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ABSTRACT 
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Year 2013 

 

 

In information age, data has become increasingly large, in both dimension (the 

number of features) and volume. Data mining processes, such as data classification 

and data clustering, performed on high dimensional data can be time-consuming and 

can produce poor results due to the problem so called curse of dimensionality.  

Feature selection is one of the fundamental techniques that selects only the most 

significant features and  eliminates irrelevant and redundant features from the entire 

set of features.  

Filter-based feature selection is the technique to be focused in this dissertation. 

This technique can take less time to select significant features, especially for high 

dimensional data, but can not guarantee an optimal feature set.   

Filter-based feature selection comprises of two important parts; searching 

process and criterion function evaluation. Floating search is commonly used for the 

searching process. It is a heuristic search, which does not take much time, however, 

can not guarantee  an optimal feature set. The latter part relies on a criterion function, 

which is an independent measure to evaluate and select feature subsets without 

actually performing data mining algorithm. Therefore, it does not inherit any bias of 

the data mining algorithm. Usually, only one criterion function is used so one 

chararteristic of data is considered at a t ime. In this dissertation, two criterion 

functions  are proposed for the feature evaluation. The two functions can compliment 

each other and two or more characteristics of data can be considered together to 

effectively select features.   



 ii 

Noise, ambiguity and uncertainty of data, which are frequently found in the 

real-world problem, can effect data mining process. Hence, fuzzy logic was applied to 

cope with these problems in this dissertation. A membership function was needed in 

the fuzzy logic to fuzzify original data and to infer data into fuzzy value. The fuzzy 

value was then passed through feature selection process instead of the original data.  

Genetic algorithm (GA) was used to determine the irregular shape of the membership 

function instead of by human expert. 

From the experiments, the proposed two criterion functions was found to be 

effective to select features that can increase accuracy of data classification. The 

proposed method outperforms two existing methods, the hybrid and one criterion 

function filter-based methods. The experimental results also show that the proposed 

method with fuzzy logic enhances classification accuracy. It outperforms some 

wrapper-based feature selection methods, which have been widely known to achieve 

higher accuracy than filter-based methods.  

The proposed feature selection method can also be used to reduce data 

dimension for unsupervised learning problems, such as data clustering. Unlike the 

supervised learning problems,  there is no class label attribute of data objects to guide 

and cluster them into groups.  Hence, it is not an easy task to select discriminant 

features for unsupervised learning problems. The criterion functions or measures for 

unsupervised learning problem  w ere also proposed to be used for the proposed 

method. The experimental results   showed that the proposed method can help 

improving clustering accuracy when compared with the results from other 

approaches. Therefore, the proposed feature selection method can be used for both 

supervised and unsupervised learning problems. 
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CHAPTER 1 

 

INTRODUCTION 

 
 Advances in computer technology have led to the information age. Data 

collection becomes larger in both dimension (number of features) and volume. Some 

dimensions are irrelevant and some are redundant. Irrelevant dimensions can 

misguide machine learning results, especially when there are more irrelevant features 

than relevant ones. It may lead to low performance of data mining algorithm. An 

algorithm takes longer time to evaluate when the dimensions are redundant. In 

addition, noise, ambiguity and distraction could be mixed with data set; therefore, 

data mining technique is needed to cope with these problems. In this dissertation, we 

focus on the selection of predictive features or attributes to speed up t he learning 

process, improve the model generalization capability, and alleviate the effect of the 

curse of dimensionality. 

 

1.1  Data Representation 
 

Features in pattern recognition, in statistics, refer to individual measurable 

properties of the phenomena being observed. For example, in software design, it may 

be performance, portability or functionality, while in image processing, it may be 

color, texture or brightness. Properties must be something necessary or important to 

contribute to the discrimination of patterns or forms. The process of selecting the 

necessary properties is called feature selection. Its main objective is to retain the 

optimum characteristics necessary for the recognition process and to reduce the 

dimensionality of the measurement space so that effective and easily computable 

algorithms can be devised for efficient classification. It is also known as variable 

selection, attribute selection or feature reduction. 
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The feature could be binary, nominal or numeric data. In most cases, features 

are represented by a v ector composed of the values of some measurable features. 

Although all of these features constitute the inputs of a classifier, they have different 

impacts on the data mining algorithm performance.  

 

1.2  Feature Selection 
 

In many applications in computer vision, pattern recognition or data mining, 

one is often confronted with very high dimensional data. Large dimensionality 

presents a problem when  handling the data due to the fact that, many commonly used 

operations are highly dependent on t he level of dimensionality. Therefore, the time 

and spaces required for processing the data increase. Cai, Chang and He (2010: 333) 

stated that, “Various data mining and machine learning tasks, such as classification 

and clustering, that are analytically or computationally manageable in low 

dimensional spaces may become completely intractable in spaces of several hundred 

or thousand dimensions”. Most learning algorithms perform poorly in high 

dimensional space when there is small number of samples. This difficulty is known as 

the curse of dimensionality. Feature selection or dimensionality reduction plays a 

crucial rule to solve these problems. The low dimensional model is also easier for 

domain experts to interpret.  

Feature selection algorithm seeks for a subset of features that can represent the 

characteristic of the data set. This subset will be used to generate data model. The 

main drawback of feature selection is the possibility of information loss. Useful 

information can be discarded if dimensionality reduction is done poorly. We can state 

that feature selection is an algorithm to select the most significant features and discard 

the least significant features to reduce evaluation time and sometimes improve 

effectiveness while minimizing the information loss. 

 

1.2.1 General Feature Selection Procedure 

A generalization of feature selection procedure is shown in Figure 1.1 

 



3 
 

 

Subset 
generationStart Subset 

evaluation
Stopping 
Criteria End

Full features 
data set

No

Yes

Subset Goodness 
of subset

 
 

Figure 1.1 A Generalized Feature Selection Procedure 

 

In Figure 1.1, or iginal data set will be passed through subset generation 

process to search for the next candidate feature subset to evaluate. Search strategy can 

be sequential search, random search or complete search. Sequential search strategy 

will add or remove one feature at a time until stopping criteria is met. This is a hill-

climbing strategy to generate selected subset. Random search strategy randomly 

selects feature subset and then perform sequential search. Another way of this strategy 

is to totally select feature subset randomly to evaluate. For a complete search, all 

combinations of features should be covered. Even though it guarantees to find the 

optimal subset, the search is not exhaustively complete (Liu and Yu, 2005: 495). 

Searching process could start with an empty set, which is called forward 

search, and then continually pick unselect feature to form a new subset. On the 

contrary, this process could start with full feature set and repeatedly remove irrelevant 

or redundant features to form a new subset. This approach is called backward search. 

Some researches combine both forward and backward strategies to generate a new 

subset, such as floating search.  

The candidate feature subsets are evaluated according to certain evaluation 

criteria to get the best feature subset. These criteria can be categorized into two 

groups of independent and dependent. Independent criterion tries to measure the 

quality of feature subset. The quality measure is independent to data model. The best 

quality of feature subset will be selected. Information measure, distance measure and 

dependency measure are examples of the independent criterion.  On the other hand, 

dependent criterion trains data model and evaluates feature subset through the model. 

Feature subset generating the best data model will be selected. 

Stopping criteria could be any of the followings, 
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1)  Selected subset with number of features equal to the predefined value 

2)  New subset of the feature does not yield a better result 

3)  Number of iteration is reached 

The process of subset generation and evaluation is repeated until a given 

stopping criterion is satisfied. 

 

1.2.2  Categories of Feature Selection Algorithm 

According to subset evaluation, we could categorize feature selection 

algorithm into three groups of wrapper, filter and hybrid method.  

Wrapper method is a kind of dependent criterion that incorporates the 

classification itself into the feature evaluation process. To evaluate the importance of 

a candidate feature subset, a classification model is built and used to evaluate the set. 

Filter method is a kind of independent criterion, which relies on general 

characteristics of the data to evaluate and select feature subsets without involving any 

data mining algorithm; therefore, it does not inherit any bias of the data mining 

algorithm. The hybrid method takes advantage of both wrapper and filter methods. It 

applies the filter-based technique to preselect highly significant features, and it applies 

a wrapper-based technique to add candidate features and evaluate the candidate sets in 

order to select the best one. 

Some researches have divided feature selection of unlabeled data into two 

groups of Global and Local method. Guan, Dy and Jordan (2011: 2) stated that, 

“Global method selects a single set of features, whereas local method selects subsets 

of features, one subset for each cluster (where features in different clusters can vary).” 

 

1.3  Categories of Learning Methods 
 

Machine learning methods can be grouped into: supervised, unsupervised and 

semi-supervised. In supervised learning, class label of training data is provided as a 

guideline to generate model. The information helps verify if the prediction is correct 

or not. The supervised learning algorithm analyzes the training data and produces an 

inferred function, which can be used to map new examples. An optimal scenario will 

allow the algorithm to correctly determine the class labels for unseen instances; 
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whereas, in unsupervised learning, this information is missing. The target of this 

scenario is thus to discover the natural grouping structure of the data. In semi-

supervised learning, only some of the data objects are labeled. It uses both labeled and 

unlabeled to train the model. Many researchers in the field of machine learning have 

found that unlabeled data, when used in conjunction with small amount of labeled 

data, can produce considerable improvement in learning accuracy. 

 

1.4  Cross Validation 
 

Typically, data used for model generation is divided into 2 groups, training 

data and test data. Training data is for model training and test data is for model 

evaluation. Data set does not provide independent test set separately; we have to split 

it into these two groups. The popular way that is often used for splitting is the k-fold 

cross validation (k-fold CV). The repeatability of results on new data can be assessed 

with this approach. The data samples are randomly divided into K non-overlapping 

subsets of the same size. One of the K subsets is “held-out” for testing, the model is 

trained on t he remaining K − 1 subsets and an estimate of the accuracy can be 

obtained from model evaluation through its corresponding test set. This process 

repeats K times, so that each subset is treated once with the test set, and the average of 

the resulting K accuracy estimation forms the model accuracy. 

 

1.5  Genetic Algorithm 
 

Genetic algorithm (GA) was formally introduced in the 1970s by John 

Holland at the University of Michigan. GA is an adaptive heuristic search algorithm 

premised on the evolutionary ideas of natural selection and genetic. They were 

introduced as a computational analogy of adaptive systems. They are modeled loosely 

on the principles of the evolution via natural selection. A population of individuals or 

candidate solution to optimization problem is evolved toward better solution. A 

fitness function is used to evaluate individuals, and reproductive success varies with 

fitness. The fitness function correlates to the objective of optimization being solved. 
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GA model is a part of genetic evolution. The characteristics of individuals are 

expressed using genotypes, which can be mutated or altered. At first, population is 

randomly generated and each iteration is called a generation. In each generation, 

fitness value is evaluated in each individual. The fitter the individuals, the more 

chance to survive to the next generation; at the same time, others will be recombined 

or randomly mutated to generate a new generation, then the process iterates. 

Commonly, the algorithm terminates when either a maximum number of generations 

has been produced, or a satisfactory fitness level has been reached for the population. 

 

1.5.1  Selection 

A new population is selected at the end of each generation to serve as the 

population for the next generation. The new population can be selected only from the 

offspring, or from both the parents and the offspring. The selection operator should 

ensure that good individuals do survive to next generations. 

 

1.5.2  Genetic Operator 

Individuals are altered and mutated through application of crossover and/or 

mutation operator to generate offspring. Crossover operator concept is based on 

parents that are superior and have more opportunities to reproduce offspring with 

good material. Mutation operator concept is based on weak individual. It will result in 

introducing better traits to them, thereby increasing their chances of survival. 

 

1.6  Overview 
 

In this dissertation, we focus on filter-based feature selection algorithm, which 

can be used for both of supervised and unsupervised learning. The paper is organized 

into six chapters. In chapter 2, related works in the literatures are reviewed, while in 

chapter 3, w e discuss about an improved filter-based feature selection for 

classification using two criterion functions. The algorithm applies two criterion 

functions with floating search strategy. In chapter 4, w e introduce an evolutionary 

fuzzy feature selection, which applies fuzzy logic and GAs to select features to 

improve classification performance. In chapter 5, we represent that the proposed 
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method can be applied to unsupervised clustering. The conclusions of this dissertation 

and recommendations for future work are addressed in chapter 6. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1  Feature Selection for Classification 

  

According to subset evaluation, we can categorize feature selection algorithm 

into three groups, which are wrapper, filter and hybrid methods.  

 

2.1.1  Wrapper-Based Method 

Wrapper method incorporates classification into feature evaluation process; 

therefore it is expected to return a subset of features that yields high performance 

results since every candidate feature set is evaluated by the classifier that will be used 

for the problem. 

Sánchez-Maroño, Alonso-Betanzos and Castillo (2005: 515) propose a 

wrapper-based feature selection by using ANOVA decomposition and functional 

networks to evaluate global sensitivity index. Sobol ANOVA decomposition is used 

to generate functional component, then functional networks is used to select families 

of functions. The family with better performance results is selected for the basic 

function. Features with high index values are then selected from global sensitivity 

index, which is the result from the basic function. 

Zhuo, Zheng, Wang, Li, Ai and Qian (2008: 397) present a GA based wrapper 

method for classification of hyper-spectral data using support vector machine (SVM). 

GA optimizes both the feature subset and SVM kernel parameters. Chromosome 

content consists of the feature subset and kernel parameter. They use a single 

objective function that combines the two criteria, classification accuracy and number 

of selected features into one to create fitness function for GA evaluation. Feature 

subset with high accuracy and small number of selected features is then selected. 
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Leng, Valli and Armstrong (2010: 167) use GA and K nearest neighbor 

(KNN) to rank importance of features, and top rank features are selected. 

Chromosome content that represents the subset of features is randomly selected. 

Classification accuracy using KNN is the fitness function to evaluate chromosomes. 

Chromosome is chosen for mutation by using roulette wheel selection strategy. 

Crossover had not been used in this study due to duplicate features in two 

chromosomes. 

Since classification models are trained and tested many times, data becomes 

larger in dimensionality and in number of instances, this approach, therefore, takes 

too much time, and in many cases is inapplicable. 

 

2.1.2  Filter-Based Method 

Filter method relies on general characteristics of the data to evaluate and select 

feature subsets without involving any data mining algorithm thus it does not inherit 

any bias of the data mining algorithm. It composes of two important components: a 

selection algorithm and a criterion function. In selection part, all features are ranked 

and top features are selected to generate subset; at the same time, searching strategy 

can also be used to generate subset. Both of them use criterion function to evaluate 

feature or subset.  

The filter-based method runs faster; consequently, it is more preferable for 

real-world problems, especially those with large data sets. Instead of performing 

classification as part of the feature selection process, quality measure is used to 

evaluate each feature set. The measure can be independent from the classification 

model, but it should be suitable for the problem. The filter approach takes less time 

than the wrapper approach since classifier is not trained and tested as many time as in 

the wrapper approach. Many researches found that it yields lower performance than 

the other two mentioned approaches; however, it is not true to state that the filter 

approach always gives lower accuracy. Some measures may provide equivalent or 

better performance than others to guide the search process. 

Yu and Liu (2003) propose a fast filter forward selection method, which 

selects good features for classification by applying a new concept called predominant 

correlation without pairwise correlation analysis. A correlation measure is based on 
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the information-theoretical concept of entropy to measure uncertainty of a random 

variable. It uses a correlation measure to select features relevant to classes, which are 

not redundant with other selected features.  

Zhou, Weng, Wu and Schmidt (2003: 156) propose a forward algorithm to 

select features using conditional maximum entropy modeling. This study 

approximates entropy of unselected feature based on the model from the previous 

stage. The unselected feature, which maximizes the gain of the log likelihood is then 

selected. Because models from the previous stage are not all possible for the selection, 

it reduces evaluation time. 

Fleuret (2004: 1531) use conditional mutual information (CMI) as the criterion 

function to speed up the forward search process. Algorithm will iteratively select one 

feature at a time, which maximizes its mutual information with class to predict, 

conditionally to the response of the features that have already been picked. Because 

this criterion function takes the feature that has already been selected into account, it 

could determine redundant feature and select only informative and discriminative 

features. 

The first three review papers are forward search, which initially select an 

empty subset and then select one feature at a time. On the contrary, backward search 

starts with the entire set of features before discarding one feature at a t ime. Haindl, 

Somol, Ververidis and Kotropoulos (2006: 570) propose a backward filter-based 

feature selection method based on mutual correlation, similarity measure between two 

variables, to select uncorrelated features. The concept of this method is that, if two 

variables were independent, they should also be uncorrelated. An average absolute 

mutual correlation of a feature is evaluated over feature subset. The Feature with the 

largest value will be discarded at each iteration step until the remaining set is lower 

than or equal to a predefined number of the selected value.  

 

2.1.3  Hybrid Method 

The hybrid approach takes advantage of both wrapper and filter approach. It 

applies the filter-based technique to preselect highly significant features and applies 

the wrapper-based technique to add candidate features and evaluate candidate sets to 

select the best one. 
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Zhang, Wang, Zhao and Yang (2003: 380) apply a ReliefF algorithm to 

estimate the quality of attributes according to how well their values distinguish 

between the instances that are close to each other, and then use GA with classifier 

accuracy as its fitness function to search for an optimal feature subset. GA 

initialization is based on the descending order of the features according to the 

evaluation using ReliefF. Although ReliefF is fast and can be used with any data type, 

fairly noise-tolerant and unaffected by feature interaction, it does not handle well with 

redundant features. 

Somol, Novovičová and Pudil (2006: 634) present a hybrid-floating search, 

hSFFS, by applying a filter criterion function to filter some features and generate a 

candidate set before applying a wrapper criterion function to select the best one from 

the candidate set. They also present the backward counterpart, hSBFS, which is a 

wrapper-dominating hybrid method. This hybrid scheme uses only a fraction of full 

wrapper computational time to obtain results. Its performance relies on hybridization 

coefficient. Although it takes longer time when higher coefficient is used, higher 

performance will be obtained. 

Gan, Hasan and Tsui (2011: 281) propose an alternative to hSFFS,

 

 which is a 

filter-dominating hybrid method where a filter criterion is used to select the best 

feature from an unselected set, while a wrapper criterion is only used to evaluate a 

feature subset. They stated that it is difficult to choose appropriate value of 

hybridization coefficient to control the proportion of features in candidate sets, pre-

selected by a filter, and passed to a wrapper the same way as in wrapper dominating. 

They propose the use of only one filter to select a feature to be added or to be 

removed and then use a wrapper to compare the selected best feature subsets. The 

experimental result shows that the proposed method gives comparable result with 

wrapper dominating while taking less time. 

2.2  Sequential Forward Floating Search (SFFS) 

 

Pudil, Novovičová and Kittler (1994: 1119) introduce sequential forward 

floating search (SFFS) using a criterion function to select a feature and compare 

candidate subsets. SFFS can be classified as a wrapper or a filter approach depending 
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on a criterion function used. It performs well; nevertheless, its computation time is 

high and the data set is very large. 

 

The structure of SFFS is in Figure 2.1. 

Input 
Data Preprocess

Stop search 
process?

Apply criterion function to 
select the most significant 

feature

Terminate
Yes

No

Apply criterion function to 
remove the least significant 

feature

Better 
performance

Yes No

Exclude the worst feature

Start

 
 

Figure 2.1  The Structure of SFFS Algorithm 

 

In Figure 2.1, SFFS consists of two phases: forward search and backward 

search. The forward search selects the best unselected feature according to a criterion 

function to form new subset, and the backward search iteratively determines which 

members of the selected subset are to be removed if the remaining set improves the 

performance according to the same criterion function in forward search. The 

a

 

lgorithm loops back to forward search until the stopping condition is reached. 

Pseudo-code of SFFS is shown in Figure 2.2. 
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Input: S  is a feature set, d is a predefined number of selected features, J is a 

criterion function, and kJ  is the criterion function value of k selected features. 

Output:  selS  is the selected feature set 

Initialize: k = 0 and φ=selS  

(1) Inclusion 

a. If k = d then terminate 

b. )(maxarg \ xSJx selSSx sel
∪= ∈

+  

c. 1, +=∪= + kkxSS selsel   

(2) Conditional exclusion 

a. )\(maxarg xSJx selSx sel∈
− =  

b. If ( 1)\( −
− > ksel JxSJ ) then 

i. 1,\ −== − kkxSS selsel  

ii. Go to (2) 

Else go to (1) 

 

Figure 2.2  Pseudo-code of SFFS Algorithm 

 

In Figure 2.2, 

Improved 

the algorithm starts with forward search with an empty selected 

subset. A number of selected features are determined as stopping condition. Each 

unselected feature is temporarily added to current subset and then evaluates their 

criterion value. The best feature, which makes the new subset better than the previous 

one, will be selected. In conditional exclusion step, criterion value of the features in 

the new subset is evaluated by temporarily excluding it from selected subset. The 

feature, which makes the remaining set better, will be removed. 

versions of SFFS have been proposed in various researches to 

provide 

Somol, Pudil, Novovičová and Pacliík (1999: 1157) present ASFFS, which 

keeps selecting features to add into and remove from the list. ASFFS represents a 

more sophisticated version of classical floating search algorithm. Instead of single 

feature adding or removing, user has a possibility to let the algorithm perform a more 

better performance.  
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thorough search with better chances to find the optimal solution by setting higher 

generalization level. ASFFS adds one feature at a t ime until the number of features 

reaches a certain point. To remove a feature, a reverse of the adding is applied. 

 Songyot Nakariyakul and Casasent (2009: 1933) present IFFS that adds an 

additional step to check whether replacing a weak feature can improve the criterion 

function value. The extra step is performed after the removing step. This step 

conditionally removes one feature at a t ime and use sequential forward search (SFS) 

to select an unselected feature and add it to each resultant feature set. If the 

replacement helps improve the performance of the feature subset, the algorithm will 

step back to find another feature to remove again until the replacement can no longer 

improve any criterion function and then goes back to the inclusion to select a new 

feature from unselected ones.  

Sun, Wang, Zhang and Zhao (2010: 2862) propose an improvement to SFFS 

without the need to predefine the number of selected features. Mutual information and 

Parzen window estimator are the criterion functions to handle a mixture of continuous 

and categorical input features and continuous target features. Instead of using 

appropriate number of selected features, they define two non-negative thresholds to 

guarantee that the variation of information in each forward or backward step is 

significant enough. The algorithm terminates automatically when there is not enough 

variation in mutual information obtained from adding or removing any feature. 

SFFS has a limitation on high dimensional (e.g., hundreds) feature selection 

especially for wrapper-based (Gan, Hasan and Tsui, 2011: 280). Although using 

wrapper-dominating hybrid method could improve efficiency and save time, it is too 

computational expensive for high dimensional data set and it may lead to impractical 

feature. In the next chapter, we propose filter-based feature selection with SFFS to 

accelerate the algorithm. We use two criterion functions to guide the search process 

and also to improve efficiency.  
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CHAPTER 3 

 

IMPROVING FILTER-BASED FEATURE SELECTION FOR 

CLASSIFICATION USING TWO CRITERION FUNCTIONS 

 
 A filter-based method normally takes less time than do bot h hybrid and 

wrapper methods while most of the time yields less classification accuracy. We 

attempts to improve the quality of the feature set selected from a filter-based method 

in order to achieve high classification accuracy. We improve upon the filter-based 

SFFS by employing two criterion functions with different characteristics to 

complement each other and allowing more efficient searches for features by 

introducing candidate sets. 

 

3.1  The proposed Method 

 
Structure of the proposed technique is shown in Figure 3.1. The algorithm 

begins with the inclusion step that employs the first function ( 1J ) to create a set of 

candidates for inclusion and employs the second function ( 2J ) to select a subset of 

features where a feature selected is one when combined with those previously selected 

features of size k gives the best value of J2

Next, in the exclusion step 

, forming a s elected subset of size k+1. 

Comparing this newly formed subset with the previously best subset of size k+1, the 

algorithm retains the better one.  

1J  is applied to rank features upon the benefits of 

their removals and create targets for exclusion. The 2J  function then determines the 

feature to be removed from the set to give the best feature set of size k. If the new 

subset is better than the previously selected set, the exclusion step retains the better 

one and iterates to smaller subsets, or else the algorithm goes back to the inclusion 

step. Calculation by function 2J  usually takes a long time.  1J  which runs faster helps 
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screening candidate features thus reduces the amount of calculations to be performed 

by 2J . 

 
Input 
Data Preprocess

Stop search 
process?

Apply the first criterion to 
create candidate group of 
features to search for new 

feature

Apply the second criterion to 
select the best feature from 
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Terminate
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Apply the second criterion to 
select the worst feature from 

candidate group

Better 
performance

Yes No

Exclude the worst feature

Start

 

 

Figure 3.1  

 

The Proposed Feature Selection Method. 

Conditional mutual information (CMI) (Fleuret, 2004: 1539) is employed as 

the first criterion function. It is a measure of dependency between two variables with 

respect to a class, conditional to the response of features already picked. CMI selects 

features which maximize mutual information to target class where such information 

must not have been caught by features already picked to reduce redundant features. It 

is used to generate a candidate set of features which are suitable to be added to or 

removed from the selected subset. Using the candidate sets allows more efficient 

searches over the features. The 2J  

In this section, the algorithm will be described using the following notations. S 

is the original feature set, 

function then selects a feature to be added to or 

removed from these sets, instead of considering every unselected feature every time. 

candS  is a candi date set, d is the predefined number of 

selected features, 1J  is the first criterion function, and 2J  is the second criterion 

function. D is the total number of original features.  seld  is the number of selected 

features in current set. candd  is the number of features in a candidate set.  selS  is the 
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selected feature subset. +
candS  is the candidate set in the inclusion step, and −

candS  is the 

candidate set in the exclusion step. 

CMI can be computed as follows: 

 

),(),,()(),()|;( mnmnmmmn XXHXXYHXHXYHXXYI +−−=   (3.1) 
 

 
where H is an entropy function, Y is a class attribute,  mX  is a set of features, 

and nX  is the feature to be selected. The 1J function in the inclusion step is computed 

as follows: 

)|;()(11 selnn SXYIXJ =  where seln SSX \∈    (3.2) 

 

In the inclusion step, unselected features are evaluated using 11J  , select candd  

unselected features that yields minimum value of 11J and sort them in a descending 

order according to their values of 11J . A candidate set is generated as follows: 

 

seliicand SSxxS \|{ ∈=+  and ]..1[ canddi =  and )}(...)()( 11211111 canddxJxJxJ ≥≥≥     (3.3) 

 

A feature to be removed must be the one providing the least information to the 

target classes, and its information has been caught by features already picked. 

Therefore, 1J  in the exclusion step is computed as follows: 

 

 )\|;()(12 nselnn XSXYIXJ =  where seln SX ∈   (3.4) 

 

In the exclusion step, the selected features are evaluated using 12J  , select 

candd  selected features that yields maximum value of 12J and sort and sorted in an 

ascending order according to the values of 12J . A candidate set is generated as 

follows: 
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 seliicand SxxS ∈=− |{  and ]..1[ canddi =  and )}(...)()( 12212112 canddxJxJxJ ≤≤≤        (3.5) 

 

The algorithm for the proposed method is described in Figure 3.2. It begins 

with an empty selected subset ( selS ). In the inclusion step, the candidate set ( +
candS ) is 

constructed by equation (3.3). The feature selected is the one when combined with the 

previously selected subset of size k gives the best subset when evaluated with J2

In the exclusion step, the candidate set (

, 

forming the selected subset of size k+1. Then the algorithm compares the new subset 

with the previously selected subset of size k+1 and retains the better one. 
−
candS ) is created by equation (3.5). The 

feature to be removed is the one when removed from the selected subset yields the 

best subset with k features according to 2J . The algorithm compares the new subset 

and the previously selected subset of size k and retains the better one. The exclusion 

step continues to smaller subsets if the new subset is better, or else the algorithm goes 

back to the inclusion step. The algorithm terminates when the selected subset size is 

∆+seld . In the pseudo-code, for every feature in selS , we store the best values of 1J

and 2J  and their corresponding feature subsets in a lookup table to speed up t he 

calculation. 
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Let dS be subset containing d features 

Initialization 

  selS = empty set 

  d = 0 

Begin 

Step 1: Inclusion step 

   Use (3.3) to generate +
candS  

   )(maxarg 2 xSJx selSxi
cand

∪= +∈
 

   If )()( 122 +>∪ disel SJxSJ  then     

    iselsel xSS ∪=  

    seld SS =+1   

    )()( 212 iseld xSJSJ ∪=+  

   Else 

    1+= dsel SS  

   1+= dd  

Step 2: Exclusion step 

   Use (3.5) to generate −
candS    

   )\(maxarg 2 xSJx selSxi
cand
−∈

=   

If )()\( 22 disel SJxSJ >  then 

 iselsel xSS \=  

 seld SS =−1      

)()( 212 seld SJSJ =−   

1−= dd  

Go to step 2 

   Else 

   Go to step 3 

Step 3: Stopping criterion checking 

  If ∆+= seldd then exit an algorithm 

  Else go to step 1. 

End. 

 

Figure 3.2  The Proposed Algorithm 
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3.2  The Second Criterion Function 

 

Since the aim of the proposed technique is for the classification task, 4 

measures are studied as the  J2 

 

criterion function which consists of: 

3.2.1  Mutual Information (MI) 

MI is the information measure. It measures mutual dependence of two random 

variables. It is defined as relative entropy which measures uncertainty of random 

variable; it is also viewed as a measure of impurity in data (Fleuret, 2004: 1539). MI 

can be calculated as follows: 

 

),()()();( nnn XYHXHYHXYI −+=  

 

where H is entropy function, Y is a class attribute, and nX  is the feature to be 

selected. The effect of MI is close to CMI used in 2J ; it is  used in this research to 

provide a baseline performance. 

 

3.2.2  Bhattacharyya Distance (BAVE) 

BAVE measures similarity between two probability distributions which is 

suitable for measuring distance between classes (Bruzzone and Serpico, 2000: 552). 

BAVE can be calculated as follows: 
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where ji mm ,  and ∑∑ ji
, are mean vectors and covariance matrices for the 

class iω  and jω , respectively. 
 

3.2.3  Jeffreys-Matusita Distance Bound to the Bayes Error (JMBH) 

J-M distance is a measure of statistical separability for two-class cases and can 

be extended to multi-classes (Bruzzone, Roli and Serpico, 1995: 1319). It measures 

how much the two probability distribution functions are separated (Pereira et al., 

2007: 251). JMBH is similar to J-M distance but based on the Bhattacharyya upper 

bound to the Bayes error probability (Bruzzone and Serpico, 2000: 553). JMBH can 

be calculated as follows: 

∑∑
= =

=
c

i

c

j
ijjibh JPPJ

1 1

2)()( ωω  

[ ] 2
1

)1(2 ijB
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3.2.4  Mahalanobis Distance (MAHA) 

MAHA measures similarity between an unknown sample set and a known one, 

based on correlation between variables (De Maesschalck, Jouan-Rimbaud and 

Massart, 2000: 14). It takes into account the global distribution and a rough 

approximation of the intra-class distance through the difference between the means. 

MAHA can be calculated as follows: 

 

)()()( 1 µµ −−= − xSxxD T
M  

 

 where µ is the mean vector and S is the covariance matrix for a group. 

 Mahalanobis distance is a particular case of the Bhattacharyya distance when 

the standard deviations of the two classes are the same. 

 A good measure will make the classes far apart, thus BAVE and MAHA are 

chosen because of its ability to select a feature subset that can maximize inter-class 

distances. JMBH considers not only interclass distances but also similarity to error 

probability behavior (Bruzzone and Serpico, 2000: 553). MI is a special case of 
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relative entropy to select a feature set that gives high purity for each class. These 

measures will be studied in the experiments. 

To calculate CMI which categorical data is expected, numeric features are 

discretized by a modification of the method presented in (Tsai, Lee and Tang, 2008) 

where instead of using all distinct values, we consider the values that appear more 

than once as cut points. This change makes discretization faster, and experiments 

show that the modification gives higher performance than does the method presented 

in (Tsai, Lee and Tang, 2008). 

 

3.3  The Classifier 

 

Classification and Regression Trees (CART) was introduced by Breiman, 

Friedman, Olshen and Stone (1984). CART is based on t he fundamental idea that 

each split should be selected so that the data in each descendant subset is purer than 

the data in the parent node. The node impurity is largest when all classes are equally 

mixed together and smallest when the node contains only one class. CART produces 

binary splits. Hence, it produces a binary tree. CART uses Gini impurity index as an 

attribute selection measure to build a decision tree. Consider a parent node t, which 

contains the data that belongs to the jth

∑−=
j

tjpti )|(1)( 2

 class. The impurity function it for node t is 

given by: 

 

The decrease of impurity of split is given by: 

 

)()()()( RRLL mipmiptiti −−=∆  

 

where t is a parent node which is split into two nodes Lm  and Rm . CART will 

search through all possible values of all variables for the best split which maximizes 

the decrease of impurity )(ti∆ . 

We evaluate the efficiency of our method with CART. We compare accuracy 

of classifier based on the features it selects to accuracy with the same classifiers build 

on features selected by other techniques. 



 

 

23 
29

 

3.4  Experimental Results 

 

To select features, we apply CMI as the first criterion function and four 

measures are studied as the second criterion function. Data with only selected features 

and class attribute is passed through CART to obtain classification accuracy. For a 

data set that does not provide a separate test set, a 10-fold cross validation is applied. 

 

3.4.1  Data Sets 

Data used in the experiments are 20 standard data sets with various sizes from 

the UCI machine learning repository (Asuncion and Newman, 2007). Five data sets 

consist only of categorical attributes, and fifteen data sets include numeric attributes. 

Detail of all data sets is shown in Table 3.1. 
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Table 3.1  Data Sets Used in Experiment 

 

Name Feature Type 
A number 

of instances 

A number of 

features 

Wine Numeric 178 13 

Image Segmentation Numeric 2310 19 

Breast Cancer Numeric 569 30 

Ionosphere Numeric 351 34 

Dermatology Numeric 366 34 

Soybean Categorical 307 35 

Lung Cancer Categorical 32 56 

Promoter Categorical 106 57 

Spambase Numeric 4601 57 

Sonar Numeric 208 60 

Splice Categorical 3190 60 

Libras Movement Numeric 360 90 

Hill valley with noise Numeric 1212 100 

Hill valley without noise Numeric 1212 100 

Musk Numeric 6598 166 

Musk2 Numeric 6598 166 

Semeion Categorical 1593 256 

Madelon Numeric 2600 500 

Isolet Numeric 7797 617 

Multivariate Numeric 2000 649 

 

3.4.2  Effects of the Candidate Set Size 

We introduce the candidate set to form a group of some unselected features 

that is good enough to be selected. These features will be evaluated with 2J  to select 

the best one. The candidate set makes algorithm faster because instead of evaluating 

all unselected feature with 2J  , only features in candidate set are evaluated. Size of the 

candidate set candd  defines the search space for features to be included and excluded 
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in the inclusion and the exclusion steps, respectively. We vary the values of candd with 

different data sets and find that the value of candd  greater than 5 doe s not give 

significantly different performance. The accuracy of every configuration with candd = 

1 and candd = 5 is shown in Table 3.2.  

We can see that using candd = 5 yields higher accuracy than does using candd = 

1 in 72 ou t of 80 e xperiments (90%), across different configurations and data sets. 

This is because not only focusing on high quality features to be selected, candidate set 

also makes algorithm more thorough search to get high predictive features. Therefore, 

in further experiments all configurations are assumed to use candd = 5. 
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Table 3.2  Effects of Different Candidate Set Sizes 

 

Data Set 
CMI+MI CMI+JMBH CMI+BAVE CMI+MAHA 

candd =1 
candd =5 

candd =1 
candd =5 

candd =1 
candd =5 

candd =1 
candd =5 

Wine 88.89 88.89 100 100 88.89 94.44 88.89 88.89 

Image Segmentation 90.29 90.62 90.05 90.19 90.05 90.14 90.62 90.62 

Breast Cancer 94.74 92.98 94.4 96.49 94.4 96.49 94.4 96.49 

Ionosphere 97.14 97.14 94.29 100 94.29 100 94.29 97.14 

Dermatology 100 100 97.22 97.22 97.22 97.22 97.22 97.22 

Soybean 89.53 90.54 90.2 90.2 90.2 90.2 90.2 90.2 

Lung Cancer 100 100 100 100 100 100 100 100 

Promoter 90.91 90.91 90.91 90.91 90.91 90.91 90.91 90.91 

Spambase 93.49 93.49 93.71 93.71 93.71 93.28 93.71 93.71 

Sonar 80.95 80.95 80.95 85.71 80.95 85.71 80.95 80.95 

Splice 93.1 93.1 93.42 93.28 93.42 93.28 93.42 93.42 

Libras Movement 77.78 77.78 66.67 75 66.67 77.78 69.44 80.56 

Hill valley with noise 56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.6 

Hill valley without 
noise 57.26 57.1 57.76 57.76 56.93 57.59 57.43 57.43 

Musk 97.88 98.33 97.58 98.33 97.58 98.33 97.58 97.27 

Musk2 97.12 96.82 96.97 97.27 96.97 97.27 96.97 96.82 

Semeion 79.38 79.38 81.25 79.38 81.25 81.25 83.13 81.88 

Medelon 68.5 69.83 68.5 74 68.5 74 70.33 76 

Isolet 71.46 73.57 71.46 71.46 71.46 71.46 71.01 71.65 

Multivariate 97.5 97 97 98 97 97 97 97 

 

3.4.3  Effectiveness of the Second Criterion Function ( 2J ) 

The task of the second criterion function ( 2J ) is to maximize inter-class 

distances and at the same time to minimize intra-class distances. In this section, a set 

of experiments is performed to evaluate the effectiveness of using two objective 

functions (the proposed method) against the use of a single function (an original filter-

based method) and to study the effectiveness of different 2J  criterion functions. The 
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results are shown in Table 3.3. For each data set, classification accuracy is shown in 

the upper row, and the number of selected features is shown in the lower row. We can 

see that feature selection is beneficial for classification; in 15 out of 20 data sets there 

is at least one configuration with feature selection that gives higher accuracy and less 

number of features than does the original data set. 

Comparing between using one and two criterion functions, for each 

corresponding function (except only MI) we can see that using two functions in the 

way proposed in this research gives higher accuracy than using one function. In 

addition, different 2J functions yield different results for both of selected features and 

classification accuracy. CMI+MI gives the highest performance in 5 data sets, 

CMI+JMBH gives the highest performance in 9 da ta sets, CMI+BAVE gives the 

highest performance in 7 data sets, and CMI+MAHA gives the highest performance 

in 8 data sets. We can see that CMI+JMBH yields the best overall results. 

Together, the use of CMI and JMBH improves classification accuracy. 

Because JMBH not only maximizing inter-class distance, it also limits error 

probability bound to be minimum. In addition, JMBH directly relate to Bhattacharyya 

distance exhibits a s aturating behavior for large distance values while BAVE 

continues to increase significantly even when the topological distance between them 

reaches values corresponding to well-separated classes (Bruzzone and Serpico, 2000: 

553). For MI, it considers only the information to target class not including class 

distance or even error bound.  MAHA only takes into account the global distribution 

and a rough approximation of the intra-class distance through the difference between 

the means. Thus, in the further experiments we will use CMI+JMBH to represent the 

proposed method. 
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Table 3.3  Performance of Different Feature Selection Configurations (The Highest Accuracy for Each Data Set is bold font) 

 

Data set Original 
Data 

Filter-Based Approach Proposed Approach 

MI JMBH BAVE MAHA CMI+MI CMI 
+JMBH 

CMI 
+BAVE 

CMI 
+MAHA 

Wine 
Accuracy 83.33 88.89 100 94.44 94.44 88.89 100 94.44 88.89 
Features 14 2 2 4 11 2 2 4 2 

Image 
Segmentation 

Accuracy 90.29 90.71 85.24 85.24 90.33 90.62 90.19 90.14 90.62 
Features 20 12 5 5 10 8 9 9 5 

Breast Cancer 
Accuracy 89.47 94.74 91.23 91.23 96.49 92.98 96.49 96.49 96.49 
Features 31 19 2 2 10 7 6 6 10 

Ionosphere 
Accuracy 88.57 94.29 94.29 94.29 97.14 97.14 100 100 97.14 
Features 35 3 3 3 9 5 9 9 17 

Dermatology 
Accuracy 94.44 100 72.22 77.78 97.22 100 97.22 97.22 97.22 
Features 35 19 11 10 22 19 8 14 14 

Soybean 
Accuracy 90.54 90.54 29.05 29.05 36.82 90.54 90.2 90.2 90.2 
Features 36 15 1 1 6 15 17 17 17 

Lung Cancer 
Accuracy 66.67 100 66.67 33.33 33.33 100 100 100 100 
Features 57 1 2 1 2 2 4 4 4 

Promoter 
Accuracy 81.82 90.91 72.72 72.72 81.82 90.91 90.91 90.91 90.91 
Features 58 13 2 2 2 8 6 6 6 

Spambase 
Accuracy 92.41 93.93 88.29 88.07 92.84 93.49 93.71 93.28 93.71 
Features 58 38 18 17 51 17 27 9 27 

Sonar 
Accuracy 71.43 80.95 71.43 71.43 85.71 80.95 85.71 85.71 80.95 
Features 61 26 6 6 7 6 18 18 6 
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Table 3.3 (Continued) 

 

Data set Original 
Data 

Filter-Based Approach Proposed Approach 

MI JMBH BAVE MAHA CMI+MI CMI 
+JMBH 

CMI 
+BAVE 

CMI 
+MAHA 

Splice 
Accuracy 91.22 93.1 70.21 70.21 62.38 93.1 93.28 93.28 93.42 
Features 61 17 2 2 1 17 7 7 7 

Libras 
Movement 

Accuracy 69.44 75 52.78 52.78 63.89 77.78 75 77.78 80.56 
Features 91 36 4 4 25 31 9 9 22 

Hill valley 
with noise 

Accuracy 55.45 56.44 49.67 49.67 55.94 56.6 56.6 56.6 56.6 
Features 101 4 3 3 11 5 5 5 5 

Hill valley 
without noise 

Accuracy 60.07 57.59 52.48 52.48 59.08 57.1 57.76 57.59 57.43 
Features 101 46 2 2 44 25 16 28 22 

Musk 
Accuracy 96.82 97.42 95.15 95.15 95.75 98.33 98.33 98.33 97.27 
Features 167 42 9 9 10 37 18 18 43 

Musk2 
Accuracy 98.03 96.06 96.06 96.06 95 96.82 97.27 97.27 96.82 
Features 167 40 13 13 22 39 12 12 18 

Semeion 
Accuracy 81.88 72.5 61.25 65 78.75 79.38 79.38 81.25 81.88 
Features 257 47 18 19 45 36 47 47 47 

Medelon 
Accuracy 75.67 70.5 54.83 54.83 72.17 69.83 74 74 76 
Features 501 48 23 23 6 30 18 18 19 

Isolet 
Accuracy 79.6 63.76 63.75 63.75 61.57 73.57 71.46 71.46 71.65 
Features 618 45 44 44 43 45 48 48 41 

Multivariate 
Accuracy 95 97 88 83.5 92.5 97 98 97 97 
Features 650 24 5 14 23 17 13 25 11 
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3.4.4  Comparison with Other Approaches 

In this section, the proposed technique is compared against the hybrid and the 

filter approaches that use JMBH as the second criterion function. The resulting 

running time is shown in Figure 3.3 and Figure 3.4 while the accuracy values are 

shown in Table 3.4. It can be seen that the running time for every technique is 

proportional to the size of the data set.  

Due to hybrid method requires training and testing of models during the 

second phase of the method, the proposed method runs faster than a hybrid method 

for all data set (and increasingly faster with larger data sets). Comparing with original 

filter method, the proposed method runs faster for large data set size since a number 

of evaluations of the second criterion function in original method which is equal to a 

number of unselected features while it is equal to a number of candidate features in 

the proposed method. This is shown in Figure 3.3. 

 

 
 

Figure 3.3  Running Time of Three Feature Selection Approaches for Large Data Set 

 



 

 

31 
29

 

 
 

Figure 3.4  Running Time of Three Feature Selection Approaches For Small and 

Moderate data set 

 

In terms of effectiveness (in Table 3.4), the proposed method outperforms the 

original filter-based method in 19 out of 20 data sets. The hybrid method performs the 

best in 10 data sets while the proposed method performs the best in 11 data sets plus 3 

data sets, each with the accuracy equal to that of the best method but with a larger set 

of selected features. 
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Table 3.4  Comparisons of the Three Feature Selection Approaches (The Highest 

Accuracy for Each Data Set is bold font) 

 

Data set Hybrid method Filter Method Proposed method 

Wine 
Accuracy 100 100 100 
Features 2 2 2 

Image 
Segmentation 

Accuracy 92.57 85.24 90.19 
Features 3 5 9 

Breast Cancer 
Accuracy 96.49 91.23 96.49 
Features 4 2 6 

Ionosphere 
Accuracy 97.14 94.29 100 
Features 17 3 9 

Dermatology 
Accuracy 100 72.22 97.22 
Features 6 11 8 

Soybean 
Accuracy 91.55 29.05 90.2 
Features 10 1 17 

Lung Cancer 
Accuracy 100 66.67 100 
Features 2 2 4 

Promoter 
Accuracy 90.91 72.72 90.91 
Features 3 2 6 

Spambase 
Accuracy 92.41 88.29 93.71 
Features 17 18 27 

Sonar 
Accuracy 80.95 71.43 85.71 
Features 9 6 18 

Splice 
Accuracy 94.98 70.21 93.28 
Features 9 2 7 

Libras 
Movement 

Accuracy 72.22 52.78 75 
Features 9 4 9 

Hill valley with 
noise 

Accuracy 64.19 49.67 56.6 
Features 13 3 5 

Hill valley 
without noise 

Accuracy 64.03 52.48 57.76 
Features 25 2 16 

Musk 
Accuracy 97.73 95.15 98.33 
Features 16 9 18 

Musk2 
Accuracy 96.82 96.06 97.27 
Features 16 13 12 

Semeion 
Accuracy 78.62 61.25 79.38 
Features 39 18 47 

Medelon 
Accuracy 83.5 54.83 74 
Features 24 23 18 

Isolet 
Accuracy 56.51 63.75 71.46 
Features 44 44 48 

Multivariate 
Accuracy 97 88 98 
Features 35 5 13 
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3.5  Discussion 
 

Determining value of candd  is important. If we define it too high, algorithm 

takes much time but does not yield higher accuracy. If we define it too low, search 

space is not wide enough. The selected features will dominate only on the first 

criterion function not complement between two criterion functions and we do not  

obtain high accuracy.   From experiment results, using candd = 5 yields higher 

accuracy than does using candd = 1, across different configurations and data sets. It is 

because not only focusing on high quality features to be selected; candidate set also 

makes algorithm more efficient search to select high predictive features. 

From the experiment results, different criterion functions yields different 

results because each function has a unique characteristic and we can see that JMBH as 

the second criterion function yields the best result. Therefore if we properly select the 

second criterion function, we can get the best results. The proposed method provides 

more options for users to select two suitable criterion functions according with 

solving problem. This provides more opportunity to get high accuracy. The results 

show that the proposed technique outperforms the original filter which uses only 

single criterion function. The proposed technique also outperforms the hybrid 

approach with the same reason. Although wrapper-based part in hybrid approach can 

improve accuracy but it is only used to evaluate feature subset not to be guidance for 

searching high predictive features. Therefore the proposed technique improves 

accuracy and reduces computation time in searching process. 

 In this chapter we evaluate data set by using original data in feature selection 

process. It provides low accuracy in some data sets. We suppose that it can be caused 

by mixtures of noisy data or uncertainty data. Therefore in the next chapter we 

preprocess these data sets to reduce the effect of such data to improve accuracy. 
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CHAPTER 4 

 

FILTER-BASED FUZZY FEATURE SELECTION  

USING GENETIC ALGORITHM 

 
In real-world applications, ambiguous and noisy data are very common. These 

imperfect data can lead to an inaccurate model from machine learning process. Fuzzy 

Logic, which is a multi-value logic that allows intermediate values to be defined 

between conventional crisp evaluations, e.g., true/false, yes/no, etc., provides a simple 

way to define conclusions based upon vague, ambiguous, imprecise, noisy, or missing 

input information (Engelbrecht, 2007: 143). Hence, fuzzy logic can be used to handle 

the imperfect data while minimize the losses of information due to its processes. 

(Grande, Suárez and Villar, 2007: 57). 

In this chapter we propose a feature selection technique for classification, that 

uses fuzzified feature values instead of the original values. The fuzzification on each 

feature value is performed using irregular-shaped membership functions evolved by a 

genetic algorithm. 

 

4.1  Literature Review 

 

From the benefits of fuzzy logic in handling ambiguous and noisy data, fuzzy 

set theory has been used to improve performance of many feature selection 

algorithms.  

For filter-based feature selection (Grande, Suárez and Villar, 2007: 57) use 

fuzzy mutual information as the objective function to select features for classification 

problems with predefined fuzzy partitions for all of the features. Features with 

maximum information about the desired output are selected. They use the extended 

Battiti feature selection algorithm for regression problem.  
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Li and Wu (2008: 218) use fuzzy extension matrix as a searching strategy to 

map crisp data into fuzzy space and select features. The extension matrix is used with 

membership degree of fuzzy feature instead of original data. They use a triangular 

shape MF to fuzzify original data. Features that minimize inter-class similarity with 

respect to selected fuzzy subset and maximize goodness-of-fit are selected. 

Jalali, Nasiri and Minaei (2009: 718) apply fuzzy feature selection with a 

greedy search and a consistency measure to select features. The proposed method 

projects original data into fuzzy space by using a triangular or sigmoid MF. Forward 

feature selection works with fuzzy features and uses a consistency measure as the 

criterion function. The best feature in each iteration is the feature that maximizes the 

consistency measure. 

For wrapper-based feature selection (Cintra, Martin, Monard and Camargo, 

2009: 214) propose a wrapper feature selection method with wrapper-based fuzzy rule 

generation. GA employs triangular shape MF to fuzzify original data. This work 

applies the backward search strategy with fuzzy features to generate the fuzzy rule 

bases (FRBs). FRBs error rate is the objective function for feature selection.  

Hedjazi, Kempowsky-Hamon, Despènes, Le Lann, Elgue and Aguilar-Martin 

(2010: 6827) apply fuzzy feature selection and a classification technique to select an 

optimal feature (called sensor) subset. Centered binomial MF is chosen in this work. 

Membership Margin Based Attribute Selection (MEMBAS) is the feature selection 

algorithm used in this work. Classification error is the objective function for feature 

selection.  

Vieira, Sousa and Kaymak (2012: 6) propose a feature selection method using 

an ant colony optimization algorithm to solve multi-objectives optimization problems 

in feature selection. They adapt the classical criteria in model based feature selection, 

by describing them using membership functions. In this work a Gaussian shape MF is 

used as fuzzy criteria for classification error minimization and trapezoidal shape MF 

is used as fuzzy criteria for feature cardinality minimization. The evaluation of subset 

solution is obtained by using an aggregation operator to combine the two fuzzy 

criteria which are the number of features minimization and classification error rate 

minimization into a single objective function.  
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4.2  The Proposed Method 

 

In fuzzy logic, an element belongs to a set or class to a degree, indicating the 

certainty (or uncertainty) of membership. A membership function (MF), also referred 

to as the characteristic function of the fuzzy set, is used in the fuzzification process. It 

receives crisp data and produces the membership degrees (Engelbrecht, 2007: 470). 

An inference process maps the level of membership received from the fuzzification 

process and produces a fuzzified output for each fuzzy value.  

 

4.2.1  A Filter-Based Irregular-Shaped Membership Function Generation 

MF for fuzzy sets can be of any shape or type as determined by experts in the 

domain over which the sets are defined. In a fuzzy system, there are several patterns 

of MF such as triangular, trapezoidal and Gaussian-shaped whose determination 

requires skill and knowledge about information to select and specify appropriate 

pattern to use.  

The proposed method employs fuzzification of original feature values where 

feature values are fuzzified using irregular-shaped membership functions (ISMFs) 

evolved by a genetic algorithm. The fuzzified feature values are then used in the 

feature selection process proposed in chapter 3. 

Determination of an MF shape (for data fuzzification) by experts may not be 

possible for a big data set containing a large number of features. We adapt the 

wrapper-based hierarchical co-evolutionary genetic algorithm proposed by (Huang, 
Pasquier and Quek, 2007) to generate ISMFs where a criterion function is used as the 

fitness function for the GA. ISMF is a highly-generic type of MF, which is composed 

of unevenly spaced sampling points, connected together with straight line segments. 

Hierarchical Co-evolutionary Genetic Algorithm (HCGA) is adopted to determine the 

number of sampling points and their values.  

An ISMF shape is represented as one pivot point, left shoulder points and right 

shoulder points depicted in Figure 4.1. The ISMF of each fuzzy set for each input 

variable will be represented in genetic segmentations and concatenated into one 

chromosome in the first level for the corresponding variable. The pivot point is the 

point where the membership value is the maximum. It is encoded as offsets (distance) 
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along x and y axes from the pivot point of the preceding membership function of the 

same feature. Except for the first membership function, the pivot point is encoded as 

offsets from the starting value of the feature. The left points and right points are all 

encoded as the offsets from the respective pivot point. When evolving with GA, 

coordinates of all the point values will be changed and so the shape of MF. A 

chromosome in the second level composes of genes pointing to chromosomes for all 

variables in L1-level. Content in L2-level gene is an integer value of index of L1-level 

chromosome. The structure of two-level HCGA chromosome populations is depicted 

in Figure 4.2. 

 

Right PointsLeft Points

Pivot Point

Pivot Point Offset Left Point Offsets Right Point Offsets

x1 y1 x2 y2 ... ... xn yn

1st point (x1,y1)
2nd point (x2,y2)

nth point (xn,yn)

 
 

Figure 4.1  A Genetic Segment Representing An ISMF Shape 

 

 The algorithm partitions and encodes possible solutions as populations in 

different levels, allowing for different kinds of chromosomes and genetic operators. A 

higher level chromosome selects a set of lower-level chromosomes to form a solution. 

In this case, a highly complicated search task can be properly partitioned into several 

subtasks, which are simultaneously and effectively handled. 
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First Layer ChromosomeC1 Chromo 1
C1 Chromo 2

...
C1 Chromo j

ISMF1 ISMF2 ... ISMFk-1 ISMFk

…...
ISMF1 ISMF2 ISMFk-1 ISMFk

 
 

Figure 4.2 Structure of Two-Level HCGA Chromosome Populations for Deriving 

ISMFs 

 

An example ISMFs is shown in Figure 4.3. T here are eight fuzzy sets of 

Alcohol feature. The leftmost set has no left shoulder point and the rightmost set has 

no right point. Each set is represented by an integer value that the leftmost set is 1 and 

the rightmost set is 8. 

 

 
 

Figure 4.3  An Example of ISMFs for Alcohol Feature in the Wine Dataset 

 

Genetic operations, which are selection, crossover and mutation, in the two 

levels can be different. In this dissertation, selection methods and crossover operators 
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are not predefined for both levels. Combinations of selection methods and crossover 

operators are explored. The selection methods include Roulette, Tournament, Uniform 

and Stochastic uniform selection. The crossover operators include Single-point, Two-

point, Arithmetic and Scatter crossover operator. Uniform mutation operator is 

applied for both levels because uniform mutation operator can be used for integer 

value genes in the second level and floating value genes in the first level. All genes 

are mutated with equal probability.  

A fitness function is used to evaluate how close a given design solution 

(referred to as a chromosome) is to achieve the fuzzy set objectives. In this 

dissertation, we apply the second criterion function used in filter-based feature 

selection process as the fitness function for the GA. For example, if we apply mutual 

information (MI) as the second criterion function in feature selection, we will use MI 

as the fitness function of HCGA. Since the objective of the second criterion function 

is to evaluate a feature subset and select the best one, it is appropriate to be used for 

evaluating the fitness of a chromosome for deriving ISMFs.  

An example to infer the fuzzy set value of a variable is depicted in Figure 4.4. 

Let suppose we want to get the fuzzy set value of a variable value of 12.99. We draw 

the vertical line from the point of 12.99 on the x-axis to cross the variable ISMFs. It 

can be concluded that the given value belongs to the 5th fuzzy set since its 

membership degree is higher than is the 4th

 

 fuzzy set. Therefore, the fuzzy value of 

12.99 is 5. 
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Figure 4.4  An Example of Inferring Fuzzified Feature Values from Given Crisp 

Feature Values Using Given ISMFs. 

 

During crossover and mutation operations of the GA, constraints and repairing 

schemes are employed to ensure the genetically derived ISMFs of fuzzy sets are 

proper and valid. 

1)  Range repair: to ensure that all ISMF points are covered by ISMFs. 

2)  Nearby ISMFs repair: to ensure that there is no significant overlap between 

two ISMFs. 

3) Membership value repair: to ensure that all points have non-negative 

membership degrees. 

4) Completeness repair: to ensure that the last point on either side has a zero 

membership degree. 

5)  Out-bound cross point repair: to ensure that every two nearby ISMFs 

overlap at a proper membership degree. 

Regarding out-bound cross point repairing, from experiments we found that if 

two consecutive shapes have pivot point values close to the new horizontal offset 

value obtained using the formula provided in the paper (Huang, Pasquier and Quek, 

2007); the repaired point can be moved to the next point as shown in Figure 4.5. The 

result is a membership value of the point between the repaired point and the next 
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point will have more than one value. Thus, in this research the midpoint is used 

instead. 

 

 

 

 

 

 

Figure 4.5  Out-Bound Cross Point Repairing. There Are Two Membership Values of 

Crisp Data Between mrp and 1+mrp  

 

4.2.2  Feature Selection Algorithm 

We use fuzzified output of features in the feature selection process instead of 

original data which could be a mixture of ambiguous and noisy data (as used in 

chapter 3). The feature selection process with fuzzy logic is shown in Figure 4.6. 
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Figure 4.6  Feature Selection Process  

 

4.3  The Proposed Algorithm 

 

Structure of the proposed technique is shown in Figure 4.7. We modified the 

algorithm presented in previous chapter to incorporate fuzzy logic. Therefore, before 

going into the selection step, irregular-shaped MFs are generated first, and then the 

fuzzified output is used to select features. We use two criterion functions where CMI 

is the first function, and three measures are studied as the second function.  
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Figure 4.7  Structure of Proposed Algorithm 

 

The fuzzified output (fuzzy partition value) is a discrete value, and it is used to 

evaluate CMI. Therefore we do not discretize original data in this proposed algorithm 

as does in chapter 3. 

 

4.4  The Second Criterion Function 
 

We study three measures from the previous chapter as the second criterion 

function. 

 

4.4.1  Mutual Information (MI) 

MI can be calculated as follows: 
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where H is entropy function, Y is a class attribute, and nX  is the feature to be 

selected. The effect of MI is close to CMI used in 2J ; it is  used in this research to 

provide a baseline performance. 

 

4.4.2  Jeffreys-Matusita Distance Bound to the Bayes Error (JMBH) 

JMBH can be calculated as follows: 
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4.4.3  Mahalanobis Distance (MAHA) 

MAHA can be calculated as follows: 
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 where µ is the mean vector, and S is the covariance matrix for a group. 

 

4.5  Experimental Results 

 

To select features, we apply CMI as the first criterion function, and three 

measures are studied as the second criterion function. Fuzzified data with only 

selected features and class attribute is passed through CART to obtain classification 

accuracy. For a d ata set that does not provide a separate test set, a 10-fold cross 

validation is applied. 
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4.5.1  Data Set 

Data used in the experiments are 15 standard data sets with various sizes from 

the UCI machine learning repository (Asuncion and Newman, 2007). Details of the 

data sets are shown in Table 4.1. 

 

Table 4.1  Data Sets Used in Experiments 

 

Name Feature Type 
A number 

of instances 

A number of 

features 

Pima Numeric 768 8 

Wine Numeric 178 13 

Image Segmentation Numeric 2310 19 

Breast Cancer Numeric 569 30 

Ionosphere Numeric 351 34 

Dermatology Numeric 366 34 

Spambase Numeric 4601 57 

Sonar Numeric 208 60 

Libras Movement Numeric 360 90 

Hill valley with noise Numeric 1212 100 

Hill valley without noise Numeric 1212 100 

Musk Numeric 6598 166 

Musk2 Numeric 6598 166 

Arrhythmia Numeric 452 279 

Madelon Numeric 2600 500 

 

 4.5.2  Experiment Setup 

After exploring various combinations of system parameters, the followings are 

used in all experiments. For the hierarchical co-evolutionary genetic algorithm, the 

population sizes of the first layer and the second layer are set as 100 and 30, 

respectively. The upper and lower bounds are set to ensure that two nearby ISMFs 

overlap at a proper membership degree. The values of the two bounds are set to 0.8 

and 0.1, r espectively. We choose crossover operator from four operators (Single-
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point, Two-point, Arithmetic and Scatter crossover operator) for each layers of 

HCGA separately. Crossover rate of both layers is varied between 0.7 and 0.9. 

Uniform mutation operator is used for both layers with different mutation rates. 

Mutation rate for the first layer is varied between 0.1 and 0.3 while mutation rate for 

the second layer is varied between 0.01 and 0.03. The candidate set size for the 

feature selection candd  is 5. The maximum number of ISMFs is 9 (for initialization). 

 

4.5.3  Effectiveness of the Proposed Technique 

This section, we study the benefit of feature selection using fuzzified feature 

values in comparison to the one using original feature values, the effectiveness of the 

proposed method, and the comparative performance of different 3 functions as the 2J  

criterion. Three feature selection approaches, i.e., the original filter-based; non-

fuzzified two-criterion (CMI+ 2J  without fuzzy); and the proposed fuzzified two-

criterion (CMI+ 2J  with fuzzy), are studied. The results (in Table 4.2) show that 

feature selection when using fuzzified feature values in general gives higher accuracy 

than when using the original set of features; that the proposed feature selection 

algorithm is effective where in most cases two criterion CMI+ 2J  without fuzzy yields 

higher accuracy than does using 2J  alone, except when using MI as 2J . Also, in 

almost all cases the fuzzified CMI+ 2J  gives equivalent or better results than does the 

best of 2J  and CMI+ 2J  without fuzzy. Regarding the 2J  functions in the fuzzified 

CMI+ 2J  configuration, JMBH is found to perform equivalently or better than the best 

of all other functions in terms of classification accuracy in 11 out of 15 data sets, 

among those there are 2 data sets with accuracy equal to the best values but with 

smaller feature sets which include Dermatology (16 features for fuzzified 

CMI+JMBH and 22 features for fuzzified CMI+MI and fuzzified CMI+MAHA) and 

Spambase (40 features for fuzzified CMI+JMBH, and 52 f eatures for fuzzified 

CMI+MI). For the Breast Cancer data set, the fuzzified CMI+JMBH yields 98.24% 

with 4 features while the highest accuracy is 98.25% with 5 features achieved by the 

fuzzified CMI+MAHA. Further experiments will thus use JMBH as the 2J  criterion 

function.       
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Table 4.2  The Results of the Original Filter Method ( 2J ), CMI+ 2J  Without Fuzzification and CMI+ 2J  With Fuzzification 

 

Data set Original 
Data 

MI JMBH MAHA 

2J  
CMI+ 2J
Without 
Fuzzy 

CMI+ 2J
With 
Fuzzy 

2J  
CMI+ 2J
Without 
Fuzzy 

CMI+ 2J  
With 
Fuzzy 

2J  
CMI+ 2J
Without 
Fuzzy 

CMI+ 2J
With 
Fuzzy 

Pima 
Accuracy 70.13 75.33 75.33 75.33 74.03 76.63 79.22 75.33 75.33 75.33 

Features 8 3 3 3 5 3 4 3 3 3 

Wine 
Accuracy 83.33 88.89 88.89 94.44 100 100 100 94.44 88.89 100 

Features 13 2 2 3 2 2 3 11 2 2 

Image 
Segmentation 

Accuracy 90.29 90.71 90.62 92.57 85.24 90.19 92.57 90.33 90.62 92.57 

Features 19 12 8 5 5 9 9 10 5 5 

Breast Cancer 
Accuracy 89.47 94.74 92.98 96.49 91.23 96.49 98.24 96.49 96.49 98.25 

Features 30 19 7 2 2 6 4 10 10 5 

Ionosphere 
Accuracy 88.57 94.29 97.14 100 94.29 100 97.14 97.14 97.14 97.14 

Features 35 3 5 12 3 9 11 9 17 4 

Dermatology 
Accuracy 94.44 100 100 100 72.22 97.22 100 97.22 97.22 100 

Features 35 19 19 22 11 8 16 22 14 22 

Spambase 
Accuracy 81.82 93.93 93.49 93.48 88.29 93.71 93.48 92.84 93.71 93.26 

Features 58 38 17 52 18 27 40 51 27 41 
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Table 4.2 (Continued) 
 
 

Data set Original 
Data 

MI JMBH MAHA 

2J  
CMI+ 2J
Without 
Fuzzy 

CMI+ 2J
With 
Fuzzy 

2J  
CMI+ 2J
Without 
Fuzzy 

CMI+ 2J  
With 
Fuzzy 

2J  
CMI+ 2J
Without 
Fuzzy 

CMI+ 2J
With 
Fuzzy 

Sonar 
Accuracy 71.43 80.95 80.95 95.23 71.43 85.71 95.23 85.71 80.95 95.23 

Features 60 26 6 4 6 18 5 7 6 5 

Libras 
Movement 

Accuracy 69.44 75 75 75 52.78 75 80.56 63.89 80.56 83.33 

Features 91 36 29 21 4 9 11 25 22 36 

Hill valley 
with noise 

Accuracy 55.45 57.59 56.6 59.40 49.67 56.6 59.90 55.94 56.6 59.08 

Features 100 46 5 7 3 5 12 11 5 4 

Hill valley 
without noise 

Accuracy 60.07 57.59 57.1 60.89 52.48 57.76 60.89 59.08 57.43 60.23 

Features 101 46 25 12 2 16 14 44 22 10 

Musk 
Accuracy 96.82 97.42 98.33 98.03 95.15 98.33 98.33 95.75 97.27 97.58 

Features 167 42 37 48 9 18 42 10 43 39 

Musk2 
Accuracy 98.03 96.06 97.12 96.97 96.06 97.27 97.58 95 96.82 96.52 

Features 167 40 19 31 13 12 47 22 36 28 

Arrhythmia 
Accuracy 66.67 64.44 62.22 80 80 60 82.22 77.78 62.22 66.67 

Features 279 13 5 5 3 17 20 30 23 5 

Medelon 
Accuracy 75.67 70.5 69.83 78.33 54.83 74 84.83 72.17 76 81.5 

Features 500 48 30 7 23 18 12 6 19 9 
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4.5.4  Comparisons with Other Approaches 

In this section, we compare the proposed method with other 3 feature selection 

approaches, namely, wrapper, filter, and hybrid approaches, using JMBH as the 

criterion function. The results (in Table 4.3) show that the proposed method 

(Fuzzified CMI+JMBH) gives the highest accuracy in 12 out of 15 data sets. 

Considering these 3 alternative approaches, we find that the wrapper approach 

performs the best, the hybrid approach performs moderately, and the filter approach 

gives the lowest accuracy. This confirms our earlier discussions regarding the relative 

performance of the feature selection approaches. 
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Table 4.3  The Results of The Wrapper Method, The Hybrid Method, The Original 

Filter Method, and The Proposed Method   

 

Data set Wrapper 
Method 

Hybrid 
Method 

Filter 
Method 

Proposed 
method 

Pima 75.33 75.33 74.03 79.22 
3 3 5 4 

Wine 100 100 100 100 
2 2 2 3 

Image Segmentation 92.57 92.57 85.24 92.57 
3 3 5 9 

Breast Cancer 96.49 96.49 91.23 98.24 
3 4 2 4 

Ionosphere 97.14 97.14 94.29 97.14 
8 17 3 11 

Dermatology 100 100 72.22 100 
6 6 11 16 

Spambase 93.06 92.41 88.29 93.48 
34 17 18 40 

Sonar 76.19 80.95 71.43 95.23 
8 9 6 5 

Libras Movement 83.33 72.22 52.78 80.56 
9 9 4 11 

Hill valley with noise 64.85 64.19 52.48 59.90 
16 13 2 12 

Hill valley without 
noise 

62.38 64.03 52.48 60.89 
40 25 2 14 

Musk 96.96 97.73 95.15 98.33 
26 16 9 42 

Musk2 97.45 96.82 96.06 97.58 
25 16 13 47 

Arrhythmia 82.22 68.89 80 82.22 
4 8 3 20 

Medelon 84.5 83.5 54.83 84.83 
18 24 23 12 

 

 

4.5.5  Comparisons with Previous Research 

Lastly, the proposed method (fuzzified CMI+JMBH) is compared against 

three recent researches on feature selection which are: (Li and Wu, 2008: 224), (Jalali, 

Nasiri and Minaei, 2009: 721) and (Vieira, Sousa and Kaymak, 2012: 16), using the 

performance numbers reported in each paper. The results (in Table 4.4) show that the 
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proposed method outperforms (Jalali, Nasiri and Minaei, 2009) and (Li and Wu, 

2008) in all common data sets. Comparing with (Vieira, Sousa and Kaymak, 2012), 

we find that the proposed method gives higher accuracy in 3 out of 4 data sets. Thus, 

the proposed technique is shown to perform very well across different data sets and in 

comparison with other techniques. 

 

Table 4.4  Results of The Proposed Method Compared to Those of Other Research 

Works. Feature Reduction Percentages Relative to The Original Feature 

Sets are Shown in Parentheses 

 

Dataset 
Original 

Number of 
Features 

(Li and Wu , 
2008) 

(Jalali, 
Nasiri and 

Minaei, 
2009) 

(Vieira, 
Sousa and 
Kaymak, 

2012) 

Our method 

Pima 8 71.51 (89.17) - - 80.52 (50) 

Wine  13 90.99 (83.59) 95.4 (65.38) 96 (69.23) 100 (76.92) 
Breast 
Cancer  30 95.97 (96.67) 63.6 (91.66) 98 (86.67) 98.24 (87.09) 

Sonar  60 68.06 (96.78) - 86 (86.66) 95.24 (93.33) 

Arrhythmia  279 - - 87 (95.69) 82.22 (92.83) 

 

 

4.6  Discussion 

 

The proposed technique employs fuzzification of original features to the filter-

based feature selection proposed in chapter 3. The technique allows the feature 

selection to better handle mixtures of ambiguous and noisy data and improve the 

selection performance.  In this chapter we only apply the proposed method to 

classification problems.  The class attribute can guide the search for features that are 

related or relevant to the class attribute. For unsupervised feature selection, the class 

attribute is not available, thus the proposed method needs to be modified. In the next 

chapter, we present modifications to the method to deal with unsupervised clustering 

problems.  
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CHAPTER 5 

 

AN UNSUPERVISED EVOLUTIONARY  

FUZZY FEATURE SELECTION 

 
Feature selection has been widely studied in supervised classification. 

However, it is a r ather recent and challenging research topic to select a s et of 

predictive features for cluster analysis for two reasons. First, it is not an easy task to 

define a g ood criterion to evaluate the quality of a c andidate feature set due to the 

absence of accurate labels of items. Second, feature selection needs to evaluate an 

exponential number of feature combinations, which is impractical if the data set has a 

large number of features (Hong, Kwong, Chang and Ren, 2008: 2742). 

In this chapter we apply the proposed technique to select features for 

clustering problem where features are fuzzified using irregular-shaped membership 

functions evolved by a genetic algorithm that is suitable for high dimensional data. 

 

5.1  Literature Review 

 

As stated in chapter 2, feature selection approaches can be classified into three 

categories, which are wrapper, filter, and hybrid approaches. 

Given an unsupervised clustering problem, a wrapper method incorporates the 

clustering into the feature subset evaluating process. To evaluate the importance of a 

candidate feature subset, data clusters are built, validated, and used to evaluate the set. 

This approach is believed to generate a subset that yields high clustering validity; 

however, it is likely to take long time.  

Hong, Kwong, Chang and Ren (2008: 2744) use population based incremental 

learning algorithm (PBIL) to generate candidate feature subsets. There are two major 

steps of the proposed framework. In the first step, the population of clustering 
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solutions is obtained through executing different clustering algorithms and then all the 

obtained clustering solutions are combined into a single consensus clustering solution.  

In the second step, framework searches for a subset of all features that best fits 

the obtained consensus clustering solution by using PBIL. Similarity measure 

between each clustering solution is applied to evaluate feature subset.  

(Elghazel and Aussem, 2010: 168) extend random forest to unlabeled data by 

introducing the clustering ensemble to combine data resampling, and random 

selection of features strategies to generate an ensemble of component clustering. The 

proposed method randomly selects features and applies a clustering ensemble 

technique to find a suitable set of clusters. For each cluster, features are selected 

according to the scree test.  

Liu, Liang and Ni (2012: 42) cluster the features and filter out irrelevant or 

redundant ones  from each cluster according to their membership probabilities. New 

features are obtained by combining features from each different cluster. K-means 

clustering algorithm is trained on i nstances using these features. The ratio of intra-

cluster distance to inter-cluster distance is used to evaluate these clusters, and features 

with the largest ratio are selected as the final candidate feature sets. 

Yang, Hou and Nie (2012: 1794) use K-means clustering to generate class 

labels and then use joint maximization margin criterion and sparse L2,1

A filter-based method generally runs faster and is more preferable for real-

world problems, especially those with large data sets. In the filter method, instead of 

performing clustering as part of the feature selection process, a quality measure is 

used to evaluate each feature set. This approach composes of two important 

components, a selection algorithm and a criterion function. A selection algorithm is 

the candidate feature maker while a criterion function is used to select features and 

evaluate feature subsets; however, clustering several times is not being performed as 

the wrapper approach does. Many researchers had found that it yields less 

effectiveness than the other two approaches; nevertheless, it is not true to state that the 

-norm 

regularization to perform feature selection. These steps iterate until the algorithm 

converges to global optimum, and the feature subset, which maximizes the margin 

between classes, is selected. 
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filter approach always yields inferior clustering results. Some criterion functions may 

provide equivalent or better performance than others to guide the search process.  

Dash, Choi, Scheuerman and Liu (2002: 117) propose an entropy measure and 

a forward search to select features. Entropy measure will be low if the data has 

distinct clusters while the measure will be high if otherwise. This measure is suitable 

for selecting the most important subset of features because it is invariant with number 

of dimensions, and is affected only by the quality of clustering. Features that give the 

minimum entropy for both of intra-cluster and inter-cluster distances are selected.  

Liu, Yang, Ding and Ma (2009: 66) use the entropy measure proposed in 

(Dash, Choi, Scheuerman and Liu, 2002) combined with the Laplacian score (LS) to 

select features for clustering. Features are ranked according to their LS in descending 

order. After that, the entropy measure of some features in the top of the list is 

evaluated and ranked in ascending order. Features with minimum entropy value are 

selected. This combination solves the drawbacks of using only the Laplacian score.  

Suri, Murty and Athithan (2012: 255) apply normalized mutual information 

(NMI) as an objective function for unsupervised feature selection in an outlier 

detection problem. Features with high NMI are considered as redundancy thus low 

NMI features are selected. In their work, average redundancy (AR) of a set of features 

is defined. One feature at a time is picked to form a feature subset and AR is used to 

evaluate subset and it is also used as stopping condition of feature selection algorithm.  

Liu, Rallo and Cohen (2011: 971) apply a forward search and a kernel least 

square error (LSE) for unsupervised feature selection. They propose an incremental 

LSE calculation to evaluate feature subsets in order to improve efficiency. To select a 

feature, the LSE of unselected features are evaluated. The feature with minimum 

value of LSE is selected; one feature at a time until stopping condition is reach. 

The hybrid approach takes advantage of both wrapper and filter approaches. It 

applies a filter-based technique to select significant features, and applies a wrapper-

based technique to add candidate features and evaluate candidate sets to select the 

best one. A few works are proposed in this approach for unsupervised learning.  

Dash and Liu (2000: 6) apply an entropy measure as a filter criterion. Data in 

well-formed clusters give low entropy values, so features are ranked in descending 

order of their entropy values. One feature at a time is picked to form a feature subset. 
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Each subset is evaluated by K-means clustering, and scattering criteria is used to 

evaluate cluster quality. 

 

5.2  The Proposed Method 
 

For clustering problem, we have to choose 1J  and 2J  that were not taken into 

account with the class label. In addition, they must be filter-based unsupervised 

measure to support cluster analysis. 

 

5.2.1  The First Criterion Function 

Criterion functions play significant roles in feature selection. The purpose of 

the first function is to eliminate redundant features, thus the average redundancy (AR) 

measure is chosen (Suri, Murty and Athithan, 2012: 255), which can be calculated as 

follows 

∑
∈∀

=
sj Ff

ji
s

si ffNMI
F

FfAR ),(
||

1),(  

)}(),(min{
),(

),(
j

ji
ji fHfH

ffI
ffNMI =  

∑−=
j

ji xpxpxH ))(log()()(  

∑∑=
i j ji

ji
ji ypxp

yxp
yxpyxI

)()(
),(

log),(),( 2  

where sF  is a set of selected feature, and if  is the feature to be evaluated. 

AR is based on m utual information (MI), which consists of two main 

properties: the capacity of measuring relationships between variables, and the 

invariance under space transformations (Kullback, 1997: 22). Therefore, AR is used 

to select only relevant features while eliminate redundant features that may misguide 

the search process. 

 

5.2.2  The Second Criterion Function 

In classification, feature selection aims at identifying features that predict class 

labels with the highest accuracy, while clustering feature selection aims at finding 
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those features that discover the natural grouping structures of the data. The entropy 

theory (Dash, Choi, Scheuerman and Liu, 2002: 116) states that entropy of a system 

measures the disorder in the system. If the probability of each point is equal and the 

entropy value is at its maximum, we are most uncertain about the outcome. On the 

other hand, when the data has well-formed clusters, the uncertainty will be low and so 

will the entropy (Dash, Choi, Scheuerman and Liu, 2002: 116). Therefore, an entropy 

measure is chosen as a second criterion function for clustering problems. Entropy 

measure can be calculated as follows 
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where β  is set to 10 f rom experiments, and µ  is calculated as proposed in 

(Liu, Yang, Ding and Ma, 2009).  ijD  is the distance between two instances, i and j. 

Feature values after fuzzification are nominal, thus the hamming distance (Dash, Liu 

and Yao, 1997: 535) is used as the distance.  ijD  is calculated as follows 
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where || jkik xx ≠  is 0 if ikx equals jkx , and 1, otherwise. M is the number of 

variables in the subset under consideration. The purpose of using entropy as the 

second criterion function is to assign low entropy to intra and inter-cluster distances, 

and to assign higher entropy to noise (Liu, Yang, Ding and Ma, 2009: 66). Therefore, 

this measure helps the proposed algorithm discover natural groupings of data. 

 

5.2.3  The Proposed Algorithm 

The feature to be added must be less redundant than the features that have 

already been picked.  1J  in forward step is computed according to (5.1). 

),()(11 selnn SxARxJ =  where seln SSx \∈    (5.1) 
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In the forward step, 1J  of each unselected feature is evaluated and sorted in an 

ascending order according to its 1J  values. A candidate set is generated according to 

(5.2). 

seliicand SSxxS \|{ ∈=+  and ]..1[ canddi =  and )}(...)()( 11211111 canddxJxJxJ ≤≤≤    (5.2) 

A feature to be removed must be one that provides the most redundant, where 

it produces the largest increase in MI with respect to the remaining || selS  - 1 features. 

Therefore,  1J  in backward step is computed according to (5.3). 

 ∑
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=
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In backward step, 1J  of each selected feature is evaluated and sorted in a 

descending order. A candidate set is generated according to (5.4). 

 seliicand SxxS ∈=− |{  and ]..1[ canddi =  and )}(...)()( 12212112 canddxJxJxJ ≥≥≥  (5.4) 

 

5.3  K-Means Clustering 
 

K-means clustering is an unsupervised learning algorithm. It is the most 

widely used technique to cluster data (Kasliwal and Lade, 2013: 981). It is simple but 

efficient to partition data into clusters. The algorithm is an iterative process to group 

data into K clusters, where the sum of within-cluster distances between point-to-

cluster centroid over all clusters is minimized. In this work, we apply the squared 

Euclidean distance to measure the distance between a point and its centroid of cluster, 

which is the mean value of the points in that cluster. Squared Euclidean distance is 

evaluated as follows. 
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where ix  is a data instance, and c is the group centroid. 

The K-means algorithm starts by randomly select K representative data from 

the raw data to be the centroid for each of the K data groups. Then, it assigns each 

data to the closet group based on t he distance measure. The algorithm updates the 
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centroid value of the group for the mean of the data in that group, and repeatedly 

reassigns groups and updates centroids until the assignment cannot be changed. 

 

5.4  Experimental Results 

 

To evaluate the effectiveness of our method, we use the evaluation method 

previously used in Dy and Brodley (2004); Zhao, Kwok, Wang and Zhang (2009); 

Elghazel and Aussem (2013) and Markov (2013) where data sets with predefined 

classes are used. The data sets used in the evaluations of the proposed technique 

consists of sixteen data sets from the UCI machine learning repository.  

  

5.4.1 Data Sets 

Data used in the experiments are fifteen standard data sets with various sizes 

from the UCI machine learning repository (Asuncion and Newman, 2007). The detail 

of all data sets is shown in Table 5.1. 

 

5.4.2  Experimental Setup 

After performing clustering in each data set, each cluster will be assigned a 

label of class majority. The total number of correctly labeled data divided by the total 

number of instances in the data equals the accuracy of clustering. Since the K-means 

algorithm is sensitive to the initialization of cluster centroids and the value of K, K is 

set as the number of classes, and the final accuracy is obtained from an average value 

after twenty runs. 

After exploring various combinations of system parameters, the followings are 

used in all experiments. For the hierarchical co-evolutionary genetic algorithm, the 

population sizes of the first and second layer are set to 100 and 30, respectively, upper 

bound value = 0.8, l ower bound =  0.1. Uniform mutation operator is used for both 

layers, and the candidate set size for the feature selection is dcand

 

 = 5. For the data set 

without a separate test set provided, a 10-fold cross validation is used to measure the 

performance. 
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Table 5.1  Data Sets Used in Experiment 

 

Name Feature Type 
Number of 

instances 

Number of 

features 

Iris Numeric 150 4 

EColi Numeric 336 7 

Pima Numeric 768 7 

Wine Numeric 178 13 

Image Segmentation Numeric 2310 19 

Parkinson Numeric 195 22 

Breast Cancer Numeric 569 30 

Ionosphere Numeric 351 34 

Dermatology Numeric 366 34 

Spambase Numeric 4601 57 

Sonar Numeric 208 60 

Libras Movement Numeric 360 90 

Hill valley with noise Numeric 1212 100 

Arrhythmia Numeric 452 279 

Madelon Numeric 2600 500 

 

5.4.3  Effectiveness of the Proposed Technique 

In this section, we studied the benefit of feature selection in comparison to the 

original set of features and effectiveness of the proposed two-criterion function 

feature selection algorithm. We also studied three feature selection approaches, the 

original filter-based, non-fuzzified two-criterion ( 1J + 2J  without fuzzy), and fuzzified 

two-criterion ( 1J + 2J  with fuzzy). The results (in Table 5.2) show that feature 

selection is beneficial and gives higher accuracy than the original set of features. The 

proposed feature selection algorithm is effective; nevertheless, nine out of fifteen 

cases of 1J + 2J  without fuzzy yields better results than 2J  alone, and thirteen out of 

fifteen cases of fuzzified 1J + 2J  gives better results than the best of 2J  and 1J + 2J  

without fuzzy configurations, except for Spambase and Madelon data sets. For 
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Madelon, the proposed method gives slightly lower accuracy (0.16%) with twenty 

features less than the best method. 

 

5.4.4  Comparisons with Previous Research 

Lastly, the proposed method is compared with three recent researches on 

feature selection for clustering, which are (Hong, Kwong, Chang and Ren, 2008; 

Elghazel and Aussem, 2010 and Liu, Liang and Ni, 2012) using common data sets 

and performance numbers reported in each paper. All of these methods used the 

wrapper approach where clustering are performed to evaluate each feature subset. 

Results are shown in Table 5.3. We can see that our method outperforms (Hong, 

Kwong, Chang and Ren, 2008) in four out of five data sets. Comparing with (Elghazel 

and Aussem, 2010), our method outperforms in Iris data set but performs worse on the 

Ecoli data set. 

However, the proposed method gives higher performance than (Liu, Liang and 

Ni, 2012) in two out of three common data sets. This is due to the fact that our 

technique uses the filter approach while the referenced technique uses the wrapper 

approach, which takes much more time.  
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Table 5.2  The Results of The Original Filter Method ( 2J ), 1J + 2J  Without 

Fuzzification, and 1J + 2J  with Fuzzification 

 

Data set 
Original 

data 2J  1J + 2J  

Without Fuzzy 

1J + 2J With 

Fuzzy 

Iris 
Accuracy 91.67 91.37 91.37 96 

Features 4 2 2 1 

EColi 
Accuracy 80.54 79.87 81.41 82.07 

Features 7 6 6 6 

Pima 
Accuracy 66.02 73.18 66.02 74.22 

Features 7 5 5 5 

Wine 
Accuracy 72.72 76.79 68.82 89.89 

Features 13 4 8 2 

Image 

Segmentation 

Accuracy 32.68 56.83 62.45 65.64 

Features 19 16 15 12 

Parkinson 
Accuracy 75.39 75.39 75.39 76.61 

Features 22 1 1 5 

Breast Cancer 
Accuracy 84.28 85.41 89.63 90.33 

Features 30 16 9 2 

Dermatology 
Accuracy 35.70 79.75 85.85 86.31 

Features 34 29 17 23 

Ionosphere 
Accuracy 71.22 74.39 74.93 77.35 

Features 34 1 1 2 

Spambase 
Accuracy 60.81 62.23 68.74 66.98 

Features 57 21 40 3 

Sonar 
Accuracy 57.89 59.93 57.57 67.86 

Features 60 37 14 11 

Movement 

Libras 

Accuracy 40.63 43.24 45.71 46.01 

Features 90 75 50 46 

Hill valley with 

noise 

Accuracy 50.55 50.66 50.83 50.83 

Features 100 1 4 1 

Arrhythmia 
Accuracy 58.81 58.50 58.68 58.85 

Features 279 40 27 42 

Medelon 
Accuracy 55.89 51.81 62.83 62.67 

Features 500 10 34 14 
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Table 5.3  Experimental Results of The Proposed Method Compared with Previously  

                  Proposed Methods.  The Number of Selected Features Is Shown in The  

                  Parenthesis.  

 

Dataset 

Original 

Number of 

Features 

(Hong, 

Kwong, 

Chang 

and Ren, 

2008) 

(Elghazel 

and 

Aussem, 

2010) 

(Liu, Liang 

and Ni, 

2012) 

Proposed 

Method 

Iris 4 92.56 (2) 93.2 (1.78) 92.53 (2) 96 (1) 

EColi 7 82.51 (6) 84.02 (5.3) 81.73 (4) 82.07 (6) 

Wine 13 87.07 (6) - 94.46 (4) 89.89 (2) 

Breast 

Cancer 
30 77.86 (12) - - 90.33 (2) 

Ionosphere 34 59.17 (19) - - 77.35(2) 

 

5.5  Discussion 
 

This chapter applies the proposed technique to select a minimal set of features 

for clustering problems. The first function is applied to eliminate features with 

redundant effects, and the second function is used to select a feature subset that yields 

well-formed clusters. The technique is evaluated using sixteen standard UCI data sets 

and is compared with three recent research papers. The results show that feature 

selection is beneficial to clustering, the two-criterion feature selection algorithm is 

generally effective, and that the fuzzification improves the performance of the feature 

selection algorithm. In addition, the proposed technique performs well in comparison 

with the wrapper-based feature selection methods previously proposed in common 

data sets. 
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CHAPTER 6 

 

CONCLUSIONS AND RECOMMENDATIONS  

FOR FUTURE WORK 

 

6.1  Conclusions 

 

The objective of this dissertation is to improve effectiveness of feature 

selection that can improve effectiveness of data mining algorithms. We want to 

enhance feature selection performance while, at the same time, make it as efficient as 

possible, especially with large data sets.  

Contributions of this work are summarized as follows, 

1) A filter-based feature selection using two criterion functions was proposed. 

Filter based has been accepted for low computation time with moderate accuracy; 

however, criterion functions have different characteristics. We combined two criterion 

functions together to utilize their advantages in improving data mining algorithm 

accuracy. The results of the experiments show that the proposed method gives higher 

accuracy to the selected features than the entire set of features and the proposed 

method also outperforms other feature selection methods; moreover, the method does 

not take much computation time.  

2) A feature fuzzification to the two-stage feature selection algorithm was 

introduced to handle noisy and distraction within the data. Fuzzy logic needs 

membership functions to transform crisp data into fuzzy values before passing them 

through the feature selection process. Irregular-shaped membership function is used 

instead of predefined regular shapes by experts. An irregular-shape is flexible, thus it 

can be fitted into actual distribution of the data set. The fuzzy logic enhances feature 

selection effectiveness and improves classification accuracy by outperforming other 

recent researches. 
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3) Not only in the supervised learning that the proposed method can be applied 

to, it can also be applied to the unsupervised clustering context.  Two proper criterion 

functions are used for features and subset evaluation for the unsupervised clustering. 

Experimental results show that the proposed method can be applied to unsupervised 

clustering and helps improve clustering accuracy.   

 

6.2  Future Work 

 

Genetic algorithm is the learning technique that we use to generate irregular-

shaped membership functions. Although we use criterion functions to evaluate an 

individual chromosome for the GA, the learning process still takes time. In addition, it 

requires many parameters to search for an optimal solution. Some issues can be 

further studied. 

1)  Number of criterion functions can be more than two. We may apply larger 

number of simple criterion functions instead of using two complicated criterion 

functions; however applied criterion functions must be consistent and they should be 

suitable for the problem. Number of candidate features must decrease continuously 

from the first criterion function until the best one is obtained from the last criterion 

function. 

2)  Self-adaptive learning or other optimization techniques can be applied to 

adjust the points of irregular-shaped membership function. As we had shown in the 

experiments, fuzzy logic combined with GA can improve feature selection 

effectiveness; however, it takes time to iteratively adjust points of irregular-shaped 

MF, encoded in chromosomes. Other self-adaptive learning or optimization 

techniques techniques may converge to optimum solution more rapidly and still give 

high performance of feature selection process. 

3) In this dissertation, we employ fuzzy logic as a preprocessing step to refine 

quality of data. Some research had stated that, information loss could happen if 

preprocessing step is not sturdy enough. Using a fuzzy measure as a criterion function 

may relieve this problem because original data is used in feature selection algorithm 

instead of using fuzzy value. A fuzzy measure can handle noise or distractions, and if 

the fuzzy measure is suitable, the effectiveness of selected features will be improved. 
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Moreover, it could reduce number of selected features and time required of feature 

selection process. 
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