

THESIS APPROVAL

GRADUATE SCHOOL, KASETSART UNIVERSITY

	Doctor of Philosophy (Chemistry) DEGREE	
	Chemistry	Chemistry
	FIELD	DEPARTMENT
TITLE:	Synthesis of Key Intermediates to Antiviral Sterol Ortho	esters and
	Synthesis of New Polyhydroxy Sterols with Anticancer	Activity Evaluation
NAME:	Miss Potjamarn Bunyathaworn	
THIS TH	ESIS HAS BEEN ACCEPTED BY	
		THESIS ADVISOR
(Associate Professor Boonsong Kongkathip, Ph.D.	
		COMMITTEE MEMBEI
(Associate Professor Ngampong Kongkathip, Ph.D.)
` 	Those the Troise of Try and Troise of Troise o	COMMITTEE MEMBEI
()
·	Assistant Professor Marisa Arunchaiya, Ph.D.	
		DEPARTMENT HEAD
(Associate Professor Supa Hannongbua, Dr.rer.nat.)
APPROVE	D BY THE GRADUATE SCHOOL ON	
	······································	
		DEAN
	(Associate Professor Gunjana Theeragool, D.	

THESIS

SYNTHESIS OF KEY INTERMEDIATES TO ANTIVIRAL STEROL ORTHOESTERS AND SYNTHESIS OF NEW POLYHYDROXY STEROLS WITH ANTICANCER ACTIVITY EVALUATION

POTJAMARN BUNYATHAWORN

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (Chemistry) Graduate School, Kasetsart University 2011 Potjamarn Bunyathaworn 2011: Synthesis of Key Intermediates to Antiviral Sterol Orthoesters and Synthesis of New Polyhydroxy Sterols with Anticancer Activity Evaluation. Doctor of Philosophy (Chemistry), Major Field: Chemistry, Department of Chemistry. Thesis Advisor: Associate Professor Boonsong Kongkathip, Ph.D. 243 pages.

Sterol orthoesters which are marine natural products, isolated from the Caribbean sponge Petrosia weinbergi, exhibited in vitro activity against the feline leukemia virus (FeL V), mouse influenza virus (PR8) and mouse corona virus (A59). Up to the present, there has been no report on the synthesis of sterol orthoesters and their intermediates, so synthesis antiviral sterol orthoesters intermediates has been investigated Two key intermediates, 2α , 3α -epoxy- 16α - $(3-acetoxy-2, 2-dimethyl-5-hexenoate)-<math>5\alpha$ pregnan-20-one and 16α-(3-acetoxy-2, 2-dimethyl-5-hexenoate)-2, 3-dihydroxy-20-methyl-5α-pregn-20-ene for intramolecular strategy have been successfully synthesized in 10 and 13 steps with 11.9% and 0.12% overall yield, respectively by using tigogenin obtained from waste of Agave sisalana leaves or commercially available 3β-acetoxy-5-pregnen-20-one as starting material. Intermolecular strategy was also a tool for synthesizing the key intermediate, 3β-tert-butyldimethylsiloxy-29-hydroxy-(16S, 20S)-16, 20-acetonide-5αcholest-24(28)-ene from cheaply available diosgenin in 8 steps with 0.55% overall yield.

Six new polyhydroxy sterols and their sulfated analogs have also been synthesized by using Grignard reaction as a key step. Their structures contain various functionalities in ring A such as monohydroxyl group at C-3 (β) or dihydroxyl group at C-2 (β) and C-3 (α) and differ on the side chain for studying the effect on cytotoxicity against two cancer cell lines, human epidermoid carcinoma (KB) and human small cell lung carcinoma (NCI-H187). The results showed that 3 β , 20(S), 24-trihydroxy-5 α -cholestane bearing trihydroxyl group at C-3, C-20 and C-24 exhibited the strongest activity against both cell lines (IC₅₀ (μ g/ml) = 5.39 (KB) and 2.11 (NCI-H187)) whereas 2 β , 3 α , 20(S), 24-tetrahydroxy-5 α -cholestane containing extra hydroxyl group at C-2 in ring A was inactive against both cell lines.

		/	 /
Student's signature	Thesis Advisor's signature		

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Associate Professor Boonsong Kongkathip, whose teaching and guidance were a source of great inspiration to me. His invaluable helpful suggestions, valuable enlightening explanations and assistance were indispensable throughout the course of my graduate study at Kasetsart University.

I gratefully acknowledge Associate Professor Ngampong Kongkathip and Assistant Professor Marisa Arunchaiya, my co-advisors for their suggestions and helpful assistance.

Thanks are extended to Professor Steven V. Ley for giving me the opportunity to work at Whiffen Lab, Cambridge University, United Kingdom and also his valuable discussions, suggestions and assistance.

Thanks to Dr. Pensri Bunsawansong for recording NMR spectral data and Department of Chemistry, Faculty of Science, Kasetsart University for supporting the NMR analyses. I also express gratitude to Dr. Prasak Thawornyuthikan at Department of Chemistry, Chiangmai University for providing HRMS for mass spectral analyses

The Thailand Research Fund (TRF) under the Royal Golden Jubilee Program is acknowledged for financial support. I would also like to thank the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education.

Finally, I am thankful and deeply appreciated to my parents for their understanding, encouragement and warm hospitality and also to people whose company I have enjoyed.

Potjamarn Bunyathaworn

May 2011

TABLE OF CONTENTS

	Page
TABLE OF CONTENTS	i
LIST OF TABLES	ii
LIST OF FIGURES	iii
LIST OF ABBREVIATIONS	xii
INTRODUCTION	1
OBJECTIVES	6
LITERATURE REVIEW	7
MATERIALS AND METHODS	37
Materials	37
Methods	39
RESULTS AND DISCUSSION	127
Results	127
Discussion	150
CONCLUSION	161
LITERATURE CITED	163
APPENDIX	173
CURRICULUM VITAE	243

LIST OF TABLES

Table		Page
1	Cytotoxicity of synthetic polyoxygenated steroids against KB,	
	NCI and MCF7	12
2	Reduction of epoxy ketones with lithium in liquid ammonia	24
3	Reduction of epoxy ketones with aluminium amalgam	26
4	Reduction of α , β -epoxy ketone to β -hydroxy ketone with	
	samarium iodide in THF and methanol at -90°C	27
5	Reductive cleavage of α , β -epoxy ketones to β -hydroxy	
	ketones with lithium naphthalenide	29
6	Reductive cleavage of α , β -epoxy ketones to β -hydroxy	
	ketones with Cp ₂ TiCl	30
7	Nnucleophilic addition of 20-ketone steroids to tertiary alcohol	
	by using Grignard reagents	32
8	Reductive cleavage of α , β -epoxy ketone 87 to β -hydroxy	
	ketone 88	130
9	Cytotoxicity of synthetic 2, 3, 20, 24-polyoxygenated steroids	
	and sulfated polyoxygnated steroid against KB and NCI	147
10	Antiviral HSV-1 activity and cytotoxicity against Vero cells of	
	synthetic sulfated polyoxygnated steroids	149

LIST OF FIGURES

Aį	ppen	ndix Figure Pa	
	1	400 MHz ¹ H NMR spectrum : 3β-acetoxy-5α-16-pregnen-20-one (81)	174
	2	100 MHz 13 C NMR spectrum : 3β-acetoxy-5α-16-pregnen-20-one (81)	174
	3	400 MHz ¹ H NMR spectrum : 3β-acetoxy-5α-pregnan-20-one (82)	175
	4	100 MHz ¹³ C NMR spectrum : 3β-acetoxy-5α-pregnan-20-one (82)	175
	5	400 MHz ¹ H NMR spectrum : 3β-acetoxy-5α-17-pregnenyl acetate (83)	176
	6	100 MHz ¹³ C NMR spectrum : 3β-acetoxy-5α-17-pregnenyl acetate (83)	176
	7	400 MHz ¹ H NMR spectrum : 3β-acetoxy-5α-17-bromo-pregnan-20-one	
		(84)	177
	8	100 MHz 13 C NMR spectrum : 3β-acetoxy-5α-17-bromo-pregnan-20-one	
		(84)	177
	9	400 MHz 1 H NMR spectrum : 16α, 17α-epoxy-3β-hydroxy-5α-	
		pregnan-20-one (85)	178
	10	100 MHz 13 C NMR spectrum : 16α, 17α-epoxy-3β-hydroxy-5α-	
		pregnan-20-one (85)	178
	11	400 MHz 1 H NMR spectrum : 16α, 17α-epoxy-3β-tosyloxy-5α-	
		pregnan-20-one (86)	179
	12	100 MHz 13 C NMR spectrum : 16α, 17α-epoxy-3β-tosyloxy-5α-	
		pregnan-20-one (86)	179
	13	400 MHz 1 H NMR spectrum : 16α , 17α -epoxy- 5α -2-pregnen-20-one (87)	180
	14	400 MHz ¹ H NMR spectrum : 16α-hydroxy-5α-2-pregnen-20-one (88)	181
	15	100 MHz 13 C NMR spectrum : 16α-hydroxy-5α-2-pregnen-20-one (88)	181
	16	400 MHz 1 H NMR spectrum : 2α , 3α -epoxy- 16α -hydroxy- 5α -	
		pregnan-20-one (89)	182
	17	100 MHz ^{13}C NMR spectrum : 2 α , 3 α -epoxy-16 α -hydroxy-5 α -	
		pregnan-20-one (89)	182
	18	400 MHz ¹ H NMR spectrum : 3-benzyloxypropionitrile (91)	183
	19	100 MHz ¹³ C NMR spectrum : 3-benzyloxypropionitrile (91)	183

A	Appendix Figure		Page
	20	400 MHz ¹ H NMR spectrum : ethyl 5-hydroxy-2, 2-dimethyl-	
		3-oxopentanoate (93)	184
	21	100 MHz ¹³ C NMR spectrum: ethyl 5-hydroxy-2, 2-dimethyl-	
		3-oxopentanoate (93)	184
	22	400 MHz ¹ H NMR spectrum : ethyl 5-benzyloxy-2, 2-dimethyl-3-	
		oxopentanoate (94)	185
	23	100 MHz ¹³ C NMR spectrum : ethyl 5-benzyloxy-2, 2-dimethyl-3-	
		oxopentanoate (94)	185
	24	400 MHz ¹ H NMR spectrum : ethyl 5-acetoxy-2, 2-dimethyl-3-	
		oxopentanoate (95)	186
	25	400 MHz ¹ H NMR spectrum : ethyl 5-benzyloxy-3-hydroxy-2, 2-	
		dimethylpentanoate (100)	187
	26	100 MHz ¹³ C NMR spectrum : ethyl 5-benzyloxy-3-hydroxy-2, 2-	
		dimethylpentanoate (100)	187
	27	400 MHz ¹ H NMR spectrum: ethyl 5-benzyloxy-3-tert-	
		butyldimethylsilyloxy-2, 2-dimethylpentanoate (101)	188
	28	100 MHz ¹³ C NMR spectrum : ethyl 5-benzyloxy-3-tert-	
		butyldimethylsilyloxy-2, 2-dimethylpentanoate (101)	188
	29	400 MHz ¹ H NMR spectrum : ethyl 5, 5-diethoxy-2, 2-dimethyl-3-	
		oxopentanoate (104)	189
	30	100 MHz ¹³ C NMR spectrum : ethyl 5, 5-diethoxy-2, 2-dimethyl-3-	
		oxopentanoate (104)	189
	31	400 MHz ¹ H NMR spectrum : ethyl 4-(1, 3-dithiolan-2-yl)-2, 2-	
		dimethyl-3-oxobutanoate (105)	190
	32	100 MHz ¹³ C NMR spectrum : ethyl 4-(1, 3-dithiolan-2-yl)-2, 2-	
		dimethyl-3-oxobutanoate (105)	190
	33	400 MHz ¹ H NMR spectrum : ethyl 4-(1, 3-dithiolan-2-yl)-3-	
		hydroxy-2, 2-dimethylbutanoate (106)	191

App	pen	ndix Figure	
	34	100 MHz ¹³ C NMR spectrum : ethyl 4-(1, 3-dithiolan-2-yl)-3-	
		hydroxy-2, 2-dimethylbutanoate (106)	191
	35	400 MHz ¹ H NMR spectrum : methyl 3-hydroxy-2, 2-dimethyl-	
		5-hexenoate (109)	192
	36	100 MHz ¹³ C NMR spectrum : methyl 3-hydroxy-2, 2-dimethyl-	
		5-hexenoate (109)	192
	37	400 MHz ¹ H NMR spectrum : 3-hydroxy-2, 2-dimethyl-5-	
		hexenoic acid (110)	193
	38	100 MHz ¹³ C NMR spectrum: 3-hydroxy-2, 2-dimethyl-5-	
		hexenoic acid (110)	193
	39	400 MHz ¹ H NMR spectrum : 3-acetoxy-2, 2-dimethyl-5-	
		hexenoic acid (111)	194
	40	100 MHz ¹³ C NMR spectrum: 3-acetoxy-2, 2-dimethyl-5-	
		hexenoic acid (111)	194
\	41	400 MHz ¹ H NMR spectrum : 2α , 3α -epoxy- 16α -	
		(3-acetoxy-2, 2-dimethyl-5-hexenoate)-5α-pregnan-20-one (a)	195
	42	100 MHz $^{13}\text{C NMR}$ spectrum : 2α , 3α -epoxy- 16α -	
		(3-acetoxy-2, 2-dimethyl-5-hexenoate)-5α-pregnan-20-one (a)	195
	43	400 MHz ¹ H NMR spectrum : 2α, 3α-epoxy-16α-	
		(4-formyl-2, 2-dimethyl-3-butenoate)-5α-pregnan-20-one (162)	196
	44	400 MHz ¹ H NMR spectrum : 16α- <i>tert</i> -butyldimethylsilyloxy-	
		5α-2-pregnen-20-one (114)	197
	45	100 MHz ¹³ C NMR spectrum : 16α- <i>tert</i> -butyldimethylsilyloxy-	
		5α-2-pregnen-20-one (114)	197
	46	$400~\text{MHz}$ ^1H NMR spectrum : 16α -tert-butyldimethylsilyloxy –	
		2α , 3α -epoxy- 5α -pregnan-20-one (115)	198

A p	pen	pendix Figure Pa	
	47	100 MHz ¹³ C NMR spectrum :16α- <i>tert</i> -butyldimethylsilyloxy –	
		2α , 3α -epoxy- 5α -pregnan-20-one (115)	198
	48	400 MHz ¹ H NMR spectrum : 16α-tert-butyldimethylsilyloxy-	
		2α , 3α -epoxy-20-methyl- 5α -20-pregnene (116)	199
	49	100 MHz ¹³ C NMR spectrum : 16α-tert-butyldimethylsilyloxy-	
		2α , 3α -epoxy-20-methyl- 5α -20-pregnene (116)	199
	50	400 MHz ¹ H NMR spectrum : 2α , 3α -epoxy- 16α -hydroxy-	
		20-methyl-5α-20-pregnene (117)	200
	51	400 MHz ¹ H NMR spectrum : 16β-(3-acetoxy-2, 2-dimethyl-	
		5-hexenoate)-2, 3-dihydroxy-20-methyl-5α-20-pregnene (118)	201
	52	400 MHz ¹ H NMR spectrum : tigogenin (54)	202
	53	100 MHz ¹³ C NMR spectrum: tigogenin (54)	202
	54	$400~\text{MHz}$ ¹ H NMR spectrum : 3β -acetoxy- 16β -(5-acetoxy-4-	
		methylpentanoate)-pregnan-20-one (60)	203
	55	100 MHz $^{13}\text{C NMR}$ spectrum : 3β -acetoxy- 16β -(5-acetoxy-4-	
		methylpentanoate)-pregnan-20-one (60)	203
	56	400 MHz 1 H NMR spectrum : 3 β -hydroxy-(16 S , 20 S)-16,20-acetonide-	
		5α-24a-homo-chol-24-ene (119)	204
	57	100 MHz 13 C NMR spectrum : 3 β -hydroxy-(16 S , 20 S)-16,20-acetonide-	
		5α-24a-homo-chol-24-ene (119)	204
	58	400 MHz 1H NMR spectrum : 24-formyl-3 β -hydroxy-(16S, 20S)-16, 20-	
		acetonide-5α-cholane (120)	205
	59	100 MHz ¹³ C NMR spectrum : 24-formyl-3β-hydroxy-(16 <i>S</i> , 20 <i>S</i>)-16, 20-	
		acetonide-5α-cholane (120)	205
	60	400 MHz ¹ H NMR spectrum : 3β, 24-dihydroxy-(16S, 20S)-16, 20-	
		acetonide-5α-cholestane (121)	206

۱	pen	ndix Figure	Page
	61	100 MHz ¹³ C NMR spectrum : 3β, 24-dihydroxy-(16 <i>S</i> , 20 <i>S</i>)-16, 20-	
		acetonide-5α-cholestane (121)	206
	62	400 MHz ¹ H NMR spectrum : 3β- <i>tert</i> -butyldimethylsiloxy-(16S, 20S)-	
		16, 20-acetonide-5α-24a-homo-chol-24-ene (123)	207
	63	100 MHz 13 C NMR spectrum : 3β- <i>tert</i> -butyldimethylsiloxy-(16 S , 20 S)-	
		16, 20-acetonide-5α-24a-homo-chol-24-ene (123)	207
	64	400 MHz ¹ H NMR spectrum : 3β- <i>tert</i> -butyldimethylsiloxy-24-hydroxy-	
		(16S, 20S)-16, 20-acetonide-5α-cholestane (124) (Isomer I)	208
	65	$100~\text{MHz}$ ^{13}C NMR spectrum : 3β - <i>tert</i> -butyldimethylsiloxy-24-hydroxy-	
		(16S, 20S)-16, 20-acetonide-5α-cholestane (124) (Isomer I)	208
	66	400 MHz ¹ H NMR spectrum : 3β- <i>tert</i> -butyldimethylsiloxy-24-hydroxy-	
		(16S, 20S)-16, 20-acetonide-5α-cholestane (124) (Isomer II)	209
	67	100 MHz 13 C NMR spectrum : 3β -tert-butyldimethylsiloxy-24-hydroxy-	
		(16S, 20S)-16, 20-acetonide-5α-cholestane (124) (Isomer II)	209
	68	400 MHz ¹ H NMR spectrum : 3β- <i>tert</i> -butyldimethylsiloxy-(16S, 20S)-	
		16, 20-acetonide-5α-cholestan-24-one (125)	210
	69	100 MHz 13 C NMR spectrum : 3β -tert-butyldimethylsiloxy-(16S,20S)-	
		16,20-acetonide-5α-cholestan-24-one (125)	210
	70	400 MHz ¹ H NMR spectrum : 3β- <i>tert</i> -butyldimethylsiloxy-24-ethenyl-24	-
		hydroxy-(16S, 20S)-16, 20-acetonide-5α-cholestane (126) (Isomer I)	211
	71	400 MHz ¹ H NMR spectrum : 3β- <i>tert</i> -butyldimethylsiloxy-24-ethenyl-24	-
		hydroxy-(16S, 20S)-16, 20-acetonide-5α-cholestane (126) (Isomer II)	212
	72	400 MHz 1 H NMR spectrum : 3 β -tert-butyldimethylsiloxy-29-hydroxy-	
		(16S, 20S)-16, 20-acetonide-5α-cholest-24(28)-ene (127)	213
	73	100 MHz 13 C NMR spectrum : 3β - <i>tert</i> -butyldimethylsiloxy-29-hydroxy-	
		(16S, 20S)-16, 20-acetonide-5α-cholest-24(28)-ene (127)	213

Ap	ppendix Figure P		Page
	74	400 MHz ¹ H NMR spectrum : 3β, 20(<i>S</i>)-dihydroxy-5α-24a-homo-	
		chol-24-ene (129)	214
	75	100 MHz 13 C NMR spectrum : 3 β , 20(S)-dihydroxy-5 α -24a-homo-	
		chol-24-ene (129)	214
	76	400 MHz 1 H NMR spectrum : 3 β , 20(S), 24-trihydroxy-5 α -	
		cholestane (130)	215
	77	100 MHz 13 C NMR spectrum : 3β, 20(S), 24-trihydroxy-5α-	
		cholestane (130)	215
	78	400 MHz ¹ H NMR spectrum : 3β, 20(S)-dihydroxy-5α-	
		cholest-24-ene (131)	216
	79	100 MHz 13 C NMR spectrum : 3 β , 20(S)-dihydroxy-5 α -	
		cholest-24-ene (131)	216
	80	400 MHz ¹ H NMR spectrum : 3β, 20(<i>S</i>)-dihydroxy-5α-cholestane (132)	217
	81	100 MHz 13 C NMR spectrum : 3β, 20(S)-dihydroxy-5α-cholestane (132)	217
	82	400 MHz ¹ H NMR spectrum : 3β-hydroxy-5α-pregnan-20-one (133)	218
	83	100 MHz ¹³ C NMR spectrum : 3β-hydroxy-5α-pregnan-20-one (133)	218
	84	400 MHz ¹ H NMR spectrum : 3β-tosyloxy-5α-pregnan-20-one (134)	219
	85	100 MHz ¹³ C NMR spectrum : 3β-tosyloxy-5α-pregnan-20-one (134)	219
	86	400 MHz ¹ H NMR spectrum : 2-pregnen-20-one (135)	220
	87	100 MHz ¹³ C NMR spectrum : 2-pregnen-20-one (135)	220
	88	400 MHz 1 H NMR spectrum : 2α , 3α -epoxy- 5α -pregnan-20-one (136)	221
	89	100 MHz 13 C NMR spectrum : 2α, 3α-epoxy-5α-pregnan-20-one (136)	221
	90	400 MHz 1 H NMR spectrum : 2α , 3α -epoxy- $20(S)$ -hydroxy-	
		5α-24a-homo-chol-24-ene (137)	222
	91	100 MHz 13 C NMR spectrum : 2α , 3α -epoxy-20(S)-hydroxy-	
		5α-24a-homo-chol-24-ene (137)	222

Apper	Appendix Figure	
92	400 MHz 1 H NMR spectrum : 2α , 3α -epoxy-20(S)-hydroxy-	
	5α-cholest-24-ene (138)	223
93	100 MHz 13 C NMR spectrum : 2α , 3α -epoxy-20(S)-hydroxy-	
	5α-cholest-24-ene (138)	223
94	400 MHz 1 H NMR spectrum : 2α , 3α -epoxy-20(S)-hydroxy-	
	5α-cholestane (139)	224
95	100 MHz 13 C NMR spectrum : 2α , 3α -epoxy-20(S)-hydroxy-	
	5α-cholestane (139)	224
96	400 MHz 1 H NMR spectrum : 2α , 3α -epoxy-20(S), 24-dihydroxy-	
	5α-cholestane (140)	225
97	100 MHz 13 C NMR spectrum : 2α , 3α -epoxy-20(S), 24-dihydroxy-	
	5α-cholestane (140)	225
98	400 MHz 1 H NMR spectrum : 24-benzyloxy-2 α , 3 α -epoxy-20(S)-	
	hydroxy-5α-cholestane (141)	226
99	100 MHz 13 C NMR spectrum : 24-benzyloxy-2 α , 3 α -epoxy-20(S)-	
	hydroxy-5α-cholestane (141)	226
100	400 MHz 1 H NMR spectrum : 24-benzyloxy-2 α , 3 α , 20(S)-	
	trihydroxy-5α-cholestane (142)	227
101	100 MHz 13 C NMR spectrum : 24-benzyloxy-2 α ,3 α -20(S)-	
	trihydroxy-5α-cholestane (142)	227
102	400 MHz 1 H NMR spectrum : 24-benzyloxy-2 β , 3 α , 20(S)-	
	trihydroxy-5α-cholestane (143)	228
103	100 MHz 13 C NMR spectrum : 24-benzyloxy-2 β , 3 α , 20(S)-	
	trihydroxy-5α-cholestane (143)	228
104	400 MHz 1 H NMR spectrum : 2α , 3α , $20(S)$, 24 -tetrahydroxy- 5α -	
	cholestane (144)	229

Appendix Figure	Page
105 400 MHz ¹ H NMR spectrum : 2 β , 3 α , 20(S), 24-tetrahydroxy-5 α -	
cholestane (145)	230
106 100 MHz 13 C NMR spectrum : 2β, 3α, 20(S), 24-tetrahydroxy-5α-	
cholestane (145)	230
107 400 MHz 1 H NMR spectrum : 2β, 3α, 20(S)-trihydroxy-5α-	
cholest-24-ene (147)	231
108 100 MHz 13 C NMR spectrum : 2β, 3α, 20(S)-trihydroxy-5α-	
cholest-24-ene (147)	231
109 400 MHz 1 H NMR spectrum : 2α , 3α , $20(S)$ -trihydroxy- 5α -	
cholestane (148)	232
110 400 MHz 1 H NMR spectrum : 2 β , 3 α , 20(S)-trihydroxy-5 α -	
cholestane (149)	233
111 100 MHz 13 C NMR spectrum : 2 β , 3 α , 20(S)-trihydroxy-5 α -	
cholestane (149)	233
112 400 MHz ¹ H NMR spectrum : 3β- <i>tert</i> -butyldimethylsiloxy-	
$20(S)$ -hydroxy- 5α - $24a$ -homo-chlo- 24 -ene (150)	234
113 100 MHz 13 C NMR spectrum : 3β -tert-butyldimethylsiloxy-	
$20(S)$ -hydroxy- 5α - $24a$ -homo-chlo- 24 -ene (150)	234
114 400 MHz ¹ H NMR spectrum : 3β- <i>tert</i> -butyldimethylsiloxy-	
$20(S)$, 24-dihydroxy- 5α -cholestane (151)	235
115 100 MHz ¹³ C NMR spectrum : 3β- <i>tert</i> -butyldimethylsiloxy-	
$20(S)$, 24-dihydroxy- 5α -cholestane (151)	235
116 400 MHz ¹ H NMR spectrum : 24-benzyloxy-3β- <i>tert</i> -	
butyldimethylsiloxy-20(S)-hydroxy-5 α -cholestane (152)	236
117 100 MHz ¹³ C NMR spectrum : 24-benzyloxy-3β- <i>tert</i> -	
butyldimethylsiloxy-20(S)-hydroxy-5 α -cholestane (152)	236

Appendix Figure		
118	400 MHz ¹ H NMR spectrum : 3β- <i>tert</i> -butyldimethylsiloxy-	
	$20(S)$, 24-dihydroxy- 5α -cholestane (153)	237
119	100 MHz $^{13}\text{C NMR}$ spectrum : 3β -tert-butyldimethylsiloxy-	
	$20(S)$, 24-dihydroxy- 5α -cholestane (153)	237
120	400 MHz ¹ H NMR spectrum : sodium 3β, 20(S), 24-	
	trihydroxy-5α-cholestane 3-sulfate (155)	238
121	400 MHz ¹ H NMR spectrum : sodium 3β, 20-dihydroxy-5α-	
	cholestane 3-sulfate (156)	239
122	400 MHz 1 H NMR spectrum : disodium 2 β , 3 α , 20(S), 24-	
	tetrahydroxy-5α-cholestane 2, 3-disulfate (158)	240
123	400 MHz 1 H NMR spectrum : sodium 2 β , 3 α , 20(S)-trihydroxy-	
	5α -cholest-24-ene 2-sulfate (159) and sodium 2β , 3α , $20(S)$ -	
	trihydroxy-5α-cholest-24-ene 3-sulfate (160)	241
124	400 MHz 1 H NMR spectrum : disodium 2 β , 3 α , 20(S)-	
	trihydroxy-5α-cholestane 2, 3-disulfate (161)	242

LIST OF ABBREVIATIONS

Ac = Acetyl

Bn = Benzyl

DBU = 1, 8-Diazabicyclo[5.4.0]undec-7-ene

DCM = Dichloromethane

DMAP = N, N-Dimethylpyridine

DMF = N, N-Dimethylformamide

IBX = Iodoxybenzoic acid

mCPBA = meta-Chloroperbenzoic acid

PCC = Pyridinium chlorochromate

Ph = Phenyl

TBS = *tert*-Butyldimethylsilyl

TES = Triethylsilyl

Tf = Trifluoromethanesulfonate

 δ = Chemical shift (ppm)

J = Coupling constant

 v_{max} = Maximum absorption frequency

cm⁻¹ = Reciprocal centimeter (wave number)

m = Multiplet

s = Singlet

t = Triplet

q = Quartet

d = Doublet

dd = Doublet of doublets

ddd = Doublet of doublets

Hz = Hertz

FTIR = Fourier transform infrared spectroscopy

MS = Mass spectroscopy

CI = Chemical ionization

EI = Electron impact

HRMS = High resolution mass spectroscopy

LIST OF ABBREVIATIONS (Continued)

m.p. = Melting point

m/z = A value of mass divided by charge

NMR = Nuclear magnetic resonance

h = Hour

SYNTHESIS OF KEY INTERMEDIATES TO ANTIVIRAL STEROL ORTHOESTERS AND SYNTHESIS OF NEW POLYHYDROXY STEROLS WITH ANTICANCER ACTIVITY EVALUATION

INTRODUCTION

Marine organisms have historically been a rich source of novel sterol, particularly in term of unique side chain structures and unusual functionalization. The steroids isolated from sponges are sometimes very complex mixtures of highly functionalized compounds. Common structures of sponges steroids including additional oxygenation of both the nucleus and the side chain, side chain modified by alkylation and degradation, the occurrence of sulfate esters of polyoxygenated sterol have been documented.

Up to the present, two classes of interesting new steroids, polyoxygenated steroids and sulfated polyhydroxysterols, have attracted considerable attention because most of them have shown strong biological and pharmacological activities.

Polyoxygenated steroids are a large group that could be found in marine organism especially in sponges. Recently our group synthesized both of a series of polyoxygenated steroids **1-4** isolated from gorgonian *Leptogorgia sarmentosa* (Boonananwong *et al.*, 2008a) and a series of new polyoxygenated aromatic steroid derivatives by various functionalities on side chain as saturated, unsaturated and free hydroxy cholesterol like side chains **5-8** which were evalutated the antitumor activity against three cell lines [human breast cancer cell line (MCF7), human lung cancer cell line (NCI) and human epidermoid carcinoma cell line (KB)] (Bunyathaworn *et al.*, 2010).

Sulfated polyhydroxysterols are naturally occurring metabolites in sponges and echinoderms (D' Auria *et al.*, 1993). Most of these compounds have shown various biological activities such as antivirus (McKee *et al.*, 1994) and inhibition of protein tyrosine kinase that result in control of cancer and other hyperproliferative conditions (Fu and Schmitz, 1994). For instance, Orthoesterol A (9), B (10) and C (11) exhibited *in vitro* activity against the feline leukemia virus (FeL V), mouse influenza virus (PR8) and mouse corona virus (A59) (Koehn *et al.*, 1991), halistanol sulfates (12-13) showed anti-HIV activity (Bifulco *et al.*, 1994) and sterol sulfate **14-16** inhibited Protein tyrosine kinase activity (Fu and Schmitz, 1994).

Orthoesterol A (9), orthoesterol B (10) and orthoesterol C (11) are marine natural products isolated from Caribbean sponge *Petrosia weinbergi*. Orthoesterols (A-C) contain a [3.2.1]-bicyclic orthoestyrate bridging the steroid side chain and ring D but they have a distinct side chain at C24-C28, i.e. orthoesterol A contains the olefinic function at this position whereas orthoesterol B and orthoesterol C possess the

cyclopropane ring and saturated function, respectively. Biosynthesis of orthoesterols may originate from an epoxy ester (Giner and Faraldos, 2002).

Biomimetic study of orthoester

Our group has studied syntheses of several steroidal drugs, such as prednisolone (Mongkolsripatana, 1997), triamcinolone (Khunnavutimanotum, 1998), cyproterone acetate and its derivative (Sakee *et al.*, 2003a; Sakee *et al.*, 2003b), estradiol (Hasukunpaisarn, 2000), aglycones of OSW-1 (Chaosuansharoen, 2004), anticancer 9,11-secosterols (Hasukunpaisarn, 2005), and 3,16,20-polyoxygenated steroids (Boonananwong, 2007).

Since no report on synthesis of sulfated steroids, orthoesterol A, orthoesterol B and orthoesterol C, has been published. Therefore first synthesis of these steroids and their intermediates defies us to study using common steroids etc., tigogenin and diosgenin. Furthermore, polyoxygenated steroids that our group has studied on synthesis and evalution of their activities by construction and modification in steroids

skeleton and side chain bearing with D ring have shown the interesting results. For this reason prompts us to investigate by synthesizing a new series of polyoxygenated steroids as polyhydroxy sterols with different degrees of oxidation at C-2, C-3, C-20 and C-24 and their sulfated analogs were also synthesized. Finally, the anticancer and antiviral activities of these synthetic steroids will evaluate to gain insight into their structure-activity relationships (SARs).

OBJECTIVES

- 1. To synthesize sterol orthoesters key intermediates for intramolecular and intermolecular strategies
 - 2. To synthesize new polyhydroxy sterols and their sulfated analogs
- 3. To evaluate anticancer activity of synthetic polyhydroxy sterols and sulfated steroid

LITERATURE REVIEW

Early reports and biological activity of polyoxygenated steroids and polyhydroxy sterols

Recently, marine sponges have been known as a rich sources of steroids. Due to this reason, examination of isolation the naturally occurring compounds and evaluation of their biological activities have continued from many research groups.

Polyoxygenated steroids and polyhydroxy sterols isolated from various organism, algae, marine invertebrate phyla such as Porifera, Coelenterata, Echinodermata and Tunicata and also in fish (D' Auria *et al.*, 1993) is one class of active steroids.

Marine sponge *Cliona copiosa*, collected from two different places of the Mediterranean sea, contained 5α -cholestane- 3β , 5, 6β -triol (17), new five trihydroxy steroids, (22E)- 5α -cholest-22-ene- 3β , 5, 6β -triol (18), (22E, 24S)-24-methyl- 5α -cholest-22-ene- 3β , 5, 6β -triol (19), (22E, 24R)-24-methyl- 5α -cholest-22-ene- 3β , 5, 6β -triol (20), (24R)-24-ethyl- 5α -cholestane- 3β , 5, 6β -triol (21) and (24S)-24-ethyl- 5α -cholestane- 3β , 5, 6β -triol (22) (Notaro *et al.*, 1991).

Previously synthesized 5α -cholest-8(14)ene-3 β , 7α -diol (23) and six new dihydroxy steroids **24-29** isolated from the marine sponge *Pellina semitubulosa* have been reported. Their structures were confirmed by synthesis of **23** starting from 5α -

cholest-7-ene-3 β -ol (Notaro *et al.*, 1992a). In this year, 1992, two new polyoxygenated steroids **30-31** were discovered from the Black sea sponge *Dysidea fragilis* (Milkova *et al.*, 1992). Their structures and stereochemistry have been interpreted by analysis of spectral data.

Chemical investigation of marine sponge *Spirastrella inconstans* led to new cholesterol derivative, (24*S*)-24-ethylcholesta-3 β , 5 α -diol-6-one (32) together with cholesterol, clionasterol and (24*S*)-24-ethylcholesta-3 β , 5 α , 6 β -triol (33) (Das and Srinivas, 1992). The structure of **32** established from spectral data and confirmed by synthesis.

Occurrence: Spirastrella inconstans

Polyoxygenated steroids 34-40, isolated from marine sponge Cliona copiosa, were new compounds (Notaro et al., 1992b). Marine sponge Spirastrella inconstans contained new clionasterol derivative, (24S)-24- ethylcholesta-3 β , 5 α , 6 α -triol (41) (Das et al., 1993). Five new highly oxygenated sterols, (20S, 22E)-cholesta-1,4,22triene-18, 20-diol-3-one (42), (20S, 22E)-24-methylcholesta-1, 4, 22-triene-18, 20diol-3-one (43), (20S)-cholest-4-ene-16β, 18, 20-triol-3-one (44), (20S, 22E)-cholesta-4, 22-diene-16β, 18, 20-triol-3-one (45) and (20S, 22E)-methylcholesta-4, 22-diene-16β, 18, 20-triol-3-one (46) were isolated from black coral Antipathes subpinnata. Compounds 43, 44, 45 and 46 showed unexpected toxicity toward the brine shrimp (Artemia salina) with LC₅₀ of 55.6, 30.7, 7.2 and 139.4 µg/ml respectively (Aiello et al., 1992).

Occurrence: Cliona copiosa

Occurrence: Spirastrella inconstans

Occurrence: Antipathes subpinnata

A series of polyoxygenated steroids possessing uncommonly present oxidation both at C-16 and C-20 were previously studied from Mediterranean specimen of *L. sarmentosa* (Cimino *et al.*, 1981, 1984; Benvegnu' *et al.*, 1982). In 2000, new cytotoxic metabolites **1-3** along with known compound **4** were isolated from marine organism, the gorgonian *Leptogorgia sarmentasa*. Compounds **1** and **2** showed significant cytotoxicity against P-388 suspension culture of mouse lymphoid neoplasm and the monolayer cultures of human lung carcinoma (A 549), human colon

carcinoma (HT 29), and human melanoma (MEL 28) exhibiting ED₅₀ values of 1 μ g/ml, in all cases (Garrido *et al.*, 2000).

Occurrence: Leptogorgia sarmentosa

In 2008, our group reported first synthesis of 3, 16, 20-polyoxygenated cholestanes, new cytotoxic steroids from the gorgonian *Leptogorgia sarmentosa*. Four synthetic steroids, (20*S*)-20-hydroxycholestane-3, 16-dione (1), (16*S*, 20*S*)-16, 20-dihydroxycholestan-3-one (2), (20*S*)-20-hydroxycholest-1-ene-3, 16-dione (3) and (20*S*)-20-hydroxycholest-4-ene-3, 16-dione (4), were synthesized in 4 steps from tigogenin which could be obtained from the waste water of *Agave sisalana* industry. Compounds **3** and **4** showed strong activity against NCI (IC₅₀ 6.16 and 10.51 μ M) and moderate activity against MCF7 and KB (IC₅₀ in range 30.65-47.22 μ M). Compound **2**, being inactive in MCF7 and KB, exhibited moderate activity against NCI (IC₅₀ 42.68 μ M). Unfortunately, compound **1** showed no activity against in all cases (Boonananwong *et al.*, 2008).

In continuation of our work on synthesis of polyoxygenated steroids for structure-activity relationships (SARs) studies, we further investigated in the modification of steroid skeleton at ring A as aromatic and non-aromatic and functionality at C-16 as free hydroxy and ketone and side chain modification at C-20

as saturated and unsaturated cholesterol like side chain. The results showed that compounds with ring A as aromatic showed the significant potent cytotoxicities in all test cells [NCI, KB and MCF7] whereas the type of functional group and the stereochemistry at C-16 led to the different results. Moreover, the functional group on the side chain gave a selectivity on test cell lines such as unsaturated cholesterol like side chain showed no cytotoxicity against all tested cell lines and saturated cholesterol like side chain exhibiting no activity against both MCF7 and NCI but very active against KB cell lines as shown in Table 1 (Bunyathaworn *et al.*, 2010).

Table 1 Cytotoxicity of synthetic polyoxygenated steroids against KB, NCI and MCF7

Compound	IC ₅₀ μM ^a		
	MCF7	NCI	KB
OH WHO	55.53	55.75	48.40
но	Inactive ^b	Inactive ^b	Inactive ^b
НО	Inactive ^b	Inactive ^b	11.73

 Table 1 (Continued)

Compound	$IC_{50}\mu M^a$		
	MCF7	NCI	KB
HO OH OH	42.43	Inactive ^b	20.41
Ellipticine ^c	ND	1.79	1.72
Doxorubicine ^c	1.51	0.16	0.33

MCF7, human breast adenocarcinoma; NCI, human small cell lung carcinoma;

KB, human epidermoid carcinoma of cavity.

^a; Data are typical values from six replicate experiments.

^b; Inactive = inhibition < 50%.

c; Used as reference.

Early reports and biological activity of sulfated polyhydroxy steroids

Sulfated steroids have been recently found from a wide variety of marine organism, particularly sponges and echinoderms (Kerr and Barker, 1991). Most of the naturally occurring sulfated steroids are 2β , 3α , 6α -tri-O-sulfate, 2β , 3α ,-di-O-sulfate and C-2 or C-3 and C-21 disulfate and contain a various of their side chain at C-20. These steroids exhibited a broad range of activities, HIV properties (McKee *et al.*, 1994), cytotoxic action (Anderson *et al.*, 1989), antimicrobial, hemolytic, ichthyotoxic (Fusetani *et al.*, 1981), inhibition of protein tyrosine kinases (Fu and Schmitz, 1994).

Halistanol sulfate family is a large group of sulfated steroids from a vast sponges, Halichondriidae and Adociidae families, including the genera Halichondria (Fusetani *et al.*, 1981; Makarieva *et al.*, 1985), Trachyopsis (Makarieva *et al.*, 1987), Toxadocia (Nakutsu *et al.*, 1983) and Petrosia (Sun *et al.*, 1991). They are very attractive because of their biological activity. Their common structure characterized by the same 2β , 3α , 6α -trisulfoxy function, differing only their side chain.

Halistanol sulfate, first isolated from Okinawan sponge *Halichondria* cf., showed the antimicrobial activity, hemolytic and ichthyotoxic activity. The structure of this compound was fully established by NMR technique of acid hydrolyzed form of halistanol sulfate (Fusetani *et al.*, 1981). In 1992 new sulfated steroids, halistanol sulfate A-E were discovered from a marine sponge *Epipolasis* sp. These compounds exhibited anifungal and anti-thrombin activities (Kanazawa *et al.*, 1992). Halistanol sulfate F-H were found from a sponge *Pseudoaxinissa digitata*, family Axinellidae in 1994. Halistanol sulfate F and G were proved to be cytoprotective against HIV-1 with EC₅₀ 3 and 6 μg/ml, respectively (Bifulco *et al.*, 1994).

Halistanol sulfate
$$R_1 = \frac{1}{2} + \frac{1}{2} +$$

Moreover, new bioactive steroids were further screening from other sponges. The Caribbean sponge, *Petrosia weinbergi* is another species that gave unusual biologically active steroids, weinbersterols A and B including orthoesterol A-C. It was found that weinbersterols A and B showed *in vitro* activity against the feline leukemia virus (FeLV) with $EC_{50} = 4.0$ and $5.2 \mu g/ml$, respectively and weinbersterols A also exhibited activity against the human immunodeficiency virus ($EC_{50} = 1.0 \mu g/ml$) (Sun *et al.*, 1991).

Orthoesterol A-C (9-11) isolated from marine sponge *Petrosia weinbergi* showed *in vitro* activities against feline leukemia virus (FeLV), influenza PR8 virus and mouse corona virus (Koehn *et al.*, 1991). Orthoesterol A-C contain a [3.2.1]—bicyclic orthoestyrate bridging the steroid side chain and ring D but they have a distinct side chain at C24 – C25, i.e. orthoesterol A (9) contains the olefinic function at this position and orthoesterol C (11) has no functional group on side chain whereas orthoesterol B (10) contains the cyclopropane ring.

weinbersterol A

weinbersterol B

*Na
$$^{-}O_{3}$$
SO **

The interval A, R = **

orthoesterol A, R = **

orthoesterol B, R = **

orthoesterol C, R = **

orthoest

The hypothesis that othoesterol could be originated from epoxy ester was proved by construction [3.2.1]—bicyclic orthoestyrate bridging the steroid side chain under mild acidic catalysis as shown below.

In order to gain insight into structure-activity relationships, synthetic sulfated polyhydroxysteroids were synthesized to compare evaluation of the antiviral activity

with the natural sulfated polyhydroxysteroids. For example, the natural disulfated steroids **47-49** and their synthetic analogs **50-51** containing sulfate at C-21 and C-2 (β) or C-3 (α) with additional hydroxyl group on ring A at C-2 (β) or C-3 (α) showed the most effective in their selective inhibitory action against herpes simplex virus (HSV-2) (Comin *et al.*, 1999). These result led to synthesis of new synthetic sulfated steroids **52-53** from common 3 β -hydroxy-5 α -cholestane for testing the the activity. Compounds **52** and **53** were the most effective in their selective inhibitory action against herpes simplex virus (HSV-2) with IC₅₀ = 19.3 and 23.9 µg/ml, respectively and compound **53** also inhibited against two pathogenic viruses, DEN-2 and JV (Garrido Santos *et al.*, 2003).

natural sulfated polyhydroxysteroids

synthetic sulfated polyhydroxysteroids

synthetic sulfated polyhydroxysteroids

Methodologies for synthesis of sterol orthoesters intermediate

Due to no report on the synthesis of orthoesterol A-B and their intermediate has been published. Therefore, we were interested in investigation of synthesis of sterol orthoesters intermediates. Our strategies were devided into two routes consisting of intramolecular strategy and intermolecular strategy as shown in Scheme 1 and 2.

First route, we envisaged to incorporate steroid side chain of sterol orthoesters from 9-membered lactone ring **58** from key intermediates **a** and **b** *via* intramolecular Mc Murry coupling reaction and ring closing metathesis, respectively.

Scheme 1

Furthermore Grignard reaction of 20-keto steroid **60** and Grignard reagent followed by side chain extension was the alternatively synthetic method. Formation of orthoester will be followed the method described by Giner and Faraldos, (2002).

Scheme 2

Conversion of steroid sapogenin to Δ^{16} -pregn-3 β -ol-20-one-3-acetate

 Δ^{16} -pregn-3 β -ol-20-one-3-acetate is a key intermediate for the synthesis of many steroid drugs and steroid hormones. The synthetic methods have been documented by several groups such as Carmeron *et al.* (1955), Djerrassi *et al.* (1951) and Marker and Rohrmann (1940).

Mićović *et al.* (1990) displayed a simple one-pot preparation of 16-dehydropregnenolone acetate (67) from diosgenin (59) under normal pressure and reduced temperature. This efficient one-pot process was achieved as shown in Scheme 3.

Scheme 3

The similar method for conversion of the rockogenin diacetate (68) to the enone compound **71** has been reported (Fuchs *et al.*, (1999)). In the final step, they used the different method that used basic aluminium in benzene to generate the enone **71** from β -eliminaion of pentanoate side chain as shown in Scheme 4.

Scheme 4

Recently, new one-pot process has been developed for prepartation of 16-dehydropregnenolone acetate (67) from diosgenin (59) with more than 70% yield using potassium permanganate in the presence of tetraethylammonium iodide (Goswami *et al.*, 2003). The reaction was undertaken in acidic condition (pH 3) at 0-5°C. Under this condition, only the double bond at furan ring was clevaged to form keto ester without breaking the double bond at C-5 as shown in Scheme 5.

Scheme 5

Conversion of α , β -epoxy ketone to β -hydroxy ketone

Several methods to prepare β -hydroxy ketone from reductive ring opening of α , β -epoxy ketone have been reported because the β -hydroxy ketone species usually found for construction of many natural products.

1. Chromous acetate

The first general method for preparation of the 16α -hydroxy-20-ketone steroid **73** from 16α , 17α -oxido-20-ketone **72** has been accomplished using chromous salt (Cole and Julian, 1953) as shown in Scheme 6. They found that using the chromous acetate led to a good yield of the desired product, β -hydroxy ketone, more than using chromous chloride.

Scheme 6

The scheme below are some examples of reductive ring opening of α , β -epoxy ketone to β -hydroxy ketone and other products using chromous acetate (Robinson and Henderson, 1972).

2. Alkali metal in liquid ammonia

The alternative sequences of reduction with lithium and liquid ammonia and protonation from proton source (ammonium chloride) from several α , β -epoxy ketone were displayed in Table 2.

Table 2 Reduction of epoxy ketones with lithium in liquid ammonia

Entry	Epoxy ketone	Product	Reference
1	0	A DOH	Hirschmann
		но,ОН	and Dans, 1959
2	0,,	OH T	Barton et al.,
		но	1973

 Table 2 (Continued)

Entry	Epoxy ketone	Product	Reference
3	OCH ₃	OCH ₃ OH OH	Grieco <i>et al</i> ., 1976
4		HO	McChesney and Thompson, 1985

3. Sodium iodide

Reaction of α , β -epoxy ketone with sodium iodide, sodium acetate in the presence of acetic acid and acetone as solvent at ambient temperature for 5 min to provide the corresponding β -hydroxy ketone in 97% yield (Paulson *et al.*, 1974).

4. Aluminium amalgam (Al(Hg))

The varieties of conversion of epoxy ketones to β -hydroxy ketones using aluminium amulgum were carried out as shown in Table 3.

 Table 3 Reduction of epoxy ketones with aluminium amalgam

Entry	Epoxy ketone	Product	Reference
1	O), COOH HO HO5H11	HO H	Corey and Ensley, 1973
2	0),	HO,r.	Moreno <i>et</i> al., 1993
3	RO R = OH, R' = CH ₃ R = OAc, R' = CH ₃ R = OH, R' = CH ₂ OH R = OAc, R' = CH ₂ OAc	RO O R = OH, R' = CH ₃ R = OAc, R' = CH ₃ R = OH, R' = CH ₂ OH R = OAc, R' = CH ₂ OAc	Greene <i>et al.</i> , 1982

5. Samarium iodide (SmI₂)

Reduction of α , β -epoxy ketone to β -hydroxy ketone with samarium iodide, generated *in situ* from samarium and diiodomethane, was displayed in Table 4 (Molander and Hahn, 1986).

Table 4 Reduction of α, β-epoxy ketone to β-hydroxy ketone with samarium iodide in THF and methanol at -90° C

Entry	Epoxy ketone	Product	% yield
1	Bu	O Bu OH	97
2		ОН	82
3		O OH	76

6. Organoselenium

The investigation of reduction of α , β -epoxy ketone to β -hydroxy ketone by using organoselenium reagent was reported by Miyashita *et al.* (1997) as shown in Scheme 7. This reagent was easily prepared by reduction of diphenyldiselenide ((PhSe)₂) with sodium borohydride (NaBH₄) in ethanol and benzeneselenol (PhSeH).

7. Lithium naphthalenide

Lithium naphthalenide is a radical species, generated *in situ* from lithium and naphthalene in THF under dryness condition. This reagent is efficient to reduce α , β -epoxy ketone to corresponding β -hydroxy ketone (Jankowska *et al.*, 1999). The results were shown in Table 5.

Table 5 Reductive cleavage of α , β -epoxy ketones to β -hydroxy ketones with lithium naphthalenide

Entry	Epoxy ketone	Product	% isolated yield (GC)
1		ОН	97
2		OH O	82
3	ОН	OH OH	77
4	OH O	OH OH	87

8. Low-valent titanium (III) complex (Cp₂TiCl)

The application for reduction of α , β -epoxy ketone to β -hydroxy ketone using Cp₂TiCl, prepared *in situ* by reduction of Cp₂TiCl₂ with Zn powder, has been reported as shown in Table 6 (Hardouin *et al.*, 2001). The results showed that the stereocenter at β -position was intact in all cases and the overall yields were satisfactory.

Table 6 Reductive cleavage of $\alpha,$ $\beta\text{-epoxy}$ ketones to $\beta\text{-hydroxy}$ ketones with Cp_2TiCl

Entry	Epoxy ketone	Product	% yield
1	Ph O	Ph OH	86
2	Ph	PhOH	74
3		ОН	80
4		ООН	65

9. Hydrazine hydrate

The development of the efficient and easily handle process using hydrazine hydrate in ethanol as solvent for reductive cleavage of α , β -epoxy ketone has been described (Salvador *et al.*, 2005). They found that reaction temperature played an important role in this reaction after various reaction conditions were investigated. These are the examples that used this reagent with steroid compounds as shown in Scheme 8.

OH

$$\frac{NH_2NH_2H_2O}{\text{ethanol}}$$

Scheme 8

Nucleophilic addition to 20-keto steroids

Construction of side chain from 20-keto steroids has been investigated, using Grignard reagent and other organometallic reagents in one or more steps sequences.

After 20-keto steroids underwent nucleophilic addition reaction, chiral center at C-20 was created with a variety of ratio of epimer at C-20 depending on the structure of the steroids, particularly the nature of substituents near C-20 and bulkiness of the reagent.

1. Grignard reagent (RMgX)

The investigation of nucleophilic addition of 20-keto steroids to tertiary alcohol by using Grignard reagent has been generally employed. This reagent could be generated easily by using activated magnesium and alkyl halide (Cl, Br and I) in dry THF or dry ether under dryness condition to give the black solution. Some examples were shown in Table 7.

Table 7 Nnucleophilic addition of 20-keto steroids to tertiary alcohols by using Grignard reagents

Entry	20-keto steroids	Product	Reference
1	Aco	HO OH 20S	Chaudhuri and Gut, 1969
		Yield not stated	

 Table 7 (Continued)

Entry	20-keto steroids	Product	Reference
2	Aco	HO OH 20S	Mijares <i>et al.</i> , 1967
3	но	OH HO 20S:20R = 1:12	Nes and Varkey, 1976
4	HO	HO, 20R HO 70%	Chaudhuri et al., 1969
5	HO H	HO HO 62% 20S:20R = 3:1	Johnson et al., 1999
6	Aco	HO, 20R OAc 83%	Giner and Faraldos, 2002

2. Alkyl lithium

The synthesis of brassinolide (77) reported by Kametani *et al.* (1986) has been accomplished *via* the stereocontrol addition of 5-lithi-2-methoxyfuran to pregnenolone (75) to provide only (20*S*)-epimer tertiary alcohol **76** as shown in Scheme 9.

Yamada *et al.* (1995) reported the synthesis of aragusterols by using alkyl lithium generated from alkyl bromide **79** and lithium naphthalinide in THF at 0° C to give the corresponding tertiary alcohol **80** with high stereoselectivity (20S:20R = 26:1; determined by 1H NMR analysis) as shown in Scheme 10.

Scheme 10

3. Samarium iodide (SmI₂)

The synthesis of aragusterols was also reported by Honda *et al.* (1996) using intermolecular coupling reaction between the 20-keto steroids and organometallic such as alkyl lithium, Grignard reagent and samarium iodide. The results showed that samarium iodide gave the better yield more than alkyl lithium and Grignard reagent as shown in Scheme 11.

MATERIALS AND METHODS

Materials

Instrumenttation

The following analytical methods were used throughout this work, unless otherwise indicated.

Proton nuclear magnetic resonance (1 H NMR) spectra and carbon nuclear magnetic resonance (13 C NMR) spectra were recorded on a Varian Gemini 300 spectrophotometer and on 400 MHz Brucker Advance DPX-400. Chemical shifts were recorded as δ values in ppm. Spectra were acquired in CDCl₃ unless otherwise stated. The peak due to residual CHCl₃ (7.26 ppm for 1 H and 77.23 ppm for 13 C) was used as the internal reference. Coupling constants (J) are given in Hz, and multiplicity is defined as followes: br = broad, s = singlet, d = doublet, dd = doublet of doublets, dt = doublet of triplet, t = triplet, q = quartet, m = multiplet.

Infrared (IR) spectra were recorded in cm⁻¹ on a Perkin-Elmer 2000 Fourier transform infrared spectrophotometer at the Department of Chemistry, Faculty of Science, Kasetsart University. Solid samples were analyzed as KBr disks.

Mass spectral were obtained on an Agilent Technology 1100 series LL/MSD Trap; the first number denoted m/z value and the ion assignment and abundance are given in parentheses and on a GCMS-QP-5050QA spectrometer in electron impact mode at 70 eV at the Kasetsart Agricultural and agro-Industrial Product improvement Institute (KAPI), Kasetsart University. Accurate masses (HRMS) were obtained from PERCH-CIC Mass Spectrometry Research Laboratory at Department of Chemistry, Faculty of Science, Chiangmai University.

Melting points (m.p.) were determined on a MeI-Temp electrothermal apparatus at the Department of Chemistry, Faculty of Science, Kasetsart University and were reported uncorrected in °C.

Chromatographic system

Analytical thin-layer chromatography (TLC) was conducted on aluminum-backed 0.2 mm thick silica gel 60 F254 plates (Merck) and the chromatograms were visualized under a 254 nm UV lamp and/or by spraying with a solution of vanillin (3% in ethanol with 3% sulfuric acid) followed by heating.

Flash column chromatography was conducted according to the method of Still and co-workers (1978) using silica gel 60 (mesh size 0.040-0.063 mm).

Column chromatography was performed on silica gel 60 (70-230 mesh, Merck) and the column was packed by slurry method.

Chemical reagents

Solvents and reagents used for synthesis were obtained from commercial source and used directly without purification unless noted. Dry tetrahydrofuran (THF) was freshly distilled under nitrogen atmosphere from sodium with benzophenone ketyl as an indicator.

Methods

Numbering of tetracyclic steroid carbon skeleton

The spectral data of all synthesized compounds reported throughout this work were referred to the numbered of tetracyclic steroid carbon skeletons as shown below. The additional carbons would be numbered in each case.

3β -Acetoxy- 5α -16-pregnen-20-one (81)

HO
$$\frac{1}{\hat{H}}$$
 tigogenin (54)

AcO $\frac{1}{\hat{H}}$ (81)

Step I

A mixture of tigogenin (54) (2.0 g, 4.6 mmol), acetic anhydride (31.6 mL), ammonium chloride (490 mg, 9.2 mmol) and pyridine (0.35 mL) was heated to 135°C and kept at this temperature for 16 h. After cooling down, the reaction mixture was added with cool water and extracted with CH₂Cl₂ (4×400 mL). The combined organic layers were neutralized with saturated aqueous NaHCO₃ and water. The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was used in the next step without purification.

Step II

The crude product was dissolved in 1, 2-dichloroethane (11.5 mL), water (0.9 mL) and acetic acid (4.5 mL). The mixture was cooled to 0°C and added with a solution of chromium trioxide (964.5 mg) in water (1.2 mL) and acetic acid (0.43 mL) (This solution was kept below 7°C during addition). The mixture was allowed to warm to room temperature and stirred for 2 h. A solution of sodium chloride (3.9 g) in water (13 mL) and methanol (0.15 mL) was introduced and the resulting mixture was further stirred for additional 1 h. The reaction was added with cool water and extracted with CH₂Cl₂ (4×100 mL). The combined organic layers were neutralized with saturated aqueous NaHCO₃ and water. The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was used in the next step without purification.

Step III

The residue was dissolved in benzene (50 mL) and basic aluminar (6.7 g) was added and stirred for 16 h at room temperature. The resulting reaction was filtered and eluted with CH_2Cl_2 . Filtrate was evaporated and further purified by flash column chromatography (10% ethyl acetate:hexane) to give 3β -acetoxy- 5α -16-pregnen-20-one (81) (787.1 mg, 49%) as a white solid; m.p.153-155°C. (Plattner *et al.*, 1947, m.p. 152-156.5°C)

3β -Acetoxy- 5α -16-pregnen-20-one (81)

FTIR (KBr), v_{max}, cm⁻¹: 2935, 1729, 1658, 1368, 1262, 1030

¹H NMR (CDCl₃, 400 MHz) δ 6.60 (dd, J = 3.3, 1.9 Hz, 1H, H-16), 4.60 (m, 1H, H-3), 2.22 (m, 2H, H-15), 2.17 (s, 3H, H-21), 1.94 (s, 3H, CH₃COO), 1.96-0.62 (4CH, 8CH₂), 0.80 (s, 3H, H-19), 0.78 (s, 3H, H-18)

¹³C NMR (CDCl₃, 100 MHz) δ 197.0 (C-20), 170.9 (COO), 155.7 (C-17), 144.2 (C-16), 73.8 (C-3), 56.5 (CH), 54.9 (CH), 46.5 (C-13), 45.1 (CH), 36.7 (CH₂), 35.9 (C-10), 34.9 (CH₂), 34.2 (CH₂), 34.0 (CH), 33.4 (CH₂), 32.1 (CH₂), 28.6 (CH₂), 27.6 (CH₂), 27.3 (<u>C</u>H₃COO), 21.6 (C-21), 21.2 (CH₂), 16.1 (C-19), 12.4 (C-18)

MS (EI), *m/z* (relative intensity): 358 (73), 343 (19), 315 (63), 298 (13), 207 (100)

3β-Acetoxy-5α-pregnan-20-one (82)

To a solution of 3β-acetoxy-5-pregnen-20-one (55) (47 mg, 0.13 mmol) in ethyl acetate (2 mL) and methanol (6 mL) was added 5% Pd/C (6.5 mg, 2.62×10^{-3} mmol) and the suspension mixture was stirred at room temperature under hydrogen atmosphere for 16 h. Then, the reaction was filtered through celite and eluted with CH₂Cl₂, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (5% ethyl acetate:hexane) to give 3β-acetoxy-5α-pregnan-20-one (82) (43 mg, 91%) as a white solid; 149-150°C. (Karl *et al.*, 1949, m.p. 150-152°C)

3β-Acetoxy-5α-pregnan-20-one (82)

FTIR (KBr), v_{max}, cm⁻¹: 2925, 1723, 1705, 1362, 1261, 1037

¹H NMR (CDCl₃, 400 MHz) δ 4.62 (m, 1H, H-3), 2.45 (t, J = 9.0 Hz, 1H, H-17), 2.08 (m, 1H, H-16), 2.04 (s, 3H, H-21), 1.95 (s, 3H, CH₃COO), 1.91 (m, 1H, H-12), 1.75 (m, 1H, CH of CH₂), 1.70-0.78 (H-12, CH of CH₂, 3CH, 7CH₂), 0.75 (s, 3H, H-19), 0.63 (m, 1H, H-9), 0.53 (s, 3H, H-18)

¹³C NMR (CDCl₃, 100 MHz) δ 209.6 (C-20), 170.7 (COO), 73.6 (C-3), 63.8 (C-17), 56.6 (C-14), 54.1 (C-9), 44.6 (C-5), 44.2 (C-13), 39.0 (C-12), 36.7 (C-1), 35.5 (C-10), 35.4 (C-8), 33.9 (CH₂), 31.9 (CH₂), 31.5 (C-21), 28.4 (CH₂), 27.4 (CH₂), 24.7 (CH₂), 22.8 (C-16), 21.4 (<u>C</u>H₃COO), 21.2 (CH₂), 13.4 (C-18), 12.2 (C-19)

3β-Acetoxy-5α-17-pregnenyl acetate (83)

AcO
$$\stackrel{\stackrel{\circ}{\overline{H}}}{\overline{H}}$$
(82)

AcO $\stackrel{\circ}{\overline{H}}$
(83)

p-Toluenesulfonic acid (197 mg, 1.0 mL) was added to a stired solution of 3β-acetoxy-5α-pregnan-20-one (82) (367.9 mg, 1.0 mmol) in acetic anhydride (54 mL). After resulting reaction mixture was refluxed for 6 h, acetic anhydride was removed slowly by distillation. Then, the reaction was chilled and ice water was added. The residue was extracted with CH₂Cl₂ (3×50 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ solution and water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography (5% ethyl acetate:hexane) to provide 3β-acetoxy-5α-17-pregnenyl acetate (83) (272.1 mg, 65% (88% brsm)) as a white solid; m.p. 110-111°C (Marshall *et al.*, 1948, m.p.121.5-122.5°C) and recovered starting material (82) (91.8 mg, 75% conversion).

3β-Acetoxy-5α-17-pregnenyl acetate (83)

FTIR (KBr), v_{max}, cm⁻¹: 2933, 1738, 1370, 1243, 1029

¹H NMR (CDCl₃, 400 MHz) δ 4.61 (m, 1H, H-3), 2.06 (m, 2H, H-16), 2.02 (s, 3H, CH₃COO), 1.94 (s, 3H, CH₃COO), 1.72 (s, 3H, H-21), 1.81-0.81 (4CH and 9CH₂), 0.75 (s, 3H, H-19), 0.74 (s, 3H, H-18)

¹³C NMR (CDCl₃, 100 MHz) δ 170.9 (COO), 170.2 (COO), 136.1 (C=C), 136.0 (C=C), 73.9 (C-3), 55.7 (CH), 54.2 (CH), 44.8 (CH), 44.4 (C-13), 36.9 (CH₂), 36.2 (CH₂), 35.1 (C-10), 35.0 (CH), 34.2 (CH₂), 32.0 (CH₂), 28.7 (C-16), 28.0 (CH₂), 27.7 (CH₂), 24.7 (CH₂), 21.6 (<u>C</u>H₃COO), 21.5 (CH₂), 21.2 (<u>C</u>H₃COO), 17.7 (CH₂), 17.1 (C-19), 12.4 (C-18)

3β-Acetoxy-17-bromo-5α-pregnan-20-one (84)

AcO
$$\tilde{H}$$
(83)

AcO \tilde{H}
(84)

To a solution of 3β-acetoxy-5α-17-pregnenyl acetate (83) (996 mg, 2.5 mmol) in CH₂Cl₂ (15 mL) was added a solution of bromine (0.1 mL, 2.5 mmol) in CH₂Cl₂ (5 mL). After reaction mixture was stirred at room temperature for 15 min, the reaction was quenched by addition of saturated aqueous NaHSO₃ solution. The mixture was extracted with CH₂Cl₂ (3×100 mL). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (3% ethyl acetate:hexane) to give 3β-acetoxy-17-bromo-5α-pregnan-20-one (84) (950.9 mg, 87%) as a white crystal after recrystallization (CH₂Cl₂-hexane); m.p. 138°C. (Marker *et al.*, 1942, m.p. 155°C)

3β-Acetoxy-17-bromo-5α-pregnan-20-one (84)

FTIR (KBr), v_{max}, cm⁻¹: 2936, 1739, 1703, 1355, 1238, 1030

¹H NMR (CDCl₃, 400 MHz) δ 4.67 (m, 1H, H-3), 3.03 (m, 1H, H-16), 2.35 (s, 3H, C<u>H</u>₃COO), 2.24 (m, 1H, H-16), 2.00 (s, 3H, H-21), 1.97-0.92 (4CH and 8CH₂), 0.81 (s, 3H, H-19), 0.72 (s, 3H, H-18)

Copyright by Kasetsart University All rights reserved

¹³C NMR (CDCl₃, 100 MHz) δ 210.5 (C-20), 170.6 (COO), 86.4 (C-17), 73.5 (C-3), 53.3 (CH), 53.2 (CH), 44.5 (CH), 44.4 (C-13), 36.6 (CH₂), 35.9 (CH₂), 35.8 (CH), 35.6 (CH₂), 35.4 (C-10), 33.9 (CH₂), 31.7 (CH₂), 28.4 (CH₂), 27.4 (C-21), 27.3 (CH₂), 22.8 (CH₂), 21.4 (<u>C</u>H₃COO), 21.2 (CH₂), 14.1 (C-19), 12.2 (C-18)

3β -Acetoxy- 5α -16-pregnen-20-one (81)

$$AcO \xrightarrow{\hat{\bar{H}}} O$$

$$AcO \xrightarrow{\hat{\bar{H}}} (84)$$

$$(84)$$

$$(81)$$

To a solution of 3β -acetoxy- 5α -17-bromo-pregnan-20-one (84) (499 mg, 1.1 mmol) in toluene (60 mL) was added 1,5-diazabicyclo[5.4.0]undec-7-ene (DBU) (1.2 mL, 8.0 mmol). The resulting mixture was refluxed for 8 h. The reaction was quenched by addition of saturated aqueous NH₄Cl solution and extracted with CH₂Cl₂ (3×100 mL). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (5% ethyl acetate:hexane) to afford 3β-acetoxy- 5α -16-pregnen-20-one (81) (367.5 mg, 89%) as a white solid; m.p. 153-155°C. (Plattner *et al.*, 1947, m.p. 152-156.5°C)

3β-Acetoxy-5α-16-pregnen-20-one (81)

FTIR (KBr), v_{max}, cm⁻¹: 2935, 1729, 1658, 1368, 1262, 1030

¹H NMR (CDCl₃, 400 MHz) δ 6.60 (dd, J = 3.3, 1.9 Hz, 1H, H-16), 4.60 (m, 1H, H-3), 2.22 (m, 2H, H-15), 2.17 (s, 3H, H-21), 1.94 (s, 3H, CH₃COO), 1.96-0.62 (4CH, 8CH₂), 0.80 (s, 3H, H-19), 0.78 (s, 3H, H-18)

¹³C NMR (CDCl₃, 100 MHz) δ 197.0 (C-20), 170.9 (COO), 155.7 (C-17), 144.2 (C-16), 73.8 (C-3), 56.5 (CH), 54.9 (CH), 46.5 (C-13), 45.1 (CH), 36.7 (CH₂), 35.9 (C-10), 34.9 (CH₂), 34.2 (CH₂), 34.0 (CH), 33.4 (CH₂), 32.1 (CH₂), 28.6 (CH₂), 27.6 (CH₂), 27.3 (<u>C</u>H₃COO), 21.6 (C-21), 21.2 (CH₂), 16.1 (C-19), 12.4 (C-18)

MS (EI), *m/z* (relative intensity): 358 (73), 343 (19), 315 (63), 298 (13), 207 (100)

16α, 17α-Epoxy-3β-hydroxy-5α-pregnan-20-one (85)

A suspension of 3β -acetoxy- 5α -16-pregnen-20-one (81) (367 mg, 1.0 mmol) in methanol (25 mL) was cooled to 18° C. To this suspension was added 30% H₂O₂ (2.2 mL) and 2.5 M NaOH (2.2 mL). The resulting mixture was stirred at room temperature for 16 h. The reaction was quenched by addition of saturated aqueous NaCl solution. After methanol was removed, the residue was extracted with CH₂Cl₂ (3×100 mL). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography (10% ethyl acetate:hexane) to give 16α , 17α -epoxy- 3β -hydroxy- 5α -pregnan-20-one (85) (321.3 mg, 94%) as a white solid; m.p. 190- 191° C. (Hirschmann *et al.*, 1961, m.p. 186.5- 188° C)

16α , 17α -Epoxy- 3β -hydroxy- 5α -pregnan-20-one (85)

FTIR (KBr), ν_{max} , cm⁻¹: 2928, 1720, 1365, 1034

Copyright by Kasetsart University All rights reserved

¹H NMR (CDCl₃, 400 MHz) δ 3.65 (m, 1H, H-16), 3.59 (m, 1H, H-3), 2.02 (s, 3H, H-21), 2.00-1.40 (4CH and 8CH₂), 1.02 (s, 3H, H-19), 0.82 (s, 3H, H-18)

¹³C NMR (CDCl₃, 100 MHz) δ 202.2 (C-20), 72.3 (C-17), 70.7 (C-3), 61.5 (C-16), 45.5 (CH), 42.3 (CH), 41.5 (C-13), 39.2 (CH₂), 38.5 (CH₂), 36.5 (CH₂), 34.5 (C-10), 32.3 (CH₂), 31.6 (CH₂), 31.3 (CH), 29.2 (C-21), 26.5 (CH₂), 20.1 (CH₂), 19.6 (C-19), 16.7 (C-18)

MS (EI), *m/z* (relative intensity): 332 (34), 314 (18), 271 (59), 253 (28), 207 (100)

16α, 17α -Epoxy-3β-tosyloxy-5α-pregnan-20-one (86)

Method I

A solution of 16α, 17α-epoxy-3β-hydroxy-5α-pregnan-20-one (85) (310 mg, 0.9 mmol), p-toluenesulfonyl chloride (266 mg, 1.4 mmol), dimethylaminopyridine (126 mg, 1.0 mmol) in pyridine (0.54 mL) and CH₂Cl₂ (5 mL) was stirred at room temperature for 3 day. The reaction was quenched by addition of water and extracted with CH₂Cl₂ (3×100 mL). The combined organic layers were washed with 10% HCl, saturated aqueous NaHCO₃ solution and water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (10% ethyl acetate:hexane) to give 16α, 17α-epoxy-3β-tosyloxy-5α-pregnan-20-one (86) (192.7 mg, 43%, 92% (brsm)) as a white solid; m.p. 141-142°C (Hirschmann *et al.*, 1961, m.p. 165.5-168°C with decomposition) and the recovered starting material (85) (143.6 mg, 46% conversion).

Method II

To a solution of 16α , 17α -epoxy- 3β -hydroxy- 5α -pregnan-20-one (85) (166.4 mg, 0.5 mmol) in dry CH₂Cl₂ (5 mL) under an argon atmosphere was added p-toluenesulfonyl chloride (215 mg, 1.13 mmol) and dry pyridine (1 mL). The reaction mixture was stirred at room temperature for 24 h. The reaction was quenched by addition of water and extracted with CH₂Cl₂ (3×50 mL). The combined organic layers were washed with 10% HCl, saturated aqueous NaHCO₃ solution and water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (10% ethyl acetate:hexane) to give 16α , 17α -epoxy- 3β -tosyloxy- 5α -pregnan-20-one (86) (188 mg, 77%, 86% (brsm)) as a white solid; m.p. 141-142°C (Hirschmann *et al.*, 1961, m.p.165.5-168°C with decomposition) and the recovered starting material (85) (16.7 mg, 90% conversion).

16α, 17α-Epoxy-3β-tosyloxy-5α-pregnan-20-one (86)

FTIR (KBr), v_{max}, cm⁻¹: 2934, 1699, 1336, 1172, 1101

¹H NMR (CDCl₃, 400 MHz) δ 7.75 (d, J = 8.3 Hz, 2H, H-2', H-6'), 7.29 (d, J = 8.3 Hz, 2H, H-3', H-5'), 4.37 (m, 1H, H-3), 3.62 (s, 1H, H-16), 2.41 (s, 3H, C<u>H</u>₃-C₆H₄), 1.98 (s, 3H, H-21), 1.88 (dd, J = 13.3, 6.1 Hz, 1H, CH), 1.96-0.80 (4CH, 8CH₂), 0.96 (s, 3H, H-19), 0.75 (s, 3H, H-18)

¹³C NMR (CDCl₃, 100 MHz) δ 204.8 (C-20), 144.3 (C-1'), 134.7 (C-4'), 129.7 (C-2', C-6'), 127.6 (C-3', C-5'), 82.2 (CH), 70.9 (C-17), 60.5 (CH), 54.3 (CH), 45.1 (CH), 44.8 (CH), 41.8 (C-13), 36.3 (CH₂), 35.3 (C-10), 34.8 (CH₂), 33.0 (CH), 31.4 (CH₂), 31.3 (CH₂), 28.2 (CH₂), 28.1 (CH₂), 27.3 (CH₂), 25.9 (C-21), 21.6 (CH₃-C-4'), 20.6 (CH₂), 15.3 (CH₃), 12.0 (CH₃)

16α , 17α -Epoxy- 5α -2-pregnen-20-one (87)

Lithium bromide (93 mg, 1.0 mmol) and lithium carbonate (80 mg, 1.0 mmol) were added to a solution of 16α , 17α -epoxy- 3β -tosyloxy- 5α -pregnan-20-one (86) (35 mg, 0.07 mmol) in *N,N*-dimethylformamide (3 mL). The reaction mixture was refluxed for 4 h before cooling to room temperature. The reaction was slowly poured to 10% HCl and extracted with CH_2Cl_2 (3×20 mL). The combined organic layers were washed with water and saturated aqueous NaHCO₃ solution, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (10% ethyl acetate:hexane) to provide 16α , 17α -epoxy- 5α -2-pregnen-20-one (87) (17 mg, 75%) as a white solid; m.p. 116-118°C.

16α , 17α -Epoxy- 5α -2-pregnen-20-one (87)

FTIR (KBr), v_{max}, cm⁻¹: 2919, 1700, 1649

¹H NMR (CDCl₃, 400 MHz) δ 5.51 (m, 2H, H-2, H-3), 3.58 (s, 1H, H-16), 1.94 (s, 3H, H-21), 1.95-0.70 (4CH, 7CH₂), 0.96 (s, 3H, H-19), 0.69 (s, 3H, H-18)

MS (EI), *m/z* (relative intensity): 314 (45), 296 (26), 281 (56), 271 (79), 253 (49), 207 (100)

16α -Hydroxy- 5α -2-pregnen-20-one (88)

Hydrazine monohydrate (0.7 mL) was added to a solution of 16α, 17α-epoxy- 5α -2-pregnen-20-one (87) (248.7 mg, 0.8 mmol) in ethanol (30 mL). The resulting mixture was stirred at room temperature for 3 day. The reaction was hydrolyzed by addition of 10% HCl and further stirred for 20 h. The residue was extracted with CH₂Cl₂ (3×50 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ solution and water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography (30% ethyl acetate:hexane) to provide 16α -hydroxy- 5α -2-pregnen-20-one (88) (146 mg, 60%) as a white solid; m.p. 149-151°C.

16α-Hydroxy-5α-2-pregnen-20-one (88)

FTIR (KBr), v_{max}, cm⁻¹: 3421, 2909, 1699, 1638, 1048

¹H NMR (CDCl₃, 400 MHz) δ 5.52 (m, 2H, H-2, H-3), 4.75 (m, 1H, H-16), 2.45 (d, J = 6.6 Hz, 1H, H-17), 2.09 (s, 3H, H-21), 1.99-0.70 (4CH, 7CH₂), 0.68 (s, 3H, H-19), 0.56 (s, 3H, H-18)

¹³C NMR (CDCl₃, 100 MHz) δ 208.7 (C-20), 125.8 (C=C), 125.6 (C=C), 73.9 (C-17), 72.0 (C-16), 54.3 (CH), 53.8 (CH), 45.0 (C-13), 41.4 (CH), 39.6 (CH₂), 39.0 (CH₂), 35.2 (CH₂), 35.1 (CH), 34.6 (C-10), 31.6 (C-21), 31.5 (CH₂), 30.2 (CH₂), 28.5 (CH₂), 20.5 (CH₂), 14.4 (CH₃), 11.6 (CH₃)

2α , 3α -Epoxy- 16α -hydroxy- 5α -pregnan-20-one (89)

To a solution of 16α -hydroxy- 5α -2-pregnen-20-one (88) (281 mg, 0.9 mmol) in CH₂Cl₂ (20 mL) was added water (10 mL) and sodium carbonate (350 mg, 3.3 mmol). The mixture was stirred vigorously before adding *m*-chloroperbenzoic acid (212 mg, 1.2 mmol). The reaction mixture was stirred at room temperature for 4 h. The aqueous layer was separated and extracted with CH₂Cl₂ (3×50 mL). The combined organic layers were washed with 5% sodium sulfite solution, saturated aqueous NaHCO₃ solution and water, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (25% ethyl acetate:hexane) to afford 2α , 3α -epoxy- 16α -hydroxy- 5α -pregnan-20-one (89) (109.5 mg, 64%) as a white needle after recrystallization (CH₂Cl₂-hexane); m.p. 176-177°C.

2α , 3α -Epoxy- 16α -hydroxy- 5α -pregnan-20-one (89)

FTIR (KBr), v_{max}, cm⁻¹: 3453, 2915, 1697, 1181, 1054

¹H NMR (CDCl₃, 400 MHz) δ 4.76 (m, 1H, H-16), 3.12 (m, 1H, H-3), 3.07 (m, 1H, H-2), 2.47 (d, J = 6.6 Hz, H-17), 2.12 (s, 3H, H-21), 2.11-0.79 (4CH, 7CH₂), 0.71 (s, 3H, H-19), 0.56 (s, 3H, H-18)

¹³C NMR (CDCl₃, 100 MHz) δ 208.7 (C-20), 73.7 (C-17), 72.0 (C-16), 54.1 (CH), 53.4 (CH), 52.3 (CH), 50.9 (CH), 44.9 (C-13), 38.8 (CH₂), 38.1 (CH₂), 36.1 (CH), 35.2 (CH₂), 35.1 (CH), 33.6 (C-10), 31.7 (C-21), 31.4 (CH₂), 28.9 (CH₂), 28.1 (CH₂), 20.4 (CH₂), 14.4 (CH₃), 12.9 (CH₃)

Copyright by Kasetsart University All rights reserved

3-Benzyloxypropionitrile (91)

NaH (531 mg, 22.1 mmol) was washed with dry THF (5 mL) and stirred for 10 min before removing solvent.

To a suspension of NaH in dry THF was slowly added 3-hydroxypropionitrile (90) (0.5 mL, 7.4 mmol) and the reaction mixture was stirred at room temperature for 45 min. Benzyl bromide was added to a stirred reaction mixture and stirred at room temperature for an additional 5 h. The reaction was quenched with saturated aqueous NH₄Cl solution. After THF was removed, the residue was extracted with CH₂Cl₂ (3×50 mL). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography (hexane to 5% ethyl acetate:hexane) to provide 3-benzyloxypropionitrile (91) (600 mg, 50%) as a yellow oil.

3-Benzyloxypropionitrile (91)

FTIR (neat), v_{max} , cm⁻¹: 2250, 1454, 1410, 1105

¹H NMR (CDCl₃, 400 MHz) δ 7.26 (m, 5H, C₆H₅), 4.49 (s, 2H, C₆H₅C<u>H</u>₂O), 3.58 (t, J = 6.4 Hz, 2H, H-3), 2.52 (t, J = 6.4 Hz, 2H, H-2)

¹³C NMR (CDCl₃, 100 MHz) δ 137.2 (C_{AR}), 128.5 (CH_{AR}), 127.9 (CH_{AR}), 127.7 (CH_{AR}), 117.7 (CN), 73.2 (C₆H₅CH₂O), 64.5 (C-3), 18.8 (C-2)

Ethyl 5-hydroxy-2, 2-dimethyl-3-oxopentanoate (93)

To a suspension of Zn powder (20.6 g, 300 mmol) in dry THF (80 mL) was added 3-hydroxypropionitrile (90) (1.35 mL, 20 mmol) and dropwised ethyl 2-bromo-2, 2-dimethylacetate (92) (30 mL, 200 mmol). The reaction mixture was sonicated for 2 h and then THF layer was decanted. The unreacted Zn was washed with THF (50 mL). The combined THF solutions were concentrated to 2 mL under reduced pressure to give the residue that was added with a mixture of ethyl acetate (100 mL) and 1 M HCl (100 mL) and stirred vigorously for 30 min. The organic layer was separated and the aqueous layer was extracted with ethyl acetate (3×100 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ solution and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography (20% ethyl acetate:hexane) to give ethyl 5-hydroxy-2, 2-dimethyl-3-oxopentanoate (93) (2.6 g, 70%) as a pale yellow oil.

Ethyl 5-hydroxy-2, 2-dimethyl-3-oxopentanoate (93)

FTIR (neat), v_{max} , cm⁻¹: 3438, 2984, 1720, 1710, 1387, 1268, 1150

¹H NMR (CDCl₃, 400 MHz) δ 4.12 (q, J = 7.1 Hz, 2H, COOC<u>H</u>₂CH₃), 3.79 (t, J = 5.4 Hz, 2H, H-5), 2.66 (t, J = 5.4 Hz, 2H, H-4), 2.00 (s, 1H, OH), 1.31 (s, 6H, C(C<u>H</u>₃)₂), 1.19 (t, J = 7.1 Hz, 3H, COOCH₂C<u>H</u>₃)

¹³C NMR (CDCl₃, 100 MHz) δ 208.3 (C-3), 173.3 (C-1), 61.4 (COO<u>C</u>H₂CH₃), 58.0 (C-5), 55.6 (C-2), 40.1 (C-4), 21.7 (2CH₃), 13.9 (COOCH₂<u>C</u>H₃)

Ethyl 5-benzyloxy-2, 2-dimethyl-3-oxopentanoate (94)

To a suspension of Zn powder (2.3 g, 37 mmol) in dry THF (10 mL) was added 3-benzyloxypropionitrile (91) (393.4 mg, 2.4 mmol) and added dropwise ethyl 2-bromo-2, 2-dimethylacetate (92) (1.8 mL, 12.2 mmol). The reaction mixture was sonicated for 2 h and then THF layer was decanted. The unreacted Zn was washed with THF (15 mL). The combined THF solutions were concentrated to 1 mL under reduced pressure to give the residue that was added with a mixture of ethyl acetate (10 mL) and 1 M HCl (10 mL) and stirred vigorously for 30 min. The organic layer was separated and the aqueous layer was back extracted with ethyl acetate (3×25 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ solution and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography (5% ethyl acetate:hexane) to give ethyl 5-benzyloxy-2, 2-dimethyl-3-oxopentanoate (94) (418.5 mg, 61%) as a colorless oil.

Ethyl 5-benzyloxy-2, 2-dimethyl-3-oxopentanoate (94)

FTIR (neat), v_{max} , cm⁻¹: 2982, 1734, 1713, 1598, 1454, 1263, 1148

¹H NMR (CDCl₃, 400 MHz) δ 7.24 (m, 5H, C₆H₅), 4.43 (s, 2H, C₆H₅C<u>H</u>₂O), 4.10 (q, J = 7.1 Hz, 2H, COOC<u>H</u>₂CH₃), 3.68 (t, J = 5.4 Hz, 2H, H-5), 2.70 (t, J = 5.4 Hz, 2H, H-4), 1.30 (s, 6H, C(C<u>H</u>₃)₂), 1.16 (t, J = 7.1 Hz, 3H, COOCH₂C<u>H</u>₃)

¹³C NMR (CDCl₃, 100 MHz) δ 206.1 (CO), 173.4 (COO), 138.2 (C_{AR}), 128.3 (CH_{AR}), 127.6 (CH_{AR}), 73.2 (C₆H₅CH₂O), 65.4 (C-5), 61.3 (COOCH₂CH₃), 55.7 (C-2), 38.4 (C-4), 21.6 (2CH₃), 13.9 (COOCH₂CH₃)

Ethyl 5-acetoxy-2, 2-dimethyl-3-oxopentanoate (95)

A solution of ethyl 5-hydroxy-2, 2-dimethyl-3-oxopentanoate (93) (1.0 g. 5.3 mmol), acetic anhydride (7 mL) and pyridine (2.5 mL) was stirred at room temperature for 16 h. The reaction was quenched with ice water and extrated with CH₂Cl₂ (3×100 mL). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (5% ethyl acetate:hexane) to give ethyl 5-acetoxy-2, 2-dimethyl-3-oxopentanoate (95) (726 mg, 70%) as a colorless oil.

Ethyl 5-acetoxy-2, 2-dimethyl-3-oxopentanoate (95)

FTIR (neat), v_{max}, cm⁻¹: 2985, 1742, 1714, 1387, 1241, 1150

¹H NMR (CDCl₃, 400 MHz) δ 4.26 (t, J = 6.4 Hz, 2H, H-5), 4.12 (q, J = 7.1 Hz, 2H, COOC \underline{H}_2 CH₃), 2.72 (t, J = 6.4 Hz, 2H, H-4), 1.94 (s, 3H, C \underline{H}_3 OCO), 1.29 (s, 6H, C(C \underline{H}_3)₂), 1.19 (t, J = 7.1 Hz, 3H, COOCH₂C \underline{H}_3)

Ethyl 5-benzyloxy-3-hydroxy-2, 2-dimethylpentanoate (100)

Sodium borohydride (24.7 mg, 0.6 mmol) was added to a solution of ethyl 5-benzyloxy-2, 2-dimethyl-3-oxopentanoate (94) (73.3 mg, 0.3 mmol) in methanol. The reaction mixture was stirred at room temperature for 1 h. The reaction was quenched by addition of saturated aqueous NaCl solution. After methanol was removed, the mixture was extracted with CH₂Cl₂ (3×25 mL). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (10% ethyl acetate:hexane) to give ethyl 5-benzyloxy-3-hydroxy-2, 2-dimethylpentanoate (100) (43.7 mg, 60%) as a colorless oil.

Ethyl 5-benzyloxy-3-hydroxy-2, 2-dimethylpentanoate (100)

FTIR (neat), v_{max}, cm⁻¹: 3492, 2979, 1724, 1469, 1454, 1267, 1095

¹H NMR (CDCl₃, 400 MHz) δ 7.30 (m, 5H, C₆ $\underline{\text{H}}_5$), 4.51 (s, 1H, C₆ $\underline{\text{H}}_5$ C $\underline{\text{H}}_2$ O), 4.50 (s, 1H, C₆H₅C $\underline{\text{H}}_2$ O), 4.13 (q, J = 7.1 Hz, 2H, COOC $\underline{\text{H}}_2$ CH₃), 3.88 (m, 1H, H-3), 3.68 (m, 2H, H-5), 3.14 (s, OH), 3.12 (s, OH), 1.67 (m, 2H, H-4), 1.23 (t, J = 7.1 Hz, 3H, COOCH₂C $\underline{\text{H}}_3$), 1.17 (s, 3H, CCH₃), 1.15 (s, 3H, CCH₃)

 $^{13}\text{C NMR (CDCl}_3, 100 \text{ MHz}) \ \delta \ 177.4 \ (\text{C-1}), 136.0 \ (\text{C}_{AR}), 128.5 \ (\text{CH}_{AR}), 127.7 \ (\text{CH}_{AR}), 127.0 \ (\text{CH}_{AR}), 75.3 \ (\text{C-3}), 73.3 \ (\text{C}_6\text{H}_5\underline{\text{C}}\text{H}_2\text{O}), 69.2 \ (\text{C-5}), 60.6 \ (\text{COO}\underline{\text{C}}\text{H}_2\text{CH}_3), 46.8 \ (\text{C-2}), 31.5 \ (\text{C-4}), 21.6 \ (\text{CCH}_3), 20.4 \ (\text{CCH}_3), 14.1 \ (\text{COOCH}_2\underline{\text{C}}\text{H}_3)$

Ethyl 5-benzyloxy-3-tert-butyldimethylsilyloxy-2, 2-dimethylpentanoate (101)

To a cooled (0°C) solution of ethyl 5-benzyloxy-3-hydroxy-2, 2-dimethylpentanoate (100) (279.7 mg, 1.0 mmol) in dry CH₂Cl₂ was added 2, 6-lutidine (0.23 mL, 2.0 mmol) and *tert*-butyldimethylsilyltrifluoromethanesulfonate (0.5 mL, 1.9 mmol). The reaction was kept at 0°C and stirred for 1 h. The reaction was quenched with saturated aqueous NaHCO₃, extracted with CH₂Cl₂ (3×50 mL). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (2% ethyl acetate:hexane) to afford ethyl 5-benzyloxy-3-*tert*-butyldimethylsilyloxy-2, 2-dimethylpentanoate (101) (221.6 mg, 61%) as a colorless oil.

Ethyl 5-benzyloxy-3-tert-butyldimethylsilyloxy-2, 2-dimethylpentanoate (101)

¹H NMR (CDCl₃, 400 MHz) δ 7.31 (m, 5H, C₆H₅), 4.67 (s, 1H, C₆H₅C<u>H</u>₂O), 4.46 (s, 1H, C₆H₅C<u>H</u>₂O), 4.06 (m, 3H, COOC<u>H</u>₂CH₃ and H-3), 3.49 (m, 2H, H-5), 1.79 (m, 1H, H-4), 1.64 (m, 1H, H-4), 1.20 (t, J = 7.1 Hz, 3H, COOCH₂C<u>H</u>₃), 1.14 (s, 3H, CC<u>H</u>₃), 1.07 (s, 3H, CC<u>H</u>₃), 0.84 (s, 9H, SiC(C<u>H</u>₃)₃), 0.02 (s, 3H, SiCH₃), 0.00 (s, 3H, SiCH₃)

 $^{13}\text{C NMR (CDCl}_3, 100 \text{ MHz}) \ \delta \ 177.0 \ (\text{C-1}), 138.5 \ (\text{C}_{AR}), 128.3 \ (\text{CH}_{AR}), 127.6 \\ (\text{CH}_{AR}), 127.5 \ (\text{CH}_{AR}), 73.8 \ (\text{C-3}), 72.8 \ (\text{C}_6\text{H}_5\underline{\text{C}}\text{H}_2\text{O}), 67.7 \ (\text{C-5}), 60.3 \\ (\text{COO}\underline{\text{CH}}_2\text{CH}_3), 48.2 \ (\text{C-2}), 40.0 \ (\text{C-4}), 26.0 \ (\text{SiC}(\underline{\text{C}}\text{H}_3)_3), 21.9 \ (\text{C}\underline{\text{C}}\text{H}_3), 20.2 \\ (\underline{\text{C}}\underline{\text{C}}\text{H}_3), 18.3 \ (\text{Si}\underline{\text{C}}(\text{CH}_3)_3) \ 14.0 \ (\text{COOC}\text{H}_2\underline{\text{C}}\text{H}_3), -4.1 \ (\text{SiCH}_3), -4.3 \ (\text{SiCH}_3) \\ \end{cases}$

Ethyl 5, 5-diethoxy-2, 2-dimethyl-3-oxopentanoate (104)

To a suspension of Zn powder (1.2 g, 20.0 mmol) in dry THF (5 mL) was added 3, 3-diethoxypropionitrile (103) (0.2 mL, 1.3 mmol) and added dropwise ethyl 2-bromo-2, 2-dimethylacetate (92) (1.0 mL, 6.6 mmol). The reaction mixture was sonicated for 30 min and then THF layer was decanted. The unreacted Zn was washed with THF (10 mL). The combined THF solutions were concentrated to 0.5 mL under reduced pressure to give the residue that was added with a mixture of ethyl acetate (10 mL) and 1 M HCl (10 mL) and stirred vigorously for 30 min. The organic layer was separated and the aqueous layer was back extracted with ethyl acetate (3×25 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ solution and brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography (2% ethyl acetate:hexane) to give ethyl 5, 5-diethoxy-2, 2-dimethyl-3-oxopentanoate (104) (297 mg, 86%) as a pale yellow oil.

Ethyl 5, 5-diethoxy-2, 2-dimethyl-3-oxopentanoate (104)

FTIR (neat), v_{max}, cm⁻¹: 2979, 1727, 1716, 1263, 1148, 1060

¹H NMR (CDCl₃, 400 MHz) δ 4.88 (t, J = 5.5 Hz, 1H, H-5), 4.10 (t, J = 7.1 Hz, 3H, COOC<u>H</u>₂CH₃), 3.59 (m, 2H, CH₃C<u>H</u>₂O), 3.46 (m, 2H, CH₃C<u>H</u>₂O), 2.73 (d, J = 5.5 Hz, 2H, H-4), 1.28 (s, 6H, C(C<u>H</u>₃)₂), 1.18 (t, J = 7.1 Hz, 3H, COOCH₂C<u>H</u>₃), 1.10 (t, J = 7.1 Hz, 6H, C<u>H</u>₃CH₂O)

 13 C NMR (CDCl₃, 100 MHz) δ 204.9 (C-3), 173.2 (C-1), 100.3 (C-5), 62.8 (CH₃CH₂O), 61.3 (COOCH₂CH₃), 55.8 (C-2), 42.3 (C-4), 21.5 (C(CH₃)₂), 15.2 (CH₃CH₂O), 13.9 (COOCH₂CH₃)

Copyright by Kasetsart University All rights reserved

Ethyl 4-(1, 3-dithiolan-2-yl)-2, 2-dimethyl-3-oxobutanoate (105)

1, 2-ethanedithiol (0.5 mL, 4.9 mmol) and borontrifluoro etherate (0.5 mL, 3.9 mL) were added dropwise to a solution of ethyl 5, 5-diethoxy-2, 2-dimethyl-3-oxopentanoate (104) (1.2 g, 4.8 mmol) in dry CH₂Cl₂ (40 mL). The resulting solution was stirred at room temperature for 1 h. The reaction was poured into 10% aqueous KOH (40 mL) and extracted with CH₂Cl₂ (4×50 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (2% ethyl acetate:hexane) to yield ethyl 4-(1, 3-dithiolan-2-yl)-2, 2-dimethyl-3-oxobutanoate (105) (923.9 mg, 74%) as a colorless oil.

Ethyl 4-(1, 3-dithiolan-2-yl)-2, 2-dimethyl-3-oxobutanoate (105)

FTIR (neat), v_{max}, cm⁻¹: 2981, 1738, 1712, 1261, 1148

¹H NMR (CDCl₃, 400 MHz) δ 4.79 (t, J = 6.9 Hz, 1H, H-5), 4.11 (q, J = 7.1 Hz, 2H, COOCH₂CH₃), 3.14 (s, 4H, CH(SCH₂)₂), 2.99 (d, J = 6.9 Hz, 2H, H-4), 1.30 (s, 6H, (C(CH₃)₂), 1.20 (t, J = 7.1 Hz, 3H, COOCH₂CH₃)

¹³C NMR (CDCl₃, 100 MHz) δ 205.5 (C-3), 173.2 (C-1), 61.5 (COO<u>C</u>H₂CH₃), 55.3 (C-2), 48.2 (CH(S<u>C</u>H₂)₂), 47.0 (C-5), 38.5 (C-4), 21.8 (C(<u>C</u>H₃)₂), 14.0 (COOCH₂<u>C</u>H₃)

Ethyl 4-(1, 3-dithiolan-2-yl)-2, 2-dimethyl-3-oxobutanoate (106)

Sodium borohydride (78 mg, 2.0 mmol) was added to a cooled (0°C) solution of ethyl 4-(1, 3-dithiolan-2-yl)-2, 2-dimethyl-3-oxobutanoate (105) (261.7 mg, 1.0 mmol) in methanol (4 mL). The reaction was stirred at room temperature for 1 h and quenched with saturated aqueous NaCl solution. Methanol was removed and the residue was extracted with CH₂Cl₂ (3×50 mL). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography (3% ethyl acetate:hexane) to give an isomeric mixture of ethyl 4-(1, 3-dithiolan-2-yl)-3-hydroxy-2, 2-dimethylbutanoate (106) (110.2 mg, 42%) as a colorless oil.

Ethyl 4-(1, 3-dithiolan-2-yl)-3-hydroxy-2, 2-dimethylbutanoate (106)

¹H NMR (CDCl₃, 400 MHz) δ 4.71 (dd, J = 9.4, 6.4 Hz, 1H, H-5), 4.10 (q, J = 7.2 Hz, 1H, COOCH₂CH₃), 4.09 (q, J = 7.2 Hz, 1H, COOCH₂CH₃), 3.71 (m, 1H, H-3) 3.17 (m, 4H, CH(SCH₂)₂), 2.85, 2.84 (2s, 1H, OH), 1.81 (m, 2H, H-4), 1.20 (t, J = 7.1 Hz, 3H, COOCH₂CH₃), 1.13 (s, 3H, CCH₃), 1.10 (s, 3H, CCH₃)

¹³C NMR (CDCl₃, 100 MHz) δ 177.3 (C-1), 75.8 (C-3), 60.7 (COO<u>C</u>H₂CH₃), 50.8 (C-5), 46.7 (C-2), 41.5 (C-4), 38.4, 37.9 (CH(S<u>C</u>H₂)₂), 22.2 (CCH₃), 20.2 (CCH₃), 14.1 (COOCH₂<u>C</u>H₃)

Methyl 3-hydroxy-2, 2-dimethyl-5-hexenoate (109)

Step I (Using PCC)

To a solution of methyl 3-hydroxy-2, 2-dimethylpropionoate (108) (812.4 mg, 6.2 mmol) in CH₂Cl₂ (10 mL) was added pyridinium chlorochromate (PCC) (1.9 g, 9.2 mmol). The reaction mixture was stirred at room temperature for 16 h. The reaction was diluted with CH₂Cl₂ (25 mL) and allowed to stir for additional 15 min before filtered through a short pad of silica gel. The filtrate was concentrated under reduced pressure. The aldehyde intermediate was used in the next step without purification.

Step I (Using IBX)

To a solution of methyl 3-hydroxy-2, 2-dimethylpropionoate (108) (201.7 mg, 1.5 mmol) in dimethylsulfoxide (3 mL) was added 2-iodoxybenzoic acid (IBX) (1.8 g, 6.5 mmol). The resulting mixture was stirred at room temperature for 5 h. The reaction was diluted with water and stirred for 10 min. The residue was filtered through sintered glass funnel, the filtrate was extracted with diethyl ether (3×50 mL). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The aldehyde intermediate was used in the next step without purification.

Step II

To a mixture of aldehyde intermediate in THF (20 mL) and saturated aqueous NH₄Cl solution (40 mL) was added Zn powder (564 mg, 8.3 mmol) and allyl bromide (0.7 mL, 8.3 mmol), respectively. The reaction mixture was gentle refluxed and

stirred for 20 min. THF was removed under reduced pressure and the residue was extracted with diethyl ether (4×50 mL), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography (7% ethyl acetate:hexane) to yield methyl 3-hydroxy-2, 2-dimethyl-5-hexenoate (109) (320 mg, 30%) as a colorless oil.

Methyl 3-hydroxy-2, 2-dimethyl-5-hexenoate (109)

FTIR (neat), v_{max}, cm⁻¹: 3482, 2980, 1724, 1642, 1469, 1265, 1142, 1023

¹H NMR (CDCl₃, 400 MHz) δ 5.84 (m, 1H, H-5), 5.09 (m, 2H, H-6), 3.69 (dd, J = 10.4, 2.5, Hz, 1H, H-3), 3.67 (s, 3H, COOCH₃), 2.24 (m, 2H, H-4, OH), 2.03 (m, 1H, H-4), 1.17 (s, 6H, C(CH₃)₂)

¹³C NMR (CDCl₃, 100 MHz) δ 177.8 (C-1), 135.5 (C-5), 117.5 (C-6), 75.6 (C-3), 51.9 (COO<u>C</u>H₃), 46.8 (C-2), 36.5 (C-4), 22.0 (C<u>C</u>H₃), 20.4 (C<u>C</u>H₃)

3-Hydroxy-2, 2-dimethyl-5-hexenoic acid (110)

1 M LiOH (12 mL) was slowly added to the solution of methyl 3-hydroxy-2, 2-dimethyl-5-hexenoate (109) (320 mg, 1.9 mmol) in methanol (7 mL) and stirred at room temperature for 16 h. The resulting mixture was diluted with ethyl acetate (10 mL). The mixture was acidified to pH 1 with aqueous 10% HCl solution, extracted with ethyl acetate (3×50 mL). The combine organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (30% ethyl acetate:hexane) to provide 3-hydroxy-2, 2-dimethyl-5-hexenoic acid (110) (205.6 mg, 70%) as a colorless oil.

3-Hydroxy-2, 2-dimethyl-5-hexenoic acid (110)

FTIR (neat), v_{max}, cm⁻¹: 3418, 2981, 1706, 1642, 1472, 1264, 1068

¹H NMR (CDCl₃, 400 MHz) δ 5.80 (m, 1H, H-5), 5.08 (m, 2H, H-6), 3.19 (dd, J = 10.4, 2.5 Hz, 1H, H-3), 2.26 (m, 1H, H-4), 2.03 (m, 1H, H-4), 1.17 (s, 3H, C $\underline{\text{H}}_3$) 1.15 (s, 3H, C $\underline{\text{H}}_3$)

¹³C NMR (CDCl₃, 100 MHz) δ 182.6 (C-1), 135.2 (C-5), 117.9 (C-6), 75.4 (C-3), 46.7 (C-2), 36.3 (C-4), 22.1 (C<u>C</u>H₃), 20.1 (C<u>C</u>H₃)

3-Acetoxy-2, 2-dimethyl-5-hexenoic acid (111)

Acetic acid anhydride (3 mL) and pyridine (2 mL) were added to 3-hydroxy-2, 2-dimethyl-5-hexenoic acid (110) (205.6 mg, 1.3 mmol). The reaction mixture was stirred at room temperature for 6 h. The reaction was quenched with ice water, extracted with ethyl acetate (3×50 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (20% ethyl acetate:hexane) to give 3-acetoxy-2, 2-dimethyl-5-hexenoic acid (111) (167 mg, 61%) as a white solid; m.p. 66-67°C.

3-Acetoxy-2, 2-dimethyl-5-hexenoic acid (111)

FTIR (KBr), v_{max}, cm⁻¹: 1738, 1694, 1469, 1228, 1026

¹H NMR (CDCl₃, 400 MHz) δ 5.70 (m, 1H, H-5), 5.25 (dd, J = 9.4, 3.3 Hz, 1H, H-3), 5.02 (m, 2H, H-6), 2.28 (m, 2H, H-4), 2.01 (s, 3H, OCOCH₃), 1.20 (s, 3H, CCH₃), 1.18 (s, 3H, CCH₃)

¹³C NMR (CDCl₃, 100 MHz) δ 181.7 (C-1), 170.5 (COO), 134.1 (C-5), 117.6 (C-6), 75.7 (C-3), 46.2 (C-2), 35.2 (C-4), 21.9 (COO<u>C</u>H₃), 20.8 (C<u>C</u>H₃), 20.3 (C<u>C</u>H₃)

2α , 3α -Epoxy- 16α -(3-acetoxy-2, 2-dimethyl-5-hexenoate)- 5α -pregnan-20-one (a)

To a solution of 3-acetoxy-2, 2-dimethyl-5-hexenoic acid (111) (89 mg, 0.4 mmol) in benzene (2 mL) containing 1 drop of *N*,*N*-dimethylformamide was added oxalyl chloride (0.13 mL, 1.6 mmol) under nitrogen gas atmosphere. The reaction mixture was stirred at room temperature for 2.5 h before removing solvent under reduced pressure to give the residue which was diluted with dry CH₂Cl₂ (1 mL) and then slowly added to the solution of 2α, 3α-epoxy-16α-hydroxy-5α-pregnan-20-one (89) (51 mg, 0.15 mmol) and dimethylaminopyridine (195 mg, 1.6 mmol) in CH₂Cl₂ (2 mL). The reaction mixture was stirred at room temperature for 30 min under nitrogen gas atmosphere and quenched with saturated aqueous NaHCO₃ solution. The aqueous layer was separated and further extracted with CH₂Cl₂ (3×40 mL). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (7% ethyl acetate:hexane) to provide 2α, 3α-epoxy-16α-(3-acetoxy-2, 2-dimethyl-5-hexenoate)-5α-pregnan-20-one (a) (61 mg, 77%) as a colorless gum.

2α, 3α-Epoxy-16α-(3-acetoxy-2, 2-dimethyl-5-hexenoate)-5α-pregnan-20-one (a)

FTIR (neat), v_{max}, cm⁻¹: 2931, 1737, 1705, 1649, 1234, 1153, 1022

¹H NMR (CDCl₃, 400 MHz) δ 5.60 (m, 1H, H-5'), 5.39 (m, 1H, H-16), 5.25 (dd, J = 9.8, 3.2 Hz, 1H, H-3'), 5.02 (m, 2H, H-6'), 3.06 (m, 2H, H-2, H-3), 2.61 (m, 1H, H-17), 2.17 (m, 2H, H-4'), 2.07 (m, 3H, OCOCH₃), 1.94 (s, 1H, H-21), 1.88 (s, 2H, H-21), 2.05-1.10 (4CH, 7CH₂), 1.08 (m, 6H, C(CH₃)₂), 0.68 (m, 3H, CH₃), 0.55 (m, 3H, CH₃)

¹³C NMR (CDCl₃, 100 MHz) δ 206.4, 206.3 (CO), 175.1, 175.0 (COO), 170.3, 170.2 (COO), 134.2, 134.1 (CH), 117.5 (CH₂), 76.0, 75.8 (CH), 75.6 (CH), 69.8, 69.5 (CH), 54.2, 54.1 (CH), 53.4, 53.3 (CH), 52.3 (CH), 50.8 (CH), 46.1, 46.0 (Cq), 44.4 (Cq), 38.8, 38.7 (CH₂), 38.1 (CH₂), 36.1 (CH), 35.1 (CH₂), 35.0, 34.9 (CH), 33.6, 33.3 (CH₂), 33.1 (Cq), 31.4 (CH₂), 28.9, 28.8 (CH₂), 28.1, 28.0 (CH₂), 21.5, 21.3, 20.9, 20.8, 20.6 (3CH₃), 20.5 (CH₂), 20.2 (CH₃), 14.4 (CH₃), 12.7 (CH₃)

16 α -(4-Formyl-2, 2-dimethyl-3-butenoate)-2 α , 3 α -epoxy-5 α -pregnan-20-one (162)

A stream of O_3 was bubbled through a solution of 2α , 3α -epoxy- 16α -(3-acetoxy-2, 2-dimethyl-5-hexenoate)- 5α -pregnan-20-one (a) (27 mg, 0.05 mmol) in CH_2Cl_2 (2 mL) at -78°C until the solution turned blue, ozone addition was stopped. Triphenylphosphine (34 mg, 0.13 mmol) was added and the mixture was allowed to warm to room temperature for 2 h. The solution was concentrated under reduced pressure and the residue was purified by flash column chromatography (10% ethyl

acetate:hexane) to give 16α -(4-formyl-2, 2-dimethyl-3-butenoate)- 2α , 3α -epoxy- 5α -pregnan-20-one (162) (19 mg, 80%) as a colorless gum.

16 α -(4-Formyl-2, 2-dimethyl-3-butenoate)-2 α , 3 α -epoxy-5 α -pregnan-20-one (162)

FTIR (neat), v_{max}, cm⁻¹: 2925, 1720, 1686, 1649, 1623, 1149

¹H NMR (CDCl₃, 400 MHz) δ 9.48 (d, J = 7.6 Hz, 1H, CO<u>H</u>), 6.89 (d, J = 16.0 Hz, 1H, H-4'), 6.04 (dd, J = 16.0, 7.6 Hz, 1H, H-3'), 5.42 (m, 1H, H-16), 3.06 (m, 2H, H-2, H-3), 2.54 (d, J = 6.5 Hz, 1H, H-17), 2.07 (s, 3H, H-21), 1.92-0.77 (4CH, 7CH₂), 1.29 (s, 6H, C(CH₃)₂), 0.68 (s, 3H, CH₃), 0.58 (s, 3H, CH₃)

16α-tert-Butyldimethylsilyloxy-5α-2-pregnen-20-one (114)

To a solution of 16α -hydroxy- 5α -2-pregnen-20-one (88) (30 mg, 0.1 mmol) in CH₂Cl₂ (2 mL) was added *tert*-butyldimethylsilyl chloride (74 mg, 0.5 mmol), imidazole (18.3 mg, 0.3 mmol) and *N*,*N*-dimethylformamide (0.05 mL). The resulting mixture was stirred at room temperature for 16 h. Then, the reaction was quenched by addition of water. After separation, aqueous layer was extracted with CH₂Cl₂ (3×30 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ solution and water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (2% ethyl acetate:hexane) to provide 16α -*tert*-butyldimethylsilyloxy- 5α -2-pregnen-20-one (114) (40.8 mg, 95%) as a white prism after recrystallization (ethanol); m.p. 140-142°C.

16α -tert-Butyldimethylsilyloxy- 5α -2-pregnen-20-one (114)

FTIR (KBr), v_{max}, cm⁻¹: 2929, 1701, 1649, 1553, 1454, 1070, 1019, 831

¹H NMR (CDCl₃, 400 MHz) δ 5.56 (m, 2H, H-2, H-3), 4.73 (td, J = 7.8, 1.5 Hz, 1H, H-16), 2.58 (d, J = 6.3 Hz, 1H, H-17), 2.10 (s, 3H, H-21), 2.07-0.73 (4CH, 7CH₂), 0.82 (s, 9H, SiC(CH₃)₃), 0.72 (s, 3H, H-19), 0.58 (s, 3H, H-18), -0.01 (s, 3H, SiCH₃), -0.04 (s, 3H, SiCH₃)

¹³C NMR (CDCl₃, 100 MHz) δ 208.6 (C-20), 125.9, 125.7 (C-2, C-3), 74.4 (C-17), 72.9 (C-16), 54.3 (CH), 53.7 (CH), 44.9 (C-13), 41.4 (CH), 39.6 (CH₂), 38.9 (CH₂), 36.2 (CH₂), 35.2 (CH), 34.6 (C-10), 32.4 (C-21), 31.6 (CH₂), 30.2 (CH₂), 28.5 (CH₂), 25.8 (SiC(<u>C</u>H₃)₃), 20.6 (CH₂), 17.9 (Si<u>C</u>(CH₃)₃), 14.6 (CH₃), 11.6 (CH₃), -4.7 (SiCH₃), -4.9 (SiCH₃)

HRMS m/z: C₂₇H₄₇O₂NaSi [M+Na]⁺, calcd 431.3345, found 431.3344

16α-tert-Butyldimethylsilyloxy-2α, 3α-epoxy-5α-pregnan-20-one (115)

To a solution of 16α -*tert*-butyldimethylsilyloxy- 5α -2-pregnen-20-one (114) (18.6 mg, 0.04 mmol) in CH₂Cl₂ (2 mL) was added water (1 mL) and sodium carbonate (23.2 mg, 0.2 mmol). The mixture was stirred vigorously before *m*-chloroperbenzoic acid (10.1 mg, 0.06 mmol) was added slowly. The reaction mixture was stirred at room temperature for 4 h. The aqueous layer was extracted with CH₂Cl₂ (3×30 mL). The combined organic layers were washed with 5% sodium sulfite solution, saturated aqueous NaHCO₃ solution and water, dried over anhydrous

Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (5% ethyl acetate:hexane) to give 16α -tert-butyldimethylsilyloxy-2 α , 3α -epoxy-5 α -pregnan-20-one (115) (10.5 mg, 59%) as a white needle after recrystallization (ethanol); m.p. 130-131°C.

16α-tert-Butyldimethylsilyloxy -2α, 3α-epoxy-5α-pregnan-20-one (115)

FTIR (KBr), v_{max}, cm⁻¹: 2915, 1697, 1454, 1255, 1071, 835

¹H NMR (CDCl₃, 400 MHz) δ 4.71 (m, 1H, H-16), 3.13 (m, 1H, H-3), 3.08 (m, 1H, H-2), 2.57 (d, J = 6.4 Hz, 1H, H-17), 2.09 (s, 3H, H-21), 1.91-0.65 (4CH, 7CH₂), 0.81 (s, 9H, SiC(CH₃)₃), 0.72 (s, 3H, H-19), 0.56 (s, 3H, H-18), -0.02 (s, 3H, SiCH₃), -0.05 (s, 3H, SiCH₃)

¹³C NMR (CDCl₃, 100 MHz) δ 208.6 (C-20), 74.0 (C-17), 72.9 (C-16), 54.1 (CH), 53.5 (CH), 52.3 (C-3), 50.9 (C-2), 44.8 (C-13), 38.8 (CH₂), 38.2 (CH₂), 36.2 (CH₂), 36.2 (CH₂), 36.2 (CH), 35.2 (CH), 33.7 (C-21), 32.4 (C-10), 31.5 (CH₂), 29.0 (CH₂), 28.2 (CH₂), 25.8 (SiC(CH₃)₃), 20.0 (CH₂), 17.9 (SiC(CH₃)₃), 14.5 (CH₃), 12.1 (CH₃), -4.7 (SiCH₃), -4.9 (SiCH₃)

HRMS m/z: C₂₇H₄₇O₃NaSi [M+Na]⁺, calcd 447.3294, found 447.3293

2α, 3α-Epoxy-16α-tert-butyldimethylsilyloxy-20-methyl-5α-pregn-20-ene (116)

To a cool (0°C) solution of methyltriphenylphosphonium iodide (160 mg, 0.4 mmol) in THF (3 mL) was added a solution of nBuLi in hexane (0.4 mL, 0.6 mmol). The mixture was stirred at 0°C for 15-20 min, warmed to room temperature, and stirred for additional 1 h. A solution of 2α , 3α -epoxy- 16α -tertbutyldimethylsilyloxy-5α-pregnan-20-one (115) (19 mg, 0.04 mmol) in THF (3 mL) was added dropwise to the above mixture and the reaction mixture was stirred at room temperature for 2 h. The reaction was quenched by addition of saturated aqueous NH₄Cl, and extracted with CH₂Cl₂ (3×20 mL). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (1% ethyl acetate:hexane) to give 2α , 3α -epoxy- 16α -tert-butyldimethylsilyloxy-20methyl-5α-pregn-20-ene (116) (3.1 mg, 17% (brsm)) as a white needle after recrystallization (ethanol); m.p. 150-152°C and recovered starting material (115) (10.3) mg, 46% conversion).

2α, 3α-Epoxy-16α-tert-butyldimethylsilyloxy-20-methyl-5α-pregn-20-ene (116)

FTIR (KBr), v_{max}, cm⁻¹: 2929, 1649, 1557, 1461, 1078, 1015, 835

¹H NMR (CDCl₃, 400 MHz) δ 4.89 (m, 1H, H-22), 4.68 (m, 1H, H-22), 4.34 (td, J = 7.3, 2.0 Hz, 1H, H-16), 3.13 (m, 1H, H-3), 3.08 (m, 1H, H-2), 1.99 (d, J = 7.3 Hz, 1H, H-17), 1.87 (m, 2H, CH₂), 1.72 (s, 3H, H-21), 1.67-0.67 (4CH, 6CH₂), 0.82

(s, 9H, SiC(CH₃)₃), 0.72 (s, 3H, CH₃), 0.55 (s, 3H, CH₃), -0.02 (s, 3H, SiCH₃), -0.03 (s, 3H, SiCH₃)

¹³C NMR (CDCl₃, 100 MHz) δ 143.3 (C-20), 111.4 (C-22), 75.2 (C-16), 67.9 (C-17), 53.8 (CH), 53.4 (CH), 52.4 (C-3), 51.0 (C-2), 43.8 (C-13), 38.4 (CH₂), 38.2 (CH₂), 36.3 (CH₂), 36.3 (CH), 35.5 (CH), 33.7 (C-10), 31.6 (CH₂), 29.0 (CH₂), 28.4 (CH₂), 25.9 (SiC(<u>C</u>H₃)), 25.2 (C-21), 20.4 (CH₂), 18.0 (Si<u>C</u>(CH₃)), 14.4 (CH₃), 12.9 (CH₃), -4.4 (SiCH₃), -4.7 (SiCH₃)

HRMS m/z: C₂₈H₄₉O₂NaSi [M+Na]⁺, calcd 445.3502 found 445.3505

2α, 3α-Epoxy-16α-hydroxy-20-methyl-5α-pregn-20-ene (117)

To a solution of 2α , 3α -epoxy- 16α -tert-butyldimethylsilyloxy-20-methyl- 5α -20-pregnene (116) (6.07 mg, 0.02 mmol) in THF (2 mL) was added TBAF.H₂O (100.2 mg, 0.3 mmol) at room temperature and stirred for 48 h. The reaction was quenched by dilution with diethyl ether and washing with water. The aqueous phase was extracted with diethyl ether (3×25 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (10% ethyl acetate:hexane) to provide 2α , 3α -epoxy- 16α -hydroxy-20-methyl- 5α -pregn-20-ene (117) (1.6 mg, 32% (brsm)) as a white solid and recovered starting material (116) (2.0 mg, 70% conversion).

2α , 3α -Epoxy- 16α -hydroxy-20-methyl- 5α -pregn-20-ene (117)

FTIR (neat), v_{max} , cm⁻¹: 3431, 2922, 1638, 1454, 1056

¹H NMR (CDCl₃, 400 MHz) δ 4.89 (m, 1H, H-22), 4.74 (m, 1H, H-22), 4.41 (m, 1H, H-16), 3.08, 3.04 (m, 2H, H-2, H-3), 1.92 (d, J = 7.2 Hz, 1H, H-17), 1.82 (m, 2H, CH₂), 1.72 (s, 3H, H-21), 1.70-0.61 (2CH, 7CH₂), 0.68 (s, 3H, CH₃), 0.52 (s, 3H, CH₃)

HRMS m/z: C₂₂H₃₄O₂Na [M+Na]⁺, calcd 353.2457, found 353.2458

16α -(3-Acetoxy-2, 2-dimethyl-5-hexenoate)-2, 3-dihydroxy-20-methyl- 5α -pregn-20-ene (118)

To a solution of 3-acetoxy-2, 2-dimethyl-5-hexenoic acid (111) (15.3 mg, 0.07 mmol) in benzene (1 mL) containing 1 drop of *N*,*N*-dimethylformamide was added oxalyl chloride (0.01 mL, 0.12 mmol) under nitrogen gas atmosphere. The reaction mixture was stirred at room temperature for 2.5 h and the solvent was removed under reduced pressure to give the residue that was diluted with CH₂Cl₂ (1 mL) and slowly added to a solution of 2α, 3α-epoxy-16α-hydroxy-20-methyl-5α-20-pregnene (117) (4.5 mg, 0.01 mmol) and dimethylaminopyridine (DMAP) in CH₂Cl₂ (1 mL). The reaction mixture was stirred at room temperature for 30 min under nitrogen gas atmosphere and quenched with saturated aqueous NaHCO₃ solution. The aqueous phase was back extracted with CH₂Cl₂ (3×20 mL). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (7%

ethyl acetate:hexane) to give 16α -(3-acetoxy-2, 2-dimethyl-5-hexenoate)-2, 3-dihydroxy-20-methyl- 5α -pregn-20-ene (118) (1.2 mg, 16%) as a white solid.

16α -(3-Acetoxy-2, 2-dimethyl-5-hexenoate)-2, 3-dihydroxy-20-methyl- 5α -pregn-20-ene (118)

¹H NMR (CDCl₃, 400 MHz) δ 5.64 (m, 1H, H-5'), 5.39, 5.31 (2m, 1H, H-16), 5.18 (m, 1H, H-6'), 4.94 (m, 1H, H-6'), 4.82, 4.80 (2m, 1H, H-22), 4.69, 4.65 (2s, 1H, H-22), 4.08, 4.02 (2m, 2H, H-2, H-3), 2.21 (s, 3H, COOCH₃), 1.94, 1.91 (2s, 3H, H-21), 2.24-1.19 (5CH, 8CH₂), 1.18 (m, 3H, CH₃), 1.09, 1.08 (m, 3H, CH₃), 0.98, 0.97 (2s, 3H, CH₃), 0.56, 0.55 (2s, 3H, CH₃)

Tigogenin (54)

To a solution of diosgenin (59) (221.4 mg, 0.5 mmol) in THF (5 mL) was added 5% Pd/C (24 mg, 10.6×10^{-3} mmol) under hydrogen gas atmosphere. The resulting mixture was stirred at room temperature for 48 h. After the reaction was filtered through Celite and eluted with CH₂Cl₂, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (10% ethyl acetate:hexane) to give tigogenin (54) (179 mg, 82%) as a white needle after crystallization (hexane); m.p. 201-202°C.

Tigogenin (54)

FTIR (KBr), v_{max} , cm⁻¹: 3520, 3389, 2928, 1459, 1177, 1053, 1041

Copyright by Kasetsart University All rights reserved

¹H NMR (CDCl₃, 400 MHz) δ 4.32 (m, 1H, H-16), 3.51 (m, 1H, H-3), 3.34 (ddd, J = 10.9, 4.2, 1.9 Hz, 1H, H-26), 3.30 (t, J = 10.9 Hz, 1H, H-26), 1.90 (m, 1H, H-25), 1.79 (t, J = 6.9 Hz, 1H, H-20), 1.75-0.78 (4CH, 10CH₂), 0.89 (d, J = 6.9 Hz, 3H, H-21), 0.75 (s, 3H, H-19), 0.72 (s, 3H, H-18), 0.69 (m, 1H, CH)

¹³C NMR (CDCl₃, 100 MHz) δ 109.2 (C-22), 80.8 (C-16), 71.3 (C-3), 66.8 (C-26), 62.2 (CH), 56.3 (CH), 54.3 (CH), 44.8 (CH), 41.6 (CH), 40.6 (C-13), 40.0 (CH), 38.2 (CH₂), 37.0 (CH₂), 35.6 (C-10), 35.1 (CH), 32.2 (CH₂), 31.7 (CH₂), 31.5 (CH₂), 31.4 (CH₂), 30.3 (CH), 28.8 (CH₂), 28.6 (CH₂), 21.1 (CH₂), 17.1 (C-27), 16.5 (C-18), 14.5 (C-21), 12.3 (C-19)

MS (ESI) m/z: $C_{27}H_{46}O_3$ [M+H]⁺, calcd 417.3363, found 417.3381

3β-Acetoxy-16β-(5-acetoxy-4-methylpentanoate)-5α-pregnan-20-one (60)

Step I

A mixture of tigogenin (54) (1.4 g, 3.2 mmol), acetic anhydride (12.1 mL), ammonium chloride (395 mg) and pyridine (3.1 mL) was heated to 135°C and kept at this temperature for 16 h. After cooling down, the reaction mixture was added cool water and extracted with CH₂Cl₂ (4×100 mL). The combined organic layers were neutralized with saturated aqueous NaHCO₃ and water. The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was used in the next step without further purification.

The crude product was dissolved in 1, 2-dichloroethane (8 mL), water (0.6 mL) and acetic acid (3.1 mL). The mixture was cooled to 0° C and added with a solution of chromium trioxide (671 mg) in water (0.8 mL) and acetic acid (0.3 mL) (This solution was kept below 7° C during addition). The mixture was allowed to warm to room temperature and stirred for 2 h. A solution of sodium chloride (2.7 g) in water (11 mL) and methanol (0.13 mL) was introduced and the resulting mixture was further stirred for additional 1 h. The reaction was quenched with cool water and extracted with CH_2Cl_2 (4×100 mL). The combined organic layers were neutralized with saturated aqueous NaHCO₃ and water. The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (20% ethyl acetate:hexane) to give 3 β -acetoxy-16 β -(5-acetoxy-4-methylpentanoate)-5 α -pregnan-20-one (60) (732.3 mg, 43%) as a white solid; m.p. 98-99°C. (Boonananwong *et al.*, 2008b, m.p. 97-98°C)

3β-Acetoxy-16β-(5-acetoxy-4-methylpentanoate)-5α-pregnan-20-one (60)

FTIR (KBr), v_{max}, cm⁻¹: 2933, 1732, 1363, 1247, 1153, 1028

¹H NMR (CDCl₃, 400 MHz) δ 5.44 (dt, J = 7.8, 4.4 Hz, 1H, H-16), 4.61 (m, 1H, H-3), 3.83 (d, J = 6.1 Hz, 2H, H-5'), 2.33 (m, 1H, CH), 2.32 (d, J = 7.6 Hz, 1H, H-17), 2.22 (m, 2H, CH₂), 1.99 (s, 3H, CH₃), 1.98 (s, 3H, CH₃), 1.94 (s, 3H, CH₃), 1.78-0.78 (4CH, 9CH₂), 0.95 (s, 3H, H-19), 0.86 (d, J = 6.7 Hz, 3H, H-4'), 0.77 (s, 3H, H-18)

¹³C NMR (CDCl₃, 100 MHz) δ 205.2 (C-20), 172.9 (COO), 171.0 (COO), 170.6 (COO), 74.3 (C-16), 73.5 (C-3), 68.7 (C-5'), 66.6 (C-17), 54.2 (CH), 53.8 (CH), 44.6 (CH), 42.5 (C-13), 38.1 (CH₂), 36.6 (CH₂), 35.5 (C-10), 35.0 (CH₂), 34.3 (CH), 33.8 (CH₂), 31.9 (CH), 31.8 (CH₂), 31.7 (CH₂), 30.6 (CH₃), 28.3 (CH₂), 28.2 (CH₂), 27.3 (CH₂), 21.3 (CH₃), 20.8 (CH₃), 20.4 (CH₃), 16.3 (CH₃), 13.5 (CH₃), 12.1 (CH₃)

3β-Hydroxy-(16S, 20S)-16, 20-acetonide-5α-24a-homo-chol-24-ene (119)

AcO
$$\stackrel{\stackrel{\circ}{H}}{\longrightarrow} 0$$
 OAc $\stackrel{\circ}{\longrightarrow} 0$ (60)

Step I

To a stirring mixture of Mg (302 mg, 12.4 mmol) and catalyst I_2 in dry THF (5 mL) was slowly added 4-bromobutene (1.0 mL, 9.8 mmol) under nitrogen atmosphere and stirred for 1 h. A solution of 3 β -acetoxy-16 β -(5-acetoxy-4-methylpentanoate)-5 α -pregnan-20-one (60) (644.2 mg, 1.2 mmol) in dry THF (5 mL) was slowly added. After 20 min, the reaction was quenched by addition of saturated aqueous NH₄Cl and extracted with ethyl acetate (4×100 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ and water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was used in the next step without further purification.

Step II

A mixture of the crude product, 2, 2-dimethoxypropane (8 mL) and p-toluenesulfonic acid (15 mg, 0.08 mmol) was stirred at room temperature for 4 h. the reaction mixture was quenched with triethylamine and water and extracted with CH₂Cl₂ (3×100 mL). The combined organic layers were washed water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (15% ethyl acetate:hexane) to give 3 β -hydroxy-(16S, 20S)-16, 20-acetonide-5 α -24a-homo-chol-24-ene (119) (168.1 mg, 32% (2 steps)) as a white needle after recrystallization (hexane); m.p. 144-145 °C.

3β-Hydroxy-(16S, 20S)-16, 20-acetonide-5α-24a-homo-chol-24-ene (119)

FTIR (KBr), v_{max}, cm⁻¹: 3442, 2933, 1642, 1458 1374, 1244, 1196, 1041

¹H NMR (CDCl₃, 400 MHz) δ 5.74 (m, 1H, H-24), 4.94 (dd, J = 17.1, 1.7 Hz, 1H, H-25), 4.87 (dd, J = 10.6, 1.8 Hz, 1H, H-25), 4.39 (m, 1H, H-16), 3.51 (m, 1H, H-3), 2.07 (m, 3H, CH, CH₂), 1.89 (m, 2H, CH₂), 1.83-0.77 (4CH, 8CH₂), 1.38 (s, 3H, H-21), 1.26 (s, 3H, CH₃), 1.22 (s, 3H, CH₃), 1.02 (s, 3H, H-19), 0.75 (s, 3H, H-18)

¹³C NMR (CDCl₃, 100 MHz) δ 138.9 (C-24), 114.2 (C-25), 97.1 (Cq), 74.9 (C-20), 71.3 (CH), 68.6 (CH), 55.6 (CH), 54.7 (CH), 54.6 (CH), 44.9 (CH), 43.2 (CH₂), 42.4 (C-13), 40.0 (CH₂), 38.2 (CH₂), 36.9 (CH₂), 35.5 (C-10), 34.7 (CH), 33.8 (CH₂), 31.8 (CH₂), 31.8 (CH₂), 31.5 (CH₂), 28.6 (CH₂), 28.1 (CH₂), 25.6 (CH₃), 24.1 (C-21), 20.7 (CH₂), 14.8 (CH₃), 12.3 (CH₃)

HRMS m/z: C₂₈H₄₆O₃Na [M+Na]⁺, calcd 453.3345, found 453.3354

24-Formyl-3β-hydroxy-(16S, 20S)-16, 20-acetonide-5α-cholane (120)

A solution of 3β-hydroxy-(16*S*, 20*S*)-16, 20-acetonide-5α-24a-homo-chol-24-ene (119) (27.1 mg, 0.06 mmol) in CH₂Cl₂ (5 mL) was cooled to -78°C and ozone was bubbled through the solution with stirring. When the solution turned blue, ozone addition was stopped. Nitrogen was passed through the solution until the blue color was discharged. The reaction was quenched at -78°C with triphenylphosphine (19.0 mg, 0.07 mmol). The resulting mixture was stirred and slowly allowed to warm for 1 h. The mixture was further to stir continuously at room temperature for 2 h, then

concentrated under reduced pressure and further to purify by flash column chromatography (3% ethyl acetate:hexane) to give 24-formyl-3 β -hydroxy-(16S, 20S)-16, 20-acetonide-5 α -cholane (120) (17.6 mg, 65%) as a white solid.

24-Formyl-3β-hydroxy-(16S, 20S)-16, 20-acetonide-5α-cholane (120)

FTIR (KBr), v_{max}, cm⁻¹: 3448, 2922, 1711, 1649, 1458, 1192, 1052

¹H NMR (CDCl₃, 400 MHz) δ 9.75 (s, 1H, H-24), 4.38 (m, 1H, H-16), 3.52 (m, 1H, H-3), 3.42 (s, 1H, OH), 2.52 (t, J = 7.6 Hz, 2H, H-23), 2.17 (m, 1H, CH), 2.08 (dt, J = 13.4, 7.7 Hz, 1H, CH), 1.90 (dt, J = 12.6, 3.6 Hz, 1H, CH), 1.73 (m, 1H, CH), 1.66-0.77 (9CH₂), 1.32 (s, 3H, H-21), 1.26 (s, 3H, CH₃), 1.19 (s, 3H, CH₃), 1.01 (s, 3H, H-19), 0.75 (s, 3H, H-18), 0.57 (m, 1H, CH)

¹³C NMR (CDCl₃, 100 MHz) δ 202.2 (C-24), 97.3 (Cq), 74.2 (C-20), 71.3 (CH), 68.7 (CH), 56.0 (CH), 54.6 (CH), 54.5 (CH), 44.9 (CH), 42.5 (C-13), 40.0 (CH), 38.9 (CH₂), 38.2 (CH₂), 36.9 (CH₂), 35.5 (C-10), 35.2 (CH₂), 34.7 (CH₂), 33.6 (CH₂), 31.8 (CH₂), 31.5 (CH), 31.4 (CH₂), 28.6 (CH₂), 25.9 (CH₃), 23.9 (CH₃), 20.7 (CH₂), 14.9 (CH₃), 12.3 (CH₃)

MS (APCI), *m/z* (relative intensity): 375 (33), 357 (83), 339 (100), 321 (25), 257 (69)

3β, 24-Dihydroxy-(16S, 20S)-16, 20-acetonide-5α-cholestane (121)

To a stirring mixture of Mg (100 mg, 4.2 mmol) and catalyst I_2 in dry THF (2 mL) was slowly added 2-bromopropane (1.0 mL, 10.2 mmol) under nitrogen atmosphere at room temperature. After stirring for 1 h, this mixture was cooled to -78°C and then a solution of 24-formyl-3 β -hydroxy-(16S, 20S)-16, 20-acetonide-5 α -cholane (120) (30.2 mg, 0.07 mmol) in dry THF (2 mL) was added slowly and kept temperature at -78°C for 1.5 h. The reaction was quenched by addition of saturated aqueous NH₄Cl, the resulting mixture was extracted with CH₂Cl₂ (3×50 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ and water. The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatrography (20% ethyl acetate:hexane) to give 3 β , 24-dihydroxy-(16S, 20S)-16, 20-acetonide-5 α -cholestane (121) (27.7 mg, 84%) as a white solid; m.p.169-174°C.

3β, 24-Dihydroxy-(16S, 20S)-16, 20-acetonide-5α-cholestane (121)

FTIR (KBr), v_{max}, cm⁻¹: 3435, 1454, 1376, 1045

¹H NMR (CDCl₃, 400 MHz) δ 4.38 (m, 1H, H-16), 3.52 (m, 1H, H-3), 3.24 (m, 1H, H-24), 2.07 (m, 1H, CH), 1.90 (m, 1H, CH), 1.80-0.77 (6CH, 11CH₂), 1.36 (s, 3H, H-21), 1.27 (s, 3H, CH₃), 1.23 (s, 3H, CH₃), 1.01 (s, 3H, H-19), 0.86 (d, J = 6.5 Hz, 6H, H-26, H-27), 0.75 (s, 3H, H-18), 0.56 (m, 1H, CH)

¹³C NMR (CDCl₃, 100 MHz) δ 97.5, 97.2 (Cq), 77.5 (CH), 75.3 (C-20), 71.3 (CH), 68.8 (CH), 56.1, 55.9 (CH), 54.5 (CH), 44.9 (CH), 42.4 (C-13), 41.1, 41.0 (CH₂), 40.1, 40.0 (CH₂), 38.2 (CH₂), 36.9 (CH₂), 35.5 (CH), 34.7 (CH), 34.0 (CH₂), 33.6 (CH), 31.8, 31.6 (CH₂), 31.5 (CH₂), 28.6 (CH₂), 27.9 (CH₂), 25.8 (C-21), 24.4 (CH₃), 24.2 (CH₃), 20.7 (CH₂), 18.9, 18.7, 17.4, 17.0 (C-26, C-27), 15.0, 14.9 (CH₃), 12.3 (CH₃)

HRMS m/z: C₃₀H₅₂O₄Na [M+Na]⁺, calcd 499.3763, found 499.3765

3β -tert-Butyldimethylsiloxy-(16S, 20S)-16, 20-acetonide-5 α -24a-homo-chol-24-ene (123)

To a cooled (0°C) solution of 3β-hydroxy-(16S, 20S)-16,20-acetonide-5α-24a-homo-chol-24-ene (119) (284.3 mg, 0.66 mmol) in dry CH₂Cl₂ (5 mL) was added 2,6-lutidine (0.12 mL, 0.99 mmol) and *tert*-butyldimethylsilyltrifluoromethanesulfonate (0.23 mL, 0.95 mmol). The reaction mixture was stirred at 0°C for 30 min. Then the reaction was quenched by addition of saturated aqueous NaHCO₃. The resulting mixture was extracted with CH₂Cl₂ (3×50 mL). The combined organic layers were washed with water, the organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (2% ethyl acetate:hexane) to afford 3β-*tert*-butyldimethylsiloxy-(16S, 20S)-16, 20-acetonide-5α-24a-homo-chol-24-ene (123) (327.0 mg, 91%) as a white solid; m.p.96-98°C.

 3β -tert-Butyldimethylsiloxy-(16S, 20S)-16, 20-acetonide-5 α -24a-homo-chol-24-ene (123)

FTIR (KBr), v_{max}, cm⁻¹: 2931, 1468, 1447, 1375, 1248, 1198, 1094, 834

¹H NMR (CDCl₃, 400 MHz) δ 5.76 (ddt, J = 17.0, 10.1, 6.6 Hz, 1H, H-24), 4.97 (dd, J = 17.1, 1.72 Hz, 1H, H-25), 4.89 (dd, J = 10.2, 1.8 Hz, 1H, H-25), 4.41 (m, 1H, H-16), 3.49 (m, 1H, H-3), 2.09 (m, 3H, C-17, H-23), 1.90 (m, 2H, 2CH), 1.62 (m, 2H, CH₂), 1.52-0.74 (2CH, 8CH₂), 1.40 (s, 3H, H-21), 1.28 (s, 3H, CH₃), 1.24 (s, 3H, CH₃), 1.04 (s, 3H, H-19), 0.84 (s, 9H, SiC(CH₃)₃), 0.76 (s, 3H, H-18), 0.56 (m. 1H, CH), 0.00 (s, 6H, Si(CH₃)₂)

¹³C NMR (CDCl₃, 100 MHz) δ 138.8 (C-24), 114.2 (C-25), 97.1 (Cq), 74.9 (C-20), 72.1 (C-3), 68.6 (C-16), 55.6 (CH₂), 54.7 (CH), 54.6 (CH), 45.1 (CH), 43.2 (CH₂), 42.4 (C-13), 40.1 (CH₂), 38.6 (CH₂), 37.1 (CH₂), 35.5 (C-10), 34.7 (C-17), 33.7 (CH₂), 31.9 (2CH₂), 31.7 (CH₃), 28.7 (CH₂), 28.0 (C-23), 25.9 (SiC(CH₃)₃), 25.6 (CH₃), 24.1 (C-21), 20.7 (CH₂), 18.2 (Si<u>C</u>(CH₃)₃), 14.8 (C-19), 12.4 (C-18), -4.5 (Si(CH₃)₂)

MS (APCI), *m/z* (relative intensity): 487 (100), 469 (65), 337 (19), 257 (50)

$3\beta\text{-}tert\text{-}Butyldimethylsiloxy-24-hydroxy-}(16S, 20S)\text{-}16, 20\text{-}acetonide-}5\alpha\text{-}cholestane}$ (124)

Step I

A solution of 3β-*tert*-butyldimethylsiloxy-(16*S*, 20*S*)-16, 20-acetonide-5α-24a-homo-chol-24-ene (123) (318.2 mg, 0.58 mmol) in CH₂Cl₂ (10 mL) was cooled to -78°C and ozone was bubbled through the solution with stirring. When the solution turned blue, ozone addition was stopped. Nitrogen was passed through the solution until the blue color was discharged. The reaction was quenched at -78°C with triphenylphosphine (160.8 mg, 0.59 mmol). The resulting mixture was stirred and slowly allowed to warm for 1 h. The mixture was further stirred at room temperature for 2 h, then concentrated under reduced pressure and furthered to purify by flash column chromatography (3% ethyl acetate:hexane) to give aldehyde intermediate (220 mg, 67%) as a white solid.

Step II

To a stirring of Mg (682 mg, 27.7 mmol) and catalyst I₂ in dry THF (15 mL) was slowly added 2-bromopropane (7.0 mL, 69 mmol) under nitrogen atmosphere at room temperature. After stirring for 1 h, this mixture was cooled to -78°C and then a solution of aldehyde intermediate (220 mg, 0.4 mmol) in dry THF (5 mL) was added slowly and kept temperature at -78°C for 1.5 h. The reaction was quenched by addition of saturated aqueous NH₄Cl, the resulting mixture was extracted with CH₂Cl₂ (4×50 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ and water. The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatrography (5% ethyl acetate:hexane) to give 3β-*tert*-butyldimethylsiloxy-24-hydroxy-(16S, 20S)-16, 20-acetonide-5α-cholestane (124) (102.9 mg, 44%) as a white solid.

 3β -tert-Butyldimethylsiloxy-24-hydroxy-(16S, 20S)-16, 20-acetonide-5 α -cholestane (124) (Isomer I)

FTIR (KBr), v_{max} , cm⁻¹: 3449, 2932, 1461, 1382, 1251, 1096

¹H NMR (CDCl₃, 400 MHz) δ 4.40 (m, 1H, H-16), 3.49 (m, 1H, H-3), 3.25 (m, 1H, H-24), 2.10 (t, J = 7.7 Hz, 0.5H, H-17), 2.07 (t, J = 7.7 Hz, 0.5H, H-17), 1.93 (m, 0.5H, CH₂), 1.90 (m, 0.5H, CH₂), 1.79 (m, 1H, CH), 1.70-0.73 (2CH, 10CH₂), 1.38 (s, 3H, H-21), 1.29 (CH₃), 1.25 (CH₃), 1.03 (s, 3H, H-19), 0.88 (d, J = 6.8 Hz, 6H, H-27, H-28), 0.83 (s, 9H, SiC(CH₃)₃), 0.76 (s, 3H, H-18), 0.56 (m, 1H, CH), 0.00 (s, 6H, Si(CH₃)₂)

¹³C NMR (CDCl₃, 100 MHz) δ 94.2 (Cq), 77.5 (C-24), 75.3 (C-20), 72.1 (C-3), 68.8 (C-16), 54.9 (CH), 54.60 (CH), 54.57 (CH), 45.1 (CH), 42.4 (C-13), 41.1 (CH₂), 40.1 (CH₂), 38.6 (CH₂), 37.1 (CH₂), 35.5 (C-10), 34.7 (CH), 34.0 (C-17), 33.6 (CH₂), 31.9 (2CH₂), 31.6 (CH₃), 28.7 (CH₂), 27.9 (CH₂), 25.93 (3CH₃), 25.86 (CH₃), 24.2 (C-21), 20.7 (CH₂), 18.7 (C-27), 18.2 (Si<u>C</u>(CH₃)₃), 17.4 (C-28), 14.9 (C-19), 12.3 (C-18), -4.6 (2CH₃)

HRMS m/z: C₃₆H₆₆O₄NaSi [M+Na]⁺, calcd 613.4628, found 613.4634

 3β -tert-butyldimethylsiloxy-24-hydroxy-(16S, 20S)-16, 20-acetonide-5 α -cholestane (124) (Isomer II)

FTIR (KBr), v_{max}, cm⁻¹: 3448, 2936, 1654, 1458, 1382, 1249, 1064, 837, 775

¹H NMR (CDCl₃, 400 MHz) δ 4.42 (m, 1H, H-16), 3.51 (m, 1H, H-3), 3.28 (m, 1H, H-24), 2.12 (t, J = 7.7 Hz, 0.5H, H-17), 2.09 (t, J = 7.7 Hz, 0.5H, H-17), 2.03 (m, 1H, CH), 1.95 (m, 0.5H, CH₂), 1.92 (m, 0.5H, CH₂), 1.80-0.69 (2CH, 10CH₂), 1.43 (s, 3H, H-21), 1.31 (CH₃), 1.28 (CH₃), 1.05 (s, 3H, H-19), 0.88 (d, J = 6.7 Hz, 3H, H-27), (d, J = 6.6 Hz, 3H, H-28), 0.85 (s, 9H, SiC(CH₃)₃), 0.78 (s, 3H, H-18), 0.58 (m, 1H, CH), 0.00 (s, 6H, SiC(CH₃)₂)

¹³C NMR (CDCl₃, 100 MHz) δ 97.5 (Cq), 77.3 (C-24), 75.1 (C-20), 72.1 (C-3), 68.8 (C-16), 56.2 (CH), 54.62 (CH), 54.56 (CH), 45.1 (CH), 42.5 (C-13), 41.0 (CH₂), 40.1 (CH₂), 38.6 (CH₂), 37.1 (CH₂), 35.5 (C-10), 34.7 (CH), 33.6 (CH₂), 33.5 (C-17), 31.94 (CH₂), 31.91 (CH₂), 31.5 (CH₃), 28.7 (CH₂), 28.3 (CH₂), 25.94

(SiC(CH₃)₃), 25.90 (CH₃), 24.4 (C-21), 20.7 (CH₂), 19.0 (C-27), 18.2 (Si<u>C</u>(CH₃)₃), 17.0,(C-28) 15.0 (C-19), 12.4 (C-18), -4.6 (Si(CH₃)₂)

HRMS m/z: C₃₆H₆₆O₄NaSi [M+Na]⁺, calcd 613.4628, found 613.4631

3β -tert-Butyldimethylsiloxy-(16S, 20S)-16, 20-acetonide- 5α -cholestan-24-one (125)

Method I

To a solution of 3β -tert-butyldimethylsiloxy-24-hydroxy-(16S, 20S)-16, 20-acetonide-5 α -cholestane (124) (75 mg, 0.13 mmol) in CH₂Cl₂ (8 mL) was added sodium acetate (50 mg, 0.60 mmol) and pyridinium chlorochromate (PCC) (120 mg, 0.56 mmol). The reaction mixture was stirred at room temperature for 1 h. The resulting mixture was filtered through celite and eluted with CH₂Cl₂ then the organic phase was concentrated under reduced pressure. The residue was purified by flash column chromatrography (2% ethyl acetate:hexane) to give 3β -tert-butyldimethylsiloxy-(16S, 20S)-16, 20-acetonide-5 α -cholestan-24-one (125) (62.6 mg, 80%) as a white solid; m.p. 109-111°C.

Method II

To a solution of 3β -tert-butyldimethylsiloxy-24-hydroxy-(16S, 20S)-16, 20-acetonide- 5α -cholestane (124) (385 mg, 0.65 mmol) in CH₂Cl₂ (12 mL) was added pyridine (0.6 mL) and pyridinium chlorochromate (PCC) (600 mg, 2.8 mmol). The

reaction mixture was stirred at room temperature for 2 h. The resulting mixture was filtered through silica gel and eluted with CH_2Cl_2 . Then the organic phase was concentrated under reduced pressure. The residue was purified by flash column chromatography (2% ethyl acetate:hexane) to give 3β -tert-butyldimethylsiloxy-(16S, 20S)-16, 20-acetonide- 5α -cholestan-24-one (125) (363 mg, 90%).

3β -tert-Butyldimethylsiloxy-(16S, 20S)-16, 20-acetonide- 5α -cholestan-24-one (125)

FTIR (KBr), ν_{max} , cm⁻¹: 2930, 1711, 1470, 1477, 1249, 1196, 1088, 1071, 870, 835, 778

¹H NMR (CDCl₃, 400 MHz) δ 4.42 (m, 1H, H-16), 3.50 (m, 1H, H-3), 2.58 (sept, J = 7.0 Hz, 1H, H-25), 2.53 (m, 2H, H-23), 2.17 (m, 1H, H-22), 2.11 (t, J = 7.2 Hz, 0.5H, H-17), 2.08 (t, J = 7.7 Hz, 0.5H, H-17), 1.94 (m, 0.5H, CH₂), 1.91 (m, 0.5H, CH₂), 1.57 (m, 1H, H-22), 1.72-0.73 (2CH, 8CH₂), 1.34 (s, 3H, CH₃), 1.27 (s, 3H, CH₃), 1.20 (s, 3H, H-21), 1.06 (d, J = 6.9 Hz, 6H, H-26, H-27), 1.03 (s, 3H, H-19), 0.84 (s, 9H, SiC(CH₃)₃), 0.76 (s, 3H, H-18), 0.57 (m, 1H, CH), 0.00 (s, 6H, Si(CH₃)₂)

¹³C NMR (CDCl₃, 100 MHz) δ 214.6 (C-24), 97.0 (Cq), 74.3 (C-20), 72.1 (C-3), 68.6 (C-16), 55.9 (CH), 54.63 (CH), 54.56 (CH), 45.0 (CH), 42.4 (C-13), 41.0 (C-25), 40.0 (CH₂), 38.6 (CH₂), 37.1 (CH₂), 36.8 (CH₂), 35.5 (C-10), 34.7 (CH), 34.6 (C-23), 33.7 (CH₂), 31.9 (CH₂), 31.8 (CH₂), 31.6 (CH₃), 28.6 (CH₂), 25.9 (SiC(CH₃)₃), 25.7 (C-21), 23.9 (CH₃), 20.7 (CH₂), 18.4 (C-26), 18.3 (C-27), 18.2 (SiC(CH₃)₃), 14.8 (C-19), 12.3 (C-18), -4.6 (Si(CH₃)₂)

HRMS m/z: C₃₆H₆₄O₄NaSi [M+Na]⁺, calcd 611.4472, found 611.4472

3β -tert-Butyldimethylsiloxy-24-ethenyl-24-hydroxy-(16S, 20S)-16, 20-acetonide- 5α -cholestane (126)

To a solution of 3β-*tert*-butyldimethylsiloxy-(16*S*, 20*S*)-16, 20-acetonide-5α-cholestan-24-one (125) (62.2 mg, 0.11 mmol) in dry THF (10 mL) was added vinyl magnesium bromide (2.5 mL, 1M in THF, 2.6 mmol) at room temperature. The reaction mixture was refluxed for 2 h. Then, reaction was cooled to room temperature and quenched with saturated aqueous NH₄Cl. The resulting mixture was extracted with CH₂Cl₂ (3×30 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ and water. The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatrography (5% ethyl acetate:hexane) to afford 3β-*tert*-butyldimethylsiloxy-24-ethenyl-24-hydroxy-(16*S*, 20*S*)-16, 20-acetonide-5α-cholestane (126) (51.7 mg, 79%) as two isomers as a white solid.

3β -tert-Butyldimethylsiloxy-24-ethenyl-24-hydroxy-(16S, 20S)-16, 20-acetonide- 5α -cholestane (126) (Isomer I)

FTIR (KBr), ν_{max} , cm⁻¹: 3484, 2933, 1649, 1627, 1461, 1381, 1250, 1092, 835, 775

¹H NMR (CDCl₃, 400 MHz) δ 5.73 (dd, J = 17.4, 10.9 Hz, 1H, H-28), 5.15 (dd, J = 17.4, 1.5 Hz, 1H, H-29' tran), 5.12 (dd, J = 10.9, 1.5 Hz, 1H, H-29' cis), 4.37 (m, 1H, H-16), 3.49 (m, 1H, H-3), 2.07 (m, 1H, H-17), 1.92 (m, 1H, CH₂), 1.79-0.56 (5CH, 9.5 CH₂), 1.36 (s, 3H, CH₃), 1.28 (s, 3H, CH₃), 1.25 (s, 3H, H-21), 1.02 (s, 3H,

Copyright by Kasetsart University All rights reserved

H-19), 0.86 (m, 6H, H-26, H-27), 0.83 (s, 9H, SiC(CH₃)₃), 0.76 (s, 3H, H-18), 0.00 (s, 6H, Si(CH₃)₂)

HRMS m/z: C₃₈H₆₈O₄NaSi [M+Na]⁺, calcd 640.4863, found 640.4865

3β -tert-Butyldimethylsiloxy-24-ethenyl-24-hydroxy-(16S, 20S)-16, 20-acetonide- 5α -cholestane (126) (Isomer II)

FTIR (KBr), ν_{max} , cm⁻¹: 3448, 2933, 1654, 1631, 1461, 1382, 1093, 1063, 835, 775

¹H NMR (CDCl₃, 400 MHz) δ 5.73 (dd, J = 17.4, 10.9 Hz, 1H, H-28), 5.15 (dd, J = 17.4, 1.6 Hz, 1H, H-29' tran), 5.11 (dd, J = 10.9, 1.6 Hz, 1H, H-29' cis), 4.39 (m, 1H, H-16), 3.50 (m, 1H, H-3), 2.08 (m, 1H, H-17), 1.91 (m, 1H, CH₂), 1.82 (m, 1H, CH), 1.71-0.56 (4CH, 9.5CH₂), 1.40 (s, 3H, CH₃), 1.28 (s, 3H, CH₃), 1.24 (s, 3H, H-21), 1.02 (s, 3H, H-19), 0.87 (d, J = 6.9 Hz, 6H, H-26, H-27), 0.84 (s, 9H, SiC(CH₃)₃), 0.76 (s, 3H, H-18), 0.00 (s, 6H, Si(CH₃)₂)

HRMS m/z: C₃₈H₆₈O₄NaSi [M+Na]⁺, calcd 640.4863, found 640.4862

3β -tert-Butyldimethylsiloxy-29-hydroxy-(16S, 20S)-16, 20-acetonide-5 α -cholest-24(28)-ene (127)

Step I

To a solution of 3β -tert-butyldimethylsiloxy-24-ethenyl-24-hydroxy-(16*S*, 20*S*)-16, 20-acetonide-5 α -cholestane (126) (35.1 mg, 0.06 mmol) in CH₂Cl₂ (5 mL) was added sodium acetate (60 mg, 0.73 mmol) and pyridinium chlorochromate (PCC) (120 mg, 0.56 mmol). The reaction mixture was stirred at room temperature for 2 h. The resulting mixture was filtered through celite and eluted with CH₂Cl₂ then the organic phase was concentrated under reduced pressure. The crude product was used in the next step without purification.

Step II

To a solution of crude product from step I in ethanol (3 mL) was added sodium borohydride (27 mg, 0.71 mmol) and the mixture was stirred for 30 min. Then, ethanol was removed under reduced pressure. The residue was diluted with CH_2Cl_2 and washed with saturated aqueous NH_4Cl and brine. The combined organic layer was dried over anhydrous Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified by flash column chromatrography (7% ethyl acetate:hexane) to give 3β -tert-butyldimethylsiloxy-29-hydroxy-(16S, 20S)-16, 20-acetonide-5 α -cholest-24(28)-ene (127) (9.0 mg, 25.6%) as a white solid.

3β -tert-Butyldimethylsiloxy-29-hydroxy-(16S, 20S)-16, 20-acetonide-5 α -cholest-24(28)-ene (127)

¹H NMR (CDCl₃, 400 MHz) δ 5.34 (t, J = 7.0 Hz, 1H, H-28), 4.37 (m, 1H, H-16), 4.12 (t, J = 6.0 Hz, 2H, H-29), 3.49 (m, 1H, H-3), 2.19 (m, 1H, CH), 2.08 (m, 2H, H-17, CH), 1.92 (m, 1H, CH₂), 1.80 (m, 1H, CH), 1.67-0.57 (3CH, 9.5CH₂), 1.42 (s, 3H, CH₃), 1.30 (s, 3H, CH₃), 1.29 (s, 3H, CH₃), 1.03 (s, 3H, H-19), 1.00 (d, J = 6.8 Hz, 3H, H-26) 0.98 (d, J = 6.8 Hz, 3H, H-27), 0.83 (s, 9H, SiC(CH₃)₃), 0.76 (s, 3H, H-18), 0.00 (s, 6H, Si(CH₃)₂)

¹³C NMR (CDCl₃, 100 MHz) δ 150.1 (C-24), 121.2 (C-28), 97.3 (Cq), 75.5 (C-20), 72.2 (C-3), 68.7 (C-16), 59.3 (C-29), 55.4 (C-17), 54.7 (C-9), 54.6 (C-14), 45.1 (C-5), 44.4 (CH₂), 42.5 (C-13), 40.2 (C-12), 38.6 (CH₂), 37.2 (C-1), 35.6 (C-10), 34.7 (CH), 34.0 (CH), 33.6 (CH₂), 31.9 (CH₂), 31.6 (CH₃), 28.7 (CH₂), 25.9 (SiC(<u>C</u>H₃)₃), 25.8 (CH₃), 24.6 (CH₂), 24.5 (CH₃), 22.2, 22.0 (C-26, C-27), 20.7 (CH₂), 18.3 (Si<u>C</u>(CH₃)₃), 15.0 (C-18), 12.4 (C-19), -4.6 (Si(CH₃)₂)

MS (APCI), *m/z* (relative intensity): 559 (11), 541 (100), 523 (86), 409 (48), 391 (37), 257 (10)

3 β , 20(S)-dihydroxy-5 α -24a-homo-chol-24-ene (129)

To a stirring of Mg (687 mg, 27 mmol) and catalyst I₂ in dry THF (20 mL) was slowly added 4-bromobutene (2.5 mL, 13.9 mmol) under nitrogen atmosphere at room temperature. After stirring for 1 h, a solution of 3β-acetoxy-5α-pregnan-20-one (82) (1.0 g, 2.8 mmol) in dry THF (15 mL) was added slowly. After 20 min, the reaction was quenched by addition of saturated aqueous NH₄Cl and extracted with CH₂Cl₂ (4×100 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ and water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (10% ethyl acetate:hexane) to give 3β, 20(*S*)-dihydroxy-5α-24a-homo-chol-24-ene (129) (639.8 mg, 61%) as a white needle after recrystallization (CH₂Cl₂); m.p. 119-122°C.

3 β , 20(S)-dihydroxy-5 α -24a-homo-chol-24-ene (129)

FTIR (KBr), v_{max}, cm⁻¹: 3314, 2929, 1447, 1040, 895

¹H NMR (CDCl₃, 400 MHz) δ 5.80 (ddt, J = 17.0, 10.2, 6.7 Hz, 1H, H-24), 4.99 (dd, J = 17.1, 1.9 Hz, 1H, H-25), 4.91 (dd, J = 10.2, 1.9 Hz, 1H, H-25), 3.56 (m, 1H, H-3), 2.04 (m, 4H, H-23, H-12), 1.81-0.82 (5CH, 9CH₂), 1.25 (s, 3H, H-21), 0.81 (s, 3H, H-18), 0.78 (s, 3H, H-19)

¹³C NMR (CDCl₃, 100 MHz) δ 139.1 (C-24), 114.2 (C-25), 75.1 (C-20), 71.3 (C-3), 58.2 (C-17, 56.7 (C-14), 54.3 (C-9), 44.9 (C-5), 43.0 (C-13), 42.6 (C-22), 40.1 (C-12), 38.2 (CH₂), 37.0 (C-1), 35.4 (C-10), 34.9 (C-8), 31.9 (CH₂), 31.5 (CH₂), 28.7 (C-23), 28.6 (CH₂), 26.2 (C-21), 23.7 (CH₂), 22.4 (CH₂), 21.5 (CH₂), 13.8 (C-19), 12.3 (C-18)

HRMS m/z: C₂₅H₄₂O₂Na [M+Na]⁺, calcd 397.3083, found 397.3083

3β , 20(S), 24-Trihydroxy- 5α -cholestane (130)

Step I

A mixture of 3 β , 20(S)-dihydroxy-5 α -24a-homo-chol-24-ene (129) (700 mg, 1.94 mmol) and NaHCO₃ (796 mg) in CH₂Cl₂ (25 mL) and methanol (5 mL) was cooled to -78°C and ozone was bubbled through the mixture with stirring. When the reaction mixture was turned blue, ozone addition was stopped. Nitrogen gas was

passed through the reaction until the blue color was discharged. The reaction was quenched by addition of triphenylphosphine (1.0 g, 3.8 mmol) at -78°C. The reaction was slowly warmed to room temperature and further stirred for 1 h before concentration under reduced pressure. The residue was purified by flash column chromatography (20% ethyl acetate:hexane) to give aldehyde intermediate (468.3 mg, 68%) as a white solid.

Step II

To a stirring of Mg (1.1 g, 45 mmol) and catalyst I₂ in dry THF (20 mL) was slowly added 2-bromopropane (9.0 mL, 91.9 mmol) under nitrogen atmosphere at room temperature. After stirring for 2 h, this mixture was cooled to -78°C. A solution of aldehyde intermediate (468.3 mg, 1.24 mmol) in dry THF (8 mL) was added slowly and kept at this temperature. After 20 min, the reaction mixture was allowed to slowly warm to room temperature and left at this temperature for 3 h. The reaction was quenched by addition of saturated aqueous NH₄Cl and extracted with ethyl acetate (4×50 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ and water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (25% ethyl acetate:hexane) to give 3β, 20(*S*), 24-trihydroxy-5α-cholestane (130) (231 mg, 75% (brsm)) as a white solid and recovered starting material (129) (187.2 mg, 61% conversion).

3β , 20(S), 24-Trihydroxy- 5α -cholestane (130)

FTIR (KBr), v_{max}, cm⁻¹: 3399, 2920, 1036

¹H NMR (CDCl₃, 400 MHz) δ 3.51 (m, 1H, H-3), 3.24 (m, 1H, H-24), 1.98 (m, 1H, H-12), 1.81-0.76 (6CH, 10CH₂, CH of H-12), 1.20 (s, 3H, H-21), 0.84 (m, 6H, H-26, H-27), 0.76 (s, 3H, H-18), 0.74 (s, 3H, H-19)

¹³C NMR (CDCl₃, 100 MHz) δ 77.1 (C-24), 75.0 (C-20), 71.3 (C-3), 58.9 (C-17), 56.6 (C-14), 54.3 (C-9), 44.8 (C-5), 43.0 (C-13), 40.4 (C-12), 39.8 (CH₂), 38.1 (CH₂), 37.0 (C-1), 35.4 (C-10), 34.8 (C-8), 33.6 (C-25), 31.9 (CH₂), 31.5 (CH₂), 28.7 (CH₂), 28.2 (CH₂), 26.0 (C-21) 23.7 (CH₂), 22.5 (CH₂), 21.1 (CH₂), 18.9, 17.1 (C-26, C-27), 13.8 (C-18), 12.3 (C-19)

HRMS m/z: C₂₇H₄₈O₃Na [M+Na]⁺, calcd 443.3501, found 443.3501

3β , 20(S)-Dihydroxy- 5α -cholest-24-ene (131)

To a stirring of Mg (101 mg, 3.9 mmol) and catalyst I_2 in dry THF (6 mL) was slowly added 5-bromo-2-pentene (0.43 mL, 4.16 mmol) under nitrogen atmosphere at room temperature. After stirring for 1 h, a solution of 3β -acetoxy- 5α -pregnan-20-one (82) (150 mg, 0.42 mmol) in dry THF (5 mL) was added slowly. After 5 h, the reaction was quenched by addition of saturated aqueous NH₄Cl and extracted with ethyl acetate (4×50 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ and water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (7% ethyl acetate:hexane) to give 3β , 20(S)-dihydroxy- 5α -cholest-24-ene (131) (60 mg, 36%) as a white solid.

3β , 20(S)-Dihydroxy-5α-cholest-24-ene (131)

FTIR (KBr), v_{max}, cm⁻¹: 3431, 2929, 1449, 1373, 1037

Copyright by Kasetsart University All rights reserved

¹H NMR (CDCl₃, 400 MHz) δ 5.02 (m, 1H, H-24), 3.52 (m, 1H, H-3), 1.98 (m, 1H, H-12), 1.91 (m, 2H, H-23), 1.77-0.75 (4CH, 9CH₂, H-12), 1.61 (s, 3H, H-26), 1.54 (s, 3H, H-27), 1.20 (s, 3H, H-21), 0.77 (s, 3H, H-18), 0.73 (s, 3H, H-19), 0.55 (m, 1H, H-9)

¹³C NMR (CDCl₃, 100 MHz) δ 131.5 (C-25), 124.5 (C-24), 75.2 (C-20), 71.3 (C-3), 58.1 (C-17), 56.6 (C-14), 54.3 (C-9), 44.9 (C-5), 43.5 (C-22), 42.9 (C-13), 40.4 (C-12), 38.2 (CH₂), 37.0 (CH₂), 35.4 (C-10), 34.9 (C-8), 31.9 (CH₂), 31.5 (CH₂), 28.7 (CH₂), 26.2 (C-21), 25.7, 17.6 (C-26, C-27), 23.7 (CH₂), 22.9 (CH₂), 22.4 (CH₂), 21.1 (CH₂), 13.8 (C-19), 12.3 (C-18)

MS (APCI), *m/z* (relative intensity): 385 (100), 367 (57)

3β , 20(S)-Dihydroxy-5α-cholestane (132)

To a solution of 3 β , 20(*S*)-dihydroxy-5 α -cholest-24-ene (131) (20 mg, 0.05 mmol) in methanol (2 mL) was added 5% Pd/C (10 mg, 6.8×10⁻³ mmol). The black suspension was stirred under hydrogen atmosphere at room temperature for 2 h. After reaction mixture was filtered through celite and eluted with CH₂Cl₂, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatrography (5% ethyl acetate:hexane) to give 3 β , 20(*S*)-dihydroxy-5 α -cholestane (132) (13 mg, 64%) as a white solid; m.p. 115-117°C. (Chaudhuri *et al.*, 1969, m.p. 125-127°C (methanol))

3β , 20(S)-Dihydroxy-5α-cholestane (132)

FTIR (KBr), v_{max}, cm⁻¹: 3306, 2929, 1462, 1382, 1256, 1096, 836, 775

¹H NMR (CDCl₃, 400 MHz) δ 3.52 (m, 1H, H-3), 1.98 (dt, J = 12.2, 3.2 Hz, 1H, H-12), 1.73 (m, 1H, CH of CH₂), 1.68-0.84 (H-12, CH of CH₂, 5CH, 10CH₂), 1.19 (s, 3H, H-21), 0.80 (d, J = 6.6 Hz, 6H, H-26, H-27), 0.77 (s, 3H, H-18), 0.74 (s, 3H, H-19), 0.55 (m, 1H, H-9)

¹³C NMR (CDCl₃, 100 MHz) δ 75.2 (C-20), 71.4 (C-3), 57.8 (C-17), 56.6 (C-14), 54.3 (C-9), 44.9 (C-5), 44.2 (C-22), 42.9 (C-13), 40.4 (C-12), 39.6 (C-24), 38.2 (CH₂), 37.0 (C-1), 35.5 (C-10), 34.9 (C-8), 31.9 (CH₂), 31.5 (CH₂), 28.7 (CH₂), 27.9 (C-25), 26.4 (C-21), 23.7 (CH₂), 22.7, 22.6 (C-26, C-27), 22.4 (CH₂), 22.0 (CH₂), 21.1 (CH₂), 13.8 (C-18), 12.3 (C-19)

MS (APCI), *m/z* (relative intensity): 387 (29), 369 (100)

3β-Hydroxy-5α-pregnan-20-one (133)

AcO
$$\hat{H}$$
 (82) HO \hat{H} (133)

1M KOH (30 mL) was added slowly to a solution of 3β -acetoxy- 5α -pregnan-20-one (82) (2.70 g, 7.5 mmol) in methanol (25 mL) and CH₂Cl₂ (25 mL) at room temperature and stirred for 6 h. Methanol and CH₂Cl₂ were removed under reduced pressure, then the residue was diluted with CH₂Cl₂ and washed with water. The aqueous layer was extracted with CH₂Cl₂ (3×100 mL). The combined organic layers were washed with saturated aqueous NH₄Cl, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column

chromatrography (15% ethyl acetate:hexane) to give 3β -hydroxy- 5α -pregnan-20-one (133) (2.1 g, 90%) as a white needle after recrystallization (CH₂Cl₂:hexane); m.p. $195-197^{\circ}$ C. (Comin *et al.*, 2004, m.p. $182-185^{\circ}$ C (as white solid))

3β-Hydroxy-5α-pregnan-20-one (133)

FTIR (KBr), v_{max}, cm⁻¹: 3441, 2930, 1700, 1353, 1039

¹H NMR (CDCl₃, 400 MHz) δ 3.56 (m, 1H, H-3), 2.48 (t, J = 8.9 Hz, 1H, H-17), 2.12 (m, 1H, H-16)), 2.07 (s, 3H, H-21), 1.97 (m, 1H, H-12)), 1.81-0.82 (3CH, 7CH₂, H-12), H-16)), 0.77 (s, 3H, H-19), 0.65 (m, 1H, H-9), 0.57 (s, 3H, H-18)

¹³C NMR (CDCl₃, 100 MHz) δ 209.6 (C-20), 71.2 (C-3), 63.8 (C-17), 56.7 (C-14), 54.2 (CH), 44.8 (CH), 44.2 (C-13), 39.0 (C-12), 38.1 (CH₂), 37.0 (C-1), 35.48 (C-10), 35.47 (CH), 32.0 (CH₂), 31.5 (C-21), 31.4 (CH₂), 28.6 (CH₂), 24.4 (CH₂), 22.8 (C-16), 21.2 (CH₂), 13.4 (C-18), 12.2 (C-19)

MS (APCI), *m/z* (relative intensity): 317 (11), 301 (100), 283 (22), 257 (7)

3β-Tosyloxy-5α-pregnan-20-one (134)

To a solution of 3β-hydroxy-5α-pregnan-20-one (133) (1.5 g, 4.7 mmol) in dry CH₂Cl₂ (20 mL) and dry pyridine (8 mL) under nitrogen atmosphere was added a solution of *p*-tolulenesulfonyl chloride (3.42 g, 14.2 mmol) in dry pyridine (8 mL) and dry CH₂Cl₂ (10 mL). The resulting mixture was stirred at room temperature for 24 h. The reaction was quenched by addition of water and extracted with CH₂Cl₂

Copyright by Kasetsart University All rights reserved

(3×150 mL). The combined organic layers were washed with 10% HCl, saturated aqueous NaHCO₃ and water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (10% ethyl acetate:hexane) to give 3β-tosyloxy-5α-pregnan-20-one (134) (1.8 g, 81%) as a white needle after recrystallization (CH₂Cl₂:hexane); m.p. 126-127°C. (Fukushima *et al.*, 1954, m.p. 133.5-135°C)

3β-Tosyloxy-5α-pregnan-20-one (134)

FTIR (KBr), v_{max}, cm⁻¹: 2942, 1706, 1654, 1352, 1172, 1098, 935, 670, 556

¹H NMR (CDCl₃, 400 MHz) δ 7.71 (d, J = 8.0 Hz, 2H, H-2', H-6'), 7.25 (d, J = 8.0 Hz, 2H, H-3', H-5'), 4.35 (m, 1H, H-3), 2.43 (t, J = 8.6 Hz, 1H, H-17), 2.37 (s, 3H, CH₃-Ph), 2.12 (m, 1H, H-16)), 2.07 (s, 3H, H-21), 1.90 (m, 1H, H-12) 1.74-0.74 (3CH, 7CH₂, H-12, H-16), 0.70 (s, 3H, H-19), 0.57 (m, 1H, H-9), 0.51 (s, 3H, H-18)

¹³C NMR (CDCl₃, 100 MHz) δ 209.5 (C-20), 144.3 (C-4'), 134.7 (C-1'), 129.7 (C-3', C-5'), 127.5 (C-2', C-6'), 82.3 (C-3), 63.7 (C-17), 56.5 (CH), 53.9 (CH), 44.7 (CH), 44.1 (C-13), 38.9 (CH₂), 36.7 (CH₂), 35.3 (CH), 35.2 (C-10), 34.7 (CH₂), 31.7 (CH₂), 31.4 (C-21), 28.3 (CH₂), 28.2 (CH₂), 24.3 (CH₂), 22.7 (CH₂), 21.6 (C-7'), 21.1 (CH₂), 13.4 (C-18), 12.0 (C-19)

HRMS m/z: C₂₈H₄₀O₄SNa [M+Na]⁺, calcd 495.2545, found 495.2548

2-Pregnen-20-one (135)

Copyright by Kasetsart University All rights reserved

Lithium bromide (3.2 g, 34 mmol) and lithium carbonate (3.0 g, 34 mmol) were added to a solution of 3β-tosyloxy-5α-pregnan-20-one (134) (1.8 g, 3.8 mmol) in *N*,*N*-dimethylformamide (60 mL). The resulting mixture was refluxed for 6 h. After reaction was allowed to cool at room temperature, the suspension was filtered and the filtrate was poured into 10% HCl, extracted with CH₂Cl₂ (3×150 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ and water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (1% ethyl acetate:hexane) to give 2-pregnen-20-one (135) (982 mg, 86%) as a white needle after recrystallization (ethanol); m.p. 124-125°C. (Comin *et al.*, 2004, m.p. 90-92°C (as white solid))

2-Pregnen-20-one (135)

FTIR (KBr), v_{max}, cm⁻¹: 2913, 1704, 1444, 1352, 1152

¹H NMR (CDCl₃, 400 MHz) δ 5.57 (m, 1H, H-2, H-3), 2.50 (t, J = 9.2 Hz, 1H, H-17), 2.13 (m, 1H, H-16), 2.09 (s, 3H, H-21), 1.98 (m, 1H, H-12), 1.87 (m, 2H, H-1), 1.75-0.82 (3CH, 5CH₂, H-16, H-12), 0.74 (m, 1H, H-14), 0.73 (s, 3H, H-19), 0.59 (s, 3H, H-18)

¹³C NMR (CDCl₃, 100 MHz) δ 209.7 (C-20), 125.9 (CH), 125.7(CH), 63.9 (C-17), 56.7 (C-14), 53.9 (CH), 44.2 (C-13), 41.4 (CH), 39.8 (C-1), 39.1 (C-12), 35.6 (CH), 34.6 (C-10), 31.8 (C-16), 31.5 (C-21), 30.2 (CH₂), 28.6 (CH₂), 24.4 (CH₂), 22.8 (CH₂), 20.9 (CH₂), 13.3 (C-18), 11.7 (C-19)

HRMS *m/z*: C₂₁H₃₂ONa [M+Na]⁺, calcd 301.2531, found 301.2531

2α , 3α -Epoxy- 5α -pregnan-20-one (136)

To a solution of 2-pregnen-20-one (135) (1.71 g, 5.65 mmol) in CH₂Cl₂ (20 mL) was added water (10 mL) and sodium carbonate (3.02 g, 28.5 mmol). The reaction mixture was stirred vigorously and *m*-chloroperbenzoic acid (1.33 g, 7.7 mmol) was added slowly. The reaction mixture was stirred at room temperature for 4-6 h. The aqueous layer was separated and extracted with CH₂Cl₂ (3×200 mL). The combined organic layers were washed with 5% sodium sulfite solution, saturated aqueous NaHCO₃ and water, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (5% ethyl acetate:hexane) to give 2α, 3α-epoxy-5α-pregnan-20-one (136) (744 mg, 54% (brsm)) as a white needle after recrystallization (hexane); m.p. 152-153°C (Comin *et al.*, 2004, m.p. 153-154°C (as a white solid)) and the recovered starting material (135) (426 mg, 75% conversion)

2α , 3α -Epoxy- 5α -pregnan-20-one (136)

FTIR (KBr), ν_{max} , cm⁻¹: 2940, 1699, 1653, 1450, 1357, 1185

¹H NMR (CDCl₃, 400 MHz) δ 3.11 (m, 1H, H-3), 3.08 (m, 1H, H-2), 2.48 (t, J = 9.0 Hz, 1H, H-17), 2.10 (m, 1H, H-16), 2.07 (s, 3H, H-21), 1.97 (m, 1H, H-12), 1.87 (m, 2H, H-1), 1.67-1.00 (2CH, 6CH₂, H-12, H-16), 0.72 (s, 3H, H-19), 0.65 (m, 1H, H-9) 0.56 (s, 3H, H-18)

¹³C NMR (CDCl₃, 100 MHz) δ 209.5 (C-20), 63.7 (C-17), 56.5 (CH), 53.6 (CH), 52.3 (C-3), 50.9 (C-2), 44.0 (C-13), 38.9 (CH₂), 38.2 (CH₂), 36.2 (CH), 35.6

Copyright by Kasetsart University All rights reserved

(CH), 33.6 (C-10), 31.6 (CH₂), 31.5 (C-21), 29.0 (CH₂), 28.2 (CH₂), 24.3 (CH₂), 22.7 (C-16), 20.8 (CH₂), 13.3 (C-18), 12.9 (C-19)

HRMS m/z: C₂₁H₃₂O₂Na [M+Na]⁺, calcd 339.2300, found 339.2300

2α , 3α -Epoxy-20(S)-hydroxy- 5α -24a-homo-chol-24-ene (137)

To a stirring of Mg (191 mg, 7.64 mmol) and catalyst I_2 in dry THF (10 mL) was slowly added 4-bromobutene (1.10 mL, 6.1 mmol) under nitrogen atmosphere at room temperature. After stirring for 1 h, a solution of 2α , 3α -epoxy- 5α -pregnan-20-one (136) (418.20 mg, 1.3 mmol) in dry THF (10 mL) was added slowly. After 20 min, the reaction was quenched by addition of saturated aqueous NH₄Cl and extracted with CH₂Cl₂ (4×100 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ and water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (5% ethyl acetate:hexane) to give 2α , 3α -epoxy-20(*S*)-hydroxy- 5α -24a-homo-chol-24-ene (137) (249 mg, 50%) as a white needle after recrystallization (hexane); m.p. 254-256°C.

2α , 3α -Epoxy-20(S)-hydroxy- 5α -24a-homo-chol-24-ene (137)

FTIR (KBr), v_{max}, cm⁻¹: 3448, 2918, 1671, 1657, 1601, 1435, 1380, 1107

¹H NMR (CDCl₃, 400 MHz) δ 5.78 (ddt, J = 17.0, 10.2, 6.6 Hz, 1H, H-24), 4.98 (dd, J = 17.2, 1.6 Hz, 1H, H-25), 4.90 (dd, J = 10.2, 1.9 Hz, 1H, H-25), 3.11 (m,

Copyright by Kasetsart University All rights reserved

1H, H-3), 3.07 (m, 1H, H-2), 2.03 (m, 3H, H-12, H-23), 1.86 (m, 2H, H-1), 1.73-0.88 (H-12, 4CH, 7CH₂), 1.24 (s, 3H, H-21), 0.77 (s, 3H, H-18), 0.72 (s, 3H, H-19), 0.58 (m, 1H, H-9)

¹³C NMR (CDCl₃, 100 MHz) δ 139.0 (C-24), 114.2 (C-25), 75.0 (C-20), 58.1 (C-17), 56.4 (C-14), 53.6 (C-9), 52.4 (C-3), 51.0 (C-2), 42.7 (C-13), 42.6 (C-22), 40.2 (C-12), 38.2 (C-1), 36.2 (C-5), 35.0 (C-8), 33.6 (C-10), 31.5 (CH₂), 29.0 (CH₂), 28.6 (CH₂), 28.4 (CH₂), 26.2 (C-21), 23.6 (CH₂), 22.3 (CH₂), 20.7 (CH₂), 13.6 (C-19), 12.9 (C-18)

HRMS m/z: C₂₅H₄₀O₂Na [M+Na]⁺, calcd 395.2926, found 395.2925

2α , 3α -Epoxy-20(S)-hydroxy- 5α -cholest-24-ene (138)

To a stirring of Mg (91 mg, 3.6 mmol) and catalyst I_2 in dry THF (4 mL) was slowly added 5-bromo-2-methyl-2-pentene (0.5 mL, 3.8 mmol) under nitrogen atmosphere at room temperature. After stirring for 15 min at room temperature, the mixture was warmed to 45° C for 1 h before cooling to room temperature and the solution of 2α , 3α -epoxy-pregnan-20-one (136) (150 mg, 0.48 mmol) was added and stirred for 2 h. The reaction was quenched by addition of saturated aqueous NH₄Cl and then extracted with diethyl ether (4×50 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ and water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (2% ethyl acetate:hexane) to yield 2α , 3α -epoxy-20(*S*)-hydroxy-5 α -cholest-24-ene (138) (74.8 mg, 39%) as a colorless gum.

2α , 3α -Epoxy-20(S)-hydroxy- 5α -cholest-24-ene (138)

FTIR (neat), v_{max}, cm⁻¹: 3441, 2923, 1672, 1653, 1603, 1435, 1382, 1027

¹H NMR (CDCl₃, 400 MHz) δ 5.06 (m, 1H, H-24), 3.12 (m, 1H, H-3), 3.08 (m, 1H, H-2), 2.03 (dt, J = 12.4, 3.2 Hz, 1H, H-12), 1.95 (dt, J = 8.0, 7.8 Hz, 2H, H-23), 1.88 (dd, J = 15.1, 5.9 Hz, 1H, H-1), 1.85 (m, 1H, CH of CH₂), 1.76-0.82 (H-12, H-1, CH of CH₂, 4CH, 7CH₂), 1.65, 1.58 (2s, 6H, H-26, H-27), 1.25 (s, 3H, H-21), 0.80 (s, 3H, H-18), 0.72 (s, 3H, H-19), 0.59 (m, 1H, H-9)

¹³C NMR (CDCl₃, 100 MHz) δ 131.5 (C-25), 124.5 (C-24), 75.1 (C-20), 58.0 (C-17), 56.4 (C-9), 53.6 (C-14), 52.4 (C-3), 51.0 (C-2), 43.6 (C-22), 42.7 (C-13), 40.3 (C-12), 38.2 (C-1), 36.2 (C-5), 35.0 (C-8), 33.6 (C-10), 31.5 (CH₂), 29.0 (CH₂), 28.4 (CH₂), 26.1 (C-21), 25.7 (C-26 or C-27), 23.7 (CH₂), 22.9 (CH₂), 22.3 (CH₂), 20.7 (CH₂, 17.6 (C-26 or C-27), 13.6 (C-18), 12.9 (C-19)

MS (APCI), *m/z* (relative intensity): 401 (15), 383 (100), 365 (43), 283 (6), 257 (14)

2α , 3α -Epoxy-20(S)-hydroxy- 5α -cholestane (139)

To a stirring of Mg (91 mg, 3.6 mmol) and catalyst I_2 in dry THF (4 mL) was slowly added 1-bromo-4-methylpentane (0.5 mL, 3.8 mmol) under nitrogen atmosphere at room temperature. After stirring for 15 min at room temperature, the mixture was warmed to 45° C for 1 h before cooling to room temperature and the

solution of 2α , 3α -epoxy-pregnan-20-one (136) (152 mg, 0.48 mmol) was added and stirred for 2 h. The reaction was quenched by addition of saturated aqueous NH₄Cl and then extracted with diethyl ether (4×50 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ and water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (3% ethyl acetate:hexane) to give 2α , 3α -epoxy-20(S)-hydroxy-5 α -cholestane (139) (97.2 mg, 50%) as a white solid; m.p. 121-123°C.

2α , 3α -Epoxy-20(S)-hydroxy- 5α -cholestane (139)

FTIR (KBr), v_{max}, cm⁻¹: 2942, 1468, 1382

¹H NMR (CDCl₃, 400 MHz) δ 3.12 (m, 1H, H-3), 3.07 (m, 1H, H-2), 2.02 (m, 1H, H-12), 1.88 (dd, J = 12, 5.9 Hz, 1H, H-1), 1.84 (m, 1H, CH of CH₂), 1.73-0.87 (H-12, H-1, CH of CH₂, 5CH, 8CH₂), 1.23 (s, 3H, H-21), 0.84 (d, J = 6.6 Hz, 6H, H-26, H-27), 0.80 (s, 3H, H-18), 0.72 (s, 3H, H-19), 0.58 (m, 1H, H-9)

¹³C NMR (CDCl₃, 100 MHz) 8 75.2 (C-20), 57.7 (C-17), 56.4 (C-14), 53.6 (C-9), 52.4 (C-3), 51.0 (C-2), 44.2 (C-22), 42.4 (C-13), 40.2 (C-12), 39.6 (C-24), 38.3 (C-1), 36.2 (C-5), 35.0 (C-8), 33.6 (C-10), 31.5 (CH₂), 29.0 (CH₂), 28.4 (CH₂), 27.9 (C-25), 26.4 (C-21), 23.7 (CH₂), 22.7, 22.5 (C-26, C-27), 22.3 (CH₂), 22.0 (CH₂), 20.7 (CH₂), 13.6 (C-18), 12.9 (C-19)

MS (APCI), m/z (relative intensity): 403 (4), 385 (76), 367 (100), 257 (13)

2α , 3α -Epoxy-20(S), 24-dihydroxy- 5α -cholestane (140)

Step I

A mixture of 2α, 3α-epoxy-20(*S*)-hydroxy-5α-24a-homo-chol-24-ene (137) (249 mg, 0.6 mmol) and NaHCO₃ (200 mg) in CH₂Cl₂ (10 mL) and methanol (2 mL) was cooled to -78°C and ozone was bubbled through the mixture with stirring. When the reaction mixture was turned blue, ozone addition was stopped. Nitrogen gas was passed through the reaction until the blue color was discharged. The reaction was quenched by addition of triphenylphosphine (418 mg, 1.6 mmol) at -78°C. The reaction was slowly warmed to room temperature and further stirred for 1 h before concentration under reduced pressure. The residue was purified by flash column chromatography (5% ethyl acetate:hexane) to give aldehyde intermediate (156 mg, 62%) as a white solid.

Step II

To a stirring of Mg (350 mg, 14.6 mmol) and catalyst I₂ in dry THF (20 mL) was slowly added 2-bromopropane (3 mL, 30.6 mmol) under nitrogen atmosphere at room temperature. After stirring for 2 h, this mixture was cooled to -78°C. A solution of aldehyde intermediate (156 mg, 0.42 mmol) in dry THF (10 mL) was added slowly and kept at this temperature. After 20 min, the reaction mixture was allowed to slowly warm to room temperature and left at this temperature for 3 h. The reaction was quenched by addition of saturated aqueous NH₄Cl and extracted with CH₂Cl₂ (4×50 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ and water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced

pressure. The residue was purified by flash column chromatography (7% ethyl acetate:hexane) to give 2α , 3α -epoxy-20(S), 24-dihydroxy- 5α -cholestane (140) (83.6 mg, 48% (brsm)) as a white solid and recovered starting material (41 mg, 74% conversion).

2α , 3α -Epoxy-20(S), 24-dihydroxy- 5α -cholestane (140)

FTIR (KBr), v_{max}, cm⁻¹: 3422, 2929, 1459, 1380, 1006

¹H NMR (CDCl₃, 400 MHz) δ 3.27 (m, 1H, H-24), 3.11 (m, 1H, H-3), 3.08 (m, 1H, H-2), 2.09-0.72 (6CH, 10CH₂), 1.22 (s, 3H, H-21), 0.87 (m, 6H, H-26, H-27), 0.78 (s, 3H, H-18), 0.71 (s, 3H, H-19), 0.57 (m, 1H, H-9)

¹³C NMR (CDCl₃, 100 MHz) δ 76.7 (C-24), 75.1 (C-20), 58.8, 58.4 (C-17), 56.4 (C-14), 53.5 (C-9), 52.4 (C-3), 51.0 (C-2), 42.7 (C-13), 40.2 (C-12), 39.8 (C-22), 39.4 (CH₂), 38.2 (C-1), 36.2 (C-5), 35.0 (C-8), 33.6 (C-25), 33.5 (C-10), 31.4 (CH₂), 28.9 (CH₂), 28.3 (CH₂), 26.0 (C-21), 23.6 (CH₂), 22.3 (CH₂), 20.7 (CH₂), 18.9, 18.8, 17.4, 17.1 (C-26, C-27), 13.6 (C-18), 12.9 (C-19)

HRMS m/z: C₂₇H₄₆O₃Na [M+Na]⁺, calc 441.3345, found 441.3339

24-Benzyloxy-2α, 3α-epoxy-20(S)-hydroxy-5α-cholestane (141)

NaH (155.7 mg, 3.8 mmol) was washed with dry THF (4 mL). The suspension was stirred vigorously for 10 min before removing solvent.

Copyright by Kasetsart University All rights reserved

To the suspension of NaH in dry THF was slowly added a solution of 2α , 3α -epoxy-20(S), 24-dihydroxy-5 α -cholestane (143) (165.3 mg, 0.38 mmol) in dry THF (5 mL) and the mixture was stirred under reflux for 2 h. After the reaction mixture was cooled down to room temperature, benzyl bromide (0.28 mL, 1.9 mmol) was added and stirred for an additional 30 min at room temperature and 4 h under reflux. The reaction was quenched by pouring into water and extracted with diethyl ether (3×50 mL). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (3% ethyl acetate:hexane) to give 24-benzyloxy-2 α , 3 α -epoxy-20(S)-hydroxy-5 α -cholestane (141) (124.2 mg, 64%) as a colorless gum.

24-Benzyloxy-2α, 3α-epoxy-20(S)-hydroxy-5α-cholestane (141)

FTIR (neat), v_{max}, cm⁻¹: 2930, 1455, 1382, 1069, 803, 735, 697

¹H NMR (CDCl₃, 400 MHz) δ 7.27-7.25 (m, 5H, H_{AR}), 4.44, 4.43 (2s, 2H, H_{benzyl}), 3.08 (m, 1H, H-3), 3.03 (m, 2H, H-2, H-24), 1.97 (m, 1H, H-12), 1.82 (m, 3H, H-1, H-25, CH of CH₂), 1.68-0.78 (H-1, H-25, CH of CH₂, 5CH, 7CH₂), 1.17 (s, 3H, H-21), 0.87, 0.84 (2d, J = 6.8, 6.8 Hz, 6H, H-26, H-27), 0.74 (s, 3H, H-18), 0.68 (s, 3H, H-19), 0.54 (m, 1H, H-9)

¹³C NMR (CDCl₃, 100 MHz) δ 139.1 (C_{AR}), 128.2 (CH_{AR}), 127.8 (CH_{AR}), 127.4 (CH_{AR}), 84.8 (C-24), 75.1 (C-20), 71.8 (C_{benzyl}), 58.2 (C-17), 56.4 (C-14), 53.6 (C-9), 52.4 (C-3), 51.0 (C-2), 42.7 (C-13), 40.3 (C-12), 39.4 (C-22), 38.2 (C-1), 36.2 (C-5), 35.0 (C-8), 33.6 (C-10), 31.5 (CH₂), 30.6 (C-25), 29.0 (CH₂), 28.4 (CH₂), 26.1 (C-21), 24.6 (CH₂), 23.6 (CH₂), 22.3 (CH₂), 20.7(CH₂), 18.6, 18.1 (C-26, C-27), 13.6 (C-18), 12.9 (C-19)

MS (APCI), *m/z* (relative intensity): 401 (5), 383 (100), 365 (34)

24-Benzyloxy-2 α , 3 α , 20(S)-trihydroxy-5 α -cholestane (142) and 24-benzyloxy-2 β , 3 α , 20(S)-trihydroxy-5 α -cholestane (143)

A solution of 24-benzyloxy-2 α , 3 α -epoxy-20(S)-hydroxy-5 α -cholestane (141) (99.2 mg, 0.195 mmol) in THF (4 mL) was treated with 1M H₂SO₄ (1.5 mL) and stirred for 24 h at room temperature. After neutralization with saturated aqueous NaHCO₃, the mixture was evaporated to fifth initial volume, diluted with water and extracted with ethyl acetate (3×50 mL). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (15% ethyl acetate:hexane) to give 24-benzyloxy-2 α , 3 α , 20(S)-trihydroxy-5 α -cholestane (142) (3 mg) as a white solid; m.p. 156-160°C and 24-benzyloxy-2 β , 3 α , 20(S)-trihydroxy-5 α -cholestane (143) (45.3 mg) as a white solid; m.p. 146-150°C and the mixture of these steriods (10.7 mg).

24-Benzyloxy- 2α , 3α , 20(S)-trihydroxy- 5α -cholestane (142)

FTIR (KBr), ν_{max} , cm⁻¹: 3417, 2938, 1699, 1455, 1370, 1261, 1067, 1044, 733, 696

¹H NMR (CDCl₃, 400 MHz) δ 7.27-7.25 (m, 5H, H_{AR}), 4.44, 4.43 (2s, 2H, H_{benzyl}), 3.82 (m, 1H, H-3), 3.53 (m, 1H, H-2), 3.04 (m, 1H, H-24), 1.98 (m, 2H, H-12, H-4), 1.83 (m, 1H, H-25), 1.75-0.77 (H-12, H-4, 5CH, 8 CH₂), 1.17 (s, 3H, H-21), 0.95 (s, 3H, H-19), 0.86, 0.85 (2d, J = 7.08, 7.04 Hz, 6H, H-26, H-27), 0.75 (s, 3H, H-18), 0.64 (m, 1H, H-9)

¹³C NMR (CDCl₃, 100 MHz) δ 138.9 (C_{AR}), 128.3 (CH_{AR}), 127.8 (CH_{AR}), 127.4 (CH_{AR}), 84.7 (C-24), 76.1 (CH), 74.9 (C-20), 71.8 (C_{benzyl}), 70.3 (CH), 58.2 (C-17), 56.8 (C-14), 55.1 (C-9), 43.9 (C-5), 42.9 (C-13), 40.3 (C-12), 39.2 (C-22), 35.8 (C-10), 34.8 (C-8), 32.1 (C-1), 31.6 (CH₂), 30.4 (C-25), 26.2 (C-21), 25.1 (CH₂), 24.5 (CH₂), 24.4 (CH₂), 23.7 (CH₂), 22.4 (CH₂), 20.0 (CH₂), 18.3, 18.1 (C-26, C-27), 14.1 (C-19), 13.7 (C-18)

MS (APCI), *m/z* (relative intensity): 401 (100), 383 (68), 365 (47)

24-Benzyloxy-2 β , 3 α , 20(S)-trihydroxy-5 α -cholestane (143)

 $FTIR (KBr), \nu_{max}, cm^{-1}: 3391, 2927, 1699, 1454, 1369, 1273, 1038, 742, 697$

¹H NMR (CDCl₃, 400 MHz) δ 7.27-7.25 (m, 5H, H_{AR}), 4.44, 4.43 (2s, 2H, H_{benzyl}), 3.81 (m, 1H, H-2), 3.78 (m, 1H, H-3), 3.04 (m, 1H, H-24), 1.98 (m, 1H, H-12), 1.83 (m, 2H, H-4, H-25), 1.74-0.78 (H-12, H-4, 5CH, 8CH₂), 1.17 (s, 3H, H-21), 0.91 (s, 3H, H-19), 0.86, 0.85 (2d, J = 7.0, 7.0 Hz, 6H, H-26, H-27), 0.75 (s, 3H, H-18), 0.63 (m, 1H, H-9)

¹³C NMR (CDCl₃, 100 MHz) δ 138.9 (C_{AR}), 128.3 (CH_{AR}), 127.8 (CH_{AR}), 127.4 (CH_{AR}), 84.7 (C-24), 74.9 (C-20), 71.8 (C_{benzyl}), 71.7 (C-2), 70.6 (C-3), 58.3 (C-17), 56.8 (C-14), 55.1 (C-9), 43.0 (C-13), 40.5 (C-1), 40.4 (C-12), 39.2 (C-22), 38.9 (C-5), 35.7 (C-10), 34.2 (C-8), 31.8 (CH₂), 31.7 (CH₂), 30.4 (C-25), 28.2 (CH₂), 26.1 (C-21), 24.3 (CH₂), 23.6 (CH₂), 22.4 (CH₂), 20.7 (CH₂), 18.4, 18.0 (C-26, C-27), 14.6 (C-19), 13.8 (C-18)

2α , 3α , 20(S), 24-Tetrahydroxy- 5α -cholestane (144)

To a solution of 24-benzyloxy- 2α , 3α , 20(S)-trihydroxy- 5α -cholestane (142) (6 mg, 0.01 mmol) in methanol (1 mL) was added 5% Pd/C (4 mg). The black suspension was stirred under hydrogen atmosphere at room temperature for 2 h. The reaction mixture was filtered through celite and eluted with methanol. The filtrate was concentrated under reduced pressure to give 2α , 3α , 20(S), 24-tetrahydroxy- 5α -cholestane (144) (4.2 mg, 90%) as a white solid.

2α , 3α , 20(S), 24-Tetrahydroxy- 5α -cholestane (144)

FTIR (KBr), v_{max} , cm⁻¹: 3394, 3363, 2932, 1699, 1540, 1456, 1385, 1263, 1042

¹H NMR (CDCl₃, 400 MHz) δ 3.82 (m, 1H, H-3), 3.53 (m, 1H, H-2), 3.24 (m, 1H, H-24), 2.04-0.97 (5CH, 10CH₂), 1.20 (s, 3H, H-21), 0.95 (s, 3H, H-19), 0.85 (m, 6H, H-26, H-27), 0.77 (s, 3H, H-18), 0.64 (m, 1H, H-9)

2β , 3α , 20(S), 24-Tetrahydroxy- 5α -cholestane (145)

To a solution of 24-benzyloxy-2 β , 3 α , 20(*S*)-trihydroxy-5 α -cholestane (143) (23 mg, 0.042 mmol) in methanol (2 mL) was added 5% Pd/C (15 mg). The black suspension was stirred under hydrogen atmosphere at room temperature for 2 h. The reaction mixture was filtered through celite and eluted with methanol. The filtrate was concentrated under reduced pressure to give 2 β , 3 α , 20(*S*), 24-tetrahydroxy-5 α -cholestane (145) (16.9 mg, 87%) as a white solid.

2β , 3α , 20(S), 24-Tetrahydroxy- 5α -cholestane (145)

FTIR (KBr), v_{max}, cm⁻¹: 3398, 2929, 1654, 1459, 1377, 1037

¹H NMR (CDCl₃, 400 MHz) δ 3.74 (m, 1H, H-2), 3.69 (m, 1H, H-3), 3.19 (m, 1H, H-24), 1.97 (m, 1H, H-12), 1.77 (m, 1H, H-4), 1.68-0.91 (H-12, H-4, 5CH, 8CH₂), 1.18, 1.17 (2s, 3H, H-21), 0.90 (s, 3H, H-19), 0.83 (m, 6H, H-26, H-27), 0.75, 0.74 (2s, 3H, H-18), 0.62 (m, 1H, H-9)

¹³C NMR (CDCl₃, 100 MHz) δ 76.8, 76.7 (C-24), 75.0, 74.8 (C-20), 71.0 (C-2), 69.9 (C-3), 58.9, 58.1 (C-17), 56.4 (C-14), 54.9 (C-9), 42.8, 42.7 (C-13), 40.3, 40.2 (C-12), 39.8 (C-1), 39.5 (CH₂), 39.1 (CH₂), 38.7 (C-5), 35.4 (C-10), 34.1 (C-8), 33.4, 33.2 (C-25), 31.6 (CH₂), 31.2 (CH₂), 28.0, 27.7 (CH₂), 25.4, 25.2 (C-21), 23.4 (CH₂), 22.2, 22.1 (CH₂), 20.5 (CH₂), 18.6, 18.5, 17.3, 16.9 (C-26, C-27), 14.0 (C-19), 13.5, 13.4 (C-18)

2α , 3α , 20(S)-Trihydroxy- 5α -cholest-24-ene (146) and 2β , 3α , 20(S)-trihydroxy- 5α -cholest-24-ene (147)

A solution of 2α , 3α -epoxy-20(S)-hydroxy- 5α -cholest-24-ene (138) (59.1 mg, 0.15 mmol) in THF (2 mL) was treated with 1M H₂SO₄ (0.8 mL) and stirred for 24 h at room temperature. After neutralization with saturated aqueous NaHCO₃, the mixture was evaporated to fifth initial volume, diluted with water and extracted with ethyl acetate (3×50 mL). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (25% ethyl acetate:hexane) to give 2α , 3α , 20(S)-trihydroxy- 5α -cholest-24-ene (146) (3.6 mg, 6%) as a white solid and 2β , 3α , 20(S)-trihydroxy- 5α -cholest-24-ene (147) (32.9 mg, 53.1%) as a white solid; m.p. 163-165°C and the mixture of these steriods (2 mg, 3.2%).

2α , 3α , 20(S)-Trihydroxy- 5α -cholest-24-ene (146)

FTIR (KBr), v_{max}, cm⁻¹: 3313, 2936, 1453, 1365, 1266, 1041

MS (APCI), *m/z* (relative intensity): 401 (38), 383 (28)

2β , 3α , 20(S)-Trihydroxy- 5α -cholest-24-ene (147)

FTIR (KBr), v_{max}, cm⁻¹: 3392, 2925, 1453, 1375, 1266, 1037

¹H NMR (CDCl₃, 400 MHz) δ 5.02 (m, 1H, H-24), 3.82 (m, 1H, H-2), 3.79 (m, 1H, H-3), 1.99 (m, 1H, H-12), 1.91 (dt, J = 7.9, 7.9 Hz, 2H, H-23), 1.82 (ddd, J = 13.9, 13.8, 3.2 Hz, 1H, H-4), 1.72-0.77 (H-12, H-4, 4CH, 7CH₂), 1.61, 1.54 (2s, 6H, H-26, H-27), 1.21 (s, 3H, H-21), 0.92 (s, 3H, H-19), 0.76 (s, 3H, H-18), 0.63 (m, 1H, H-9)

¹³C NMR (CDCl₃, 100 MHz) δ 131.5 (C-25), 124.5 (C-24), 75.2 (C-20), 71.8 (C-2), 70.6 (C-3), 58.0 (C-17), 56.6 (C-14), 55.1 (C-9), 43.5 (C-22), 43.0 (C-13), 40.5 (C-1), 40.4 (C-12), 38.9 (C-5), 35.7 (C-10), 34.2 (C-8), 31.8 (CH₂), 31.7 (CH₂), 28.2 (CH₂), 26.1 (C-21), 25.7 (C-26 or C-27), 23.6 (CH₂), 22.9 (C-23), 22.4 (CH₂), 20.7 (CH₂), 17.6 (C-26 or C-27), 14.6 (C-19), 13.8 (C-18)

HRMS m/z: C₂₇H₄₆O₃Na [M+Na]⁺, calcd 441.3345, found 441.3336

2α , 3α , 20(S)-Trihydroxy- 5α -cholestane (148) and 2β , 3α , 20(S)-trihydroxy- 5α -cholestane (149)

A solution of 2α , 3α -epoxy-20(S)-hydroxy- 5α -cholestane (139) (64.4 mg, 0.17 mmol) in THF (3 mL) was treated with 1M H₂SO₄ (0.9 mL) and stirred for 24 h at room temperature. After neutralization with saturated aqueous NaHCO₃, the mixture was evaporated to fifth initial volume, diluted with water and extracted with ethyl acetate (3×50 mL). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (25% ethyl acetate:hexane) to give 2α , 3α , 20(S)-trihydroxy- 5α -cholestane (148) (7 mg, 10%) as a white solid and 2β , 3α , 20(S)-trihydroxy- 5α -cholestane (149) (36.9 mg, 51.6%) as a white solid; m.p. 186-188°C and the mixture of these steriods (10 mg, 14%).

2α , 3α , 20(S)-Trihydroxy- 5α -cholestane (148)

FTIR (KBr), ν_{max} , cm⁻¹: 3394, 2937, 1450, 1362, 1258, 1107, 1040

¹H NMR (CDCl₃, 400 MHz) δ 3.82 (m, 1H, H-3), 3.53 (m, 1H, H-2), 1.98 (m, 2H, H-12, H-4), 1.75-0.84 (5CH, 9CH₂), 1.19 (s, 3H, H-21), 0.95 (s, 3H, H-19), 0.80 (d, J = 6.4 Hz, 6H, H-26, H-27), 0.77 (s, 3H, H-18), 0.63 (m, 1H, H-9)

2β , 3α , 20(S)-Trihydroxy- 5α -cholestane (149)

FTIR (KBr), v_{max}, cm⁻¹: 3388, 2930, 1466, 1381, 1036

¹H NMR (CDCl₃, 400 MHz) δ 3.82 (m, 1H, H-2), 3.78 (m, 1H, H-3), 1.98 (m, 1H, H-12), 1.82 (ddd, J = 14.0, 13.2, 3.2 Hz, 1H, H-4), 1.71-0.84 (H-12, H-4, 5CH, 9CH₂), 1.19 (s, 3H, H-21), 0.92 (s, 3H, H-19), 0.80 (d, J = 6.6 Hz, 6H, H-26, H-27), 0.77 (s, 3H, H-18), 0.63 (m, 1H, H-9)

¹³C NMR (CDCl₃, 100 MHz) δ 75.3 (C-20), 71.8 (C-2), 70.6 (C-3), 57.8 (C-17), 56.6 (C-14), 55.1 (C-9), 44.2 (C-22), 42.9 (C-13), 40.5 (C-1), 40.4 (C-12), 39.6 (C-24), 38.9 (C-5), 35.7 (C-10), 34.2 (C-8), 31.8 (CH₂), 31.7 (CH₂), 28.2 (CH₂), 27.9 (C-25), 26.3 (C-21), 23.6 (CH₂), 22.7, 22.5 (C-26, C-27), 22.3 (CH₂), 22.0 (CH₂), 20.7 (CH₂), 14.6 (C-19), 13.8 (C-18)

MS (APCI), *m/z* (relative intensity): 403 (75), 385 (100), 367 (76)

3β-tert-Butyldimethylsiloxy-20(S)-hydroxy-5α-24a-homo-chol-24-ene (150)

To a cooled (0°C) solution of 3 β , 20(S)-dihydroxy-5 α -24a-homo-chol-24-ene (129) (126.7, 0.34 mmol) in dry CH₂Cl₂ (5 mL) was added 2, 6-lutidine (0.11 mL,

Copyright by Kasetsart University All rights reserved

0.91 mmol) and *tert*-butyldimethylsilyltrifluoromethanesulfonate (0.11 mL, 0.50 mmol). The reaction mixture was stirred at 0°C for 30 min. Then the reaction was quenched by addition of saturated aqueous NaHCO₃. The resulting mixture was extracted with CH₂Cl₂ (3×50 mL). The combined organic layers were washed with water, the organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane) to afford 3 β -*tert*-butyldimethylsiloxy-20(S)-hydroxy-5 α -24a-homo-chol-24-ene (150) (141 mg, 85%) as a white solid; m.p. 129-131°C.

3β -tert-Butyldimethylsiloxy-20(S)-hydroxy- 5α -24a-homo-chol-24-ene (150)

FTIR (KBr), v_{max}, cm⁻¹: 2929, 1461, 1373, 1251, 1092, 835

¹H NMR (CDCl₃, 400 MHz) δ 5.80 (m, 1H, H-24), 5.00 (m, 1H, H-25), 4.92 (m, 1H, H-25), 3.52 (m, 1H, H-3), 2.04 (m, 4H, H-23, H-12), 1.73-0.81 (5CH, 9CH₂), 1.25 (H-21), 0.86 (s, 9H, SiC(CH₃)₃), 0.81 (H-18), 0.77 (H-19), 0.02 (s, 6H, Si(CH₃)₂)

¹³C NMR (CDCl₃, 100 MHz) δ 139.1 (C-24), 114.2 (C-25), 75.1 (C-20), 72.2 (C-3), 58.2 (C-17), 56.7 (C-14), 54.4 (C-9), 45.0 (C-5), 43.0 (C-13), 42.6 (C-22), 40.5 (C-12), 38.7 (CH₂), 37.2 (C-1), 35.5 (C-10), 34.9 (CH₂), 32.0 (CH₂), 31.9 (CH₂), 28.8 (CH₂), 28.6 (CH₂), 26.2 (C-21), 25.9 (3CH₃), 23.7 (CH₂), 22.4 (CH₂), 21.1 (CH₂), 18.2 (Cq), 13.8 (C-18), 12.4 (C-19), -4.6 (2CH₃)

HRMS m/z: C₃₁H₅₆O₂NaSi [M+Na]⁺, calcd 511.3947, found 511.3947

3β -tert-Butyldimethylsiloxy-20(S), 24-dihydroxy-5α-cholestane (151)

Step I

A mixture of 3β-*tert*-butyldimethylsiloxy-20(*S*)-hydroxy-5α-24a-homo-chlo-24-ene (150) (141 mg, 0.29 mmol) and NaHCO₃ (86.9 mg) in CH₂Cl₂ (5 mL) and methanol (1 mL) was cooled to -78°C and ozone was bubbled through the mixture with stirring. When the reaction mixture was turned blue, ozone addition was stopped. Nitrogen gas was passed through the reaction until the blue color was discharged. The reaction was quenched by addition of triphenylphosphine (151.9 mg, 0.58 mmol) at -78°C. The reaction was slowly warmed to room temperature and further stirred for 1 h before concentration under reduced pressure. The residue was purified by flash column chromatography (5% ethyl acetate:hexane) to give aldehyde intermediate (105 mg, 73%) as a white solid.

Step II

To a stirring of Mg (190.3 mg, 5.9 mmol) and catalyst I₂ in dry THF (10 mL) was slowly added 2-bromopropane (2.3 mL, 23.5 mmol) under nitrogen atmosphere at room temperature. After stirring for 2 h, this mixture was cooled to -78°C. A solution of aldehyde intermediate (105 mg, 0.21 mmol) in dry THF (8 mL) was added slowly and kept at this temperature. After 20 min, the reaction mixture was allowed to slowly warm to room temperature and left at this temperature for 3 h. The reaction was quenched by addition of saturated aqueous NH₄Cl and extracted with CH₂Cl₂ (4×30 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ and water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced

pressure. The residue was purified by flash column chromatography (7% ethyl acetate:hexane) to give 3β -*tert*-butyldimethylsiloxy-20(S), 24-dihydroxy-5 α -cholestane (151) (38 mg, 54% brsm) as a white solid and recovered starting material (39 mg, 62% conversion).

3β -tert-Butyldimethylsiloxy-20(S), 24-dihydroxy-5α-cholestane (151)

FTIR (KBr), v_{max}, cm⁻¹: 3342, 2920, 1466, 1373, 1256, 1087, 830

¹H NMR (CDCl₃, 400 MHz) δ 3.52 (m, 1H, H-3), 3.30 (m, 1H, H-24), 2.02 (m, 1H, H-12), 1.76-0.83 (6CH, 10CH₂, H-12), 1.24 (s, 3H, H-21), 0.89 (m, 6H, H-26, H-27), 0.86 (s, 9H, SiC(CH₃)₃), 0.80 (s, 3H, H-18), 0.77 (s, 3H, H-19), 0.02 (s, 6H, Si(CH₃)₂)

¹³C NMR (CDCl₃, 100 MHz) 8 77.1 (C-24), 75.2 (C-20), 72.2 (C-3), 58.5 (C-17), 56.6 (C-14), 54.4 (C-9), 45.0 (C-5), 43.0 (C-13), 40.4 (C-12), 39.4 (C-22), 38.6 (CH₂), 37.2 (C-21), 35.5 (C-10), 34.9 (C-8), 33.5 (C-25), 32.0 (CH₂), 31.9 (CH₂), 28.7 (CH₂), 28.5 (CH₂), 26.1 (C-21), 25.9 (SiC(<u>C</u>H₃)₃), 23.7 (CH₂), 22.4 (CH₂), 21.1 (CH₂), 18.9, 17.4 (C-26, C-27), 18.2 (Si<u>C</u>(CH₃)₃) 13.8 (C-18), 12.4 (C-19), -4.6 (Si(CH₃)₂)

HRMS m/z: C₃₃H₆₂O₃NaSi [M+Na]⁺, calcd 557.4366, found 557.4365

24-Benzyloxy-3β-tert-butyldimethylsiloxy-20(S)-hydroxy-5α-cholestane (152)

NaH (160 mg, 3.9 mmol) was washed with dry THF (4 mL). The suspension was stirred vigorously for 10 min before removing solvent.

To the suspension of NaH in dry THF was slowly added 3β-tert-butyldimethylsiloxy-20(S), 24-dihydroxy-5α-cholestane (151) (209.5 mg, 0.39 mmol) and the mixture was stirred under reflux for 2 h. After the reaction mixture was cooled down to room temperature, benzyl bromide (0.28 mL, 1.9 mmol) was added and stirred for an additional 30 min at room temperature and 4 h under reflux. The reaction was quenched by pouring into water and extracted with diethyl ether (3×50 mL). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (100% hexane to 3% ethyl acetate:hexane) to give 24-benzyloxy-3β-tert-butyldimethylsiloxy-20(S)-hydroxy-5α-cholestane (152) (183.2 mg, 75%) as a colorless gum.

24-Benzyloxy-3β-tert-butyldimethylsiloxy-20(S)-hydroxy-5α-cholestane (152)

¹H NMR (CDCl₃, 400 MHz) δ 7.29-7.27 (m, 5H, H_{AR}), 4.46, 4.47 (2s, 2H, H_{benzyl}), 3.50 (m, 1H, H-3), 3.06 (m, 1H, H-24), 1.98 (m 1H, H-12), 1.85 (m, 1H, H-25), 1.73-0.79 (H-12, 4CH, 10CH₂), 1.19 (s, 3H, H-21), 0.88 (m, 6H, H-26, H-27), 0.84 (s, 9H, SiC(C<u>H</u>₃)₃), 0.77 (s, 3H, H-18), 0.75 (s, 3H, s, H-19), 0.55 (m, 1H, H-9), 0.00 (s, 6H, Si(C<u>H</u>₃)₂)

¹³C NMR (CDCl₃, 100 MHz) δ 139.0 (C_{AR}), 128.2 (CH_{AR}), 127.8 (CH_{AR}), 127.4 (CH_{AR}), 84.7 (C-24), 74.9 (C-20), 72.2 (C-3), 71.8 (C_{benzyl}), 58.2 (C-17), 56.7 (C-14), 54.4 (C-9), 45.0 (C-5), 43.0 (C-13), 40.4 (C-12), 39.2 (C-22), 38.7 (CH₂), 37.2 (CH₂), 35.5 (C-10), 34.9 (CH), 32.0 (CH₂), 31.9 (CH₂), 30.4 (CH), 28.7 (CH₂), 26.2 (C-21), 25.9 (SiC(<u>C</u>H₃)₃), 24.4 (CH₂), 23.7 (CH₂), 22.5 (CH₂), 21.1 (CH₂), 18.3 (Si<u>C</u>(CH₃)₃), 18.2, 18.1 (C-26, C-27), 13.7 (C-18), 12.4 (C-19), -4.5 (Si<u>C</u>H₃)₂)

MS (APCI), m/z (relative intensity): 516 (4), 499 (100), 367 (64)

24-benzyloxy-3β, 20(S)-dihydroxy-5α-cholestane (153)

To a solution of 24-benzyloxy-3 β -tert-butyldimethylsiloxy-20(S)-hydroxy-5 α -cholestane (152) (183.2 mg, 0.29 mmol) in THF (4 mL) was added 1M tetrabutylammonium fluoride (TBAF) in THF (1.46 mL, 1.46 mmol) and stirred under reflux for 3 h. The reaction was diluted with diethyl ether and washed with water. The aqueous was back extracted with diethyl ether (4×50 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give the crude product that was purified by flash column chromatography (10% ethyl acetate:hexane) to yield 24-benzyloxy-3 β , 20(S)-dihydroxy-5 α -cholestane (153) (122 mg, 81.5%) as a colorless gum.

24-benzyloxy-3β, 20(S)-dihydroxy-5α-cholestane (153)

¹H NMR (CDCl₃, 400 MHz) δ 7.27-7.25 (m, 5H, H_{AR}), 4.43 (m, 2H, H_{benzyl}), 3.50 (m, 1H, H-3), 3.03 (m, 1H, H-24), 1.97 (m, 1H, H-12), 1.83 (m, 1H, H-25), 1.76-

0.76 (H-12, 4CH, 10CH₂), 1.17, 1.16 (2s, 3H, H-21), 0.85 (m, 6H, H-26, H-27), 0.75 (s, 3H, H-18), 0.73 (s, 3H, H-19), 0.54 (m, 1H, H-9)

¹³C NMR (CDCl₃, 100 MHz) δ 138.9 (C_{AR}), 128.2 (CH_{AR}), 127.8 (CH_{AR}), 127.4 (CH_{AR}), 84.8, 84.7 (C-24), 75.1, 74.9 (C-20), 71.8 (C_{benzyl}), 71.3 (C-3), 58.3 (C-17), 56.6 (C-14), 54.3 (C-9), 44.8 (C-5), 42.9 (C-13), 40.4 (C-12), 39.3, 39.1 (C-22), 38.2 (CH₂), 37.0 (C-1), 35.4 (C-10), 34.8 (C-8), 31.9 (CH₂), 31.5 (CH₂), 30.5, 30.4 (C-25), 28.7 (CH₂), 26.1, 26.0 (C-21), 24.6, 24.3 (CH₂), 23.7 (CH₂), 22.5, 22.4 (CH₂), 21.1 (CH₂), 18.6, 18.3, 18.1, 18.0 (C-26, C-27), 13.8, 13.7 (C-18), 12.3 (C-19)

MS (APCI), *m/z* (relative intensity): 403 (4), 385 (76), 367 (100), 257 (13)

Sodium 3 β , 20(S), 24-trihydroxy-5 α -cholestane 3-sulfate (155)

Triethylamine-sulfur trioxide complex (73.1 mg, 0.40 mmol) was added to a solution of 24-benzyloxy-3 β , 20(*S*)-dihydroxy-5 α -cholestane (153) (69.5 mg, 0.14 mmol) in *N*,*N*-dimethylformamide (2.5 mL). The reaction mixture was stirred at room temperature for 16 h and then quenched with water (2.5 mL). After evaporation to dryness, the residue was eluted through Amberlite CG-120 (Na form) with methanol. The crude product of sodium 24-benzyloxy-3 β , 20(*S*)-dihydroxy-5 α -cholestane 3-sulfate (154) was used in the next step without purification.

Step II

To a solution of sodium 24-benzyloxy-3 β , 20(*S*)-dihydroxy-5 α -cholestane 3-sulfate (154) in methanol (2 mL) was added 5% Pd/C (17.2 mg). The black suspension was stirred under hydrogen atmosphere at room temperature for 2 h. The reaction mixture was filtered through celite and eluted with methanol, the filtrate was concentrated under reduced pressure. The residue was further purified by column chromatography (4% methanol:CH₂Cl₂) to give sodium 3 β , 20(*S*), 24-trihydroxy-5 α -cholestane 3-sulfate (155) (30 mg, 42.5%) as a white solid.

Sodium 3 β , 20(S), 24-trihydroxy-5 α -cholestane 3-sulfate (155)

¹H NMR (CD₃OD, 400 MHz) δ 4.25 (m, 1H, H-3), 3.25 (m, 1H, H-24), 2.07 (m, 1H, H-12), 2.01 (m, 1H, H-14), 1.84-0.94 (H-12, H-14, 5CH, 9CH₂), 1.23 (s, 3H, H-21), 0.90 (m, 6H, H-26, H-27), 0.84 (s, 6H, H-18, H-19), 0.66 (m, 1H, H-9)

MS (APCI), *m/z* (relative intensity): 403 (3), 385 (79), 367 (100), 257 (3)

Sodium 3β, 20-dihydroxy-5α-cholestane 3-sulfate (156)

Triethylamine-sulfur trioxide complex (13.5 mg, 0.064mmol) was added to a solution of 3 β , 20-dihydroxy-5 α -cholestane (132) (13 mg, 0.032 mmol) in *N,N*-dimethylformamide (1 mL). The reaction mixture was stirred at room temperature for 24 h, and then quenched with water (1 mL). After evaporation to dryness, the residue was eluted through Amberlite CG-120 (Na form) with methanol. The residue was purified by flash column chromatrography (5% methanol:CH₂Cl₂) to give sodium 3 β , 20-dihydroxy-5 α -cholestane 3-sulfate (156) (10 mg, 61%) as a white solid.

Sodium 3β, 20-dihydroxy-5α-cholestane 3-sulfate (156)

FTIR (KBr), v_{max}, cm⁻¹: 2947, 1467, 1383, 1244, 1218, 1060, 972

¹H NMR (CD₃OD, 400 MHz) δ 4.26 (m, 1H, H-3), 2.03 (m, 1H, H-12), 1.83-0.90 (4CH, 11CH₂, H-12), 1.21 (s, 3H, H-21), 0.88 (d, J = 6.6 Hz, 6H, H-26, H-27), 0.83 (s, 6H, H-18, H-19), 0.69 (m, 1H, H-9)

HRMS m/z: C₂₇H₄₆O₃Na [M+Na]⁺, calcd 483.3144, found 483.3144

Disodium 2 β , 3 α , 20(S), 24-tetrahydroxy-5 α -cholestane 2, 3-disulfate (158)

Step I

Triethylamine-sulfur trioxide complex (155.7 mg, 0.86 mmol) was added to a solution of 24-benzyloxy-2 β , 3 α , 20(*S*)-trihydroxy-5 α -cholestane (143) (45.3 mg, 0.86 mmol) in *N*,*N*-dimethylformamide (2 mL). The reaction mixture was stirred at 95°C for 16 h and then quenched with water (2 mL). After evaporation to dryness, the residue was eluted through Amberlite CG-120 (Na form) with methanol. The crude product of disodium 24-benzyloxy-2 β , 3 α , 20(*S*)-trihydroxy-5 α -cholestane 2, 3-disulfate (157) was used in the next step without purification.

Step II

To a solution of disodium 24-benzyloxy-2 β , 3 α , 20(*S*)-trihydroxy-5 α -cholestane 2, 3-disulfate (157) in methanol (10 mL) was added 5% Pd/C (11 mg). The black suspension was stirred under hydrogen atmosphere at room temperature for 2 h. The reaction mixture was filtered through celite and eluted with methanol, the filtrate was concentrated under reduced pressure. The residue was further purified by flash

column chromatography (3% methanol: CH_2Cl_2) to give disodium 2 β , 3 α , 20(S), 24-tetrahydroxy-5 α -cholestane 2, 3-disulfate (158) (20 mg, 36%) as a white solid.

Disodium 2 β , 3 α , 20(S), 24-tetrahydroxy-5 α -cholestane 2, 3-disulfate (158)

 1 H NMR (CD₃OD, 400 MHz) δ 4.70 (m, 2H, H-2, H-3), 3.20 (m, 1H, H-24), 2.18-0.63 (6CH, 10CH₂), 1.25 (s, 3H, H-21), 0.97 (s, 3H, CH₃), 0.87 (m, 6H, H-26, H-27), 0.51 (s, 3H, CH₃)

MS (APCI), *m/z* (relative intensity): 399 (69), 381 (47)

Sodium 2 β , 3 α , 20(S)-trihydroxy-5 α -cholest-24-ene 2-sulfate (159) and sodium 2 β , 3 α , 20(S)-trihydroxy-5 α -cholest-24-ene 3-sulfate (160)

Triethylamine-sulfur trioxide complex (16.5 mg, 0.09 mmol) was added to a solution of 2β , 3α , 20(S)-trihydroxy- 5α -cholest-24-ene (147) (18.8 mg, 0.04 mmol) in N,N-dimethylformamide (2 mL). The reaction mixture was stirred at 95° C for 16 h and then quenched with water (2 mL). After evaporation to dryness, the residue was eluted through Amberlite CG-120 (Na form) with methanol. The crude product was

purified by flash column chromatography (3% methanol: CH_2Cl_2) to give sodium 2 β , 3 α , 20(S)-trihydroxy-5 α -cholest-24-ene 2-sulfate (159) and sodium 2 β , 3 α , 20(S)-trihydroxy-5 α -cholest-24-ene 3-sulfate (160) (12 mg, 43.5%) as a pale yellow gum.

Sodium 2 β , 3 α , 20(S)-trihydroxy-5 α -cholest-24-ene 2-sulfate (159) and sodium 2 β , 3 α , 20(S)-trihydroxy-5 α -cholest-24-ene 3-sulfate (160)

¹H NMR (CD₃OD, 400 MHz) δ 5.09 (m, 1H, H-24), 4.42, 4.40, 4.07, 4.02 (m, 2H, H-2, H-3), 2.29-0.54 (5CH, 10CH₂), 1.66, 1.60 (2s, 6H, H-26, H-27), 1.24 (s, 3H, H-21), 0.99 (s, 3H, CH₃), 0.83 (s, 3H, CH₃)

Disodium 2 β , 3 α , 20(S)-trihydroxy-5 α -cholestane 2, 3-disulfate (161)

Triethylamine-sulfur trioxide complex (56.6 mg, 0.31 mmol) was added to a solution of 2β , 3α , 20(S)-trihydroxy- 5α -cholestane (149) (21.9 mg, 0.05 mmol) in N,N-dimethylformamide (2 mL). The reaction mixture was stirred at 95°C for 16 h and then quenched with water (2 mL). After evaporation to dryness, the residue was eluted through Amberlite CG-120 (Na form) with methanol. The crude product was purified by flash column chromatography (100% CH₂Cl₂ to 3% methanol:CH₂Cl₂) to give disodium 2β , 3α , 20(S)-trihydroxy- 5α -cholestane 2, 3-disulfate (161) as a white solid (15 mg, 46.1%)

Disodium 2β , 3α , 20(S)-trihydroxy- 5α -cholestane 2, 3-disulfate (161)

¹H NMR (CD₃OD, 400 MHz) δ 4.66, 4.62 (m, 2H, H-2, H-3), 2.05-0.99 (6CH, 11CH₂), 1.26 (s, 3H, H-21), 0.90 (s, 3H, CH₃), 0.80 (m, 6H, H-26, H-27), 0.46, 0.43 (2s, 3H, CH₃)

MS (APCI), *m/z* (relative intensity): 383 (46), 365 (20)

Biological assays

KB cell line (epidermoid carcinoma of oral cavity) and NCI-H187 (small cell lung carcinoma) were determined by resazurin microplate assay (REMA) method which was described by Brien *et al.* (2000). Briefly, cells at a logarithmic growth phase are harvested and diluted to 2.2×10⁴ cells/ml for KB and 3.3 ×10⁴ cells/ml for NCI-H187 in fresh medium. Successively, 5 μl of test sample diluted in 5% DMSO, and 45 μl of cell suspension are added to 384-well plates, incubated at 37°C in 5% CO₂ incubator. After the incubation period (3 days for KB and 5 days for NCI-H187), 12.5 μl of 62.5 μg/ml resazurin solution is added to each well, and the plates are then incubated at 37°C for 4 hours. Fluorescence signal is measured using SpectraMax M5 multi-detection microplate reader (Molecular Devices, USA) at excitation and emission wavelengths of 530 nm and 590 nm. Ellipticine and doxorubicin are used as a positive control and 0.5% DMSO and water are used as negative control.

Cytotoxicity against primate cell line (Vero) was determined by green fluorescent protein (GFP) detection method that was described by Hunt *et al.* (1999). The GFP-expressing Vero cell line was generated in-house by stably transfecting the African green monkey kidney cell line with pEGFP-N1 plasmid (Clontech). The cell line is maintained in minimal essential medium supplemented with 10% heatinactivated fetal bovine serum, 2 mM L-glutamine, 1 mM sodium pyruvate, 1.5 g/L sodium bicarbonate and 0.8 mg/ml geneticin, at 37°C in a humidified incubator with 5% CO₂. The assay is carried out by adding 45 μl of cell suspension at 3.3 ×10⁴ cells/ml to each well of 384-well plates containing 5 μl to test compounds previously diluted in 0.5% DMSO, and then incubating for 4 days at 37°C incubator with 5% CO₂. Fluorescence signals are measure by using SpectraMax M5 microplate reader (Molecular Devices, USA) in the bottom reading mode with excitation and emission wavelengths of 485 and 535 nm. Ellipticine are used as appositive control and 0.5% DMSO are used as a negative control.

Before performing the anti-viral assay, compounds will be tested as a range of non-cytotoxic concentrations to evaluate their cytotoxic effect to host cells.

Sample solubilized in 10% DMSO are added to 96-well plates in the volume of 10 μl/well. Subsequently, 190 μl of GFP-expressing Vero cell suspension at 1×10⁵ cells/ml premixed with 5×10⁵ PFU/ml of HSV-1 inoculums is added to each well. The plates are then incubated in at 37°C humidified incubator with 5% CO₂ for 4 days. Fluorescence signals are measured on day zero and day 4 using SpectraMax M5 multi-detection microplate reader in the bottom-reading mode with excitation and emission wavelengths of 485 and 535 nm. Acyclovir and 0.5% DMSO are used as a positive and a negative controls, respectively.

RESULTS AND DISCUSSION

Results

1. Synthesis of sterol orthoesters intermediates

1.1 Synthesis of sterol orthoesters intermediates for intramolecular strategy (Scheme 12 and 13)

Scheme 12

Scheme 13

Preparation of 2α , 3α -epoxy- 16α -hydroxy- 5α -pregnan-20-one (89)

Conversion of tigogenin (54) and 3 β -acetoxy-5-pregnen-20-one (55) to 3 β -acetoxy-5 α -16-pregnen-20-one (81) was shown in Scheme 14.

HO
$$\frac{1}{\hat{H}}$$
 (82)

tigogenin (54)

AcO $\frac{1}{\hat{H}}$ (82)

c AcO $\frac{1}{\hat{H}}$ (83)

Scheme 14

- a) i) Ac₂O, pyr, NH₄Cl, 135°C, 16h
 - ii) CrO₃, AcOH, 1, 2-dichloroethane, H₂O, 0°C-rt, 2h
 - iii) Al₂O₃, benzene, rt, 16h, 49% (3 steps)
- b) H₂, 5% Pd/C, ethyl acetate:methanol (1:3), rt, 16h, 91%
- c) p-toluenesulfonic acid, Ac₂O, reflux, 6h, 88% (brsm), 75% conversion
- d) Br₂/CH₂Cl₂, CH₂Cl₂, rt, 15 min, 87%
- e) 1,5-diazabicyclo[5.4.0]undec-7-ene (DBU), toluene, reflux, 8h, 89%

Conversion of 3β -acetoxy- 5α -16-pregnen-20-one (81) to 2α , 3α -epoxy- 16α -hydroxy- 5α -pregnan-20-one (89) was shown in Scheme 15.

AcO
$$\hat{H}_{(81)}$$
 $\hat{H}_{(85)}$ $\hat{H}_{(86)}$ $\hat{H}_{(86)}$

Scheme 15

- a) 30% H₂O₂, 2.5M NaOH, methanol, rt, 16h, 94%
- b) *p*-toluenesulfonyl chloride, DMAP, pyr, CH₂Cl₂, rt, 3 day, 92% (brsm), 46% conversion
- c) LiBr, Li₂CO₃, DMF, reflux, 4h, 75%
- d) i) NH₂NH₂.H₂O, ethanol, rt, 3 day
 - ii) 10% HCl, 60%
- e) mCPBA, Na₂CO₃, CH₂Cl₂, H₂O, rt, 4h, 64%

Table 8 Reductive cleavage of α , β -epoxy ketone **87** to β -hydroxy ketone **88**

Entry	Reagent	% yield
1	Lithium naphthalenide	58
2	SmI_2	79

Table 8 (Continued)

Entry	Reagent	% yield
3	NH ₂ NH ₂ .H ₂ O	60

Preparation of side chain part

The alternative preparations of side chain moiety were described as shown in Scheme 16-18.

Scheme 16

Reagents and conditions:

- a) NaH, BnBr, rt, 5h, 50%
- b) i) Zn (powder), THF, sonicate, 2h
 - ii) 1M HCl, ethyl acetate, rt, 30 min, 70% (93) and 61% (94)
- c) Ac₂O, pyr, rt, 16h, 70%
- d) NaBH₄, methanol, rt, 1h, 60%
- e) TBSOTf, 2, 6-lutidine, CH₂Cl₂, 0°C, 1h, 61%

OEt
$$CN$$
 + Br OEt a EtO OEt D O

Scheme 17

- a) i) Zn (powder), THF, sonicate, 2h
 - ii) 1M HCl, ethyl acetate, rt, 30 min, 86%
- b) 1, 2-ethanedithiol, BF₃.OEt₂, CH₂Cl₂, rt, 1h, 74%
- c) NaBH₄, methanol, rt, 42%

Scheme 18

- a) i) PCC, CH₂Cl₂, rt, 16h or IBX, DMSO, rt, 5h
 - ii) Zn (powder), allyl bromide, Sat. NH₄Cl, reflux, 20 min, 30%
- b) 1M LiOH, methanol, rt, 16h, 70%
- c) Ac₂O, pyr, rt, 6h, 61%

Preparation of key intermediate a

Steroid part, 2α , 3α -epoxy- 16α -hydroxy- 5α -pregnan-20-one (89), coupled with side chain moiety, 3-acetoxy-2,2-dimethyl-5-hexenoic acid (111) to give intermediate **a** for intramolecular McMurry coupling reaction as shown in Scheme 19.

- a) i) 3-acetoxy-2, 2-dimethyl-5-hexenoic acid (111), oxalyl chloride, DMF (1 drop), benzene, rt, 2.5h
- ii) 2α , 3α -epoxy- 16α -hydroxy- 5α -pregnan-20-one (89) , DMAP, CH₂Cl₂, rt, 30 min, 77%

Preparation of 2α , 3α -epoxy- 16α -hydroxy-20-methyl- 5α -pregn-20-ene (117)

Conversion of 16α -hydroxy- 5α -2-pregnen-20-one (88) to 2α , 3α -epoxy- 16α -hydroxy-20-methyl- 5α -pregn-20-ene (117) was shown in Scheme 20.

- a) TBSCl, imidazole, DMF, CH₂Cl₂, rt, 16h, 95%
- b) mCPBA, Na₂CO₃, CH₂Cl₂, H₂O, rt, 4h, 59%
- c) Ph₃P⁺CH₃I, nBuLi, THF, 0°C-rt, 1.5h, 17% (brsm), 46% conversion
- d) TBAF.H₂O, THF, rt, 48h, 32% (brsm), 70% conversion

Preparation of intermediate b

Steroid part, 2α , 3α -epoxy- 16α -hydroxy-20-methyl- 5α -pregn-20-ene (117), coupled with side chain moiety, 3-acetoxy-2, 2-dimethyl-5-hexenoic acid (111) to give **118** instead of intermediate **b** as presented in Scheme 21.

Scheme 21

- a) i) 3-acetoxy-2, 2-dimethyl-5-hexenoic acid (111), oxalyl chloride, DMF (1 drop), benzene, rt, 2.5h
- ii) 2α , 3α -epoxy- 16α -hydroxy-20-methyl- 5α -pregn-20-ene (117), DMAP, CH $_2$ Cl $_2$, rt, 30 min, 16%

1.2 Synthesis of sterol orthoesters intermediates *via* intermolecular strategy (Scheme 22)

TBSO
$$\stackrel{\stackrel{}{\stackrel{}}{\stackrel{}}}{\stackrel{}}$$
 (123) HO $\stackrel{\stackrel{}{\stackrel{}}}{\stackrel{}}$ (126) $\stackrel{\stackrel{}{\stackrel{}}}{\stackrel{}}$ Orthoesterol A : R = $\stackrel{\stackrel{}{\stackrel{}}}{\stackrel{}}$ Orthoesterol C : R = $\stackrel{\stackrel{}{\stackrel{}}}{\stackrel{}}$

Scheme 22

Preparation of sterol orthoesters intermediates with intermolecular coupling reaction

Grignard reaction of 3β -acetoxy- 16β -(5-acetoxy-4-methylpentanoate)-pregnan-20-one (60), synthesized from diosgenin (59), and butenyl magnesium bromide followed by 1, 3-diol protection to give 3β -hydroxy-(16S, 20S)-16, 20-acetonide- 5α -24a-homo-chol-24-ene (119) which was converted to 3β , 24-dihydroxy-(16S, 20S)-16, 20-acetonide- 5α -cholestane (121) in 2 steps and 3β -*tert*-butyldimethylsiloxy-29-hydroxy-(16S, 20S)-16, 20-acetonide- 5α -cholest-24(28)-ene (127) in 5 steps as illustrated in Scheme 23 and 24, respectively.

Scheme 23

- a) H₂, 5% Pd/C, THF, rt, 48h, 82%
- b) i) Ac₂O, pyr, NH₄Cl, 135°C, 16h
 - ii) CrO₃, AcOH, 1, 2-dichloroethane, H₂O, 0°C-rt, 2h, 43% (2 steps)
- c) i) 4-bromobutene, Mg, I₂, THF, rt, 20 min

Reagents and conditions: (Continued)

- ii) 2, 2-dimethoxypropane, p-toluenesulfonic acid, rt, 32% (2 steps)
- d) O₃, CH₂Cl₂, PPh₃, -78°C, 3h, 65%
- e) 2-bromopropane, Mg, I₂, THF, -78°C, 1.5h, 84%

HO
$$\stackrel{\stackrel{}{\stackrel{}}{\stackrel{}}}{\stackrel{}}$$
 $\stackrel{}{\stackrel{}}$
 $\stackrel{}}{\stackrel{}}$
 $\stackrel{}{\stackrel{}}$
 $\stackrel{}{\stackrel{}}$
 $\stackrel{}{\stackrel{}}$
 $\stackrel{}{\stackrel{}}$
 $\stackrel{}}{\stackrel{}}$
 $\stackrel{}{\stackrel{}}$
 $\stackrel{}{\stackrel{}}$
 $\stackrel{}{\stackrel{}}$
 $\stackrel{}}{\stackrel{}}$
 $\stackrel{}$
 $\stackrel{}{\stackrel{}}$
 $\stackrel{}}{\stackrel{}}$
 $\stackrel{}$
 $\stackrel{}}{\stackrel{}}$
 $\stackrel{}$
 $\stackrel{}}{\stackrel{}}$
 $\stackrel{}$
 $\stackrel{}}{\stackrel{}}$
 $\stackrel{}}{\stackrel{}}$
 $\stackrel{}$
 $\stackrel{}}{\stackrel{}}$
 $\stackrel{}$
 $\stackrel{}}{\stackrel{}}$
 $\stackrel{}}$
 $\stackrel{}}{\stackrel{}}$
 $\stackrel{}}{\stackrel{}}$
 $\stackrel{}}{\stackrel{}}$
 $\stackrel{}}{\stackrel{}}$
 $\stackrel{}}$

Scheme 24

- a) TBSOTf, 2, 6-lutidine, CH₂Cl₂, 0°C, 30 min, 91%
- b) i) O_3 , CH_2Cl_2 , PPh_3 , -78°C, 3h, 67%
 - ii) 2-bromopropane, Mg, I₂, THF, -78°C, 1.5h, 44%
- c) PCC, pyr, CH₂Cl₂, rt, 2h, 90%
- d) 1M vinyl magnesium bromide in THF, THF, reflux, 2h, 79%
- e) i) PCC, NaOAc, CH₂Cl₂, rt, 2h
 - ii) NaBH₄, ethanol, rt, 30 min, 25.6%

2. Synthesis of polyhydroxy sterols and their sulfated analogs

2.1 Synthesis of 3, 20-polyhydroxy sterols

Conversion of 3β -acetoxy- 5α -pregnan-20-one (82) to 3β , 20(S), 24-trihydroxy- 5α -cholestane (130), 3β , 20(S)-dihydroxy- 5α -cholest-24-ene (131) and 3β , 20(S)-dihydroxy- 5α -cholestane (132) was shown in Scheme 25.

Scheme 25

- a) 4-bromobutene, Mg, I2, THF, rt, 20 min, 61%
- b) i) O₃, CH₂Cl₂, PPh₃, -78°C, 3h, 68%
 - ii) 2-bromopropane, Mg, I₂, THF, -78°C, 1.5h, 75% (brsm), 61% conversion
- c) 5-bromo-2-methyl-2-pentene, Mg, I₂, THF, rt, 5h, 36%
- d) H₂, 5% Pd/C, methanol, rt, 2h, 64%

2.2 Synthesis of 2, 3, 20S-polyhydroxy sterols

Conversion of 3β -acetoxy- 5α -pregnan-20-one (82) to 2, 3, 20(S), 24-tetrahydroxy- 5α -cholestane was shown in Scheme 26 and 27.

Aco
$$\frac{1}{H}$$
 (82) (133) $\frac{1}{H}$ (134) $\frac{1}{H}$ (135) $\frac{1}{H}$ (136) $\frac{1}{H}$ (137): $\frac{1}{H}$ (138): $\frac{1}{H}$ (139): $\frac{1}{H}$ (139):

Scheme 26

- a) 1M KOH, MeOH, CH₂Cl₂ (1:1), rt, 6h, 90%
- b) p-toluenesulfonyl chloride, CH₂Cl₂, pyr, rt, 24h, 81%
- c) LiBr, Li₂CO₃, DMF, reflux, 6h, 86%
- d) mCPBA, Na₂CO₃, CH₂Cl₂, H₂O, rt, 6h, 54% (brsm), 75% conversion
- e) 4-bromobutene, Mg, I₂, THF, rt, 20 min, 50%
- f) 5-bromo-2-methyl-2-pentene, Mg, I2, THF, rt, 2h, 39%
- g) 1-bromo-4-methylpentane, Mg, I₂, THF, rt, 2h, 50%

Scheme 27

- a) i) O₃, NaHCO₃, CH₂Cl₂, PPh₃, -78°C
 - ii) 2-bromopropane, Mg, I₂, THF, -78°C-rt, 3h, 48% (brsm), 74% conversion
- b) BnBr, NaH, rt-reflux, 5h, 64%
- c) 1M H₂SO₄, THF, rt, 24h, 57% (**142:143** = 1:15)
- d) H₂, 5% Pd/C, MeOH, rt, 2h, 90% (**142** to **144**), 87% (**143** to **145**)

Hydrolysis of 2α , 3α -epoxy-20(S)-hydroxy- 5α -cholest-24-ene (138) to 2β , 3α , 20(S)-trihydroxy- 5α -cholest-24-ene (147) and 2α , 3α -epoxy-20(S)-hydroxy- 5α -cholestane (139) to 2β , 3α , 20(S)-trihydroxy- 5α -cholestane (149) were shown in Scheme 28.

Scheme 28

- a) $1M H_2SO_4$, THF, rt, 24h, 75.6% (**146**:**147** = 1:9)
- b) 1M H₂SO₄, THF, rt, 24h, 62.3% (**148:149** = 1:5)

2.3 Synthesis of sulfated steroid analogs

Preparation of monosulfated steroid analogs 155 and 156 was shown in Scheme 29.

Scheme 29

- a) TBSOTf, 2, 6-lutidine, CH₂Cl₂, 0°C, 30 min, 85%
- b) i) O₃, NaHCO₃, CH₂Cl₂, PPh₃, -78°C, 68%

Reagents and conditions: (Continued)

- ii) 2-bromopropane, Mg, I₂, THF, -78°C-rt, 3.5h, 54% (brsm), 62% conversion
- c) BnBr, NaH, THF, reflux, 4h, 75%
- d) 1M of TBAF in THF, THF, reflux, 3h, 81.5%
- e) SO₃.NEt₃, DMF, rt, 16h
- f) H₂, 5% Pd/C, methanol, 2h, 42.5% (2 steps)
- g) SO₃.NEt₃, DMF, rt, 24h, 61%

Preparation of disulfated steroid analogs **158** and **161** was shown in Scheme 30.

Scheme 30

- a) SO₃.NEt₃, DMF, 95°C, 16h
- b) H₂, 5% Pd/C, methanol, 2h, 36% (2 steps)

Reagents and conditions: (Continued)

- c) SO₃.NEt₃, DMF, 95°C, 16h, 43.5%
- d) SO₃.NEt₃, DMF, 95°C, 16h, 46.1%

3. Evaluation of the anticancer and antiviral activities of synthetic polyhydroxy sterols and their sulfated analogs

3.1 Evaluation of the anticancer activity of synthetic polyhydroxy sterols and their sulfated analog (Table 9)

Table 9 Cytotoxicity of synthetic polyhydroxy sterols and their sulfated steroid against KB and NCI-H187

Compound	IC ₅₀ μg/ml ^a	
	NCI-H187	KB
HO (130)	2.11	5.39
HO HO (131)	4.24	39.12
HO HO (132)	Inactive ^b	20.51

 Table 9 (Continued)

Compound	IC ₅₀ μ	IC ₅₀ μg/ml ^a	
	NCI-H187	KB	
HO.	Inactive ^b	Inactive ^b	
HO	9.08	Inactive ^b	
HO HO (149)	9.59	10.14	
Na [] O ₃ SO + H (156)	Inactive ^b	Inactive ^b	
Ellipticine	0.57	0.393	
Doxorubicine	0.43	0.16	

NCI-H187, human small cell lung carcinoma; KB, human epidermoid carcinoma of cavity;

^a; Data are typical values from six replicate experiments

^b; Inactive = inhibition < 50%

c; used as reference

3.2 Evaluation of the antiviral activity of sulfated steroids (Table 10)

Table 10 Antiviral HSV-1 activity and cytotoxicity against Vero cells of synthetic sulfated steroids

Compound	Anti-HSV-1	Cytotoxicity
	$IC_{50} \mu g/ml^a$	against Vero
		cell ^b
*Na¯O ₃ SO + H (155)	Inactive	Non-cytotoxic
*Na ⁻ O ₃ SO ⁻ H (158)	Inactive	Non-cytotoxic
*Na*O ₃ SO*** H (161)	Inactive	Non-cytotoxic
Acyclovir ^c	1.5	-

Anti-HSV-1 (Herpes simplex virus type-1)

^a; Data are typical values from six replicate experiments

^b; Cytotoxicity against Vero cells (African green monkey kidney)

c; used as reference

Discussion

Synthesis of sterol orthoesters intermediates

Herein we reported the synthesis of orthoesterol intermediates that were devided into two routes. The first route was performing key intermediates **a** and **b** to perform 9-membered lactone ring **58** for intramolecular strategy. The second route was intermolecular strategy to synthesize key intermediate **127** from Grignard reaction of steroid moiety (60) and Grignard reagent followed by side chain extension as shown in Scheme 31.

Scheme 31

Intramolecular strategy

The first route, both intermediate **a** for McMurry reaction and diene **b** for ring closing metathesis could be prepare from esterification of steroid (89) and steroid (117) with appropriate carboxylic acid (111). Tigogenin (54) and commercially available 20-keto steroid **55** were used as starting material.

Synthesis of intermediate a and b

Preparation of key intermediate 16-hydroxy ketone **89**, we needed to perform α , β -unsaturted ketone **81** which could be synthesized from tigogenin (54) by the method described by Mićović *et al.* (1990). On the other hand, α , β -unsaturted ketone **81** could be obtained from commercially available steroid **55** in 4 steps sequences; hydrogenation using 5% Pd/C in methanol and ethyl acetate, transformation of ketone to enol acetate using acetic anhydride in the presence of *p*-toluenesulfonic acid under reflux, bromination and finally elimination with DBU in toluene under reflux. In the final step (Scheme 32), we found that mole amount of DBU and volume of solvent are significant to give a good yield. The suitable condition is 8 mole equivalent of DBU in 60 mL of toluene : 1 mmol of starting material and reflux for 8 h.

AcO
$$\frac{1}{\hat{H}}$$
(88)

AcO $\frac{1}{\hat{H}}$
(85)

Scheme 32

Next steps were aimed at installing 16-hydroxy group from reductive cleavage of α , β -epoxy ketone and performing the diol group at ring A *via* opening epoxide ring that adapted the procedure reported by Garrido Santos *et al.* (2003) as shown in Scheme 15. Epoxidation reaction of **81** with H_2O_2 in the presence of NaOH in

methanol gave epoxide **85** in good yield. Under this condition acetate group at C-3 was hydrolyzed to give free hydroxyl group at C-3. Tosylation of **85** gave **86** which underwent elimination reaction to give **87**. In tosylation reaction (Scheme 33) with *p*-toluenesulfonyl chloride, dimethylaminopyridine and pyridine was not complete conversion although we tried to optimize the condition with adding more of *p*-toluenesulfonyl chloride and pyridine, leaving reaction longer. It was found that tosylation was complete conversion within 24 h when *p*-toluenesulfonyl chloride was dissolved in dichloromethane and pyridine before adding to a solution of **85** in a mixture of dichloromethane and pyridine.

Scheme 33

Elimination occured at C-2 and C-3 by comparison 1 H NMR spectra of **87** at both positions with the procedure reported by Garrido Santos *et al.* (2003). Reductive ring opening of α , β -epoxy ketone **87** was successfully performed in moderate yield by using hydrazine monohydrate in ethanol. Moreover, reduction with lithium naphthalenide and samarium iodide were also investigated for this reaction and the results were shown in Table 8. Although both conditions gave a satisfy yield and slightly better but both reagents have to generate *in situ* from lithium and samarium metals and they are very sensitive to oxygen and moisture.

Preparation of carboxylic side chain 111 for condensation with 16α -hydroxy steroid 89

First method involved Blaise reaction of hydroxypropionitrile **90**, protected hydroxy propionitrile as benzyl **91**, acetoxy **95** and protected aldehyde propionitrile **103** with ethyl 2-bromo-2, 2-dimethylacetate (92) under sonication followed by acidic hydrolysis led to 1, 3-keto ester as shown in Scheme 16 and 17. Protection of ketone of 1, 3-keto ester derivatives was necessary because after hydrolysis of ester to carboxylic acid, 1, 3-keto acid could easily undergo decarboxylation. Although the attempts to protect this ketone as cyclic ketal and cyclic thiol ketal were investigated, the reaction could not proceed probably due to the sterric hindrance from geminal dimethyl group. Finally, this problem was solved by reduction of ketone to alcohol followed by silylation. Unfortunately, final step to hydrolysis ethyl ester to carboxylic acid was failure. We turned the attention to prepare with another route using inexpensive compound and short synthesis as shown in Scheme 18. The problem in this route was only the first step to generate aldehyde using PCC or IBX. It was found that aldehyde intermediate was unstable in purification step and obtained along with side products as complex mixture.

Condensation between steroid **89** and carboxylic acid side chain **111** was successful by generation of active species, acid chloride from **111** using oxalyl chloride in the presence of *N*,*N*-dimethylformamide, slightly excess mole equivalent of DMAP base on mole amount of acid side chain **111** to prevent the acidic condition that might lead to obtain elimination product.

However, attempts to oxidize the terminal olefin of steroid **a** with ozonolysis could not provide the expected **113**, only the by-product **162** was observed (Scheme 34).

$$O_{ACO} = O_{ACO} = O_{A$$

Scheme 34

After we could not synthesize **113** for McMurry reaction, we hoped to utilize ring closing metathesis to form 9-membered ring *via* diene **b** which could be prepared from condensation between steroid **117** and carboxylic acid side chain **111**.

Preparation of 2α , 3α -epoxy- 16α -hydroxy-20-methyl- 5α -pregn-20-ene (117)

Firstly, steroid **89** underwent wittig reaction using Ph₃P⁺CH₃Γ and *n*BuLi in THF without protection of 16α-hydroxyl group to provide only unexpected the elimination product **163** instead of the desired olefinic steroid **117**. From this result, protection of 16α-hydroxyl group was necessary but silylation of steroid **89** gave unexpected diol **164** (Scheme 35). We needed to use steroid **88** for preparation of appropriate steroid **117** as shown in Scheme 20. Compound **115** underwent wittig reaction to provide desired product **116** in trace amount which was desilylated with TBAF.H₂O to give the corresponding 16α-hydroxy olefinic steroid **117**.

Scheme 35

Unfortunately condensation between steroid 117 and carboxylic acid side chain 111 by generation of active species, acid chloride from 111 to give unexpected 118 instead of intermediate **b** as shown in Scheme 36.

Scheme 36

Intermolecular strategy

Initially, we aimed at performing diol at C-2 (β) and C-3 (α) in ring A before completing side chain by selective protection at C-24 of steroid **121**.

Preparation of 20-keto ester **60** had been accomplished from spiro ring degradation of tigogenin (54), synthesized from hydrogenation of diosgenin (59). It appeared that in work up step was crucial to avoid side product **81** from elimination reaction (Scheme 37) by neutralization with saturated sodium hydrogen carbonate until litmus testing was slightly basic (pH 7-8).

Scheme 37

Grignard reaction of compound **60** and butenyl magnesium bromide provided triol intermediate which was protected as cyclic ketal with 2, 2-dimethoxypropane in the presence of *p*-toluenesulfonic acid. Side chain extension was achieved *via* two steps sequences; ozonolysis of compound **119** followed by nucleophilic addition to provide compound **121**. However, attempts to protect selectively only at C-24 of **121** with *tert*-butyldimethylsilyl chloride could not confirm the expected silylether **122** because appearance products were obtained as very trace amount which could not further continue to prove the selectivity.

unexpected results were obsevered, we turned our attention perform side firstly. Silylation 119 C-3 with chain of at butyldimethylsilyltrifluoromethanesulfonate in the presence of 2, 6-lutidine gave silvlether 123 which underwent ozonolysis followed by nucleophilic addition with Grignard reagent to provide 24-hydroxyl cholesterol like side chain **124**. Whereas the problems at the second step have been observed as by-product occurring 165 and not completing conversion (Scheme 38).

After the problems have been considered, it was found that reaction temperature and rate of addition of aldehyde intermediate to generated Grignard reagent were crucial to solve the problems. This Grignard reaction should occur at low temperature (-78°C) and slowly warm to room temperature and should control rate of addition to be dropwise. Oxidation of secondary alcohol of **124** with PCC in dichloromethane in the presence of NaOAc or pyridine was achieved in good yield. Nucleophilic addition of vinyl magnesium bromide to ketone **125** under refluxing provided tertiary alcohol **126** which was rearranged to allylic alcohol **127** in 2 steps; oxidation with PCC to α , β -unsaturated aldehyde intermediate and reduction of this

Scheme 38

aldehyde with NaBH₄ to allylic alcohol. Many side products were observed in oxidation reaction of **129** with PCC to result in low yield of desired aldehyde product.

With tertiary alcohol **126** and allylic alcohol **127** in hand, deoxygenation of both would lead to sterol orthoester B side chain. However, treatment of **126** with phosphorus tribromide in the presence of pyridine in dichloromethane did not provide desired product **166** whereas only starting material was observed. Bromination of **127** with phosphorus tribromide in the presence of pyridine in dichloromethane followed by reduction using lithium aluminium hydride to provide the unstable product which decomposed after purification (Scheme 39).

Scheme 39

Synthesis of polyhydroxy sterols and sulfate analogs

Six new synthetic polyoxygenated steroids, 3β , 20(S), 24-trihydroxy- 5α -cholestane (130), 3β , 20(S)-dihydroxy- 5α -cholest-24-ene (131) and 3β , 20(S)-dihydroxy- 5α -cholestane (132), 2β , 3α , 20(S), 24-tetrahydroxy- 5α -cholestane (145), 2β , 3α , 20(S)-trihydroxy- 5α -cholest-24-ene (147) and 2β , 3α , 20(S)-trihydroxy- 5α -cholestane (149), have been synthesized starting from commercially available 3β -acetoxy-5-pregnen-20-one (55).

Compound **129** was chosen to prove the configuration at C-20 by nuclear overhauser experiment (NOE) measurement. The *S* configuration at C-20 was indicated by NOE enhancement between H-12*eq* and Me-21.

For synthesis of 2, 3, 20-polyhydroxy sterols, compound **138**, **139** and **141** underwent epoxide ring opening under acidic condition to always provide two isomers. The stereochemistry of both at CH-2 and CH-3 was indicated by comparison of ¹H NMR (Cruz Silva *et al.*, 2005). The desired isomer was obtained as a major product while the ratio of both was not reproducible.

Sulfation was performed using triethylamine-sulfur trioxide complex as the sulfating agent in N,N-dimethylformamide. Benzylation of hydroxyl group at C-24 was chosen as protecting group because the crude product after sulfation could dissolve only in ethanol or methanol and Pd/C was easy to remove without extraction and separation steps. Whereas purification of synthetic sulfated steroids was not successful. Unexpected peaks of proton signal were observed at δ 3.21 as triplet and 1.21 as quartet although purification was repeated by flash column chromatography and first eluted with dichloromethane before using solvent system as a mixture of methanol and dichloromethane in ratio 3:97 to elute target sulfated product. However, expected pattern could be found particularly proton signal at δ 4.20-4.30 for monosulfate and δ 4.60-4.70 for disulfate that indicated sulfation was performed.

Biological activity testing

Comparison on cytotoxicity of compounds which have the different functional groups on the cholesterol like side chain in the presence of hydroxyl group at C-3 (β) showed that compound **130** bearing the hydroxyl group at C-24 showed strong activities against all tested cells [KB (IC₅₀ = 5.39 µg/ml) and NCI-H187 (IC₅₀ = 2.11 µg/ml)] whereas compound **131** containing double bond at C-24 on side chain showed very potent cytotoxicity against NCI-H187 (IC₅₀ = 4.24 µg/ml), low against KB (IC₅₀ = 39.12 µg/ml) and compound **132** that has no functional group on side chain is inactive against NCI-H187 but moderate against KB (IC₅₀ = 20.51 µg/ml).

Surprisingly, it was found that steroids which contain dihydroxy at C-2 (β) and C-3 (α) showed the different results which are i) compound **145** bearing the hydroxyl group at C-24 showed no cytotoxicity in all tested cells, ii) compound **147** containing double bond at C-24 on side chain showed decreasing the activity in all tested cells with no activity against KB and lower for NCI (IC₅₀ = 9.08 µg/ml) and iii) compound **149** that has no functional group on side chain exhibited strong activity both of KB and NCI cell lines with IC₅₀ = 10.14 and 9.59 µg/ml respectively.

Sulfated steroid **156**, having sulfate group at C-3 and no functional group on side chain, showed no cytotoxicity in all tested cells (Table 9).

Three synthetic sulfated steroids, **155**, **158** and **161** were tested for anti-viral activity HSV-1 (herpes simplex virus type-1). From the results (Table 10), all of them were inactive for HSV-1.

CONCLUSION

Sterol orthoesters which are marine natural products, isolated from the Caribbean sponge *Petrosia weinbergi*, exhibited *in vitro* activity against the feline leukemia virus (FeL V), mouse influenza virus (PR8) and mouse corona virus (A59). Recently, there has been no report on the synthesis of sterol orthoesters and their intermediates, therefore synthesis of their intermediates has been explored by us.

Our strategies to synthesize sterol orthoesters were devided into two routes, i) intramolecular coupling reaction using McMurry reaction or ring closing metathesis as key steps and ii) intermolecular coupling reaction using Grignard reaction as a key step.

First route, two key intermediates, 2α , 3α -epoxy- 16α -(3-acetoxy-2, 2-dimethyl-5-hexenoate)- 5α -pregnan-20-one (a) for McMurry reaction and 16α -(3-acetoxy-2, 2-dimethyl-5-hexenoate)-2, 3-dihydroxy-20-methyl- 5α -pregn-20-en (118) for ring closing metathesis have been successfully synthesized in 10 and 13 steps with 11.9% and 0.12% overall yield, respectively by using tigogenin (54) which could be obtained from waste of *Agave sisalana* leaves or commercially available 3β -acetoxy-5-pregnen-20-one (55) as starting material.

 2α , 3α -Epoxy- 16α -(3-acetoxy-2, 2-dimethyl-5-hexenoate)- 5α -pregnan-20-one (a), obtained from esterification of 2α , 3α -epoxy- 16α -hydroxy- 5α -pregnan-20-one (89) and 3-acetoxy-2, 2-dimethyl-5-hexenoic acid (111), would be further oxidized to prepare dicarbonyl intermediate for McMurry reaction and 16α -(3-acetoxy-2, 2-dimethyl-5-hexenoate)-2, 3-dihydroxy-20-methyl- 5α -pregn-20-ene (118), synthesized from esterification of 2α , 3α -epoxy- 16α -hydroxy-20-methyl- 5α -20-pregnene (117) and 3-acetoxy-2,2-dimethyl-5-hexenoic acid (111), would be further cyclized *via* ring closing metathesis to form 9-membered lactone ring.

On the other hand, synthesis of 3β -tert-butyldimethylsiloxy-29-hydroxy-(16*S*, 20*S*)-16, 20-acetonide- 5α -cholest-24(28)-ene (127) has been accomplished *via*

intermolecular strategy, Grignard reaction as the key step, using cheaply available diosgenin (59) as a starting material in 8 steps with 0.55% overall yield. Compound 127 can be used as a key intermediate for the synthesis of sterol orthoesters.

Furthermore, we were interested in the synthesis of new polyhydroxy sterols by various functionalities in ring A as monohydroxyl group at C-3 (β) or dihydroxyl group at C-2 (β) and C-3 (α) and differ on side chain and their sulfated analogs for studying the effect on cytotoxicity against two cancer cell lines, human epidermoid carcinoma (KB) and human small cell lung carcinoma (NCI-H187).

Six new polyhydroxy sterols, 3 β , 20(S), 24-trihydroxy-5 α -cholestane (130), 3 β , 20(S)-dihydroxy-5 α -cholest-24-ene (131), 3 β , 20(S)-dihydroxy-5 α -cholestane (132), 2 β , 3 α , 20(S), 24-tetrahydroxy-5 α -cholestane (145), 2 β , 3 α , 20(S)-trihydroxy-5 α -cholest-24-ene (147) and 2 β , 3 α , 20(S)-trihydroxy-5 α -cholestane (149) have been synthesized by using Grignard reaction as a key step. The results of their anticancer activity showed that most of synthetic polyhydroxy sterols exhibited biological activities against both KB and NCI-H187 cell lines. Especially, 3 β , 20(S), 24-trihydroxy-5 α -cholestane (130) bearing trihydroxyl group at C-3, C-20 and C-24 showed the strongest activity against both cell lines (IC50 (μ g/mL) = 5.39 (for KB) and 2.11 (for NCI-H187) whereas 2 β , 3 α , 20(S), 24-tetrahydroxy-5 α -cholestane (145) containing extra hydroxyl group at C-2 in ring A was inactive against both cell lines. Moreover, their sulfated analogs have been synthesized and evaluated for their antiviral activity against herpes simplex virus type-1 but both monosulfated 155 and disulfated 158 and 161 showed no activity against HSV-1.

LITERATURE CITED

- Aiello, A., E. Fattorusso and M. Menna. 1992. Four new bioactive polyhydroxylated sterols from the black coral *Antipathes subpinnata*. **J. Nat. Prod.** 55: 321-325.
- Anderson, L., L. Bohlin, M. Iorizzi, R. Riccio, L. Minale and W. Moreno-Lo'pez. 1989. Biological activity of saponins and saponin like compounds from starfish and brittle-stars. **Toxicon** 27: 179-88.
- Barton, D.H.R., R.H. Hesse, M.M. Pechet and E. Rizzardo. 1973. A convenient synthesis of 1α-hydroxy-vitamin D₃. **J. Am. Chem. Soc.** 95: 2748-2749.
- Benvegnu', R., G. Cimino, S. De Rosa and S. De Stefano. 1982. Guggulsterol-like steroids from the Mediterranean gorgonian *Leptogorgia sarmentosa*. **Experientia** 38: 1443-1444.
- Bifulco, G., I. Bruno, L. Minale and R. Riccio. 1994. Novel HIV-inhibitory halistanol sulfates F-H from a marine sponge, *Pseudoaxinissa digitata*. **J. Na.t Prod.** 57: 164-167.
- Boonananwong, S. 2007. Part I: Synthesis of C-3, C-16 and C-20 polyoxygenated steroids isolated from marine organisms with anticancer activity. Part II: 3-, 4- and 5 component cascade reaction using palladium catalyst. Part III: Asymmetric 1, 3-dipolar cycloaddition reaction and development of a new class of chiral phosphoramidites for asymmetric catalysis. Ph.D. Thesis, Kasetsart University.
- ______, B. Kongkathip and N. Kongkathip. 2008a. First synthesis of 3, 16, 20-polyoxygenated cholestanes, new cytotoxic steroids from the gorgonian *Leptogorgia sarmentosa*. **Steroids** 73: 1123-1127.

164 and . 2008b. Synthesis and biological evaluation of 3, 16, 20polyoxygenated steroids of marine origin and their analogs. Kasetsart J. (Nat Sci.) 42: 531-542. Brien, J.O., I, Wilson, T. Orton and F. Pognan. 2000. Investigation of the alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 267: 5421-5426. Bunyathaworn, P., S. Boonananwong, B. Kongkathip and N. Kongkathip. 2010. Further study on synthesis and evaluation of 3, 16, 20-polyoxygenated steroids of marine origin and their analogs as potent cytotoxic agents. Steroids 75: 432-444. Carmeron, A.F.B., R.M. Evans, J.C. Hamlet, J.S. Hunt, P.G. Jones and A.G. Long. 1955. Studies in the synthesis of cortisone. Part XII. Improvement in the conversion of sapogenins into pregnan-20-one. J. Chem. Soc. 77: 2807-2816. Chaosuansharoen, N. 2004. Synthesis of aglycones of the potent anti-tumor steroidal saponin OSW-1 from diosgenin. Ph.D. Thesis, Kasetsart University. Chaudhuri, N.K. and M. Gut. 1969. Ethynylation of 17α-hydroxypregnenolone-3acetate. Stereochemistry and acid-catalyzed rearrangement of the reaction product. J. Org. Chem. 34: 3754-3759.

Cimino, G., S. De Rosa, S. De Stefano and G. Sodano. 1984. C-18 Hydroxy steroids from the Mediterranean gorgonian Leptogorgia sarmentosa. Experientia 40: 246-248.

 20α -dihydroxy cholesterol. **J. Org. Chem.** 34: 3759-3766.

, J.G. Williams, R. Nickolson and M. Gut. 1969. Stereochemistry of the

addition reactions of grignard reagents to 20-keto steroids. Synthesis of 17α ,

,, and G. Scognamiglio. 1981. Cholest-4,14-dien-
15,20ξ-diol-3,16-dione, a novel polyoxygenated marine steroid that easily
loses the side chain. Tetrahedron Lett. 22: 3013-3016.
Cole, W. and P.L. Julian. 1953. Steroids. XIV. Reduction of epoxy ketone by
chromous salts. J. Org. Chem. 68: 3658-3662.
Comin, M.J., M.S. Maier, A.J. Roccatagliata, C.A. Pujol and E.B. Damonte. 1999.
Evaluation of the antiviral activity of natural sulfated polyhydroxysteroids and
their synthetic derivatives and analogs. Steroids 64: 335-340.
, E. Elhalem and J.B. Rodriguez. 2004. Cerium ammonium nitrate: a new
catalyst for regioselective protection of glycols. Tetrahedron 60: 11851-
11860.
Corey, E.J. and H.E. Ensley. 1973. Highly stereoselective conversion of
prostaglandin A_2 to the 10.11α -oxido derivative using a remotely placed
exogenous directing group. J. Org. Chem. 38: 3187-3189.
Chogenous university of Sign Chamber of City City
Cruz Silva, M.M., S. Riva and M.L. Sa' e Melo. 2005. Regioselective enzymatic
acylation of vicinal diols of steroids. Tetrahedron 61: 3065-3073.
D' Auria, M.V., L. Minale and R. Riccio. 1993. Polyoxygenated steroids of
marine origin. Chem. Rev. 93: 1839-1895.
Das, B. and K.V.N.S. Srinivas. 1992. Studies on marine chemicals, Part IV. isolation
of cholesterol derivatives from the marine sponge Spirastrella inconstans.
J. Nat. Prod. 55: 1310-1312.
, and S. Padma Rao. 1993. Studies on marine chemicals, part VI. A
new clionasterol derivative from the marine sponge <i>Spirastrella inconstans</i> .
J. Nat. Prod. 56: 2210-2211.

- Djerassi, C., G. Rosenkranz, J. Iriarte, J. Berlin and J. Romo. 1951. Steroids. XII: Aromatization experiments in the progesterone series. **J. Am. Chem. Soc.** 73: 1523-1527.
- Fu, X. and F.J. Schmitz. 1994. Inhibitors of protein tyrosine kinase pp60^{v-src} sterol sulfates from the brittle star *Ophiarachna incrassata*. **J. Nat. Prod.** 57: 1591-1594.
- Fuchs, P.L., S.C. Seongkon, C. Guo and T.G. Lacour. 1999. Synthesis of the north 1 unit of the cephalostatin family from hecogenin acetate. **J. Chem. Soc.** 121: 2056-2070.
- Fukushima, D.K., A.D. Kemp, R. Schneider, M.B. Stokem and T.F. Gallagher. 1954. Steroid metabolism. XXV. Isolation and characterization of new urinary steroids. **J. Bio. Chem.** 210: 129-37.
- Fusetani, N., S. Matsunga and S. Konosu. 1981. Bioactive marine metabolites II. Halistanol sulfate, an antimicrobial novel steroid sulfate from the marine sponge *Halichindria* CF. *moorei* bergquist. **Tetrahedron Lett.** 22: 1985-88.
- Garrido, L., E. Zubia, M.J. Ortega and J. Salva'. 2000. Isolation and structure elucidation of new cytotoxic steroids from the gorgonian *Leptogorgia* sarmentosa. **Steroids** 65: 85-88.
- Garrido Santos, G.A., A.P. Murray, C.A. Pujol, E.B. Damonte and M.S. Maier. 2003. Synthesis and antiviral activity of sulfated and acetylated derivatives of 2β, 3α-dihydroxy-5α-cholestane. **Steroids** 68: 125-132.
- Giner, J.L. and J. Faraldos. 2002. A biomimetic approach to the synthesis of an antiviral marine steroidal orthoester. **J. Org. Chem.** 67: 2717-2720.

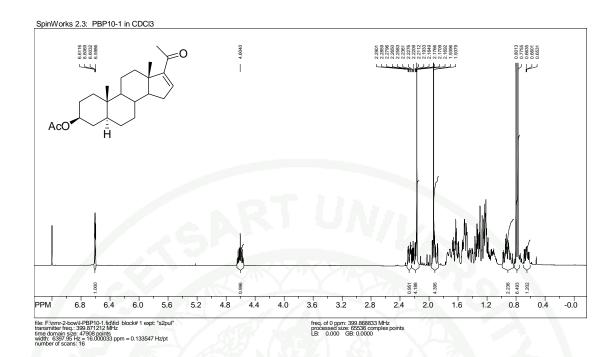
- Goswami, A.R.K., R.C. Rastogi and A.C. Ghosh. 2003. A one-pot efficient process for 16-dehydropregnenolone acetate. **Organic Process Research & Development** 7: 306-308.
- Greene, A.E., M.A. Teixeira, E. Barreiro, A. Cruz and P. Crabbe. 1982. The total synthesis of prostaglandins by the tropolone route. **J. Org. Chem.** 47: 2553-2564.
- Grieco, P.A., M. Nishizawa, S.D. Burke and N. Marinovic. 1976. Total synthesis of (±)-vernolepin and (±)-vernomenin. **J. Am. Chem. Soc.** 98: 1612-1613.
- Hardouin, C., F. Chevallier, B. Rousseau and E. Doris. 2001. Cp₂TiCl-mediated selective reduction of α , β -epoxy ketones. **J. Org. Chem.** 66: 1046-1048.
- Hasakunpaisarn, A., Pol. Capt. 2000. **Synthesis of Estradiol and Derivatives**. M.S. Thesis, Kasetsart University.
- ______. 2005. Part I: Synthesis of 9, 11-secosterols; anticancer agent. Part II: Palladium catalysed cascade reaction and selective monohydration of malononitrile derivatives. Ph.D. Thesis, Kasetsart University.
- Hirschmann, H. and M.A. Dana. 1959. Preparation of pregnane- 3α , 16α , 20α -triol and of two of its stereoisomers. **J. Org. Chem.** 24: 1114-1119.
- ______, F.B. Hirschmann and A.P. Zala. 1961. Isolation of two new 16α hydroxy steroids from human pregnancy urine. **J. Bio. Chem.** 236: 3141-3146.
- Honda, T., M. Katoh and S.I. Yamane. 1996. Stereoselective synthesis of petrosterol and a formal synthesis of aragusterols. **J. Chem. Soc., Perkin Trans.** 1: 2291-2296.

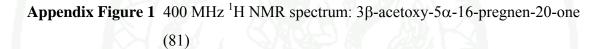
- Hunt, L., M. Jordan, M. De Jesus and F.M. Wurm. 1999. GFP-expressing mammalian cells for fast, sensitive, noninvasive cell growth assessment in a kinetic mode.Biotechnol and Bioeng. 65: 201-205.
- Jankowska, R., G.L. Mhehe and H.J. Liu. 1999. Lithium naphthalenide induced reductive cleavage of α , β -epoxy ketones: an efficient procedure for the preparation of β -hydroxy ketones. **Chem. Commun.** 1581-1582.
- Johnson, W.S., W.R. Bartlett, B.A. Creskis, A. Gautier, C.H. Lee, R. Lemoine, E.J. Leopold, G.R. Luedtke and K.J. Bancroft. 1999. The fluorine atom as a cation-stabilizing auxiliary in biomimetic polyene cyclization: Total synthesis of *dl*-dammarenediol. **J. Org. Chem.** 64: 9587-9595.
- Kametani, T., T. Katoh, M. Tsubuki and T. Honda. 1986. One-step stereochemical determination of contiguous four acyclic chiral centers on the steroidal side chain: A novel synthesis of brassinolide. **J. Am. Chem. Soc.** 108: 7055-7060.
- Kanazawa, S., N. Fusetani and S. Matsunaga. 1992. Halistanol sulfates A-E, new steroid sulfates, from a marine sponge, *Epipolasis* sp. **Tetrahedron** 48: 5467-5472.
- Karl, M., F. Hugo, M. Charles and W. Albert. 1949. Degradation of the steroid side chain. **US Patent**.
- Kerr R.G. and B.J. Baker. 1991. Marine sterols. Nat Prod Rep. 8: 465-497.
- Khunnavutimanotum, P. 1998. **Synthesis of Intermediate of Triamcinolone and a Diastereomer from** *Agave sisalana*. M.S.Thesis, Kasetsart University.
- Koehn, F.E., M. Gunasekera and S.S. Cross. 1991. New antiviral sterol disulfate orthoesters from the marine sponge *Petrosia weinbergi* **J. Org. Chem.** 56: 1322-1325.

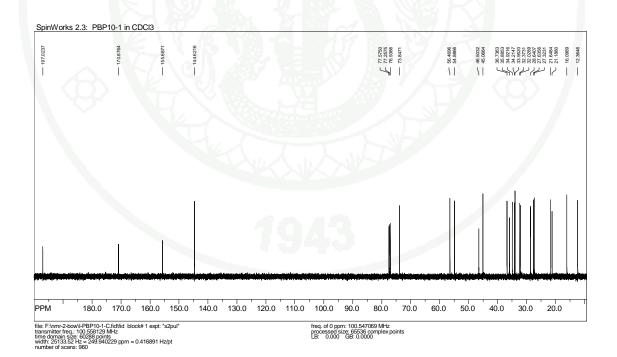
- Marshall, C.W., T.H. Kritchevsky, S. Lieberman and T.F. Gallagher. 1948. Preparation of 17-keto steroids from enol acetates of 20-keto steroids. **J. Am. Chem. Soc.** 70: 1837-1839.
- McChesney, J.D. and T.N. Thompson. 1985. Stereochemistry of the reductive alkylation of α , β -epoxy ketone. **J. Org. Chem.** 50: 3473-3481.
- McKee T.C., J.H. Cardellina, R. Riccio, M.V. D' Auria, M. Iorizzi, L. Minale, R.A. Moran, R.J. Gulakowski, J.B. McMahon, R.W. Buckheit, K.M. Snader and M.R. Boyd. 1994. HIV-inhibitory natural products. 11. Comparative studies of sulfated sterols from marine invertebrates. **J. Med. Chem.** 37: 793-797.
- Mićović, I.V., M.D. Ivanovic and D.M. Piatak. 1990. Simplified preparation of 16-d ehydropregnenolone acetate. **Synthesis** 7: 591-592.
- Mijares, A., D.F. Cargill, J.A. Glasel and S. Lieberman. 1967. Studies on the C-20 epimers of 20-hydroxycholesterol. **J. Org. Chem.** 32: 810-812.

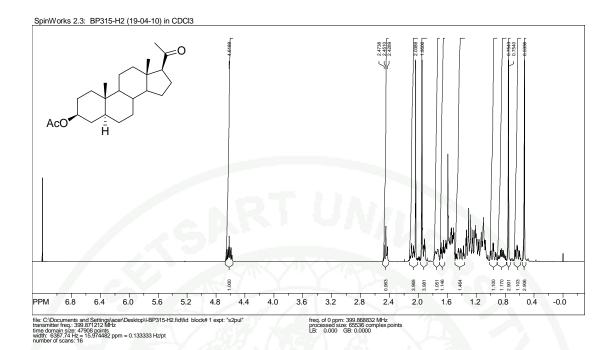
- Milkova, Ts.S., B.P. Mikhova, N.M. Nikolov and S.S. Popov. 1992. Two new polyhydroxylated sterols from the sponge *Dysidea fragilis*. **J. Nat. Prod.** 55: 974-978.
- Miyashita, M., T. Suzuki, M. Hoshino and A. Yoshikoshi. 1997. The organoselenium-mediated reduction of α, β-epoxy ketones, α, β-epoxy esters, and their congeners to β-hydroxy carbonyl compounds: novel methodologies for the synthesis od aldols and their anologues. **Tetrahedron** 53(37): 12469-12486.
- Molander, G.A. and G. Hahn. 1986. Lanthanides in organic synthesis. 4. Reduction of α, β-epoxy ketones with samarium diiodide. A route to chiral, nonracemic aldols. **J. Org. Chem.** 51: 2596-2599.
- Mongkolsripatana, P. 1997. **Synthesis of Prednisolone from Plant's Steroids.**M.S. Thesis, Kasetsart University.
- Moreno, M., M.J.S., M.L. Sa e Melo and A.S.C. Neves. 1993. Sonochemical reduction of α , β -epoxy ketones and α' -oxygenated analogs by aluminium amalgam. **Tetrahedron Lett.** 34: 353-356.
- Nakatsu, T., R.P. Walker, J.E. Thompson and D.J. Faulkner. 1983. **Experientia** 39: 759-761.
- Nes, W.R. and T.E. Varkey. 1976. Conformational analysis of the 17(20) bond of 20-keto steroid. **J. Org. Chem.** 41: 1652-1653.
- Notaro, G., V. Piccialli and D. Sica. 1991. 3β, 5α, 6β-Trihydroxylated sterols with a saturated nucleus from two populations of the marine sponge *Cliona copiosa*. **J. Nat. Prod.** 54: 1570-1575.

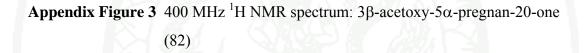
, and 1992a. New $\Delta^{8(14)}$ -3 β , 7α -dihydroxysterols from the
marine sponge <i>Pellina semitubulosa</i> . J. Nat. Prod. 55: 773-779.
, and 1992b. New steroidal hydroxyketones and closely
related diols from the marine sponge Cliona copiosa. J. Nat. Prod. 55: 1588-
1594.
Paulson, H., K. Eberstein and W. Koebernick. 1974. Einfache umwandlung von
epoxy ketosen in desoxy-ketosen use in didesoxy-halo-ketosen.
Tetrahedron Lett. 15: 4377-4380.
Plattner, Pl.A., L. Ruzicka, H. Heusser and E. Angliker. 1947. Steroids and sex
hormones. CXXXVI. Synthesis of 14-hydroxy steroids. 2. Compounds of the
allopregnanolone series. Helvetica Chimica Acta. 30: 385-394.
Robinson, C.H. and R. Henderson. 1972. Reduction of α , β -oxidoketones with
chromous acetate. Synthesis of 3β, 5β, 17β, 19-tetrahydroxy-5β-androstane, a
degradation product of strophanthidin. J. Org. Chem. 37: 565-568.
Sakee, U., B. Kongkathip and N. Kongkathip. 2003a. Efficient synthesis of 16α-
methyl cyproterone acetate. J. Chem. Research (S). 12-13.
, and 2003b. The first synthesis of 16β -chloro- and 16β -
bromo-cyproterone acetate. Synth. Commun. 33: 695-1706.
Salvador, A.R., A.J. Leitao, M.L.S. Melo and J. Hanson. 2005. Hydrazine hydrate
induced reductive cleavage of α , β -epoxy ketones: an efficient procedure for
the preparation of β -hydroxy ketones. Tetrahedron 46: 1067-1070.
Sun, H.H., S.S Cross, M. Gunasekera and F.E. Koehn. 1991. Weinbersterol disulfates

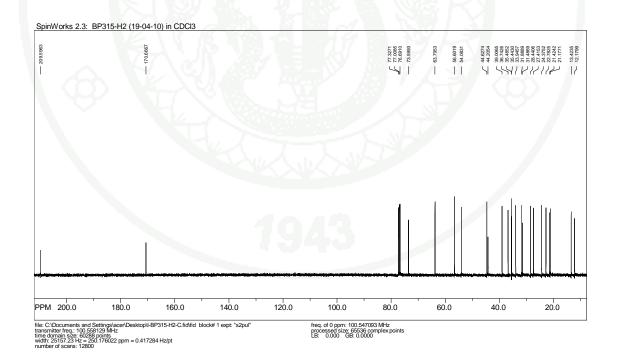

Tetrahedron 47: 1185-1190.

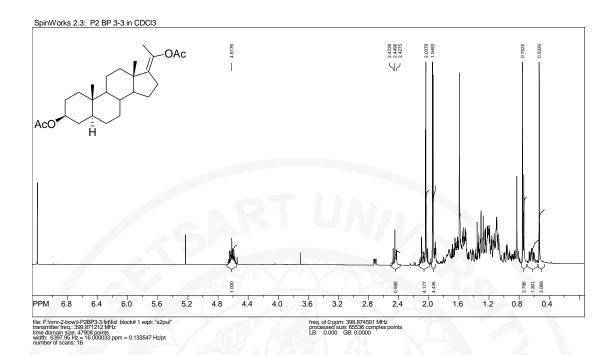

A and B, antiviral steroid sulfates from the sponge Petrosia weinbergi.

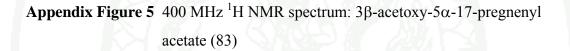

Yamada, Y., H. Miyome, H. Miyaoka and M. Nakano. 1995. Synthesis of antitumor steroid aragusterols. **Tetrahedron Lett.** 36: 8231-8234.

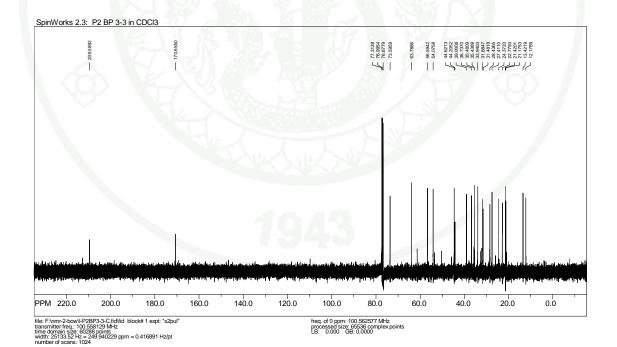


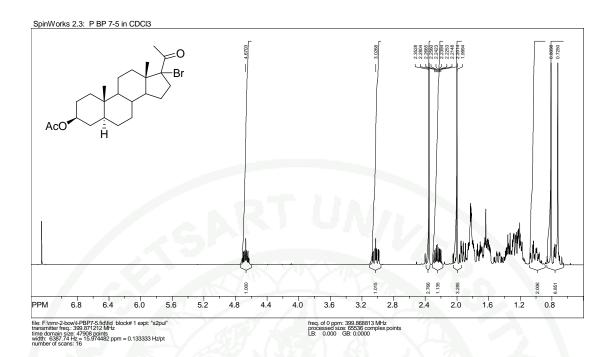


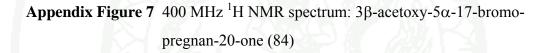


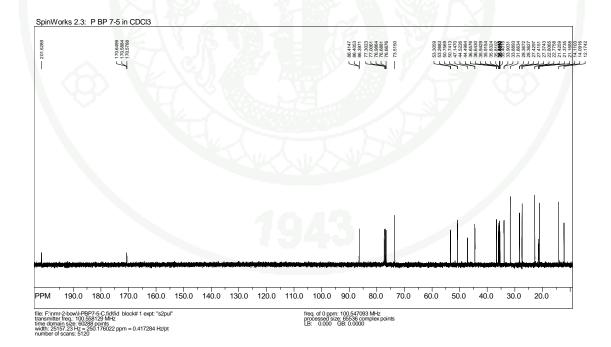

Appendix Figure 2 100 MHz 13 C NMR spectrum: 3β -acetoxy- 5α -16-pregnen-20-one (81)

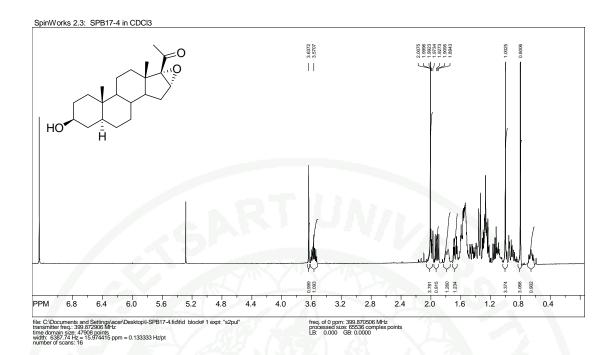


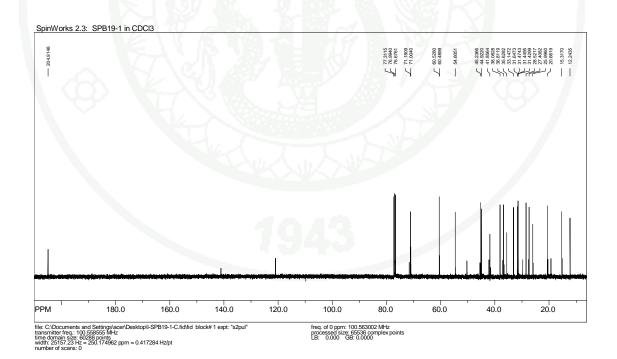


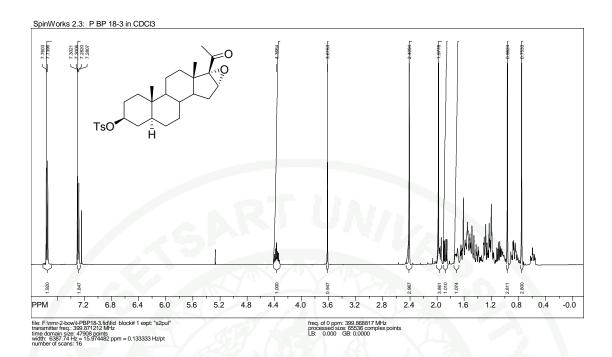

Appendix Figure 4 100 MHz 13 C NMR spectrum: 3β -acetoxy- 5α -pregnan-20-one (82)

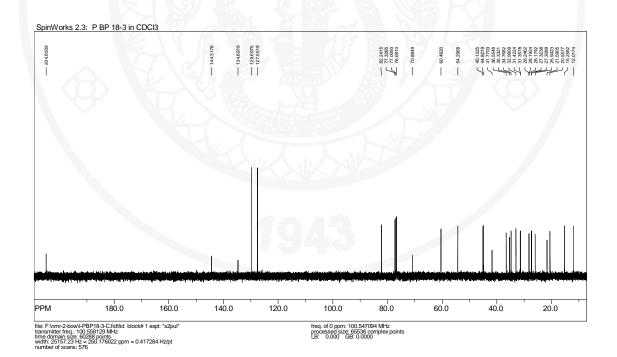


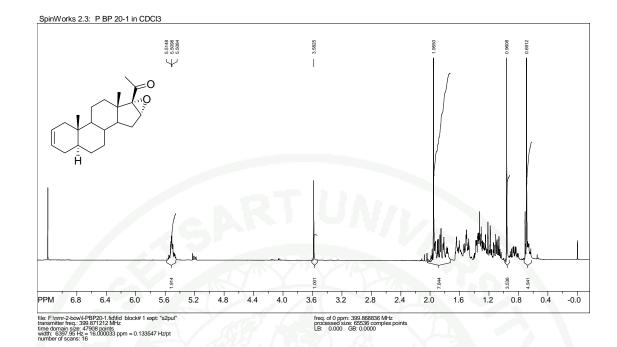


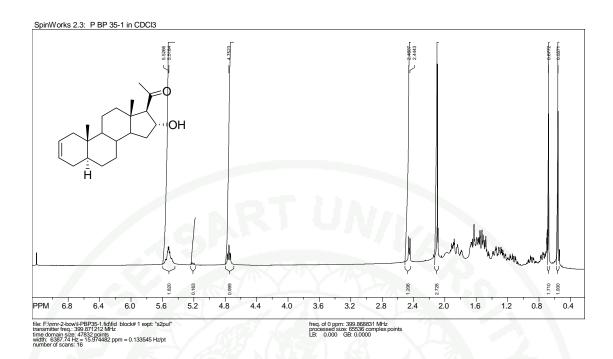

Appendix Figure 6 100 MHz 13 C NMR spectrum: 3β -acetoxy- 5α -17-pregnenyl acetate (83)

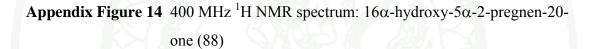


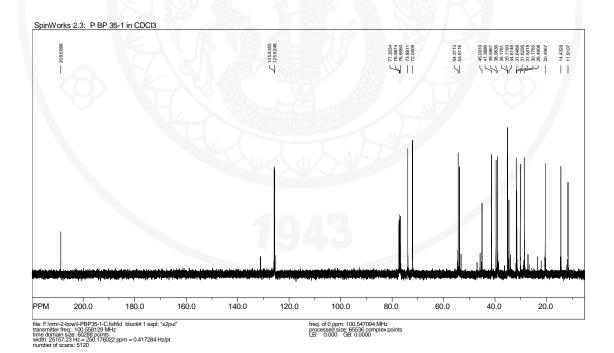

Appendix Figure 8 100 MHz 13 C NMR spectrum: 3β -acetoxy- 5α -17-bromo-pregnan-20-one (84)

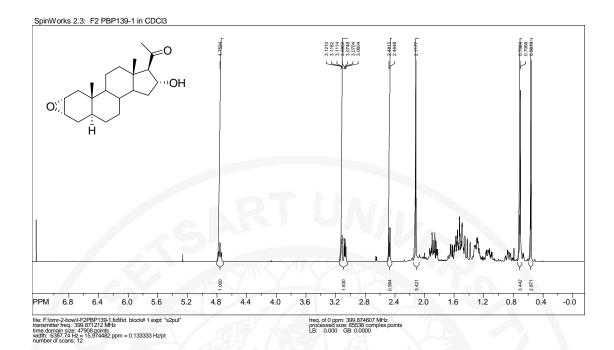

Appendix Figure 9 400 MHz ¹H NMR spectrum: 16α, 17α-epoxy-3β-hydroxy-5α-pregnan-20-one (85)

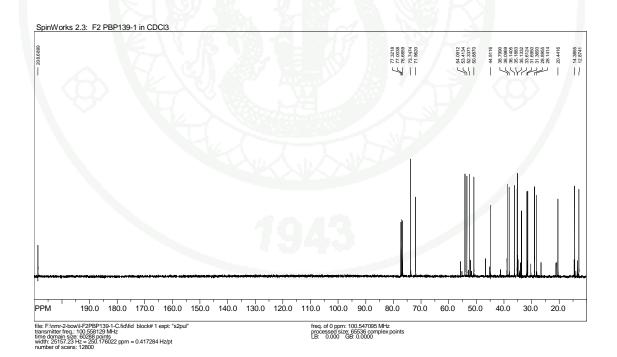

Appendix Figure 10 100 MHz 13 C NMR spectrum: 16α , 17α -epoxy- 3β -hydroxy- 5α - pregnan-20-one (85)

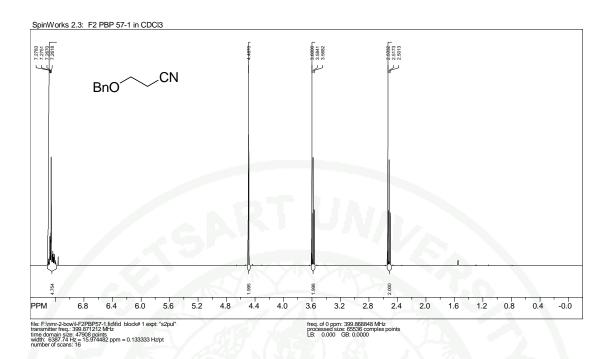

Appendix Figure 11 400 MHz ¹H NMR spectrum: 16α, 17α-epoxy-3β-tosyloxy-5α-pregnan-20-one (86)

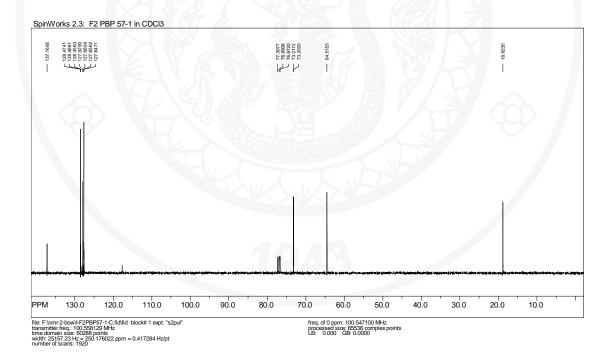


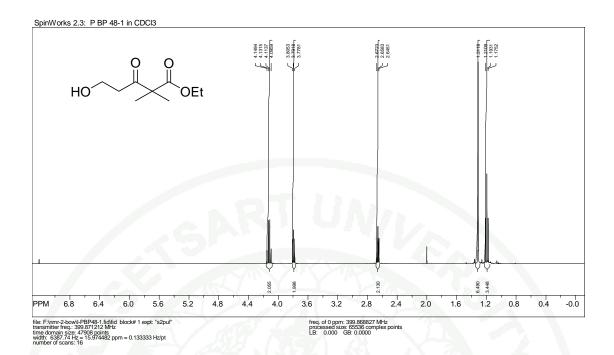

Appendix Figure 12 100 MHz 13 C NMR spectrum: 16α , 17α -epoxy- 3β -tosyloxy- 5α -pregnan-20-one (86)

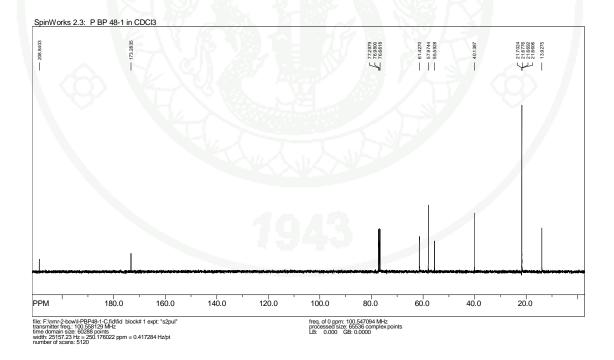

Appendix Figure 13 400 MHz 1 H NMR spectrum: 16α , 17α -epoxy- 5α -2-pregnen-20-one (87)

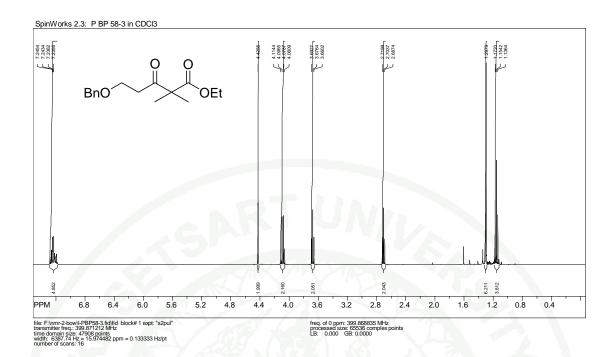


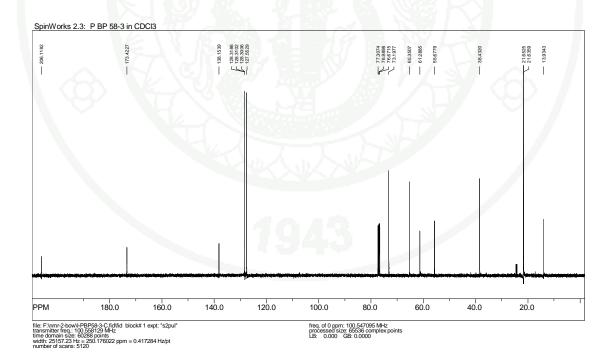

Appendix Figure 15 100 MHz 13 C NMR spectrum: 16α -hydroxy- 5α -2-pregnen-20-one (88)

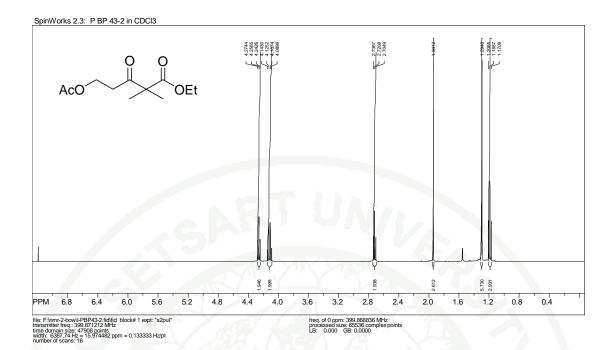

Appendix Figure 16 400 MHz 1 H NMR spectrum: 2α , 3α -epoxy- 16α -hydroxy- 5α -pregnan-20-one (89)

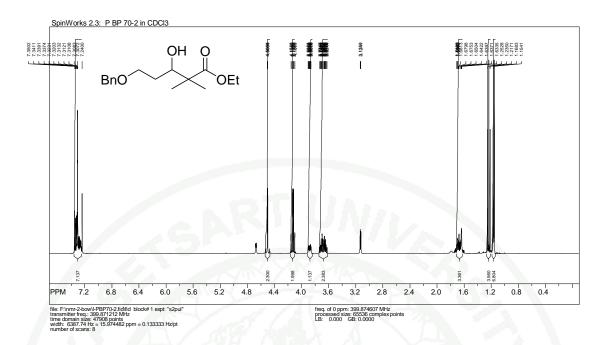

Appendix Figure 17 100 MHz 13 C NMR spectrum: 2α , 3α -epoxy- 16α -hydroxy- 5α -pregnan-20-one (89)

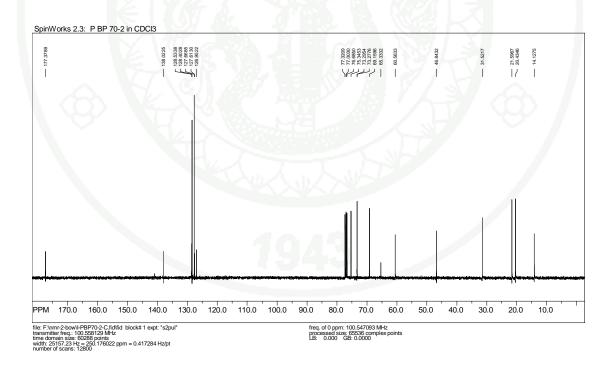

Appendix Figure 18 400 MHz ¹H NMR spectrum: 3-benzyloxypropionitrile (91)

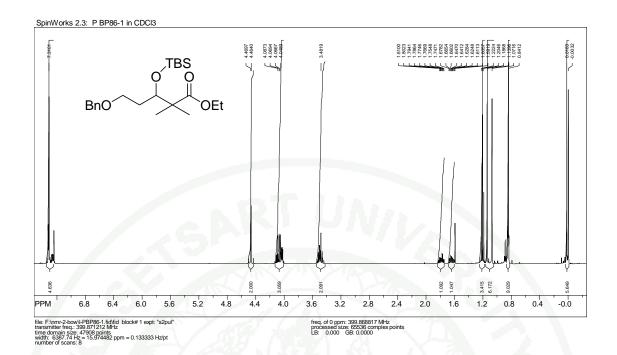

Appendix Figure 19 100 MHz ¹³C NMR spectrum: 3-benzyloxypropionitrile (91)

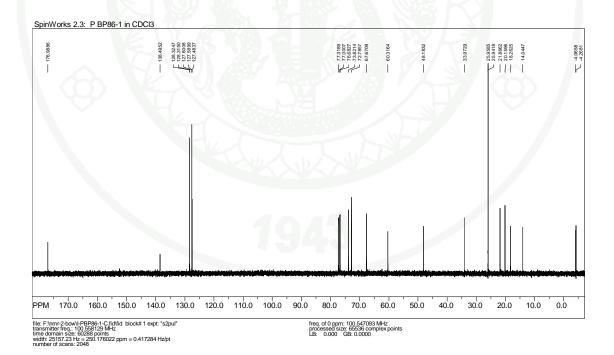

Appendix Figure 20 400 MHz ¹H NMR spectrum: ethyl 5-hydroxy-2, 2-dimethyl-3-oxopentanoate (93)

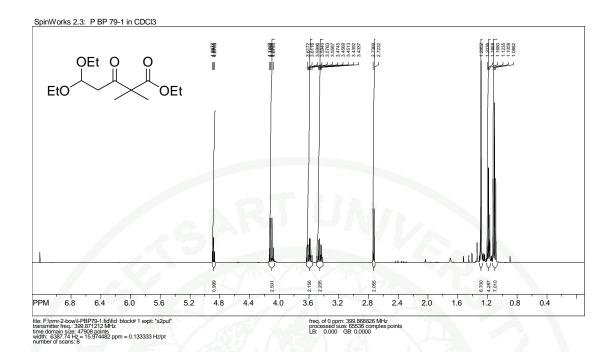

Appendix Figure 21 100 MHz ¹³C NMR spectrum: ethyl 5-hydroxy-2, 2-dimethyl-3-oxopentanoate (93)

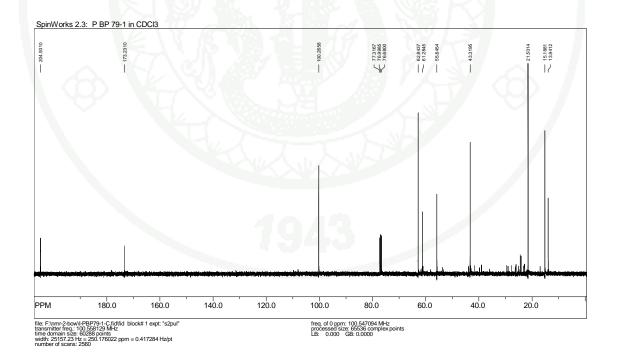

Appendix Figure 22 400 MHz ¹H NMR spectrum: ethyl 5-benzyloxy-2, 2-dimethyl-3-oxopentanoate (94)

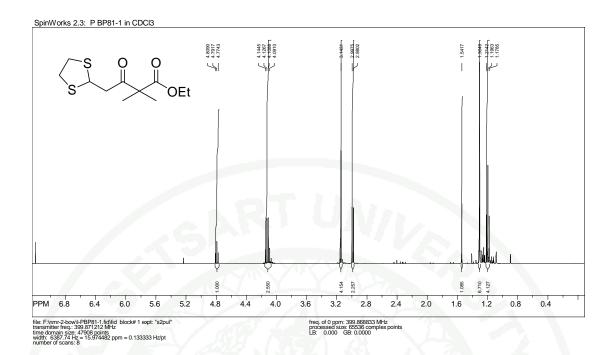

Appendix Figure 23 100 MHz ¹³C NMR spectrum: ethyl 5-benzyloxy-2, 2-dimethyl-3-oxopentanoate (94)

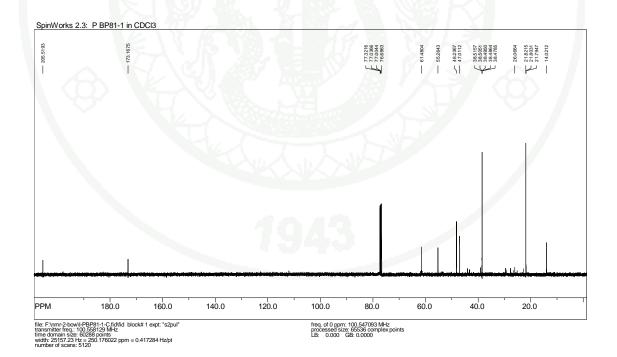

Appendix Figure 24 400 MHz ¹H NMR spectrum: ethyl 5-acetoxy-2, 2-dimethyl-3-oxopentanoate (95)

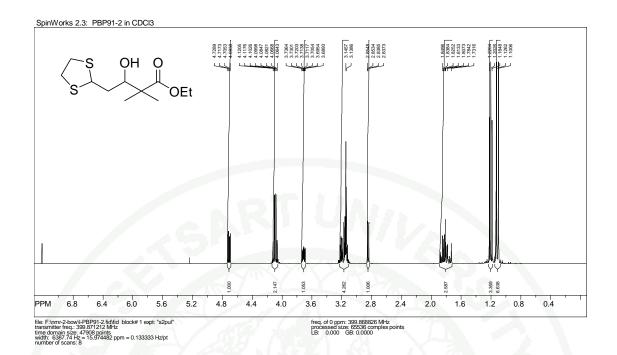

Appendix Figure 25 400 MHz ¹H NMR spectrum: ethyl 5-benzyloxy-3-hydroxy-2, 2-dimethylpentanoate (100)

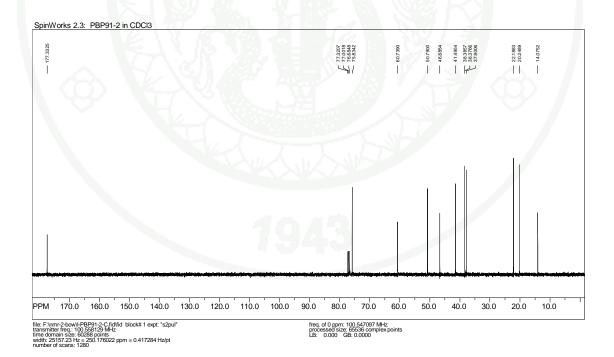

Appendix Figure 26 100 MHz ¹³C NMR spectrum: ethyl 5-benzyloxy-3-hydroxy-2, 2-dimethylpentanoate (100)

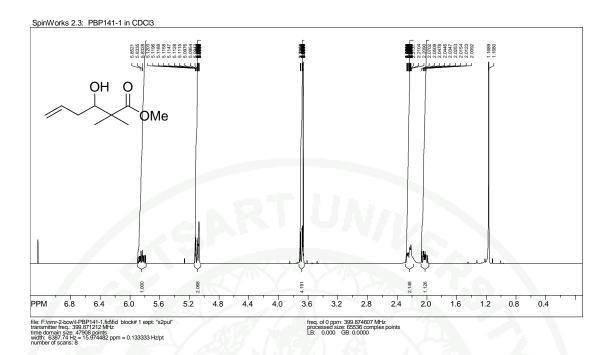

Appendix Figure 27 400 MHz ¹H NMR spectrum: ethyl 5-benzyloxy-3-*tert*-butyldimethylsilyloxy-2, 2-dimethylpentanoate (101)

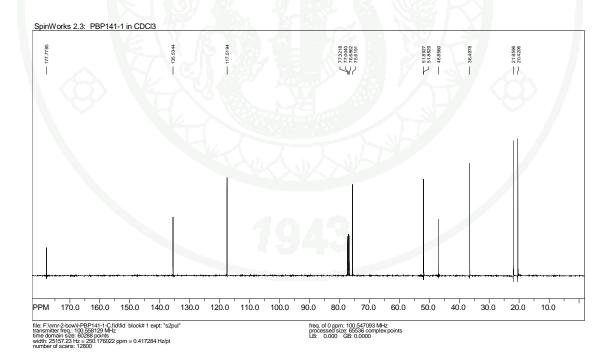

Appendix Figure 28 100 MHz ¹³C NMR spectrum: ethyl 5-benzyloxy-3-*tert*-butyldimethylsilyloxy-2, 2-dimethylpentanoate (101)

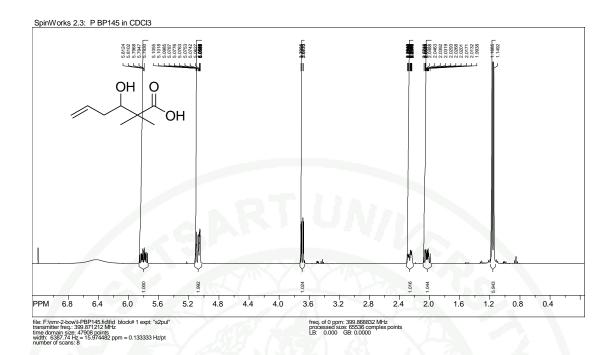

Appendix Figure 29 400 MHz ¹H NMR spectrum: ethyl 5, 5-diethoxy-2, 2-dimethyl-3-oxopentanoate (104)

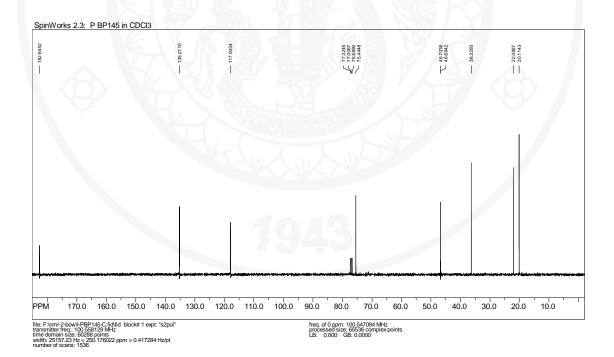

Appendix Figure 30 100 MHz ¹³C NMR spectrum: ethyl 5, 5-diethoxy-2, 2-dimethyl-3-oxopentanoate (104)

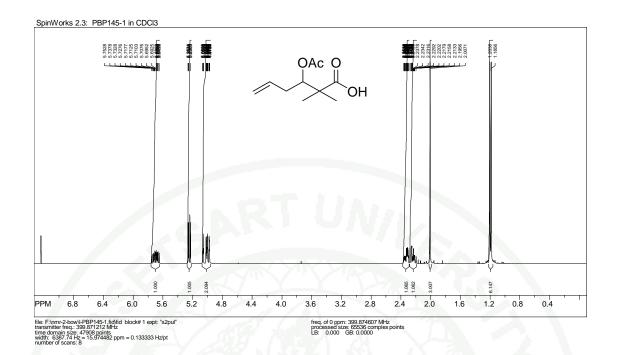

Appendix Figure 31 400 MHz ¹H NMR spectrum: ethyl 4-(1, 3-dithiolan-2-yl)-2, 2-dimethyl-3-oxobutanoate (105)

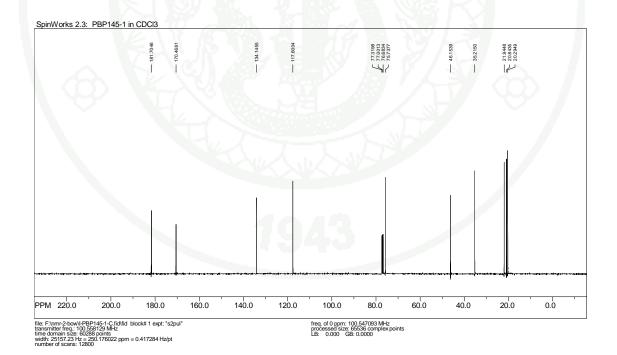

Appendix Figure 32 100 MHz ¹³C NMR spectrum: ethyl 4-(1, 3-dithiolan-2-yl)-2, 2-dimethyl-3-oxobutanoate (105)

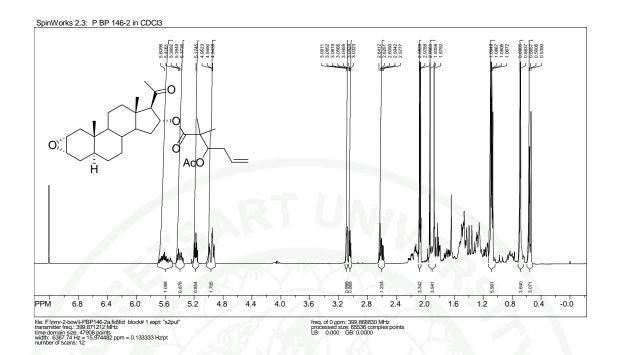

Appendix Figure 33 400 MHz ¹H NMR spectrum: ethyl 4-(1, 3-dithiolan-2-yl)-3-hydroxy-2, 2-dimethylbutanoate (106)

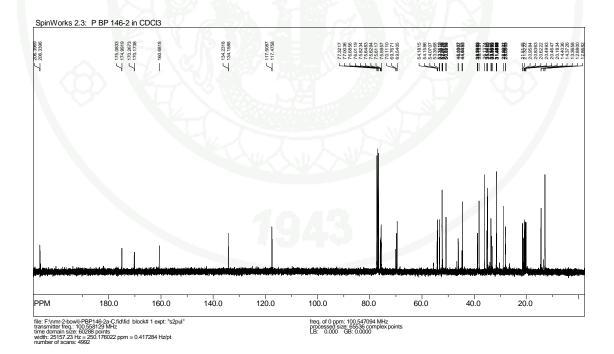

Appendix Figure 34 100 MHz ¹³C NMR spectrum: ethyl 4-(1, 3-dithiolan-2-yl)-3-hydroxy-2, 2-dimethylbutanoate (106)

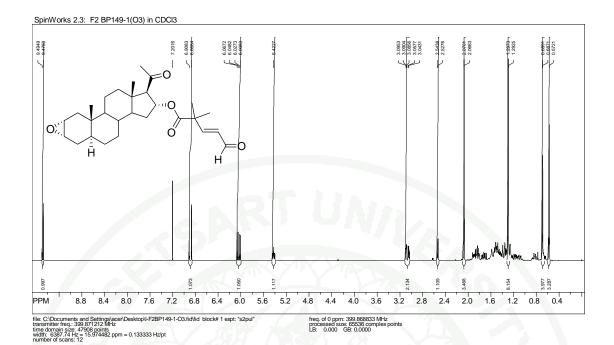

Appendix Figure 35 400 MHz ¹H NMR spectrum: methyl 3-hydroxy-2, 2-dimethyl-5-hexenoate (109)

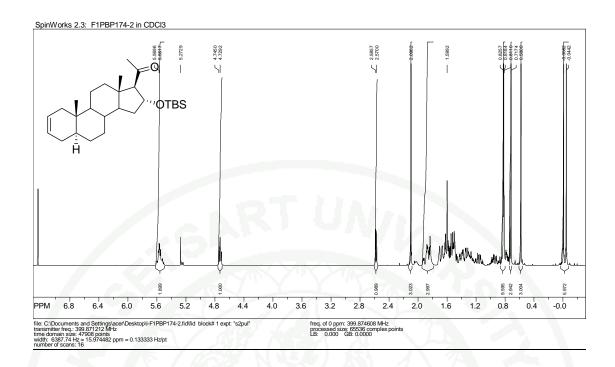

Appendix Figure 36 100 MHz ¹³C NMR spectrum: methyl 3-hydroxy-2, 2-dimethyl-5-hexenoate (109)

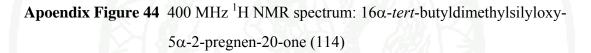

Appendix Figure 37 400 MHz ¹H NMR spectrum: 3-hydroxy-2, 2-dimethyl-5-hexenoic acid (110)

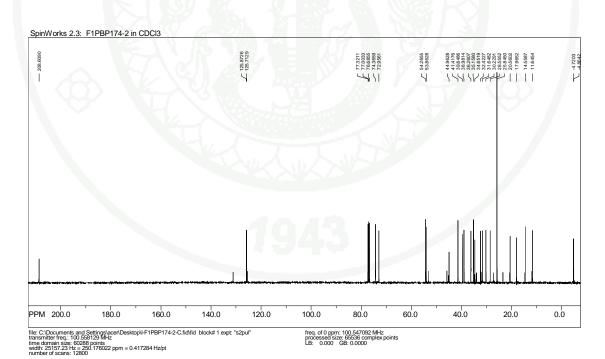

Appendix Figure 38 100 MHz ¹³C NMR spectrum: 3-hydroxy-2, 2-dimethyl-5-hexenoic acid (110)

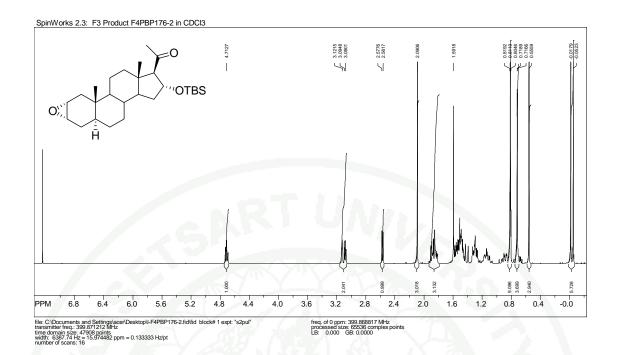

Appendix Figure 39 400 MHz ¹H NMR spectrum: 3-acetoxy-2, 2-dimethyl-5-hexenoic acid (111)

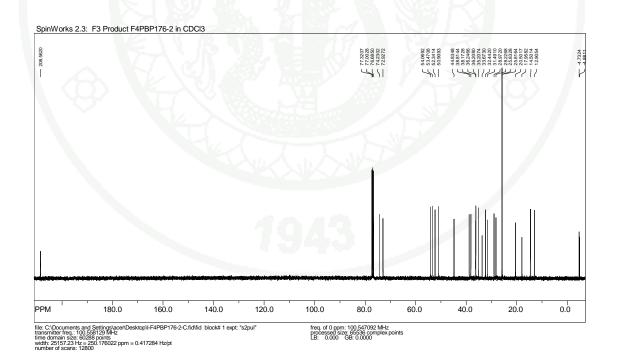

Appendix Figure 40 100 MHz ¹³C NMR spectrum: 3-acetoxy-2, 2-dimethyl-5-hexenoic acid (111)

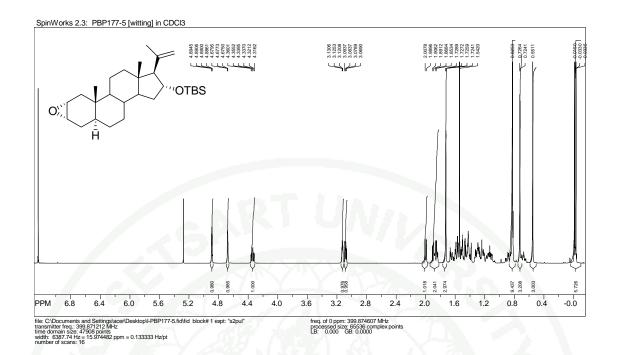

Appendix Figure 41 400 MHz 1 H NMR spectrum: 2α , 3α -epoxy- 16α -(3-acetoxy-2, 2-dimethyl-5-hexenoate)- 5α -pregnan-20-one (**a**)

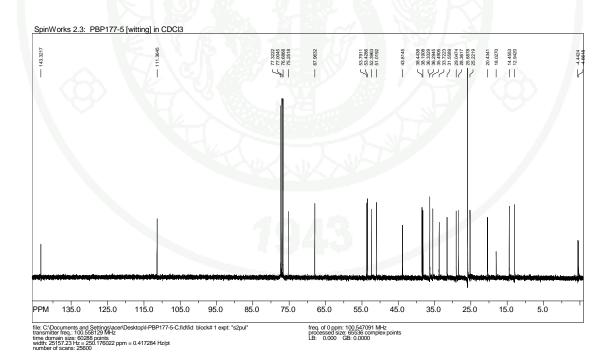


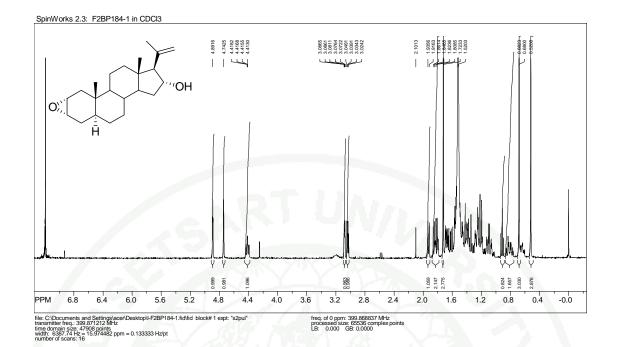

Appendix Figure 42 100 MHz 13 C NMR spectrum: 2α , 3α -epoxy- 16α -(3-acetoxy-2, 2-dimethyl-5-hexenoate)- 5α -pregnan-20-one (a)

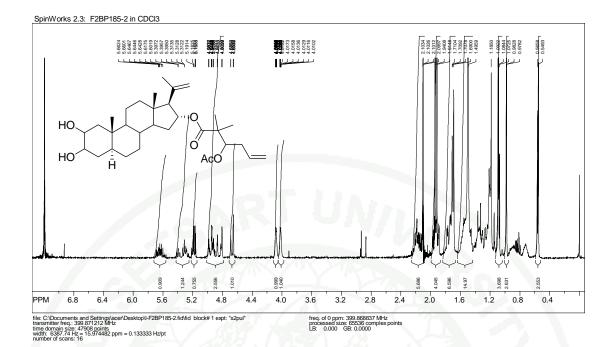

Appendix Figure 43 400 MHz 1 H NMR spectrum: 2α , 3α -epoxy- 16α -(4-formyl-2, 2-dimethyl-3-butenoate)- 5α -pregnan-20-one (162)

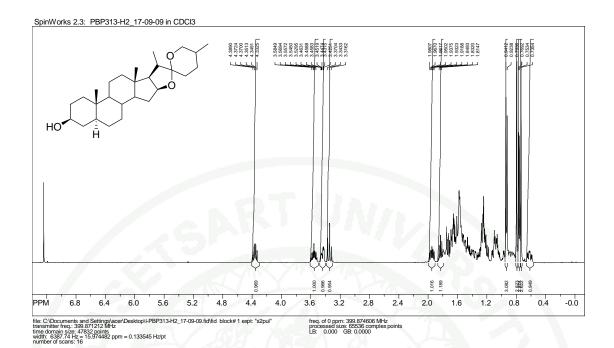


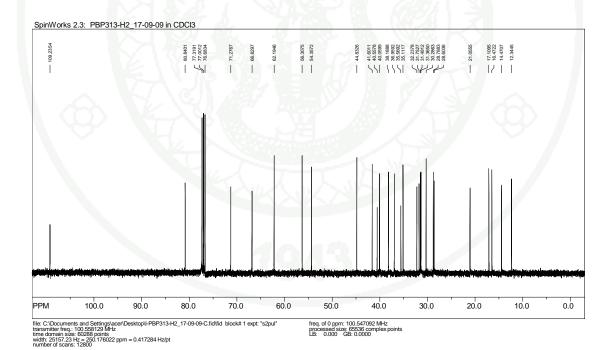

Appendix Figure 45 100 MHz 13 C NMR spectrum: 16α -tert-butyldimethylsilyloxy- 5α -2-pregnen-20-one (114)

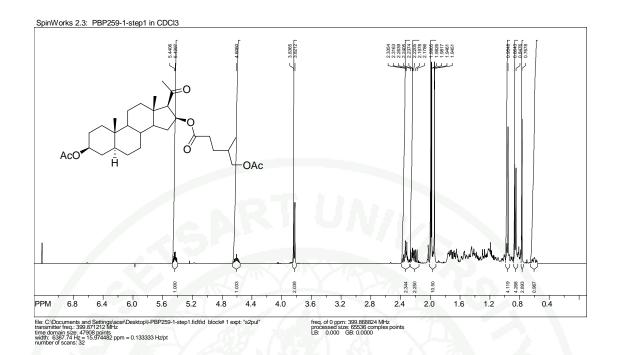

Appendix Figure 46 400 MHz 1 H NMR spectrum: 16α -*tert*-butyldimethylsilyloxy - 2α , 3α -epoxy- 5α -pregnan-20-one (115)

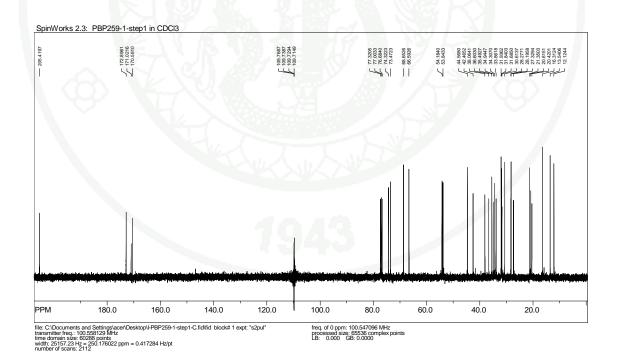

Appendix Figure 47 100 MHz 13 C NMR spectrum: 16α -tert-butyldimethylsilyloxy -2α , 3α -epoxy- 5α -pregnan-20-one (115)

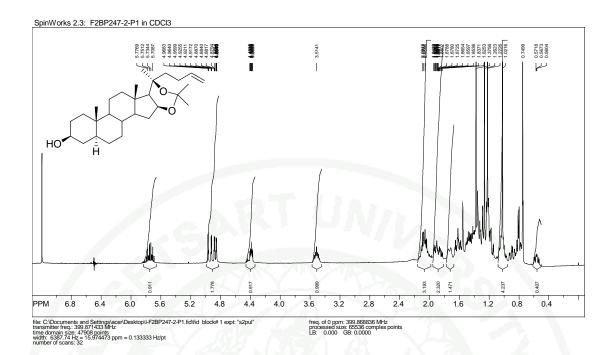

Appendix Figure 48 400 MHz 1 H NMR spectrum: 16α -tert-butyldimethylsilyloxy- 2α , 3α -epoxy-20-methyl- 5α -20-pregnene (116)

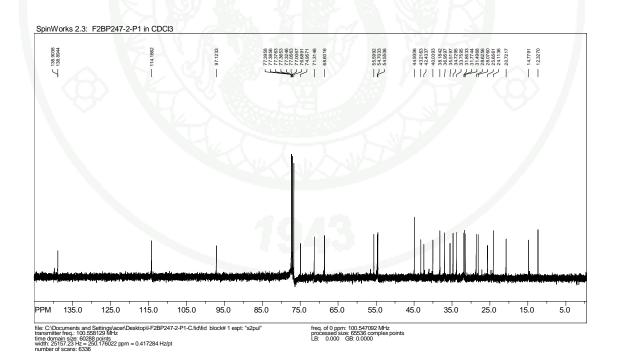

Appendix Figure 49 100 MHz 13 C NMR spectrum: 16α -tert-butyldimethylsilyloxy- 2α , 3α -epoxy-20-methyl- 5α -20-pregnene (116)

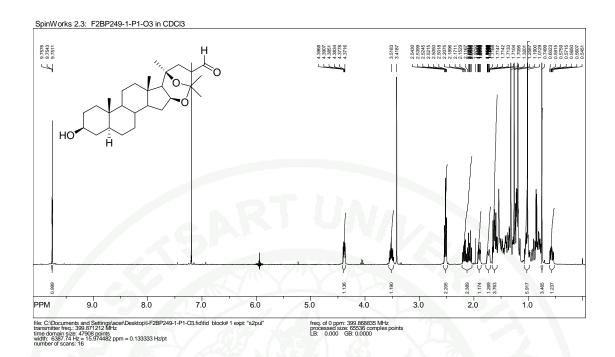

Appendix Figure 50 400 MHz 1 H NMR spectrum: 2α , 3α -epoxy- 16α -hydroxy-20-methyl- 5α -20-pregnene (117)

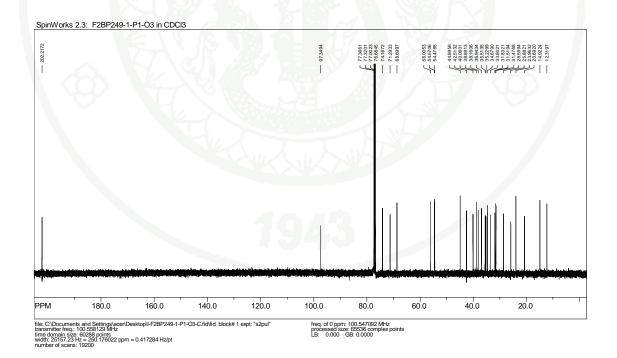

Appendix Figure 51 400 MHz ¹H NMR spectrum: 16β-(3-acetoxy-2, 2-dimethyl-5-hexenoate)-2, 3-dihydroxy-20-methyl-5α-20-pregnene (118)

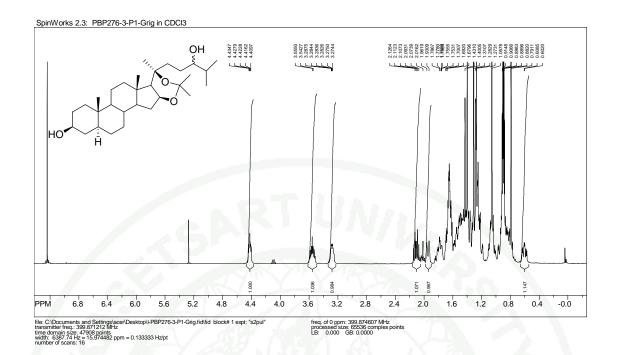

Appendix Figure 52 400 MHz ¹H NMR spectrum: tigogenin (54)

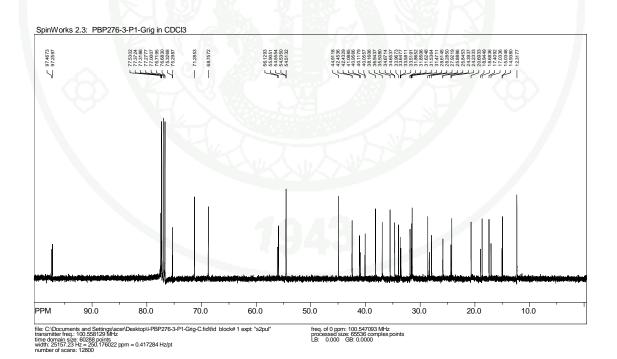

Appendix Figure 53 100 MHz ¹³C NMR spectrum: tigogenin (54)

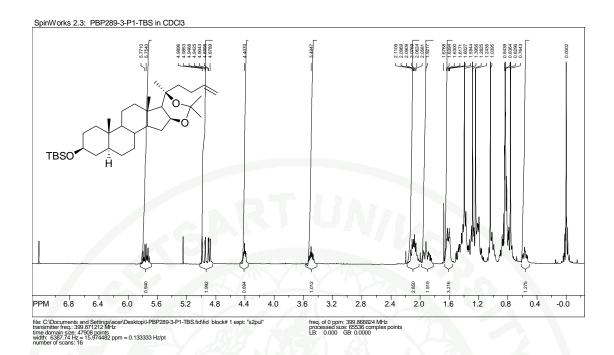

Appendix Figure 54 400 MHz ¹H NMR spectrum: 3β-acetoxy-16β-(5-acetoxy-4-methylpentanoate)-pregnan-20-one (60)

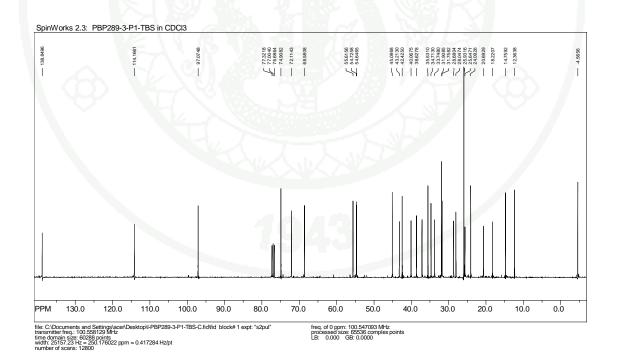

Appendix Figure 55 100 MHz ¹³C NMR spectrum: 3β-acetoxy-16β-(5-acetoxy-4-methylpentanoate)-pregnan-20-one (60)

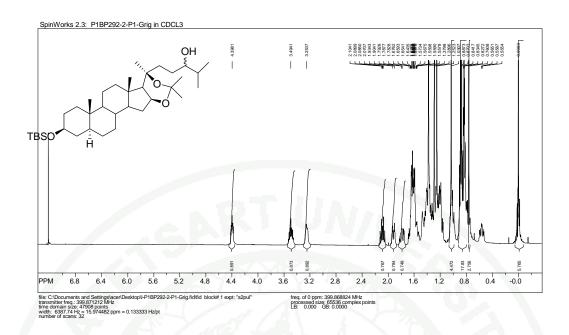

Appendix Figure 56 400 MHz 1 H NMR spectrum: 3 β -hydroxy-(16S, 20S)-16, 20-acetonide-5 α -24a-homo-chol-24-ene (119)

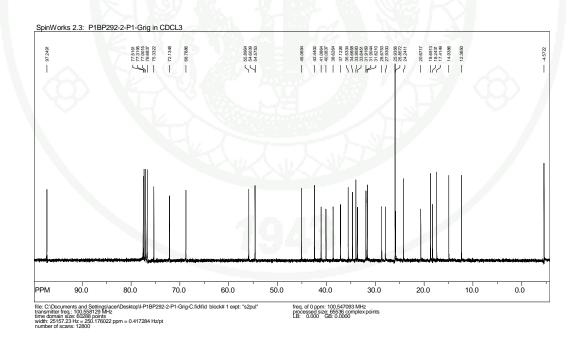

Appendix Figure 57 100 MHz 13 C NMR spectrum: 3 β -hydroxy-(16S, 20S)-16, 20-acetonide-5 α -24a-homo-chol-24-ene (119)

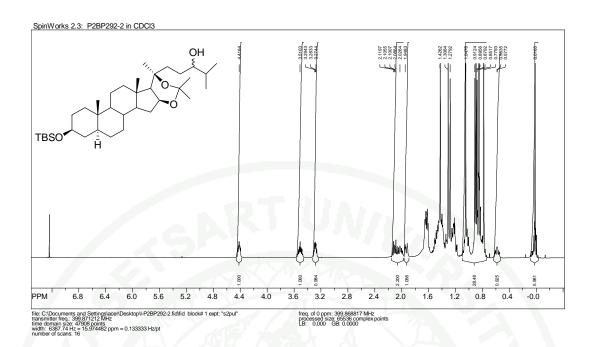

Appendix Figure 58 400 MHz ¹H NMR spectrum: 24-formyl-3β-hydroxy-(16*S*, 20*S*)-16, 20-acetonide-5α-cholane (120)

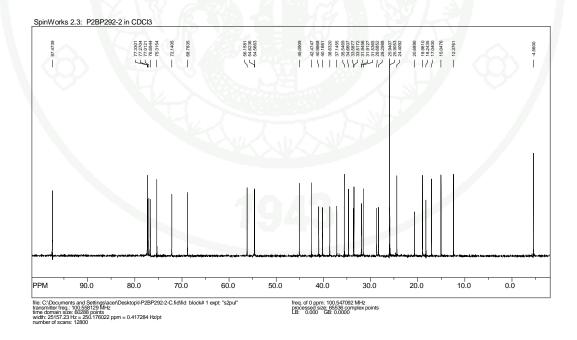

Appendix Figure 59 100 MHz 13 C NMR spectrum: 24-formyl-3 β -hydroxy-(16S, 20S)-16, 20-acetonide-5 α -cholane (120)

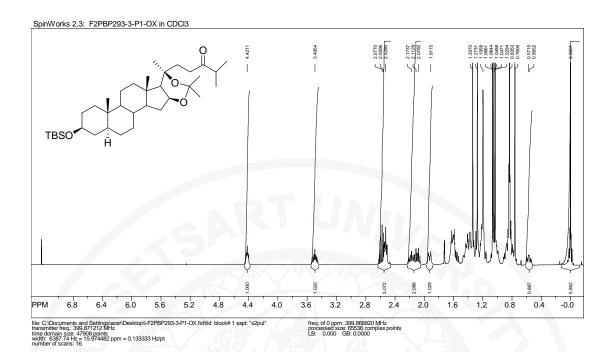

Appendix Figure 60 400 MHz ¹H NMR spectrum: 3β, 24-dihydroxy-(16*S*, 20*S*)-16, 20-acetonide-5α-cholestane (121)

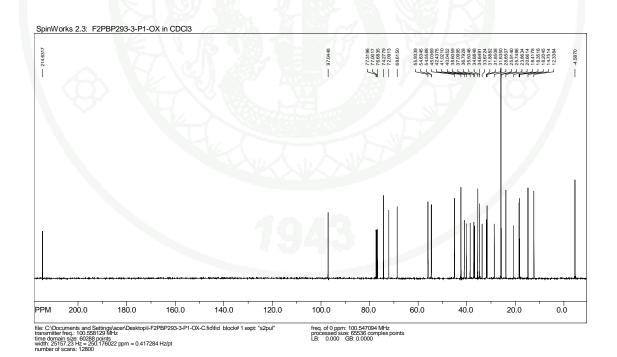

Appendix Figure 61 100 MHz 13 C NMR spectrum: 3 β , 24-dihydroxy-(16S, 20S)-16, 20-acetonide-5 α -cholestane (121)

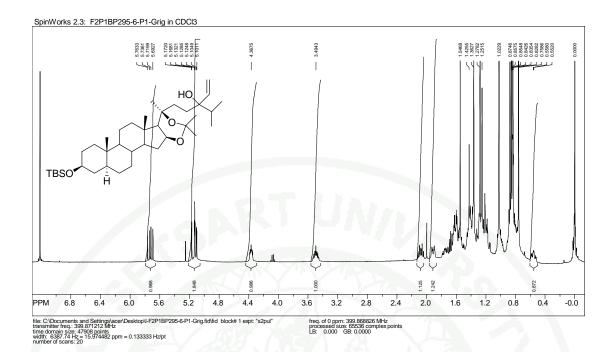

Appendix Figure 62 400 MHz 1 H NMR spectrum: 3β -*tert*-butyldimethylsiloxy- (16*S*, 20*S*)-16, 20-acetonide- 5α -24a-homo-chol-24-ene (123)

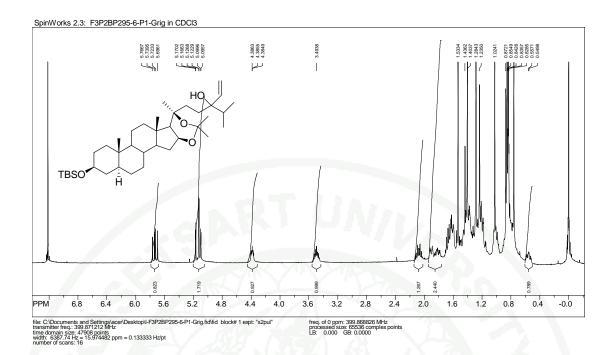

Appendix Figure 63 100 MHz 13 C NMR spectrum: 3β -*tert*-butyldimethylsiloxy- (16*S*, 20*S*)-16, 20-acetonide- 5α -24a-homo-chol-24-ene (123)

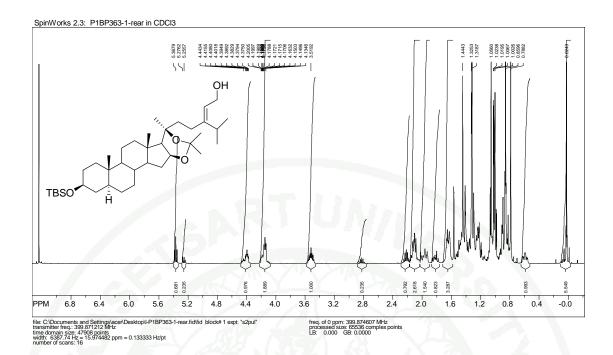

Appendix Figure 64 400 MHz 1 H NMR spectrum: 3β -*tert*-butyldimethylsiloxy-24-hydroxy-(16*S*, 20*S*)-16, 20-acetonide-5 α -cholestane (124) (Isomer I)

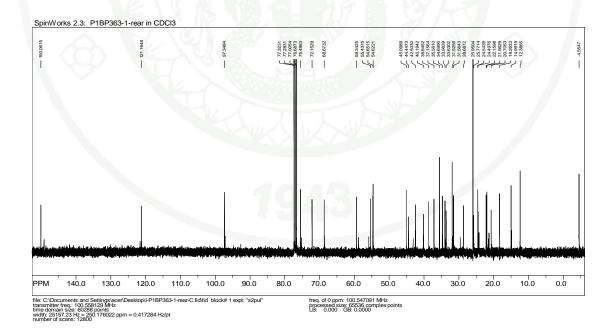

Appendix Figure 65 100 MHz 13 C NMR spectrum: 3β -*tert*-butyldimethylsiloxy-24-hydroxy-(16*S*, 20*S*)-16, 20-acetonide-5 α -cholestane (124) (Isomer I)

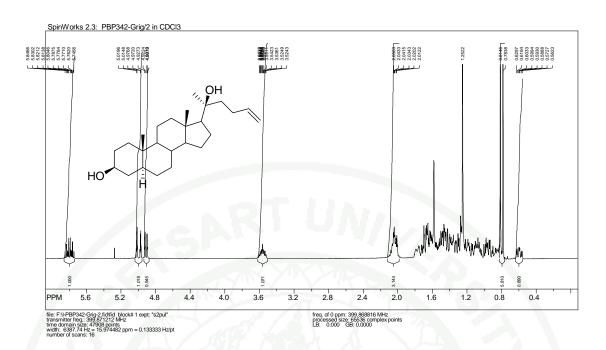

Appendix Figure 66 400 MHz 1 H NMR spectrum: 3β -*tert*-butyldimethylsiloxy-24-hydroxy-(16*S*, 20*S*)-16, 20-acetonide-5 α -cholestane (124) (Isomer II)

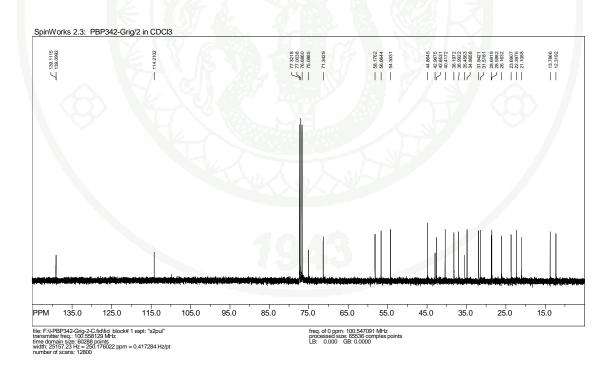

Appendix Figure 67 100 MHz 13 C NMR spectrum: 3β -tert-butyldimethylsiloxy-24-hydroxy-(16S, 20S)-16, 20-acetonide- 5α -cholestane (124) (Isomer II)

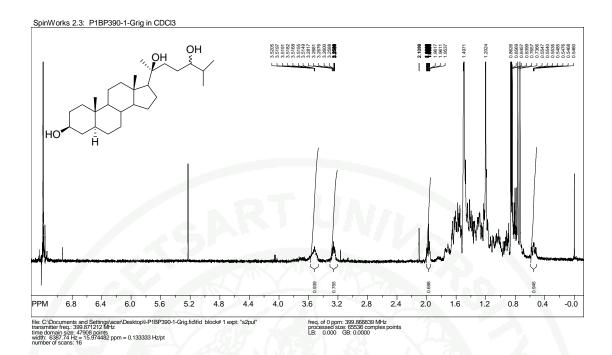

Appendix Figure 68 400 MHz 1 H NMR spectrum: 3β -*tert*-butyldimethylsiloxy- (16*S*, 20*S*)-16, 20-acetonide- 5α -cholestan-24-one (125)

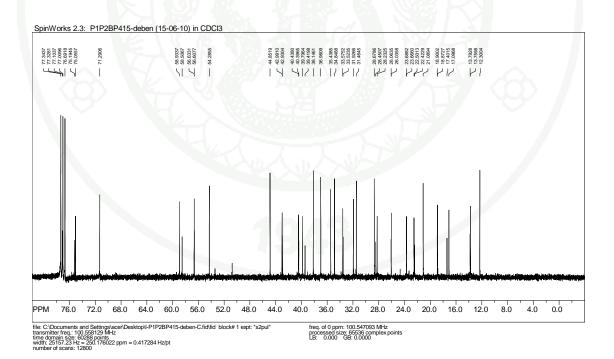

Appendix Figure 69 100 MHz 13 C NMR spectrum: 3β -*tert*-butyldimethylsiloxy- (16*S*, 20*S*)-16, 20-acetonide-5 α -cholestan-24-one (125)

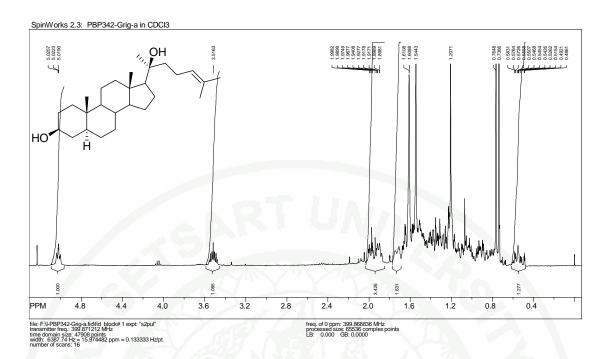

Appendix Figure 70 400 MHz ¹H NMR spectrum: 3β-*tert*-butyldimethylsiloxy-24-ethenyl-24-hydroxy-(16*S*, 20*S*)-16, 20-acetonide-5α-cholestane (126) (Isomer I)

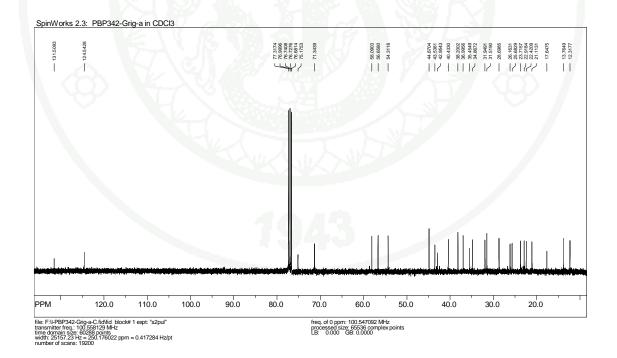

Appendix Figure 71 400 MHz ¹H NMR spectrum: 3β-*tert*-butyldimethylsiloxy-24-ethenyl-24-hydroxy-(16*S*, 20*S*)-16, 20-acetonide-5α-cholestane (126) (Isomer II)

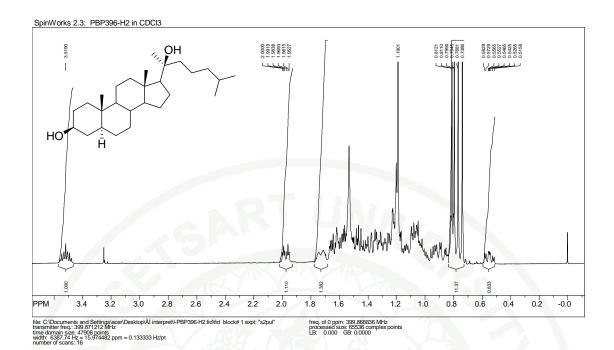

Appendix Figure 72 400 MHz 1 H NMR spectrum: 3β -*tert*-butyldimethylsiloxy-29-hydroxy-(16*S*, 20*S*)-16, 20-acetonide-5 α -cholest-24(28)-ene (127)

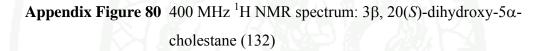

Appendix Figure 73 100 MHz 13 C NMR spectrum: 3β -*tert*-butyldimethylsiloxy-29-hydroxy-(16*S*, 20*S*)-16, 20-acetonide-5 α -cholest-24(28)-ene (127)

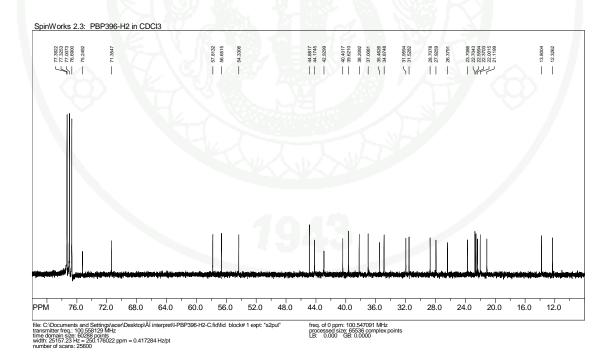

Appendix Figure 74 400 MHz ¹H NMR spectrum: 3β, 20(*S*)-dihydroxy-5α-24a-homo-chol-24-ene (129)

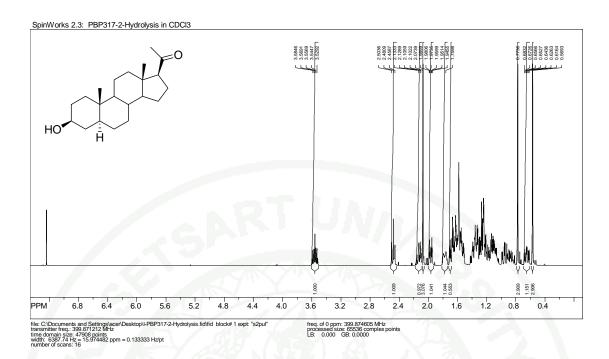

Appendix Figure 75 100 MHz 13 C NMR spectrum: 3 β , 20(S)-dihydroxy-5 α -24 α -homo-chol-24-ene (129)

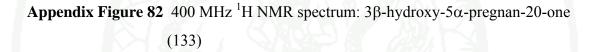

Appendix Figure 76 400 MHz ¹H NMR spectrum: 3β, 20(*S*), 24-trihydroxy-5α-cholestane (130)

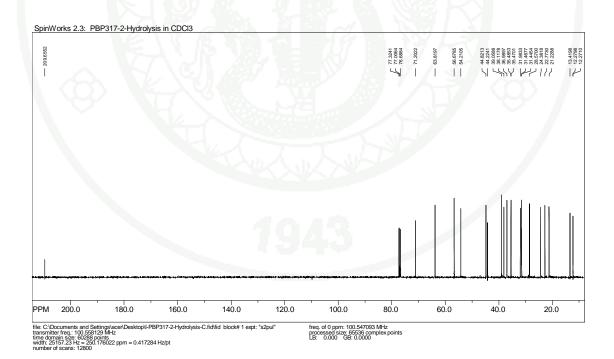

Appendix Figure 77 100 MHz ¹³C NMR spectrum: 3β, 20(*S*), 24-trihydroxy-5α-cholestane (130)

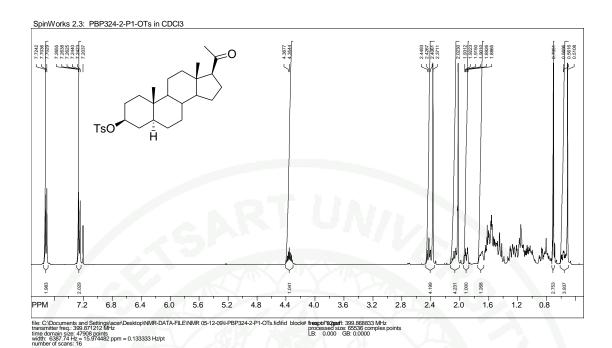


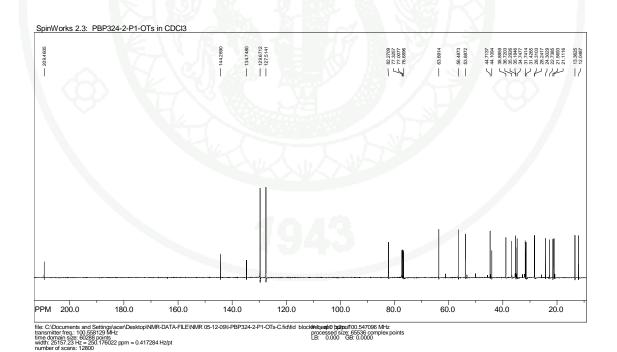

Appendix Figure 78 400 MHz 1 H NMR spectrum: 3 β , 20(S)-dihydroxy-5 α -cholest-24-ene (131)

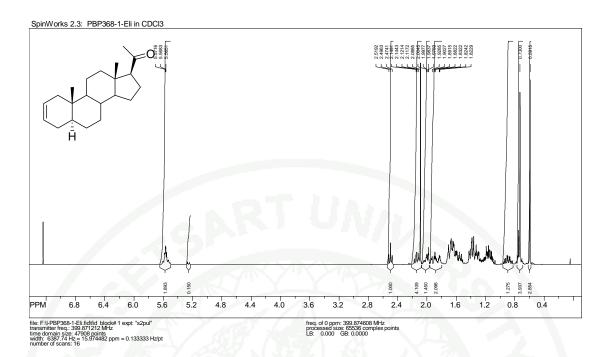

Appendix Figure 79 100 MHz 13 C NMR spectrum: 3 β , 20(*S*)-dihydroxy-5 α -cholest-24-ene (131)

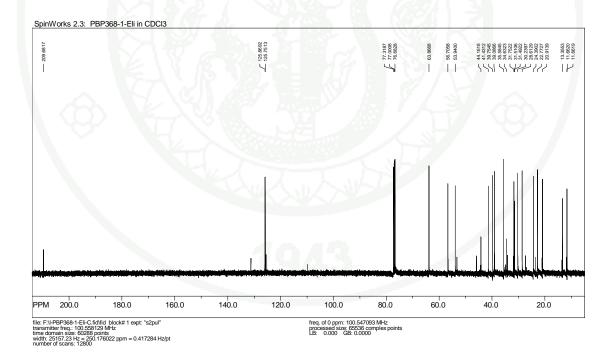


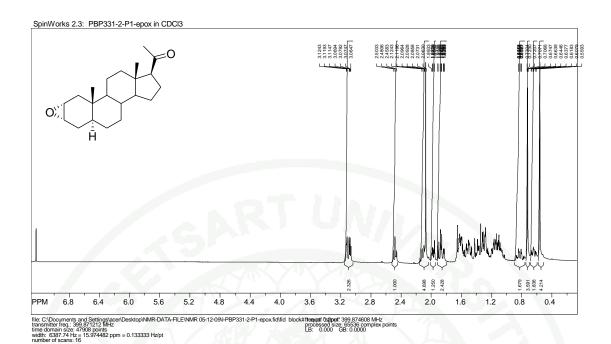


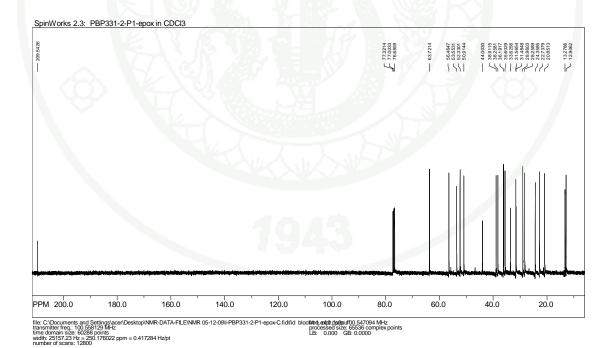

Appendix Figure 81 100 MHz 13 C NMR spectrum: 3 β , 20(S)-dihydroxy-5 α -cholestane (132)

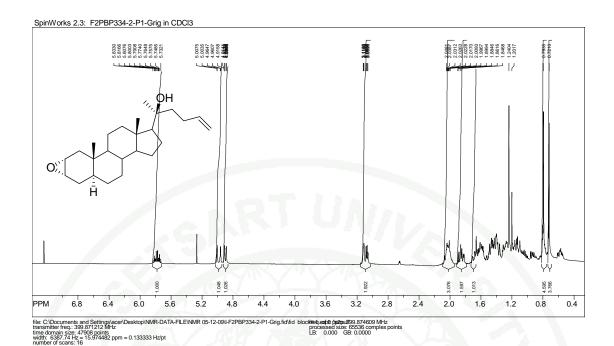


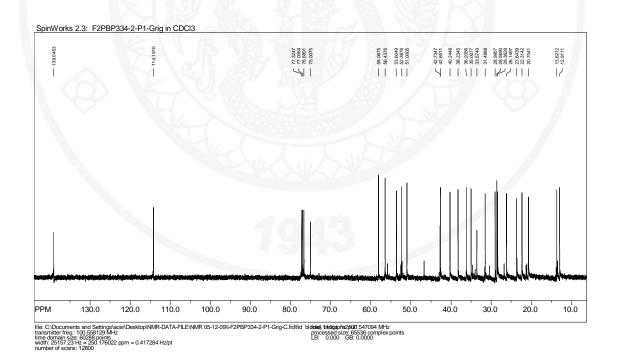

Appendix Figure 83 100 MHz 13 C NMR spectrum: 3β -hydroxy- 5α -pregnan-20-one (133)

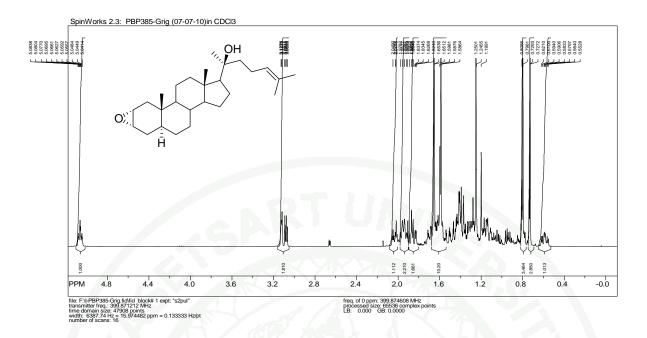

Appendix Figure 84 400 MHz 1 H NMR spectrum: 3β -tosyloxy- 5α -pregnan-20-one (134)

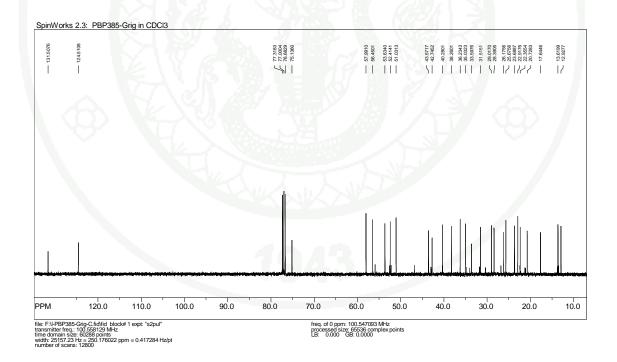

Appendix Figure 85 100 MHz 13 C NMR spectrum: 3β -tosyloxy- 5α -pregnan-20-one (134)

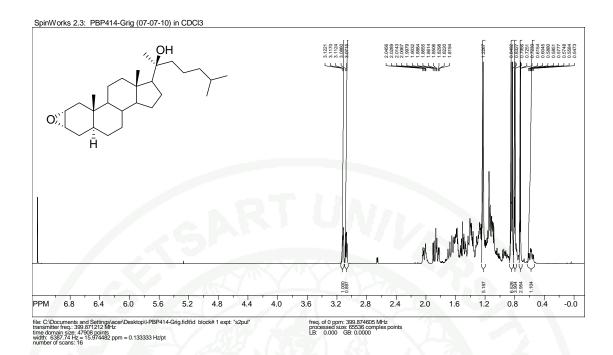

Appendix Figure 86 400 MHz ¹H NMR spectrum: 2-pregnen-20-one (135)

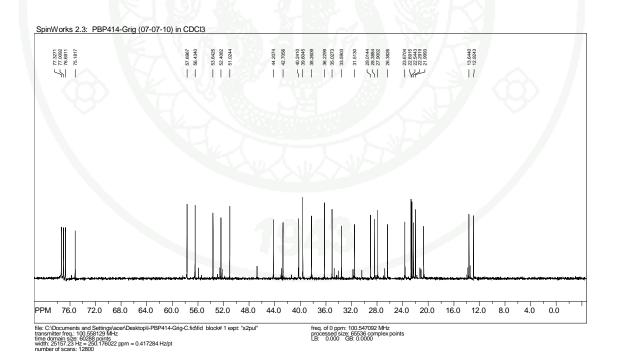

Appendix Figure 87 100 MHz ¹³C NMR spectrum: 2-pregnen-20-one (135)

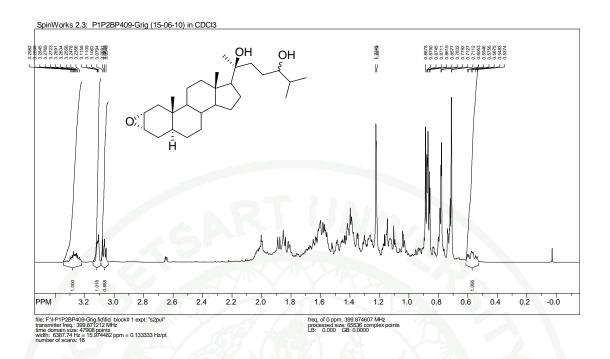

Appendix Figure 88 400 MHz 1 H NMR spectrum: 2α , 3α -epoxy- 5α -pregnan-20-one (136)

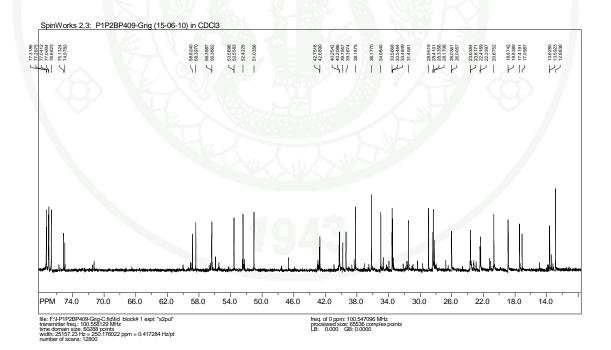

Appendix Figure 89 100 MHz 13 C NMR spectrum: 2α , 3α -epoxy- 5α -pregnan-20-one (136)

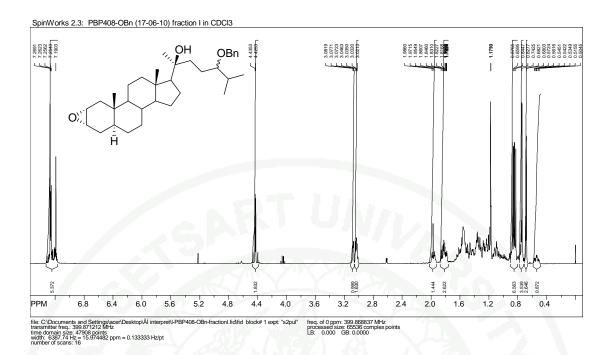

Appendix Figure 90 400 MHz ¹H NMR spectrum: 2α, 3α-epoxy-20(*S*)-hydroxy-5α-24a-homo-chol-24-ene (137)

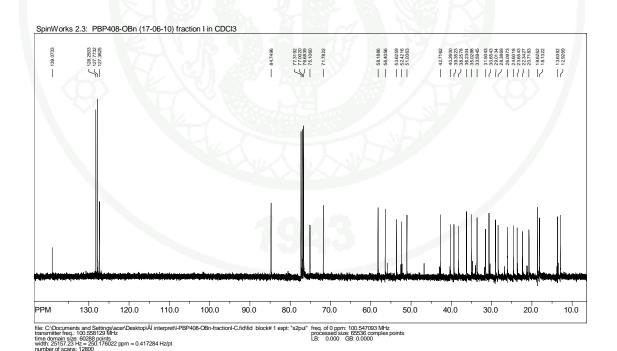

Appendix Figure 91 100 MHz 13 C NMR spectrum: 2α , 3α -epoxy-20(*S*)-hydroxy- 5α -24a-homo-chol-24-ene (137)

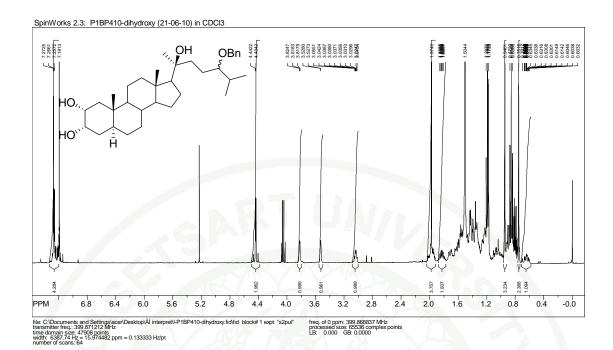

Appendix Figure 92 400 MHz 1 H NMR spectrum: 2α , 3α -epoxy-20(S)-hydroxy- 5α -cholest-24-ene (138)

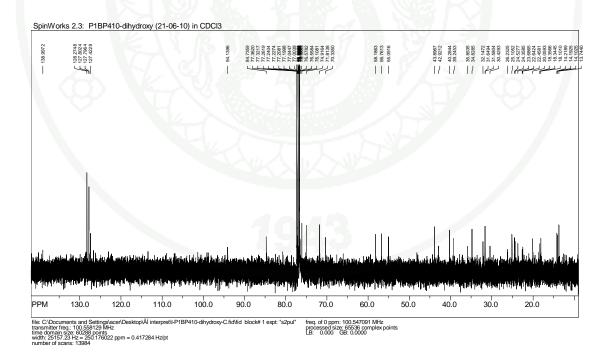

Appendix Figure 93 100 MHz 13 C NMR spectrum: 2α , 3α -epoxy-20(S)-hydroxy- 5α -cholest-24-ene (138)

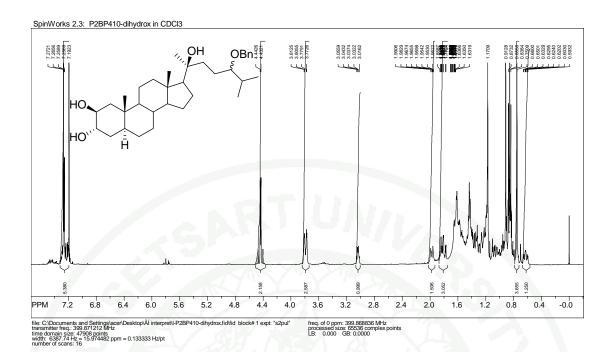

Appendix Figure 94 400 MHz ¹H NMR spectrum: 2α, 3α-epoxy-20(*S*)-hydroxy-5α-cholestane (139)

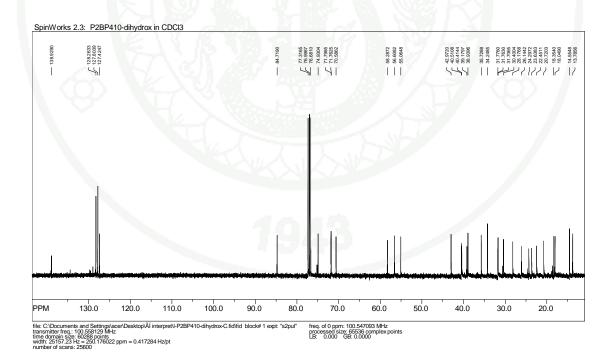

Appendix Figure 95 100 MHz 13 C NMR spectrum: 2α , 3α -epoxy-20(S)-hydroxy- 5α -cholestane (139)

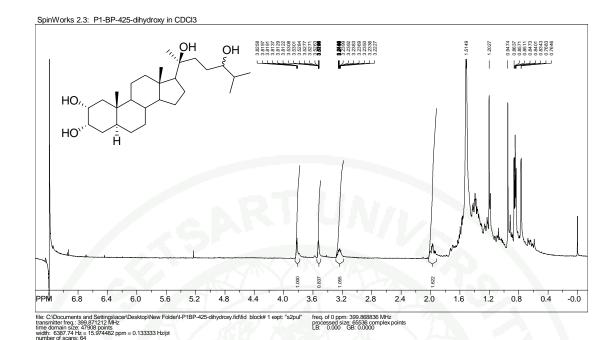

Appendix Figure 96 400 MHz ¹H NMR spectrum: 2α, 3α-epoxy-20(*S*), 24-dihydroxy-5α-cholestane (140)

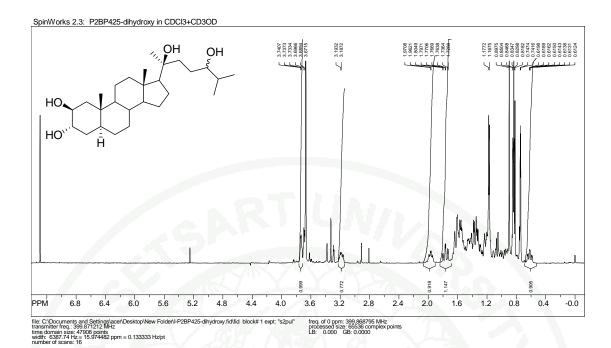

Appendix Figure 97 100 MHz 13 C NMR spectrum: 2α , 3α -epoxy-20(S), 24-dihydroxy- 5α -cholestane (140)

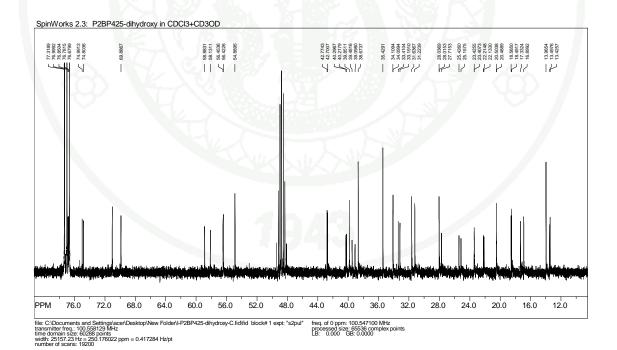

Appendix Figure 98 400 MHz 1 H NMR spectrum: 24-benzyloxy-2 α , 3 α -epoxy-20(S)-hydroxy-5 α -cholestane (141)

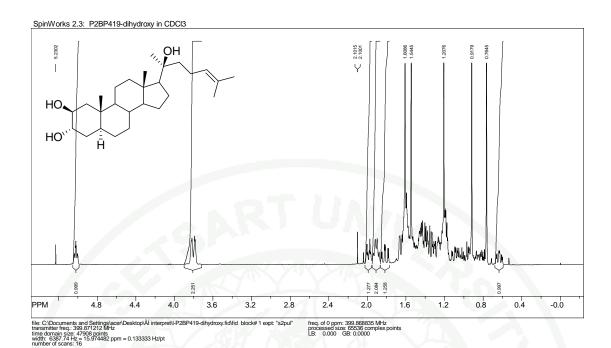

Appendix Figure 99 100 MHz 13 C NMR spectrum: 24-benzyloxy-2 α , 3 α -epoxy-20(S)-hydroxy-5 α -cholestane (141)

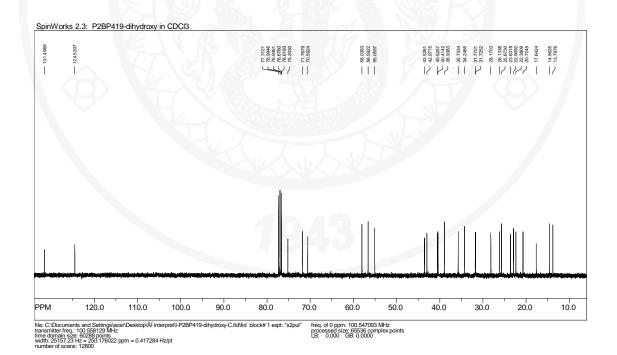

Appendix Figure 100 400 MHz ¹H NMR spectrum: 24-benzyloxy-2α, 3α, 20(*S*)-trihydroxy-cholestane (142)

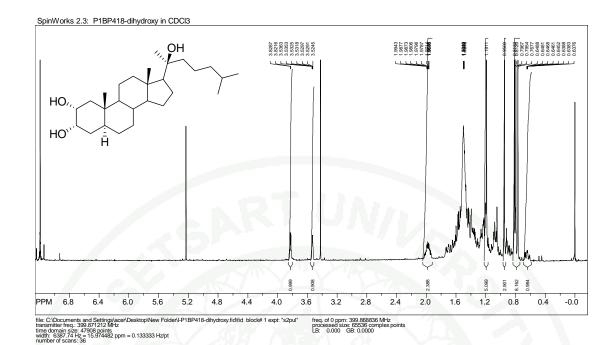

Appendix Figure 101 100 MHz ¹³C NMR spectrum: 24-benzyloxy-2α, 3α, 20(*S*)-trihydroxy-cholestane (142)

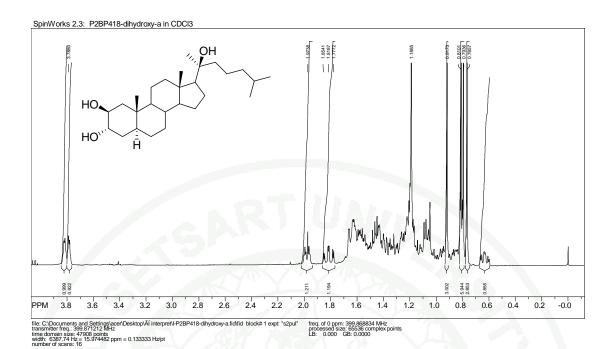

Appendix Figure 102 400 MHz ¹H NMR spectrum: 24-benzyloxy-2β, 3α, 20(*S*)-trihydroxy-cholestane (143)

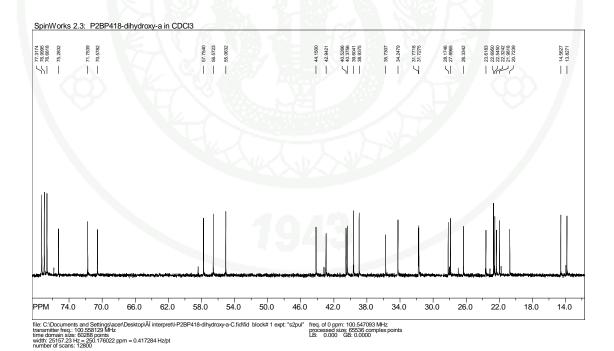

Appendix Figure 103 100 MHz 13 C NMR spectrum: 24-benzyloxy-2 β , 3 α , 20(S)-trihydroxy-cholestane (143)

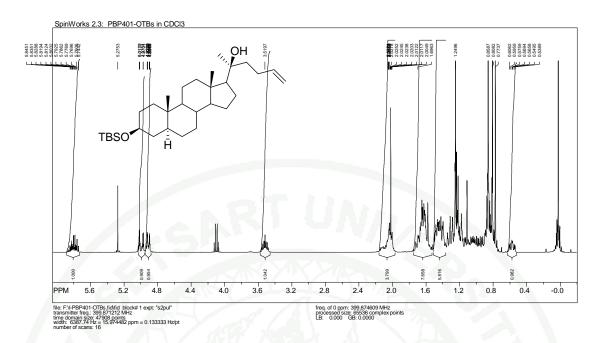

Appendix Figure 104 400 MHz 1 H NMR spectrum: 2α , 3α , 20(S), 24-tetrahydroxy-cholestane (144)

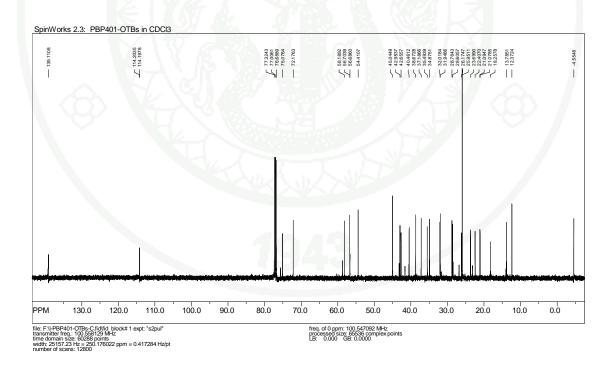

Appendix Figure 105 400 MHz ¹H NMR spectrum: 2β, 3α, 20(*S*), 24-tetrahydroxy-cholestane (145)

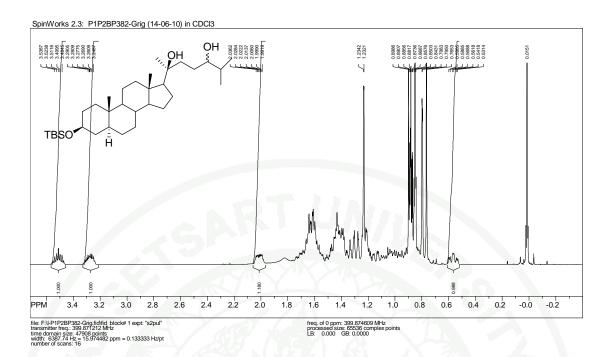

Appendix Figure 106 100 MHz 13 C NMR spectrum: 2 β , 3 α , 20(S), 24-tetrahydroxy-cholestane (145)

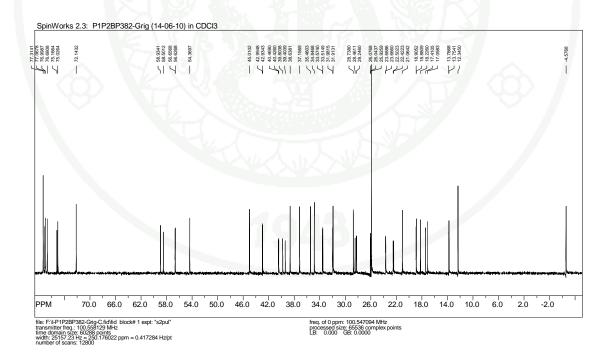

Appendix Figure 107 400 MHz 1 H NMR spectrum: 2 β , 3 α , 20(S)-trihydroxy-5 α -cholest-24-ene (147)

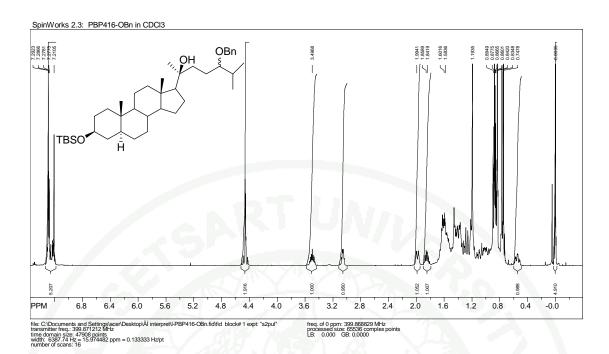

Appendix Figure 108 100 MHz 13 C NMR spectrum: 2 β , 3 α , 20(*S*)-trihydroxy-5 α -cholest-24-ene (147)

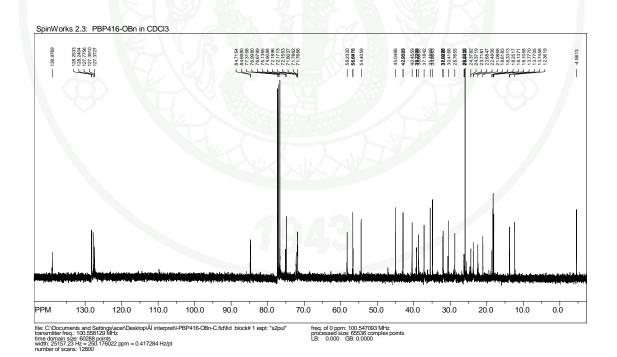

Appendix Figure 109 400 MHz 1 H NMR spectrum: 2α , 3α , 20(S)-trihydroxy- 5α -cholestane (148)

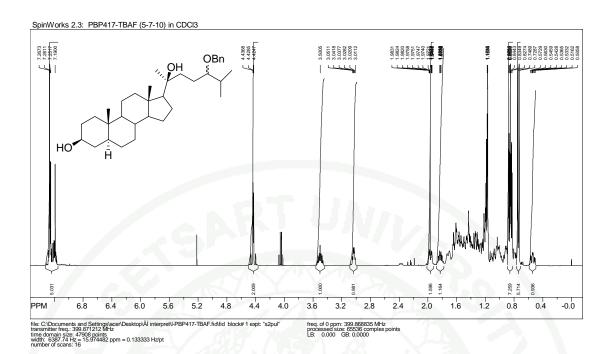

Appendix Figure 110 400 MHz 1 H NMR spectrum: 2 β , 3 α , 20(S)-trihydroxy-5 α -cholestane (149)

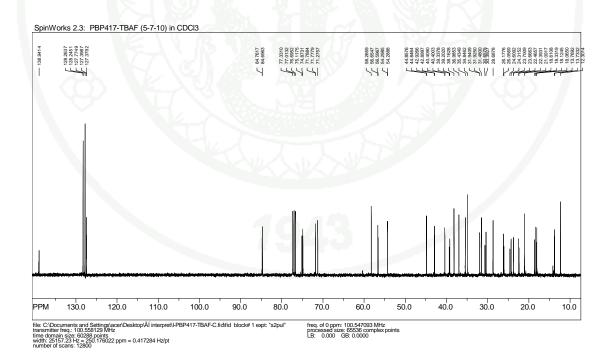

Appendix Figure 111 100 MHz 13 C NMR spectrum: 2 β , 3 α , 20(*S*)-trihydroxy-5 α -cholestane (149)

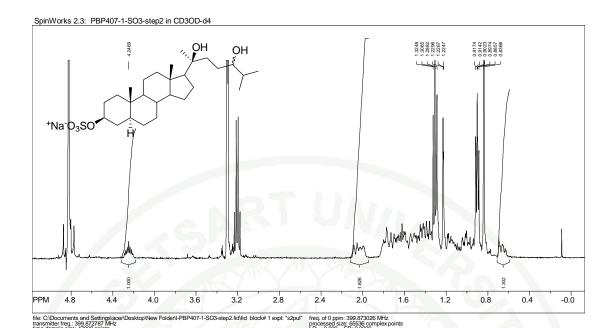

Appendix Figure 112 400 MHz 1 H NMR spectrum: 3β -*tert*-butyldimethylsiloxy-20(S)-hydroxy- 5α -24a-homo-chlo-24-ene (150)

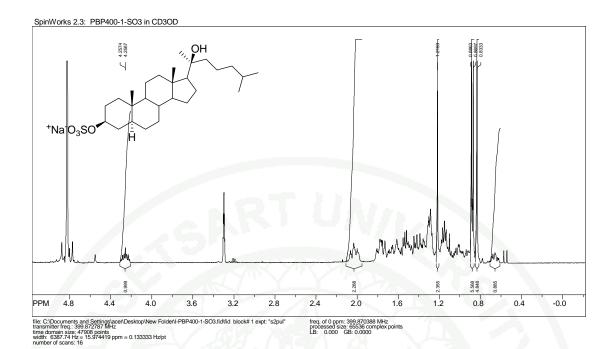

Appendix Figure 113 100 MHz 13 C NMR spectrum: 3β -*tert*-butyldimethylsiloxy-20(S)-hydroxy- 5α -24a-homo-chlo-24-ene (150)

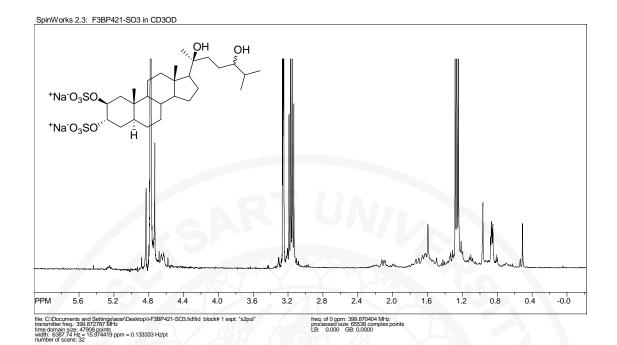

Appendix Figure 114 400 MHz ¹H NMR spectrum: 3β -*tert*-butyldimethylsiloxy-20(S), 24-dihydroxy- 5α -cholestane (151)

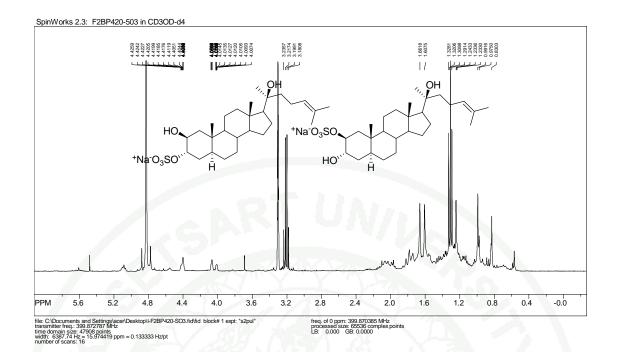

Appendix Figure 115 100 MHz 13 C NMR spectrum: 3β -*tert*-butyldimethylsiloxy-20(S), 24-dihydroxy- 5α -cholestane (151)

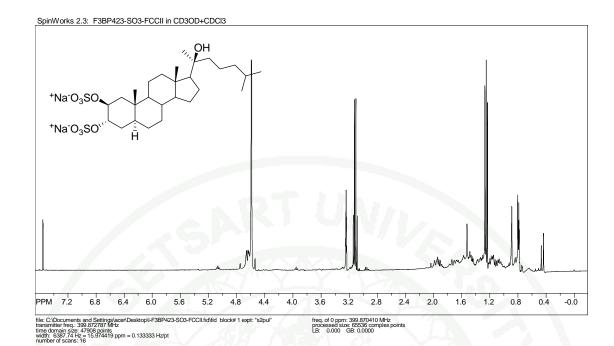

Appendix Figure 116 400 MHz ¹H NMR spectrum: 24-benzyloxy-3β-*tert*-butyldimethylsiloxy-20(*S*)-hydroxy-5α-cholestane (152)


Apendix Figure 117 100 MHz 13 C NMR spectrum: 24-benzyloxy-3 β -*tert*-butyldimethylsiloxy-20(S)-hydroxy-5 α -cholestane (152)


Appendix Figure 118 400 MHz 1 H NMR spectrum: 3β -*tert*-butyldimethylsiloxy-20(S), 24-dihydroxy- 5α -cholestane (153)


Appendix Figure 119 100 MHz 13 C NMR spectrum: 3β -*tert*-butyldimethylsiloxy-20(S), 24-dihydroxy- 5α -cholestane (153)


Appendix Figure (120) 400 MHz 1 H NMR spectrum: sodium 3 β , 20(S), 24-trihydroxy-5 α -cholestane 3-sulfate (155)


Apendix Figure 121 400 MHz ¹H NMR spectrum: sodium 3β, 20-dihydroxy-5α-cholestane 3-sulfate (156)

Appendix Figure 122 400 MHz 1 H NMR spectrum: disodium 2 β , 3 α , 20(S), 24-tetrahydroxy-5 α -cholestane 2, 3-disulfate (158)

Apendix Figure 123 400 MHz 1 H NMR spectrum: sodium 2 β , 3 α , 20(S)-trihydroxy-5 α -cholest-24-ene 2-sulfate (159) and sodium 2 β , 3 α , 20(S)-trihydroxy-5 α -cholest-24-ene 3-sulfate (160)

Apendix Figure 124 400 MHz 1 H NMR spectrum: disodium 2 β , 3 α , 20(S)-trihydroxy-5 α -cholestane 2, 3-disulfate (161)

CURRICULUM VITAE

NAME : Miss. Potjamarn Bunyathaworn

BIRTH DATE : August 7, 1980

BIRTH PLACE : Phetchaboon, Thailand

EDUCATION : YEAR INSTITUTE DEGREE/DIPLOMA

2003 Chiangmai Univ. B.Sc. (Science)

SCHOLARSHIP: Development and Promotion of Science and Technology

Talents Project (DPST) 1999-2002

: The Royal Golden Jubilee Ph.D. Program 2003-2011

CONFERENCE PRESENTATION

: RGJ-Ph.D. Congress VIII, April 20-22, 2007

: PERCH-CIC Congress V, May 6-9, 2007

PUBLICATION: Bunyathaworn, P., S. Boonananwong, B. Kongkathip and

N. Kongkathip. 2010. Further study on synthesis and

evaluation of 3, 16, 20-polyoxygenated steroids of marine

origin and their analogs as potent cytotoxic agents. Steroids

75: 432-444.

: Bunyathaworn, P., B. Kongkathip and N. Kongkathip.

2011. Synthesis and cytotoxicity studies of

polyhydroxysterols and their sulfate analogs. Kasetsart J.

(Nat Sci.). 45(4).