001 0.005 0.01 0.03 0.05 0.1 0.3 0.5 1 

Gamma (2, 1) 0.05 2.55384 EWMA 491.903 461.037 426.228 319.617 181.724 152.330 57.165 36.851 20.805 
 24.2265 Modified EWMA 489.142 447.162 401.756 275.724 203.250 118.572 48.233 32.860 19.516 
0.10 2.9473575 EWMA 492.737 465.037 433.236 331.588 259.968 155.211 46.787 26.614 13.548 
 13.8847 Modified EWMA 489.472 449.914 406.248 279.460 202.153 107.749 33.181 20.617 11.513 

Gamma (3, 1) 0.05 3.66665 EWMA 490.224 453.663 412.231 295.278 222.519 131.170 50.419 33.373 19.287 
 23.1975 Modified EWMA 484.224 426.722 368.216 226.347 158.640 91.747 41.454 29.306 17.904 
0.10 4.1306 EWMA 492.202 459.110 421.742 307.142 231.361 129.456 38.070 22.467 11.952 
 12.9066 Modified EWMA 485.087 429.389 371.217 222.671 147.658 72.915 25.315 16.894   9.980 

Weibull (2, 1) 0.05 1.05853 EWMA 488.630 446.485 400.906 274.430 201.743 116.907 46.714 31.529 18.505 
 24.2265  Modified EWMA 488.135 446.163 400.766 274.763 202.312 117.681 47.476 32.200 19.015 
0.10 1.17139 EWMA 489.397 449.732 405.957 278.903 201.475 106.981 32.476 20.000 11.045 

 13.88392  Modified EWMA 487.918 448.429 404.838 278.264 201.085 106.838 32.460 19.994 11.043 
Weibull (3, 1) 0.05 1.009505 EWMA 483.826 426.068 367.314 224.911 157.011   90.027 39.934 27.977 16.897 

 23.1965 Modified EWMA 482.520 425.147 366.768 225.186 157.603   90.831 40.698 28.647 17.404 
0.10 1.08245 EWMA 484.618 428.858 370.624 221.936 146.869   72.105 24.607 16.276   9.512 
 12.9061 Modified EWMA 483.540 427.938 369.865 221.561 146.666   72.044 24.601 16.273   9.511 
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Figure 1 The ARL values derived with the Gauss-Legendre rule of the modified EWMA control chart for 
Weibull-distributed observations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 The ARL values derived with the Gauss-Legendre rule of the standard EWMA control chart for 
Weibull-distributed observations. 
 
5. Application of the approximated ARL using the gauss-legendre rule with real data 

 
The approximated ARL was solved by applying integral equations for detecting shifts in the process mean of 

a modified EWMA control chart for gamma and Weibull distributions.  The Gauss-Legendre method is 
unsuitable when speed is desired and computer storage is limited.  Moreover, Romberg integration should be 
considered when accuracy is paramount, and all other factors can be disregarded.  When the expression to be 
integrated can be expressed exactly as a polynomial of degree n, then Gauss-Legendre integration should be 
used. On the other hand, when the expression cannot be expressed exactly as an nth degree polynomial, then it 

can be expressed as function ( )(1 ) (1 ) g x x x  , where , 1,    and the Gauss-Jacobi method should be 

used. 
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Table 6 The ARL values of the standard and modified EWMA control charts for strength data for single carbon 
fibers of gauge length 20 at ARL0 = 370. 
  Weilbull(5.049422, 3.314562) 

= 0.05   = 0.10 
Modified EWMA EWMA  Modified EWMA EWMA 

0.001 364.647 365.030  363.574 364.893 
0.003 355.274 355.319  353.782 354.933 
0.005 346.288 349.039  344.355 345.344 
0.010 325.397 324.473  322.282 322.897 
0.030 259.944 257.021  251.647 251.113 
0.050 214.953 210.787  201.773 200.482 
0.100 150.128 144.456  128.478 126.201 
0.300   77.470   70.949    50.454   47.517 
0.500   58.393   52.034    34.272   31.388 
1.000   40.209   34.429    21.835   19.213 

 
6. Conclusion 

 
The approximated average run length (ARL) solved by applying integral equations for detecting shifts in the 

process mean of a modified exponentially weighted moving average ( EWMA)  control chart for gamma and 
weibull distribution.  The speed is desired and computer storage is limited then the Gauss-Legendre methods 
would be eliminated.  The accuracy and disregarded all other factors, then Romberg integration would be 
considered. The expression to be integrated can be expressed exactly as a polynomial of degree n, then Gauss-
Legendre integration should be used. On the other hand, if the expression cannot be expressed exactly as a nth 

degree polynomial, or as then the expression can be expressed as a function ( )(1 ) (1 ) g x x x  where 

, 1,    and the Gauss-Jacobi should be used. 
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