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ABSTRACT

Title of Dissertation A Block Diagonal Covariance Matrix Test and

Discriminant Analysis of High-Dimensional Data

Author Mr.Poompong Kaewumpai
Degree Doctor of Philosophy (Statistics)
Year 2017

In this dissertation, a new test statistic for testing for a block diagonal
covariance matrix structure with a multivariate normal population where the number

of variables p exceeds the number of observations n is proposed. Whereas classical

approaches such as the likelihood ratio test cannot be applied when p>n, the

proposed test statistic is based on the ratio of the estimators of tr>* and trD§, where
2 is the population covariance matrix and D, is the population covariance matrix
under the null hypothesis. Furthermore, the asymptotic distribution of the proposed
test statistic under the null hypothesis is standard normal. The performance of

proposed test statistic was assessed using a simulation study, in which empirical type |

error values and the empirical power were used to show its performance. The

empirical type | error values were close to the significance level and the empirical

power values were closed to 1 in all cases. Moreover, the performance of the proposed

test was compared with another previously reported test statistic, and the empirical
power values of the proposed test statistic were shown to be higher than those of the
comparative test statistic in some cases.

Two new discriminant methods for high-dimensional data under the

multivariate normal population with a block diagonal covariance matrix structure are

also proposed. For the first method, the sample covariance matrix is approximated as a



singular matrix based on the idea of reducing the dimensionality of the observations

and using a well-conditioned covariance matrix. For the second method, a sample
block diagonal covariance matrix is used instead. The performance of these two

methods were compared with some of the previously reported methods via a
simulation study, the results of which show that both proposed methods outperformed

the other comparative methods under various conditions. In addition, the proposed test

for testing block diagonal covariance matrix structure and the two new proposed

methods for discriminant analysis were applied to a real-life dataset.
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CHAPTER 1

INTRODUCTION

1.1 Background

At present, data where the number of variables (denoted by p ) exceeds the

number of observations (denoted by n) is called the high-dimensional data, and it
occurs in many scientific domains, such as genetics research, financial analysis, and
computer vision.

For an example of genetics research, data from microarrays where the stress
response of the microorganism Escherichia coli during the expression of a
recombinant protein was collected by Schmidt-Heck, Guthke, Toepfer, Reischer,
Duerrschmid and Bayer (2004) at the Institute of Applied Microbiology, University of
Agricultural Sciences in Vienna. The data captured all 4,289 proteins encoded by 102
genes at 8, 15, 22, 45, 68, 90, 150, and 180 minutes after induction of the recombinant
protein before comparison with pooled samples. Thus, this data contained 102
variables with a sample size of 8, and so high-dimensional data has occurred in this
case.

In financial analysis, a company in the S&P 500 identified daily returns from
258 stocks. The relevant data was the closing prices or bid/ask average of these stocks
for the trading days between 1 October 2013 and 31 December 2013 (a total of 64
days). This dataset was derived from the Center of Research in Security Prices Daily
Stock in the Wharton Research Data Services. In this dataset, the sample size was 64
and the number of variables was 258, again displaying high dimensionality. Bao, Hu,
Pan, and Zhou (2014) used this dataset in their simulation study.

In statistical analysis, some classical statistical methods fail to analyze high-

dimensional data well because in the estimation of the covariance matrix X, the

sample covariance matrix S is singular, which makes methods such as the likelihood



ratio test is inapplicable. Hypothesis testing of whether ¥ has a specific structure for a

multivariate normal population, such as testing for sphericity (H::Z=o°1),
complete independence (H? :X = diag (0'12,0'22,...,O'§)), or independence between two

subvectors (H; :X =diag(Z,,,%,,)), is the important problem for high-dimensional
data analysis. Classical methods that can be found in most multivariate statistical
textbooks, such as Muirhead's (1982) and Johnson and Wichern's (2002), cannot be
directly applied to derive test statistics for high-dimensional data. However, the

problem for testing H; has been considered by Ledoit and Wolf (2002), Schott
(2005), and Srivastava (2005). Ledoit and Wolf (2002) studied the limit distribution

of some previously reported tests under (n, p) —>oo and p/n—>c=0. They also
introduced a new test statistic to test whether the covariance matrix is the identity
matrix. Schott (2005) proposed a new test statistic based on the sample correlation

matrix which can be used to test both H; and H?. Srivastava (2005) developed test

statistic for testing H} in high-dimensional data under the condition that (trZ'/p) >0
exists, and also developed tests for testing HZ. Furthermore, Srivastava and Reid
(2012) and Jiang, Bai, and Zheng (2013) developed the hypothesis testing of H:. The

asymptotic distribution of both tests were shown to be standard normal.
In this dissertation, testing for independence between m random vectors or,
equivalently, testing for a block diagonal covariance matrix structure is of interest and

may be considered as an extension of testing HZ and H:. The new test statistic is

proposed which is based on the ratio of an unbiased and consistent estimator proposed

by Srivastava (2005). The distribution of the proposed test statistic under H, is also

derived. To evaluate the performance of this test statistic, a simulation study to
calculate the empirical type | error rate and empirical power of the test was
performed. Moreover, these measures were used to compare the performance of the
proposed test statistic with some previously reported ones using a simulation study.

In addition, one of the multivariate tasks, discriminant analysis, was also
studied under the population covariance matrix with a block diagonal structure, which
can be tested for by the proposed test. The main purpose of discriminant analysis is to



enable classification of new observations into one of g classes or populations. In

high-dimensional data, classical discriminant analysis cannot be applied directly
because the sample covariance matrix is singular, i.e. the inverse of the sample
covariance matrix does not exist. Di Pillo (1976) stated that the performance of
discriminant analysis in high-dimensional data is far from optimal, and the
generalized inverse of the sample covariance matrix is usually used when it is
singular. Despite its simplicity, this method might have poor performance since the
generalized inverse will be very unstable because of the lack of some of the
observations (Guo, Hastie, & Tibshirani, 2007).

In this situation, the challenging problem of discriminant analysis is the
singularity of the sample covariance matrix. There are often two ways to address this
problem, the first of which is a subspace approach (dimensionality reduction). For
example, among these are the well-known Fisherfaces method (Belhumeur,
Hespanha, & Kriegman, 1997) and Chen, Liao, Ko, Lin and Yu's (2000) direct linear
discriminant analysis (D-LDA). Lu, Plataniotis and Venetsanopoulos (2003) proposed
a new discriminant analysis method called regularized direct quadratic discriminant
analysis (RD-QDA) by combining the D-LDA method with the regularized
discriminant analysis method previously proposed by Friedman (1989). The second
method is to apply linear algebra to solve the singularity problem. For example, Tian,
Barbero, Gu, and Lee (1986) utilized the pseudo inverse to estimate the sample
covariance matrix. Friedman (1989) used the regularization technique of discriminant
analysis to shrink the sample covariance matrix. Additionally, Srivastava and
Kubokawa (2007) used an empirical Bayes estimator of covariance matrix instead of
the sample covariance matrix.

In this dissertation, two new discriminant methods are proposed to construct a

method for dealing with high-dimensional data. Firstly, the dimensionality of the

observations is reduced by taking the linear combinations of x, to create

Y, = H'x,,where H is the matrix obtained from the RD-QDA method (Lu et al.,

2003), and then find a well-conditioned estimator for a large dimensional covariance
matrix using the expression given by Ledoit and Wolf (2003, 2004). Secondly, the

block diagonal of sample covariance matrix S, =diag(S;,S,,,....S,,), Wwhere



S.,1=12,..,m are submatrices on the diagonal of the pooled sample covariance

matrix, is used. The two new discriminant methods were evaluated by performing a
simulation study to calculate the misclassification rate, sensitivity, and specificity, and
comparing them with some previously reported methods.

1.2 Objectives of the Study

In this dissertation, new statistical techniques in high-dimensional data are
proposed and studied with the following objectives:

1) To propose a new test for testing a block diagonal covariance matrix
structure in high-dimensional data with a multivariate normal population

2) To propose two new methods for discriminant analysis in high-
dimensional data with a multivariate normal population.

3) To assess the performance of the proposed test statistic by considering its
empirical type 1 errors and empirical power, and comparing them with some of the
previously reported test statistics through a simulation study.

4) To assess the performance of the proposed methods by considering the
misclassification rate, sensitivity, and specificity and comparing them with some of

the previously reported methods through a simulation study.
1.3 Scope of the Study

In this study, the test statistic for testing a block diagonal covariance matrix
structure and two methods for sample classification in high-dimensional data are

proposed under the following conditions.

1.3.1 Testing for a Block Diagonal Covariance Matrix
1) The data are assumed to be from a multivariate normal distribution

with a positive definite covariance matrix X with px p dimensions, and mean

vectors ., all of which are assumed to be unknown.



2) High-dimensional data means that the sample size is less than the

number of variables (n< p).

1.3.2 Discriminant Analysis
1) There are two different populations, each assumed to have a

multivariate normal distribution with a common positive definite covariance matrix

¥, =%,=Xwith pxp dimensions and mean vectors x,, h=12, all of which are

assumed to be unknown.

2) The sample size from both populations are equal (n=n,=n,).

3) The probability that each observation comes from either population
is equal.

4) A random sample of n observations from these populations with
their true group labels is unknown.

5) High-dimensional data means that the degrees of freedom of the

pooled sample covariance matrix is less than the number of variables (v < p).

1.4 Usefulness of the Study

The new proposed test statistic for testing block diagonal covariance matrix
structure and the two methods for sample classification may be beneficial for
analyzing high-dimensional data in genetics and computer vision, or any other field
involving high-dimensional data.



CHAPTER 2

LITERATURE REVIEW

This chapter contains a review of the literature on testing for a block diagonal
covariance matrix in Section 2.1, followed by the classical approach and the high-
dimensional approach. A review of discriminant analysis, both the classical approach

and the high-dimensional approach, are provided in Section 2.2.
2.1 Testing Block Diagonal Covariance Matrix

In this section, the necessary notations that used in testing for a block diagonal
covariance matrix are defined. These notations are used in both the classical approach

and the high-dimensional approach.

Let X, X,,..., X, bei.i.d. as p dimensional random vectors which have a
multivariate normal distribution with mean 4 and positive definite covariance matrix
Y; u and X are unknown parameters denoted by X, ~ Np(g,Z) ;and k represents

the number of observation from a random sample, k =1,2,...,n. The set of all random

vectors can be used to construct an observations matrix X, such that

X Xy o Xpl

X = (X,, X X )T_ Xig Xp 0 Xy
- ASERALERLEE AT - . . . . .

Xln X2n Xpn

The probability density function ( pdf) for random vector X,, k=12,...,n
from a multivariate normal population is defined as

1 () = (Xm) 2

f(Xk)=W



H Oy Ot Oy
G G eee G

where  E(X,)=g=| "7 | and E(X,-@)(X,-@) =x=| " 7 T
Hy Oip Ozp " Op

k=12,...,n.

Now consider for each vector X,, px1, we partition it into m components

with each group of sizes p,x1,i=12,..,m. We partition X,, 4, and X into m

components as

Xy H
X @ u® _ _
Xe=| 7% |, u=| =~ | where X" and 4" are p,x1 vector, and
)Sé"ﬂ ﬂ(m)
211 212 2lm
_ Xy Iy Zon . L
X=| | : . |» where X isa p, x p; submatrix, i,j=12,..,m.
) )y D

Note that X, X?,..X™ represents a partitioning of X, , a random sample
of independent vectors and E(X") =", E(X — )X —u M) ==,

As u and X are unknown, the unbiased estimators of these parameters are,

. - 1
respectively, X ==>"X,,

Nz
Sll SlZ SZLp
1\ > AT S, Sy p
5=NZ(>Sk—>S)(>Sk—>S) =| . : , Where n=N +1.
k=1 '
Stpp Sp 7t Spp

X @ S11 S12 t Slm
)z _ )S(Z) S - 821 Szz SZm
)Z(m) Sml SmZ Smm



where X are p, x1 vector,and S; isa p, x p, submatrix, i, j=12,..,m and
. 1n__ 1N+1__ . _ .
X0 == X0, 8y = 2 (X0 = X)X =X
N k= N =
The above notations are used in entire this dissertation. The next two
subsections describe the classical approach and the high-dimensional approach in

testing for a block diagonal covariance matrix.

2.1.1 The Classical Approach
In order to test for a block diagonal covariance structure, the hypothesis is
constructed as follows:
Hy:2=D, vs H,:Z#D,, (2.1)
where D, =diag(Z,;, 2., .-, Z0) s 2 1S Pox P, 1=12,...,m square matrix on the
main diagonal and all submatrix off-diagonal is zero matrix of px p matrix. Suppose

a sample of size n, x, X,,---,X, are observation on X,,k=12,..,n, then the

likelihood ratio is

max L(x,Dy)

_ {/jxDz}

max L(z,3)
ma (4,%)

1 e—i(%k 1) =7 (%) / 2
(Zﬂ)np/Z |Z|n/2 .

(2.2)

where L(/f,Z) =

L(x,D;) is L(,X) with £;=0,i= j, forall 0<i, j<m; and the maximum

is taken with respect to all vectors 4 and with positive definite © and D, . Let 3 and

A

Y. are maximum likelihood estimators of ¥ and X.

respectively. According to

Theorem 11.2.2 from Muirhead (1982), we have

max L(x,2) = L(f1,5)= S S

{u.s} A N2

(27)™*[2




Under the null hypothesis,

max L(x,Dy) = ﬁ L; (H(i)’iii)’

{u,Ds} i1

o 1
— —npi/2
i (Zﬂ)npi/z i n/2 '

1 -
e np/2,
n/2

then (2.2) becomes

n/2

A

max L(u, D)

— {x.D:}

maxL(z,3)
(s} (/,l ) HZ

ni2

i-1
The value of likelihood ratio A, is between 0 and 1. Low values of the
likelihood ratio A, mean that the observed result was less probable to occur under the
hypothesis H, as compared to the hypothesis H, . The likelihood ratio test rejects the
hypothesis H, if the value of A is too small. How small is too small depends on the
size of the test. Thus, the likelihood ratio test rejects the hypothesis H, if A, <c,,

where ¢, is chosen so that the size of the test is «. For a large n, the asymptotic

distribution of —wlog A, under H, is a chi-squared distribution with t degrees of
(DS—Z p?j+9(p2—2 pfj
i=1 i=1
6( p* -2 pf]
i=1

freedom, where wW=n-2u, u= , and

1 — . : :
tzz(pz - E pfj (this result can be found in Srivastava (2002, p. 492). Under the
i=1

assumption that the dimension p is smaller than the sample size n, the asymptotic
results perform well, but when the dimension p is larger than the sample size n, the

asymptotic results cannot be applied.
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2.1.2 The High-Dimensional Approach
For high-dimensional data, Srivastava (2005) proposed a test statistic for

testing the hypothesis

Hy :Z=diag(oy,...0,,) Vs H, :Z = diag(oy,,....0,,), (2.3)
where o, 1=12,..., p are the diagonal elements of the population covariance matrix.
This hypothesis can be considered as a special case of H,, where p, =1. Let

1 P
ng'

i=1

N

_1 S 4
pza'

i=1

Then,

p i]

=8y, +— ZG,J

I¢j

Ly (Zaﬂ +ZO'” j

Srivastava (2005) consider the parametric function

Obviously T, =1 if and only if H, is true, and if H,, is false, Ty, >1. Thus, (2.3)

can be based on the consistent estimator 'f51 given by

~ a
To =<2,
S1 a20
2
where a,= N {trS2 —i(trS)z} (2.4)
(N-D(N+2)p N
2 p
and 4, = _N 1 s (2.5)
(N+2)p piz

are the unbiased and consistent estimator of a, and a,,, respectively. Since (2.3) is
equivalent to

Ho iT, =1vs H,:T, >1, (2.6)
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which is a one-sided test, then testing H,, can be considered. Srivastava ( 2005)

proposed the test statistic for testing (2.6) as

p
where &, = iZsi‘i‘ :
P =
The asymptotic distribution of T, is derived under the following assumptions:

(A1) As p >, a, »al,0<al <o, k=12,..,8, where a_=trz*/p.

(A2) N=0(p°), 0<5<1.
Under assumptions (A1) and (A2), the assumed distribution of T, is given by
1

2 _ —
Te~ N[ 7.7° |, where y:(EJ (s =D _and 22 =—2=P & it the null
2 8~ P Ay

)

hypothesis is true, =0, and z°=1, then T, has an asymptotic standard normal

distribution.

Srivastava and Reid (2012) considered the hypothesis of independence of two
subvectors by partitioning the random vector X, into two parts: X, =(X®" X3,
of length p,, p,, respectively; thus, this hypothesis can be written as follows:
le O12:|
021 222

. 211 012 .
Hy:Z= 0. 3 vs H,,:X# (2.7)
21 22

The proposed test statistic of Srivastava and Reid (2012) is based on the difference

function between the null hypothesis H,, and the alternative hypothesis H,,, given

as

2

2
_ z“ll 212 j -1 ( le O12 j}
pe = -D ,
z“22

! tr [ D* (
2 p'\/E 221 222 021
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where D is a diagonal matrix in which the first p, of diagonal elements are aj?, the

last p, of diagonal elements are a}?, and aZl_tr(2 a,, = tr(z, 2)
m m
CH _UrEpry) Thus, w* can be rewritten as
' m

_12 2
2 011 a211/ leJ — a(1,2)

1
=——_tr .
2 p\/E £a2_2]/2221 022 \/ a'21a22
Note that the null hypothesis H, is true if and only if a,, =0. The consistent

estimators of a,,, a,,, and &, ,, are given by

N -

&, = (N_D(N+2)p [ rS;)— tr(S“) } i1=12, (2.8)
N
a0 = | TS TEIS,) | @9)

where S is defined as the partition in the same manner as X :

S — |:Sll SlZ i|
SZl S22

Srivastava and Reid (2012) proposed a test statistic for testing (2.7) as

- Nag,

S2 A A .
a21a22

Let new assumption ( A3) be O<lim(p,/p)=c <o, i=12; if the null
p—

hypothesis H,, is true, (p, N)—>oo , and assumptions (Al), (A2), and (A3) hold, then

the asymptotically distribution of 'fsz is a standard normal distribution.
Motivated by Srivastava ( 2005), and Srivastava and Reid (2012). Hyodo,
Shutoh, Nishiyama, and Pavlenko (2015) defined a test statistic to test hypothesis H,

using a distance function between the null hypothesis and the alternative hypothesis.
This distance function is given by the normalized Frobenious norm of the difference

between matrices £ and D, , which can be expressed by
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m j-1

2 trs .2,
_tr(D,-%)(D, -%)" _ ,ZZ:Z;' e

|P; -2}

=&, —ap (2.10)

tr=t tre; m
where a, =——, a, =—=, and a, = > a, .
p P i1

If the null hypothesis is true, (2.10) is equal to zero and (2.1) can be rewritten

as H,:T, =0, where T, =a, —a,, . Hyodo, Shutoh, Nishiyama, and Pavlenko (2015)
estimated T, using an unbiased and consistent estimator for high-dimensional data

obtained from Srivastava's (2005) results. The estimators of a, and a,; are defined as

. N’ 2 1 o
4 = (N-D(N:2)p {trS N (trS) } (2.11)
), = N® {trsif—i(trsn)z}, i=12,..,m. (2.12)
(N-D(N+2)p N

The estimator of T, is given by T, =4, —4,,, whered,, =>4, . Hyodo, Shutoh,
i=1

Nishiyama, and Pavlenko ( 2015) derived higher-order moments of a multivariate
normal random vector used to find the distribution of fb using the following
assumptions:

(B1) p,(i=12..) is fixed and m — o,

(B2) N=0(k%), 0<s<1,

(B3) D aya,; ~k*,

i#]
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(B4) ia; =o(k?), iaM =o(k?),where a, =tr>},i=12,..,m,

i=1 i=1

T2 009, YT, %, T, -0

i#]

(B5) a,=0(), a, =

i(tr Zij Zji)2 =0.

i#]
Subsequently, under assumptions (B1) — (B5) and that the null hypothesis H, is true,

the asymptotic distribution of 'fb which is given by

j-1

iZS(N ~1)(N +2)4,,4,

where 4> =121

NE . Note that assumptions (Bl) — (B5) are

stronger than assumptions (Al) — (A3) as Hyodo, Shutoh, Nishiyama, and Pavlenko

(2015) measured the performance of fb using a simulation study and showed that this

test statistic performed well when p was much larger than n and the correlation
between the variables was weak.

For studies on the next relevant point, Bao, Hu, Pan, and Zhou ( 2014)
proposed a statistic to test H, developed from Schott's (2005) statistic to test for

complete independence. Their idea turned out to be a particular linear spectral statistic

of a block correlation, and their statistic is defined as follows:

T = lyg_P :
2 2
where B = diag[ Y Y " T/Z YY" ]-diag[ YY" }:izm !

Y:()~(1_ X, —X -~->$n—>§),and y :()Sl(i)_g(i) XP KO X0 _KO )

X

It is assumed that p, <n for all i holds and n— oo. The asymptotic distribution of 'fc
under H, is given by

T.~N(a,,b,)
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L 2 PP L 2 PP (=1-p)(n~-1=p;)
where a, === , b, === ;
2 n-1 2 (n-1)

This test performed satisfactory in their simulation study and they also used

this test on a real-life dataset.
2.2 Discriminant Analysis

Discriminant analysis is one of the popular multivariate techniques used in
sample classification. One objective of discriminant analysis is to construct

appropriate rules for assigning new observations to one of g classes or populations.

Let Xy, Xonseos X, p D€ 1.1.d. @s p dimensional random vectors which have
multivariate normal distribution with mean ¢, and a positive definite covariance
matrix X, where h represents the h"™ classes (populations), given by
[, h=12,..,9; u, and X, are unknown parameters denoted by X, ~ N (&, %) ;

and k represents the number of observation from a random sample, k=1,2,...,n, .

The set of all random vectors constructed as an observations matrix can be written as

Xian  Xop Xplh
T Xon  Xoon 0 Xpon

Xh:()~(lh Xon )thh) = o :
X1nh X2nh o Xpnhh

The pdf for random vector X, k=12,..,n,, h=12,..,9 from a multivariate

normal distribution is defined as

1 A(Xo—tt) = (Xt /2
f(Z(kh):ﬁ ( kh é‘h) ( kn é‘h)/’
(27) |Zh|
Ha Oun Opn " Opp
12h  Oon Ospn

Hap : o
where E(th):é‘h: b E(th_éth)(Z(kh_/;lh) =2, =| . c. N

lLlph 0 ph 0, ph o O-pph

k=12..,n,,and h=12,..49.
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Now consider for each vector X, , px1, we partition it into m components
with each group of size p,x1, i=12,...,m. We partition X, , x,, and X, into m

components as

X Hhn
X(2) ﬂ(Z) . .

X =~ |, p, =| =" |, where X® and x® are p,x1 vector, and
X4 ™

leh z12h o Zlmh

DD PR )

3, = flh 2:2“ . Z:m“ , where =, isa p, x p; submatrix, i, j=1,2,...,m.
2mlh 2m2h meh

Note that X, X2,..., X{" represents a partitioning of X, , not a random
sample of independent vectors and E(X) =", E(XS — )X — 4 ?)" =2y,

As u,, X, are unknown, the unbiased estimators of these parameters are, respectively,

_ 1 My
)Sh = )~<kh’
N, =
Suh Sion 7t S1ph
1 & e =7 | Sizn San 7t Sopn
Sh:n 1Z(>~(kh_)~(h)(>~<kh_)~(h) = . . .- <.
s—Llia : : . :
S1ph Sth Spph
We partition X, , S, in the same manner as ,, X, :
7 (L
)Srﬁ) th SlZI S1mh
va Xﬁz) SZlh SZZh S2mh
)Sh = . y Sh = . . . . y
),,(rgm) Smlh Sm2h Smmh

where X are p,x1 vector, and S, isa p,x p; submatrix, i, j=1,2,..,m and

v (i 1nh—i 1 3 v (i v )\/y (i v (i
X = 2K S = 26 - XY - X"
h =

nh k=1
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When the covariance matrix of each class is equal (%, =%, =---X, =X), then

the population covariance matrix X can be estimated by
M

1 d — —
S = X = X)X = X )T
pooled n1+"'+ng hZ:l:k:l(~kh ~h)(~kh ~h)

In this study, it is assumed that the population covariance matrix has a block

diagonal structure, i.e. X, =0 forall h and i= j.

The above notations are used in entire this dissertation. The classical approach
and the high-dimensional approach of discriminant analysis are described in the next

two subsections.

2.2.1 The Classical Approach
Two classical discriminant methods are described in this section. The first is
the minimum expected cost of misclassification (ECM) method and the second is
Fisher’s discriminant method.
2.2.1.1 The minimum ECM method

Let f(X,) be the density associated with classes or populations
1", T1,, for 1=1,2,...,g . For the development of the general theory, it is unnecessary
(except where specified) to assume multivariate normality for X . Let
P, = the prior probability of [1,, 1=1,2,...,9;
c(h|l) =the cost of assigning an observation to =, when in fact, it
belongs to [1,, for I,h=12,...,g,with I =h, c(l|l)=0;
P(h|l) =the conditional probability of assigning an observation to [,

when in fact, it belongs to [],.

=IR f (X,)dx ,where R, is the set of x values classified into

[1,, ,Lh=12,..,9g, with P(I|I)=1—Zg:P(h|I).
h=1
Ih
Classification schemes are often assessed in terms of their
misclassification probabilities and also misclassification cost, and so it is reasonable

to use a classification rule which minimizes the ECM.
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The conditional expected cost of misclassifying an x from []; into
[L, or I1;,...,upto I1, is
ECM @) =P2|Dc(2])+P@B|D)cB|D)+---+P(g|Dc(g D)

=3 P(hic(h|)

This conditional expected cost occurs with prior probability p, (the
probability of belonging to class 1).
The other conditional expected cost of misclassification, ECM (2),...,
ECM (g) can be obtained in a similar manner. Multiplying each conditional ECM
by its prior probability and summing them gives the overall ECM:
ECM = p,ECM (1) + p,ECM (2) +---+ p,ECM (Q)
=Y PO+ B, 3 PRI 2)o(h 2)+ -+ p, 3Pl g)e(h] o

h#2

ECM :i p,iP(hH)c(hll) (2.13)

Ih
The classification regions that minimize (2.13) are defined by

assigning x to population h, h=1,2,..., g, for which

> p1,Coc(h I 214)

h=l
is the smallest. If a tie occurs in (2.14), x can be assigned to any of the tied
populations (for proof, see Anderson (1984)).
Suppose all the misclassification costs are equal, then without loss of

generality, all the misclassification costs are set to 1. x can be assigned to [I,,

h=12,...,g, for which

; P fi (%) (2.15)

I<h
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is the smallest. Now, (2.15) will be the smallest when the omitted term p, f, (X) is the

largest. Consequently, when all of the misclassification costs are equal, the minimum
ECM rule has the following rather simple form.
For the minimum ECM rule with equal misclassification costs:

Assign x to [1, if p,f, (x)>p,f(x) forall I =h.

or, equivalently,
Assign x to [, if Inp,f, (X)>Inp,f(x) forall I h. (2.16)
An essential case occurs when the population distribution is the

multivariate normal distribution X, ~ N (,,Z,) with pdf

P 1
f(Xy)=(27) 2 |Zh| 2 eXp(_E(Z(h _:th)Tzﬁl(Z(h _/;lh)]1 h=12,..,9,
and so from (2.16) , we obtain
_ihp [P s e Lo sk
In p, f,(x) =Inp, 5 In(27) 5 In|zh| 2()~( /;lh) Z, (X /fh)’

=2Inp, f,(X) ==2In p, + pIn27) +IN|Z, |+ (x = 44,)" =" (X = 4,) .
x can be assigned to [],, for which
min{-2In p, f, ()} . (2.17)
The constant pIn(27) in (2.17) can be ignored, since it is the same for

all populations. Next, define the quadratic discriminant score for the h™ population to
be

D, () = (X = £4,) (X = 4,) +In[Z, | -2In p,, h=12,...,9.

Using the quadratic discriminant scores, classification rule (2.16) becomes
Assign x to [1, if D,(x) <D,(x) forall I #h. (2.18)
In practice, , and X, are unknown and need to be estimated from

the data. The most commonly used estimators are their unbiased estimates, thus the

classification rule (2.18) becomes:

Assign x to I, if D,(x)<D,(x) forall I =h,

where D, (x) = (x—%,)" S;*(x—%,)+In|S,|-2In p,.
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When all the covariance matrices are the same, that is to say X, =X
for all h, the discriminant score can be simplified to
D, (X) = (X—24,) 7 (X~ p4,) + In[Z[-2In p,,
=In|Z/+ X" X =204, XX+ 4, 27 4, = 2In
The first two terms are the same for D,(x),D,(x),...,D,(x), and,

consequently, they can be ignored for assigning purposes. The remaining terms

consist of the constant ¢, =4 X4 —2Inp, and a linear combination of the

components of x. D, (x) is estimated by D, (X) =—2% S e X+ % S pecies %o — 21N P, .

This discriminant score is called the linear discriminant score.
2.2.1.2 Fisher’s Discriminant Method
The motivation behind the Fisher (1936) method is the need to obtain a

reasonable representation of the populations that involves only a few linear
combinations of the observations, such as ¢/ x, ¢J x, and ¢} x. This primary purpose

of Fisher’s discriminant method is to separate the populations, but it can also be used

for classification purposes. It is not necessary to assume that the g populations are
multivariate normal, but it is assumed that the px p population covariance matrices
are equal and of full rank (2, =%, =---X  =3).

Let u denote the mean vector of the combined populations and B, be

the sum of squares between the class so that

We consider the linear combination
Yo =¢'X,
which has an expected value
E(Y,)=c"E(X,)=¢"4, forclass h
and variance

Var(Y,)=c'Var(X,)c=c' >, c=c' >c for all of the class.



21

Consequently, the expected value 1, =c' 4, changes as the population from which

X,, is selected changes. We first define the overall mean as

_ 13 1& (1
é‘yz_ZHhvz_zg Hy=C _z/‘fh
gha g (O )
:ng

and the ratio as

¢ {Zg:(é‘h i ) (- )T}G
_ h=1
- ¢’ Xc ’
or
9 2
hz:;t(/th _E‘Y) ~ c' B,C
oy o' X

This ratio measures the variability between the groups of Y values

relative to the common variability within the groups, and an appropriate ¢ can be

selected to maximize this ratio.

Next, the sample sum of squares for class matrix S,, which includes

the sample sizes, is defined. Let

h-1
g _ o] nh
= znh)sh z Xin
where X = h=1g _ h=t |g<=1
Znh Znh
h=1 h=1

In addition, an estimate of X is based on the sample sum of squares within class

matrix S, :
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Consequently, S, /(n,+n,+---+n,—g)=S is the estimate of X . Before presenting

the sample discriminants, note that S is constant (n,+n, +---+n, —g) times S

pooled !

i c'S,C 'S,
so the same ¢ that maximizes ——2=— also maximizes ~TS
C oy

el

- . Moreover, an
cS

0O

pooledg

optimized ¢ can be presented in the more customary form of eigenvectors ¢, of

S,'S,, because if S.'S,e= e, then S7'Se=A(n,+n,+--+n,—g)e.

Theorem 1. Let A, 4,,..., A, >0 denote the s <min(g—1, p) eigenvalues of S 'S, and
e,6,,....& be the corresponding eigenvectors, then the vector of coefficients ¢ that

maximizes Fisher’s criterion function F(c) is obtained as

g
T QTZnh (Xh _X)(Xh - Z()TC
C S h=1
FO) =S =—5' (2.19)
v QTZ (l(kh_Xh)(l(kh_Xh)Tg

Given that ¢, =e , the linear combination ¢/ x is called the sample first discriminant,
and the choice ¢, =e, produces the sample second discriminant c] x, and so on until

we obtain ¢! x =e¢ x, where the sample r" discriminant r <s.

Proof. See Appendix A.2 o

Using Fisher’s Discriminants to classify observations, we set Y, =c' X, =r"

population discriminant (r <s), then

Y, _/thl_ 91T/fh
CT
Y, =| 2| has a mean vector x4, = Msz =| _/fh under [1, (h=12,...,9)
Y, | v, | _QsT Hy |

and covariance matrix I, for all populations. Because the components of Y have unit
variances and zero covariance, the appropriate measure of squared distance from

Y=y 10t is
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(Y = 2 ) (Y ) = (Vs — )

A reasonable classification rule is one that assigns y to [], if the square of the

distance from y to x,, is smaller than the square of the distance from y to s, for

all 1 #h.
If only r of the discriminants are used for allocation, the classification rule

based on Fisher’s criterion function is:

r r

Assign x o T1, it Y[y, ~5)] =X [er x-%) ] X[l (x-x)] for all

k=1 k=1 k=1

l#h.
When the prior probabilities are all equal [pl =p,=..= P, :%j and r=s,

the classification rule based on Fisher’ s criterion function is equivalent to the

minimum ECM classification rule with equal misclassification costs for normal

populations with equal X, .

2.2.2 The High-Dimensional Approach

Recently, a lot of discriminant methods for high-dimensional data have
appeared in the literature. Since they form part of the core body of work in the
proposed method, they are reviewed here.

Regularization techniques are highly successful for the inversing matrices
problem (O’Sullivan, 1986). Because the inverse of the sample covriance matrix does
not exist in high-dimensional data, O’ Sullivan (1986) attempted to use the sample
covariance bias to solve this problem.

The choice between the individual class sample covariance matrices and the
sample pooled covariance matrix represents a set of regularization alternatives

represented by
—_, (2.20)

where S, (1) =@-4)(n, -1)S, + A(n—-1)S and n, (1) =1-A)(n, -D+A(n-1) .

pooled
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The regularization parameter 4 when taking on values 0 <A <1 is used to control the

degree of shrinkage of the individual class covariance matrix estimates toward the

sample pooled covariance matrix. The value A=0 gives §h (1) =S,, whereas the

value A =1 gives S, (1) =S pooled -

The regularization parameter provided by (2.20) is still fairly limited when
regularizing. For example, if the population class covariance matrices were all quite
different from each other, then shrinkage toward the sample pooled covariance matrix

would introduce severe bias ( Friedman, 1989). Friedman suggested that shrinking

should be carried out toward the identity matrix by multiplying by tr(S,)/ p, which

has almost no bias, as
s}u,y)=(1—y)§h<z)+%[tr(sh)]|p, 2.21)

where | isthe px p identity matrix.

For a given value A, the additional regularization parameter y (¥ €[0,1])
controls shrinkage toward a multiple of the identity matrix where the multiplier is just
the average eigenvalue of §h (4). Hence, this shrinkage has the effect of decreasing

the larger eigenvalues and increasing the smaller ones. Equations (2.20) and (2.21)
represent a two-parameter family of regularized sample class covariance matrix

estimators, and the discriminant score is
Br (%) = (X—%)" S, (1. )(x=%,) +In[S, (4.7 -2In p, .
Friedman (1989) gives the classification rule with equal misclassification costs based
on the regularized discriminant method as:
Assign x to [1, if D} (x) <D/ (x) forall | =h.
The additional regularization parameter » can substantially improve the

misclassification error when the population class covariance matrices are not equal or
the sample size is too small (Friedman, 1989) The main disadvantage associated with
the regularized discriminant method is that the determination of the optimal choice of
the regularization parameter is determined by cross-validation, which consumes

much time for high-dimensional data (Guo et al., 2007).
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Another regularization technique was considered by Ledoit and Wolf (2004).

Their goal was to find the linear combination =" = p,1 + p,S of the identity matrix

and the sample covariance matrix where the expected quadratic loss E(HZ*—ZHZ) is

at a minimum, where || Al = /tr(AA")/p .

Consider the optimization problem

. T . .
min E(HZ —ZH ) subjectto =" = p,1 + p,S,

P1P2
where the coefficients p, and p, are nonrandom. Its solution verifies that

ﬂ2 2

(24
plzy,u and ,02=§

then Z*:g—j,ul +Z—js and E(HZ*—ZHZ)za;BZ :

where u=tr(Zl)/p, a? =||2—y|||2, [’ = E(||S—Z||2), and 6% = E(||S—,ul||2).
Since X" depends on the four scalar functions of the true (unobservable)

covariance matrix : u, o, £, 8%, they addressed this problem by replacing these

functions &, i, «, B with their consistent estimators d,m,a,b where
2 2 2_q2 2 2 19 T 2
d’=|s—mi|", m=tr(sl)/p, a’=d*-b*, b ==>"|X,X; -$|  and
n" =
b =min(b’,d?).
This yields a well-conditioned estimator of covariance matrix
) b2 3.2

Z :?ml +F

Ledoit and Wolf ( 2004) showed that 3" is a consistent estimator of X, i.e.

S.

o —Z*H — 0. As a consequence, 3" has the same asymptotic expected loss (or risk)

x . Ak 2 " 2
as ¥ ie. E(HE —2” )—E( > -3 )—>0.

Instead of considering the linear combination =" = p,1 + p,S, Schéfer and

Strimmer (2005) used S™ =AT +(1-A4)S, which guarantees a minimum mean
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squared error. They showed that it performed very well in both simulations and with
real-life data.
Consider the optimization problem

min E(HS* —ZHz) subject to |[S” —2”2 = AT +@-2)s -2,

= Zplzpl(ztij +(1-2)s; —Gij)z,

where S is the sample covariance matrix (S =[s;],.,) and T is the shrinkage target

for the covariance matrix (T =[t;],.,) , then its solution verifies

* 1

A=

p
:1]

p
=1

[Var(s;) - Cov(s;,t;) |

_ Zp: EI:(tij _Sij)z:l

p
i=l j=1

(2.22)

For the practical application of (2.22), Schafer and Strimmer (2005) decided to

estimate the optimal shrinkage intensity A". They suggested computing the optimal

shrinkage intensity estimator A by replacing all expectations, variances, and

covariance in (2.22) with their unbiased estimates. Three commonly used shrinkage

A

targets for the covariance matrix are compiled and the resulting estimate A~ is made
as follows:

1) T = A: "Diagonal unit variance"; in this case, we do not need an
estimated parameter because T is a constant matrix (an identity matrix). Thus,

Loifi=j 3 var (s, var(s,)
i = Lo and 4 =S 2.23
S (VN R B T4 (517 2.23)
2) T = B: "Diagonal common variance"; in this case, we need to

estimate the diagonal element of T (the common variance « ). Thus,

p p
_ S ifi=i . ZVar(sij)JrZVar(sii)
{=1 (Z ]/p B 2.24)
0 if i+ ] S8+ (s-a)

%] i=1
3) T = C: "Diagonal common variance and common covariance";

because this shrinkage target matrix is provided by the two parameters’ common

variance « and common covariance £, we need to estimate both parameters. Thus,
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p
a=|Ys |/p ifi=] p
(; j/ ~ ZVaf(Sy‘ij )+Zvar(5ii )

t = and A =4 B . (2.25)

1 2 —
ﬂZLZSij J/p(p—l) ifi#] ;(Syrﬂ) gj( _—

i#]j

When A" is computed, the well-conditioned estimator of the covariance matrix is
calculated by

S, =AT+A-11s,.
The classification rule with equal misclassification costs based on a well-conditioned
estimator of covariance matrix is:

Assign x to I1, if DY(x) < D"(x) forall hl,
where Dy'(x) = (x—%,)" Sy (x—%,)+In|S;|-2In p, .

Xu, Brock, and Parrish (2009) stated that a well-conditioned estimator has a
simple explicit formula that is easy to compute and interpret. Unlike the regularized
discriminant method, a well-conditioned estimator not only solves the singularity
problem but also produces a unique optimal solution to the shrinkage parameter
without the need to search for the optimal regularization parameter.

Dudoit, Fridlyand, and Speed (2002) introduced simplified discriminant rules
by assuming independence between variables and replacing all off-diagonal elements

of the sample covariance matrix with zero. Specifically, they used only the diagonal
elements as S, , =diag(syy,,--»S,,;) and created the DI classification rule as:

Assign x to T1, if DY (x) <D (x) forall h=1,
where Dy (x) = (X—%,)" S¢} (x—%,) +In[S, ,|-2In p,.

As S, above uses only the diagonal elements of S, , this method will lose

some information from the off-diagonal elements.

Srivastava and Kubokawa (2007) derived the empirical Bayes estimator of

-1
>t given by S, = (Sh +t_r(—Sh) I] and gave the SK classification rule as:
’ min(n, p)

Assign x to T1, if Di(x) <D (x) forall hsl,
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where Dg(x) = (x—X,)" SSKh(x—Xh)Hn‘SSKYh‘—ZIn Py, -

Note that S;; exists irrespective of whether n< p or n> p, and this method

performed the best in their study.
The next part of the literature review concentrates on the Fisher’ s
Discriminant Method. Liu, Cheng and Yang (1993) proposed a modified Fisher’s

criterion function as

S Sc
F'(c)= =
© 'S, QTS +

S (2.26)

IO IO

zo lO
0 o,

g M
where SFZZ(&h—X)(Kkh—X)T is the sample total sum of squares. Let

h=1 k=1
:{)~(|St)~(=O,XERp} and Sﬁc be the complementary subspace of S*, then the

algorithm to calculate the vector of coefficients ¢ subject to max (2.25) is designed as
follows:

1) Calculate the first vector of coefficients c,
Let 5" =span{p®,pf",...p}, where ¢, ¢ ..., ¢l are orthogonal unit vectors.
Casel. =p.

Subsequently, ¢, is the unit eigenvector corresponding to the maximal
eigenvalue of the matrix S.'S, .

Case2. 1< <p.

Let P, = (gof),(pg“, ,(pfl)) and Z® be the eigenvector corresponding to

the maximal eigenvalue of (PfStFi)fl(FiCSbFi), then ¢, is determined by the

following formula:

plz(l)
]

G =

2) Calculate the i" vector of the ¢, coefficients

Let S, = span{ql,gz,...,gp_ﬁ}, where «,,a,,...,a, , are orthogonal unit vectors.

p-n
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Suppose V; =span{c,,C,,...G, 1@, &, &, , | is the subspace spanned by the vector

TEp-n

of coefficients c,,c,,...,C,_,, which have already been calculated, and the vectors
&, Qe N V© = span{gpl(‘),gog”,..., gpfl‘lm} are the complementary subspace of

V;, where ", ¢f",..., %", , are the orthogonal unit vectors.

Let P =((€;i>,(gg>,...,@é‘3i+l) and Z® be the eigenvector corresponding

to the maximal eigenvalue of (RCStPi)fl(PiCSbPi), then ¢, is determined by the

following formula:

pz®

gi ‘Pz(i)‘ .

Chen et al. (2000) proposed a more efficient, accurate, and stable

method to derive the vector of coefficients ¢ that maximizes F’(c). First decompose

S, a S,=HAH', where H =[q,,a,....a,,,.,,...a,] are the eigenvectors of S,

1Xr T4l

corresponding to the eigenvalues A4 >4, >.>A4 >4,=--=4,=0, and

A=diag(4, 4.y A, Ay, -0 A,). - S€COND,  cCOmpute §b=QQTSb(QQT)T, where

Q=l[q,,,..,], then the vector of coefficients ¢ are the eigenvectors of S,

corresponding to the nonzero eigenvalues of §b .

The classification rule based on modified Fisher’s criterion function is:

Assign x to IT, if

i[yj—th>]2=i[9}(x—xh)]2si[g}(x—x.)]z forall hl.

This method can be applied to high-dimensional data whereas the
Fisher’s discriminant method based on (2.19) cannot. Experimental results have
shown that the method of Chen et al. (2000) is superior to that of Liu et al. (1993) in
terms of recognition accuracy, training efficiency, and stability.

Lu et al. (2003) proposed a new regularized discriminant method
called the regularized direct discriminant method by incorporating the dimension

reduction technique of Chen et al. (2000) into the regularized discriminant method
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proposed by Friedman (1989). In order to reduce the dimensions, they formed matrix

H containing a vector of coefficients ¢ by letting U =(u,,u,,..,u,) be the g

eigenvectors of S, corresponding to the g nonzero eigenvalues denoted by

@, @;,..., @, Thus, H=UDb7}/2 so as to obtain H'SH=I, where
D, =diag(®,, @,,...,@,) and 1 is the gqxq identity matrix. They defined the

classification rule with equal misclassification costs based on regularized direct

discriminant method as:

Assign y=HTx to [1, if Dy(x) <D (x) forall h=I,

where B (X) = (y - %) S, (2, 1)(y ~ %)+ In[S, (4,7)| -2In p,,

)= @-A)n,S, +4AnS

A -8 7 3
inwhich S, (4,7) = (1-»)S, (1) + p[tr(Sh)]Ip, Sn(4 (L—A)n, +4n

1 & 3 ~ L
S :n_Z(th _Yh)(th _Yh)T ,and S :stk .
k=1

h j=1
The regularized direct discriminant method can be used for high-

dimensional data and can reduce the time consuming task of obtaining §h 4,7).



CHAPTER 3

THE PROPOSED TEST

The proposed test for testing for a block diagonal covariance matrix for high-
dimensional data is presented in Section 3.1, followed by the two new discriminant

methods for high-dimensional data in section 3.2.

3.1 Testing for a Block Diagonal Covariance Matrix in High-Dimensional
Data

In this section, the problem of testing hypothesis,
Hy:Z=D; vs H,:Z#D;,
for high-dimensional data is of interest. The proposed statistic based on the fact that if
H, is true (£=Dy), then tr=®>=trD? or trz?/trD?=1. Thus, under H,, an
equivalent test is obtained as follows:

e try?

H :——=1vs H,: >1. 3.1
°"trD? *"trD? (3-1)
Consider that
Z:11 012 Olm Z:11 O12 Olm
trD2 =tr 021 222 Ozm 021 222 Ozm
DR : : : : : : :
Oml OmZ me Oml Om2 Zmm
z“121 O12 Olm
—tr 921 2;2 O.Zm
Oml OmZ Zﬁwm
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k k
fr> and a, :g then we
P p

Recall from Hyodo et al. (2015) that we defined a, =

can rewrite (3.1)as H,: T =1, where T = i, inwhich a, =) a,.
2D i=1

The quantity T can be estimated by the unbiased and consistency estimator

for high-dimensional data proposed by Srivastava (2005), who made the following

assumptions in order to estimate a,, a,; :
(C1) p,,i=12,... isfixedand m—oo.
(C2) N=0(p°), 0<5<1.

(C3) 0<a’ =lima, <o, M 50, k=1,2.
p—® po®

4y 0<limP<c,i=12,..

P>
Recall that the unbiased and consistent estimators of a, and a,, obtained from

the results of Srivastava (2005) are defined as follows:

. N S Ry
a = (N-D(N:2)p {trS N (trS) } (3.2)

LN S P
&y = (N—1)(N +2)p{trsii N (trS;) } (3.3)

From these estimators, we can obtain the estimator of a,, from

. - N 1
i =Y 4 = trSZ2 ——(trS, 2}. 3.4
aZD — a'2| |Z—_1:(N —1)(N+2)p{ ii N ( ||) ( )
Hence, these estimators can be used to estimate T as T = ?2 :
aZD

The follow lemma gives the asymptotic distribution of (4, 4&,,) used to

derive the distribution of the test statistic T .
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Lemmal Under assumptions (C1) — (C4), the asymptotic distribution of (&, 4&,;)" is

8 4 ,
&t

X Cov(d, . 4,)
4 ) » a, )| Np ?
—P 5N ,
[QZDJ ? [a‘ZDj A A c 8 4 2
Cov(az,aZD) Z(Np a, + N2 az')
i=1

Note that it is not necessary to find Cov(4,,4,,) in order to derive the distribution of

T under H,.

Proof. See Appendix A.1. i

In order to test H,:T =1 against H_:T >1, it is necessary to find the

distribution of T . Since the test statistic T is a function of random variables, then we

can use Lemma 1 incorporating the Delta method to obtain the distribution of T .

Lemma 2 (the Delta method) Suppose X;,...,X, are random vectors in the R°
Euclidean space and assume that ¢, (X, — /:z) ~N,(0,%), where U is a constant vector
and {c.} is a sequence of constants ¢, —oco. In addition, it is assumed that g(-) is a
function from R" to R which is differentiable at )% with a gradient (the vector of

first partial derivatives) of 1xk dimensions at  equal to g'(x), then

¢, 90%)-9() |~ N© g (4)Zg'(1)").
Proof. See Lehmann and Romano (2006, p. 436). i

The next theorem shows that the distribution of test statistic T is normal. We
also find the distribution of test statistic T under H,, which is stated in the corollary

after the next theorem.

Theorem 2 Under assumptions (C1) — (C4), let T - % and T=2

2D a'ZD

, then the

asymptotic distribution of T is
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T-T—25N(0,6%),

where 02=%[Nipa4+%a§j aaQCOV(ag, 2D)+( ]Z( . 22.]
2D

2D !

I\

Proof. Let T = g(az,aZD)— ,then T = g(aziazD)_ — -
a2D a,,

The first partial derivatives of g(a,,a,,) with respect to a, and a,, are, respectively,

09(8y80) _ 1 4 09(3,,8) 3

aaZ a'2 D aaz D a2 D

By applying the Delta method, we obtain T —T —2— N(0, #?), where

4 A 1
—a,+—a Cov(4,,4,,) —
ezz(i _j Np N B (A
a a’ o A a
2D 2P COV(aZ’aZD) Z( 4i N2 2|) _aTz
2D

1( 8 4 ,) 2a m 4 22
=—| —a,+—a —2Cov(4,,4,,)+ ( ij. |
azzD[Np ‘N2 2} a, 2172 ( J.Z;‘ ?

Corollary 1 Under the null hypothesis H, : T =1, we obtain

T :7_—D>N(o,1),

p

where 62 = Zag, )i -

I#J

Proof. When H, istrue, a, =a,,,
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1 8 4 2 1 8 4
0 =——| —a,, +— a5, |-——Cov(d,p, +— a, +—a’ |,
aZZD( 4D ZDJ a2D (ZD ZD) 2D ;(Np 4 NZ ZIj

_ 4 v 2_m 2
_azzDNz (;a?_i) ;aZiJ’
42&2,a21

I¢J

a2 N?

Therefore, ° = Zazla2 J O

i#]

Apparently, to use T, in practice, it is necessary to estimate 6° by replacing

A A , . oA 4 s oa
a, and a,, by 4, and &, respectively, i.e. 6* = N Zaﬁazj :
D 1#]

Thus, a test of H, can be constructed as the following statistic:

t :T—l

=" —2 3 N(0,1),

where 62 =

t S,
#]

Testing the hypothesis H,:T =1 against H_:T >1 is a one-tailed test. At

D

significance level «, H, is rejected if 'fp >z, where z, is the 100 «" percentile of

a standard normal distribution.
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3.2 Discriminant Analysis in High-Dimensional Data

In this section, two new discriminant methods are proposed to construct a
method for dealing with high-dimensional data. Only the classification of two classes
where the population covariance of each class is equal (£, =%, =%) with a block

diagonal structure are considered. In this situation, high-dimensional data can occur
when the degrees of freedom exceeds the dimensions instead of the sample size.

3.2.1 The First Proposed Method

A well-conditioned estimator of the covariance matrix (Schéafer & Strimmer,
2005) and the regularized direct discriminant method (Lu et al., 2003) are considered
to be extremely beneficial in discriminant analysis. One advantage of the regularized
direct discriminant method is that it can reduce the dimensionality of the data, and so
in this study, these advantages are combined in a new technique by incorporating a
well-conditioned estimator of the covariance matrix with the regularized direct
discriminant method to classify high-dimensional data. The definition of a well-

conditioned estimator of the covariance matrix is the linear combination

S"=AT +(1-A)S of the shrinkage target matrix and the sample covariance matrix
where the expected quadratic loss E(HS*—ZHZ) is at a minimum which defined by

Schéfer and Strimmer (2005). Additionally, it is always positive definite. The
proposed technique uses a well-conditioned estimator of the covariance matrix instead

of §gl(/1,y) in the regularized direct discriminant method in order to avoid searching

for an optimal regularization parameter resulting in a unique optimal solution. First,

Lu et al.'s (2003) technique to reduce the dimensions is carried out.

Step 1 Diagonalize S, : Find matrix V such that

VTSV =A,

9
where V is a matrix of the eigenvectors of S, (S, =Y n, (%, —X)(X,-X)") and A is
h=1

a diagonal matrix which contains all the eigenvalues corresponding with V. As S,
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might be singular, some of the eigenvalues will be 0, and it is necessary to discard
these along with any eigenvectors that contain them.

Let @,®,,..,0, be nonzero eigenvalues of S, and U be the first q
eigenvectors of S, corresponding to nonzero eigenvalues. After that, we write
uTs,uU=D,,
where D, =diag(,, @,,...,®,) is the gxqg submatrix of A.

1

Step 2 Unitize S, : Let H =UD, 2, then

1\' 1
[UDsz Sb(UDsz: | >H'S,H=1I.

Thus, H unitizes S, and reduces the dimensionality from p to q.

Step 3 Create a well-conditioned covariance matrix estimator S* in the low

dimension subspace spanned by H by projecting the original observations into it to

obtain y,, =H"x,, where h=12, k=12,..,n,, then consider the optimization

problem
min E(Hs* —zuz) subject 10 8" — 2| = [ AT + (1= A)S, pouea —Z[
= ii(ﬂtij +(l_/1)sy,ij _O-ij)z ,
i1 j1

where S =AT +(1-1)S is a well-conditioned covariance matrix estimator,

y, pooled
9 M . o
ZZ(Ykh o Yh)(Ykh - Yh)
S, pooleg = T is the pooled variance of y,

n-g

s,; represents the element at the i" row and j" column of S and

y, pooled !

g is the number of classes.

In this study, three shrinkage target matrices for S, ., (Schafer & Strimmer,

2005) and the resulting estimate A (as show in Chapter 2 ( 2.23-2.25)) are

investigated.
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Step 4 Calculated the well-conditioned estimator of the covariance matrix by

S =1T+@1-1)S

y, pooled *

Step 5 Define the first proposed classification rule:
Assign x to T1, if D,(x)<D,(x) forall I =h,
where D, (x)=(H"x-H"%,)" S/ (H"x~H'%,) -2l p,.

From here on, symbols TA, TB, and TC are used for the classification rules for

shrinkage targets matrices T = A, B, and C, respectively.

3.2.2 The Second Proposed Method

Recall that the population covariance matrices are assumed to be block
diagonal structures, thus the proposed method is based on constructing the sample
covariance matrix to be the same pattern. For a pooled sample covariance matrix

S we partition it in blocks as

pooled !

S11 S12 Slm
S, S S,

Spooled = 7 ;22 2 = [Sij]PXP !
Sml sz Smm

where S; are submatrices of S for i, j=12,..,m, and the dimensions of S; are

pooled !

pix Py and ) p,=p. S, i partitioned in the same manner as X which the block
i=1

size of S is equal to the block size of X, for all i, j, thus we define block diagonal

matrix sample covariance matrix S, ., as

S, O 0
0 S,
Soiec =diag(S,,S,, .., S(m—l)(m—l) »Sim) = :
: S(m—l)(m—l) 0
0 .o .. 0 San ).

When classifying two classes, the degrees of freedom for S is n+n,—2, and so

pooled

S;»1=12,...,m are submatrices of p, dimensions with v degrees of freedom. If we
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specify that p, <v, then S;,i=12,...,m are all invertible (Dempster, 1958). As a

result, S, is also invertible, and the inverse of S, is given by

Sy 0 - . 0
0 S, 0
Stiooc = Ai18G (Sy1'+ 771+ S-sym-1y» Sm) =| - :
-1
) Smamy O
pxp

Hence, S,., is used instead of S_; ., because the latter does not exist for
high-dimensional data.

The second proposed classification rule is:

Assign x to [T, if D,(x)<D,(x) forall I =h,
where D, (X) = (X—%,)" Spea (X—%,) =210 .

From here on, symbol BD is used for the classification rule that uses a block

diagonal sample covariance matrix.



CHAPTER 4

SIMULATION STUDY

In this section, the performance of the proposed test statistic (I' o) is evaluated

using a simulation study under with various parameter setting and a comparison with
some of the previously reported tests are reported. Furthermore, the proposed methods
(TA, TB, TC, and BD) are evaluated using a simulation study with various parameter

settings and compared with some previously reported methods.

4.1 Simulation Study for Testing Block Diagonal Covariance Matrices in

High-Dimensional Data

To test the hypothesis H,:X=D, against H,:Z=D;, the proposed test

statistic(f ,) is investigated via a simulation study with 10,000 iterations under

various parameter settings of population covariance matrix by considering its

empirical Type | error rate and empirical power. A comparison of the performance of
T, with T, (Hyodo, Shutoh, Nishiyama, & Pavlenko, 2015) and T, (Bao et al., 2014)

which described in section 2.1.2 is also carried out.

Recall the three test statistics which were compared in this study:
1) The proposed test statistic T, is given as

%
T = asz —° ,N(0,2),

p

A

. 4 o
2 A
where §* = —— N ZaZiazj,
ap N5
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a,= N® {trsz—i(trS)z},
(N-D)(N+2)p N

. N°
A =
(N=-D(N+2)p

RO R
b0 =30t = st s

i=1 i=1

{trsif —% (trS“)z} , and

2) The Hyodo, Shutoh, Nishiyama, and Pavlenko (2015)’s test statistic fb IS

given as
. A2
Tb =a2 —a2D -~ N(O,W),
m j-1
ZZS(N ~1)(N +2)4,,4,
where A2 =125 and 4,, 4,,, and &,, are define above.

N 2
3) The Bao, Hu, Pan, and Zhou (2014)’s test statistic fc is given as

'|°C=£trBz—£,
2 2
_di Dy Ot T2 TyyT 1. di oy G172

where B =diag[ YY" ] " [YYT |- diag[ Y Y ]izl _____ n’
Y =()~<1—X )N(Z_X '._xn_g), y® :(Xl(i)_g(i) )Séi)_g(i) ...)Srgi)_g(i))
with fc - N(an’bn)’

PP, L 2 PPy (n=1=p)(n-1-p))
where a_ == b, =" 7

2 n-1 2 (n-1)

4.1.1 The Performance Evaluation Methods for Test Statistics

The empirical type | error rate (&) and the empirical power (&,) are obtained
by generating a sample of n independent observations from N (Q,Z) and repeating

10000 times using either T,, T,, and T, to calculate

_ (#teststatisticsunderH, > z,)
' 10000
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_ (#teststatisticsunderH, >z,)
10000

where z,, is the 100a% quantile of the standard normal distribution and ¢ is the

and ¢,

significance level (fixed at « =0.05 in this study).

4.1.2 Parameter Settings to Test for a Block Diagonal Covariance
Matrix in High-Dimensional Data
The empirical type | error rate is calculated under the null hypothesis with four

different forms of population covariance matrix as follows:

1) The first form of covariance matrix is X, =diag(Z,;,Z,,,....2,)
and X, = -0, +0J,, £=0.10509, i=12,..,m, in which J is a matrix where
all elements are 1’s, and the dimensions of X; are p;xp, and ) p, = p.

i=1

2) The second form of covariance matrix is Z, =diag(Z,;,Z,,,... 2,

and T, =[py], pa=60"", 0=09, i=12..m, and k,1=12,..,p, in which the
dimensions of X; are p,xp, and ) p, = p.
i=1
3) The third form of covariance matrix is X,, which the same as X,

except that + and — are alternately assigned to the elements of %, .

4) The fourth form of covariance matrix is X, =diag(Z,;,%,,,....Z,,)

1= mm

and =, =[pe], pa=(-0)", 0=09, i=12..m, and k,I=12,..,p, in which

the dimensions of X; are p,xp, and > p, = p.

i=1
Four different forms of population are used to calculate the empirical power
under the alternative hypothesis as follows:

1) The first form of covariance matrix is %;:%; = (1-0)I, +6J, and

the off-block elements are 0.50, €=0.1,0.5,0.9, i=1,2,...,m, in which J is a matrix

where all the elements are 1°s and the dimensions of %, are p,x p; and > p, = p.
i=1
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2) The second form of covariance matrix is £, =[p,], oo =0"",
0=09, k,1=12,...,p.
3) The third form of covariance matrix is X, , which is the same as Z,

except that + and — are alternately assigned to the elements of X, .

4) The fourth form of covariance matrix is =, =[p,], pa = (-0)*",

6=09, k,1=1,2,...,p.
The simulations are conducted at p e {100,200,300,400} with n e {50,100} .
For each combination of (p,n), the block sizes are either equal or mixed. For the
equal block size case, all the X, are of equal size p,=5,10,25 containing p/p,

blocks, and for the mixed block size case, there are two different block sizes in the

matrix. The two block sizes of submatrix X; are chosen from p;, p;, =5,10,25, in

which size p, has p/2p, blocks and size p;, has p/2p; blocks. The number of

blocks rather than the block size is considered in order to reach conclusions in the

same direction.

4.1.3 Simulation Results

The test statistics are compared in terms of their empirical type | error rates

(&,) and empirical powers (g,) (these values are reported in Tables 4.1-4.8 and

additional report of & and ¢, are shown in Tables B.1-B.8 in Appendix B).
The values of &, for 'fp, T, and T, when = =Y, with equal and mixed block

size are presented in Tables 4.1 and 4.2, respectively. It is evident that ¢, of 'fp are

close to o =0.05 and the maximum difference between ¢, and « is 0.0165 (i.e. not
much different) . When the value of & is 0.1, the absolute values of difference

between g and «, |gl—a|, are not much different for any p and the number of
blocks. The values of |gl—a| for fp increase when @ increases and the number of

blocks decreases and the values of |81 —a| decrease as the value of p is made larger.
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The values of ¢ for 'fp are compared with those of T, and T.. When
comparing the test statistic T, with T,, the values of &, for T, and T, are slightly
different which the values of ¢, for T, are minor less than the values of &, for 'fp in
all set of parameters. When comparing the test statistic 'fp with 'fc, the values of

e, —a| for T, and T, are close together when @ is 0.1 or the number of blocks is

large ( for equal block size case p, =5 and for mixed block size case p, =5 and
p,=10). However, the values of |¢, —c| for 'fp are higher than T, and become
slightly different as p increases for the small number of blocks (for equal block size
case p, =10, 25 and for mixed block size case p,=5 and p; =25 or p, =10 and

p, = 25) with a large value of & (0.5, 0.9).

Tables 4.3 and 4.4 present the values of & for 'fp, T, and T, when =3,
with equal and mixed block sizes, respectively. The values of & for 'fp are close to
a=0.05 with the maximum difference between & and « being 0. 0165. The
different number of blocks affects &, for p =100, 200, whereas a larger p does not

affect g with any number of blocks.



Table 4.1 The empirical type | error rate when =%, =0.1, 0.5, and 0.9 with equal block sizes

6=0.1 =05 6=09
n P P, T 7, T T T, T T ) T

50 100 5 0.0486 0.0464 0.0500 0.0534 0.0519 0.0500 0.0534 0.0517 0.0500
10 0.0490 0.0476 0.0475 0.0578 0.0566 0.0475 0.0596 0.0579 0.0475

25 0.0533 0.0516 0.0484 0.0647 0.0625 0.0484 0.0649 0.0642 0.0484

200 5 0.0454 0.0445 0.0484 0.0502 0.0479 0.0484 0.0509 0.0491 0.0484

10 0.0463 0.0450 0.0481 0.0541 0.0529 0.0481 0.0572 0.0558 0.0481

25 0.0516 0.0497 0.0495 0.0625 0.0610 0.0495 0.0632 0.0624 0.0495

300 5 0.0524 0.0506 0.0535 0.0510 0.0502 0.0535 0.0512 0.0496 0.0535

10 0.0504 0.0489 0.0522 0.0516 0.0501 0.0522 0.0537 0.0528 0.0522

25 0.0523 0.0512 0.0483 0.0583 0.0561 0.0483 0.0581 0.0558 0.0483

400 5 0.0477 0.0464 0.0487 0.0497 0.0479 0.0487 0.0507 0.0488 0.0487

10 0.0515 0.0494 0.0494 0.0503 0.0490 0.0494 0.0518 0.0499 0.0494

25 0.0520 0.0508 0.0536 0.0559 0.0547 0.0536 0.0561 0.0538 0.0536

100 100 5 0.0489 0.0480 0.0514 0.0510 0.0501 0.0514 0.0527 0.0519 0.0514
10 0.0461 0.0455 0.0502 0.0546 0.0537 0.0502 0.0571 0.0562 0.0502

25 0.0535 0.0528 0.0505 0.0638 0.0628 0.0505 0.0648 0.0641 0.0505

200 5 0.0513 0.0507 0.0510 0.0517 0.0506 0.0510 0.0540 0.0530 0.0510

10 0.0495 0.0486 0.0500 0.0557 0.0550 0.0500 0.0556 0.0548 0.0500

25 0.0519 0.0509 0.0542 0.0615 0.0607 0.0542 0.0635 0.0629 0.0542

300 5 0.0441 0.0428 0.0458 0.0507 0.0497 0.0458 0.0510 0.0507 0.0458

10 0.0481 0.0476 0.0471 0.0539 0.0525 0.0471 0.0551 0.0544 0.0471

25 0.0505 0.0495 0.0486 0.0599 0.0590 0.0486 0.0568 0.0560 0.0486

400 5 0.0469 0.0461 0.0516 0.0493 0.0484 0.0516 0.0509 0.0503 0.0516

10 0.0472 0.0467 0.0508 0.0506 0.0497 0.0508 0.0519 0.0515 0.0508

25 0.0471 0.0459 0.0522 0.0561 0.0552 0.0522 0.0564 0.0559 0.0522

1%



Table 4.2 The empirical type | error rate when =%, =0.1, 0.5, and 0.9 with mixed block sizes

6=0.1 8=05 6=0.9
n P P Pi T T T T T T T 7, T

50 100 5 10 0.0534 0.0520 0.0522 0.0593 0.0575 0.0522 0.0576 0.0561 0.0522
5 25 0.0482 0.0467 0.0521 0.0600 0.0585 0.0521 0.0638 0.0624 0.0521

10 25 0.0525 0.0506 0.0490 0.0634 0.0621 0.0490 0.0643 0.0630 0.0490

200 5 10 0.0453 0.0437 0.0479 0.0513 0.0495 0.0479 0.0545 0.0530 0.0479

5 25 0.0461 0.0447 0.0473 0.0574 0.0563 0.0473 0.0608 0.0595 0.0473

10 25 0.0487 0.0473 0.0501 0.0549 0.0533 0.0501 0.0575 0.0558 0.0501

300 5 10 0.0518 0.0505 0.0530 0.0524 0.0510 0.0530 0.0549 0.0535 0.0530

5 25 0.0480 0.0460 0.0507 0.0558 0.0551 0.0507 0.0556 0.0550 0.0507

10 25 0.0517 0.0492 0.0491 0.0573 0.0555 0.0491 0.0569 0.0551 0.0491

400 5 10 0.0501 0.0490 0.0490 0.0500 0.0487 0.0490 0.0509 0.0495 0.0490

5 25 0.0496 0.0477 0.0503 0.0527 0.0520 0.0503 0.0525 0.0523 0.0503

10 25 0.0493 0.0475 0.0530 0.0552 0.0536 0.0530 0.0543 0.0522 0.0530

100 100 5 10 0.0546 0.0537 0.0525 0.0555 0.0550 0.0525 0.0575 0.0568 0.0525
5 25 0.0520 0.0508 0.0467 0.0622 0.0622 0.0467 0.0636 0.0628 0.0467

10 25 0.0540 0.0530 0.0518 0.0653 0.0647 0.0518 0.0665 0.0658 0.0518

200 5 10 0.0527 0.0516 0.0525 0.0549 0.0540 0.0525 0.0552 0.0549 0.0525

5 25 0.0532 0.0520 0.0528 0.0564 0.0560 0.0528 0.0591 0.0580 0.0528

10 25 0.0515 0.0509 0.0507 0.0564 0.0558 0.0507 0.0566 0.0560 0.0507

300 5 10 0.0510 0.0504 0.0489 0.0538 0.0532 0.0489 0.0559 0.0547 0.0489

5 25 0.0506 0.0498 0.0493 0.0564 0.0551 0.0493 0.0578 0.0571 0.0493

10 25 0.0496 0.0484 0.0505 0.0573 0.0568 0.0505 0.0595 0.0588 0.0505

400 5 10 0.0471 0.0462 0.0483 0.0539 0.0533 0.0483 0.0554 0.0547 0.0483

5 25 0.0450 0.0440 0.0470 0.0548 0.0538 0.0470 0.0584 0.0575 0.0470

10 25 0.0483 0.0476 0.0478 0.0524 0.0521 0.0478 0.0536 0.0531 0.0478

9y
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In a comparison of the values of ¢ for 'fp and T, , the results are similar to
X =%, i.e.the values of & for fp and T, are slightly different which the values &
for 'fb are minor less than the value &, for 'fp in all set of parameter. In a comparison
of the values of ¢ for 'fp and T,, the |&, —a| are not much different for the large
number of blocks (for equal block size case p, =5 and for mixed block size case
P, =5 and p, =10) and the values of &, for T, are closer to & =0.05 than 'fp when
the number of blocks decreases (for equal block size case p, =10, 25 and for mixed
block size case p,=5 and p; =25 or p, =10 andp; =25) with p=100, 200
Additionally the values of |, —a| for 'fp and T, are similary when p =300, 400.

An investigation into the impact of alternately assigning + and —in X,,%, as

2,,Z,, respectively, is also carried out, the results of which are shown in Tables B.1-

B.4 in Appendix B. It is found that the results had almost the same pattern as in
Tables 4.1-4.4, respectively. In addition, it should be noted that the sample size does

not affect & in all forms of the population covariance matrix.
The values of ¢, for T, T, and T, for ==X, with equal and mixed block

sizes are given in Tables 4.5 and 4.6. In almost all cases, the results show that 'fp

obtains the values of &, nearly 1 with a minimum value of 0.8699, which is still
acceptable. When comparing the ¢, of 'fp with 'fb, they show that the &, of 'fp and
'fb are not different. When comparing the ¢, of 'fp with 'Ii, they showed that the &,
of fc are small (far from 1) when the number of blocks is small, an effect which is
dominant when 8=0.1 and smaller p. Even though the values of &, of 'fp and T,
increases when the sample size increases, the values of ¢, for fc are still far from 1.
Tables 4.7 and 4.8 report the values of ¢, for T,, T, and T, for =%, with

equal and mixed block sizes, respectively. The values of ¢, for T, are once again
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nearly 1, while the minimum value is 0.9837. In a comparison of the values of &, for

'fp and T,, the values g, for 'fp and T, are not different. Whereas the performance of

A

T, is poor when the number of blocks is small in equal block size case, it performs
better in the mixed block size case. For any p and a small number of block, the
values of &, for T, are smaller than those of 'fp , and they become close to each other

when the number of blocks increases.

In Tables B.5-B.8 in Appendix B, the results when alternately assigning + and

—in X;,%, as X,,Z,, respectively, are presented. They show once again that the

results show almost the same pattern as X.,%, i.e. assigning + and — sign does not

affect either test.

From this simulation study, we observe that the performance of the proposed

test statistic 'fp is similar to the test statisticT, . When @ is small or the number of
blocks is large, the values of empirical type | error of the proposed test statistic 'fp are
not different with those of fc. The absolute values of difference between empirical

type | error and « of the proposed test statistic 'fp are higher than the test statistic 'fc
when @ is large with p is small. When the empirical powers are considered, the
proposed test statistic 'fp produces these values close to 1, while the test statistic 'fc

produces these values far from 1.
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Table 4.3 The empirical type | error rate when =%, and 8 =0.9 with equal block

sizes
n p p; ‘fp 'I°b 'I°C

50 100 5 0.0531 0.0517 0.0500
10 0.0603 0.0585 0.0475

25 0.0599 0.0590 0.0484

200 5 0.0509 0.0494 0.0484

10 0.0550 0.0538 0.0481

25 0.0612 0.0598 0.0495

300 5 0.0507 0.0494 0.0535

10 0.0534 0.0516 0.0522

25 0.0546 0.0530 0.0483

400 5 0.0506 0.0485 0.0487

10 0.0515 0.0500 0.0494

25 0.0518 0.0514 0.0536

100 100 5 0.0559 0.0547 0.0514
10 0.0592 0.0582 0.0522

25 0.0620 0.0609 0.0525

200 5 0.0520 0.0505 0.0510

10 0.0559 0.0555 0.0500

25 0.0597 0.0590 0.0542

300 5 0.0512 0.0505 0.0458

10 0.0531 0.0524 0.0471

25 0.0543 0.0533 0.0486

400 5 0.0504 0.0493 0.0516

10 0.0508 0.0497 0.0508

25 0.0513 0.0510 0.0522
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Table 4.4 The empirical type | error rate when =%, and 8 =0.9 with mixed

block sizes
n p D, P, T T, T,

50 100 5 10 0.0554 0.0542 0.0480
5 25 0.0627 0.0614 0.0459

10 25 0.0665 0.0652 0.0500

200 5 10 0.0536 0.0521 0.0479

5 25 0.0564 0.0541 0.0473

10 25 0.0561 0.0551 0.0501

300 5 10 0.0548 0.0532 0.0530

5 25 0.0556 0.0542 0.0507

10 25 0.0556 0.0544 0.0491

400 5 10 0.0533 0.0513 0.0490

5 25 0.0511 0.0497 0.0503

10 25 0.0522 0.0513 0.0530

100 100 5 10 0.0568 0.0564 0.0525
5 25 0.0592 0.0585 0.0467

10 25 0.0647 0.0635 0.0518

200 5 10 0.0543 0.0532 0.0525

5 25 0.0555 0.0547 0.0528

10 25 0.0577 0.0568 0.0507

300 5 10 0.0540 0.0532 0.0489

5 25 0.0529 0.0524 0.0493

10 25 0.0546 0.0541 0.0505

400 5 10 0.0547 0.0536 0.0483

5 25 0.0526 0.0516 0.0470

10 25 0.0507 0.0494 0.0478




Table 4.5 The empirical power when £=%,, 6=0.1, 0.5, and 0.9 with equal block sizes

6=01 6=05 6=09
n p p; A A A A A ~ ~ A A
T T, T, T T, T, T, T, T,
50 100 5 0.9507 0.9496 0.7420 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 0.9368 0.9357 0.3649 1.0000 1.0000 0.9367 1.0000 1.0000 0.9762
25 0.8699 0.8679 0.0767 0.9999 0.9999 0.1024 1.0000 1.0000 0.1074
200 5 0.9988 0.9988 0.9693 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 0.9981 0.9981 0.7480 1.0000 1.0000 0.9993 1.0000 1.0000 0.9999
25 0.9930 0.9927 0.1216 1.0000 1.0000 0.2050 1.0000 1.0000 0.2227
300 5 0.9999 0.0999 0.9957 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 0.9997 0.0997 0.9210 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
25 0.9993 0.9993 0.1859 1.0000 1.0000 0.3535 1.0000 1.0000 0.3867
400 5 1.0000 1.0000 0.9993 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 0.9999 0.0999 0.9777 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
25 0.9997 0.9997 0.2620 1.0000 1.0000 0.5165 1.0000 1.0000 0.5619
100 100 5 0.9993 0.9993 0.9886 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 0.9991 0.9991 0.8341 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
25 0.9961 0.9961 0.1762 1.0000 1.0000 0.3274 1.0000 1.0000 0.3567
200 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 1.0000 1.0000 0.9975 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
25 1.0000 1.0000 0.4415 1.0000 1.0000 0.7967 1.0000 1.0000 0.8400
300 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
25 1.0000 1.0000 0.7122 1.0000 1.0000 0.9736 1.0000 1.0000 0.9859
400 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
25 1.0000 1.0000 0.8846 1.0000 1.0000 0.9972 1.0000 1.0000 0.9989
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Table 4.6 The empirical power when £=%,, #=0.1, 0.5, and 0.9 with mixed block sizes

0=01 0=05 0=09
" i i § T, 1, T T, 1, T T, 1, T

50 100 5 10 0.9413 0.9403 0.5732 1.0000 1.0000 0.9990 1.0000 1.0000 0.9999
5 25 0.9229 0.9217 0.3712 1.0000 1.0000 0.9923 1.0000 1.0000 0.9995

10 25 0.9052 0.9030 0.1766 1.0000 1.0000 0.5527 1.0000 1.0000 0.6551

200 5 10 0.9974 0.9972 0.9112 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 25 0.9964 0.9964 0.7434 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000

10 25 0.9950 0.9950 0.4122 1.0000 1.0000 0.9410 1.0000 1.0000 0.9732

300 5 10 0.9999 0.9999 0.9819 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 25 0.9998 0.9998 0.9148 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 25 0.9996 0.9996 0.6600 1.0000 1.0000 0.9948 1.0000 1.0000 0.9983

400 5 10 1.0000 1.0000 0.9962 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 25 1.0000 1.0000 0.9712 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 25 0.9999 0.9999 0.8169 1.0000 1.0000 0.9994 1.0000 1.0000 0.9999

100 100 5 10 0.9994 0.9994 0.9558 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 25 0.9986 0.9986 0.8137 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 25 0.9982 0.9982 0.5072 1.0000 1.0000 0.9810 1.0000 1.0000 0.9934

200 5 10 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 25 1.0000 1.0000 0.9935 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 25 1.0000 1.0000 0.9203 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

300 5 10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 25 1.0000 1.0000 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 25 1.0000 1.0000 0.9932 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

400 5 10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 25 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 25 1.0000 1.0000 0.9989 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

[4S!
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Table 4.7 The empirical power when £=%, and € =0.9 with equal block sizes

n p P, T, 'fb T,

50 100 5 1.0000 1.0000 1.0000
10 1.0000 1.0000 0.9473

25 0.9837 0.9828 0.1667

200 5 1.0000 1.0000 1.0000

10 1.0000 1.0000 0.9171

25 0.9973 0.9973 0.1834

300 5 1.0000 1.0000 1.0000

10 1.0000 1.0000 0.9520

25 0.9985 0.9984 0.1877

400 5 1.0000 1.0000 1.0000

10 1.0000 1.0000 0.9584

25 0.9988 0.9987 0.1921

100 100 5 1.0000 1.0000 1.0000
10 1.0000 1.0000 1.0000

25 1.0000 1.0000 0.6684

200 5 1.0000 1.0000 1.0000

10 1.0000 1.0000 1.0000

25 1.0000 1.0000 0.7261

300 5 1.0000 1.0000 1.0000

10 1.0000 1.0000 1.0000

25 1.0000 1.0000 0.7407

400 5 1.0000 1.0000 1.0000

10 1.0000 1.0000 1.0000

25 1.0000 1.0000 0.7432
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Table 4.8 The empirical power when £ =%, and 8 =0.9 with mixed block sizes

n P P; pi Tp -ch Tc

50 100 ) 10 1.0000 1.0000 1.0000
5 25 1.0000 1.0000 1.0000

10 25 1.0000 1.0000 0.6291

200 ) 10 1.0000 1.0000 1.0000

) 25 1.0000 1.0000 1.0000

10 25 1.0000 1.0000 0.7348

300 5 10 1.0000 1.0000 1.0000

) 25 1.0000 1.0000 1.0000

10 25 1.0000 1.0000 0.7498

400 ) 10 1.0000 1.0000 1.0000

5 25 1.0000 1.0000 0.9999

10 25 1.0000 1.0000 0.7748

100 100 ) 10 1.0000 1.0000 1.0000
5 25 1.0000 1.0000 1.0000

10 25 1.0000 1.0000 0.9989

200 ) 10 1.0000 1.0000 1.0000

) 25 1.0000 1.0000 1.0000

10 25 1.0000 1.0000 1.0000

300 5 10 1.0000 1.0000 1.0000

) 25 1.0000 1.0000 1.0000

10 25 1.0000 1.0000 0.9997

400 ) 10 1.0000 1.0000 1.0000

5 25 1.0000 1.0000 1.0000

10 25 1.0000 1.0000 1.0000
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4.2 Simulation Study for Testing Discriminant Analysis in High-Dimensional
Data

The proposed methods ( TA, TB, TC, and BD) are investigated via a
simulation study with 1,000 iterations and various parameter settings of the
population covariance matrix. The performance of the TA, TB, TC,and BD methods
are also compared with the DI (Dudoit et al., 2002) and SK (Srivastava & Kubokawa,
2007) methods which represented in section 2.2.2.

Recall that the four methods which are evaluated in this study:

1) The first proposed method TA, TB, and TC is given as

Assign x to I1, if D,(x)<D,(x) forall I =h,
where D, (x) =(H'x-H"%, )" S"*(H"Xx—H'X,)-2In p, and

S = AT +(L—A")S oo, With T is the shrinkage target matrix.
2) The second proposed method BD is given as

Assign x to I, if D,(x)<D,(x) forall I =h,
where D, (X) = (X—%,)" Spea (X—%,) —2In p, and
Sioax =d189(S,1, S0, S, -
3) The Dudoit et al. (2002)’s method DI is given as
Assign x to [T, if D¢ (x) <D (x) forall | #h,
where DY (x) = (x~%,)" S;* (X~ %,) ~2In p,.and
Sy =diag(sy,,--,S,,), S;,i=1..., p are the diagonal element of the pooled

sample covariance matrix.
4) The Srivastava and Kubokawa (2007)’s method SK is given as

Assign x to 1, if Di(x) < D(x) forall hl,

A Tl _ tr(Spooled)
where B} (x) = (X~ %,)" S5 (X~ %,)~2In Py.and Sy =| Spupeg + 21 .

min(n, p)
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4.2.1 The Performance Evaluation Methods for Discriminant Analysis

To assess the performance of the two proposed methods, they are compared
with the DI and SK methods by considering the misclassification rates (M), sensitity
(SE), and specificity (SP), as defined below.

Let us consider a 2x 2 contingency tale of confusion matrix as follows:

Table 4.9 The 2x2 confusion matrix

Predicted class

Actual class
1
1 A B
2 C

where A be the number of observations from the actual class 1 assigned to the
predicted class 1,
B be the number of observations from the actual class 1 assigned to the
predicted class 2,
C be the number of observations from the actual class 2 assigned to the
predicted class 1,
D be the number of observations from the actual class 2 assigned to the
predicted class 2.
1) The Misclassification Rate (M)
The misclassification rate is defined as

A+D
A+B+C+D

Its values range from 0 to 1 with the minimum value being 0, which

M=1-

means that all observations are assigned to their correct classes, and the maximum
value is 1, which means that all new observations are assigned to incorrect classes.
Therefore, the higher the misclassification rate (near to 1), the poorer the method.

2) The Sensitivity (SE)

The sensitivity is defined as
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A
A+B
Its values range from 0 to 1 with the minimum value being 0, which
means that all observations from class 1 are assigned to class 2, and the maximum
value is 1, which means that all observations from class 1 are assigned to class 1.
Therefore, the higher the sensitity (near to 1), the better the method.
3) Specificity (SP)
The specificity is defined as

sp=—>_
C+D

Its values range from 0 to 1 with the minimum value being 0, which
means that all observations from class 2 are assigned to class 1, and the maximum
value is 1, which means that all observations from class 2 are assigned to class 2.
Therefore, the higher the specificity (near to 1), the better the method.

Sensitivity and specificity are useful in a medical diagnosis which used to
classify a sick people. From confusion matrix, actual class 1 and 2 are defined as the
class of sick people and the class of healthy people respectively and. predicted class 1
and 2 are defined as the class of people who are identified as sick and the class of
people who are identified as healthy respectively. That is, sensitivity is the proportion
of sick people who are correctly identified as sick and specificity is the proportion of

healthy people who are correctly identified as healthy.

4.2.2 Parameter Settings for Discriminant Analysis in High Dimensional
Data
In this section, the performance of the two proposed methods are compared
with the DI and SK methods via a simulation study by considering their

misclassification rates, sensitivity, and specificity with 1,000 iterations.

The datasets are generated as follows: X ~1LA.Np(1,Z)  and
Xjp ~1id.Np (1, %), j=1...n, where, 4 =(m0,..,0)", m is a r dimensional

vector generated from uniform(-1.5,1.5), r=0.05p and t, =(0,0,..,0)". In this
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study, only two classes are investigated and the prior probability of [], and [], are

equal, i.e. the chance of an observation coming from [], or [1], is equal.
Four different forms of population covariance are used to calculate the
misclassification rates, sensitivity, and specificity are defined as follows:

1) The first form of covariance matrix is X, =diag(X;;,2,,,....2,,)
and X; =(1-0)1, +0J,, 6=0.1,05009, i=12,..,m, inwhich J is a matrix where
all elements are 1’s and the dimensions of X; are p,x p, and ' p, = p.

i=1
2) The second form of covariance matrix is X, =diag(Z,;,2,,,..., Z,)

k1|

and =, =[pq]. pa=0"", =09, i=12..m, and k,I1=12,..,p, in which the

dimensions of X; are p,x p; and > p, =p.
i=1
3) The third form of covariance matrix is X, , which is the same as X,

except that + and — are alternately assigned to the elements of X, .

4) The fourth form of covariance matrix is X, =diag(Z,;,Z,,,.... 2,

and 2, =[p,], pa=0)", 6=09, i=12..m, and k,I=12,..,p, in which
the dimensions of %, are p, x p, and Zm: p, = p.
=

The simulations are conducted at p e {100,200,300,400} with n e {35,70}.
Each experiment consist of a training dataset with 25,50 observations corresponding
with a testing dataset with 10,20 observations from each class. The classification rules
are built with the parameters estimated using the training dataset after which the
classification procedure is performed on the testing dataset. For each combination of
(p,n), both equal and mixed block sizes are considered. For the equal block size
case, all the ¥, are of equal size p, =5,10,25 with p/p, blocks, and in the mixed
block size case, there are two different block sizes in the matrix. The two block sizes

of submatrix X; are chosen from p;, p, =5,10,25, in which size p, has p/2p,
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blocks and size p; has p/2p; blocks. The number of blocks rather than block size is

considered in order to reach conclusions in the same direction.
For each of the simulations, 1,000 iterations are generated and the
performance of each method is evaluated according to their misclassification rate,

sensitivity, and specificity.

4.2.3 Simulation Results
The methods are compared in terms of the misclassification rate ( M) ,
sensitivity (SE), and specificity (SP) reported in Tables 4.9-4.18 and additional report

of M, SE, and SP are reported in Tables B.9-B.48 in Appendix B. When =%, the

values of M are shown in Tables 4.9-4.14 and the values of SE and SP are shown in

Tables B.9-B.20 in Appendix B. For any &, when p and n increase, the values of M
for TA, TB, TC, and BD decrease and the values of SE and SP increase. For fixed p

and n, when @ increases, the TA, TB, and TC methods achieve higher values of M
than the BD method and the TA, TB, and TC methods achieve lower values of SE and
SP than the BD method.

When 6=0.1 and p and n are fixed with a decrease in the number of

blocks, the values of M for the BD method increase for n is small while those of TA,
TB, and TC methods only slightly increase for any n and the values of SE and SP for
the BD method decrease for n is small while those of TA, TB, and TC methods only
slightly decrease for any n. When comparing the two proposed methods with the DI
and SK methods, all of them obtain similar values of M, SE, and SP except for BD,
which are slightly higher for M and are slightly lower for SE and SP than the others
method when the number of block decreases.

When 8=0.5 and p and n are fixed with a decrease in the number of
blocks, the values of M for the TA, TB, and TC methods increase whereas those of
the BD method only increase when n is small and the values of SE and SP for the
TA, TB, and TC methods decrease whereas those of the BD method only decreased

when n is small.
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Table 4.10 The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when

X =%, and 6=0.1 with equal block sizes

n p P TATB,TC BD D) SK
35 100 5 0.3096 0.3146 0.3142 0.3166
10 0.3115 0.3227 0.3172 0.3163
25 0.3162 0.3518 0.3198 0.3155
200 5 0.2379 0.2462 0.2434 0.2402
10 0.2405 0.2562 0.2462 0.2415
25 0.2484 0.3052 0.2534 0.2454
300 5 0.1803 0.1866 0.1844 0.1831
10 0.1819 0.2011 0.1863 0.1858
25 0.1913 0.2539 0.1937 0.1882
400 5 0.1494 0.1584 0.1558 0.1515
10 0.1557 0.1686 0.1585 0.1554
25 0.1653 0.2292 0.1693 0.1617
70 100 5 0.2621 0.2619 0.2642 0.2730
10 0.2644 0.2661 0.2663 0.2710
25 0.2691 0.2794 0.2716 0.2684
200 5 0.1823 0.1848 0.1850 0.1940
10 0.1865 0.1873 0.1882 0.1931
25 0.1952 0.2059 0.1978 0.1904
300 5 0.1346 0.1328 0.1360 0.1385
10 0.1364 0.1369 0.1383 0.1397
25 0.1462 0.1528 0.1480 0.1400
400 5 0.0983 0.0980 0.1008 0.1032
10 0.1001 0.1000 0.1023 0.1043
25 0.1080 0.1187 0.1111 0.1054
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Table 4.11 The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when
X =%, and €=0.1 with mixed block sizes

n p P P; TATB,TC BD DI SK

35 100 5 10 0.3077 0.3129  0.3152 0.3159
5 25 0.3117 0.3305  0.3143 0.3129

10 25 0.3119 0.3325  0.3176 0.3132

200 5 10 0.2304 0.2388  0.2370 0.2352

5 25 0.2391 0.2655  0.2427 0.2383

10 25 0.2446 0.2750  0.2493 0.2438

300 5 10 0.1887 0.1881  0.1921 0.1882

5 25 0.1912 0.2183  0.1958 0.1902

10 25 0.1900 0.2197  0.1946 0.1876

400 5 10 0.1506 0.1582  0.1506 0.1556

5 25 0.1554 0.1875  0.1554 0.1598

10 25 0.1577 0.1929  0.1577 0.1632

70 100 5 10 0.2636 0.2609  0.2663 0.2735
5 25 0.2640 0.2643  0.2652 0.2668

10 25 0.2655 0.2672  0.2673 0.2684

200 5 10 0.1848 0.1823  0.1870 0.1902

5 25 0.1843 0.1874  0.1869 0.1855

10 25 0.1901 0.1891  0.1915 0.1897

300 5 10 0.1325 0.1283  0.1359 0.1360

5 25 0.1391 0.1394  0.1418 0.1378

10 25 0.1380 0.1402  0.1400 0.1368

400 5 10 0.0942 0.0928  0.0966 0.0985

5 25 0.1053 0.1050  0.1079 0.1064

10 25 0.1029 0.1030  0.1051 0.1029




62

Table 4.12 The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when

X =%, and €=0.5with equal block sizes

n p p,  TATB,TC BD DI SK
35 100 5 0.3423 0.2456 0.3438 0.3095
10 0.3622 0.2396 0.3662 0.2910
25 0.3921 0.2791 0.3944 0.2594
200 5 0.2857 0.1612 0.2911 0.2597
10 0.3146 0.1597 0.3187 0.2586
25 0.3599 0.2107 0.3642 0.2387
300 5 0.2386 0.1029 0.2399 0.2180
10 0.2780 0.1013 0.2779 0.2285
25 0.3326 0.1513 0.3323 0.2178
400 5 0.2055 0.0742 0.2119 0.1887
10 0.2470 0.0735 0.2516 0.2099
25 0.3146 0.1201 0.3139 0.2186
70 100 5 0.2935 0.1912 0.2948 0.2335
10 0.3176 0.1796 0.3194 0.2080
25 0.3561 0.1927 0.3566 0.1847
200 5 0.2263 0.1098 0.2268 0.1833
10 0.2615 0.1019 0.2633 0.1662
25 0.3108 0.1124 0.3113 0.1309
300 5 0.1799 0.0649 0.1801 0.1450
10 0.2180 0.0565 0.2197 0.1338
25 0.2797 0.0663 0.2807 0.1070
400 5 0.1415 0.0376 0.1430 0.1146
10 0.1834 0.0321 0.1836 0.1148
o5 0.2536 0.0397 0.2562 0.0947
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Table 4.13 The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when

X =%, and €=0.5with mixed block sizes

n p p; P; TATB, TC BD DI SK
35 100 5 10 0.3579 0.2312  0.3633 0.2993
5 25 0.3712 0.2516  0.3723 0.2786
10 25 0.3831 0.2521  0.3833 0.2742
200 5 10 0.2949 0.1441  0.2990 0.2519
5 25 0.3320 0.1716  0.3340 0.2401
10 25 0.3507 0.1793  0.3495 0.2511
300 5 10 0.2607 0.0949  0.2606 0.2251
5 25 0.2978 0.1210  0.3020 0.2189
10 25 0.3063 0.1221  0.3101 0.2215
400 5 10 0.2269 0.0638  0.2307 0.1973
5 25 0.2691 0.0892  0.2717 0.1994
10 25 0.2868 0.0910  0.2879 0.2114
70 100 5 10 0.3065 0.1787  0.3081 0.2188
5 25 0.3273 0.1786  0.3300 0.2016
10 25 0.3342 0.1808  0.3349 0.1945
200 5 10 0.2427 0.0951  0.2441 0.1664
5 25 0.2722 0.0951  0.2738 0.1427
10 25 0.2862 0.0972  0.2867 0.1373
300 5 10 0.1979 0.0508  0.2001 0.1307
5 25 0.2385 0.0575  0.2403 0.1171
10 25 0.2501 0.0584  0.2509 0.1138
400 5 10 0.1600 0.0285 0.1621 0.1087
5 25 0.2095 0.0315  0.2108 0.1018
10 25 0.2174 0.0320  0.2186 0.0983
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Table 4.14 The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when

X =%, and €=0.9 with equal block sizes

n p ., TATB,TC BD DI SK
35 100 5 0.3777 0.0430 0.3849 0.2837
10 0.4029 0.0307 0.4050 0.2264
25 0.4288 0.0544 0.4314 0.1337
200 5 0.3402 0.0070 0.3420 0.2783
10 0.3768 0.0050 0.3781 0.2541
25 0.4157 0.0124 0.4169 0.1786
300 5 0.3044 0.0008 0.3048 0.2593
10 0.3485 0.0005 0.3481 0.2560
25 0.3982 0.0028 0.3986 0.2003
400 5 0.2693 0.0001 0.2738 0.2379
10 0.3283 0.0001 0.3313 0.2580
25 0.3858 0.0006 0.3871 0.2278
70 100 5 0.3357 0.0282 0.3367 0.1363
10 0.3688 0.0182 0.3708 0.0780
25 0.4043 0.0216 0.4053 0.0371
200 5 0.2821 0.0032 0.2850 0.1462
10 0.3291 0.0021 0.3314 0.0908
25 0.3763 0.0023 0.3791 0.0309
300 5 0.2457 0.0003 0.2467 0.1420
10 0.2998 0.0001 0.3012 0.0971
25 0.3596 0.0002 0.3625 0.0368
400 5 0.2051 0.0000 0.2084 0.1283
10 0.2680 0.0000 0.2693 0.1036
25 0.3430 0.0001 0.3421 0.0442
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Table 4.15 The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when
X =%, and €=0.9 with mixed block sizes

n p p; P; TATB, TC BD DI SK
35 100 5 10 0.4032 0.0283  0.4040  0.2508
5 25 0.4095 0.0473  0.4109  0.2051
10 25 0.4250 0.0471  0.4254  0.1825
200 5 10 0.3295 0.0006  0.3325  0.2535
5 25 0.3693 0.0019 0.3725  0.2320
10 25 0.3775 0.0021 03771  0.2259
300 5 10 0.3295 0.0006  0.3325  0.2535
5 25 0.3693 0.0019 0.3725  0.2320
10 25 0.3775 0.0021  0.3771  0.2259
400 5 10 0.3055 0.0001 0.3065  0.2437
5 25 0.3471 0.0005 0.3491  0.2301
10 25 0.3619 0.0003  0.3627  0.2417
70 100 5 10 0.3538 0.0166  0.3552  0.0946
5 25 0.3783 0.0175 0.3782  0.0698
10 25 0.3862 0.0176  0.3846  0.0493
200 5 10 0.3071 0.0017 0.3101  0.1019
5 25 0.3412 0.0013  0.3432  0.0668
10 25 0.3574 0.0013 0.3561  0.0483
300 5 10 0.2745 0.0002 0.2747  0.1094
5 25 0.3192 0.0002 0.3226  0.0727
10 25 0.3319 0.0001  0.3315  0.0575
400 5 10 0.2420 0.0000  0.2450  0.1095
5 25 0.2970 0.0000 0.2973  0.0782
10 25 0.3094 0.0000  0.3105  0.0653

For n is large, the BD method achieves similar values of M, SE, and SP in

any number of blocks. When the proposed methods are compared with the DI and SK
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methods, the BD method performs the best in alomost cases by obtaining the lowest
values of M and the highest value of SE and SP, while the SK method performs better
than the DI, TA, TB, and TC method, since these give the highest values of M and the
lowest value of SE and SP, reflecting poor performance.

When =09 and p and n are fixed with a decrease in the number of
blocks, the values of M for the TA,TB, and TC methods increase and the BD method
obtains the lowest values compared with the other methods. The values of SE and SP
for the TA, TB, and TC methods decrease and the BD method obtains the highest
values compared with the other methods. In particular, the BD method is able to
classify the test set nearly 100% correctly when p and n are high. The SK method
performs better than the DI, TA, TB, and TC methods, and the latter three methods
obtain the highest values of M and lowest values of SE and SP (similar to the DI
method).

The results from simulation study when X =%, are give in Tables 4.15-4.18
and in Tables B.21-B.24 in Appendix B. For any &, when p and n increase, the

values of M of the proposed methods decrease and the values of SE and SP of them
increase. The values of M of the TA,TB, and TC methods increase and the values of
SE and SP of the TA,TB, and TC methods decrease when the number of blocks

decreases with any p . For the BD method, the values of M increase and the values of
SE and SP decrease when the number of blocks decreases and p and n are small.
When comparing the proposed methods with the previously reported ones, the results
are almost the same as the results from X =%, with =0.9, for which the BD method
performs the best with this form of population covariance matrix.

In the case of £=%,,,%, (alternately assigning + and — to the elements of X,

Z,,) . the results given in Tables B.25-B.48 in Appendix B show that the performance

of all methods are almost the same as Z,,%,,, i.e. alternating + and — has no effect.

Note that, the misclassification rate, sensitivity, and specificity of TA, TB and
TC methods are equal for the same combination of the dimensions p and the number
of observations n, i.e. the different of shrinkage target matrices in the first proposed

method are not affect performance of this method in this simulation study.
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Table 4.16 The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when

X=X, and €=0.9 with equal block sizes

n P P, TATB,TC BD DI SK
35 100 5 0.3716 0.0561 0.3777 0.2906
10 0.3879 0.0497 0.3897 0.2661
o5 0.3962 0.0824 0.3988 0.2507
200 5 0.3304 0.0127 0.3345 0.2765
10 0.3572 0.0113 0.3574 0.2664
o5 0.3762 0.0238 0.3770 0.2583
300 5 0.2915 0.0017 0.2936 0.2545
10 0.3194 0.0018 0.3215 0.2518
o5 0.3397 0.0053 0.3401 0.2434
400 5 0.2585 0.0005 0.2626 0.2291
10 0.2951 0.0004 0.2977 0.2402
o5 0.3214 0.0020 0.3226 0.2418
70 100 5 0.3279 0.0386 0.3292 0.1612
10 0.3490 0.0316 0.3506 0.1334
o5 0.3632 0.0399 0.3641 0.1256
200 5 0.2716 0.0062 0.2725 0.1565
10 0.3033 0.0049 0.3046 0.1299
o5 0.3191 0.0060 0.3190 0.1126
300 5 0.2321 0.0007 0.2344 0.1447
10 0.2643 0.0002 0.2665 0.1211
o5 0.2881 0.0006 0.2904 0.1063
400 5 0.1934 0.0001 0.1960 0.1271
10 0.2321 0.0001 0.2327 0.1163
o5 0.2621 0.0000 0.2637 0.1028
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Table 4.17 The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when

X=X, and @=0.9 with mixed block sizes

n p p; P; TATB, TC BD DI SK
35 100 5 10 0.3920 0.1252  0.3949  0.3008
5 25 0.3883 0.1600 0.3902  0.2912
10 25 0.4025 0.1577  0.4004  0.2921
200 5 10 0.3410 0.0450 0.3448 0.2778
5 25 0.3561 0.0709 0.3596  0.2801
10 25 0.3691 0.0759 03727  0.2825
300 5 10 0.3124 0.0198 0.3154  0.2633
5 25 0.3236 0.0342 0.3244 0.2611
10 25 0.3314 0.0374 0.3353 0.2634
400 5 10 0.2819 0.0078  0.2854  0.2417
5 25 0.3027 0.0188 0.3022  0.2419
10 25 0.3149 0.0172 0.3165  0.2504
70 100 5 10 0.3422 0.0876  0.3436  0.1849
5 25 0.3518 0.0962 0.3520 0.1824
10 25 0.3589 0.0961 0.3610 0.1729
200 5 10 0.2900 0.0256  0.2923  0.1630
5 25 0.2985 0.0295 0.3008  0.1513
10 25 0.3132 0.0289 0.3140 0.1449
300 5 10 0.2536 0.0073 0.2562  0.1486
5 25 0.2673 0.0101 0.2699 0.1436
10 25 0.2795 0.0103  0.2804  0.1353
400 5 10 0.2199 0.0021 0.2216  0.1350
5 25 0.2409 0.0028 0.2418 0.1309
10 25 0.2498 0.0028 0.2509  0.1263
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From this simulation study, we observe that the TA, TB, and TC methods
perform well and similar to DI and SK methods when & is small. The BD method

performs the best when & is greater than 0.5.

4.3 Application to a Real-life Dataset

In this section, the test statistics 'fp, T,, T, and the TA, TB, TC, BD, DI, and

SK methods are applied to a real-life dataset. The Notterman Carcinoma dataset uses
for this study is taken from a gene expression project at Princeton University, New
Jersey by Notterman, Alon, Sierk, and Levine (2001). These data consist of 7,457

expression genes p in 18 paired colon tissue samples (18 tumor tissues n, and 18

normal tissuesn, ) publicly available at http://genomics-pubs.princeton.edu/oncology/.

4.3.1 Testing for a Block Diagonal Covariance Matrix
From the dataset, 100 genes with sample size 10 from tumor and normal
tissues are selected to test for a block diagonal covariance matrix; these data are
assumed to be multivariate normal. Recall from the simulation study, the BD method
performs well when the correlation coefficient between variables in the same block
are higher than 0.5. Thus, the variables of this dataset are arranged in order that the
correlation coefficient between any two adjacent variables in the same block is greater
than or equal to 0.5. Procedure for arranging the variables in each block is as follows:
1) Select the first two variables which have maximum correlation to
contain in the same block
2) Select the variable that has the maximum correlation with the first
two variables in Step 1 from remaining variables
3) Select the variable that has the maximum correlation with the
variable in previous step from remaining variables
4) Repeat Step 3 until all correlation with the variable in previous step
of each remaining variable has less than 0.5
5) Move to new block and repeat Step 1-4

6) Do it until no variable left
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The block sizes for the null hypothesis are of mixed size with a maximum of

17 and a minimum of 1, and the number of block is 14. There are 6 blocks which are
of dimension one. Analysis of the dataset led to the proposed test statistic 'fp
producing a value for tumor tissues of 0.8837 (p-value ~ 0.1885) and 0.5721 (p-value
~ 0.2836) for normal tissues. The test statistic fb produces a value for tumor tissues

of 0.8479 (p-value ~ 0.1983) and 0.5490 (p-value ~ 0.2915) for normal tissues.

A

Since the maximum block size is greater than the sample size, the test statistic T,

cannot be applied with this dataset. From the two test statistics, it can be concluded

that the covariance matrix for the two groups is a block diagonal structure.

4.3.2 Discriminant Analysis

Before performing discriminant analysis on this dataset, the assumption that
there is equality in the covariance of both classes needed to be checked, for which the
test statistic proposed by Saowapa Chaipitak & Samruam Chongcharoen (2013) is
used. The test statistic is -0.9383 (p-value =~ 0.3481), which indicates that the
covariance of both classes are equal. In this study, 10 tumor and normal tissues are
selected for the training set and 5 tumor and normal tissues for the testing set.

The TA, TB, TC, BD, DI, and SK methods are applied to this dataset. The
results are presented in confusion matrix as follows:

The results when the TA, TB, TC, DI, and SK methods are used for
classification are showed in Table 4.18 and the results when the BD methods is used

for classification are showed in Table 4.19.

Table 4.18 The 2x2 confusion matrix of TA, TB, TC, DI and SK methods

Predicted class
Actual class

Tumor tissues Normal tissues

Tumor tissues 5 0

Normal tissues 0 5
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Table 4.19 The 2x2 confusion matrix of BD method

Predicted class

Actual class i _
Tumor tissues Normal tissues
Tumor tissues 5 0
Normal tissues 3 2

TA, TB, TC, DI, and SK methods produced zero values for M and the values
of SE and SP are equal to 1.0000, i.e. 100% correct classification rate, while the BD
method achieves values for M, SE, and SP of 0.3000, 1.0000, and 0.4000,
respectively, indicating that the TA, TB, TC, DI, and SK methods perform better than
the BD method with this dataset. Note that, the covariance matrix of this dataset can
be constructed in block diagonal matrix with many blocks are of dimension one which

may be the cause of poor performance of the BD method.



CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS FOR
FUTURE WORK

Conclusions reached on this work are presented in this chapter for both testing
for a block diagonal covariance matrix and discriminant analysis for high-dimensional
data under a multivariate normal distribution. Some recommendations for future work

are also suggested at the end of chapter.
5.1 Conclusions

In this dissertation, data are assumed to be independent multivariate normal

distribution and high-dimensional, where the dimension P is larger than the sample
size n. A new test for testing the hypothesis H,:Z =D, against H, :Z# D,, where

D, is the population covariance matrix with a block diagonal structure is proposed.

The proposed test statistic 'fp based on the ratio of the unbiased and consistent

estimators proposed by Srivastava (2005) in Chapter 3 is presented under the null

hypothesis as

where

{trS2 —il(trS)z}

m

Z{trsﬁ —;(trs“)z}

i=1

T=
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The distribution of 'fp is achieved by applying the Delta method with the joint

distribution of &, and &,,. The asymptotic distribution of the proposed test statistic

under the null hypothesis is derived and found to be standard normal. A simulation
study to investigate the performance of the proposed test statistic and to compare the
performance with other previously reported tests is carried out. The results show that
the proposed test statistic performed desirably, i.e. its empirical type | error rate was

close to the significance level (« =0.05) and the empirical power was close to 1. The

proposed test statistic was compared with that of Hyodo, Shutoh, Nishiyama, and
Pavlenko (2015) and Bao et al. (2014) under the same conditions. Although the values
of empirical type | error of the proposed test statistic were higher than the
comparative test statistic in some cases, its performance was not significantly
different. Moreover, the values of the empirical power of the proposed test statistic
were closer to 1 than the previously reported test statistic in almost every case.

Two new discriminant methods for classifying data with high dimensions from
two groups under two covariance matrices equal to the population covariance matrix
with a block diagonal structure was also proposed.

The block diagonal structure of the population covariance can be tested by
using the proposed test 'fp , and the two proposed discriminant methods guarantee that

the inverse of the sample covariance matrix always exists. In the first method, the
dimensionality of the observations is reduced and a well-conditioned covariance
matrix used that guarantees minimum mean squared error (the TA, TB, and TC
methods)

The first proposed classification rule is:

Assign x to [, if D,(x) <D,(x) forall I =h,
where D, (x) = (H'x-H"% )"S*(H"x-H"X,)-2In p, and

S = AT +(L-A")S soqq,, With T is the shrinkage target matrix.

In the second method (BD), the block diagonal sample covariance matrix is used

instead of the sample covariance matrix.
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The second proposed classification rule is:

Assign x to [T, if D,(x)<D,(x) forall I =h,

where D, (x) = (X=%, )" Sy (X=%,)—2In p,. and S, =diag(S,,, S, ..., S,.) -

The discriminant method in this study was used to consider only 2 classes of
classification with an equal prior probability, i.e. the chance that an observation came
from either class 1 or class 2 is equal. A simulation study to investigate the
performance of the proposed methods and to compare their performance with other
previously reported tests was carried out. The TA, TB, and TC methods performed
well when the correlation among the variables in a block was weak but was
inappropriate for classification when the correlation among the variables in a block
was strong. Nonetheless, the BD method was superior when the correlation among
variables in a block was strong.

Finally, the proposed test statistic 'fp and two proposed discriminant methods

(TA, TB, TC, and BD) are able to be applied in real dataset, the Notterman
Carcinoma dataset.

5.2 Recommendations for Future Works

At this point, extending this study is suggested as follows:

1) In this study, the data are assumed to be a multivariate normal distribution.
Instead, non-normal data could be considered to further develop the test statistic and
discrimination methods.

2) Since the population covariance matrix with a block diagonal structure was
tested for, a block sample covariance matrix could be considered for use in another
multivariate task such as normality testing.

3) In this study, the new two discriminant methods are proposed for a two
classes problem with equal covariance matrix, thus problems with k classes and/or an
unequal covariance matrix could be examined.

4) Cluster analysis could also be considered for arranging variables within a

block in a covariance matrix in real-life dataset.
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APPENDICES



Appendix A
Proof of Theorem Used in Study

A1 The distribution of (8, 4,,)'

In order to find distribution of (4, éZD)T, we need to find the expectation
and variance of &, and &,, by express them in term of chi-square. The distribution of

(4 éZD)T was obtained in this section by following step:

1. Expression of &, and &, in term of chi-square

1.1 Recall from the result of Srivastava (2005), we obtain the expression of

trS, (trS)?, and trS? in term of chi-square random variable as follows:

Let NS=YY' ~W (Z,N), where Y =(Y,,Y,,...Yy) andy, ~ N,(0,X). Let
I'=(%.7,.-7,) be the matrix contain p eigenvectors of X corresponding to the p
eigenvalues, denoted byA,4,,..,4, such thatlSI" =A, TIT' =1, where
A=diag(4,4,,...,4,). Then, if U=(u,U,,..,Uy), where y, are iid.N(0,1),

1 1
2

Y =32U , and 223

N

=Y,
1 T
tr(S) =—tr(YY ")
N
1 L L
:Wtr(EZUUTZZ)

1
=—tr(U'xU
N ( )

:%tr(UTFTAFU)
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where U'T" = A" =(g,2,,...¢,), and g, are iid. N (0,1), Thus, if v, =g &, V;

areiid. y°(n).

1 p
ZW(Z Vi +222,lj i “]

i=1 i<j

trs® = %tr(ATAA)(ATAA)

N i=1 i<j
_ pﬁ,zvz p/Mv2 h =q
= Zl: i+ 2 AN |, where v =g g
i= i<j
NZ
Since —————=c in(3.1) then,

(N-1)(N +2)

A c 2_i 2
a, —E{trS N (trS) }

_ ¢ iﬂﬁzviyiujv;—%[i ,+2ZMJ : ”ﬂ

i=1 i<j




A N-1& 2 &
Then, &, =c(q, +0,), where g, :N—g,pzl:ifvfi, q, = szz/ll/quﬁlj, and
i= i<j
1
4 =i N ViV
1
=@ e) -y (@ a)ae) (A1)

Lemma A.1 For ¢, defined above, we have

E(4;)=0, (A.2)

E(#;4,) =0 forall distinct i, j,k (A.3)

Var(g;) =2(N +2)(N -1) (A4)
Proof see Srivastava (2015) o

1.2 From Srivastava (2015) result, we obtain the expression of trS;, (trS;)?,

and trS? in term of chi-square random variable as follows:
Under H,, letNS=YY" ~W (D,,N), where Y =(Y,Y,,..,Y,) and
Y, ~N,(0,D;). Letl'; = Diag(l'}, I,,...,I',)), where T = (7,,7,,....7,,) be the matrix

contain p, eigenvectors of X, corresponding to the p, eigenvalues, denoted by

o, of,..,0f) such that TXT]=0Q,0I7=1, i=12.,m, where

Q, =diag(a”,0),...0) and  Q=diag(Q,Q,,...Q,). Then,  if

1 1 1

W = (W, W,,..., W), where w; are iid. N (0,1), Y =D2W, and DZD? =Dy,
1 T
tr(S) =—tr(YY")
N
1 L L
= [ r(DAWWTD?)

= %tr(\NT D.W)
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:%tr(\NTFEQFDW)

tr(S) =%tr(BTQB)

_1N PRONION0)
NZIIJZ:, B Y,

where W'TL, =B" = (87, 8",.... B3, BL1- BL .. B) , and S, are iid. Ny (0, 1),

Pl T,
£ W) — O 0 (D) ara iid 42
Thus, if wi’ =477 B;7, w;” are iid. x°(N).
Note, we can consider S, is the sample covariance matrix of x”, i=1,...,m.
In the same manner as trS, (trS)?, and trS*, we replace A Vv With o, w

respectively

tr(s,) = Za)(')w(')

Pi
2 _ (i)yp,(1)? (OPNONYONYO!
(trS;) —[Za)' W' +22a)j' @ W W J

j<k

1 2y o
trSi?:W[Zw(l) EJI) +Za)l) (I)W(I)J where W(l) :?j(l) ~k(I)

j=1 j<k

c 1
a, =—trS? ——(trS.)?
2i p{ il N( ||) }

c Pi o Pi o )
- OBV OPRONYO; OV UPRONYONYO!
_szza)j Wjj+§a)ja)kwjk [E‘"W +2§a) Wwﬂ

j=1 j<k j<k

Cc _N—l b (i)? (|) (i) (l) (i)? 1 ONYVO)
= N’p| N ZCOJ i +2Zw Wi |\|Wjj W

j=1 j<k

Za)(l)w(l) :| { Zw(l)wé )771(:2}

J<k
N-1 2
A _ (i) (i) _ (W), (i), ()
Then, &, =c(r, +r,), where 1, = N ij' wi, = Za) o'n}), and
=1 P

(W) _ @ _ L
Mic =Wy _ijj Wi



83
=B B0 - (B BN )

4, :iém :i(c[u_;:iw?)w(u) } [ Zw(u) (')Wf'k)D

i=1 i=1 j=1 J<k
Consider, Q =diag(Q,,Q,,...Q,) =diag(e®, 0,...,0,0F),,....0,....af"),
WG =B" =(82, 8. B By B .. B, fOr convenience we may rewrite

Q=diag(w,,®,,..,»,) and B’ = (é’l ,,@2 ,...,@p) , respectively. So as we have

w, =45, w areiid. z*(N).

. N-1&
dp =C|——D @ E ;0
2D {Nsp =1 J} { P i<k kn]k}

=B~ B BB

Lemma A.2 For 7 defined above, we have

E(74) =0, (A.5)

E(n7;7,) =0 for all distinct j,k,]I (A.6)

Var () = 2(N +2)(N -1) (A7)
Proof see Srivastava (2015) o

Lemma A.3 Let v; and v, be a chi-square random variable with N degrees of
freedom. Then
E(vi)=N(N+2)---(N+2r-2), r=12,.., (A.8)

Var(v,;) =2N, (A.9)



Var(v2) =8N(

E(v; -N)*=8

84

N +2)(N +3),

N,

E(v, —N)* =12N(N +4),

E(v2—N(N +2))* =3N(N +2)[272N* +O(N?)],

E(vi)=N,

E(v¢) =3N(N

+2),

E(v.v))=N(N +2),

i 'ij

E(v2v2) = N(N +2)(N +4),

i Vij

2
E(v..v..vij) =N

n-j

(N +2)°

Proof see Fisher et al. (2010) and Srivastava (2005)

2. Find the expectation and variance of &, and &,

Lemma A.4 For &,,4,,, and 4, are defined above, we have

1. E@®)=a,

2. E(&;) =2y,

3. E(8,p) =ayp
Proof

N2
T (N—)(N +2)p

1.E(4,)

N E[[
(N-1)(N+2)

From (A.2), E(¢;) =0, then

E(&,)=

N2

E{trS2 —%(trS)z}

N_l P 2
3 |+

N-1&

(N-1)(N+2)

|

N°p <

(A.10)
(A.11)
(A.12)
(A.13)
(A.14)
(A.15)
(A.16)
(A.17)

(A.18)
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From (A.8), E(v2)=N(N +2), then

@) ——N [ N-Iseyn+2)
TN N &
=lzp:,12

piF

trx?
2. We can prove in the same way as 1.
3. Since &, =ia} =Zm: N {trs?—i(trs..)z} then
. ° = 7 T (N-D(N+2)p "N )

Lemma A.5 For &,,4,, and 4, are defined above, we have

R 8 4
1.Var(a2) = N—pa4 +Wa22

A 8 4
2.Var(4,) = Np a7 a

. -, 8 4
3.Var(a,,) = ;(N_pa‘” +Wa22i)
Proof
1. Var(éz) :Var(c(ql + qz))
=’ [Var(q,) +Var(g,) + 2Cov(,, ;)]

Consider Var(q,) term,
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From (A.10), Var(v;) =8N (N +2)(N +3), then

Var(q,) =(N ‘1] _p ABN(N +2)(N +3)

N®p

:(N —1)28N(N +2)(N +3)(1 D
P =

N3 p

8 8a
= N—p(trz“) :N—S

Consider Var(q,) term,

2

p
Var(q,) =Var[ N"p Z’MJ'%J
i<j

2
NZp

{

From (A.4), Var(¢;) = 2(N +2)(N —1) then

i<j

| 3 wvaray

Var(q,) :(szpj 2(N +2)(N —1)Zp;/1,2/1j2

2

:(%j (N+2)(N -1

= (%T (N+2)(N-1)

=(%j2 (N+2)(N-1)| a2 - =

i<j

/14

Z(WJ (N +2)(N -1) 2p-zzplﬂ12/1j2j
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Consider Cov(q,,q,) term,

COV(q11 qz) = E(qlqz) - E(ql) E(qz)
From (A.1), E(¢;) =0 then E(q,) =0, so that

Cov(q,,d,) =E(q,q,)

e[S

=1 j<k

o i)

- 155{\/;(21]4% H}

We note that, from (A.1), (A.8), and (A.17)

E(Vi?¢jk) =E {Vi? (ka _%ijvkk j:|

(Vizivii_; kaj Oforl_Jik
:E(v?v.?—ivgvj 0 fori=k=]j

ViV — lilv“v”v j 0 for i= j=k

Thus, Cov(q,,q,)=0.
Therefore, we have
Var(a,) = ¢’ [Var(ch) +Var(d,) +2Cov(q,, qz)] .

Since, ¢ =1 as well as N — oo, then

4
8445

~—a +i 2 m}
Np Nzaz
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2. We can prove in the same way as 1. O

3. Since 4, =Zrl:a2, i(N DN 2)p {trsif—%(trsﬁ)z}, then

i=1

Var(4,,) =Var (Zm: 4, ] ZVar(az,) +Y Cov(a,,4,;)

i]

Since Y® and Y are independent and &, and &, are the function of Y® and Y

respectively, then Cov(4,;,4,;)=0,i+ .

Var(a,p) = ZVar(éZi)
i=1

m 4
Z 4i Nz 22|) =

=1

3. Find the distribution of (8, &)
Lemma A.6 Under the assumption ( Al)-( A4), the asymptotically distribution of

(&, &,) is

4
a, +—a;

a a )| Np * N?
ap ayp . A

Cov(d,,a,p) Z( a,; t+

Cov(d,,4,p)
Nz 2|)
Proof
Recall, we have
4, =¢(q, +0,)
a5 =c(l,+1,)
NZ

P
where C=————, AN, O, = »
(N =1)(N +2) N3p§ ? N’p & i

Z
|_\

2 & . .
Zw wj, andr, = o —— > ®,01;. n this study we consider when
j<k
N —oo, thus c=1, 4, =q,+0,, and &,, =K +T, .
Before finding distribution of (él2 éZD)T. We need to find distribution of

(0, 1), q, andr,.
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3.1 Find the distribution of (q, r,)’

Lemma A.7 For @, and r, defined above, the asymptotic distribution of (a, rl)T is

ql D a2 - - .
——N, ,H | where H is a covariance matrix of
2

h D

(0, n).
Proof
Let

CRZM2-N(N+2) o oW -N(N +2)
CUN(N+2)(N+3) T IN(N+2(N+3)

i

From (A.7), E(v2) = N(N +2) and (9), Var(v?) =8N (N +2)(N +3), then

E(5;)=0, E(5,)=0, Var(s;)= 84", Var(s,)=8a, Cov(d;,6,) =E,.

o
Thus 9, =(51'j are independently distributed random vectors, 1=12,...,p, with

2i

mean vectors as zero vectors and the covariance matrices G,, given by

gt = ) .
GiN:[HI '4} i=12,..,p.

= 8w

Now, as p — o then

1
GN :B(Gm +"'+GpN)

8a, =
—Gp #0, forany N

= 8)a,

= m
i=1

0

8a
and G, —>(_4

0

[1]

0 0
= p

]EGO as N > oo,

Also, if F, is the distribution function of ¢, then

1 . 1L bl )
B;J‘(Q‘Té)wazg odR, Sgg(pg ) I(é o)dF,
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=5 225(5%52

=

o+ 0y).

i=1

From c, -inequality, see Rao (1973, p. 149). Now

1 & A P 8E(v2 N(N +2))*
o BB = YA )

=0(p')—>0as p—>wo

- s E(W; w; —N(N +2))*
and _ZE( %) = Z (N(N+2)(N +3))

:O(p‘l)—>0 as p—o>o.
Then from the multivariate central limit theorem of Liapunov type given in

Roa (1973, p. 147, Problem 4.7), it follows that as p — , and forany N,

) > A -N(N+2)

Tzl ~JIN(N+2)(N+3)p Zp:

i=1

~N,(0,GY).
0 (W2 ~N(N +2)

Thus, it follows thatas p — o« and then N — o0,

1 p
=28 ~N,(0,G).
NCk:
On the other hand, as N — oo, we get from the multivariate central limit theorem that
~N,(0,G), i=12,..,p
Forany p, where G, is the limit of G, given by

gt =7
o-% Z)
= 8w
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Let

1 =
G==(G +---+G )= .. , which go to G° as p— . Since &
p( 1 p) E 8Za4i g p ]

are asymptotically independently distributed random vectors, it follows from the
argument given above as N — oo and then p — o

\/_25 N, (0,G°).

Without any loss of generality, we may replace G° by G . Noting that

p
Consider

Y A (G =N(N+2)
pS " Jp JN(N+2)(N+3)

~ 2 A2V b 22N(N +2)
_\/B{;\/N(N+2)(N+3) ZJN }

(N+2)(N+3)

1 N paq, ~ N(N+2)pa,
| IN(N+2)(N+3) N(N+2)(N+3)

Since,as N > o,

1 N2 pa, N(N +2)pa,
Jp| IN(NT2)(N+3) N(N+2)(N+3)

} JN_( pa, — Npa,)
:\/N_p(ql_aZ)

then \/Np (0, —a,)—>>N(0,8a,) and with a linear transformation, we have
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8a
ql —D) N (az ' N_S)

Next, we can fine the distribution of r in same manner as ¢,, thus we have

p
8 a,
L ——N(a,p, ‘;\jp ).

From these results, we can have the asymptotic distribution of (q, rl)T is

a
(?1]_D> NZ([a ? J H) where H is a covariance matrix of (g, ) o
1 2D

3.2 Find the distribution of g, and r,

Lemma A.8 For g, and r, are defined above, the asymptotic distribution of g, and

r, is
4 _
qz—D)N(O:W(azz -p 1a4)),
4 m ~ m
I —D)N(O,W(zazzi -P 1Za4i))-
i=1 i=1
Proof

We find the distribution of g, and r, by the Lindeberg Central Limit Theorem
From Billingsley (1995, p.359).
Theorem A.1 Lindeberg Central Limit Theorem From Billingsley (1995, p.359)
Let x,...,x, be asequence of independent random variables which satisfies
1) E(x)=0
2) o®=E(X%)

Let S? =) 07 >0 and P, be the distribution function of x;

i=1
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1
If Z_J“Xi‘Z&‘Sn XiZdPi —>O’ for ¢ >0’ then

2%
'=é —2 5 N(0,1).
Since N, ~N(0,1) as N -—>oo, it follows that N7Vi~x*(1), which

asymptotically independently distributed for all distinct i and j.

2444,
Let x; =— —, we have E(x;)=0 and let
N°p )

P 4
=Y Var(x;) =Var(@,) = > (@~ p"a,), as p.N >

i<j

p
and > K =0, . If P, is the distribution function of «; , for £ >0, then

i<j

ZSZJ.K‘>6S ZdP g° ZIKZde
i<j |<J
1
= E(x
;gzsﬁ (<)
Z o At 2
< gZSZ sz
b, AN
_ZN4 2 252 u)

i<j

E(4) is given in Srivastava (2005)

: 4ﬂ,z;tf
LI YRy K
“dP.~ Y ———— 0, as p > .
;Sz J‘Kl‘>ss =y ;sz (9282 P

Therefore, we can apply the Lindeberg Central Limit Theorem i.e.,

° > N(0,1),
\/ ; (@ -pa,)
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and with a linear transformation, we have g, —>> N (0,%(@2 -pra,)). O

Similarly, we can fine the distribution of r, in same manner as ¢,, thus we have

r, —>N(O ZaZI— ‘1Za4,)) o

Consider 4, is a linear function of random variable g, and g, i.e. 4, =0,+0,
as N —oo. Now, we obtain the asymptotically distribution of &, from these results as

follows
a4, —->N (az,im +i2a22}
Np N
Similarly with &, , we obtain the asymptotically distribution of &, as follows

aA‘ZD—D>N[ 2D’Z( 4i a2|)J

Therefore, we obtain the asymptotically distribution of (4, &,,)" is

8 4 A A
—a,+—a, Cov(d,,4,,)

A N N
a A A
2D 2D Cov(4,,4,,) Z( a,; + Nz a,)

A.2 Fisher Discriminant Method

Theorem A.2. Let A, 4,,..., A, denote the s<min(g -1, p) eigenvalues of S 'S, and
e,6,,...6 be the corresponding eigenvectors. Then the vector of coefficients C that

maximizes Fisher’s criterion function, F(C);

€TSS (R~ %) (K K
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is given by ¢, =¢, The linear combination ¢/ x is called the sample first discriminant.
The choice ¢, =e, produces the sample second discriminant, ¢ x, and continuing,

we obtain ¢’ x =e' x, the sample r" discriminant, r<s.

1 11
Proof. Let u=X2c,s0o u'u=c'x?32c=c'>c and

1 1 1 1 1 1

u's ?B,X 2u=c'3?% ?B,X ?52c=C'B,C

1 1
o . C'B,c . u'X 2By 2y
Consequently, the maximization of the ratio e and the ratio =————— are
¢ 2C uu

equivalently in terms of solving the vector of coefficients ¢ and u .

From Johnson, A.R. and Wichen, D. W. ( 2002) , if the vector x satisfying

T T

Bx : . . X Bx . :
max=——==4, is attained when x=g¢ and min=—==A4_ is attained when x=e_ .
0 X' X - #0 X' X - P
X' Bx _ _ .
Moreover, X[Tglaxe NxTx~ = A, Is attained when x=¢_,, k=1..,p-1, where B is a
2% <k

pxp positive definite matrix with eigenvalues 4 >1,>---> A1 >0 associated

normalized eigenvectors e ,e,,...,e, and the symbol L is “perpendicular to” such that

1 1

'y 2B ¥ ?
T - . . L
g € =0,1#J. The maximum of the ratio =———*—= equals to 4 which is the
uu

1 1
largest eigenvalue of £ ?B ¥ 2. This maximum occurs when u =g, the normalized

1 1
eigenvector associated with 4. Since e =u=2X%c or ¢ =X72, then

1 1
Var(c x) =c/Zc, =¢/T 23% %¢ =¢e, =1 and u L e maximizes the proceeding ratio
when u=e,, the normalized eigenvector associated with A,. For this choice,

1 1 1
c,=X%, and Cov(gxCX)=C2C =62 *5X % =¢,, =0 since ¢ Lle,.

1 1
Similarly, Var(c; x) =c,;c, =€, ¥ 23% 2¢, =eje, =1. Continue in this fashion for the
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remaining discriminants. Note that if 4 and ¢ are an eigenvalue-eigenvector pair of

1 1

% 2B, 2, then

1 1

> ?B,X 2e=1e

1
and multiplication on the left by X 2 gives

1 1 1

1 1 1
3 2% 2B, ¥ 2e=]% %¢ or 7B, (Z %e) = A(Z %e)

1 1
Thus, E'lB,, has the same eigenvalues as = B % 2, but corresponding eigenvector is

1
¥ 2e=c. In sample counterpart, the eigenvectors of S;'S, maximize F(c).



Appendix B

Tables

Table of Test Block Diagonal Covariance Matrix

Table B.1 The empirical type | error rate when £ =%,, ¢=0.1, 0.5, and 0.9 with equal block sizes

6=01 6=05 6=09
" P P + T + + + T = T +
p b c p b c p b c

50 100 5 0.0470 0.0456 0.0508 0.0528 0.0519 0.0508 0.0554 0.0536 0.0508

10 0.0495 0.0483 0.0475 0.0581 0.0575 0.0475 0.0588 0.0564 0.0475

25 0.0515 0.0492 0.0484 0.0686 0.0673 0.0484 0.0697 0.0682 0.0484

200 5 0.0465 0.0450 0.0484 0.0529 0.0515 0.0484 0.0523 0.0510 0.0484

10 0.0489 0.0472 0.0481 0.0561 0.0544 0.0481 0.0566 0.0551 0.0481

25 0.0466 0.0456 0.0495 0.0605 0.0596 0.0495 0.0612 0.0594 0.0495

300 5 0.0482 0.0470 0.0535 0.0468 0.0448 0.0535 0.0507 0.0498 0.0535

10 0.0488 0.0469 0.0522 0.0517 0.0502 0.0522 0.0519 0.0509 0.0522

25 0.0512 0.0493 0.0483 0.0586 0.0569 0.0483 0.0604 0.0585 0.0483

400 5 0.0493 0.0476 0.0487 0.0509 0.0498 0.0487 0.0514 0.0498 0.0487

10 0.0493 0.0478 0.0494 0.0494 0.0483 0.0494 0.0498 0.0486 0.0494

25 0.0498 0.0480 0.0536 0.0529 0.0518 0.0536 0.0527 0.0508 0.0536




Table B.1 (Continued)

6=01 0=05 6=09
n p P = = = X ~ = X
T, T, T, T, T, T, T, T, T,
100 100 5 0.0532 0.0523 00514 0.0543 0.0533 0.0514 0.0565 0.0553 0.0514
10 0.0520 0.0513 0.0502 0.0593 0.0588 0.0502 0.0623 0.0617 0.0502
25 0.0562 0.0554 0.0505 0.0637 0.0629 0.0505 0.0646 0.0641 0.0505
200 5 0.0519 0.0507 0.0510 0.0509 0.0506 0.0510 0.0540 0.0529 0.0510
10 0.0535 0.0526 0.0507 0.0579 0.0572 0.0507 0.0583 0.0580 0.0507
25 0.0506 0.0499 0.0542 0.0587 0.0583 0.0542 0.0613 0.0605 0.0542
300 5 0.0444 0.0440 0.0458 0.0506 0.0502 0.0458 0.0533 0.0523 0.0458
10 0.0439 0.0433 0.0471 0.0557 0.0552 0.0471 0.0569 0.0562 0.0471
25 0.0512 0.0500 0.0486 0.0579 0.0572 0.0486 0.0611 0.0599 0.0486
400 5 0.0474 0.0461 0.0516 0.0499 0.0489 0.0516 0.0499 0.0488 0.0516
10 0.0454 0.0446 0.0508 0.0487 0.0478 0.0508 0.0516 00511 0.0508

25 0.0475 0.0466 0.0522 0.0553 0.0547 0.0522 0.0565 0.0556 0.0522

86




Table B.2 The empirical type | error rate when 2 =%,, #=0.1, 0.5, and 0.9 with mixed block sizes

6=01 6=05 6=09
" P P Py 7, T, T 7 T T 7, T T

50 100 5 10 0.0544 0.0530 0.0480 0.0584 0.0571 0.0480 0.0580 0.0571 0.0480
5 25 0.0517 0.0499 0.0459 0.0616 0.0602 0.0459 0.0640 0.0635 0.0459

10 25 0.0536 0.0518 0.0505 0.0597 0.0586 0.0505 0.0600 0.0587 0.0505

200 5 10 0.0515 0.0492 0.0527 0.0519 0.0505 0.0527 0.0527 0.0513 0.0527

5 25 0.0498 0.0484 0.0515 0.0589 0.0574 0.0515 0.0618 0.0603 0.0515

10 25 0.0526 0.0509 0.0484 0.0621 0.0606 0.0484 0.0638 0.0620 0.0484

300 5 10 0.0529 0.0513 0.0530 0.0542 0.0521 0.0530 0.0554 0.0540 0.0530

5 25 0.0519 0.0496 0.0507 0.0558 0.0549 0.0507 0.0556 0.0547 0.0507

10 25 0.0519 0.0500 0.0491 0.0552 0.0538 0.0491 0.0545 0.0531 0.0491

400 5 10 0.0490 0.0472 0.0490 0.0484 00471 0.0490 0.0529 0.0515 0.0490

5 25 0.0501 0.0490 0.0503 0.0512 0.0507 0.0503 0.0513 0.0509 0.0503

10 25 0.0489 0.0474 0.0530 0.0534 0.0520 0.0530 0.0541 0.0529 0.0530

100 100 5 10 0.0547 0.0541 0.0525 0.0605 0.0600 0.0525 0.0627 0.0616 0.0525
5 25 0.0506 0.0500 0.0467 0.0639 0.0631 0.0467 0.0643 0.0641 0.0467

10 25 0.0533 0.0526 0.0518 0.0597 0.0590 0.0518 0.0615 0.0610 0.0518

200 5 10 0.0512 0.0500 0.0511 0.0556 0.0547 0.0511 0.0564 0.0556 0.0511

5 25 0.0534 0.0532 0.0531 0.0606 0.0602 0.0531 0.0649 0.0641 0.0531

10 25 0.0535 0.0525 0.0540 0.0632 0.0623 0.0540 0.0631 0.0620 0.0540

300 5 10 0.0492 0.0482 0.0489 0.0533 0.0524 0.0489 0.0574 0.0567 0.0489

5 25 0.0509 0.0505 0.0493 0.0605 0.0599 0.0493 0.0616 0.0610 0.0493

10 25 0.0498 0.0493 0.0505 0.0565 0.0557 0.0505 0.0581 0.0575 0.0505

400 5 10 0.0459 0.0453 0.0483 0.0484 0.0478 0.0483 0.0503 0.0498 0.0483

5 25 0.0451 0.0447 0.0470 0.0536 0.0530 0.0470 0.0541 0.0532 0.0470

10 25 0.0457 0.0450 0.0478 0.0525 0.0519 0.0478 0.0543 0.0535 0.0478

66
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Table B.3 The empirical type | error rate when £=%, and € =0.9 with equal block

sizes
n p p; 'I:p 'fb 'fc

50 100 5 0.0550 0.0539 0.0500
10 0.0580 0.0568 0.0475

25 0.0647 0.0632 0.0484

200 5 0.0529 0.0514 0.0484

10 0.0562 0.0549 0.0481

25 0.0593 0.0581 0.0495

300 5 0.0491 0.0476 0.0535

10 0.0496 0.0485 0.0522

25 0.0533 0.0515 0.0483

400 5 0.0518 0.0500 0.0487

10 0.0492 0.0476 0.0494

25 0.0522 0.0511 0.0536

100 100 5 0.0560 0.0552 00514
10 0.0611 0.0602 0.0502

25 0.0634 0.0626 0.0505

200 5 0.0519 0.0511 0.0510

10 0.0552 0.0542 0.0503

25 0.0582 0.0574 0.0542

300 5 0.0520 0.0512 0.0458

10 0.0521 0.0517 00471

25 0.0562 0.0555 0.0486

400 5 0.0507 0.0492 0.0516

10 0.0514 0.0508 0.0508

25 0.0509 0.0496 0.0522
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Table B.4 The empirical type | error rate when =%, and ¢ =0.9 with mixed

block sizes

n p P, P; 'fp 'fb 'fc
50 100 5 10 0.0539 0.0534 0.0480
25 0.0633 0.0618 0.0459
10 25 0.0589 0.0568 0.0500
200 10 0.0538 0.0519 0.0479
25 0.0552 0.0539 0.0473
10 25 0.0563 0.0549 0.0501
300 10 0.0556 0.0534 0.0530
25 0.0542 0.0526 0.0507
10 25 0.0530 0.0515 0.0491
400 10 0.0524 0.0511 0.0490
25 0.0537 0.0525 0.0503
10 25 0.0512 0.0505 0.0530
100 100 10 0.0553 0.0545 0.0525
25 0.0609 0.0598 0.0467
10 25 0.0625 0.0616 00518
200 10 0.0528 0.0528 0.0525
25 0.0588 0.0578 0.0528
10 25 0.0577 0.0571 0.0507
300 10 0.0563 0.0550 0.0489
25 0.0545 0.0535 0.0493
10 25 0.0545 0.0537 0.0505
400 10 00471 0.0463 0.0483
25 0.0524 0.0519 0.0470
10 25 0.0495 0.0489 0.0478




Table B.5 The empirical power when £=%_, €=0.1, 0.5, and 0.9 with equal block sizes

6=01 6=05 6=09

" P P, T 7 T T F T . T 7

p b c p b c p b c
50 100 5 0.9504 0.9494 0.7432 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000
10 0.9349 09339 0.3652 1.0000 1.0000 09322 1.0000 1.0000 09733
25 0.8640 0.8623 0.0756 0.9999 0.9999 0.1029 0.9999 0.9999 0.1078
200 5 09978 09977 09671 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 0.9965 09963 0.7436 1.0000 1.0000 0.9988 1.0000 1.0000 0.9998
25 0.9907 0.9905 01216 1.0000 1.0000 0.2030 1.0000 1.0000 0.2208
300 5 0.9998 0.9998 0.9953 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 0.9997 09997 09188 1.0000 1.0000 09999 1.0000 1.0000 1.0000
25 0.9993 0.9993 0.1817 1.0000 1.0000 0.3466 1.0000 1.0000 03791
400 5 1.0000 1.0000 0.9991 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 1.0000 1.0000 09755 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
25 1.0000 1.0000 0.2592 1.0000 1.0000 05195 1.0000 1.0000 05638
100 100 5 0.9996 0.9995 0.9910 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 0.9991 0.9991 0.8257 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
25 0.9958 09957 0.1759 1.0000 1.0000 0.3207 1.0000 1.0000 0.3533
200 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 1.0000 1.0000 0.9952 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
25 1.0000 1.0000 04385 1.0000 1.0000 0.7968 1.0000 1.0000 0.8396
300 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 1.0000 1.0000 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
25 1.0000 1.0000 0.7081 1.0000 1.0000 09729 1.0000 1.0000 09833
400 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
25 1.0000 1.0000 0.8837 1.0000 1.0000 0.9966 1.0000 1.0000 0.9980

c0T



Table B.6 The empirical power when =%, €=0.1, 0.5, and 0.9 with mixed block sizes

0 =01 f=05 6=09
n P P 7, T T 7, T, T 7, 3 T

50 100 5 10 0.9465 0.9455 05743 1.0000 1.0000 09992 1.0000 1.0000 1.0000
5 25 09167 09153 03737 1.0000 1.0000 0.9918 1.0000 1.0000 0.9989

10 25 09117 09104 0.1762 1.0000 1.0000 05608 1.0000 1.0000 0.6584

200 5 10 0.9965 0.9964 0.9042 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 25 0.9948 0.9948 0.7397 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 25 0.9935 0.9933 04061 1.0000 1.0000 0.9400 1.0000 1.0000 09709

300 5 10 0.9997 0.9997 09811 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 25 0.9999 0.9999 09163 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 25 0.9995 0.9995 0.6584 1.0000 1.0000 09937 1.0000 1.0000 0.9982

400 5 10 1.0000 1.0000 0.9958 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 25 0.9999 0.9999 09740 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 25 0.9999 0.9999 0.8153 1.0000 1.0000 09991 1.0000 1.0000 0.9998

100 100 5 10 0.9995 0.9995 0.9599 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 25 0.9988 0.9988 08133 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 25 09981 0.9981 05059 1.0000 1.0000 09817 1.0000 1.0000 0.9943

200 5 10 1.0000 1.0000 0.9995 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 25 1.0000 1.0000 0.9935 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 25 1.0000 1.0000 09180 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

300 5 10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 25 1.0000 1.0000 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 25 1.0000 1.0000 0.9932 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

400 5 10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 25 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 25 1.0000 1.0000 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

€0t
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Table B.7 The empirical powers when X =%, and 8=0.9 with equal block sizes

n p D, T, T, T
50 100 5 1.0000 1.0000 1.0000
10 1.0000 1.0000 0.9491
o5 09824 0.9821 0.1693
200 5 1.0000 1.0000 1.0000
10 1.0000 1.0000 0.9543
o5 0.9967 0.9966 01793
300 5 1.0000 1.0000 1.0000
10 1.0000 1.0000 0.9583
o5 0.9986 0.9986 0.1867
400 5 1.0000 1.0000 1.0000
10 1.0000 1.0000 0.9606
o5 0.9993 0.9991 0.1929
100 100 5 1.0000 1.0000 1.0000
10 1.0000 1.0000 1.0000
o5 1.0000 1.0000 0.6655
200 5 1.0000 1.0000 1.0000
10 1.0000 1.0000 1.0000
o5 1.0000 1.0000 0.7280
300 5 1.0000 1.0000 1.0000
10 1.0000 1.0000 1.0000
o5 1.0000 1.0000 0.7402
400 5 1.0000 1.0000 1.0000
10 1.0000 1.0000 1.0000
o5 1.0000 1.0000 0.7470
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Table B.8 The empirical powers when X =%, and & = 0.9 with mixed block sizes

n p p, P, T, T, T,

50 100 5 10 1.0000 1.0000 1.0000
5 25 1.0000 1.0000 0.9999

10 25 1.0000 1.0000 0.6239

200 5 10 1.0000 1.0000 1.0000

5 25 1.0000 1.0000 1.0000

10 25 1.0000 1.0000 0.7439

300 5 10 1.0000 1.0000 1.0000

5 25 1.0000 1.0000 1.0000

10 25 1.0000 1.0000 0.7570

400 5 10 1.0000 1.0000 1.0000

5 25 1.0000 1.0000 1.0000

10 25 1.0000 1.0000 0.8440

100 100 5 10 1.0000 1.0000 1.0000
5 25 1.0000 1.0000 1.0000

10 25 1.0000 1.0000 0.9985

200 5 10 1.0000 1.0000 1.0000

5 25 1.0000 1.0000 1.0000

10 25 1.0000 1.0000 0.9998

300 5 10 1.0000 1.0000 1.0000

5 25 1.0000 1.0000 1.0000

10 25 1.0000 1.0000 0.9999

400 5 10 1.0000 1.0000 1.0000

5 25 1.0000 1.0000 1.0000

10 25 1.0000 1.0000 0.9999
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Table B.9 The sensitivity (SE) of TA, TB, TC, BD, SK, and DI when X =%, and

6 = 0.1 with equal block sizes

n p p; TATB,TC BD DI SK
35 100 5 0.6905 0.6867 0.6860 0.6859
10 0.6895 0.6786 0.6835 0.6850
25 0.6833 0.6451 0.6790 0.6843
200 5 0.7643 0.7595 0.7607 0.7630
10 0.7647 0.7507 0.7602 0.7601
25 0.7592 0.6946 0.7533 0.7604
300 5 0.8198 0.8127 0.8156 0.8153
10 0.8185 0.8001 0.8147 0.8145
25 0.8110 0.7484 0.8072 0.8124
400 5 0.8537 0.8436 0.8456 0.8515
10 0.8488 0.8329 0.8423 0.8484
25 0.8376 0.7694 0.8332 0.8417
70 100 5 0.7409 0.7413 0.7380 0.7295
10 0.7378 0.7367 0.7366 0.7319
25 0.7351 0.7228 0.7315 0.7340
200 5 0.8182 0.8140 0.8147 0.8055
10 0.8142 0.8109 0.8121 0.8083
25 0.8079 0.7917 0.8055 0.8100
300 5 0.8645 0.8641 0.8630 0.8593
10 0.8628 0.8617 0.8606 0.8581
25 0.8530 0.8465 0.8524 0.8594
400 5 0.9004 0.8991 0.8979 0.8957
10 0.8990 0.8963 0.8964 0.8949
25 0.8908 0.8784 0.8865 0.8939
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Table B.10 The sensitivity (SE) of TA, TB, TC, BD, SK, and DI when =%, and

& = 0.1 with mixed block sizes

n p P; P; TATB,TC BD DI SK

35 100 5 10 0.6944 0.6916 0.6834 0.6880
5 25 0.6875 0.6726 0.6849 0.6847

10 25 0.6884 0.6713 0.6834 0.6905

200 5 10 0.7733 0.7676 0.7688 0.7691

5 25 0.7673 0.7396 0.7635 0.7687

10 25 0.7594 0.7257 0.7555 0.7605

300 5 10 0.8142 0.8173 0.8130 0.8144

5 25 0.8094 0.7807 0.8055 0.8112

10 25 0.8149 0.7852 0.8084 0.8168

400 5 10 0.8495 0.8391 0.8495 0.8424

5 25 0.8429 0.8162 0.8429 0.8362

10 25 0.8445 0.8048 0.8445 0.8394

70 100 5 10 0.7325 0.7352 0.7291 0.7228
5 25 0.7367 0.7385 0.7379 0.7372

10 25 0.7318 0.7299 0.7306 0.7298

200 5 10 0.8164 0.8168 0.8126 0.8105

5 25 0.8173 0.8107 0.8133 0.8134

10 25 0.8103 0.8124 0.8102 0.8105

300 5 10 0.8681 0.8712 0.8639 0.8652

5 25 0.8626 0.8620 0.8621 0.8645

10 25 0.8640 0.8606 0.8622 0.8635

400 5 10 0.9055 0.9067 0.9027 0.9020

5 25 0.8960 0.8966 0.8933 0.8942

10 25 0.8984 0.8963 0.8946 0.8986
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Table B.11 The specificity (SP) of TA, TB, TC, BD, SK, and DI when £=%; and

6 = 0.1 with equal block sizes

n Y P TATB,TC BD D) SK
35 100 5 0.6903 0.6842 0.6857 0.6810
10 0.6875 0.6761 0.6822 0.6824
25 0.6844 0.6513 0.6814 0.6847
200 5 0.7600 0.7482 0.7525 0.7567
10 0.7543 0.7370 0.7474 0.7569
25 0.7441 0.6950 0.7400 0.7488
300 5 0.8197 0.8142 0.8157 0.8186
10 0.8178 0.7977 0.8128 0.8139
25 0.8065 0.7439 0.8055 0.8113
400 5 0.8476 0.8397 0.8428 0.8455
10 0.8398 0.8299 0.8408 0.8409
25 0.8319 0.7722 0.8282 0.8350
70 100 5 0.7349 0.7350 0.7337 0.7246
10 0.7334 0.7312 0.7308 0.7263
25 0.7269 0.7186 0.7253 0.7293
200 5 0.8173 0.8166 0.8154 0.8066
10 0.8128 0.8146 0.8116 0.8057
25 0.8017 0.7966 0.7990 0.8093
300 5 0.8665 0.8704 0.8652 0.8638
10 0.8645 0.8645 0.8629 0.8625
25 0.8547 0.8480 0.8518 0.8607
400 5 0.9030 0.9050 0.9005 0.8979
10 0.9009 0.9039 0.8991 0.8965
25 0.8932 0.8842 0.8915 0.8953
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Table B.12 The specificity (SP) of TA, TB, TC, BD, SK, and DI when £=%; and

& = 0.1 with mixed block sizes

n p P; P; TATB,TC BD DI SK

35 100 5 10 0.6902 0.6826 0.6863 0.6802
5 25 0.6892 0.6664 0.6866 0.6895

10 25 0.6879 0.6638 0.6815 0.6832

200 5 10 0.7659 0.7549 0.7573 0.7605

5 25 0.7546 0.7294 0.7511 0.7547

10 25 0.7515 0.7244 0.7460 0.7519

300 5 10 0.8085 0.8065 0.8028 0.8092

5 25 0.8082 0.7828 0.8029 0.8084

10 25 0.8052 0.7754 0.8024 0.8080

400 5 10 0.8494 0.8445 0.8494 0.8465

5 25 0.8464 0.8088 0.8464 0.8442

10 25 0.8402 0.8095 0.8402 0.8343

70 100 5 10 0.7404 0.7431 0.7384 0.7303
5 25 0.7353 0.7329 0.7318 0.7292

10 25 0.7372 0.7357 0.7349 0.7334

200 5 10 0.8141 0.8187 0.8134 0.8092

5 25 0.8141 0.8145 0.8129 0.8157

10 25 0.8096 0.8095 0.8069 0.8102

300 5 10 0.8670 0.8722 0.8644 0.8629

5 25 0.8593 0.8592 0.8543 0.8600

10 25 0.8601 0.8590 0.8579 0.8629

400 5 10 0.9061 0.9078 0.9042 0.9010

5 25 0.8935 0.8935 0.8910 0.8930

10 25 0.8959 0.8978 0.8953 0.8957




110

Table B.13 The sensitivity (SE) of TA, TB, TC, BD, SK, and DI when =%, and

6 = 0.5 with equal block sizes

n p P TATB,TC BD D) SK

35 100 5 0.6607 0.7535 0.6601 0.6939
10 0.6397 0.7602 0.6365 0.7073

25 0.6101 0.7195 0.6088 0.7411

200 5 0.7184 0.8447 0.7147 0.7434

10 0.6930 0.8453 0.6890 0.7472

25 0.6407 0.7880 0.6359 0.7691

300 5 0.7628 0.8944 0.7602 0.7800

10 0.7263 0.8971 0.7256 0.7748

25 0.6735 0.8494 0.6729 0.7831

400 5 0.7988 0.9259 0.7906 0.8149

10 0.7572 0.9274 0.7523 0.7950

25 0.6848 0.8817 0.6858 0.7810

70 100 5 0.7108 0.8110 0.7098 0.7672
10 0.6853 0.8230 0.6840 0.7916

25 0.6438 0.8094 0.6432 0.8157

200 5 0.7768 0.8887 0.7756 0.8178

10 0.7435 0.8963 0.7416 0.8356

25 0.6929 0.8858 0.6938 0.8698

300 5 0.8193 0.9351 0.8200 0.8539

10 0.7805 0.9434 0.7796 0.8660

25 0.7222 0.9355 0.7200 0.8920

400 5 0.8569 0.9617 0.8562 0.8851

10 0.8178 0.9663 0.8171 0.8850

25 0.7444 0.9591 0.7423 0.9038
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Table B.14 The sensitivity (SE) of TA, TB, TC, BD, SK, and DI when =%, and

& = 0.5 with mixed block sizes

n Y P; P; TATB,TC BD DI SK
35 100 5 10 0.6443 0.7753 0.6402 0.7048
5 25 0.6247 0.7494 0.6251 0.7193
10 25 0.6164 0.7533 0.6161 0.7254
200 5 10 0.7070 0.8584 0.7025 0.7506
5 25 0.6723 0.8272 0.6690 0.7648
10 25 0.6482 0.8246 0.6485 0.7522
300 5 10 0.7378 0.9072 0.7380 0.7738
5 25 0.7006 0.8778 0.6964 0.7815
10 25 0.6954 0.8808 0.6937 0.7794
400 5 10 0.7731 0.9367 0.7705 0.8031
5 25 0.7292 0.9143 0.7243 0.7959
10 25 0.7127 0.9106 0.7120 0.7924
70 100 5 10 0.6931 0.8161 0.6923 0.7817
5 25 0.6727 0.8250 0.6712 0.8006
10 25 0.6642 0.8167 0.6631 0.8045
200 5 10 0.7580 0.9041 0.7559 0.8342
5 25 0.7282 0.9027 0.7267 0.8581
10 25 0.7131 0.9020 0.7127 0.8618
300 5 10 0.8023 0.9506 0.7994 0.8694
5 25 0.7633 0.9430 0.7617 0.8846
10 25 0.7467 0.9415 0.7444 0.8856
400 5 10 0.8410 0.9715 0.8389 0.8936
5 25 0.7900 0.9680 0.7878 0.8993
10 25 0.7850 0.9677 0.7831 0.9018
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Table B.15 The specificity (SP) of TA, TB, TC, BD, SK, and DI when £=%; and

6 = 0.5 with equal block sizes

n p P TATB,TC BD Dl SK
35 100 5 0.6547 0.7553 0.6524 0.6871
10 0.6360 0.7606 0.6311 0.7108
25 0.6058 0.7224 0.6025 0.7402
200 5 0.7103 0.8330 0.7031 0.7372
10 0.6778 0.8354 0.6737 0.7357
25 0.6395 0.7907 0.6357 0.7536
300 5 0.7601 0.8998 0.7600 0.7840
10 0.7178 0.9004 0.7187 0.7683
25 0.6614 0.8481 0.6625 0.7814
400 5 0.7903 0.9258 0.7857 0.8077
10 0.7489 0.9257 0.7445 0.7853
25 0.6861 0.8781 0.6865 0.7819
70 100 5 0.7023 0.8067 0.7007 0.7659
10 0.6796 0.8178 0.6773 0.7924
25 0.6442 0.8054 0.6437 0.8150
200 5 0.7706 0.8918 0.7709 0.8157
10 0.7336 0.9000 0.7318 0.8321
25 0.6856 0.8895 0.6837 0.8685
300 5 0.8209 0.9352 0.8199 0.8561
10 0.7837 0.9437 0.7811 0.8664
25 0.7186 0.9319 0.7186 0.8940
400 5 0.8602 0.9632 0.8579 0.8857
10 0.8154 0.9695 0.8157 0.8856

25 0.7485 0.9616 0.7454 0.9068
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Table B.16 The specificity (SP) of TA, TB, TC, BD, SK, and DI when £=%; and

& = 0.5 with mixed block sizes

n p P; P; TATB,TC BD DI SK
35 100 5 10 0.6400 0.7624 0.6333 0.6966
5 25 0.6329 0.7474 0.6304 0.7235
10 25 0.6175 0.7426 0.6174 0.7262
200 5 10 0.7032 0.8534 0.6996 0.7457
5 25 0.6638 0.8297 0.6631 0.7550
10 25 0.6504 0.8168 0.6525 0.7457
300 5 10 0.7408 0.9030 0.7408 0.7761
5 25 0.7039 0.8802 0.6996 0.7807
10 25 0.6921 0.8751 0.6861 0.7776
400 5 10 0.7732 0.9358 0.7681 0.8023
5 25 0.7327 0.9073 0.7323 0.8054
10 25 0.7138 0.9075 0.7122 0.7849
70 100 5 10 0.6940 0.8266 0.6916 0.7808
5 25 0.6727 0.8179 0.6688 0.7962
10 25 0.6675 0.8217 0.6671 0.8066
200 5 10 0.7566 0.9057 0.7560 0.8331
5 25 0.7274 0.9072 0.7259 0.8565
10 25 0.7146 0.9036 0.7141 0.8637
300 5 10 0.8019 0.9480 0.8005 0.8692
5 25 0.7599 0.9420 0.7578 0.8812
10 25 0.7532 0.9418 0.7538 0.8869
400 5 10 0.8391 0.9715 0.8369 0.8891
5 25 0.7911 0.9690 0.7906 0.8973
10 25 0.7803 0.9683 0.7797 0.9017
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Table B.17 The sensitivity (SE) of TA, TB, TC, BD, SK, and DI when =%, and

6 = 0.9 with equal block sizes

n p P TATB,TC BD Dl SK
35 100 5 0.6261 0.9577 0.6207 0.7184
10 0.5997 0.9686 0.5975 0.7721
25 0.5712 0.9450 0.5690 0.8659
200 5 0.6611 0.9933 0.6580 0.7231
10 0.6277 0.9959 0.6267 0.7469
25 0.5812 0.9882 0.5810 0.8251
300 5 0.6956 0.9989 0.6994 0.7421
10 0.6558 0.9995 0.6566 0.7474
25 0.6064 0.9972 0.6040 0.8002
400 5 0.7317 0.9998 0.7278 0.7640
10 0.6761 0.9999 0.6752 0.7460
25 0.6150 0.9995 0.6122 0.7705
70 100 5 0.6657 0.9711 0.6644 0.8642
10 0.6341 0.9810 0.6321 0.9204
25 0.5933 0.9789 0.5921 0.9636
200 5 0.7220 0.9969 0.7182 0.8550
10 0.6771 0.9977 0.6744 0.9122
25 0.6291 0.9977 0.6260 0.9695
300 5 0.7550 0.9999 0.7527 0.8560
10 0.6985 1.0000 0.6992 0.9023
25 0.6433 0.9998 0.6400 0.9624
400 5 0.7925 1.0000 0.7904 0.8711
10 0.7349 1.0000 0.7327 0.8970

25 0.6559 0.9999 0.6554 0.9548
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Table B.18 The sensitivity (SE) of TA, TB, TC, BD, SK, and DI when =%, and

& = 0.9 with mixed block sizes

n p P; P; TATB,TC BD DI SK
35 100 5 10 0.5978 0.9711 0.5961 0.7588
5 25 0.5884 0.9517 0.5852 0.7949
10 25 0.5732 0.9536 0.5736 0.8147
200 5 10 0.6677 0.9994 0.6641 0.7454
5 25 0.6252 0.9982 0.6215 0.7652
10 25 0.6259 0.9981 0.6269 0.7757
300 5 10 0.6677 0.9994 0.6641 0.7454
5 25 0.6252 0.9982 0.6215 0.7652
10 25 0.6259 0.9981 0.6269 0.7757
400 5 10 0.6983 0.9999 0.6965 0.7578
5 25 0.6498 0.9998 0.6498 0.7651
10 25 0.6380 0.9999 0.6386 0.7607
70 100 5 10 0.6484 0.9822 0.6470 0.9062
5 25 0.6205 0.9826 0.6201 0.9291
10 25 0.6107 0.9811 0.6131 0.9507
200 5 10 0.6959 0.9987 0.6926 0.8994
5 25 0.6615 0.9984 0.6592 0.9355
10 25 0.6448 0.9991 0.6472 0.9508
300 5 10 0.7247 0.9999 0.7221 0.8901
5 25 0.6800 0.9999 0.6779 0.9264
10 25 0.6626 1.0000 0.6624 0.9421
400 5 10 0.7608 1.0000 0.7575 0.8919
5 25 0.7024 1.0000 0.7036 0.9234
10 25 0.6925 1.0000 0.6923 0.9346
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Table B.19 The specificity (SP) of TA, TB, TC, BD, SK, and DI when £=%; and

6 = 0.9 with equal block sizes

n p P TATB,TC BD D) SK
35 100 5 0.6186 0.9564 0.6096 0.7142
10 0.5946 0.9701 0.5925 0.7751
25 0.5713 0.9462 0.5683 0.8668
200 5 0.6585 0.9928 0.6581 0.7203
10 0.6187 0.9941 0.6172 0.7449
25 0.5874 0.9871 0.5853 0.8178
300 5 0.6957 0.9995 0.6910 0.7394
10 0.6472 0.9995 0.6473 0.7407
25 0.5972 0.9973 0.5988 0.7992
400 5 0.7298 1.0000 0.7247 0.7603
10 0.6674 1.0000 0.6622 0.7380
25 0.6135 0.9994 0.6137 0.7740
70 100 5 0.6629 0.9726 0.6622 0.8633
10 0.6283 0.9826 0.6264 0.9237
25 0.5982 0.9780 0.5973 0.9624
200 5 0.7139 0.9967 0.7118 0.8526
10 0.6648 0.9982 0.6629 0.9064
25 0.6184 0.9978 0.6158 0.9687
300 5 0.7538 0.9996 0.7540 0.8602
10 0.7020 0.9999 0.6986 0.9037
25 0.6377 0.9998 0.6351 0.9641
400 5 0.7973 1.0000 0.7928 0.8724
10 0.7292 1.0000 0.7288 0.8958
25 0.6582 1.0000 0.6605 0.9568
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Table B.20 The specificity (SP) of TA, TB, TC, BD, SK, and DI when £=%, and

& = 0.9 with mixed block sizes

n p P; P; TATB,TC BD DI SK
35 100 5 10 0.5958 0.9724 0.5959 0.7396
5 25 0.5927 0.9538 0.5931 0.7950
10 25 0.5768 0.9523 0.5757 0.8203
200 5 10 0.6733 0.9995 0.6709 0.7477
5 25 0.6362 0.9981 0.6335 0.7709
10 25 0.6192 0.9978 0.6190 0.7726
300 5 10 0.6733 0.9995 0.6709 0.7477
5 25 0.6362 0.9981 0.6335 0.7709
10 25 0.6192 0.9978 0.6190 0.7726
400 5 10 0.6907 1.0000 0.6906 0.7549
5 25 0.6560 0.9993 0.6521 0.7748
10 25 0.6383 0.9995 0.6361 0.7559
70 100 5 10 0.6441 0.9847 0.6427 0.9047
5 25 0.6230 0.9825 0.6236 0.9313
10 25 0.6171 0.9838 0.6178 0.9508
200 5 10 0.6899 0.9981 0.6873 0.8969
5 25 0.6562 0.9990 0.6544 0.9309
10 25 0.6405 0.9984 0.6407 0.9526
300 5 10 0.7264 0.9999 0.7286 0.8912
5 25 0.6817 0.9997 0.6770 0.9283
10 25 0.6736 0.9999 0.6746 0.9430
400 5 10 0.7552 1.0000 0.7526 0.8892
5 25 0.7037 1.0000 0.7018 0.9202
10 25 0.6888 1.0000 0.6868 0.9348
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Table B.21 The sensitivity (SE) of TA, TB, TC, BD, SK, and DI when £=%,; and

6 = 0.9 with equal block sizes

n p P; TATB,TC BD DI SK
35 100 5 0.6307 0.9452 0.6256 0.7113
10 0.6146 0.9509 0.6134 0.7387
25 0.6037 0.9185 0.6021 0.7484
200 5 0.6723 0.9888 0.6691 0.7275
10 0.6470 0.9905 0.6485 0.7364
25 0.6258 0.9790 0.6224 0.7406
300 5 0.7099 0.9981 0.7094 0.7457
10 0.6844 0.9982 0.6818 0.7491
25 0.6616 0.9939 0.6630 0.7591
400 5 0.7422 0.9997 0.7393 0.7719
10 0.7086 0.9996 0.7049 0.7635
25 0.6780 0.9978 0.6767 0.7565
70 100 5 0.6731 0.9624 0.6717 0.8396
10 0.6519 0.9683 0.6507 0.8664
25 0.6381 0.9600 0.6362 0.8747
200 5 0.7328 0.9934 0.7305 0.8440
10 0.7034 0.9944 0.7013 0.8728
25 0.6874 0.9935 0.6882 0.8903
300 5 0.7675 0.9995 0.7649 0.8533
10 0.7345 0.9999 0.7324 0.8778
25 0.7132 0.9996 0.7098 0.8917
400 5 0.8052 1.0000 0.8033 0.8728
10 0.7702 0.9999 0.7691 0.8831
25 0.7353 1.0000 0.7312 0.8947
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Table B.22 The sensitivity (SE) of TA, TB, TC, BD, SK, and DI when £=%,; and

& = 0.9 with mixed block sizes

n p P; P; TATB,TC BD DI SK
35 100 5 10 0.6111 0.8769 0.6067 0.7080
5 25 0.6077 0.8410 0.6069 0.7080
10 25 0.5981 0.8475 0.5997 0.7095
200 5 10 0.6610 0.9562 0.6559 0.7223
5 25 0.6478 0.9281 0.6454 0.7255
10 25 0.6314 0.9274 0.6266 0.7182
300 5 10 0.6847 0.9791 0.6817 0.7345
5 25 0.6729 0.9669 0.6726 0.7384
10 25 0.6697 0.9631 0.6676 0.7389
400 5 10 0.7195 0.9928 0.7167 0.7609
5 25 0.6927 0.9830 0.6923 0.7558
10 25 0.6869 0.9846 0.6832 0.7563
70 100 5 10 0.6603 0.9090 0.6593 0.8155
5 25 0.6477 0.9045 0.6471 0.8198
10 25 0.6396 0.9014 0.6376 0.8268
200 5 10 0.7142 0.9742 0.7113 0.8397
5 25 0.7067 0.9710 0.7032 0.8526
10 25 0.6890 0.9699 0.6872 0.8555
300 5 10 0.7446 0.9924 0.7408 0.8502
5 25 0.7336 0.9900 0.7304 0.8576
10 25 0.7176 0.9907 0.7165 0.8631
400 5 10 0.7843 0.9978 0.7810 0.8687
5 25 0.7576 0.9976 0.7570 0.8693
10 25 0.7504 0.9972 0.7482 0.8724
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Table B.23 The specificity (SP) of TA, TB, TC, BD, SK, and DI when £ =%, and

6 = 0.9 with equal block sizes

n p P TATB,TC BD Dl SK
35 100 5 0.6262 0.9426 0.6191 0.7076
10 0.6096 0.9497 0.6073 0.7292
25 0.6040 0.9167 0.6004 0.7503
200 5 0.6669 0.9859 0.6619 0.7195
10 0.6386 0.9870 0.6368 0.7308
25 0.6219 0.9735 0.6237 0.7429
300 5 0.7072 0.9985 0.7034 0.7453
10 0.6769 0.9983 0.6752 0.7473
25 0.6591 0.9956 0.6569 0.7542
400 5 0.7408 0.9994 0.7355 0.7700
10 0.7012 0.9997 0.6998 0.7561
25 0.6792 0.9983 0.6781 0.7600
70 100 5 0.6711 0.9605 0.6700 0.8382
10 0.6503 0.9686 0.6481 0.8668
25 0.6356 0.9602 0.6356 0.8741
200 5 0.7241 0.9943 0.7246 0.8431
10 0.6900 0.9958 0.6896 0.8675
25 0.6746 0.9946 0.6739 0.8846
300 5 0.7683 0.9992 0.7664 0.8574
10 0.7370 0.9997 0.7346 0.8801
25 0.7107 0.9992 0.7094 0.8958
400 5 0.8081 0.9999 0.8047 0.8732
10 0.7656 0.9999 0.7656 0.8844

25 0.7407 1.0000 0.7416 0.8998




121

Table B.24 The specificity (SP) of TA, TB, TC, BD, SK, and DI when £ =%, and

& = 0.9 with mixed block sizes

n p P; P; TATB,TC BD DI SK
35 100 5 10 0.6049 0.8728 0.6036 0.6905
5 25 0.6158 0.8391 0.6128 0.7096
10 25 0.5969 0.8372 0.5995 0.7064
200 5 10 0.6570 0.9538 0.6545 0.7222
5 25 0.6400 0.9302 0.6355 0.7144
10 25 0.6305 0.9208 0.6280 0.7168
300 5 10 0.6905 0.9813 0.6875 0.7389
5 25 0.6800 0.9647 0.6786 0.7395
10 25 0.6676 0.9621 0.6618 0.7343
400 5 10 0.7168 0.9916 0.7126 0.7558
5 25 0.7020 0.9794 0.7034 0.7605
10 25 0.6833 0.9810 0.6838 0.7430
70 100 5 10 0.6553 0.9159 0.6537 0.8148
5 25 0.6489 0.9032 0.6489 0.8155
10 25 0.6426 0.9065 0.6404 0.8275
200 5 10 0.7059 0.9747 0.7041 0.8344
5 25 0.6963 0.9700 0.6953 0.8448
10 25 0.6848 0.9724 0.6849 0.8547
300 5 10 0.7483 0.9930 0.7469 0.8527
5 25 0.7318 0.9899 0.7298 0.8552
10 25 0.7235 0.9887 0.7227 0.8663
400 5 10 0.7760 0.9980 0.7758 0.8614
5 25 0.7606 0.9968 0.7595 0.8690
10 25 0.7501 0.9973 0.7501 0.8750
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Table B.25 The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when

¥ =%, and €= 0.1 with equal block sizes

n P p; TATB,TC BD DI SK

35 100 5 0.3098 0.3148 0.3152 0.3154
10 0.3133 0.3225 0.3174 0.3155

25 0.3193 0.3535 0.3246 0.3144

200 5 0.2376 0.2456 0.2430 0.2427

10 0.2405 0.2557 0.2448 0.2417

25 0.2483 0.3054 0.2562 0.2435

300 5 0.1772 0.1872 0.1835 0.1826

10 0.1807 0.1998 0.1878 0.1848

25 0.1937 0.2530 0.2001 0.1925

400 5 0.1488 0.1583 0.1552 0.1534

10 0.1552 0.1683 0.1597 0.1561

25 0.1644 0.2282 0.1712 0.1610

70 100 5 0.2611 0.2615 0.2630 0.2734
10 0.2637 0.2660 0.2670 0.2716

25 0.2686 0.2804 0.2708 0.2689

200 5 0.1834 0.1858 0.1864 0.1939

10 0.1867 0.1876 0.1887 0.1939

25 0.1943 0.2050 0.1969 0.1908

300 5 0.1348 0.1344 0.1359 0.1386

10 0.1366 0.1359 0.1382 0.1384

25 0.1457 0.1532 0.1471 0.1387

400 5 0.0986 0.0981 0.1012 0.1043

10 0.1011 0.1001 0.1030 0.1037

25 0.1080 0.1187 0.1103 0.1047
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Table B.26 The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when
¥ =%, and &= 0.1 with mixed block sizes

n p P; P; TATB,TC BD DI SK

35 100 5 10 0.3084 0.3127 0.3138 0.3148
5 25 0.3106 0.3304 0.3165 0.3155

10 25 0.3150 0.3304 0.3175 0.3095

200 5 10 0.2295 0.2372 0.2376 0.2340

5 25 0.2373 0.2659 0.2420 0.2383

10 25 0.2456 0.2753 0.2483 0.2438

300 5 10 0.1854 0.1892 0.1908 0.1884

5 25 0.1891 0.2179 0.1900 0.1893

10 25 0.1927 0.2195 0.1958 0.1893

400 5 10 0.1527 0.1576 0.1569 0.1533

5 25 0.1551 0.1873 0.1596 0.1537

10 25 0.1539 0.1920 0.1594 0.1558

70 100 5 10 0.2631 0.2617 0.2653 0.2732
5 25 0.2648 0.2642 0.2667 0.2675

10 25 0.2661 0.2665 0.2702 0.2687

200 5 10 0.1831 0.1827 0.1869 0.1909

5 25 0.1830 0.1881 0.1874 0.1855

10 25 0.1900 0.1895 0.1911 0.1891

300 5 10 0.1326 0.1287 0.1363 0.1379

5 25 0.1380 0.1380 0.1406 0.1375

10 25 0.1377 0.1397 0.1398 0.1363

400 5 10 0.0960 0.0927 0.0987 0.0991

5 25 0.1037 0.1045 0.1069 0.1066

10 25 0.1027 0.1034 0.1039 0.1035
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Table B.27 The sensitivity (SE) of TA, TB, TC, BD, SK, and DI when £=%,, and

6 = 0.1 with equal block sizes

n p P TATB,TC BD D) SK
35 100 5 0.6894 0.6865 0.6856 0.6863
10 0.6854 0.6786 0.6803 0.6856
25 0.6786 0.6431 0.6758 0.6857
200 5 0.7691 0.7597 0.7648 0.7623
10 0.7677 0.7499 0.7642 0.7657
25 0.7592 0.6940 0.7498 0.7629
300 5 0.8233 0.8124 0.8165 0.8156
10 0.8208 0.8009 0.8126 0.8153
25 0.8043 0.7488 0.8007 0.8076
400 5 0.8549 0.8424 0.8464 0.8496
10 0.8481 0.8341 0.8422 0.8479
25 0.8385 0.7703 0.8317 0.8424
70 100 5 0.7416 0.7407 0.7407 0.7312
10 0.7401 0.7364 0.7377 0.7321
25 0.7343 0.7226 0.7329 0.7346
200 5 0.8162 0.8134 0.8123 0.8055
10 0.8124 0.8105 0.8101 0.8056
25 0.8050 0.7916 0.8026 0.8082
300 5 0.8633 0.8633 0.8612 0.8598
10 0.8620 0.8634 0.8596 0.8598
25 0.8520 0.8457 0.8512 0.8595
400 5 0.8990 0.8987 0.8954 0.8934
10 0.8965 0.8979 0.8936 0.8936
25 0.8886 0.8803 0.8869 0.8915
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Table B.28 The sensitivity (SE) of TA, TB, TC, BD, SK, and DI when £=%,, and

& = 0.1 with mixed block sizes

n p P; P; TATB,TC BD DI SK
35 100 5 10 0.6937 0.6891 0.6868 0.6902
5 25 0.6885 0.6735 0.6848 0.6848
10 25 0.6863 0.6764 0.6834 0.6933
200 5 10 0.7748 0.7685 0.7685 0.7719
5 25 0.7704 0.7401 0.7662 0.7673
10 25 0.7647 0.7279 0.7625 0.7650
300 5 10 0.8186 0.8169 0.8142 0.8150
5 25 0.8108 0.7811 0.8131 0.8126
10 25 0.8086 0.7847 0.8064 0.8142
400 5 10 0.8468 0.8407 0.8424 0.8456
5 25 0.8445 0.8181 0.8381 0.8465
10 25 0.8501 0.8070 0.8452 0.8483
70 100 5 10 0.7324 0.7352 0.7296 0.7225
5 25 0.7372 0.7393 0.7354 0.7357
10 25 0.7301 0.7310 0.7253 0.7291
200 5 10 0.8184 0.8161 0.8135 0.8092
5 25 0.8155 0.8102 0.8118 0.8123
10 25 0.8105 0.8103 0.8092 0.8109
300 5 10 0.8681 0.8699 0.8646 0.8641
5 25 0.8642 0.8639 0.8628 0.8668
10 25 0.8634 0.8610 0.8622 0.8639
400 5 10 0.9025 0.9059 0.8988 0.9001
5 25 0.8972 0.8965 0.8942 0.8947
10 25 0.8959 0.8955 0.8946 0.8966
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Table B.29 The specificity (SP) of TA, TB, TC, BD, SK, and DI when £=%, and

6 = 0.1 with equal block sizes

n p P TATB,TC BD Dl SK
35 100 5 0.6911 0.6840 0.6840 0.6829
10 0.6881 0.6764 0.6850 0.6835
25 0.6828 0.6499 0.6751 0.6856
200 5 0.7557 0.7492 0.7492 0.7524
10 0.7513 0.7388 0.7463 0.7510
25 0.7443 0.6952 0.7378 0.7501
300 5 0.8224 0.8132 0.8165 0.8193
10 0.8179 0.7995 0.8119 0.8152
25 0.8084 0.7453 0.7992 0.8074
400 5 0.8476 0.8410 0.8433 0.8436
10 0.8415 0.8294 0.8385 0.8400
25 0.8328 0.7733 0.8260 0.8356
70 100 5 0.7362 0.7363 0.7334 0.7220
10 0.7326 0.7317 0.7284 0.7247
25 0.7285 0.7166 0.7256 0.7277
200 5 0.8171 0.8150 0.8150 0.8067
10 0.8142 0.8144 0.8125 0.8066
25 0.8064 0.7985 0.8037 0.8102
300 5 0.8672 0.8680 0.8671 0.8631
10 0.8649 0.8649 0.8642 0.8634
25 0.8566 0.8480 0.8547 0.8631
400 5 0.9038 0.9051 0.9022 0.8980
10 0.9014 0.9020 0.9004 0.8990
25 0.8954 0.8824 0.8925 0.8992
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Table B.30 The specificity (SP) of TA, TB, TC, BD, SK, and DI when £=%, and

& = 0.1 with mixed block sizes

n p P; P; TATB,TC BD DI SK
35 100 5 10 0.6895 0.6856 0.6856 0.6802
5 25 0.6904 0.6657 0.6822 0.6842
10 25 0.6837 0.6629 0.6816 0.6878
200 5 10 0.7662 0.7571 0.7563 0.7602
5 25 0.7551 0.7282 0.7498 0.7562
10 25 0.7442 0.7215 0.7410 0.7474
300 5 10 0.8106 0.8048 0.8042 0.8083
5 25 0.8111 0.7832 0.8070 0.8088
10 25 0.8061 0.7764 0.8021 0.8072
400 5 10 0.8478 0.8441 0.8438 0.8479
5 25 0.8454 0.8074 0.8427 0.8462
10 25 0.8421 0.8090 0.8360 0.8402
70 100 5 10 0.7415 0.7414 0.7398 0.7312
5 25 0.7332 0.7323 0.7313 0.7294
10 25 0.7377 0.7360 0.7344 0.7335
200 5 10 0.8154 0.8187 0.8128 0.8091
5 25 0.8186 0.8137 0.8134 0.8168
10 25 0.8096 0.8107 0.8086 0.8110
300 5 10 0.8668 0.8727 0.8628 0.8602
5 25 0.8599 0.8601 0.8561 0.8582
10 25 0.8614 0.8596 0.8582 0.8637
400 5 10 0.9055 0.9089 0.9038 0.9017
5 25 0.8955 0.8945 0.8921 0.8923
10 25 0.8988 0.8978 0.8977 0.8966
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Table B.31 The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when

X =%, and €= 0.5 with equal block sizes

n p p; TATB,TC BD DI SK

35 100 5 0.3442 0.2470 0.3483 0.3093
10 0.3670 0.2413 0.3714 0.2943

25 0.3970 0.2803 0.3987 0.2667

200 5 0.2839 0.1605 0.2873 0.2600

10 0.3177 0.1574 0.3208 0.2593

25 0.3639 0.2095 0.3635 0.2422

300 5 0.2347 0.1013 0.2366 0.2176

10 0.2747 0.1027 0.2777 0.2309

25 0.3365 0.1514 0.3376 0.2251

400 5 0.2055 0.0755 0.2095 0.1938

10 0.2474 0.0743 0.2502 0.2115

25 0.3105 0.1200 0.3106 0.2186

70 100 5 0.2915 0.1910 0.2933 0.2359
10 0.3164 0.1804 0.3184 0.2116

25 0.3531 0.1937 0.3539 0.1866

200 5 0.2254 0.1128 0.2290 0.1850

10 0.2589 0.1042 0.2608 0.1647

25 0.3141 0.1108 0.3147 0.1317

300 5 0.1776 0.0644 0.1801 0.1452

10 0.2169 0.0568 0.2193 0.1345

25 0.2757 0.0664 0.2760 0.1092

400 5 0.1412 0.0378 0.1446 0.1188

10 0.1852 0.0325 0.1871 0.1151

25 0.2506 0.0403 0.2509 0.0957
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Table B.32 The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when
¥ =%, and &= 0.5 with mixed block sizes

n p P; P; TATB,TC BD DI SK
35 100 5 10 0.3527 0.2300 0.3553 0.2982
5 25 0.3772 0.2484 0.3782 0.2831
10 25 0.3784 0.2526 0.3801 0.2723
200 5 10 0.2976 0.1404 0.2985 0.2525
5 25 0.3280 0.1715 0.3289 0.2423
10 25 0.3434 0.1811 0.3467 0.2493
300 5 10 0.2634 0.0962 0.2652 0.2244
5 25 0.3003 0.1214 0.3008 0.2213
10 25 0.3044 0.1234 0.3082 0.2223
400 5 10 0.2325 0.0631 0.2354 0.2038
5 25 0.2714 0.0896 0.2731 0.2024
10 25 0.2809 0.0925 0.2815 0.2077
70 100 5 10 0.3060 0.1804 0.3075 0.2191
5 25 0.3236 0.1798 0.3251 0.2014
10 25 0.3329 0.1797 0.3352 0.1963
200 5 10 0.2438 0.0955 0.2469 0.1668
5 25 0.2726 0.0973 0.2737 0.1431
10 25 0.2859 0.0995 0.2879 0.1418
300 5 10 0.1968 0.0516 0.1991 0.1337
5 25 0.2373 0.0562 0.2398 0.1139
10 25 0.2487 0.0585 0.2495 0.1139
400 5 10 0.1594 0.0294 0.1621 0.1097
5 25 0.2100 0.0322 0.2131 0.1006
10 25 0.2156 0.0319 0.2160 0.0989
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Table B.33 The sensitivity (SE) of TA, TB, TC, BD, SK, and DI when £=%,, and

6 = 0.5 with equal block sizes

n p P TATB,TC BD Dl SK
35 100 5 0.6532 0.7521 0.6492 0.6918
10 0.6355 0.7574 0.6301 0.7060
25 0.6046 0.7173 0.6033 0.7337
200 5 0.7213 0.8454 0.7203 0.7439
10 0.6869 0.8499 0.6852 0.7468
25 0.6405 0.7907 0.6423 0.7625
300 5 0.7655 0.8959 0.7660 0.7841
10 0.7247 0.8941 0.7220 0.7713
25 0.6608 0.8474 0.6595 0.7764
400 5 0.7960 0.9263 0.7925 0.8100
10 0.7530 0.9266 0.7521 0.7934
25 0.6897 0.8810 0.6918 0.7812
70 100 5 0.7117 0.8108 0.7096 0.7694
10 0.6850 0.8220 0.6835 0.7924
25 0.6505 0.8079 0.6505 0.8163
200 5 0.7766 0.8849 0.7733 0.8159
10 0.7419 0.8935 0.7402 0.8346
25 0.6869 0.8872 0.6872 0.8673
300 5 0.8196 0.9357 0.8161 0.8519
10 0.7801 0.9437 0.7786 0.8638
25 0.7215 0.9352 0.7213 0.8898
400 5 0.8540 0.9612 0.8514 0.8773
10 0.8119 0.9657 0.8105 0.8824

25 0.7460 0.9580 0.7460 0.9015
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Table B.34 The sensitivity (SE) of TA, TB, TC, BD, SK, and DI when £=%,, and

& = 0.5 with mixed block sizes

n p P; P; TATB,TC BD DI SK
35 100 5 10 0.6494 0.7733 0.6466 0.7038
5 25 0.6234 0.7528 0.6225 0.7202
10 25 0.6212 0.7538 0.6171 0.7310
200 5 10 0.7115 0.8610 0.7104 0.7544
5 25 0.6765 0.8269 0.6771 0.7621
10 25 0.6600 0.8232 0.6582 0.7581
300 5 10 0.7400 0.9057 0.7370 0.7802
5 25 0.6981 0.8748 0.7004 0.7757
10 25 0.6945 0.8792 0.6882 0.7753
400 5 10 0.7630 0.9361 0.7637 0.7967
5 25 0.7306 0.9138 0.7298 0.7990
10 25 0.7236 0.9086 0.7222 0.7970
70 100 5 10 0.6939 0.8157 0.6917 0.7799
5 25 0.6772 0.8246 0.6758 0.8026
10 25 0.6670 0.8186 0.6656 0.8027
200 5 10 0.7572 0.9041 0.7541 0.8327
5 25 0.7291 0.9019 0.7277 0.8534
10 25 0.7163 0.9007 0.7136 0.8584
300 5 10 0.8051 0.9479 0.8026 0.8673
5 25 0.7650 0.9453 0.7631 0.8886
10 25 0.7525 0.9411 0.7508 0.8846
400 5 10 0.8377 0.9699 0.8339 0.8873
5 25 0.7892 0.9681 0.7853 0.8994
10 25 0.7842 0.9677 0.7842 0.9001
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Table B.35 The specificity (SP) of TA, TB, TC, BD, SK, and DI when £=%, and

6 = 0.5 with equal block sizes

n p P TATB,TC BD D) SK
35 100 5 0.6584 0.7539 0.6543 0.6896
10 0.6306 0.7600 0.6271 0.7054
25 0.6015 0.7221 0.5994 0.7330
200 5 0.7109 0.8337 0.7052 0.7361
10 0.6777 0.8354 0.6732 0.7347
25 0.6317 0.7904 0.6308 0.7531
300 5 0.7651 0.9015 0.7609 0.7808
10 0.7260 0.9006 0.7227 0.7670
25 0.6662 0.8499 0.6654 0.7734
400 5 0.7931 0.9227 0.7885 0.8025
10 0.7523 0.9248 0.7475 0.7836
25 0.6894 0.8790 0.6870 0.7816
70 100 5 0.7054 0.8072 0.7038 0.7588
10 0.6823 0.8174 0.6798 0.7845
25 0.6433 0.8048 0.6417 0.8107
200 5 0.7727 0.8897 0.7687 0.8142
10 0.7404 0.8983 0.7383 0.8361
25 0.6850 0.8913 0.6835 0.8694
300 5 0.8253 0.9356 0.8238 0.8577
10 0.7861 0.9428 0.7828 0.8673
25 0.7271 0.9321 0.7268 0.8918
400 5 0.8637 0.9632 0.8594 0.8853
10 0.8177 0.9694 0.8153 0.8875
25 0.7530 0.9616 0.7523 0.9071
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Table B.36 The specificity (SP) of TA, TB, TC, BD, SK, and DI when £=%, and

& = 0.5 with mixed block sizes

n p P; P; TATB,TC BD DI SK

35 100 5 10 0.6452 0.7668 0.6429 0.6999
5 25 0.6222 0.7504 0.6211 0.7137

10 25 0.6221 0.7411 0.6228 0.7245

200 5 10 0.6934 0.8582 0.6927 0.7407

5 25 0.6676 0.8301 0.6652 0.7533

10 25 0.6533 0.8146 0.6484 0.7433

300 5 10 0.7333 0.9019 0.7326 0.7711

5 25 0.7013 0.8824 0.6980 0.7817

10 25 0.6967 0.8741 0.6954 0.7802

400 5 10 0.7720 0.9377 0.7656 0.7958

5 25 0.7267 0.9071 0.7240 0.7962

10 25 0.7146 0.9064 0.7149 0.7877

70 100 5 10 0.6942 0.8237 0.6933 0.7820
5 25 0.6756 0.8159 0.6740 0.7946

10 25 0.6672 0.8221 0.6642 0.8048

200 5 10 0.7552 0.9049 0.7521 0.8337

5 25 0.7258 0.9036 0.7251 0.8604

10 25 0.7120 0.9004 0.7107 0.8580

300 5 10 0.8014 0.9489 0.7994 0.8654

5 25 0.7606 0.9424 0.7574 0.8838

10 25 0.7502 0.9420 0.7503 0.8878

400 5 10 0.8435 0.9714 0.8421 0.8933

5 25 0.7909 0.9675 0.7887 0.8995

10 25 0.7847 0.9685 0.7838 0.9022
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Table B.37 The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when

X =%, and €= 0.9 with equal block sizes

n P p; TATB,TC BD DI SK
35 100 5 0.3833 0.0441 0.3879 0.2835
10 0.4065 0.0303 0.4109 0.2276
25 0.4334 0.0542 0.4339 0.1441
200 5 0.3407 0.0063 0.3422 0.2790
10 0.3762 0.0047 0.3807 0.2573
25 0.4155 0.0122 0.4151 0.1790
300 5 0.2992 0.0009 0.3003 0.2558
10 0.3460 0.0005 0.3510 0.2585
25 0.4022 0.0025 0.4025 0.2034
400 5 0.2768 0.0003 0.2789 0.2413
10 0.3235 0.0002 0.3263 0.2535
25 0.3801 0.0008 0.3805 0.2215
70 100 5 0.3351 0.0291 0.3377 0.1365
10 0.3682 0.0189 0.3682 0.0774
25 0.4057 0.0217 0.4054 0.0363
200 5 0.2818 0.0038 0.2854 0.1490
10 0.3270 0.0020 0.3283 0.0921
25 0.3783 0.0021 0.3792 0.0323
300 5 0.2411 0.0003 0.2450 0.1411
10 0.2959 0.0002 0.2971 0.0955
25 0.3573 0.0002 0.3591 0.0364
400 5 0.2061 0.0001 0.2079 0.1301
10 0.2699 0.0000 0.2718 0.1033
25 0.3383 0.0000 0.3404 0.0440
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Table B.38 The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when
¥ =%, and &= 0.9 with mixed block sizes

n p p; P; TATB,TC BD DI SK
35 100 5 10 0.3932 0.0280 0.3988 0.2453
5 25 0.4132 0.0474 0.4164 0.2117
10 25 0.4187 0.0458 0.4213 0.1749
200 5 10 0.3570 0.0031 0.3601 0.2598
5 25 0.3861 0.0093 0.3911 0.2273
10 25 0.3985 0.0088 0.4024 0.2156
300 5 10 0.3366 0.0004 0.3404 0.2609
5 25 0.3732 0.0019 0.3717 0.2364
10 25 0.3723 0.0019 0.3760 0.2293
400 5 10 0.3047 0.0001 0.3100 0.2468
5 25 0.3484 0.0006 0.3515 0.2299
10 25 0.3589 0.0003 0.3591 0.2348
70 100 5 10 0.3561 0.0161 0.3579 0.0943
5 25 0.3750 0.0177 0.3734 0.0706
10 25 0.3847 0.0188 0.3871 0.0517
200 5 10 0.3108 0.0019 0.3118 0.1054
5 25 0.3426 0.0015 0.3425 0.0659
10 25 0.3549 0.0012 0.3570 0.0488
300 5 10 0.2724 0.0001 0.2738 0.1114
5 25 0.3185 0.0002 0.3205 0.0713
10 25 0.3302 0.0001 0.3308 0.0561
400 5 10 0.2385 0.0000 0.2426 0.1078
5 25 0.2972 0.0000 0.2989 0.0764
10 25 0.3040 0.0000 0.3063 0.0643
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Table B.39 The sensitivity (SE) of TA, TB, TC, BD, SK, and DI when £=%,, and

6 = 0.9 with equal block sizes

n p P TATB,TC BD D) SK
35 100 5 0.6113 0.9551 0.6086 0.7169
10 0.5971 0.9673 0.5925 0.7731
25 0.5653 0.9432 0.5654 0.8562
200 5 0.6644 0.9935 0.6631 0.7253
10 0.6308 0.9960 0.6239 0.7446
25 0.5877 0.9891 0.5889 0.8199
300 5 0.7026 0.9988 0.7022 0.7501
10 0.6527 0.9994 0.6474 0.7424
25 0.5960 0.9974 0.5965 0.7970
400 5 0.7279 0.9998 0.7257 0.7614
10 0.6768 0.9999 0.6750 0.7476
25 0.6181 0.9992 0.6169 0.7767
70 100 5 0.6700 0.9709 0.6669 0.8660
10 0.6338 0.9803 0.6344 0.9242
25 0.5965 0.9782 0.5986 0.9635
200 5 0.7183 0.9970 0.7151 0.8530
10 0.6737 0.9984 0.6731 0.9083
25 0.6209 0.9982 0.6210 0.9669
300 5 0.7568 0.9997 0.7532 0.8576
10 0.7011 0.9999 0.7017 0.9045
25 0.6423 0.9999 0.6409 0.9632
400 5 0.7895 0.9999 0.7874 0.8660
10 0.7262 1.0000 0.7247 0.8967
25 0.6615 1.0000 0.6590 0.9542
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Table B.40 The sensitivity (SE) of TA, TB, TC, BD, SK, and DI when £=%,, and

& = 0.9 with mixed block sizes

n p P; P; TATB,TC BD DI SK

35 100 5 10 0.6107 0.9730 0.6067 0.7568
5 25 0.5885 0.9525 0.5835 0.7888

10 25 0.5806 0.9547 0.5776 0.8303

200 5 10 0.6506 0.9965 0.6467 0.7430

5 25 0.6163 0.9901 0.6120 0.7732

10 25 0.6039 0.9922 0.6014 0.7894

300 5 10 0.6652 0.9994 0.6629 0.7394

5 25 0.6284 0.9980 0.6284 0.7616

10 25 0.6239 0.9981 0.6200 0.7664

400 5 10 0.6952 0.9998 0.6911 0.7528

5 25 0.6528 0.9996 0.6503 0.7724

10 25 0.6393 0.9999 0.6370 0.7690

70 100 5 10 0.6437 0.9830 0.6432 0.9046
5 25 0.6251 0.9823 0.6270 0.9334

10 25 0.6157 0.9799 0.6135 0.9497

200 5 10 0.6895 0.9980 0.6894 0.8944

5 25 0.6605 0.9985 0.6623 0.9323

10 25 0.6454 0.9990 0.6431 0.9537

300 5 10 0.7279 0.9999 0.7261 0.8881

5 25 0.6828 1.0000 0.6810 0.9300

10 25 0.6683 1.0000 0.6676 0.9426

400 5 10 0.7593 1.0000 0.7541 0.8905

5 25 0.6985 1.0000 0.6970 0.9222

10 25 0.6933 1.0000 0.6903 0.9363




138

Table B.41 The specificity (SP) of TA, TB, TC, BD, SK, and DI when £=%, and

6 = 0.9 with equal block sizes

n p P TATB,TC BD Dl SK
35 100 5 0.6221 0.9568 0.6156 0.7162
10 0.5899 0.9721 0.5858 0.7718
25 0.5680 0.9484 0.5669 0.8556
200 5 0.6543 0.9939 0.6525 0.7168
10 0.6168 0.9946 0.6148 0.7409
25 0.5813 0.9865 0.5810 0.8221
300 5 0.6990 0.9995 0.6973 0.7384
10 0.6553 0.9996 0.6506 0.7406
25 0.5996 0.9976 0.5986 0.7963
400 5 0.7186 0.9997 0.7165 0.7560
10 0.6762 0.9997 0.6724 0.7455
25 0.6218 0.9992 0.6222 0.7804
70 100 5 0.6600 0.9710 0.6578 0.8610
10 0.6299 0.9820 0.6293 0.9211
25 0.5921 0.9786 0.5906 0.9640
200 5 0.7183 0.9955 0.7143 0.8491
10 0.6725 0.9978 0.6704 0.9076
25 0.6225 0.9976 0.6207 0.9686
300 5 0.7611 0.9997 0.7568 0.8603
10 0.7072 0.9999 0.7041 0.9045
25 0.6432 0.9999 0.6410 0.9641
400 5 0.7984 1.0000 0.7969 0.8739
10 0.7340 1.0000 0.7319 0.8967

25 0.6619 1.0000 0.6602 0.9578
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Table B.42 The specificity (SP) of TA, TB, TC, BD, SK, and DI when £=%, and

& = 0.9 with mixed block sizes

n p P; P; TATB,TC BD DI SK

35 100 5 10 0.6030 0.9711 0.5957 0.7526
5 25 0.5852 0.9528 0.5838 0.7879

10 25 0.5820 0.9537 0.5798 0.8199

200 5 10 0.6354 0.9974 0.6332 0.7375

5 25 0.6115 0.9914 0.6059 0.7723

10 25 0.5991 0.9902 0.5939 0.7794

300 5 10 0.6617 0.9998 0.6564 0.7389

5 25 0.6252 0.9982 0.6283 0.7657

10 25 0.6316 0.9981 0.6280 0.7751

400 5 10 0.6955 1.0000 0.6890 0.7536

5 25 0.6504 0.9993 0.6467 0.7678

10 25 0.6429 0.9995 0.6449 0.7614

70 100 5 10 0.6442 0.9850 0.6410 0.9070
5 25 0.6249 0.9824 0.6262 0.9254

10 25 0.6150 0.9826 0.6124 0.9470

200 5 10 0.6891 0.9983 0.6870 0.8948

5 25 0.6543 0.9986 0.6528 0.9359

10 25 0.6449 0.9986 0.6429 0.9488

300 5 10 0.7273 0.9999 0.7265 0.8893

5 25 0.6803 0.9996 0.6780 0.9275

10 25 0.6713 0.9999 0.6709 0.9452

400 5 10 0.7638 1.0000 0.7608 0.8939

5 25 0.7071 1.0000 0.7054 0.9250

10 25 0.6988 1.0000 0.6971 0.9351
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Table B.43 The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when

X=X, and &=0.9 with equal block sizes

n p p; TATB,TC BD DI SK
35 100 5 0.3780 0.0584 0.3795 0.2920
10 0.3941 0.0510 0.3973 0.2689
25 0.4065 0.0840 0.4085 0.2590
200 5 0.3283 0.0113 0.3287 0.2758
10 0.3552 0.0105 0.3554 0.2678
25 0.3699 0.0216 0.3725 0.2554
300 5 0.2866 0.0019 0.2886 0.2495
10 0.3179 0.0015 0.3215 0.2537
25 0.3450 0.0059 0.3468 0.2515
400 5 0.2641 0.0007 0.2664 0.2326
10 0.2935 0.0005 0.2967 0.2407
25 0.3193 0.0019 0.3196 0.2405
70 100 5 0.3267 0.0407 0.3283 0.1619
10 0.3466 0.0330 0.3463 0.1371
25 0.3641 0.0407 0.3635 0.1285
200 5 0.2705 0.0065 0.2749 0.1592
10 0.2985 0.0049 0.3008 0.1326
25 0.3211 0.0063 0.3231 0.1138
300 5 0.2283 0.0009 0.2319 0.1431
10 0.2628 0.0003 0.2647 0.1243
25 0.2879 0.0006 0.2884 0.1082
400 5 0.1943 0.0002 0.1967 0.1294
10 0.2328 0.0001 0.2354 0.1168
25 0.2601 0.0001 0.2616 0.1026
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Table B.44 The misclassification rate (M) of TA, TB, TC, BD, SK, and DI when
¥ =%, and &=0.9 with mixed block sizes

n p p; P; TATB,TC BD DI SK

35 100 5 10 0.3842 0.1204 0.3883 0.2992
5 25 0.3969 0.1567 0.3986 0.2981

10 25 0.3922 0.1565 0.3929 0.2863

200 5 10 0.3398 0.0426 0.3432 0.2807

5 25 0.3530 0.0733 0.3544 0.2773

10 25 0.3647 0.0781 0.3636 0.2770

300 5 10 0.3176 0.0190 0.3199 0.2686

5 25 0.3254 0.0362 0.3273 0.2632

10 25 0.3318 0.0346 0.3355 0.2653

400 5 10 0.2848 0.0075 0.2893 0.2466

5 25 0.2989 0.0191 0.3015 0.2449

10 25 0.3066 0.0187 0.3104 0.2496

70 100 5 10 0.3444 0.0875 0.3452 0.1814
5 25 0.3496 0.1001 0.3493 0.1816

10 25 0.3575 0.0986 0.3594 0.1724

200 5 10 0.2921 0.0251 0.2929 0.1647

5 25 0.3011 0.0305 0.3028 0.1567

10 25 0.3178 0.0296 0.3181 0.1502

300 5 10 0.2528 0.0080 0.2523 0.1504

5 25 0.2644 0.0094 0.2661 0.1372

10 25 0.2789 0.0095 0.2799 0.1364

400 5 10 0.2177 0.0027 0.2198 0.1358

5 25 0.2375 0.0031 0.2397 0.1314

10 25 0.2449 0.0025 0.2476 0.1245
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Table B.45 The sensitivity (SE) of TA, TB, TC, BD, SK, and DI when £=%, and

6 = 0.9 with equal block sizes

n p P; TATB,TC BD DI SK
35 100 5 0.6190 0.9401 0.6155 0.7045
10 0.6067 0.9477 0.6060 0.7313
25 0.5923 0.9142 0.5905 0.7398
200 5 0.6767 0.9890 0.6776 0.7290
10 0.6498 0.9895 0.6480 0.7371
25 0.6365 0.9782 0.6341 0.7510
300 5 0.7156 0.9975 0.7139 0.7563
10 0.6830 0.9981 0.6780 0.7481
25 0.6553 0.9940 0.6512 0.7502
400 5 0.7394 0.9995 0.7381 0.7701
10 0.7063 0.9997 0.7046 0.7606
25 0.6804 0.9981 0.6777 0.7596
70 100 5 0.6784 0.9587 0.6774 0.8437
10 0.6558 0.9668 0.6573 0.8669
25 0.6387 0.9584 0.6393 0.8737
200 5 0.7307 0.9943 0.7263 0.8420
10 0.7013 0.9955 0.7003 0.8687
25 0.6804 0.9936 0.6782 0.8856
300 5 0.7698 0.9992 0.7652 0.8548
10 0.7349 0.9997 0.7344 0.8752
25 0.7112 0.9995 0.7109 0.8919
400 5 0.8019 0.9998 0.7991 0.8677
10 0.7644 1.0000 0.7627 0.8823

25 0.7376 0.9999 0.7367 0.8954
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Table B.46 The sensitivity (SE) of TA, TB, TC, BD, SK, and DI when £=%, and

& = 0.9 with mixed block sizes

n p P; P; TATB,TC BD DI SK

35 100 5 10 0.6186 0.8807 0.6132 0.7018
5 25 0.5988 0.8428 0.5974 0.6993

10 25 0.6085 0.8486 0.6072 0.7155

200 5 10 0.6702 0.9568 0.6646 0.7248

5 25 0.6520 0.9243 0.6523 0.7277

10 25 0.6372 0.9228 0.6373 0.7265

300 5 10 0.6844 0.9793 0.6829 0.7342

5 25 0.6724 0.9635 0.6704 0.7355

10 25 0.6655 0.9659 0.6610 0.7309

400 5 10 0.7150 0.9921 0.7109 0.7554

5 25 0.7028 0.9818 0.7011 0.7565

10 25 0.6930 0.9812 0.6897 0.7491

70 100 5 10 0.6551 0.9101 0.6550 0.8165
5 25 0.6527 0.9014 0.6534 0.8189

10 25 0.6426 0.9001 0.6413 0.8282

200 5 10 0.7091 0.9745 0.7075 0.8351

5 25 0.6997 0.9693 0.6982 0.8416

10 25 0.6833 0.9695 0.6836 0.8497

300 5 10 0.7469 0.9922 0.7473 0.8507

5 25 0.7376 0.9918 0.7363 0.8646

10 25 0.7212 0.9902 0.7201 0.8624

400 5 10 0.7803 0.9971 0.7777 0.8623

5 25 0.7606 0.9970 0.7578 0.8684

10 25 0.7530 0.9978 0.7498 0.8717
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Table B.47 The specificity (SP) of TA, TB, TC, BD, SK, and DI when £=%,, and

6 = 0.9 with equal block sizes

n p P TATB,TC BD Dl SK
35 100 5 0.6251 0.9432 0.6255 0.7116
10 0.6051 0.9504 0.5995 0.7309
25 0.5947 0.9178 0.5925 0.7422
200 5 0.6668 0.9885 0.6650 0.7194
10 0.6399 0.9896 0.6413 0.7273
25 0.6238 0.9787 0.6209 0.7383
300 5 0.7112 0.9988 0.7090 0.7448
10 0.6813 0.9989 0.6790 0.7445
25 0.6548 0.9942 0.6553 0.7468
400 5 0.7324 0.9992 0.7291 0.7648
10 0.7068 0.9994 0.7021 0.7581
25 0.6810 0.9981 0.6832 0.7595
70 100 5 0.6682 0.9600 0.6660 0.8325
10 0.6510 0.9673 0.6501 0.8590
25 0.6331 0.9603 0.6337 0.8693
200 5 0.7285 0.9927 0.7241 0.8396
10 0.7019 0.9948 0.6982 0.8662
25 0.6775 0.9938 0.6757 0.8868
300 5 0.7737 0.9990 0.7710 0.8591
10 0.7396 0.9997 0.7363 0.8762
25 0.7131 0.9994 0.7124 0.8917
400 5 0.8095 0.9998 0.8075 0.8737
10 0.7701 1.0000 0.7666 0.8843

25 0.7424 1.0000 0.7402 0.8995
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Table B.48 The specificity (SP) of TA, TB, TC, BD, SK, and DI when £=%,, and

& = 0.9 with mixed block sizes

n p P; P; TATB,TC BD DI SK
35 100 5 10 0.6130 0.8785 0.6103 0.6999
5 25 0.6074 0.8438 0.6055 0.7046
10 25 0.6071 0.8385 0.6071 0.7120
200 5 10 0.6502 0.9580 0.6490 0.7138
5 25 0.6420 0.9292 0.6389 0.7177
10 25 0.6334 0.9211 0.6356 0.7196
300 5 10 0.6805 0.9828 0.6773 0.7287
5 25 0.6769 0.9641 0.6750 0.7381
10 25 0.6710 0.9649 0.6681 0.7386
400 5 10 0.7155 0.9929 0.7106 0.7514
5 25 0.6994 0.9801 0.6960 0.7537
10 25 0.6938 0.9814 0.6896 0.7517
70 100 5 10 0.6562 0.9150 0.6546 0.8208
5 25 0.6483 0.8985 0.6481 0.8179
10 25 0.6424 0.9029 0.6401 0.8270
200 5 10 0.7068 0.9755 0.7067 0.8355
5 25 0.6981 0.9699 0.6962 0.8451
10 25 0.6811 0.9715 0.6802 0.8500
300 5 10 0.7475 0.9919 0.7481 0.8486
5 25 0.7337 0.9895 0.7315 0.8611
10 25 0.7211 0.9909 0.7202 0.8650
400 5 10 0.7845 0.9976 0.7828 0.8662
5 25 0.7644 0.9968 0.7628 0.8689
10 25 0.7573 0.9973 0.7550 0.8794
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