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In this dissertation, a method of feature selection in machine learning, and 

more particularly supervised learning is presented. Supervised learning is a machine 

learning task that infers answers from a training data set. In machine learning, training 

datasets are employed in order to create a model which enables reasonable 

predictions, while in supervised learning, each training example is a training set 

consisting of instances and labels, and the learning objective is to be able to predict 

the label of a new unseen instance with as few errors as possible. In recent years, 

many proposed learning algorithms that perform fairly well have been proposed. The 

factors to accomplish successful model building depend on many aspects such as 

noise and size of data. Most often for learning algorithms, it is assumed that training 

data is represented by a vector of numerical data for which each measurement is a 

feature, and an important question related to machine learning is how to represent 

instances using vectors of these to yield high learning performance.  

Nowadays, data volumes are tremendously large in terms of aspects such as 

the number of features and most machine learning and data mining techniques may 

not be productive for high dimensional data, query accuracy and efficiency lessen 

swiftly as the dimension increases, the so-called curse of dimensionality. One of the 

requirements of good representation is conciseness since representation that uses too 

many features incurs major computational difficulties and may lead to poor prediction 

performance. Attribute selection is one of the significant methods in which the 
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objective is to choose a small subset to predict the target sufficiently well. Feature 

selection selects the most importance features, eliminates irrelevant and redundant 

features from the entire set of attributes, reduces the computational complexity of any 

learning and prediction algorithm used in the process, and reduces cost by excluding 

unselected features.  

A floating search is commonly used for the searching process. They are 

heuristic search methods which dynamically change the number of attributes included 

or eliminated at each step; they have produced very good results. The principal 

improvement of this thesis is focused on filter-based feature selection using genetic 

algorithm technique. Filters are normally less computationally intensive than wrapper 

method because wrappers apply a predictive model to score feature subsets. This 

approach is selected to be fast to reckon, whereas rooted to spot apprehending the 

goodness of the feature subsets. GA method can help to gain more diversity of 

population and provides us a way of reducing search space. Moreover, the 

contributions related to improves the contemporary sequential forward floating 

selection algorithm. In this thesis, an improving feature step using genetic algorithm is 

proposed as an additional step in a floating search. The objective is to eliminate weak 

features and replace a predominant one at each sequential step. From the research 

observations, the proposed method was discovered to be beneficial in selecting 

features that can boost the accuracy of data classification. Moreover, the experimental 

outcomes show that the proposed method with the genetic algorithm enhanced 

classification correctness and cut down data dimensionality for supervised learning 

problems. 
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CHAPTER 1 

 

INTRODUCTION 

With the rapid growth rate of data collection becomes larger in both dimension 

(Number of Features) and volume. Right now, there is obtainability of data hundreds 

of features leading to data with very high element. A lot of data collection is lack of 

important information such as irrelevant, noise, ambiguity and redundant to the target 

concept. These can lead to misinterpret to machine learning results, especially when 

there are more unrelated attributes than relevant features. It may lead to insufficient 

and inaccurate performance of data mining model. There are many advantages of 

attribute selection methods such as decreasing calculation time, enhancing prediction 

effectiveness, and a superior interpreting of the data in machine learning and pattern 

recognition applications. In this dissertation, we concentrate on the filtering feature 

selection of attributes to boost classification accuracy the learning process, enhance 

the model generalization capability, and reduce the problem of the curse of 

dimensionality. 

 

1.1  Classification 

 

Classification is arguably the most important task in data mining and offers the 

capability to process with huge volume of data.  It can be employed to forecast group 

of class label based and categorizes data found on training data set and class labels. 

The algorithm attempt to reveal relationships of attributes which have possibility to 

forecast the outcome. The classification problem is the problem that for many real-

world objects and systems. To determine if an object is a member of a set or not, or 

which of several sets) is a hard problem. For example, try to discover a definition of 
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chair. An object that meets the condition of chair, this mean it is a chair but fails to 

meet the definition that is not chair. 

Classification has two step processes. The first step is to employ classification 

algorithm on training data set and second step is tested against a predefined test 

dataset to appraise the model. Therefore, classification model is the method to define 

or categorize class label from dataset whose class label are conceal. A number of 

methods are commonly used for data classification containing decision trees; rule-

based, probabilistic and instance-based methods; support vector machines and neural 

networks. There are two main obstacles to data mining: Noisy and irrelevant problem. 

Most notably, it adversely affects system effectiveness in terms of classification 

accuracy, execution time, size of feature subsets, and understandability of the model 

obtained (Wu and Zhu, 2008; Sáez, Galar, Luengo and Herrera, 2013) because these 

issues are likely to present new characteristics in the problem area. For instance, noise 

often leads to small example clusters in a specific class in domain areas belonging to 

another class or can cause data in examples located in key areas within a specific class 

to be missed (Sáez et al., 2013). 

The principle purpose of attribute method is to choose subsets of highly 

appropriate dimensions by eliminating irrelevant and excessive features. It is critical 

first step in classification, especially when applied to a large data set. Variable 

selection can significantly improve the computation time of a machine learning 

algorithm as well as enhance the model performance. 

Selecting features relevant to the problem is a critical first step in 

classification, especially when applied to a large dataset. The aim is to select a 

representative subset of highly relevant dimensions while removing irrelevant and 

redundant one (Dash and Liu, 1997). Attribute selection can considerably boost the 

running time of a machine learning algorithm as well as improve the quality of the 

model. 

Consequently, Bins and Draper (2001) proposed a method to decrease a 

original size of attributes, from 1,000 to a much smaller subset, without removing any 

highly important features or decreasing classification accuracy. There are three steps 

in the algorithm: first, irrelevant features are removed using a modified form of the 

Relief algorithm (Kira and Rendell, 1992); second, redundant features are eliminated 
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using K-means clustering (MacQueen, 1967), and lastly a combinatorial feature 

selection algorithm is employed to the current feature subsets using the Sequential 

Floating Backward Selection (SFBS) algorithm. The basic concept is to filter feature 

subsets on each step until only the smallest one is obtained. 

A floating search method dynamically expands and diminishes the number of 

features until the desired target is accomplished. Instead of fixing the number of 

forward/backward steps, we can allow values to float so that they can be flexibly 

adjusted without the requirement of setting parameters, which is different from Plus-l-

Minus-r method. Nonetheless, a floating search has the tendency to become struck at 

a local optimum solution since there is almost no chance to improve the solution’s 

quality (Somol, Novovičová and Pudil, 2006). For this reason, we present a more 

complicated version of the floating search algorithm with the aim of removing some 

of its potential drawbacks and to aid finding a solution closer to the optimal one. 

 

1.2  Feature Selection 

 

With the emergence of extremely large-scale data and the consequential 

necessity for favorable machine learning method, new problems continually surface 

requiring ever evolving approaches to feature selection. Therefore, the time and 

spaces required for processing the data increase. To ameliorate the problem of the 

dimensionality, techniques to reduce them are constantly sought, which has become 

increasingly important to the fields of machine learning and data mining research. 

Practically, attribute selection is a commonly applied method to deduce 

dimensionality, the aim being to select a small subset of pertinent features from the 

original ones by applying certain evaluation criteria. This often accomplishes 

improved classification accuracy, better learning performance and model 

interpretability, and lower computational cost. Attribute selection or dimensionality 

reduction plays a crucial rule to solve these problems. The principal drawback of 

feature selection is the possibility of information loss. Useful information can be 

discarded if dimensionality reduction is done poorly. We can state that variable 

selection is an algorithm to choose the most significant variables and discard the least 
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significant variables to reduce evaluation time and sometimes improve effectiveness 

while minimizing the information loss.  

The three main variable selection procedures are filter, wrapper, and hybrid .

Wrapper methods rely on a classification algorithm employed as the subset evaluation 

process of feature subsets (Guyon and Elisseeff, 2003). Filter approaches use an 

independent criterion to evaluate the data using general characteristics and then 

selects feature subsets without applying a classification algorithm. Common 

evaluation functions usually are measures such as distance, mutual information (MI), 

dependency or entropy, calculated directly from the training data. A filter-based 

technique in a cascade fashion with a genetic algorithm (GA) has been developed 

using a correlation-based criterion (Karegowda, Jayaram and Manjunath, 2011). 

Typically, Feature selection process in general is shown in Figure 1.1 with two 

important components: subset generation and subset evaluation. In the initial step, a 

candidate feature subset is selected depend on the search strategy of interest. In the 

second step, the subset is calculated according to predetermined evaluation criteria; 

the one that fits best is chosen from all of the candidates after the terminating criterion 

has been found. In the last step, the chosen subset is confirmed using either domain 

information or a validation set. 

 

 

 

 

Figure 1.1  A Generalized Feature Selection Procedure 

 

Search approach can be subsequent search, random search or complete search. 

Sequential search strategy will increase or discard one attribute at a time until 

terminating condition is found. This is a hill climbing strategy to generate selected 

subset. Random search strategy randomly selects feature subset and then perform 
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sequential search. Another way of this strategy is to totally select feature subset 

randomly to evaluate. 

Examples of sequential searching are sequential forward selection (SFS) and 

sequential backward selection (SBS), and their generalized versions GSFS and GSBS, 

which belong to the group of greedy algorithms, are most broadly utilized because of 

their general easiness and short running time.  

The SFS method operates in a forward search manner starting with a blank set, 

then adds one attribute subset during each round until a new feature subset that 

maximizes the criterion function value is found, whereas the SBS method initiates 

with an original attribute subset and eliminates an attribute on each iteration until a 

predetermined criterion is satisfied. A drawback of both methods is that they have a 

nesting effect problem, which means that the features discarded are not eligible for 

reselection and the removal of selected features later on is not permitted.  

 

1.3  Thesis Structure 

 

In this thesis, data mining techniques to address the research objectives stated 

previously are presented. In Chapter 2, a literature review on mining data consisting 

of a number of stages is addressed: 1) supervised and unsupervised learning, 2) 

feature selection, 3) search methodology, 4) cross validation, 5) genetic algorithms, 6) 

niching methodology, 7) discretization, 8) measurements, and 9) classifiers. In 

Chapter 3, a new methodology for selection of features hinged on the use of mutual 

information is developed. In this chapter, the principles for floating searches and 

genetic algorithms are discussed. This chapter also covers feature selection 

approaches and the discretization process, and the results of data mining using three 

classifiers are shown and discussed in terms of how discretization, genetic algorithms, 

and feature selection affect classification. In Chapter 4, a new methodology for the 

selection of attributes rest on the use of niching technique is developed and a 

discussion of the results on the benefits of this new method is presented. Chapter 5 

concludes the thesis with a summary of the main beneficial of the study and some 

advice for future work are provided. 
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CHAPTER 2 

 

LITERATURE REVIEW 

2.1  Introduction 

 

Classification is the function whereby the correct class label for a given input 

is selected. In fundamental classification tasks, a set of labels is provided in advance 

and each input is considered independently from all of the others, after which a label 

is assigned to it. Some examples are 

1) Classifying whether an email is spam or not.  

2) Classifying the subject of a news article (e.g. sport, politics, etc.).  

3) Classifying the meaning of each occurrence of a particular word 

(e.g. bank can refer to a financial institution, the act of depositing something in a 

financial institution, the act of tilting to the side, or a river bank). 

The main task in feature selection classification is to discover the optimal 

feature subset from the initial attribute set that ameliorates the efficiency in generating 

the classification model, and thus enhances classification performance. The large 

number of high-dimensional data that occurs and is publically available on the online 

system has vastly boosted in the past recent years. Thus, machine learning approaches 

have obstacles in dealing with the huge amount of input attributes, which is posing an 

interesting challenge for scholars. In order to apply machine learning approaches 

completely, preprocessing of the data is indispensable.  

Feature selection, also known as variable selection, attribute selection, or 

variable subset selection in machine learning and statistics (Kumar and Minz, 2014), 

is one of the most prevalent and significant techniques in data preprocessing, and has 

develop into a necessary fundamental of the machine learning process. It is the 

procedure of discovering useful features and discarding impertinent, inessential, or 
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noisy data. This process deceases cost-timing of data mining algorithms, obtains a 

considerable improvement of classification accuracy, and enhances understandability. 

Unrelated features are features that cannot distinguish samples into classes or clusters 

as they are not significant with respect to the class concept. Redundant features 

demonstrate features that co-present with other features. This obstacle may lead to 

poor performance in many situations. In recent times, in-depth research into feature 

selection methods has been accomplished by scholars from a number of 

multidisciplinary fields including pattern recognition, data mining, machine learning, 

and statistics. In terms of the interaction between feature selection and the respective 

classification model, many of these have been categorized as filter, wrapper, or hybrid 

methods.  

 

2.2  Supervised and Unsupervised Learning 

 

2.2.1  Supervised Learning 

Supervised learning is frequently yield to solve classification problems 

because the objective is often to analyze data in order to determine a target variable of 

future data. Therefore, if you are training your machine learning task for every input 

with corresponding target, it is named supervised learning, which will be able to 

contribute target for any new input after adequate data training. It is named 

“supervised” on account of in the training task of the learning procedure the algorithm 

has connect to the basic fact by using certain inputs and output prediction. If the 

output target can be a class label, it is called classification problem. Otherwise, if the 

output target is continuous or real number, it is called regression problem. 

A training dataset consisting of example data is initially used to fit the 

classification model. In supervised learning, each example comprises an input record 

and its accompanying decision output value. A supervised learning algorithm 

examines and determines the training data and constructs a training algorithm, which 

is an inferred function used to assess new outputs. On most occasions, the basic 

scenario enables the algorithm to analyze and then accurately resolve the class labels 

for invisible instances. This step enables the learning algorithm to assess unseen 

situations in a suitable way by generalizing based on the training data. 

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Training_set
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Table 2.1  Example of Training Data 

 

 Inputs Output 

Gender Married Job Age Salary Trust 

Customer1 Male No Teacher 45 300,000 Good 

Customer2 Female Yes Lawyer 23 200,000 Bad 

Customer3 Male Yes Doctor 40 350,000 Good 

Customer4 Female No Programmer 30 140,000 Bad 

    … … … … … … … 

Customer n Male No Doctor 30 180,000 ???? 

 

2.2.2  Unsupervised Learning 

Unsupervised learning is the task in classification that you don’t have any kind 

of target outputs to discover. It is related solely with features themselves but we do 

not have an associated response. The purpose is to explore patterns in the data or try 

to divide the data into groups or specific clusters. Commonly, an unsupervised 

learning the machine simply receives input feature data sets from its environment 

without supervised target outputs or rewards.  

Unsupervised learning techniques are usually inspired by the fact that the 

limitation of time and financial to create "label" feature data, which would grant it to 

considered as employing supervised techniques. The other inspiration is owing to the 

fact that pictures, video, natural language documents and scientific research data 

(such as gene expressions), once quantified, obtains extremely large dimensionality 

and generated low results of accuracy rate. Even though it is difficult to imagine how 

a machine can possible learn to build a working model, creating a legal groundwork 

for unsupervised learning is nevertheless possible depended on the concept that the 

machine’s aim is to assemble representations of the input to be used for determination 

making, forecasting future inputs, and productively communicating said inputs to 

another machine. 
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2.3  Feature Selection 

 

There are two main approaches of Dimensionality Reduction, namely feature 

extraction and feature selection. Feature extraction is the procedure whereby a set of 

different features is obtained from the full features sets using a mapping function, 

with the objective of demonstrating the original data as succinctly as possible. 

However, the computational cost desired to search for an acceptable mapping function 

and the loss of comprehensibility in the outcome are major disadvantages. 

Nevertheless, no new features are generated and a most favorable set of the initial 

features are chosen in accordance with satisfied condition.   

There are four significant benefits of feature selection (Navot, 2006). First, the 

principle objective of this selection process is to deduce the calculation time and 

complexity of the learning algorithms by decreasing the element of the feature space. 

Second, the identity of the selected features can contribute insight into the nature of 

the problem at hand, and attribute selection lessens the cost of evaluating unselected 

features. Because we have found a small set of features that yield an efficient 

prediction score, it is no longer necessary to measure the rest of the features. Thus, 

only a few features in each instance need to be assessed in the prediction stage. Third, 

feature selection can also improve prediction accuracy because after the discovery of 

only a tiny set of good features, even very simple learning algorithms are able to 

perform well. Hence, feature selection is an essential step toward efficient learning 

when dealing with large multi-featured datasets. On a more general level, feature 

selection research has clearly become crucial to solving the fundamental issue of data 

representation. Lastly, feature selection gives a more detailed understanding of the 

problem at hand because it attains the most informative features.  

Feature selection approaches are broadly classified into wrapper, filter, and 

hybrid techniques. In wrapper methods, variable selection involves applying a 

wrapper around a particular learning algorithm to assess the fitness of the attribute 

subsets. In filter methods, the attribute selection method removes unrelated and/or 

unnecessary attributes in a preliminary processing data step applied before any 

particular learning algorithm (Sanchez-Marono, Alonso-Betanzos and Castillo, 2005). 
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The filter approaches are in common computationally more effective, even though 

wrapper techniques frequently return to higher quality. 

In the mechanism of attribute selection, unrelated and/or repetitious features 

(or other noise sources in the data) may be impede in many circumstances, as they are 

not pertinent and significant with respect to the class concept such as microarray data 

analysis. When the number of samples is much less than the features, then machine 

learning gets especially complication, because the search space will be sparsely 

populated. Thus, the model will not able to discriminate precisely between noise and 

appropriate data. There are two fundamental methods to attribute selection. The first 

is Individual Generation, and the second is Assessment of Feature Subset. Ranking of 

the features is recognized as Individual Assessment. In Individual Assessment, the 

score of an individual feature is reckoned in agreement with its degree of relevance. 

In Subset Evaluation, candidate attribute subsets are composed using search approach. 

The common process for attribute selection has four significant components as shown 

in Figure  

1)  Subset Generation  

2)  Assessment of Feature Subset  

3)  Terminating Condition 

4)  Outcome Validation 

 

2.4  Feature Selection for Classification 

 

In supervised learning, an optimum scenario will grant the method to precisely 

conclude the class labels for conceal instances; whereas, in unsupervised learning, this 

information is missing. The target of this scenario is thus to identify the natural 

grouping structure of the data. In semi supervised learning, only some of the data 

objects are labeled. It uses both labeled and unlabeled to train the model. Many 

researchers in the field of machine learning have discovered that unlabeled data used 

together with a small amount of labeled data is able to improve learning accuracy 

considerably. 

Significantly, real-world classification difficulties desire supervised learning 

to cope with situations where the underlying class probabilities are unidentified and 
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each instance is involved with a class label. Class label of training data is provided as 

a guideline to generate model. The information helps verify if the prediction is correct 

or not. The supervised learning algorithm examines the training data and generates a 

rigid rules-based model, which can be used to map new examples. In real-world 

situations, we often have little knowledge about relevant features. Thus, many 

candidate features are proposed to represent the domain more clearly, some of which 

are unimportant and/or excessive to the outcome. A relevant feature is neither 

unimportant nor redundant or else is not precisely associated with the outcome but 

affects the learning process. Simply put, an excessive feature does not add anything 

new. In many classification problems, it is troublesome selecting good classifiers 

before discarding undesired attributes owing to the gigantic volume of the data. 

Decreasing the number of insignificant and/or excessive features yields a more 

common but effective classifier as well as drastically decreasing the execution time of 

a learning algorf5ithm, which enables better insight into solving real-world 

classification problems. 

 

 

 

Figure 2.1  A General Framework of Feature Selection for Classification 

Source: Tang, Alelyani and Liu, 2014: 37. 
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2.5  Decision Tree Classification 

 

2.5.1  How a Decision Tree Works? 

Suppose we would like to classify mammal or a non-mammal animal

or classify customers of bank who are safe or risky to lend money (Kavitha, 

Kangaiammal and Satheesh, 2015). How can we tell whether it is a mammal or a non-

mammal and safe or risky customer? One approach is to pose is d a series of questions 

about characteristics of animal type or customer category. The first question we may 

ask is whether the species is cold or warm blooded or how old of customer. If it is 

cold blooded, it is not a mammal. In the latter case, if customers who are age more 

than 45, it seems to have more chance to lose dept.  Each time we receive the answer, 

a follow-up question is asked until we can reach a conclusion about class label of the 

record. Normally, a series of question and their potential answers can be organized in 

the format of decision tree which is a hierarchical structure consists of nodes and 

edges. Decision trees are formed on regression models or classification used to create 

a tree structure that can handle both categorical and numerical data. In this process, a 

dataset is reduced to smaller and smaller subsets while simultaneously building the 

associated decision tree incrementally, the outcome of which is a tree consisting 

of decision nodes and leaf nodes. The topmost decision node (the root node) in a tree 

corresponds to the best predictor.  
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Figure 2.2  Example of Decision Tree 

Source: Saedsayad, 2017. 

 

In Figure 2.2, a decision node (e.g. Outlook) has two or more branches (e.g., 

Sunny, Overcast, and Rainy), and a leaf node (e.g., Play) demonstrates a classification 

or decision based on the outcomes of the decision nodes and branches.  

 

2.5.2  The ID3 Algorithm 

This is an important algorithm used to construct a decision tree from a dataset 

(Quinlan, 1986). It employs entropy and information gain properties to create a 

decision tree and employs top down greedy search without backtracking, although 

that can be utilized if necessary. 

To build a decision tree, the calculation of two types of entropy using 

frequency tables is required. Using the data in Figure 2.2, this can be accomplished as 

follows: 
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2.5.2.1  Entropy Using a Frequency Table with One Attribute: 

 

 

Figure 2.3  Frequency Table of One Feature 

Source: Saedsayad, 2017. 

 

 2.5.2.2  Entropy Using a Frequency Table with Two Attributes: 

 

 

Figure 2.4  Frequency Table of Two Features 

Source: Saedsayad, 2017. 

 

2.5.2.3 Information gain is a measure of the difference in entropy 

before and after a dataset is split on an attribute. One that retrieves the maximal 

information gain (the biggest reduction in uncertainty) is used in the construction of 

the decision tree, e.g. 
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1) Calculate the entropy of the target. 

 

 

 

 

 

 

 

 

Figure 2.5  Entropy of PlayGolf 

Source: Saedsayad, 2017. 

 

2) Subsequently, the dataset is split on the attribute and each 

branch of entropy is measured. The outcome entropy is subtracted from the entropy 

before the split, thus the result of information gain is deduced. 

 

 

 

Figure 2.6  Information Gain 

Source: Saedsayad, 2017. 

 

3) Selecting the highest information gain as the decision node 

and the data set is divided using this branch. A branch with zero entropy is a leaf node 

and one with non-zero entropy needs to be split further. 
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Figure 2.7  Root Node 

Source: Saedsayad, 2017. 

 

 

 

Figure 2.8 Decision Tree 

Source: Saedsayad, 2017. 

 

4) The ID3 algorithm is processed repeatedly on the 

remaining non-leaf branches until all of the data has been categorized. 
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Figure 2.9  Decision Tree to Decision Rules 

Source: Saedsayad, 2017. 

Typically, a decision tree can effortlessly be adapted to a set of rules or 

commands with pattern of if then clauses by mapping from the root node to the leaf 

nodes one by one. 

 

2.6  Feature Selection Models 

2.6.1  Filter Methods 

Filter Methods, as its name imply, are algorithms which exude out 

insignificant attributes which have little value to analysis data. Normally, filter 

methods are not considered about classifiers. Thus, these methods are less 

computed time consuming than wrapper and hybrid methods. 

As described before, filter methods employ to variable selection as a 

preliminary processing method with no induction procedure. The important part of 

filter methods search is to consider the traits of each feature subset using evaluation 

measures such as information gain and entropy described earlier, or the distance 

between a class and a statistical dependence test. This model trends to run faster than 

the wrapper approach. 
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Figure 2.10  Filter Algorithm 

Source: Juan Tapia Farias, 2017. 

 

As shown in Figure 2.3, a filter algorithm begins a search from a feature 

subset and a blank set before searching through the feature space using the 

consecutive processes:  

 1) Evaluate the current feature subset X using measurement methods 

such as mutual information or normalized mutual information.  

2) Compare it with the outstanding attribute subset acquired in the 

previous step (Xk1) and if better, assign the new one as the current best subset.  

3) The search procedure is iterated until a pre-defined stop condition d 

is accomplished. The criterion d could be one or more of following: (1) subsequent 

addition or deletion of a feature does not generate a more appropriate feature subset, 

(2) the performance obligation is accomplished, or (3) a predetermined bound 

(stopping criterion) is attained, such as the maximum number of search iterations or 

the minimum number of features. At the end of the process, the current efficient 

subset is retained. 

 

2.6.2  Wrapper 

The wrapper method (Sanchez et al., 2005) is a type of dependent criterion 

that incorporates the variables themselves into the feature evaluation process. To 

ascertain the importance of a candidate attribute subset, a classification model is 

constructed and utilized to evaluate the particular set. The algorithm outputs the last 

current best subset.  



19 

 

 

Figure 2.11  Wrapper Approach 

Source: Kohavi and John, 1997: 273-324. 

 
Figure 2.4, the wrapper method to attribute subset selection. The induction 

mechanism is managed as a “black box” by the subset selection method. 

In wrapper approach, classification algorithm is employed as the evaluation 

function. The feature selection algorithm is existed the classification algorithm. For 

each subset a classifier is constructed and this classifier is used for evaluating that 

subset. The benefit of this approach is that it helps to increase reliability of the 

evaluation function. If evaluation algorithm and classification algorithms are 

different, different biases they have make the results less reliable. The disadvantage is 

that it increases the cost of the evaluation function.  

Contrary to employing an independence test as in filter methods, the wrapper 

approach (Figure 1(b) employs a machine learning algorithm such as a decision tree 

or support vector machine and gauges the corresponding classification performance to 

direct the attribute selection process. The classification performance of X is 

approximated with the most efficient attribute subset previously attained. 

Subsequently, Xk = X if the classification efficiency is better than the former one. 

This procedure is repeated until a stop condition is satisfied, as explained previously 

in other filter methods. 
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2.6.3  Hybrid 

To employ the benefits of filter and wrapper methods, the hybrid approach has 

been currently presented (Dash and Liu, 1997). A classic hybrid method applies both 

an independent test and a performance evaluation function of the attribute subset. 

 

 

Figure 2.12  The Hybrid Approach 

Source: Lee, 2009: 10896-10904. 
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As shown in Figure 2.5, a hybrid search begins with a predetermined feature 

subset and combines filter and wrapper approaches to discover the finest subsets as 

cardinality increases. Because the filter approach comprises an independence test and 

an association criterion, it is initially used to select candidate features after which the 

wrapper approach reexamines them using a specific learning algorithm and another 

association criterion. After selecting the most efficient subset with cardinality k, the 

overall classification performance is evaluated with respect to a predetermined 

(stopping) criterion. If the performances match, the feature selection procedure has 

come to an end and the current best feature subset is outputted as the optimum 

attribute subset, else the searching continues after incrementing the cardinality to k+1 

by increasing an attribute from the surviving ones and reiterating the previous steps. 

In improving the classification efficacy of the filter method by include a particular 

learning algorithm in the selection process and enhancing the effectiveness of the 

wrapper method by narrowing the exploration scope, the hybrid approach is an effort 

to overwhelm the respective weaknesses of the two. 

 

2.7  Search Method 

 

2.7.1  Sequential Feature Selection Algorithms 

These comprise a group of greedy search methods employed to decrease the 

primary d-dimensional attribute space to a k-dimensional variable subspace where k < 

d. The incentive in seeking a suitable attribute selection algorithm is the automatic 

selection of a subset of attributes most relevant to the problem at hand.  

 

2.7.2  Branch and Bound Algorithms 

Branch and bound (BB) algorithms (Songyot Nakariyakul, 2009)  are known 

to present the optimal solutions. Generally speaking, an exhaustive search is 

conducted to discover the efficient feature subset out of the original number of 

attributes by measuring a given criterion function for all attainable attribute subsets 

and then choosing the best feature subsets corresponding to the criterion function. 

Although an exhaustive investigation is suitable for low-dimensional data, it is 

impractical for a large-dimensional database because all the number of candidate 
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attribute subsets that require to be exhaustively investigated can be huge. The BB 

algorithm explores the search space more efficiently than an exhaustive search. The 

basic concept is to generate the search tree. B&B algorithms branch and create two 

new nodes, therefore separating the solution space into a set of smaller subsets and 

attaining the relative upper and lower bound for each node. If the branch length at this 

search tree node is more than the current lower bound on the optimal tree length, this 

search tree path is aborted and later the search is backtracked and then continued to 

the next tree path. When the search tree reaches the magnify node, the tree is either 

optimal or sub-optimal rejected. 

There are two objectives in a B&B search: finding the optimal solution and 

proving its optimality (He, Daume and Eisner, 2014). Normally, we have to trade-off 

between the two goals; we can find the optimum solution faster if we do not need to 

prove its optimum or reduced execution time. Consequently, we can find a potential 

solution without extensive proof of optimality, so the search time can be greatly 

reduced. 

 

2.7.3  Sequential Search Algorithms 

Sequential search algorithms including sequential forward selection (SFS) and 

sequential backward selection (SBS), and their generalized versions GSFS and GSBS, 

are greedy algorithms most widely used because of their general simplicity and short 

running time. 

The SFS method operates in a forward search manner starting with an empty 

set and increases one variable subset during each round until a new attribute subset 

that maximizes the criterion function value is found, on the contrary, the SBS method 

begins with a full attribute subset and eliminates an attribute on each iteration until a 

predetermined criterion is satisfied. A drawback of both methods is that they have a 

nesting effect problem, which means that discarded features are not eligible for re-

selection nor selected features for removal later. Since these algorithms do not 

analyze all candidate feature subsets, there is no promise of them yielding an optimum 

solution. Generalized forms GSFS and GSBS based on group collection feature 

testing discover exceptional solutions but at the cost of increased calculation time. 
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The plus l take away r (PTA) approach was presented to take care of the nesting 

problem (Zhang and Sun, 2002).  

Sequential Forward Selection is the uncomplicated greedy search method. -

Beginning from the empty set, continuously increase the attribute x
+
 that produces in 

the highest objective function J(Yk+x+ ) when incorporated with the attributes Yk that 

have already been chosen .  

Algorithm:  

1)  Begin with the blank data set Y0={}  

2)  Pick the next best attribute X
+ 

=argmax[J(Yk+X)];x¢Yk  

3)  Renew Yk+1=Yk+ X
+
 ; k=k

+1
  

4)  Go to 2  

SFS delivers the efficient performance when the optimum feature subset has 

the smallest possible number of attributes. When the search is close to an empty set, 

there is the potential to evaluate a large number of states. However, the domain 

analyzed by SFS is smaller for a full set since most of the attributes have already been 

determined. The search space can be visualized as an ellipse to give priority to the fact 

that there are fewer states toward complete or blank data sets. For instance, in the 

state space for four features, the number of states is largest in the middle of the search 

tree. Nevertheless, a main drawback of SFS is its inability to eliminate attributes that 

have develop into out-of-date due to the inclusion of other attributes 

 

2.7.4  Sequential Backward Search 

SBS is conducted the other way round to SFS. Commencing from a full set, 

feature x
−
 resulting in the smallest decline in the value of objective function J(Y-x

−
) is 

sequentially eliminated. Note that feature elimination possibly leads to an enhance in 

objective function J(Yk-x−) > J(Yk).  

Algorithm:  

1)  Begin with the entire set Y0=X  

2)  Eliminate the worst attribute X
-
 =argmax[J(Yk

-
X)];x  Yk  

3)  Renew Yk+1=Yk
- 
X

-
 ; k=k+1  

4)  Go to 2  
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SBS manages optimally when the optimum variable subset contains a 

considerable number of attributes, since most of the time during its execution is spent 

visiting large subsets. The predominant drawback of SBS is the incompetence to 

reassesses a feature once it has been eliminated. 

 

2.7.5  Plus-L Minus-R 

Plus-L Minus-R is a generalization version of SFS and SBS. The objective is 

to prevent the limitation or weakness of re-selection or re-deletion feature subset. The 

value of L and R are presumed with constant value. If L>R, LRS initial with the blank 

set and continually reiteration increments ‘L’ features and eliminates ‘R’ features. The 

disadvantage is lack of regulation to define the optimal value of L and R. 

Algorithm: 

1) If LR then begin with the empty set Y={} else start with the complete set 

Y=X Go to step3. 

2) Reiterate L times X
+
 =argmax[J(Yk+X)];x¢Yk and Yk+1=Yk+ X

+
 ; k=k+1  

3) Reiterate R times X
-
 =argmax[J(Yk-X)];x  Yk and Yk+1=Yk- X

-
 ; k=k+1  

4) Go to 2  

 

2.7.6  Sequential Forward Floating Search (SFFS) 

 omol   udil   ovovi ov   and  acl  k      ) and  udil   ovovi ov  and 

Kittler (1994) proposed a sequential forward floating search (SFFS) algorithm by 

applying a criterion function to choose small feature subsets and compare them with 

candidate subsets. The aforementioned SFS and SBS algorithms can be extended to 

more complex floating variants SFFS and SFBS that have a further respective 

inclusion or exclusion step to discard (or increase) features once they have been 

contained (or removed) so that a larger number of attribute subset combinations can 

be analyzed. It must be focused that this task is conditional and only happens if the 

deriving attribute subset is evaluated as an improvement by the criterion function after 

respectively removing (or adding) a specific feature.  

The SFFS and SBFS approaches were initially created to conquer the so-called 

‘nesting effect’ difficulty of the simpler  F  and  B  algorithms cause by their 
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respective inability to re-select a discarded feature or to discard a previously selected 

feature. 

By far the most profitable method so far is the thorough floating search 

method reported by Somol et al. (1999) and Pudil et al. (1994). The floating search 

technique combines the ‘ equential Forward Floating  earch   FF )’ and the 

‘ equential Backward Floating  earch   BF )’ based on two main categories: the 

search process in a forward direction. These methods use a criterion function to select 

a feature and compare candidate subsets. SFFS and SBFS can be classified as a 

wrapper or a filter approach depending on the criterion function used. They perform 

well but the computational time is long, especially with large datasets. The floating 

search methods can be considered the PTA algorithm without the use of a fixed 

parameter. They have been shown to give very good performance, close to optimum 

results, and to overcome the nesting problem. SFFS, SBFS, and bidirectional selection 

as a combination of both are greedy search methods that include or discard features 

one at a time. The floating search method comprises of two phases: forward and 

backward. SFFS begins with an empty set and sequentially add one attribute at a time. 

The structure of the floating search methodology is displayed in Figure 2.6 
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Figure 2.13  Structure of the Floating Search 

Source: Chandrashekar and Sahin, 2014: 16-28. 

 

SBFS, the counterpart of the forward search, is initialized with a complete set 

and sequentially eliminates one attribute at a time after execution of SFFS. An SFFS 

search selects the best unselected feature according to a criterion function to form a 

new feature subset, and an SBFS search iteratively determines which members of the 

selected subset are to be removed if the remaining set improves performance 

according to the same criterion function in the forward search. The algorithm loops 

back to a forward search until the stopping condition is reached The stopping 

condition k= d+ Δ determines whether the search algorithm can be allowed to 

continue on to the original dimensionality D, with d being the number of feature 

subsets containing desired values. When D is a very large dimension  the value of Δ 

needs to be decided upon carefully. There are disadvantages when using either 
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algorithm. With SFFS, it is not possible to succeed in eliminating repetitious 

attributes produced in the search method, whereas SBFS cannot re-calculate 

evaluation feature efficiency together with other attributes at the same time. 

 

2.7.7  Improved Forward Floating Selection 

The Improved Forward Floating Selection (IFFS) projected by Songyot 

Nakariyakul and Casasent (2008) contains an additional step to determine whether 

replacing a weak feature will improve the criterion function value. Improved versions 

of SFFS have been proposed in many researches to obtain better performance. A new 

version of IFFS method for choosing a small subset of attributes is demonstrated. The 

scholars improved on SFFS by adding a exploration stage called “replacing the weak 

feature” to determine whether eliminating any of the features in the currently selected 

feature subset and adding a new one in each subsequent step will enhance the current 

feature subset. The extra step is performed after the removing step. This step 

conditionally eliminates one feature at a time and employs the SFS approach to select 

an unselected feature and add it to each resultant feature set. Their finding indicate 

that this approach provided the optimum solution (or very nearly to it) for many 

chosen subsets better than had previously been demonstrated by other suboptimal 

feature selection methods. 

 

2.7.8  Adaptive Sequential Forward Floating Selection 

Somol et al. (1999) presented the Adaptive Sequential Forward Floating 

Selection (ASFFS) algorithm with a parameter r which specifies the number of 

attributes to be included in the forward phase calculated dynamically. Parameter o is 

used in the exclusion phase to remove the maximum number of features if it improves 

performance. The benefit of ASFFS is in providing a less redundant subset than the 

SFFS algorithm.   

Finally, Jitwadee Chaiyakarn (2013) propose a filter-based method to return a 

small subset of features for classification problems by employing two different 

criterion functions in the forward and backward steps. The functions help remove 
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redundant features, maximize inter-class distances, and minimize intra-class 

distances. 

All searching methods require an assessment proof to evaluate the quality of 

each feature before addition to or removal from the current set. With this in mind, 

several evaluation criterions involving distance, information and dependency 

measures have been proposed (Molina, Belanche and Nebot, 2002; Chotirat 

Ratanamahatana and Gunopulos, 2002). Mutual Information (MI) is one of the most 

frequently used information measures. Its aim is to appraise the mutual dependence 

between two variables, characterized as the dissimilarity between the total of their 

entropy values and their joint entropy value. MI is zero when the two variables are 

liberate and increases with an increment in the reliance of one on the other. 

 

2.8  Cross Validation 

 

Cross validation is a model assessment approach that is better than residuals. 

Data used for model generation is divided into 2 groups, training data and test data. 

Training data is for model training and test data is for model evaluation. 

Subsequently, once training has been completed, the eliminated data can be employed 

to analyze the efficiency of the learned model on new data, which is the fundamental 

concept behind an entire class of cross validation model assessment approaches. 

Normally, data set does not provide independent test set separately; we have to 

split it into these two groups. The popular way that is often used for splitting is the k-

fold cross validation (k-fold CV). K-fold cross validation is one technique to enhance 

over the holdout method. The data set is subdivided into k subsets, after which the 

holdout method is reiterated k times. During each iteration, one of the k subsets is 

employed as the test set and the other k-1 subsets are combined to form the training 

set. Next, the average error across all k trials is calculated. The benefit of this method 

is that how the data is actually divided is inconsequential. Every data point is selected 

one time only in the test set and k-1 times in the training set. The disadvantage of this 

approach is that the training method must be repeat k times, which implied that an 

inordinately long time is required to evaluate the results. 
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2.9  Genetic Algorithm 

 

A genetic algorithm (GA), introduced by Goldberg and Holland (1988), is an 

adaptive optimization search algorithm to find an optimal solution inspired by natural 

selection in biological systems. The genes of an organism are gathered into structures 

called chromosomes, and a collection of chromosomes is referred to as a population. 

In general, there are three operations employed in GAs. First, selection is an operator 

for selecting potentially useful solutions for recombination, and is achieved by either 

tournament or roulette wheel selection (see Figure 3). Second, crossover ascribes to 

the process of creating an offspring chromosome from two matching parent 

chromosomes (see Figure 4). There are various categories of crossover: single point 

crossover, two point crossover, and uniform crossover. Crossover is an operation to 

produce child subsets recombined from parental chromosomes that consist of splitting 

chromosome pairs at random. Third, mutation causes genetic diversity of 

chromosomes by making random binary changes in a chromosome (Cedeño and 

Vemuri, 1999), thus adversely affecting their fitness value (see Figure 5). These 

principles have led to new solutions in the pursuit of better search solutions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14  The Representation of a Chromosome 

Source: Saha, 2017. 
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Figure 2.15  Simple of GA Algorithm 

Source: Huang and Wang, 2006: 231-240. 

 

There are many type of GA operation. Below is description. 

 

 

2.9.1  Selection 

In principle, the selection operator concludes which individuals are selected 

from the search space for generating (reproduction and how many offspring each 

selected individual produces) serves as candidate solutions to optimize the problem. 

The individuals in this population are measured for goodness of fit  “fitness”) through 

a function. The selection strategy is “the better the individual  the higher its 

probability of being a parent.” The next generation is chosen by an alternative 

mechanism between parents and their offspring. This method is repeated until a 

certain condition is satisfied. 

Normally, crossover and mutation operators attempt to find the new search 

space, while the selection operator reduces the search area within the population by 

eliminating poor solutions. On the other hand, poor individuals should not be removed 

and they may have the favorable circumstances to be chosen because this may drive to 

beneficial genetic material. 

 2.9.1.1  Roulette Wheel Selection 

In a roulette wheel selection, this is a simply method. The circular 

wheel is divided by fitness values. Each individual is assigned a segment of roulette 

wheel. A fixed point is selected on the wheel. The area of the wheel which appears in 
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front of the fixed point is selected as the parent. To find the subsequent parent, the 

similar procedure is reworked. 

 

Figure 2.16  Roulette Wheel Selection 

Source: Newcastle University, 2017. 

  

In conclusion, it is shown that a fitter individual has a better pie on the wheel 

and consequently a larger opportunity of landing in front of the fixed point when the 

wheel is spun. Hence, we can imply that the probability of selecting parents depends 

on theirs fitness.  This way will have a difficulties when the fitness value differs very 

much. If the foremost fitness chromosome is 98%, the rest of chromosome has a little 

chance to be selected. 

Algorithm: ROULETTEWHEELSELECTION()  

r := random number,  

where 0 ≤ r <  ;  

sum := 0;  

for each individual i  

 { 

       sum := sum + P(choice = i);  

     if r < sum 

            { return i; }  

   } 
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2.9.1.2  Stochastic Universal Sampling (SUS) 

Stochastic Universal Sampling is closely the same as to Roulette wheel 

selection, the different point is that we can have multiple fixed points. As the result, 

all the parents are selected in just one spin of the wheel. SUS is another method of 

RWS that attempts to decrease the risk of premature convergence.  

2.9.1.3  Tournament Selection 

Tournament selection is the most prevalent selection method for 

genetic algorithms because of its efficiency and simple implementation. It is a 

modified version of rank-based selection methods, and its strategy combines to 

randomly select a set of k individuals. When these individuals are measured by a 

fitness function, the individual with the highest fitness wins and becomes part of the 

next generation’s population. The whole process is repeated n times for the entire 

population.  

Repeating selection of individual chromosomes, we have k-way 

tournament selection at random and choose the best one to become parents. 

 

 

Figure 2.17  Tournament Selection 

Source: Tutorialspoint, 2017. 
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2.9.1.4  Rank Selection 

The method of rank Selection is to sort the population first in 

accordance with measuring quality and ranks them. Then every individual 

chromosome is divided selection probability corresponding with its grade. The 

selection of the parents depends on their rank rather than their fitness (Mangano, 

2008). Thus, higher ranked individuals are selected more often than lower sorted 

ones. Moreover, scaling problems such as stagnation or premature convergence are 

overcome by rank selection since it controls selection pressure by uniformly 

spreading scaling across the population. Below table is the example of ranking 

population. 

 

Table 2.2  Rank Selection 

 

Chromosome Fitness Value Rank 

A 8.1 1 

B 8.0 4 

C 8.05 2 

D 7.95 6 

E 8.02 3 

F 7.99 5 

 

Source: Tutorialspoint, 2017. 

 

2.9.2  Crossover  

Crossover is a procedure of bringing more than one parental solutions and 

creating a new offspring solution from them. The idea behind crossover is that new 

offspring will possess good characteristics if the best components from each of the 

parents are exploited. Crossover probability is used to indicate a ratio of how many 

bits will be selected in the selection step. Mostly, crossover is employed in a Genetic 

Algorithm with a great probability – pc . 
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2.9.2.1  One Point Crossover 

One point crossover is the most well-known of these methods and is 

widely applied. Following selection, a crossover operator selects two mating 

chromosomes. Afterwards  a distinct crossover point on both parental organism’s 

strings is randomly selected and both parental chromosomes are split at the random 

crossover point. Consequently, the tails of the two parents are exchanged to obtain 

different offspring.  

 

 

Figure 2.18  Example of One Point Crossover 

Source: Kaya and Uyar, 2011: 1105-1355. 

 

2.9.2.2  Two Point Crossover 

Similar to single point crossover, two points are selected on the 

originator organism strings and everything between them is changed between the 

forerunner organisms, thus displaying two child genomes:    
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Figure 2.19  Example of Two Point 

Source: Kaya and Uyar, 2011: 1105-1355. 

 

  2.9.2.3  Uniform Crossover 

In a uniform crossover, we operate each gene separately so we do not 

divide the chromosome into segments. Instead, each chromosome is randomly 

selected to decide whether to include or not it in the off-spring.  

 
Figure 2.20  Uniform Crossover 

Source: Umbarkar and Sheth, 2015. 
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2.9.3  Mutation 

In common terms, mutation is the process to change in the genetic sequence, 

to introduce a novel solution in the potential search space. It is recognized to control 

and present a cause of variety in the genetic population and is normally employed 

with a small probability – pm. If the probability is very high, the GA gets decreased to 

a random search.  

Mutation is a genetic operator which provide investigation of the population. It 

has been recognized that mutation is vital process to the convergence of the GA albeit 

crossover is not. 

 2.9.3.1  Bit Flip Mutation 

  Bit inversion -selected bits are inverted 

 

 

1 0 1 0 0 1 1 1 0 0 0 1 
 

  After Mutation 

 

1 0 1  0 1 0 1 1 0 0 0 1 
  

 

Figure 2.21  Example of a Mutation Operator 

 

  2.9.3.2  Interchanging Mutation 

Interchanging mutation is processed by choosing two random positions 

of the string. And positions are selected and the bit strings according to those 

positions are exchanged. 

2.9.3.3  Swap Mutation 

It is also used in Permutation encoding. To perform swap mutation we 

randomly select two alleles and exchange their positions. In this way, most of the 

adjacency information is preserved but the broken links markedly disrupt order. 

2.9.3.4  Scramble Mutation 

Scramble mutation is also used with permutation-encoded chromosome. 

In this mutation, we unintentionally select a subset of genes, after which the alleles 

are randomly rearranged in those positions without requiring the subset to be adjacent. 
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Figure 2.22  Example of Scramble Mutation 

Source: Tutorialspoint, 2017. 

 

  2.9.3.5  Inversion Mutation 

Similar to scramble mutation, the entire string in the subset is simply 

inverted instead of being shuffled. In the first step, we have to select two points at 

random position of chromosome and invert substring between them. 

        
Figure 2.23  Example of Inversion Mutation 

Source: Tutorialspoint, 2017. 

 

The general scheme of evolutionary in genetic along with Pseudocode is 

shown below:  

Input: Population, set of individuals 

           Fitness_FN, a function which determines a  

           Quality of individuals. 

repeat 

        new_population  emptyset 

        loop for i from 1 to size(Population) do 

        x  random_selection (Population,Fitness_FN) 

        y  random_selection (Population, Fitness_FN) 

       child  crossover (x,y) 

       child  mutate(child) 

       add child to new_population 
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 population  new_population 

until some individual is fit enough 

return the best individual. 

 

Genetic algorithms (GAs) have been favorably employed to attribute 

selection (Brill, Brown and Martin, 1992) with the objective to save on computational 

time without processing in an exhaustive fashion, by finding promising regions and 

selecting quality feature subsets. Furthermore, hybrid Gas (Oh, Lee and Moon, 2004) 

are involved in a new search method with local search operators that enhance the 

fine-tuning quality of a native GA search.  

The fitness function, formed on the significant of survival of the fittest, is the 

process whereby GA assesses each individual’s fitness and obtains the optimal 

solution after applying the genetic operators. This process is executed repeatedly over 

many generations until the stopping criterion has been met. For feature selection, the 

feature subsets are represented as a binary; a feature is either contained or not 

incorporated in the attribute subset. 

 

2.10  Niching Method 

 

Niching is an improved version of the simple genetic algorithm. It is necessary 

if the problem of interest is discovering multiple solutions and it is permitted to 

investigate the finding of better solutions or different optimum subsets. The 

characteristics of the feature selection problem are multimodal because results will be 

shown in either the local or global multiple optima solutions and a classical GA 

cannot yield an adequate outcome without the premature convergence problem. To 

address some of the multimodal problems (Pedroso, 1996), the performance of a 

genetic algorithm  GA)  Drchal  Šnorek and Kordík  2006) cannot effectively yield or 

maintain an optimal solution. Thus, a population can become easily trapped by a 

premature condition with no possibility of generating better outcomes. Premature 

convergence is one of the most important difficult obstacles that occur when 
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employing a GA to a complicated situation related to the diversity of a population. 

Hence, too much population diversity can bring about poor GA efficiency, and so the 

necessary trade-off between exploitation of the outstanding individuals and a more 

thorough search of the search space is significant. Moreover, niching methods (Ye, Qi 

and Xiao, 2011) have been generated to decreased genetic drift impacts resulting from 

the replacement operator in a native GA. Niching techniques that extend the genetic 

algorithm domain are known for their capability to investigate multiple optima, which 

means grant the GA to investigate many peaks in parallel. In each generation, some 

poorly adapted niches are eliminated while better adapted ones remain, and niches 

which vanish are replaced by new ones; these come into view as a choosing of 

individuals migrated from the current population. 

Due to the problem of a lack of population diversity, all chromosomes in the 

population become almost similar and effect premature convergence in that the 

genetic operators can no longer create children that surpass their originators. 

Consequently, a niching method is a crucial controlling factor that helps to maintain a 

diverse population of candidate solutions, and this requirement ensures that the 

solution space is adequately searched. In other words, they stop the GA from 

becoming fastened in the local optimum in the exploration space. Significant methods 

of niching GAs reviewed in the literature are discussed here. 

 

2.10.1  Fitness Sharing 

Fitness sharing was first proposed by Goldberg (1989). Niches are maintained 

in a population by adjusting individuals' fitness, which diminishes each population 

component’s fitness by a value corresponding to the amount of comparable 

individuals. Typically, the corrected fitness is called shared fitness and can be 

expressed as an individual's fitness divided by its niche count: 
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where P is the set of all individuals in the populations and sh is the sharing 

function. The latter evaluation the similarity level between two elements: it should 

return values near to 1 for similar individuals and converge to 0 for dissimilar ones. 

The effect of this method is to promote searching in unexplored regions. 

By boosting scaling fitness or by changing the fitness competence rule, niche 

approaches customize a native GA by handling convergence so that numerous peak 

solutions can be controlled in the potential investigation area. The ability to detect 

multiple peaks frequently contributes niche GAs the powerful and efficacy needed to 

investigate optimum assorted multimodal optimization difficulty. However, when 

accustomed to resolve optimization difficulties, most niche algorithms need former 

information such as the niche radius or the distance threshold. 

 

2.10.2  Deterministic Crowding 

This was originally proposed by DeJong (1975) as a method for maintaining 

population variety and avoiding premature convergence (Mengshoel and Goldberg, 

2008). Crowding is employed in the choosing part of a GA algorithm to help make the 

decision concerning which individuals among those in the ongoing population and 

their children will be executed in the next generation. Individuals who only have close 

neighbors are approached to develop niching. 

Crowding consists of pairing and replacement. In the pairing stage, the 

children are compared to individuals in the current population using a likeness 

measure such as hamming distance. In the replacement phase, the results of the paring 

phase are attained for each couple of individuals to help determine which of them will 

continue in the population. A review of crowding methods for GAs can be discovered 

in Mahfoud (1995). 

There are three predominant types of crowding counting on how the 

replacement stage is achieved, namely deterministic (Mengshoel, Galán and Dios, 

2014; Chen, Liu and Chou, 2014), probabilistic (Mengshoel and Goldberg, 2008), and 

those based on simulated annealing (Likas, Blekas and Stafylopatis, 1996). From each 

couple in the replacement phase, deterministic crowding chooses the fittest individual, 

while probabilistic crowding chooses the surviving individual’s chromosome 

according to a probabilistic formula that considers a fitness metric. Lastly, a simulated 
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annealing based niche genetic algorithm was demonstrated to strength the 

optimization capability of a niche genetic algorithm. This method employs well-

known rules such as Metropolis or Boltzmann, which bring a temperature parameter 

in the replacement phase.   

Deterministic crowding is a niching algorithm proposed by Mahfoud (1995). 

This technique inserts new elements into the population by proposing tournament 

between the offspring and forerunner originating from indistinguishable niches. After 

the crossover and finally mutation procedure have completed, each offspring replaces 

its nearest forerunner if it has larger measure value. EA using deterministic crowding 

can be written in pseudocode as: 

 

for i := 0 to N/2 

   (p1, p2) := choose_two_random(P); 

   (c1, c2) := crossover(p1, p2); 

   c1' := mutate(c1); 

   c2' := mutate(c2); 

   if([d(p1,c1')+d(p2,c2')] <= [d(p1,c2')+d(p2,c1')]) then 

         if(f(c1') > f(p1)) insert(c1') else insert(p1) end if; 

         if(f(c2') > f(p2)) insert(c2') else insert(p2) end if; 

   else 

        if(f(c2') > f(p1)) insert(c2') else insert(p1) end if; 

        if(f(c1') > f(p2)) insert(c1') else insert(p2) end if; 

   end if; 

  end for; 

 

2.10.3  Clearing 

The clearing method was presented by Petrowski (1996). The basic idea is to 

restrict environmental resources, and it is suitable for solving the extremely difficult 

search space optimization problem. Furthermore, it has been put in a favorable light 

for solving difficult multi-objective problems. The mechanism is almost the same as 

sharing but utilizes the restricted resources concept pertaining to the environment. As 

opposed to sharing resources among the individuals in a subpopulation from the same 
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niche, the clearing procedure only assigns attributes to the best members of each 

subpopulation or species. These methods are productive for decreasing the genetic 

drift caused by the selection operation in traditional GAs and delivering multiple 

stable solutions.  

 

2.11  Discretization 

 

Discretization (Tsai, Lee and Yang, 2008; Boulle, 2004) or binning is the 

process of transforming continuous values into discrete ones so that there are a limited 

number of intervals, and is usually utilized as a preprocessing step. An example is to 

bin values by age into categories such as 20-39, 40-59, and 60-79. Initially, we find 

the number of discrete intervals and their boundaries, and then associate each interval 

with a numeric value. Most often, we must specify the number of intervals. This 

method is the solution to improving a predictive efficiency model because it can help 

to deduce the amount of level consideration to discard during modeling, thereby 

reducing noise or non-linearity. Moreover, binning allows easy detection of outliers 

and replacement of missing numerical values. When discretizing attributes using a 

supervised learning algorithm by regarding the class-attribute interdependence, the 

most common technique is to find the intervals which maximize the information gain 

by discretizing features with respect to target variables.  

  

 

 

Figure 2.24  Discretizing Features 

 



43 

2.11.1  Discretization Method 

 2.11.1.1  Unsupervised Methods  

Unsupervised binning methods (Dougherty, Kohavi and Sahami, 

1995), blind class, convert numerical variables into categorical counterparts but do 

not apply the target (class) knowledge.  These approaches count on presumptions of 

the dispersion of the feature values. Equal Width and Equal Frequency are two 

unsupervised binning methods. 

  2.11.1.2  Unsupervised Methods 

   1) Equal width Discretization 

  The approach divides the data into k intervals of equal size. 

The width of intervals is 

w = (max-min)/k 

 And the boundaries range are: 

 

                               min+ w, min+2w, ... , min+(k-1)w 

 

2) Equal frequency discretization 

 The approach categorizes the data into k groups with each 

assortment containing around the same number of values. With either the equal width 

or equal frequency discretization algorithms, the most outstanding solution of 

discovery k is to examine the resulting histogram and try out dissimilar intervals or 

groups. 

 

Data: 0,4,12,16,16,18,24,26,28 

Equal width 

- Bin 1:0, 4        [-, 10) 

- Bin 2:12, 16, 16, 18    [10, 20) 

- Bin 3:24, 26, 28          [20, +) 
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Figure 2.25  Equal Frequency Discretization 

Source: Saedsayad, 2017. 

 

2.11.1.3 Supervised Methods 

Classification knowledge is attainable, and this information can be 

taken into attention when discretizing the data. Supervised binning approaches change 

numerical variables into categorical identical parts and relate to the target (class) 

information when choosing discretization cut points (Al-Ibrahim, 2011). Entropy-

based binning is an instance of a supervised binning algorithm. 

 1) Entropy-based Binning 

 Entropy based calculates the homogeneity of a sample which 

applies a split approach. The entropy (or the knowledge content) is computed counted 

on the class label (Dougherty et al., 1995). If the data is thoroughly homogeneous the 

entropy is zero. Usually, it discovers the best split in order that the bins are as perfect 

as attainable that is the greater number of the values in a bin belong to have the 

equivalent target information. Normally, it is distinguished by involving the partition 

of the data into subsets with the maximal information gain. The discretization 

proceeds by choosing a bin borderline that minimizes the entropy in the resultant 

partitions. Afterwards, the method is employed repeatedly to both new partitions until 

the terminating condition is satisfied. 

There are two key ideas behind the method:  

 (1)   Data requires splitting into intervals that maximize the 

information measured by entropy.  

 (2) Partitioning intervals should not be too small because 

the problem of over-fitting will occur. 
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In the primary part of the approach, the data set is divide into two halves 

contingent on whether the continuous value is above or below the predetermined 

splitting value, after which the gain in entropy is computed. Out of all of the possible 

splitting values, the one that generates the best gain is selected, and the process is then 

repeated recursively. 

 

2.12  Measurements 

 

2.12.1  Mutual Information 

In order to perform feature selection with the filter approach, criterions are 

required to calculate the relevance of the subset to the classification process. MI  is a 

widely used measure to evaluate candidate feature subsets.  Battiti (1994) used MI on 

candidate feature subsets to  select a quality subset to be applied as input data for a 

neural network classifier.  MI measures absolute dependencies between random 

variables and can be calculated as follows: 

 

I(X ,Y) = H(X ) + H(Y) -H(X ,Y),  

 

where H is an entropy function, Y is a class attribute, and X is the feature to 

select .Given a random variable X such that  

 

                                                        0 with probability p  

                                                        1 with probability 1 - p, 

 

H(X) = -p log p - (1 - p) log(1 - p) = H(p) 

 

Note that the entropy does not rely on the values that the random variable 

takes (0 and 1 in this case), but only counts on the probability distribution p(x). 

 

  

   X  =

ช

==== 

http://en.wikipedia.org/wiki/Information_gain_in_decision_trees


46 

2.12.2  Fuzzy Mutual Information 

FMI is applied as the second criterion function which has been extended to 

handle imprecise data (Grande, Suárez and Villar, 2007). Similar to MI, we represent 

the Fuzzy Mutual Information (FMI) of two fuzzy variables Xs and Xt as:  

 

FMI(Xs, Xt) = H(Xs) + H(Xt) − H(Xs, Xt) 

Let us assume that Ps and Pt are strong fuzzy partitions consisting of Ts and Tt 

fuzzy sets, respectively, defined on Xs and Xt. Then, the fuzzy entropy H(Xs) of the 

variable Xs can be calculated as  

            H(Xs) = − ∑ P(As,i) · log P(As,i)  

     

where P(As,i) is the probability of the fuzzy set As,i and is defined for a 

distribution {x1,...,xN } with respect to a probability distribution P = {p1,...,pN } as 

P(As,i) = N i=1 μAs,i (xi) · pi where μAs,i (xi) is the membership degree of xi to the 

fuzzy set As,i.  Similarly, the fuzzy joint entropy H(Xt, Xs) can be computed as:  

    

 

                      H(Xt, Xs) = −(∑   ∑  P(At,i, As,j ) · log P(At,i, As,j ))  

   

                  The joint probability P(At,i, As,j) is computed as in :  

 

                      P(At,i, As,j ) = ∑ ∑  μAt,i∩As,j (xk,t, xh,s) · p(xk,t, xh,s)  

  

where N1 and N2 are the numbers of different values for the variables Xs and Xt in the 

dataset, respectively, and μAt,i∩As,j = μAt,i (xk,t) · μAs,j (xh,s) 

 

2.12.3  Pearson Correlation 

The full name is the Pearson Product Moment Correlation or PPMC, and it is 

the most commonly used correlation measure in statistics (Chee, 2015). The objective 

is to measure the strength of association between sets of data that identify how well 

Ts i=1 

Tt 

 

i=1 

Ts 

 

j=1 

 

N=1 N=2 

k=1 h=1 
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they are related, for example age and blood pressure. Normally, it is used to uncover a 

potential linear relationship between them, and is defined as    

 

 

 

We can classify the group of correlation by considering as one variable 

increases what happens to the other variable:  

 2.12.3.1  Positive correlation – the other attribute has an inclination to 

also boost. 

 2.12.3.2  Negative correlation – the other attribute has an inclination to 

decline. 

2.12.3.3  No correlation – the other variable does not tend to either 

enhance or diminish. 

 

 

Figure 2.26  Examples of Negative, No and Positive Correlation 

 

The main drawback of Pearson Correlation is that does not take into 

consideration whether variable is dependent or independent. For instance, calculating 

the correlation between a high calorie diet and diabetes would result in a high 

correlation of 0.8. Nevertheless, you could exchange the variable around in 
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the correlation coefficient formula and conversely infer that diabetes causes a high 

calorie diet. That looks no uses at all. As a result, as a researcher you have to be 

mindful of the data you are plugging in. Moreover, the Pearson Correlation will not 

contribute you any information about the slope of the line. 

 

2.12.4  Euclidean 

Euclidean Distance is the most ordinary and fundamental use of distance 

(McCune, Grace and Urban, 2002). In most common measures when people consider 

about distance, they will bear on Euclidean distance. Euclidean distance or easily 

'distance' examines the root of square differences between coordinates of a pair of 

objects. In mathematics, the Euclidean distance or Euclidean metric is the "ordinary" 

distance between two points. The Euclidean distance between two points A = (x1, x2, 

x3  …  xn) and B =  y   y2  y3  …  yn) is defined as:  

 

 

However, the Euclidean distance only works for data measured on the same 

scale. Usually, this measure is most often used to compare profile of respondents 

respectively with variables. For instance, suppose a sample consists of compounded 

demographic data of individuals arranged as a respondent-by-variable matrix. Each 

row of the matrix is a vector of n numbers, where n is the number of variables. We 

can evaluate the similarity or distance between any pair of rows and the variables are 

the column. Each column has its own scale that using to determine type and size of 

number. For instance, a measure of income might yield numbers between 0 and 1000 

million, while another variable, a measure of education, might consist of numbers 

from 0 to 100. Even though the income numbers are larger in general than the 

education numbers, the difference is not purposeful because the attributes are 

calculated on dissimilar scales. In order to compare columns, we must consider the 

topic of differences in scale. On the other hand, the row vectors are different. They are 

not variables. Even if one variable has larger numbers than the other, this is not a 

cause for concern because rows are unaffected by scale. With regard to taking 

http://www.statisticshowto.com/what-is-the-correlation-coefficient-formula/


49 

dissimilarities among the rows into account, there is no need to attempt to fine-tune 

for differences in scale. Therefore, Euclidean distance is usually the suitable measure 

for comparing cases. 

 

2.12.15  Mahalanobis Distance 

The Mahalanobis distance was first discovered by the Indian statistician P. C. 

Mahanobis in 1936 (Sapp, Obiakor, Gregas and Scholze, 2007). The Mahalanobis 

distance accounts for the variance of each variable and the covariance between 

variables. This is achieved by transforming the data to make them standardized and 

uncorrelated and then calculating the Euclidean distance for the transformed data. In 

this way, the Mahalanobis distance acts like a univariate z-score, thereby offering a 

solution to measuring distances by taking into account the scale of the data. 

 

The Mahalanobis distance is the distance from X to the quantity μ defined as: 

 

d2M X μ)= X−μ)t∑−  X−μ).dM2 X μ)= X−μ)t∑−  X−μ). 

 

This distance is based on the correlation between variables or the variance–

covariance matrix. It calculates different from the Euclidean distance because 

Mahalanobis considers the correlation of the data set and does not reckon on the scale 

of measurement. Mostly, Mahalanobis distance is famous in cluster analysis and other 

classification method. 

 

2.13  Classifier 

 

2.13.1  Decision Tree 

Typically, Classification and Regression Trees is a classification method 

which uses historical data to create decision trees. Decision trees are then used to 

classify new data. In order to apply CART, the number of pre-assigned class for all of 

the observed data is required. For example, a learning sample for a credit scoring 

system would require information on previous loans (variables) matched with actual 

repayments (classes). Two broadly used methods for constructing decision trees are 
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Classification and Regression Trees (Guyon and Elisseeff, 2003) and ID3/C4.5 

(Hssina, Merbouha, Ezzikouri and Erritali, 2014). Decision trees are demonstrated by 

a set of question. CART always ask “Yes/ o” question such as “Is age greater than 

50?” . The tree attempt to find the best split of the training data based on the quality of 

data which has maximum purity of information gain. Each leaf node corresponds to a 

class label. A new example is classified by following a path from the root node to a 

leaf node. The leaf node reached is considered the class label for that example. The 

process is then repeated for each of the resulting data fragments. The algorithm can 

naturally handle binary or multiclass classification problems.  

CART methodology comprises of tree parts: 1. Construction of maximum tree 

2. To select choice of the right tree size 3. Classification of new data using 

constructed tree 

Here is an example of San Diego Medical Center for classification of their 

patient. 

 

 

 

Figure 2.27  Classification Tree of San Diego Medical Center Patients 

 

First introduced by Breiman, Friedman, Olshen and Stone (1984), CART is a 

well-known decision tree algorithm for supervised machine learning that is applied to 
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both classification and regression problems. A decision tree represents a series of 

decisions. The key components of the tree are a collention of rules for splitting each 

node in the tree, and assigning a class outcome to each terminal node. In this study, 

CART employs the Gini impurity index as a assess to construct a decision tree. 

Consider parent node l that contains data belonging to the j
th 

class, then the impurity 

function for node l is derived as 

 

      i(l) = 1 - ∑ p
2 

(j|l), 

                                     

and the declination of impurity of the split is denoted as 

 

                   ∆ i(l) = i(l) – pL i(nL) – pR i(nR), 

 

where l is a parent node which is split into nodes nL and nR  .  After this, the 

CART strategy is applied by choosing the feature that maximizes the decrease of 

impurity ∆ i(l) at each subsequent node 

 

2.13.2   Naïve Bays 

The naive Bayes algorithm is family of simple probabilistic based on Bayes 

formula to decide which class a novel instance belongs to. The basic idea is that all 

naive Bayes classifiers presume that the value of a specific feature is unconnected of 

the value of any other feature, given the class variable. For instance, a fruit may be 

examined to be an apple if it is red and round with an approximate diameter of 10 cm. 

In order to ascertain the probability of this being an apple, a naive Bayes classifier 

considers each of these attributes individually regardless of any 

possible correlations between them (Dangi and Prashant Ahlawat, 2015). 

Naive Bayes algorithms are a statistical classifier for supervised learning (Hsu, 

Chang and Lin, 2016).   They are based on the principle of conditional probability and 

can forecast class membership probabilities, such as the probability that a given 

sample belongs to a specific class  .Their performance is shown to be excellent in 

some domains but poor on specific domains, e .g ., those with correlated features  .The 

classification system is based on Bayes  ’rule under the assumption that the effect of a 

j 

https://en.wikipedia.org/wiki/Correlation_and_dependence
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particular attribute on a given class is independent of the other one.  This supposition 

that makes computation simple is referred to as class conditional independence  .A 

conditional probability model for the classifier is given as P  (  Ci |x)  Using Bayes’ 

theorem, we can write   

 

 

   

 where Ci is the i
th

 class and x is the input vector .In this case, class variable C 

is conditional on several features: variable x  =x1,  … , xn.  

 

2.13.3  Support Vector Machine 

SVM, originally proposed by Cortes and Vapnik (1995) and Hsu et al. (2016) 

becomes  important in many classification problems for a variety of reasons, such as 

their adjustability, calculation capability, and capacity to deal with large structural 

data. VMs are a recent method to extract information from a dataset  in which 

classification is accomplished by applying a linear or nonlinear separating surface in 

the input space of the dataset. They have been employed in a number of fields 

including bioinformatics, face recognition, text categorization, and handwritten digital 

recognition, among others. They are a binary classifier assigning a new data to a class 

by minimizing the probability of error . 

Given a training set of instance-labelled pairs (xi , yi), i = 1, . . . , l, where xi ∈ 

Rn and y ∈ {   − } l   the  VM requires the solution of the following optimization 

problem: 

 

Its dual is 
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where   is a vector of all ones,        is the upper bound,   

   is an  n  by n  positive semidefinite matrix, and                  

 , where   (     )         
         is the kernel. Here, training vectors are implicitly 

mapped into a higher (maybe infinite) dimensional space by the function  . 

.    

2.13.4  K-nearest 

k-Nearest Neighbors kNN (Bins and Draper, 2001) is an understandable 

method that keeps all feasible cases and classifiers and is contemplated among the 

oldest non-parametric classification algorithms in the beginning of 1970. KNN has 

been used in statistical estimation and pattern recognition. To classify an unknown 

example, the distance function is based on similarity measure such as Euclidean, 

Manhattan measures. After identifying the k smallest distances, and the most 

descripted class in the resultant k classes becomes the output class label. The value of 

k is most often decided either on using a validation set or by cross validation. All two 

distance measures are only apply for continuous variables but for the instance of 

categorical variables of Hamming distance must be utilized and also the technique of 

standardization of numerical variables between 0 and 1. 

 

2.14  Confusion Matrix 

 

A confusion matrix is particular layout table that gives visualization of 

effectiveness of method or illustrate the efficiency of a classification model or 

classifier on a set of test data for which the true values are known. The confusion 

matrix is demonstrated in an understandable way, but the related terminology can be 

complex. It is a various kind of contingency table, with each column of the matrix 

demonstrates the instances in a predicted class while each row demonstrates the 

instances in an actual or true and predicted class.  

https://en.wikipedia.org/wiki/Contingency_table
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CHAPTER 3 

 

IMPROVING FLOATING SEARCH FEATURE SELECTION 

USING GENETIC ALGORITHM 

Filter methods seem to perform more poorly than wrapper methods but are a 

reasonable compromise for feature selection problems. Wrapper methods are broadly 

known to be greater in supervised learning problems since they use an inductive 

algorithm to assess opportunity and thus take the bias of a particular algorithm into 

account. Nevertheless, these algorithms show complexity; for instance, the number of 

executions that the search procedure can result in expensive computational cost, 

especially when shifting to more exhaustive search approaches. A hybrid approach is 

an attractive method due to acquiring the best characteristics of both approaches while 

limiting the influence of their drawbacks. 

Accordingly, supervised strategies for filtering mainly depend on the 

characteristics and relationships between the data and a predefined class label. On the 

contrary, for clustering tasks, this turns out to be a difficult problem because we need 

to establish what is going to be relevant to disclose a structure not known in advance. 

Currently, the aspiration of this research was to develop a new approach to improve 

the quality of the attribute set selected from a filter-based method for reaching the 

gold of high classification accuracy, and so an additional step of filter-based SFFS by 

employing a genetic algorithm was applied, which allowed more variety in the 

candidate feature sets. 

 

3.1  Proposed Method 

 

We now discuss our algorithm for its use in selecting the outstanding subset of 

size d of the total of D attributes, as shown in Figure 3. The inclusion step using MI as 

the measure function (J) is executed to create a set of candidates for inclusion. In the 
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exclusion step, a candidate feature subset is used to create smaller subsets from the 

result of the inclusion step by removing one feature and re-evaluating them. A 

selection subset of size k+1 is created and compared to the previously best subset of 

size k+1 from the inclusion part. If evaluation of the new subset is more qualified than 

the formerly selected set, the exclusion step retains the better one and iterates to 

smaller subsets, or else the algorithm goes back to the inclusion step.  

Our feature improvement step based on GA is included after the exclusion step 

at each iteration. The objective is to replace the weakest attribute to examine whether 

eliminating any feature in the currently picked feature subset and including a 

promising one at each continuous step potentially improves the current attribute 

subset. The chromosome structure consists of binary genes, corresponding to 

individual features. The value of 1 at the i
th

 gene means that the i
th

 feature is chosen; 

otherwise it is 0.  

The initial population is generated from the resulting feature exclusion subsets 

of size k+1 from the exclusion step by first removing the weakest features from the 

best subset resulting in a subset of size. k based on the number of feature subsets in 

each round is referred to. Each remaining feature is thus added to that subset 

generating the niched initial population for GA. The fitness function used in this study 

is MI. Then, a new population is produced by selection, crossover and mutation 

operations. The approach is terminated when the current feature set reaches the size of 

D-2 features. 

Parameter tuning in this experiment is also suggested: a population size of 4-

100 individuals, a bit-flip mutation rate of 0.01, and for a single point crossover, a rate 

of 0.75 and the number of generations was 500. Besides, crossover is helpful against 

local optimum solutions because it allows the algorithm to try combinations of 

innovations from different solutions. Hence, it is assumed that the experimental 

results can solve the unwanted problem of arriving at the local optimum solution. 

We now provide an illustrative example of how the proposed algorithm works 

and how it improves SFFS. Presume that the first five feature sets chosen by the SFS 

approach at each size are {f1}, {f1, f4}, {f1, f4, f5}, {f1, f4, f5, f7} with the 
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corresponding J values of 4.1, 6.2, 9.1 and 10.2, respectively, and the next iteration is 

to determine subsets with five features. 

 

3.1.1  Cross Validation 

Cross validation is a model assessment approach that is better than residuals. 

Data used for model generation is divided into 2 groups, training data and test data. 

Training data is for model training and test data is for model evaluation. Then when 

training is done, the data that was eliminated can be employed to test the performance 

of the learned model on new data. This is the fundamental idea for a whole class of 

model evaluation methods called cross validation. 

Normally, data set does not provide independent test set separately; we have to 

split it into these two groups. An improvement over the holdout method that is often 

used for splitting is k-fold cross validation (k-fold CV). In this method, the data set is 

divided into k subsets and the holdout method is repeated k times. During each 

repetition, one of the k subsets is utilized as the test set and the other k-1 subsets form 

the training set. Afterwards, the average error across all k trials is computed. The 

advantage of this approach is that it is immaterial how the data is divided since every 

data point gets to be in the test set one time only and k-1 times in the training set. The 

drawback of this approach is that the training approach has to be repeat k times, thus 

considerable time is required to evaluate the results. 

 

3.1.2  Discretization for Continuous Data 

Discretization is the procedure of converting continuous values into discrete 

ones so that there are a limited number of intervals, and is usually utilized as a 

preprocessing step. Initially, we find the number of discrete intervals and their 

boundaries, and then associate each interval with a numeric value. Most often, we 

must specify the number of intervals. This method is essential to improving a 

predictive performance model because it can help to deduce the amount of level 

consideration to discard during modeling.  

This research will focus on discretized technique which begins with sorting 

the data set and selecting only duplicate value for cutting point bin. At this step, they 
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find the number of discrete values to represent each bin. The range associated with an 

interval must be divided into k interval depend on number of replicate values. We 

give an illustrative example of discretization process. Suppose that we have one 

dimension data and then data was sorted so that the results of cutting bin value are 

1,2,5,7. 

 

0 1 1 2 2 3 4 5 5 6 7 7 8 9 
 

Afterwards, a discretized process makes the partition decision based on cutting 

bin value. It begins by replacing observed data value into its own bin number.  

 

1 1 1 2 2 3 3 3 3 4 4 4 5 5 
 

3.1.3  Inclusion 

  A feature is added to the feature subset. The SFS method adds a feature to the 

subset up to a total of five: J(f1,f4,f5,f7,f6) = 13. Presume that feature f6 is chosen 

using the SFS method and J for the 5th features is 14.  

3.1.4   Exclusion 

  A feature is removed from the feature subset. The SBS method is applied in 

this step by backtracking and conditionally removing one feature from the subset 

selected in Step 1 and returning an improved subset, e.g. (f1,f5,f6,f7)  j value = 11, 

(f1,f4,f5,f7)  j value = 9,  (f1,f4,f7,f6)  j value = 9.5, and  (f4,f5,f7,f6)  j value = 10. 

In this case, the best feature subset of size 4 is (f1, f5, f6, f7).  

3.1.5   Feature Improvement 

The weakest feature is removed from the subset from of size k the previous 

step which is (f1, f5, f6, f7) by iteratively evaluating the smaller subsets: (f1, f5, f7), 

(f1, f5, f6), (f5, f6, f7) and (f1, f7, f6). In this case, we assume that the best 

performance subset of size 3 is (f5, f7, f6). Then, each feature is added to each subset 

of (f5, f7, f6) in order to find the best four feature subset, either (f5, f7, f6, f1), (f5, f7, 

f6, f2), (f5, f7, f6, f3), (f5, f7, f6, f4), (f5, f7, f6, f8), or (f5, f7, f6, f9.) Top n 
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chromosomes is selected as the initial population for GA and passed through the 

crossover and mutation operations. Note that n is a number between 5 and 10. 

3.1.5.1  Crossover Operation 

Crossover is a genetic operator mainly responsible for creating new 

answer domains in the search area to be investigated; it is a random mechanism for 

swapping information among strings in the mating pool (Huang and Wang, 2006). 

Once a pair of chromosomes has been selected, crossover can take place to produce 

child chromosomes. A crossover point is indiscriminately selected from two randomly 

chosen individuals (parents). This point happens between two bits and separates each 

individual into left and right segments. Crossover then exchanges the left (or the right) 

part of the two individuals, which is referred to as mating with a single crossover 

operation: 

 

Parent A – (f5, f7, f6, f2) 

 

0 1 0 0 1 1 1 0 0 0 

 

 

Parent B – (f5, f7, f6, f1) 

 

1 0 0 0 1 1 1 0 0 0 

 

Suppose the crossover point randomly occurs after the sixth bit, then each new 

child receives one half of each parent’s bits: 

Offspring1 – (f1, f5, f7, f6) 

 

0 1 0 0 1 1 1 0 0 0 

 

 

Offspring2 – (f2, f5, f7, f6) 

1 0 0 0 1 0 1 1 0 0 0 
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This algorithm continues to select parental chromosomes to apply the 

crossover operation. Child chromosomes may have one bit more than the current size 

of k features subset. In this case, a random bit is automatically flipped to preserve the 

size of the chromosome (i.e. current feature set size). 

3.1.5.2  Mutation Operation 

The mutation operation is applied to all of the offspring chromosomes 

from the crossover step. Mutation manages at the bit level by randomly flipping bits 

in the new chromosome within the current population (turning a ‘0’ into ‘1’, and vice 

versa). 

 

Offspring1 – (f5, f7, f6, f1) 

 

1 0 0 0 1 1 1 0 0 0 

 

 

After mutation – (f5, f7, f6, f2) 

 

0 1 0 0 1 1 1 0 0 0 

 

After all child chromosomes have passed through the mutation operator, the 

resultant chromosomes are evaluated by the fitness function. After this, we can 

discover the best performing features subset, which is (f5, f7, f6, f2). We assume that 

J({f5, f7, f6}) = 8.35, and that J({f5,f7, f6, f2}) = 12, which is larger than the prior 

largest value for four features, J = 11 Thus, the best 4-feature subset becomes {f5, f7, 

f6, f2} with J = 12, whereas the best 3-feature subset remains {f1, f4, f5} since J({f1, 

f4, f5}) = 9.1 > J({f5, f7, f6}) = 8.35 

The improvement step helps discover subsets not discoverable by the greedy 

nature of SFFS. From the above example, the SFFS algorithm is not able to produce 

this best 4-feature four subset because it cannot backtrack to the set {f5, f7, f6} as a 

result of J({f1, f4, f5}) = 9.1 > J({f5, f7, f6}) = 8.35., thus could not add feature f2 to 

subset {f5, f7, f6}. Note that f2 is never selected in the first best four feature sets of 

the SFFS method: {f1}, {f1, f4}, {f1, f4, f5} and {f1, f5, f6, f7}. Moreover, after 
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finishing the mutation step, the algorithm control results in feature size subsets to 

correspond with the k-feature subset of each iteration. If results are an equal k-feature 

subset, then the algorithm will randomly position itself to swap bit string values 

depending on situations of 0 to 1 or 1 to 0. 

The example above demonstrates the advantage of our proposed algorithm. 

The algorithm replaces the weak feature (feature f1 in our example) in the feature set 

{f1,f5,f7,f6} with feature 2, which results in a new set of four features {f5, f7, f6, f2} 

which has a larger J value. Therefore, the search approach of our proposed method is 

more thorough than the SFFS algorithm, so it is more effective.  

 

3.1.6  Terminating Condition 

After each iteration, the selection / crossover / mutation cycle continues until 

all possible combinations of chromosomes in the population have been evaluated. The 

greater the fitness value, the higher the probability of that chromosome being selected 

for reproduction. This generational procedure is reiterated until a pre-determined 

stopping condition has been discovered. We discontinue the algorithm when the 

current feature set reaches d < D features, where D is the total number of features in 

the dataset). The pseudo-code is depicted in Figure 3. 

A fitness function is commonly required in GAs to appraise a candidate 

chromosome of an individual to assess whether the latter should survive or not. At 

each iteration, calculation of the fitness function is processed repeatedly, which, 

because of its simplicity, is a fast process, although it still impacts performance. In 

our model, we use the MI criterion as a fitness function. Basically, it calculates the 

amount of an information feature set in a group of variables for the sake of predicting 

the dependent data. In addition, the fitness function to be calculated includes the 

calculation of the classification rate, which requires a classifier. 
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Input: Ym is a feature set, m is a predefined number of selected features, J is a 

criterion function. Pc is probability of crossover, Pm is probability of mutation, 

Population is set of individuals, max_generation is the maximum number of 

generations, and Fitness is a function which determines quality of individuals. 

Output: The best solution in all generation. 

(1) Inclusion  

                       Initialize: Y0 = {∅}; m = 0  

      Find the best feature and update Ym  

      x 
+
 = arg max [J(Ym − x)]  

 

      Ym = Ym + x 
+
; m = m + 1  

(2) Conditional Exclusion  

      Find the worst feature  

x 
−
 = arg max [J(Ym − x)]   

                      

       If J(Ym − x 
−
) > J(Ym) then  

       Ym+1 = Ym − x;  

  Go to Step 3 Else Go to Step1 

(3) Feature Improvement Step. 

          Repeat  

              population  SBFS feature subsets Ym 

                    generation = 0; 

              loop for i from 1 to size(Population) do 

                    s1  selection (Population, Fitness) 

                    s2  selection (Population, Fitness) 

                  child  crossover (s1,s2) with pc and check feasibility of n element 

                 child  mutate(child)  with pm and check feasibility of n element 

                 generation = generation +1 

               until generation < max_generation 

        m = m + 1 

       return the best individual solution Ym 

 

Figure 3.1  Pseudo-Code of the Proposed Algorithm 

x/∈Ym 

 

x/∈Ym 
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Figure 3.2  Structure of Proposed Algorithm 
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3.2  Evaluation 

 

3.2.1  Data Sets 

In this chapter, the datasets used in this work are described and the efficiency 

of the proposed method is empirically evaluated. To evaluate the proposed feature 

selection algorithm, 20  standard datasets of various sizes and complexities from the 

UCI machine learning repository (https://archive.ics.uci.edu/ml/datasets.html) are 

used in the experiments. These datasets were chosen because they have been 

extensively used for classification and in other research on the feature selection task, 

and have been frequently applied as a benchmark to compare the performance of 

classification methods and consist of a mixture of numeric, real and categorical 

attributes. Numeric features are pre-discretized by the method demonstrated by Tsai et 

al. (2008). The focus of this study is on a discretization technique which begins by 

sorting a dataset and selecting only duplicate values for the cutting point bin. At this 

step, the number of discrete values to represent each bin is found. The range 

associated with an interval is divided into k intervals depending on the number of 

replicated values. This modification enables the discretization process to be faster and 

to yield a higher performance than is otherwise possible. Three classification 

modeling techniques are used in the experiments which consist of Classification and 

Regression Tree CART, Support Vector Machine SVM, and Naïve Bayes  .Training 

and testing data is used as provided in the datasets . For those not providing separate 

testing data, a 10-fold cross validation is applied  .To appraise a feature subset, MI is 

applied as the criterion function. 

Each instance in the training set contains one class label and several feature 

variables. The objective of a classifier is to generate a model (based on the training 

data) which predicts the target values of the test data given only the test datan 

attributes. Three classification approaches are employed in the experiments which 

consist of classification and regression tree (CART), Naïve Bayes and support vector 

machine (SVM).  
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3.2.2   Experimental Setup 

From the experiments, we found that a suitable set of parameters are follows: a 

population size of 4-100 individuals. We choose crossover operator from two 

operators (Single- point and Two-point operator). Crossover rate is varied between 

0.75. Uniform mutation operator is used and mutation rate is 0.01. Lastly, the number 

of generation is 500. 

 

 

Table 3.1  Data Used in Experiment 

 

Dataset 
Attribute 

Characteristics 

No. of 

Instances 

No. of 

attributes 

No. of 

Classes 

Wine Integer 178 13 3 

Breast Cancer 

(Original) 

Integer 699 10 2 

Breast Cancer 

(WDBC) 

Real 569 32 2 

Breast Cancer 

(WPBC) 

Real 198 34 2 

Iris Real 150 4 3 

Pima-Indian diabetes Integer, Real 768 8 2 

Abalone Categorical, 

Integer, Real 

4,177 8 3 

Dermatology Categorical, Real 366 34 6 

Heart Categorical, Real 270 13 2 

German (Credit card)     
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Table 3.1  (Continued) 

 

Dataset 
Attribute 

Characteristics 

No. of 

Instances 

No. of 

attributes 

No. of 

Classes 

Lung cancer Integer 32 56 3 

Soybean Integer 307 35 4 

Spambase Integer, Real 4,601 57 2 

Glass Identification Real 214 10 7 

Contact Lens Categorical 24 4 3 

Sonar Real 208 60 2 
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Table 3.2  Experimental Results with CART, SVM and Naïve Bayes Classifier 

 

Dataset Original 

Datasets 

CART 

Original 

Datasets 

SVM 

 Original  

Datasets  

Naïve Bayes 

Proposed 

Method with 

CART 

Proposed 

Method with 

 SVM 

Proposed 

Method with 

Naïve Bayes 

No. of 

Attributes 

Wine 89.87% 62.00% 89.00% 100.00%(7) 100.00%(7) 97.00%(7) 13 

Breast Cancer 

(Original) 

93.13% 93.13% 89.55% 97.82% )5(  98.00(6) 95.68%(6) 10 

Breast Cancer 

(WDBC) 

92.23% 85.11% 80.00% 95.49% )9(  96.00%(11) 93.00%(11) 32 

Breast Cancer 

(WPBC) 

72.00% 74.23% 70.00% 83.00% )6(  85.00%(6) 82.00%(6) 34 

Iris 94.00% 94.00% 92.02% 98.44% )3(  100%(3) 95.68%(3) 4 

Pima- Indian  

Diabetes 

72.51% 75.00% 69.23% 73.18% )4(  78.00%(4) 72.00%(4) 8 

Abalone 49.07% 55.00% 48.02% 52.00% )3(  61.00%(3) 50.26%(3) 8 

Dermatology 95.08% 95.00% 91.00% 98.83% )66(  99.00%(18) 95.10%(18) 34 

Heart 76.67% 79.00% 73.00% 80.00%(6) 81.11%(5) 79.00%(5) 13 

German 68.50% 69.4% 60.00% 73.50% )6(  71.50%(7) 69.00%(7) 20 

  

6
6
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Table 3.2  (Continued) 

 

Dataset Original 

Datasets 

CART 

Original 

Datasets 

SVM 

 Original  

Datasets  

Naïve Bayes 

Proposed 

Method with 

CART 

Proposed 

Method with 

 SVM 

Proposed 

Method with 

Naïve Bayes 

No. of 

Attributes 

Lung cancer 59.67% 60.00% 57.20% 75.00% )62(  83.33%(21) 72.00%(21) 56 

Soybean 85.00% 85.00% 83.02% 100.00% )66(  100.00%(20) 98.28%(20) 35 

Spambase 93.26% 85.00% 81.00% 96.00% )66(  92.56%(26) 91.76%(26) 57 

Glass  

Identification 

62.00% 75.00% 66.00% 63.13% )5(  78.00%(6) 68.00%(6) 10 

Teaching 

Assistant 

54.92% 53.02% 53.10% 58.03% )6(  61.86%(3) 62.00%(3) 5 

Contact Lens 76.00% 77.00% 72.00% 80.00% )6(  100.00%(2) 85.00%(2) 4 

Sonar 69.50% 61.00% 62.65% 76.86% )7(  62.98%(7) 67.00%(7) 60 

Statlog 

(Australian) 

65.45% 66.03% 59.00% 74.30% )7(  79.04%(7) 75.24%(7) 14 

Ionosphere 84.00% 85.00% 84.00% 88.00% )5(  90.62%(8) 90.10%(8) 34 

Image 

Segmentation 

85.00% 83.10% 79.34% 90.95% )24(  88.57%(12) 85.10%(12) 19 

 

6
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Table 3.3  Comparison on Classification Accuracy with Other Recently Reported Methods on Common Datasets 

 

Dataset PM* CART PM* SVM A B C D E F G 

Breast Cancer (Original) 98.10% 98.00% - 97.40% 94.40% 96.50% - - 94.80% 

Breast Cancer (WDBC) 97.0% 96.0% 95.40% - - - - - 93.00% 

Iris 98.00% 100.00% 97.30% - - 97.30% 96.70% 96.60% - 

Pima Indian Diabetes 78.00% 78.00% 73.80% 79.90% 76.00% 73.20% - - - 

German 74.00% 72.00% 72.60% 76.20% - 74.50% - 69.90% - 

Soybean 100.00% 100.00% - 88.30% - 97.80% - - - 

Wine 100.00% 100.00% - - 91.60% 98.30% - - - 

Sonar 85.86% 85.00% - - 83.70% - - - - 

Abalone 58.00% 61.00% 54.50% - - - 30.00% 25.70% - 

Dermatology 98.85% 99.9% - - - 95.40% - - - 

Contact Lenses 80.00% 100.00% - - - - 75.00% - - 

Lung Cancer 96.24% 96.00%     96.875%   

 

Note: *Proposed Method 

Source: A: Liu, Motoda and Yu, 2004; B: Chotirat Ann Ratanamahatana and Gunopulos, 2002; C: Anwar, Qamar and Qureshi, 2014; D: Yang, Cao and Zhang, 

2010; E: Gupta and Ghafir, 2012; F: Tsai, Lin, Hong and Hsieh, 2011; G: Lavanya and Rani, 2011. 

6
8
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3.2.3  Discussions 

We studied the effectiveness of the proposed feature selection using three 

different classification methods: CART, SVM and Naïve Bayes on 20 standard UCI 

datasets.  Two performance measures are evaluated: classification accuracy and 

number of selected features. 

Classification accuracy is the most common and simplest measure to evaluate 

a classifier. It is defined as the proportion of the total number of predictions that are 

correct. Furthermore, a good feature selection chooses a small feature subsets from 

the original features that is sufficient to predict the target label. The 10-fold cross 

validation procedure is applied to report the result figures. 

The results in Table 2 show  that the classification accuracy was noticeably 

enhanced by the proposed algorithm with all classifiers compared to that without 

feature selection. The best performance was where the accuracy achieved 100% with 

7, 22, 3, and 3 features selected for the Wine, Soybean, Contact Lenses and Iris 

datasets, respectively, using SVM. Additionally, high classification accuracy is 

achieved with small feature subsets were Ionosphere, Soybean, Breast Cancer 

(WDBC), and Statlog (Australian). 

It can be seen that the classification accuracies using SVM, CART, and Naïve 

Bayes significantly improved from 5% to 60% after applying the proposed algorithm 

with feature subsets for the Wine, Breast Cancer, Statlog (Australian), Soybean, 

Ionosphere, Heart and Lung cancer datasets. We also noted that Naïve Bayes yielded 

lower classification accuracy than SVM or CART.  

In 97.70%  of the cases, the proposed technique improved classification 

effectiveness and greatly reduced the number of features selected, thus increasing 

classification efficiency, for all of the classification methods . We actually achieved 

100.00 %selection accuracy in four datasets with the proposed method. 

Regarding the classification methods, SVM yielded the highest classification 

accuracy in 60 %of the datasets and yielded equal classification accuracy 10% while 

CART gave the highest accuracy in 30 %of the datasets. 

As shown in table 3, the proposed algorithm based on SVM and CART 

outperformed the others for 8 out of 12 datasets and 7 out of 12 datasets, respectively. 

The SVM classifier achieved better results with the Wine, Soybean and Iris datasets 
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by 1.60%, 12.00% and 17.85%, respectively, compared with recent research on 

feature selection by (Yang et al., 2010), and a 2.6% improvement with the Iris dataset 

compared with a study of Mohit, Verma, Katoch, Vanjare, and Omkar (2015). 

Not only did the proposed algorithm reduced features from 13 to 7, 35 to 20, 

34 to 8, 13 to 5 and 56 to 12 for the Wine, Soybean, Ionosphere, Heart and Lung 

cancer datasets, respectively, but also the classification accuracies improved by 

12.35%, 17.64%, 7.14%, 26% and 60% when compared with the accuracy using full 

datasets. With the Soybean dataset, the proposed algorithm decreased the number of 

features from 35 to 20 and the classification accuracy using SVM was 100.00%, 

which is much higher compared to the others methods. Moreover, the proposed 

algorithm also decreased the number of attributes from 8 to 3 and 4 to 2 with the 

Abalone and Contact Lens datasets, respectively, and accuracy was again higher 

compared to the other methods. 

The proposed algorithm based on a feature selection algorithm produced 

effective and small feature sets with higher classification accuracy on several different 

datasets because of the feature improvement step using a genetic algorithm that 

replaced the weakest features. The algorithm performed a more comprehensive search 

with a more valuable chance of finding the optimum solution. Our proposed algorithm 

was able to extract a more relevant and effective feature set from the original feature 

set by employing the genetic operations of selection, crossover and mutation operators 

to discover efficient and effective feature subsets. 
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CHAPTER 4 

 

IMPROVING FLOATING SEARCH FEATURE SELECTION 

USING NICH GENETIC ALGORITHM 

As aforementioned, genetic algorithms can be extended by niching techniques, 

and in recent years, a lot of research has been accomplished in this area. De Jong 

(1975) invented the niching concept (Mahfoud, 1995; Pedroso, 1996). A niche can be 

considered as a subspace in the environment that has various subpopulations in the 

investigation scope. The niche method generally employs a substitution approach 

when creating the new generation, which makes the individuals develop in their 

special search space. The niche technology maintains population diversity and allows 

a GA to investigate many peaks in parallel. Moreover, they avoid the GA from 

becoming captured in the local optimum of the search area. In this chapter, an 

attribute selection technique for classification employing a niching method to attain 

the optimum solution more closely is proposed.  

 

4.1  The Proposed Method 

 

We now discuss our approach to choose the best subset of size d of the total of 

D attributes. The inclusion step using MI as the criterion function (J) is executed to 

create a set of candidates for inclusion. In the exclusion step, a candidate attribute 

subset is used to create smaller subsets from the result of the inclusion step by 

removing one feature and re-evaluating them. A selection subset of size k+1 is 

generated and compared to the previously best subset of size k+1 from the inclusion 

part. If evaluation of the new subset is more qualified than the formerly chosen set, 

the exclusion step retains the better one and iterates to smaller subsets, or else the 

method goes back to the addition stage.  
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Our feature improvement step based on GA is incorporated after the exclusion 

step at each iteration. The chromosome structure consists of binary genes, 

corresponding to individual features. The value of 1 at the i
th

 gene means that the i
th

 

feature is selected; otherwise it is 0.  

The initial population is generated from the resulted subsets of size k+1 from 

the exclusion step by first removing the weakest features from the best subset 

resulting in a subset of size k. Each remaining feature is thus added to that subset 

generating the niched initial population for GA. The fitness function used in this study 

is MI. Then, a new population is created by selection, crossover and mutation 

operations. The procedure is terminated when the current attribute set reaches the size 

of D-2 features. 

We now provide an illustrative example of how the proposed algorithm works 

and how it improves SFFS. Suppose that the first five attribute sets chosen by the SFS 

method at each size are {f1}, {f1, f4}, {f1, f4, f5}, {f1, f4, f5, f7} with the 

corresponding J values of 4.1, 6.2, 9.1 and 10.2, respectively, and the next iteration is 

to determine subsets with five features. 

 

4.2  Step 1: Inclusion 
 

 An attribute is included to the variable subset. The SFS approach adds a 

feature to the subset up to a total of five: J(f1,f4,f5,f7,f6) = 13. Suppose that attribute 

f6 is selected using the SFS method and J for the 5th features is 14.  

 

4.3  Step 2: Exclusion 
 

 A feature is removed from the feature subset. The SBS method is applied in 

this step by backtracking and conditionally removing one feature from the subset 

selected in Step 1 and returning an improved subset, e.g. (f1,f5,f6,f7)  j value = 11, 

(f1,f4,f5,f7)  j value = 9,  (f1,f4,f7,f6)  j value = 9.5, and  (f4,f5,f7,f6)  j value = 10. 

In this case, the best feature subset of size 4 is (f1, f5, f6, f7).  
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4.4  Step 3: Feature Improvement 

 

The weakest feature is removed from the subset from of size k the previous 

step which is (f1, f5, f6, f7) by iteratively evaluating the smaller subsets: (f1, f5, f7), 

(f1, f5, f6), (f5, f6, f7) and (f1, f7, f6). In this case, we assume that the best 

performance subset of size 3 is (f5, f7, f6).  Then, each feature is added to each subset 

of (f5, f7, f6) in order to find the best four feature subset, either (f5, f7, f6, f1), (f5, f7, 

f6, f2), (f5, f7, f6, f3), (f5, f7, f6, f4), (f5, f7, f6, f8), or (f5, f7, f6, f9.) Top n 

chromosomes is selected as the initial population for GA and passed through the 

crossover and mutation operations. 

4.4.1  Crossover Operation 

Once a pair of chromosomes has been chosen, crossover can take place to 

generate child chromosomes. A crossover location is unexpectedly chosen from two 

randomly selected individuals (parents). This point happens between two bits and 

separates each individual into left and right sections. Crossover then exchanges the 

left (or the right) segment of the two individuals therefore: 

 

Parent A – (f5, f7, f6, f2) 

 

0 1 0 0 1 1 1 0 0 0 

 

 

Parent B – (f5, f7, f6, f1) 

 

1 0 0 0 1 1 1 0 0 0 

 

Suppose the crossover point randomly occurs after the sixth bit, then each new 

child receives one half of each parent’s bits: 
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Offspring1 – (f1, f5, f7, f6) 

 

0 1 0 0 1 1 1 0 0 0 

 

Offspring2 – (f2, f5, f7, f6) 

 

1 0 0 0 1  1 1 0 0 0 

 

This algorithm continues to select parental chromosomes to apply the 

crossover operation. Child chromosomes may have one bit more than the current size 

of k features subset. In this case, a random bit is automatically flipped to preserve the 

size of the chromosome (i.e. current feature set size). 

4.4.2  Mutation Operation 

The mutation operation is employed to all of the offspring chromosomes from 

the crossover step. Mutation performs at the bit level by unexpectedly flipping bits in 

the new chromosome within the current population (turning a ‘0’ into ‘1’, and vice 

versa). 

 

Offspring1 – (f5, f7, f6, f1) 

 

1 0 0 0 1 1 1 0 0 0 

 

 

After mutation – (f5, f7, f6, f2) 

 

0 1 0 0 1 1 1 0 0 0 

 

After all child chromosomes have passed through the mutation operator, the 

resultant chromosomes are evaluated by the fitness function. After this, we can 

discover the best performing features subset, which is (f5, f7, f6, f2). We assume that 

J({f5, f7, f6}) = 8.35, and that J({f5,f7, f6, f2}) = 12, which is greater than the prior 
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largest value for four features, J = 11 Therefore, the best 4-feature subset becomes 

{f5, f7, f6, f2} with J = 12, whereas the best 3-feature subset remains {f1, f4, f5} 

since J({f1, f4, f5}) = 9.1 > J({f5, f7, f6}) = 8.35 

The improvement step helps discover subsets not discoverable by the greedy 

nature of SFFS. From the above example, the SFFS algorithm is not able to produce 

this best 4-feature four subset because it cannot backtrack to the set {f5, f7, f6}, thus 

could not add feature f2 to subset {f5, f7, f6}. Once the mutation step has ended, the 

algorithm ensures that the results in the feature size subsets correspond to the k-

feature subset during each iteration. In the case where the results are an equal k-

feature subset, the algorithm will swap bit string values (from 0 to 1 or 1 to 0) at 

random positions. 

The example above demonstrates the advantage of our proposed algorithm. 

The algorithm substitutes the powerless attribute (feature f1 in our example) in the 

feature set {f1,f5,f7,f6} with feature 2, which results in a new set of four features {f5, 

f7, f6, f2} which has a larger J value. Therefore, the search approach of our proposed 

method is more complete than the SFFS algorithm, so it is more effective.  

 

4.5  Step 4: Deterministic Crowding Step 

 

After all of the children have already mutated, the basis of crowding is to 

employ tournament selection to the parent-child pairs with a hamming distance 

measure. In sample-based crowding, we determine which of the two will remain in 

the population (replacement phase) using tournament selection decided by the 

smallest hamming distance value between the parent and the child. 

 

Parent A – (f5, f7, f6, f2) 

 

0 1 0 0 1 1 1 0 0 0 
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Parent B – (f5, f7, f6, f1) 

 

1 0 0 0 1 1 1 0 0 0 

 

 

Child A – (f5, f7, f4, f2) 

 

0 1 0 1 1 0 1 0 0 0 

 

 

Child B – (f5, f7, f6, f2) 

 

0 1 0 1 1 0 1 0 0 0 

 

 

Hamming Distance (parent a, child a) = 1.2; 

Hamming Distance (parent b, child b) = 1.1; 

Hamming Distance (parent a, child a) = 1.3; 

Hamming Distance (parent b, child b) = 1.5; 

Fitness value (parent a) = 9.3 

Fitness value (parent b) = 8.5 

Fitness value (child a) = 9.0 

Fitness value (child b) = 7.4 

 

In this case, the total distance of ([d (parent a, child a) + d (parent b, child b)] 

is 2.3, which is less than [d(parent a, child b)+d(parent b, child a)]) 2.8; hence, the 

fitness of child a is less than parent a. The algorithm replaces parent with a child from 

the current population pool. Consequently, a new niche will occur and yield more 

diversity in the population. Finally, new feature subset (f5, f6, f2, f8), which has a 

larger J value than (f5, f7, f6, f2) is discovered. For this reason, the search approach of 

our proposed method is more comprehensive than the SFFS approach, so it is more 

effective. 
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4.6  Step 5: Terminating Condition 

 

After each iteration, the selection / crossover / mutation cycle continues until 

all possible combinations of chromosomes in the population have been evaluated. The 

better the fitness value, the greater the probability of that chromosome being chosen 

for replication. This generational procedure is reiterated until a pre-determined 

termination condition has been reached. We terminate the algorithm when the current 

feature set accomplishes d < D attributes, where D is the total number of attributes in 

the dataset. The pseudo-code is depicted in Figure 3. 

A fitness function is commonly needed in GAs to evaluate a candidate 

chromosome of an individual to assess whether the latter should survive or not. At 

each iteration, calculation of the fitness function is processed repeatedly, which, 

because of its simplicity, is a fast process, although it still impacts performance. In 

our model, we use the MI criterion as a fitness function. Basically, it reckons the 

amount of an information feature set in a group of variables for the sake of predicting 

the dependent data. In addition, the fitness function to be calculated includes the 

calculation of the classification rate, which requires a classifier. 

 
 

Input: Ym is a feature set, m is a predefined number of selected features, J is a 

criterion function. Pc is probability of crossover, Pm is probability of mutation, 

Population is set of individuals, max_generation is the maximum number of 

generations, and Fitness is a function which determines quality of individuals. 

Output: The best solution in all generation. 

(1) Inclusion  

      Initialize: Y0 = {∅}; m = 0  

      Find the best feature and update Ym  

      x 
+
 = arg max [J(Ym − x)]  

 

      Ym = Ym + x 
+
; m = m + 1  

       (2) Conditional Exclusion  

      Find the worst feature  

x 
−
 = arg max [J(Ym − x)]   

                     

x/∈Ym 

x/∈Ym 

 



78 

 

        

        If J(Ym − x 
−
) > J(Ym) then  

       Ym+1 = Ym − x;  

  Go to Step 3 Else Go to Step1 

  (3) Feature Improvement Step. 

          Repeat  

              population  SBFS feature subsets Ym 

                    generation = 0; 

              loop for i from 1 to size(Population) do 

                    p1  selection (Population, Fitness) 

                    p2  selection (Population, Fitness) 

                  child  crossover (p1,p2) with pc and check feasibility of n element 

                  child  mutate(child)  with pm and check feasibility of n element 

                    d1 hamming_distance(p1, child1)  

                   d2 hamming_distance(p2, child2) 

                        d3 hamming_distance(p2, child1)  

                   d4 hamming_distance(p1, child2) 

                           If (d1 + d2) <= (d3+d4) 

                  If (Fitness(child2) >Fitness(p2) then replace p2 with child2; 

                  If (Fitness(child1) > Fitness(p1) then replace p1 with child1; 

            ELSE 

                If (Fitness(child1) >Fitness(p2) then replace p2 with child1; 

                If (Fitness(child2) > Fitness(p1) then replace p1 with child2; 

          End if 

                        Fitness(child); 

               generation = generation +1 

           until generation < max_generation 

        m = m + 1 

       return the best individual solution Ym 

 

Figure 4.1  Pseudo-Code of the Proposed Algorithm 
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4.7  Hamming Distance 

 

The hamming distance (Norouzi, Fleet and Salakhutdinov, 2012) is the 

number of digit positions in which the matching digits of two binary words of the 

same range are dissimilar.  The approach can be broaden to other notation systems. 

For instance, the Hamming distance between 1011101 and 1001001 is two.  

Here is another example of string value: 

if 

s1 = ‘CATS’ 

s2 = ‘DOGS’ 

then 

 distance = 3 

For this reason, it is necessary to change all three substitutions, thereby 

transforming from s1 to s2. 

cats =>dats  

dats => dots (replace 'o' for 'a') 

dots => dogs (replace 'g' for 't') 

 

4.8  Experimental Results 

 

4.8.1  Data Sets 

Data used in the experiments are 20 standard data sets with various sizes from 

the UCI machine learning repository. Details of the data sets are shown in Table 4.1 
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Table 4.1  Data Used in Experiment 

 

Dataset Feature 

Characteristics 

No. of 

Instances 

No. of 

Features 

No. of 

Classes 

Wine Integer 178 13 3 

Breast Cancer 

(Original) 

Integer 699 10 2 

Breast Cancer 

(WDBC) 

Real 569 32 2 

Breast Cancer 

(WPBC) 

Real 198 34 2 

Iris Real 150 4 3 

Pima-Indian diabetes Integer, Real 768 8 2 

Abalone Categorical, 

Integer, Real 

4,177 8 3 

Dermatology Categorical, 

Real 

366 34 6 

Heart  Categorical, 

Real 

270 13 2 

German  

(Credit card) 

Categorical, 

Integer 

1,000 20 2 

Lung cancer Integer 32 56 3 

Soy bean Integer 307 35 4 

Spambase Integer, Real 4,601 57 2 

Glass Identification Real 214 10 7 

Teaching Assistant Categorical, 

Integer 

151 5 3 

Contact Lens Categorical 24 4 3 

Sonar Real 208 60 2 

Statlog (Australian) Categorical, 

Integer, Real 

690 14 2 

Ionosphere Integer, Real 351 34 2 

Image Segmentation Real 2,310 19 7 
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4.8.2  Experiment Evaluation 

Three classification modeling techniques are used in the experiments which 

consist of Classification and Regression Tree (CART), Support Vector Machine 

(SVM), and Naïve Bayes. Training and testing data is used as provided in the 

datasets. For those not providing separate testing data, a 10-fold cross validation is 

applied. To evaluate a feature subset, MI is applied as the criterion function.  

Table 4.2  Classification Effectiveness 

 

Dataset Original 

Datasets 

No. of 

Attributes 

PM* 

 CART 

PM* 

 SVM 

PM* 

Naïve 

Bayes 

Wine 89.87 13 100.00 (7) 100.00(7) 97.14(7) 

Breast Cancer 

(Original) 

93.13 10 97.82(5) 97.85(5) 95.68(5) 

Breast Cancer 

(WDBC) 

92.23 32 95.499(9) 96.13(9) 91.00(9) 

Breast Cancer 

(WPBC) 

72.00 34 83.00(6) 86.26(6) 80.00(6) 

Iris 94.00 4 98.44(3) 100(3) 95.68(3) 

Pima- Indian 

Diabetes 

72.51 8 73.178(4) 76.04(4) 71.89(4) 

Abalone 49.07 8 52.00(3) 58.00(3) 49.26(3) 

Dermatology 95.08 34 98.83(26) 98.85(26) 94.15(26) 

Heart 76.67 13 80.00(6) 81.11(6) 79.00(6) 

German 68.50 20 73.50(6) 71.50(6) 69.00(6) 

Lung cancer 59.67 56 75.00(21) 83.33(21) 72.00(21) 
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Table 4.2  (Continued) 

 

Dataset Original 

Datasets 

No. of 

Attributes 

PM* 

 CART 

PM* 

 SVM 

PM* 

Naïve 

Bayes 

Soy bean 85.00 35 100.00(22) 100.00(22) 98.28(22) 

Spambase 93.26 57 96.00(26) 92.00(26) 91.76(26) 

Glass Identification 62.00 10 63.13(5) 66.67(5) 65.00(5) 

Teaching Assistant 54.92 5 58.03(2) 61.86(2) 62.00(2) 

Contact Lens 76.00 4 80.00(2) 100.00(2) 85.00(2) 

Sonar 69.50 60 76.86(7) 62.98(7) 67.00(7) 

Statlog (Australian) 65.45 14 74.30(7) 79.04(7) 75.24(7) 

Ionosphere 84.00 34 88.00(5) 90.62(5) 90.10(5) 

Image Segmentation 85.00 19 90.95(14) 88.57(14) 85.10(14) 

*Proposed Method 

Note. Results Expressed as Percentages 
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4.8.3  Comparisons with Other Approaches 

 

Table 4.3  Comparison with Other Previously Report Method on Common Datasets 

 

Dataset PM
*
 

CART 

PM
*
 

SVM 

A 

 

B C D E F G 

Breast Cancer 

(Original) 

97.8 97.9 - 97.4 94.4 96.5 - - 94.8 

Breast Cancer 

(WDBC) 

95.5 96.1 95.4 - - - - - 93.0 

Iris 98.4 100 97.3  - 97.3 96.7 96.6 - 

Pima Indian 

Diabetes 

73.2 76.0 73.8 79.9 76.0 73.2 - - - 

German 73.5 71.5 72.6 76.2 - 74.5 - 69.9 - 

Soybean 100 100 - 88.3 - 97.8 - - - 

Wine 100 100 - - 91.6 98.3 - - - 

Heart 80.0 81.1 - - 61.1 84.8 87.1 - - 

Sonar 76.8 62.9 - - 83.7 - - - - 

Abalone 52.0 58.0 54.5 - - - 30.0 25.7 - 

Dermatology 98.8 98.9 - - - 95.4 - - - 

Contact 

Lenses 

76.0 100 - - - - 75.0 - - 

 

*Proposed Method 

Source: Results Expressed as Percentages, A: Liu et al., (2004); B: Chotirat Ann Ratanamahatana and 

Gunopulos (2003); C: Anwar et al., (2014); D: Yang et al., (2010); E: Gupta and Ghafir 

(2012); F: Tsai et al., (2011); G: Lavanya and Rani (2011). 
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4.8.4  Discussion 

The proposed technique employs the crowding method, which is an additional 

algorithm continuing from the genetic method to the filter-based feature selection 

method proposed in Chapter 3. This technique replaces similar individuals in a 

population and thus yields more diversity, which assures the slowing down of the 

premature problem of a traditional GA. The algorithm employs mutual information 

and hamming distance as a feature subset evaluation function by which an individual 

with higher fitness will survive and stay in the next generation. The proposed 

technique was evaluated using 20 standard datasets from the UCI repository with 

three different classification methods, and from the results, was found to enhance the 

accuracy of feature selection. In this study, the proposed method was only applied to 

classification problems in which a class attribute guides the search for features that 

are related or relevant to it. Moreover, it performed significantly well in comparison 

with other previously reported studies. 

 



CHAPTER 5 

 

CONCLUSION AND RECOMMENDATION FOR FUTURE  

 

5.1  Conclusion 

 

Attribute selection is critical to the performance of classification, and thus a 

feature selection algorithm that improves the performance of SFFS by incorporating a 

feature improvement step based on a genetic algorithm was proposed. This step helps 

to discover important subsets that are not possible using SFFS alone. The algorithm 

employs mutual information as a feature subset evaluation function. The proposed 

technique was evaluated using 20 standard datasets from the UCI repository with 

three different classification methods. To enhance the performance, preprocessing 

was applied and many definitions of feature relevance, feature selection, and optimal 

feature subsets were combined. The common process of attribute selection was 

presented with subset generation and assessment, and terminating criteria. There are 

three mechanisms of feature selection methods, namely filter, wrapper and hybrid, all 

of which are described in detail in the literature evaluation section. The drawbacks, 

benefits, and characteristics of feature selection are reviewed, which helps to 

understand all aspects of dimensional categorizations of feature selection algorithms 

and the history of their development, to yield insight into future challenges and 

research directions.  

The contributions of this work are as follows. This research was based on 

filter-based feature selection because it has been widely accepted that it yields 

moderate accuracy with low computation cost. Our proposed algorithm enhanced the 

most up-to-date SFFS algorithm by adding an additional search step which 

incorporated a genetic algorithm at each sequence to check whether it can enhance the 

current feature subset. Lastly, our method contributes closer to the optimum solution 

for many selected subsets and its execution required considerably less time compared 
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to previously reported methods. The experimental outcomes show that the proposed 

attribute selection technique significantly improved classification accuracy and 

resulted in a much smaller feature subset, thus improved efficiency and outperformed 

other feature selection methods, especially when compared with other feature 

selection algorithms, and also yielded good results with a SVM classifier.  

 

5.2  Future Work 

 

Even though we applied a genetic algorithm to introduce more candidate 

feature subsets and MI to capture important information of an individual chromosome 

for the GA, there is no guarantee of achieving the highest classification results. 

Moreover, many factors are required to move closer to the optimal solution, some of 

which could be further studied.  

The number of criterion functions could be more than two. We could apply a 

number of simple criterion functions instead of two complicated criterion ones; 

however, they must be consistent and should be suitable for the problem. Moreover, 

the number of candidate features must decrease continuously from the first criterion 

function until the best one is obtained from the last one. 

Fitness sharing of niching techniques is an alternative solution to optimize an 

objective function. GAs are efficient algorithms for solving a wide range of 

optimization problems, but there is no guarantee that the results will end up close to 

the local or global optimum solution. Nevertheless, a simple way to increase the 

probability of finding the global optimum is to adjust the probability of crossover, 

mutation, and the generation parameter for the decision-maker to select from the 

alternative solution. Moreover, there is another approach called the niching genetic 

algorithm for which its concept in brief is a repeated search of the same region of 

space. The benefit of this is to aid the formation of stable subpopulations in the search 

area so that each subpopulation is formed and located closer to the global or local 

optimum solutions. Although there are many publications on niching research, it has 

not yet been brought together with SFFS.  

In our experiments, preprocessing was applied through the first steps in the 

form of discretization. Nevertheless, there are several ways to discretize that affect 
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accuracy. The proposed method includes the sorting of the dataset and selecting only 

duplicate values for cutting point binning, and during this step, the number of discrete 

values to represent each bin are found. The range associated with an interval is 

divided into k interval depending on the number of replicate values. However, for 

other datasets, there could be different preprocessing steps; for example, instance-

wise normalization and then feature-wise normalization, or vice versa. Further study 

on how preprocessing should be achieved and how it affects training performance and 

classification accuracy needs to be carried out. 

To summarize, the study targeted understanding of the importance of the 

feature selection process and various ways of performing feature selection. The 

majority of the research focused on a labeled dataset, for which a genetic algorithm 

was introduced in supervised classification models to assist feature selection. This 

helped by removing irrelevant features and creating a subset of prominent features. 

Lastly, mutual information is a measure to capture significant feature subsets 

incorporated with the SFFS process. 
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