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Outlier detection in Y-direction for multivariate multiple regression data is 

interesting since there are correlations between the dependent variables which is one 

cause of difficulty in detecting multivariate outliers, furthermore, the presence of the 

outliers may change the values of the estimators arbitrarily. Having an alternative 

method that can detect those outliers is necessary so that reliable results can be 

obtained. The multivariate outlier detection methods have been developed by many 

researchers. But in this study, Mahalanobis Distance method, Minimum Covariance 

Determinant method and Minimum Volume Ellipsoid method were considered and 

compared to the proposed method which tried to solve outlier detection problem when 

the data containing the correlated dependent variables and having very large sample 

size. The proposed method was based on the squared distances of the residuals to find 

the robust estimates of location and covariance matrix for calculating the robust 

distances of Y. The behavior of the proposed method was evaluated through Monte 

Carlo simulation studies. It was demonstrated that the proposed method could be an 

alternative method used to detect those outliers for the cases of low, medium and high 

correlations/variances of the dependent variables. Simulations with contaminated 

datasets indicated that the proposed method could be applied efficiently in the case of 

data having large sample sizes. That is, the principal advantage of the proposed 

algorithm is to solve the complicated problem of resampling algorithm which occurs 

when the sample size is large.  
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When data contain outliers, the ordinary least-squares estimator is no longer 

appropriate. For obtaining the parameter estimates of data with outliers, we analyze 

Multivariate Weighted Least Squares (MWLS) estimator. The  estimates  of  the  

regression coefficients using the proposed method were compared to those of using 

MCD and MVE method. For comparing the properties of the estimation procedures, 

we focus on the values of Bias and Mean Squared Error (MSE) of the estimated 

coefficients. For most of the values of Bias and MSE in the case of large sample size, 

the proposed method gave lower values of Bias and MSE than the others with any 

percentages of Y-outliers. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Background  

 

A Multivariate Multiple Regression (MMR) model generalizes the multiple 

regression model where the prediction of several dependent variables is required from 

the same set of independent variables, i.e., it is the extension of univariate multiple 

regression to various dependent variables. The MMR model is Y = XB + E, where Y 

is a dependent variable matrix of size n × p , X is an independent variable matrix of 

size n × (q + 1), B is a parameter matrix of size (q + 1) × p and E is an error matrix of 

size n × p. Each row of Y contains the values of the p dependent variables. Each 

column of Y consists of the n observations. It is assumed that X is fixed from sample 

to sample. That is, in MMR each response is assumed to result in its own univariate 

regression model (with the same set of explanatory variables), and the errors linked to 

the dependent variables may be correlated.  

The n observed values of the matrix Y can be listed as rows in the following 

matrix 

                                

11 12 1 1

21 22 2 2

1 2

...

...

...

p

p

n n np n

y y y

y y y

y y y

   
       
   
       

y

y
Y

y

 

such that each row of Y is independent of any other row. 

Each row of Y contains the values of the p dependent variables measured on    

a subject, and hence it corresponds to the y vector in the (univariate) regression 

model. 

The n values of the matrix X can be placed in a matrix that turns out to be the 

same as the X matrix in the multiple regression formulation :  
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Matrix ),...,,( 21 pβββB  is such that 

 

  

and we have the error matrix 
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For example, the multivariate model with p = 2 and q = 3 can be written in  

a matrix form as follow :  
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 The first column of Y can be rewritten as  
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 and the second column as   
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The assumptions that lead to good estimates are as follows : 

Assumption 1   :   E(Y) = XB     or     E(E) = O .    

Assumption 2   :   Cov( i
y  ) = Σ   for all  i = 1, 2, . . . , n, where i

y  is the ith row of Y. 

Assumption 3   :   Cov( i
y , j

y ) = O  for all   i   j .   

 

Assumption 1 (A1) states that the linear model is correct and that no additional 

x’s are needed to predict the y’s.  

Assumption 2 (A2) asserts that the covariance matrix of each observation 

vector (row) in Y is denoted by Σ  and it is the same for all n observation vectors in 

Y.    Specifically,  

Cov( i
y ) = 
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



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11211
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Σ       ;   i = 1, 2, . . . , n 

where   i
y  = (yi1, yi2, . . . , yip) 

Assumption 3 (A3) declares that the observation vectors (rows of Y) are 

uncorrelated with each other, and thus it is assumed that the y’s within an observation 

vector (row of Y) are correlated with each other but independent of the y’s in any 

other observation vector (Rencher, 2002). 

Multivariate outliers are observations appearing to disagree with the 

correlation structure of the data, and multivariate outlier detection examines the 

dependence of several variables, whereas univariate outlier detection is carried out 

independently on each variable. A capable technique for the treatment of these 

observations or an insight of the relative worth of available methods is necessary.  
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Multivariate outlier detection methods have been developed by many 

researchers, e.g.  Wilks (1963: 407-426) formed the Wilks’ statistic for the detection 

of a single outlier. Wilks’s procedure is applied to the reduced sample of multivariate 

observations by comparing the effects of deleting each possible subset. Gnanadesikan 

and Kettenring (1972: 81-124) proposed attaining the principal components of the 

data and searching for outliers in those directions. The method of Rousseeuw (1985) 

was based on the computation of the ellipsoid with the smallest covariance 

determinant or with the smallest volume that would include at least half of the data 

points; this procedure has been extended by Hampel, Ronchetti, Rousseeuw, and 

Stahel (1986), Rousseeuw and Leroy (1987), Rousseeuw and Van Zomeren (1990: 

633-651), Cook, Hawkins, and Weisberg (1992), Rocke and Woodruff (1993, 1996), 

Maronna and Yohai (1995), Agullo (1996), Hawkins and Olive (1999), Becker and 

Gather (1999), and Rousseeuw and Van Driessen (1999). Atkinson (1994) considered 

a forward search from random element sets and then selected a subset of the data 

having the smallest half-sample ellipsoid volume. Rocke and Woodruff (1996: 1047-

1061) used a hybrid algorithm utilizing the steepest descent procedure of Hawkins 

(1993) for obtaining the MCD estimator, which was used as a starting point in the 

forward search algorithm of Atkinson (1993) and Hadi (1992). Pena and Prieto (2001: 

286-310) presented a simple multivariate outlier detection procedure and a robust 

estimator for the covariance matrix, based on information obtained from projections 

onto the directions that minimize and maximize the kurtosis coefficient of the 

projected data. Johanna Hardin and David M. Rocke (2004) used the Minimum 

Covariance Determinant estimator for the outlier detection in the multiple cluster. 

Debruyne, Engelen, Hubert, and Rousseeuw (2006: 221-242) used the reweighted 

MCD estimates to obtain a better efficiency. The residual distances were then used in 

a reweighting step in order to improve the efficiency. Filzmoser and Hron (2008: 238-

248) proposed the outlier detection method based on the Mahalanobis distance. Riani, 

Atkinson and Cerioli (2009) used a forward search to provide the robust Mahalanobis 

distances to detect the presence of outliers in a sample of multivariate normal data. 

Noorossana, Eyvazian, Amiri and Mahmoud (2010: 271-303) extended four methods 

including likelihood ratio, Wilk’s lambda, T
2
 and principal components to monitor 

multivariate multiple linear regression in detecting both sustained and outlier shifts. 
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Cerioli (2010: 147-156) developed multivariate outlier tests based on the high-

breakdown Minimum Covariance Determinant estimator. Oyeyemi and Ipinyomi 

(2010: 1-18) tried to find a robust method for estimating the covariance matrix in 

multivariate data analysis by using the Mahalanobis distances of the observations. 

Todorov, Templ and Filzmoser (2011) investigated and compared many different 

methods based on the robust estimators for detecting the multivariate outliers. 

Jayakumar and Thomas (2013) used the Mahalanobis distance to obtain an iterative 

procedure for a clustering method based on multivariate outlier detection. In this 

study, outlier detection in the Y-direction for the MMR model was of interest since in 

real situations there may be data containing correlated variables, especially correlation 

between dependent variables which may lead to incorrectly detecting the observations 

as the outliers in the direction of dependent variables, since the existence of Y-outliers 

can randomly change the values of the estimators. 

 

1.2  Objectives of the Study 

 

1) To propose an alternative method of detecting outliers in the Y-direction 

on MMR. 

2)  To propose an alternative estimation method for MMR with outliers in the 

Y- direction.  

3) To investigate the biasedness and variation properties of the proposed 

estimators and compare to some existing ones.  

 

1.3  Scope of the Study    

 

This study on MMR was carried out under the following conditions:  

1)  The data are assumed to be cross-sectional and distributed as a 

multivariate normal distribution with correlation in the dependent variables. 

2)  This study is under the assumptions A1-A3. 

 

1.4  Operational Definitions   
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1.4.1 Outliers 

Outliers are observations identified as points with squared distances that 

exceed the cutoff value. 

 

1.4.2 Multivariate Outliers 

Multivariate outliers are observations that deviate too far from the cluster of 

data pertaining to the correlation structure of the data set, i.e. multivariate outlier 

detection examines the relationships of several variables. 

 

1.4.3 Y-Outliers 

A point (xi,yi) that does not follow the pattern of the majority of the data but 

whose xi is not outlying is called a Y-outlier. The i
th

 observations are declared as the 

Y-outliers if those observations having the squared distances of i
y exceed the cutoff 

value. 

 

1.4.4 Breakdown Point 

A breakdown point is a measure of the insensitivity of an estimator with 

multiple outliers. Roughly, it is measured by the fraction of data contamination 

needed to cause a norm amount of change in the estimate (Rousseeuw and Leroy, 

1987: 9). The higher the breakdown point of an estimator, the more robust it is. 

 

1.4.5 Distance 

Distance is a numerical expression of how far apart point is, i.e. the length of 

the perpendicular segment from one point to another. The squared distance uses the 

same equation as the distance, but it does not take the square root. Squared distance 

calculated by the robust estimates of location and covariance matrix is called robust 

square distance. 

 

1.4.6 Residual 

Residual is the difference between the observed value of the dependent 

variable and its predicted value. 

 



 

CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1  Introduction    

 

Barnett and Lewis (1978) defined an outlier as an observation or subset of 

observations which appears to be inconsistent with the remainder of the data set. 

Aggarwal (Aggarwal and Yu, 2001) noted that outliers may be considered as noise 

points lying outside a set of defined clusters or alternatively outliers may be defined 

as the points that lie outside of a set of clusters but are also separated from the noise. 

Univariate outlier detection is carried out independently on each variable, while 

multivariate outliers are observations that disagree with the correlation structure of the 

data set, and so multivariate outlier detection examines the relationship amongst 

several variables. The following are the recognized methods for detecting univariate 

and multivariate outliers. 

  

2.2  Methods to Detect Univariate Outliers 

 

Outliers are the points located “far away” from the majority of the data; they 

probably do not follow the assumed model. In univariate data, the concept of outlier 

seems relatively simple to define. 

 

2.2.1  The Boxplot Method 

Let y  be the mean and let s be the standard deviation of a data distribution. 

One observation is declared as an outlier if it lies outside of the interval 

( , )y ks y ks  , where the value of  k  is usually taken as 2 or 3. The justification of 

these values relies on the fact that, when assuming a normal distribution, one expects 

to have  95.45% (99.75%, respectively) percent of the data on the interval centered in 



8 

the mean with a semi-length equal to two (three, respectively) standard deviations. 

The observation y is considered an outlier if /y y s k   

The problem with the above criteria is that it assumes a normal distribution of 

the data something that frequently does not occur. Furthermore, the mean and 

standard deviation are highly vulnerable to outliers. 

The Boxplot (Tukey, 1977) is a graphical display for exploratory data 

analysis, when outliers appear. Two types of outliers are considered : extreme 

outliers and mild outliers. An observation is declared an extreme outlier if it lies 

outside of the interval (Q1-3xIQR, Q3+3xIQR), where IQR=Q3-Q1 is called the 

interquartile range. An observation is declared a mild outlier if it lies outside of the 

interval (Q1-1.5xIQR, Q3+1.5xIQR). The numbers 1.5 and 3 are chosen for 

comparison with a normal distribution. 

 

2.2.2  The Standard Deviation (SD) Method   
 

A classical method to detect outliers is to use standard deviation. It is defined 

as   

2 SD Method : 2SDy   , and 

3 SD Method : 3SDy   , 

where  y  is the sample mean and SD is the sample standard deviation. 

The observations outside these intervals are considered to be outliers. If a 

random variable Y with mean   and variance 2  exists, then, by applying the 

Chebyshev inequality, for any k>0, 

2

1
[ Y ]P k

k
        or 

2

1
[ Y ] 1P k

k
      

The inequality 2[1 (1/ )]k  enables us to determine what proportion of data 

will be within k standard deviations of the mean. Chebyshev’s theorem is true for 

data from any distribution; it gives the smallest proportion of observations within k 

standard deviation of the mean. When the distribution of a random variable is known, 

an exact proportion of observations centering around the mean can be computed. If 
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data follow a normal distribution, 68%, 95% and 99.7% of the data are 

approximately within 1, 2 and 3 standard deviations of the mean respectively. Hence 

the observations lying out of these ranges are considered to be outliers in the data 

(Seo, 2006). 

  
 

2.2.3  The MADE Method 
 

The MADE method using the median and the Median Absolute Deviation 

(MAD) is one of the basic robust methods which are not affected by the presence of 

extreme values of the data set. The MADE method is defined as 

2 MADE Method : Median   2 MADE 

3 MADE Method : Median   3 MADE 

where MADE = 1.483   MAD  for large normal data. 

MAD is an estimator of the scatter of the data and has an approximately 50% 

breakdown point like the median, such that  

1,...,
MAD median( median( ) )i i n

y y


   

When the MAD value is scaled by a factor of 1.483, it is similar to the 

standard deviation in a normal distribution and this scaled MAD value is referred to 

as the MADE. Since this method uses two robust estimators having a high breakdown 

point, it is not affected by extreme values unlike the SD method (Seo, 2006). 

 

2.2.4  The Median Rule 

The median, the value that falls exactly in the center of the data when the data 

are arranged in order, is a robust estimator of location having an approximately 50% 

breakdown point. The median and mean have the same value in a symmetrical 

distribution and for a skewed distribution, the median is used in describing the 

average of the data. Carling (2000: 249-258) introduced the median rule for outlier 

detection by studying the relationship between the target outlier percentage and 

Generalized Lambda Distributions (GLDs). GLDs containing different parameters 

are used for many moderately skewed distributions. The median substitutes for the 

quartiles of Tukey’s method, and is applied in a different scale of the IQR. It is more 

robust and its outlier percentage is less affected by sample size than Tukey’s method 
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in the non-Gaussian case. The scale of IQR can be adjusted depending on which 

outlier percentage and GLD are selected. It is defined as  

1 2[ , ] Q2C C   (the scale of IQR) x IQR    

where Q2 is the sample median (Seo, 2006).  

 
 

2.2.5  Z-scores 
 

To identify outliers in the univariate sense, so-called z-scores can be 

considered. The elements of the variables are standardized by extracting the mean 

from each element of the variable and dividing it by the corresponding standard 

deviation to obtain absolute z-scores:  

( )
z

( )

y y

y






  

Subsequently, each object with a z-score greater than 2.5 or 3 can be identified 

as an outlier. The justification for these cutoff values comes from the assumption of a 

normal distribution of the z-scores. It is expected that 99.40% and 99.90% of centered 

objects lies within the interval of two and a half and three times the standard 

deviation, respectively. The outliers influence estimates of the data mean and standard 

deviation, and thus also the z-scores. By considering a robust mean of the data, i.e., 

the median, and a robust measure of the data spread, for instance 
nQ , robust z-scores 

are obtained: 

( )
z

( )

y y

y
nQ

median



 

It should be emphasized that z-scores are equivalent to the autoscaling 

transformation, also known as the z-transformation (Daszykowski et al., 2007).   

 

2.3  Methods to Detect Multivariate Outliers  

 

A successful method of identifying outliers in all multivariate situations would 

be ideal, but is unrealistic. By “successful”, it is meant that both the ability to detect 

true outliers as well as the ability to not mistakenly identify regular points as outliers.  
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2.3.1   Wilks’ s Procedure 

Wilks (1963) designed the Wilks’ statistic for the detection of a single outlier 

as   

 

  
( 2)

max
( 1)

S

S

i

i

n
w

n







  , 

 

where S is the usual sample covariance matrix and  S-i  is obtained from the same 

sample with the ith observation deleted.   

Wilks’s procedure is applied to the reduced sample of n-1 multivariate 

observations to give 
( ) ( )

A / A
jl l

 where 
( )

A
jl

 is the matrix of the sums of squares 

and cross products with both y
j
and y

l
  removed from the sample for j = 1, . . ., n 

with j l . If m is the index of the second most extreme observation then D may be 

defined as  

( ) ( ) (m ) ( )
min( )=A / A A / A

jl l l l

j

D   

and expressed in the form of a distance as  

( ) ( ) 1 ( )1
1 ( ) ( ) ( )

2
y y A y y

l l l

m m

n
D

n


   


 

where 
( )

y
l

 is the vector of sample means with y(l) eliminated.  

 

This  procedure  may  be  repeated  to  identify  a  series  of  potential  outliers  

yl, ym,… etc. corresponding to a series of Wilks’ s statistics D1, D2,…etc. For some  

specified maximum number k of extreme observations this procedure generates a 

series of test statistics D1, D2, . . ., Dk. These are not independent of each other (in fact 

Dj is conditional on Dj-1) and have a joint distribution under the null hypothesis which 

is very difficult to determine (Caroni and Prescott, 1992). 

 

2.3.2  Distance Measure 

Supposing a multivariate observation y is represented by means of a univariate 

metric, or distance measure, 
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1

0 0 0( ; , ) ( ) ( )R    y y y y y y   

where y0 reflects the location of the data set or underlying distribution (y0 might be 

the zero vector 0 , or the true mean μ  , or the sample mean y ) . 

1  applies a differential weighting to the components of the multivariate 

observation related to their scatter or to the population variability ( might be the 

variance-covariance matrix V or its sample equivalent S, depending on the state of the 

knowledge concerning μ  and V ) . 

When the basic model is multivariate normal, it is found that reduced ordering 

of the distances 
1( ; , ) ( ) ( )R   y V y V yμ μ μ  has substantial appeal in terms 

of probability ellipsoids (an appeal less evident for non-normal data) and also arises 

naturally from a likelihood ratio approach to outlier discordancy tests. 

For multivariate normally distributed data, the distance values are 

approximately chi-square distributed with p degree of freedom. Multivariate outliers 

can be defined as observations having a large (squared) distance.  

A well-known distance measure which takes into account the covariance 

matrix is the Mahalanobis distance. The use of robust estimators of location and 

scatter leads to so-called robust distances (RDs). Rousseeuw and Van Zomeren (1990: 

633-651) used the RDs for multivariate outlier detection. Specifically, if the squared 

RD for an observation is larger than 
0.975

2

,p  , it can be declared as an outlier 

candidate.  

 

2.3.3  Generalized Distances     

Gnanadesikan and Kettenring (1972) considered various possible measures in 

the classes: 

  
: ( ) ( )

: ( ) ( ) / [( ) ( )]

y y S y y

y y S y y y y y y

b

j j

b

j j j j

I

II

 

    
 

where S is the variance-covariance matrix 

Particularly extreme values of such statistics, possibly demonstrated by 

graphical display, may reveal outliers of different types. Such measures are of course 

related to the projections on the principal components, and Gnanadesikan and 
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Kettenring (1972: 81-124) remarked that, with class I measures, as b increases above 

+1, more and more emphasis is placed on the first few principal components whereas 

when b decreases below -1, this emphasis progressively shifts to the last few principal 

components (a similar effect holds for class II measures, accordingly, as b>0 or b<0).  

Extra flexibility arises by considering ( ) ( )j j j j
 y y  rather than y yj   in 

the different measures, or R in place of  S. 

 

2.3.4  The Principal Component Analysis Method  

Gnanadesikan and Kettenring (1972) remarked on how the first few principal 

components are vulnerable to outliers inflating variances or covariances (or 

correlations, if the principal component analysis has been conducted in terms of the 

sample correlation matrix, rather than the sample covariance matrix), whilst the last 

few are vulnerable to outliers adding spurious dimensions to the data. To be precise, 

outliers that are detectable by plots of the first few principal components inflate 

variances and covariances and the last few principal components may reveal outliers 

that disrespect the covariance structure. 

Suppose that 

Z=LY   

where  

L is a p x p orthogonal matrix whose rows, I
i
 , are the eigenvectors of S 

corresponding with its eigenvalues, expressed in descending order of magnitude.  

The I
i
  are the principal component coordinates.  

Y is the p x n matrix whose ith column is the transformed observations 

y yi  .  

The ith row of Z, z
i
 , gives the projections on to the ith principal component 

coordinate of the deviations of the n original observations about y .  

Thus the top few or lower few rows of Z provide the means of investigating 

the presence of outliers affecting the first few or last few principal components. 

The construction of scatter diagrams for pairs of iz  (among the first few, or 

last few, principal components) can graphically exhibit outliers. Additionally 
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univariate outlier tests can be applied to individual iz , or else the ordered values in 

iz , can be usefully plotted against an appropriate choice of plotting positions.  Added 

flexibility of approach is provided by basing principal component analysis on the 

sample correlation matrix, R, instead of on S, and also by following the proposal of 

Gnanadesikan and Kettenring (1972) of replacing R or S by modified robust 

estimates.   

The observations that are outliers with respect to the first few principal 

components or the major principal components usually correspond to outliers on one 

or more of the original variables. On the other hand, the last few principal components 

or the minor principal components represent linear functions of the original variables 

with minimal variance. The minor principal components are vulnerable to the 

observations that disagree with the correlation structure of the data, but are not 

outliers with respect to the original variables (Jobson, 1992). 

 

2.3.5  Correlation Methods    
 

Gnanadesikan and Kettenring (1972) examined the product-moment correlation 

coefficient ( , )jr s t  relating to the s
th

 and t
th

 marginal samples after the omission of 

the single observation jy . As they varied j , they were able to examine, for any 

choice of s and t, the way in which the correlation changed, substantial variations 

reflecting possible outliers. 

Devlin, Gnanadesikan, and Kettenring (1975: 531-545) investigated how 

outliers affect correlation estimates in bivariate data (p = 2). Their main interest was 

in the robust estimation of correlation, but was also concerned with the detection of 

outliers. They considered a multivariate distribution indexed by a parameter  , and 

defined in relation to an estimator ̂  , the ‘sample influence function’ 

  ˆ ˆ ˆ( ; ) ( 1)( ) ( 1,2,..., )y jj
I n j n   

    , 

where ˆ
j   is an estimator of the same form as ̂  based on the sample omitting the 

observation jy . They saw that ˆ I


  is just the jth jackknife pseudo-value. As                    
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a convenient first-order approximation to the sample influence function of r, the 

product-moment correlation estimate in a bivariate sample, they proposed (with an 

obvious notation) 

  
1 2( , ; ) ( 1)( )j j jI y y r n r r    , 

1 2( , ; )j jI y y r
 provides an estimate of the influence on r of the omission of the 

observation 
1 2( , )j jy y .  

         Two suggestions were made for presenting graphically how 
1 2

( , ; )
j j

I y y r


 

varies over the sample, with a view to identifying as outliers the observations which 

exhibit a particularly strong influence on r. The first amounts to superimposing 

selected (hyperbolic) contours of 
1 2

( , ; )I y y r


 on the scatter diagram, thus 

distinguishing the outliers. 

 

2.3.6  A Gap Test for Multivariate Outliers   

Rohlf (1975: 93-101) suggested that the characterization of multivariate 

outliers should be separated from other observations ‘by distinct gaps’.  He used this 

idea to develop a gap test for multivariate outliers based on minimum spanning trees 

(MST). Eschewing the nearest neighbor distances as measures of separation, in view 

of the masking effect a cluster of outliers may exert on each other, he considered 

instead the lengths of edges in the minimum spanning tree (or shortest simply 

connected graph) of the data set as measures of adjacency. He argued that a single 

isolated point would be connected to only one other point in the MST by a relatively 

large distance, and that at least one edge connection from a cluster of outliers must 

also be relatively large. Accordingly, a gap test for outliers was proposed with the 

following form. Firstly, examination of the marginal samples yields estimates sk  (k = 

1, 2,..., p) of the standard deviations. The observations are rescaled as /ki ki ky y s    

(k = 1, 2,..., p ;   i = 1,2,..., n).   Distances between i
y  and j

y  in the MST are 

calculated as   
2

1

1

2

[( ) ] /
p

k

ij ki kj pd y y


 
   

 
 . 
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2.3.7  Kurtosis1 

Pena and Prieto (2001) proposed a method called Kurtosis1 which involves 

projecting the data onto a set of 2p directions (there are p variables), where these 

directions are chosen to maximize and minimize the kurtosis coefficient of the data 

along them.  

Kurtosis is a measure of how peaked or flat a distribution is. Data sets with 

high kurtosis tend to have a sharp peak near the mean, decline rapidly, and have 

heavy tails, while data sets with low kurtosis tend to have a flattened peak near the 

mean. 

A small number of outliers would thus cause heavy tails and a larger kurtosis 

coefficient, while kurtosis would decrease when there is a large number of outliers. 

The outliers would be displayed by viewing the data along those projections that have 

the maximum and minimum kurtosis values. 

Pena and Prieto showed how computing a local maximizer / minimizer would 

correspond to finding either  

(a)  the direction from the center of the data straight to the outliers, 

which is exactly what was sought, or  

(b)  a direction orthogonal to it. They then projected the data onto a 

subspace orthogonal to the computed directions and reran the optimization routine. 

This process was repeated p times. 

Therefore, in total, 2p directions were examined. Their study using this 

method showed that it is good at detecting outliers, for a wide variety of outlier types 

and data situations.  

 

2.4  Some Outlier Detection Methods for MMR 

 

Outlier detection is one of the important studies in multivariate data analysis. 

In order to identify multivariate outliers, there are various outlier detection methods 

based on projection pursuit which is to repeatedly project the multivariate data to the 

univariate space and the methods based on the estimation of the covariance structure 

used to establish a distance to each observation indicating how far the observation is 

from the center of the data affecting the covariance structure. To consider outlier 
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detection in the Y-direction for the MMR model, those involving covariance matrix 

methods are examined as follows:  

 

2.4.1  The Mahalanobis Distance (MD) 

In a univariate setting, the distance between two points is simply the 

difference between their values. For statistical purposes, this difference may not be 

very informative. For example, it is not necessary to know how many centimeters 

apart two means are, but rather how many standard deviations apart they are. Thus the 

standardized or statistical distances are examined, such as  

  
1 2

 


    or    

y

y 


  

To obtain a useful distance measure in the multivariate setting, not only the 

variances of the variables but also their covariances or correlations must be 

considered. The simple (squared) Euclidean distance between two vectors, 

1 2 1 2( ) ( )y y y y  , is not useful in some situations because there is no adjustment 

for the variances or the covariances. For a statistical distance, standardization is 

achieved by inserting the inverse of the covariance matrix.  

  
2 1

1 2 1 2( ) ( )y y S y yd     

 

These (squared) distances between two vectors were first proposed by 

Mahalanobis (1936) and are referred to as Mahalanobis distances. The use of the 

inverse of the covariance matrix has the effect of standardizing all variables to the 

same variance and eliminating correlations (Rencher, 2002). If a random variable has 

a larger variance than another, it receives relatively less weight in a Mahalanobis 

distance. Multivariate outliers can be defined as observations having a large (squared) 

Mahalanobis distance; specifically, for multivariate normally distributed data, a 

quantile of the chi-squared distribution (e.g. the 97.5% quantile) could be considered. 

The Mahalanobis distance is very vulnerable to the presence of outliers, and 

Rousseeuw and Van Zomeren (1990: 631-651) used robust distances for multivariate 

outlier detection by using robust estimators of location and scatter. The expression 

‘robust’ means resistance against the influence of outlying observations. An 
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observation can be declared as a candidate outlier if the squared robust distance for the 

observation is larger than
2

0 975, .p
  for a p-dimensional multivariate sample. Rocke and 

Woodruff (1996: 1047-1061) stated that the Mahalanobis distance is very useful for 

identifying scattered outliers, but in data with clustered outliers the Mahalanobis 

distance does not work well in detecting outliers. 

 

2.4.2  Minimum Covariance Determinant (MCD) 

The Minimum Covariance Determinant (MCD) method of Rousseeuw (1984: 

871-880, 1985) is the robust (resistant) estimation of multivariate location and scatter. 

It is a highly robust estimator of multivariate location and scatter that can be 

computed efficiently with the FAST-MCD algorithm of Rousseeuw and Van Driessen 

(1999). It is defined by minimizing the determinant of the covariance matrix 

computed from h points or observations (out of n) whose classical covariance matrix 

has the lowest possible determinant. MCD has its highest possible breakdown value 

when h = [(n+p+1)/2]. The MCD estimate of location is the average of these h points, 

whereas the MCD estimate of scatter is a multiple of their covariance matrix (Hubert, 

Rousseeuw and Van Aelst, 2008: 92-119).   

 

MCD algorithm: 

1) Randomly select G=p+1 points from n points where p is the 

dimension of the data, and compute the mean ˆ
G  and the covariance matrix ˆ

G  of 

this subset of G points. 

2) Compute the Mahalanobis distances of each n sample points from 

the centroid of this subset, ˆ
G . 

3) Sort these distances into ascending order and the sample points 

corresponding to the first  h=(n+p+1)/2  distances become the new subset. 

4) Calculate the Mahalanobis distances of all n sample points from the 

centroid of this subset, then apply step 3. 

5) Record the mean, the covariance matrix and determinant of the 

final subset obtained. 

6) For each of these subsets, we apply step 3 and 4 until convergence. 
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7) Select the subset possessing the covariance matrix yielding the 

minimum determinant of these converged to subsets as the chosen MCD estimate of 

location and scatter matrix.  

 

2.4.3  Minimum Volume Ellipsoid (MVE) 

Rousseeuw (1984, 1985) also introduced the Minimum Volume Ellipsoid 

(MVE) estimator looking for the minimal volume ellipsoid which covers at least half 

the data points, MVE can be applied to find a robust location and a robust covariance 

matrix that can be used for constructing confidence regions, detecting multivariate 

outliers and leverage points, but it has zero efficiency because of its low rate of 

convergence. Furthermore, Rousseeuw and Van Zomeren (1990) used Minimum 

Volume Ellipsoid (MVE) estimators of both parameters in the calculation of 

Mahalanobis distances. 

Rousseeuw (1985) introduced the MVE method to detect outliers in 

multivariate data. Subsets of approximately 50% of the observations are considered to 

find the subset that minimizes the volume of the data. The best subset (smallest 

volume) is then used to calculate the covariance matrix and Mahalanobis distances to 

all data points. After this, an appropriate cut-off value is estimated, the observations 

having distances exceeding that cut-off are declared as outliers. To minimize time in 

computation, Rousseeuw and Leroy (1987) proposed a resampling algorithm in which 

subsamples of p+1 observations (p is the number of variables), the MVE of data are 

constructed in p-dimensional space.  

A drawback is that the best ellipsoid could be overlooked because of the 

random resampling of the data set, thus errors in detecting outliers may occur or some 

genuine data points could be erroneously labeled as outliers.  

 

 



 

CHAPTER 3 

 

METHODOLOGY 

 

3.1  Introduction 

 

In MMR, each response is assumed to result in its own univariate regression 

model (with the same set of explanatory variables), and the errors linked to the 

dependent variables may be correlated. Outlier detection in MMR data containing 

correlated variables, especially correlation between dependent variables, should 

consider the covariance structure of the dependent variables in declaring the 

observations as outliers for the direction of the dependent variables.  

 

3.1.1  Outlier Detection Methods of Interest 

The three well known multivariate outlier detection methods are the 

Mahalanobis Distances (MD), the Minimum Covariance Determinant (MCD) and the 

Minimum Volume Ellipsoid (MVE) methods. They are the ones concerned with the 

covariance matrix of the variables. Details of each method are as follows: 

3.1.1.1 The Mahalanobis Distance (MD) Method 

The Mahalanobis Distance method is a classical multivariate outlier 

detection method expressed in terms of the weighted Euclidean distances of each 

point from the center of the distribution where the distances are weighted by the 

inverse of the sample covariance matrix. The Mahalanobis Distance is a measure 

introduced by P.C. Mahalanobis (1936) and is based on the correlations between 

variables. Mahalanobis Distances are used to order observations for a forward search 

and to detect outliers. The forward algorithm starts from a randomly chosen subset of 

points, p+1, and adds observations on the basis of sorted Mahalanobis distances. 

Outliers are those observations giving large distances. The cutoff value used to define 

an outlier is the maximum expected value from a sample of n chi-squared random 

variables with p degrees of freedom (Atkinson, 1994: 1329-1359). Hardin and Rocke 
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(2002) developed a distribution fit to Mahalanobis distances using the robust 

estimates of shape and location, namely the Minimum Covariance Determinant 

(MCD). 

3.1.1.2 The Minimum Covariance Determinant (MCD) Method  

MCD computes the minimum covariance determinant estimator which 

yields robust estimators of the location and covariance matrices. It is defined by 

minimizing the determinant of the covariance matrix computed from subsets of 

observations whose classical covariance matrix has the lowest possible determinant. 

MCD estimators of location and scatter are robust to outliers since the observations 

declared as outliers are not involved in calculating location and scatter estimates. 

The following theorem refers to the algorithm called a C-step, where C 

stands for “concentration”, that is, the objective is to concentrate on the h 

observations with smallest distances. 

Theorem 3.1.1 (Rousseeuw and Van Driessen, 1999) 

Consider a dataset 
1

{ ,..., }
n

Y y y   of p-variate observations. Let 

1
{1,..., }H n  with 

1
H h  and put 

1

1
(1 )

i

i H

h


 μ̂ / y  and 

1

1 1 1
(1 ) ( )( )

i i

i H

h


    ˆ ˆ ˆΣ / y μ y μ .  If 
1

det( ) 0Σ̂ , define the relative distances  

1

1 1 1 1
( ) ( - ) ( - )

i i
d i    ˆˆ ˆy μ Σ y μ   for  i =1,…,n. 

Now take 
2

H  such that 
1 2 1 1: 1 :{ ( ); }={( ) ,...,( ) }n h nd i i H d d  where 

1 1: 1 2: 1 :( ) ( ) ... ( )n n n nd d d    are the ordered distances, and compute 
2

μ̂  and 
2

Σ̂ based 

on 
2

H .  Then  
2 1

det( ) det( )ˆ ˆΣ Σ  with equality if and only if 
2 1
ˆ ˆμ μ  and 

2 1
=ˆ ˆΣ Σ . 

A key step of the new algorithm is the fact that, starting from any 

approximation to the MCD, it is possible to compute another approximation with an 

even lower determinant. The theorem requires that 
1

det( ) 0Σ̂ , which is no real 

restriction because if 
1

det( )=0Σ̂  we already have the minimal objective value. If 

1
det( )>0Σ̂ , then it is possible to obtain 

2
Σ̂  such that 

2 1
det( ) det( )ˆ ˆΣ Σ . That is, 

2
Σ̂ is 

more concentrated (lower determinant) than 
1

Σ̂ .  Applying the theorem yields the h 

observations with the smallest determinant of covariance matrix. It means that 
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repeating C-steps yields an iteration process, we run C-Steps yielding 
3

det( )Σ̂  and so 

on. The sequence 
1 2 3

det( ) det( ) det( ) ...ˆ ˆ ˆΣ Σ Σ    is nonnegative and hence must 

converge. Thus, this theorem provides many initial choices of 
1

H  and applies C-steps 

to each until convergence, and keeps the solution with smallest determinant (Peter J. 

Rousseeuw and Katrien van Driessen. 1999). 

The determinant is the volume of p-dimensional data indicated by the 

covariance matrix. The covariance matrix defines an ellipsoid that sets the bound of 

the data. Outliers can extend the ellipsoid along the axis of the outliers corresponding 

to the mean. Thus, the minimum determinant of covariance matrix causes the 

derivation of the best cluster of data separated from any cluster of data that contains 

outliers. 

Similarly, the next theorem confirms the perception that extreme 

observations have a distribution that is independent of the distribution of the MCD 

location and scatter. 

Theorem 3.1.2  (Hardin and Rocke, 1999)  

Given n points or n observations, 
1 2
, ,...,

n
y y y   , independently and 

identically distributed (iid) ( , )
p

N μ Σ , find the MCD sample based on a fraction 

h n /  of the sample, where h=(n+p+1)/2, and choose   such that 1   . Then 

points 
i
y  such that 

1 2

,
ˆ ˆ( ) ( )ˆ

i i p

    μ μy yΣ   , 
i
y  will be asymptotically 

independent of the MCD sample.   

This theorem means that the distances coming from points that are 

included in the MCD subset appear to follow a chi-squared distribution with p degrees 

of freedom. The MCD estimators are approximately independent of the extreme 

points. 

The MCD estimator has a bounded influence function and breakdown 

value (n-h+1)/n, hence the number h determines the robustness of the estimator.  

  Using 2h n /  yields estimators with the highest possible breakdown 

point. For a better balance between the breakdown value and efficiency of the 

estimator, h should be approximately 3 4n / (Rousseeuw and Van Driessen, 1999). 
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MCD has its highest possible breakdown value when h = [(n+p+1)/2]. 

When a large proportion of contamination is presumed, h should thus be chosen close 

to 0.5n, otherwise an intermediate value for h, such as 0.75n, is recommended to 

obtain a higher finite-sample efficiency (Debruyne, Engelen, Hubert and Rousseeuw, 

2006).  

3.1.1.3  Minimum Volume Ellipsoid (MVE) Method 

Rousseeuw (1985) introduced the Minimum Volume Ellipsoid (MVE) 

method for detecting multivariate outliers, where minimizing the ellipsoid has the 

same meaning as minimizing the volume. Approximately 50% of the observations are 

examined to find the subset that minimizes the volume of the data. That subset 

(smallest volume) is then used to find the covariance matrix and robust distances of 

all of the data points. Specifically, the MVE estimates give the ellipsoid of the 

smallest volume containing “half” of the data. The advantage of MVE estimators is 

that they have a breakdown point of approximately 50% (Lopuhaa and Rousseeuw. 

1991). To deal with the computational difficulty, several algorithms have been 

suggested for approximating MVE. One such algorithm is the resampling algorithm, 

an algorithm in which a subsample of p+1 observations (p is the number of variables), 

as proposed by Rousseeuw and Leroy (1987), is used to minimize the calculation 

time. In the MVE method, the best subset could be missed because of random 

sampling of the data set, so some outliers might be missed (Cook and Hawkins. 

1990). Observations outside the ellipsoid are suspected of being outliers and MVE has 

a breakdown point of nearly 50% which means that the location estimate will remain 

bounded and the eigenvalues of the covariance matrix will stay away from zero and 

infinity when a little less than half of the data are replaced by arbitrary values. Even if 

those arbitrary values contain outliers, robust estimates would still be provided by the 

MVE method (Adao L. Hentges). 

 

3.1.2  Comparison of the MD, MCD and MVE Methods 

MD is a classical multivariate outlier detection method which uses the 

classical mean and classical covariance matrix to calculate Mahalanobis distances. 

The MD method is very vulnerable to outliers because the classical mean and 
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classical covariance matrix cannot account for all of the actual real values when data 

contain outliers. 

MCD and MVE can be used to find a robust location and a robust covariance 

matrix, in as much as MCD is used to find the subset of data by considering the 

smallest determinant of the covariance matrix, whereas MVE is used for constructing 

confidence regions, but has zero efficiency because of its low rate of convergence. 

The location MVE estimator converges to the center of the ellipsoid covering all the 

data while the location MCD estimator converges to the mean vector of all the points 

(Jensen, Birch and Woodall. 2006). The best subset for the MCD and MVE methods 

could be overlooked because of the random resampling of the data set, thus outliers 

may have been missed or some genuine data points could be falsely labeled as 

outliers.  

 MCD and MVE are used to determine multivariate outliers, it is important to 

understand the distributions of the MCD and MVE estimators in order to be able to 

obtain the limit bounds for their statistics. The asymptotic distributions of the MVE 

and MCD estimators can be derived. Davies (1987, 1992) showed that the MVE 

estimators of location and scatter are consistent given that the 
i
y  are independently 

and identically distributed with distribution. The following theorems are the 

asymptotic distributions of the statistics. 

Theorem 3.1.3  (Jensen, Birch and Woodall, 2006)    

As n , the distribution of 
1ˆˆ ˆ( ) ( )i imcd mcd mcd
   y μ Σ y μ  converges in 

distribution to a 2

p
  distribution for i =1,…,n  where (1 )

i

i Hmcd

mcd h


 μ̂ / y  and 

(1 ) ( )( )
i i

i Hmcd

mcd mcd mcdh


    ˆ ˆ ˆΣ / y μ y μ    for h observations in the best  

subset mcd
H  with the smallest determinant of covariance matrix. 
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Theorem 3.1.4 (Jensen, Birch and Woodall, 2006)    

As n  , the distribution of 
1ˆˆ ˆ( ) ( )i imve mve mve
   y μ Σ y μ  converges in 

distribution to a 2

p
  distribution for i =1,…,n  where (1 )

i

i Hmve

mve h


 μ̂ / y  and 

(1 ) ( )( )
i i

i Hmve

mve mve mveh


    ˆ ˆ ˆΣ / y μ y μ    for h observations in the best  

subset mveH  yielding the smallest volume ellipsoid of the sample data. 

Rocke and Woodruff (1996) stated that the Mahalanobis distance is very 

useful for identifying scattered outliers, but in data with clustered outliers it does not 

work as well. Since the Mahalanobis distance is very vulnerable to the existence of 

outliers, Rousseeuw and Van Zomeren (1990) used robust distances for multivariate 

outlier detection by using robust estimators of location and scatter (MCD and MVE 

estimators). The expression ‘robust’ means resistance against the influence of 

outlying observations. An observation can be declared as a candidate outlier if the 

squared robust distance for the observation is larger than
2

0 975, .p
  for a p-dimensional 

multivariate sample. However, finding an MCD or MVE sample can be time 

consuming and difficult. The only known method for finding an MCD sample, for 

example, is to search every half sample and calculate the determinant of the 

covariance matrix of that sample. For a sample size of 20, the search would require 

the computation of about 184,756 determinants and for a sample size of 100, the 

search would require the computation of about 10
29

 determinants. With any currently 

conceivable computer, it is clear that finding the exact MCD is intractable by 

enumeration (Hardin and Rocke. 1999). 

 For the proposed method, an attempt was made to find the robust distances 

based on robust estimates of the location and covariance matrices and to use less 

computation time for applying the algorithm used to detect outliers in the Y-direction, 

as shown in the next step. 
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3.2  The Proposed Method in Detecting Y-outliers 

 

In MMR, each response is assumed to result in its own univariate regression 

model (with the same set of explanatory variables), and the errors linked to the 

dependent variables may be correlated. To detect multivariate outliers in the Y - 

direction for the MMR model, a useful algorithm is sought by considering the 

residuals, so that the residual matrix (R) containing i
r of size 1 × p  (for i = 1, …, n) 

can be expressed in terms of H and Y, subsequently, matrix R can be expressed in 

terms of E as shown below : 

         ( ) ( )( )  R E I - H Y I - H XB + Eˆ  = ( )XB - HXB + ( ) ( )I - H E I - H E .  

It is also possible to obtain  

         ( ) [( ) ] ( ) ( )E E E R I - H Y I - H Y  = ( )I - H XB  = 0    since   ( )I - H X = 0 , 

where the H matrix is known as a projection matrix called the hat matrix which is 

equal to ( )
 1

X X X X . The hat matrix H can be used to express Ŷ  and explains the 

residuals as linear combinations of Y. Furthermore, it can also be used to find the 

covariance matrix of the residuals. The idea based on the squared distances of the 

residuals is used in detecting the outliers in the Y-direction for MMR data containing 

correlated variables, especially correlation between dependent variables. The squared 

distances of the residuals  
1

i i

ˆrΣ r   for all observations, for i = 1, …, n, are found, and 

then (at least) half of the data set having small values of the squared distances of the 

residuals are selected for finding the robust estimates of the location and covariance 

matrices which are used to calculate the squared distances of Y in detecting Y-outliers 

for MMR data. Only half of the data are selected since the maximum allowable 

percentage of contaminated data is determined by the concept of the “breakdown 

point”. The MVE method detects the ellipsoid with the smallest volume which covers 

(at least) 50% of the data and uses its center as a location estimate, while the MCD 

method uses 50% of all data points for which the determinant of covariance matrix is 

as its minimum. The general idea of the breakdown point is the smallest proportion of 

the observations which can make an estimator meaningless (Hampel et al., 1986; 

Rousseeuw and Leroy, 1987). Often it is 50%, so that this portion of the dataset can 

allow for any contaminated group of data, as in the case of the sample median.  
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In the resampling algorithms of the MCD and MVE methods, the best subset 

of data could be overlooked because of the random resampling of the data set, thus 

errors in detecting outliers could occur, and furthermore, it takes a lot of computation 

time in the case of a large sample size. To use less time in finding the robust estimates 

of location and the covariance matrices, the consideration outlined in this dissertation 

is based on the squared distances of the residuals 
1

i i

ˆrΣ r , so that the robust distances 

of Y are found by using the obtained robust estimates of location and the covariance 

matrix for detecting the outliers in the Y-direction of the MMR data. i
r is the i

th
 row 

element of the matrix of the residuals R, i.e.  

11 12 1 1

21 22 2 2

1 2 x

r r ... r

r r ... r

r r ... r

p

p

n n np nn p




 



   
   
   
   
   

  

R

r

r

r

 

We obtained the distribution of 
1

i i

ˆrΣ r   exhibited in the following theorems. 

Theorem 3.2.1  If ( , )pi iN Σy μ  where i i
Bμ x , then 

1 2ˆ
i pi asymptotic

rΣ r     for all  i = 1,…,n  provided that 

1 1
( ) ( )=

1 1n q n q
Y - XB Y - XB R RΣ ˆ ˆˆ  

   
 is an unbiased estimator of Σ . 

 (see proof in Appendix A) 

And we obtain the expectation and variance of 
1

i i

ˆrΣ r  as follows:   

Theorem 3.2.2  The asymptotic expectation and the asymptotic variance of the 

squared distances of the residuals are p and 2p, respectively, i.e., 

1ˆ( )i iE p rΣ r    and    
1

2ˆ( )i i pV  rΣ r  

 (see proof in Appendix B) 

From the above results, the squared distances of the residuals in the proposed 

algorithm are applied for detecting Y-outliers in MMR data so that, in the multivariate 

case, not only the distance of an observation from the center of the data but also the 

dispersion of the data have to be considered. Recognizing the multivariate cutoff 

value which tallies with the distance of outliers is very difficult since there is no 
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discernible basis to suppose that the fixed cutoff value is suitable for every data set. 

Garrett (1989) used the chi-squared plot to find the cutoff value by plotting the robust 

squared Mahalanobis distances against the quantiles of 2

p , where the most extreme 

points are deleted until the remaining points keep the track of a straight line and the 

deleted points are the identified outliers. Adjusting the cutoff value to the data set is a 

better procedure than using a fixed cutoff value. This idea is supported by Reimann et 

al. (2005) who proposed that the cutoff value has to be adjusted to the sample size. 

For the reasons above, in the proposed algorithm, cIQR is used as the cutoff value 

which can be flexible based on the sample size and the quantity of outliers in the data, 

where c is an arbitrary constant and IQR is the interquartile range of the robust 

squared distances of i
y for all I = 1, …, n. When the data contain a large number of 

Y-outliers, the cutoff value cIQR is used where c is an arbitrary constant having a 

small value in order to detect a large number of Y-outliers. On the other hand, the 

cutoff value cIQR is used where c is an arbitrary constant having a large value when 

the data contained few Y-outliers.  

Algorithm for the proposed method of detecting Y-outliers in MMR 

1) Calculate the residual matrix I by   

                        ( )
       

1
E R Y Y Y XB Y X X X X Yˆ ˆ ˆ . 

That is, the obtained residual matrix has size n × p. 

2) Calculate the estimate of covariance matrix of the error   

1 1
( ) ( ) =

1 1n q n q
Y - XB Y - XB R RΣ ˆ ˆˆ  

   
   which is an   

unbiased estimator of Σ of size  p × p , where q is the number of the  independent 

variables. 

3) Calculate the matrix of the squared distances of the residuals, then 

we obtain    
1

i i

ˆrΣ r  for all I = 1,…, n.     

4) For reducing the influence of the observations that are far from the  

centroid of the data, we will delete such observations. That is, we select (at least) 50% 

of  the data to obtain the observations having the squared distances of the residuals 

(which has the chi-squared distribution) less than or equal to 
2

,0.50p
  or 
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1 2

,0.50i i p

  ˆrΣ r  for calculating the robust estimates of location and covariance matrix 

in the next step. 

5) Use the selected i
y to calculate the robust estimate of location sμ̂  

and the robust estimate of covariance matrix sΣ̂ .   

6) Use sμ̂  and sΣ̂   that are obtained in Step 5 in order to calculate all 

of the robust squared distances of i
y by using 

1( - ) ( ) ( - )
i s s i s

 ˆˆ ˆy μ Σ y μ . Then we 

obtain all of the robust squared distances of i
y for all i=1,…,n  , after that we use the 

cutoff value to identify the observations that are declared as Y-outliers. 

An investigation was carried out by comparing the proposed method with the 

MD, MCD and MVE methods with different correlation matrices, covariance 

matrices, sample sizes and dimensions, as shown in the next chapter. 

 

3.3   Parameter Estimation for MMR Data with Y-outliers  

 

When data contain outliers, the ordinary least-squares estimator 

1ˆ ( ) B X X X Y  is no longer appropriate. Least squares estimates are highly 

vulnerable to outliers when there are observations which do not result in the pattern of 

the other observations. Least squares estimation is inefficient and biased since the 

variance of the estimates is inflated and outliers can be masked.                                                              

    For obtaining the parameter estimates of data with outliers, instead of 

analyzing the model Y = XB +E  ; ( )E E 0  and 2( )Cov  E V , the equivalent 

model 
1 1 1  

Q Y = Q XB +Q E  is analyzed in which 1( )E  Q E 0  and 

1 2 1 1 2( )Cov      Q E Q VQ I , where V is a known positive definite matrix, so that 

we can write V = QQ  for a nonsingular matrix Q.  It follows that 
1 1 Q VQ = I . 

For the transformed model, the least squares estimates minimize 

1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ).               Q Y Q XB Q Y Q XB Y XB Q Q Y XB Y XB V Y XB
 

The above equation leads to a Multivariate Weighted Least Squares (MWLS) 

estimator which is therefore given by  1

MWLS
ˆ ( ) B X WX X WY , where 1

W = V  , 

i.e. the weight matrix is determined by V
-1

 or the weight is inversely proportional to 
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the corresponding error variance (Christensen, 1987). To find the parameter estimates 

of data with outliers, a weight function in the form of a weight matrix is used to 

reduce the influence of outliers. The estimates of the regression coefficients using the 

proposed method are compared to those using the MCD and MVE methods. Every 

observation is given a weight based on its robust squared distances such that the 

proposed method assigns the weight to each observation by putting 

    iw  = 1   if the robust squared distances are less than or equal to the cutoff value, 

or 

    
1

i

i

w
d

   if the robust squared distances are more than the cutoff value,         

where id  are the robust squared distances of i
y , for all i = 1,…,n. Each 

observation’s weight is inversely proportional to how outlying it is, whereas the MCD 

and MVE methods give each observation by putting 

     iw  = 1   if the robust squared distances are less than or equal to 2

,0.975p  , or 

     iw  = 0   if the robust squared distances are more than 2

,0.975p . 

 

 

The Proposed Algorithm in Detecting Y-outliers in MMR Data:  

 

Calculate 
OLS

( )
 

1
B X X X Yˆ . 

Then we obtain  
OLS

( )
       

1
E R Y Y Y XB Y X X X X Yˆ ˆ ˆ . 

                                                      

Calculate 
OLS OLS OLS

1 1
( ) ( )=

1 1n q n q
Y - XB Y - XB R RΣ ˆ ˆˆ  

   
. 

Calculate  
1

OLSi i

ˆrΣ r   for all  I = 1, …, n . 

  
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Select (at least) 50% of the data to obtain the observations having 

1 2

OLS ,0.50i i p

  ˆrΣ r . 

Calculate the robust estimates of location and scale ( sμ̂  and sΣ̂ )  

from the selected i
y . 

  

      Calculate all of the robust squared distances of i
y by using 

1=( - ) ( ) ( - )
i i s s i s

d  ˆˆ ˆy μ Σ y μ   for all  I = 1, …, n and then use the cutoff value to 

identify the observations that are declared as Y-outliers.    

 

 

Method to Treat Y-outliers for Parameter Estimation 

When data contain outliers, 1

OLS
ˆ ( ) B X X X Y  is no longer appropriate since                            

Least Squares estimates are highly non-robust to outliers. 

                                                          

 To find the parameter estimates of data with outliers, we will use the weight 

function in the form of a weight matrix to reduce the influence of the outliers. Every 

observation is given a weight based on its robust squared distance of i
y such that 

          iw  = 1     if the robust squared distances of i
y are less than or equal to the  

                          cutoff value,  

         
1

i

i

w
d

      if the robust squared distances of i
y are more than the cutoff    

                          value, where id  is the robust squared distances of i
y .  

         (Each observation’s weight is inversely proportional to how outlying it is.) 
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  

Instead of analyzing model  Y = XB +E   ;  ( )E E 0   and 2( )Cov  E V , 

we analyze the equivalent model 1 1 1  
Q Y = Q XB +Q E   

such that  1( )E  Q E 0  and 1 2 1 1 2( )Cov      Q E Q VQ I   

where V is some known positive definite matrix, such that  

we can write V = QQ  for some nonsingular matrix Q.  It follows that 

1 1 Q VQ = I . 

  

For the transformed model, the least squares estimates minimize 

1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )                Q Y Q XB Q Y Q XB Y XB Q Q Y XB Y XB V Y XB

 

These estimates of B are called weighted least squares estimates, 

1

Weighted LS
ˆ ( ) B X WX X WY   , where 1

W = V . 

  That is, the weights are determined by V
-1

 or the weight is inversely 

proportional to the corresponding error variance. 

  

 For comparing the properties of the estimation procedures, we focus on the 

values of Bias and the Mean Squared Error (MSE) of the estimated coefficients:   

1000

11000

1 ˆBias k

k

 B B     and      MSE = 
1000

1

1 ˆ ˆ( ) ( )
1000

k k

k

  B B B B  

where  k  is the index of replication. 

 

 

 



 

CHAPTER 4 

 

SIMULATION STUDY 

 

4.1  Introduction  

 

  This chapter investigates the performance of the proposed algorithm in 

detecting multivariate outliers in the Y-direction by comparing it with the 

Mahalanobis Distance (MD), the Minimum Covariance Determinant (MCD) and the 

Minimum Volume Ellipsoid (MVE) methods with different correlation matrices, 

covariance matrices, sample sizes and dimensions. When data contain multivariate 

outliers, least-squares estimates are highly vulnerable to outliers, which are 

observations that do not follow the pattern of the other observations. To find the 

parameter estimates of data with outliers, a weight function in the form of a weight 

matrix is used to reduce the influence of the outliers.  

 

4.2  Simulation Procedure  

 

 Simulation was used to investigate the efficiency of multivariate outlier 

detection method by comparing the percentages of correction in detecting Y-outliers 

of the proposed method to those of the established methods (the MD, MCD and MVE 

methods). When data contain Y-outliers, the ordinary least squares method is 

inefficient since it is highly vulnerable to outliers. To reduce the influence of outliers, 

a weight matrix was used in the parameter estimation procedure, and the efficiency of 

the parameter estimates was evaluated by considering the values of bias and mean 

squared error (MSE).   

Consider the MMR model Y = XB + E, where Y is a dependent variable 

matrix of size n × p, X is an independent variable matrix of size n × (q + 1), B is a 

parameter matrix of size (q + 1) × p and E is an error matrix of size n × p. Each row 
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of Y contains the values of the p dependent variables measured on a subject. Each 

column of Y consists of n observations on one of the p variables. X is assumed to be 

fixed from sample to sample. In the simulation procedure, the values of the dependent 

variables and the errors were generated from the multivariate normal distribution 

corresponding to Assumptions (A1)-(A3) and varied according to different variances 

and correlations. The values of the independent variables were generated from the 

different distributions based on a uniform distribution. The sample sizes (n) were 20 

and 60. The numbers of independent variables (q) were the same as the numbers of 

dependent variables (p) which were 2 and 3. The process was repeated 1,000 times to 

obtain 1,000 independent samples containing 10%, 20% and 30% outliers in the Y-

direction. The algorithm for generating multivariate multiple regression data is clearly 

shown in the following steps : 

1) Generate the values of the correlated errors from a multivariate 

normal distribution with different variances for columns of matrix E having 

correlations between columns 0.1, 0.5 and 0.9, and based on Assumption ( )E E 0 , 

that is, we obtain 18 cases for simulation study, as shown below. 

 

 Variance of 

column 1 of E 

variance of 

column 2 of E 

variance of 

column 3 of E 

 

12  

 

13  

 

23  

  1 2   0.1     

  1 2   0.5     

  1 2   0.9     

  5 6   0.1     

p=2 5 6   0.5     

  5 6   0.9     

  9 10   0.1     

  9 10   0.5     

  9 10   0.9     

  1 2 1 0.1 0.1 0.1 

  1 2 1 0.5 0.5 0.5 

  1 2 1 0.9 0.9 0.9 
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 Variance of 

column 1 of E 

variance of 

column 2 of E 

variance of 

column 3 of E 

 

12  

 

13  

 

23  

  5 6 5 0.1 0.1 0.1 

p=3 5 6 5 0.5 0.5 0.5 

  5 6 5 0.9 0.9 0.9 

  9 10 10 0.1 0.1 0.1 

  9 10 10 0.5 0.5 0.5 

  9 10 10 0.9 0.9 0.9 

 

2) Generate the values of the matrix X based on the uniform 

distribution with different ranges for all of the independent variables. 

3) The values of Y are computed from the model Y=XB+E with pre-

specified values of parameter (matrix B). 

4)  For the 3 steps above, generate 100,000 datasets and then randomly 

obtain 1,000 datasets. 

5) Replace 10%, 20% and 30% of the data with points for which the 

dependent variables are generated from a different distribution for obtaining outliers 

in the Y-direction having distribution 2

,0.50( 2 , )p pN  XB Σ . 

From each sample obtained, the proposed method was compared with the MD, 

MCD and MVE methods for detecting outliers in the Y-direction of the MMR model. 

The compared methods expected that only about the 2.5% quantile of a dataset drawn 

from a multivariate normal distribution would be detected as outliers. Specifically, the 

methods detect outliers by considering observations having squared distances of 

i
y exceeding 

2

0 975, .p
 . In the proposed algorithm, cIQR is the cutoff value which can 

be flexible based on sample size and the quantity of outliers in the data, where c is an 

arbitrary constant and IQR is the interquartile range of the robust squared distances of 

i
y for all i = 1, …, n. For the cutoff value cIQR, when the data contain a large 

amount of Y-outliers, c is set to a small value whereas c is set to a large value when 

the data contains a small amount of Y-outliers. In the simulation procedure, the 

observations were declared as Y-outliers by using 3IQR as the cutoff value in 

detecting Y-outliers from data containing 10% outliers in the Y-direction, 1.5IQR as 
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the cutoff value from data containing 20% outliers, and IQR as the cutoff value in 

detecting Y-outliers from data containing 30% outliers, where IQR is the interquartile 

range of the robust squared distances of i
y for all i = 1, …, n. 

 

4.3  Results of the Simulation Study 

 

The results of the simulation study are the percentages of correction in 

detecting the observations declared as Y-outliers when comparing the proposed 

method to the MD, MCD and MVE methods. The values in parentheses are the 

percentages of detecting observations incorrectly, i.e. they are the percentages of 

declaring observations as Y-outliers when they are not. The results are classified into 

the case of correlations between dependent variables of 0.1, 0.5 and 0.9 for data 

having different variances of the dependent variables as shown in Tables 4.1 to 4.18, 

as shown in Appendix E.  

These tables give the percentages of correction in detecting the observations 

declared as Y-outliers by using the proposed method and the other 3 methods, namely 

MD, MCD and MVE. In the case of the correlation between dependent variables of 

0.1, the percentages of correct detection decreased when the variances of dependent 

variables increased, whereas the results were the same for the case of correlations 

between dependent variables of 0.5 and 0.9. Higher percentages of correct detection 

were obtained in the case of data having smaller variances in the direction of the 

dependent variables. Furthermore, in the case of low variance, the percentages of 

correct detection increased while the correlations between dependent variables 

increased, and the results were the same for the cases of medium and high variance.  

For most of the cases, the proposed method could detect Y-outliers with 

higher percentages of correct detection and lower percentages of incorrect detection, 

especially in the cases of 10% and 20% Y-outliers. However, in the case of 30% 

outliers, the proposed method obtained slightly lower percentages of correct detection 

than some of the other methods, but the percentages of correct detection increased as 

sample size increased.  
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4.4  Application 

 

Here, the proposed method in detecting Y-outliers was applied to Rohwer data 

and Chemical Reaction data which were shown in Appendix. 

 

4.4.1  Rohwer Data 

We considered Rohwer data which illustrates the homogeneity of regression 

flavor from a study by Rohwer (given in Timm, 1975) on kindergarten children, 

designed to determine how well a set of paired-associate (PA) tasks predicted 

performance on the Peabody Picture Vocabulary test (PPVT), a student achievement 

test (SAT), and the Raven Progressive matrices test (Raven). Timm used the Rohwer 

data in multivariate analysis with applications in Education and Psychology. The PA 

tasks varied in how the stimuli were presented, and are called named (n), still (s), 

named still (ns), named action (na), and sentence still (ss). Two groups were tested : a 

group of n=37 children from a low socioeconomics status (SES) school, and a group 

of n=32 high SES children from an upper-class, white residential school.  

We used a group of children from a low SES with sample size n=37, these 

observations yielded classical means of SAT, PPVT and Raven, i.e., 31.27027027, 

62.648648649 and 13.243243243, respectively. Classical covariance matrix of them is 

488.4249249 102.5142643 14.46021021

102.5142643 156.9009009 13.75450451

14.46021021 13.75450451 9.57807808

 
 
 
  

 

such that determinant of this classical covariance matrix equals 548919.4989561. 

In considering Y-outliers, we plotted the scatter plot to analyze the data points. 

It is seen that there are the observations which are far from the cluster of data in the 

direction of the dependent variables. 
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Figure 4.1  The Scatter Plot of Rohwer Data from a Low SES in the Direction of the  

                    Dependent Variables with Sample Size of 37 

 

We could use the plot of Principal Component to seek Y-outliers. 
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Figure 4.2  The Plots of Principal Component to Seek the Outliers in the Direction of  

                    the Dependent Variables 
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From these plots, Y-outliers are the observations 1, 7, 30 and 37. 

We considered Y-outliers by using the MD, MCD, MVE methods and the 

proposed method. The following values are the robust estimates of location and 

covariance matrices obtained by them. 

 

MCD method mean (Y1) = 16.5 

mean (Y2) = 55.45 

mean (Y3) = 12.2 

Covariance matrix of Y 

109.842105 21.500000 10.684211

21.500000 71.734211 6.200000

10.684211 6.200000 5.852632



 



 
 
 
  

 

      

Determinant of covariance matrix of Y = 33847.51  

 

 
 

MVE method mean (Y1) =  29.6363 

mean (Y2) =  62.1515 

mean (Y3) =  12.9696 

Covariance matrix of Y 

439.863636 128.650568 21.238636

128.650568 134.320076 5.4734848

21.238636 5.4734848 6.9053030

 
 
 
  

 

    

Determinant of covariance matrix of Y = 249837.3734 

The proposed method mean (Y1) = 26.444 

mean (Y2) = 61.722 

mean (Y3) = 12.778 

Covariance matrix of Y 

335.202614 125.954248 6.6339869

125.954248 138.212418 5.4640523

6.6339869 5.4640523 3.712418

 
 
 
  

 

   

Determinant of covariance matrix of Y = 106138.507 

 

 

The results of detecting Y-outliers are shown as the below table. 

 

Method Observations that are declared as Y-outliers 

MD There is no observation declared as a Y-outlier. 

MCD 1, 2, 5, 6, 7, 9, 23, 26, 27, 30, 32, 35, 36, 37 

MVE 1,             7,                       30,                   37  

The proposed method 1,             7,                       30,                   37  
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Observations 1, 7, 30 and 37 were declared as Y-outliers by the proposed 

method, such that we considered from the robust squared distances of Y calculated by 

the proposed algorithm. The following values are those robust squared distances and 

we plotted the normal quantile-quantile plot in order to investigate the observations 

that deviate from the majority of data. 

 

observation 13 19 17 14 33 24 

robust squared distance 0.617641 0.630826 0.72159 0.801702 1.488243 1.555701 

 

observation 2 11 31 12 29 22 

robust squared distance 1.778807 2.19108 2.401298 2.515356 2.519667 3.006621 

 

observation 35 25 15 9 27 6 

robust squared distance 3.070425 3.094359 3.102749 3.259902 3.271442 3.492181 

 

observation 3 4 10 18 26 20 

robust squared distance 3.815316 4.199099 4.813657 5.440968 5.693849 5.713639 

 

observation 16 34 21 28 36 32 

robust squared distance 5.872106 6.15264 6.622603 6.81694 6.935152 7.138155 

 

observation 5 8 23 1 30 37 7 

robust squared distance 8.778458 9.670989 10.70503 12.74763 15.32844 16.87798 23.11542 

Normal Quantile-Quantile Plot for SqDistance
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Figure 4.3  The Normal Quantile-quantile Plot of the Robust Squared Distances   

       of Y Derived from the Proposed Method in the Case of Low SES 



42 

When we deleted Y-outliers out of data, we obtained the mean and covariance 

matrix of the rest of Y matrix as follows: 

 

MCD method mean (Y1) = 18.6087 

mean (Y2) = 56.6522 

mean (Y3) = 12.3913 

Covariance matrix of Y 

174.430830 9.869565 8.0237154

9.869565 79.782609 1.084980

8.0237154 1.084980 6.2490118



 



 
 
 
  

 

      

Determinant of covariance matrix of Y = 81186.05786 

 

 

 

 
 

MVE method mean (Y1) = 29.636364  

mean (Y2) = 62.151515 

mean (Y3) = 12.969697  

Covariance matrix of Y 

439.863636 128.650568 21.238636

128.650568 134.320076 5.4734848

21.238636 5.4734848 6.9053030

 
 
 
  

 

    

Determinant of covariance matrix of Y = 249837.3733 

The proposed method mean (Y1) = 27.068966 

mean (Y2) = 61.034483 

mean (Y3) = 12.758621 

Covariance matrix of Y 

357.7093596 120.568966 9.01724138

120.568966 139.105911 2.93719212

9.01724138 2.93719212 5.18965517

 
 
 
  

 

   

Determinant of covariance matrix of Y = 174783.0483 

 

4.4.2  Chemical Reaction Data 

We considered the outliers in Y-direction or response direction in Chemical 

Reaction data given in Box and Youle (1955) which contains 19 measurements of 

three dependent variables for three independent variables. The three dependent 

variables are percentage of unchanged starting material (Y1), percentage converted to 

the desired product (Y2) and percentage of unwanted by-product (Y3). The three 

independent variables are temperature (X1), concentration (X2) and time (X3).  

All observations yielded the classical means of Y1, Y2 and Y3, i.e., 

20.178947368, 56.336842105 and 20.784210526, respectively. And the classical 

covariance matrix of them is 
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99.296199 28.568626 59.028129

28.568626 22.248012 5.783947

59.028129 5.783947 45.271404

 





 
 
 
 

 

such that the determinant of classical covariance matrix of equals 1728.503662. 

 

In considering Y-outliers of chemical reaction data, we plotted the scatter plot 

to analyze the data points. It is seen that there are the observations which are far from 

the cluster of data in the direction of the dependent variables. 
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Figure 4.4  The Scatter Plot of Chemical Reaction Data in the Direction of    

                    the Dependent Variables with Sample Size of 19 

 

We could use the plot of Principal Component to seek Y-outliers. 
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Figure 4.5  The Plots of Principal Component to Seek the Outliers in the   

                   Direction of the Dependent Variables 

 

From these plots, Y-outliers are the observations 1, 8 and 10. 

We considered Y-outliers by using the MD, MCD, MVE methods and the 

proposed method. The following values are the robust estimates of location and 

covariance matrices obtained by them. 

 

MCD method mean (Y1) = 16.436 

mean (Y2) = 59.427 

mean (y3) = 21.445 

Covariance matrix of Y 

13.036545 0.560090 11.335818

0.560090 3.224182 1.373364

11.335818 1.373364 11.938727

 

 

 

 
 
 
 

 

   

Determinant of covariance matrix of Y = 41.72802347 

MVE method mean (Y1) = 20.179 

mean (Y2) = 56.337 

mean (y3) = 20.784 

Covariance matrix of Y 

99.296199 28.568626 59.028129

28.568626 22.248012 5.783947

59.028129 5.783947 45.271404

 





 
 
 
 

 

Determinant of covariance matrix of Y = 1728.503675 
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The proposed method mean (Y1) = 23.878 

mean (Y2) = 55.178 

mean (y3) = 18.544 

Covariance matrix of Y 

95.309444 38.745556 47.871389

38.745556 22.066944 14.252361

47.871389 14.252361 29.262778

 





 
 
 
 

 

 Determinant of covariance matrix of Y = 555.6378025 

 

 

The results of detecting Y-outliers are shown as the below table. 

 

Method Observations that are declared as Y-outliers 

MD There is no observation declared as a Y-outlier. 

MCD 1, 2, 8, 10, 11, 13, 15  

MVE There is no observation declared as a Y-outlier. 

The proposed method         8, 10  

 

Observations 8 and 10 were declared as Y-outliers by the proposed method, 

such that we considered from the robust squared distances of Y calculated by the 

proposed algorithm. The following values are those robust squared distances and we 

plotted the normal quantile-quantile plot in order to investigate the observations that 

deviate from the majority of data.  

 

observation 12 9 14 7 18 1 

robust squared distance 0.000557 0.002767 0.021404 0.08094 0.435072 0.829192 

 

observation 6 15 13 16 3 2 

robust squared distance 1.504057 1.528438 1.611376 2.010724 2.056356 2.077057 

 

observation 11 5 17 19 4 10 8 

robust squared distance 2.109466 4.715847 6.443475 6.840317 7.808112 14.63751 27.4597 
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Figure 4.6  The Normal Quantile-quantile Plot of the Robust Squared Distances   

                    of Y Derived from the Proposed Method for Chemical Reaction Data 

 

When we deleted Y-outliers out of data, we obtained the mean and covariance 

matrix of the rest of Y matrix as follows: 

 

MCD method mean (Y1) = 17.3750 

mean (Y2) = 59.2667 

mean (Y3) = 20.7167 

Covariance matrix of Y 

22.423864 2.318182 18.514091

2.318182 3.240606 0.156061

18.514091 0.156061 17.226970

 





 
 
 
  

 

      

Determinant of covariance matrix of Y = 61.315670 

MVE method mean (Y1) = 20.178947 

mean (Y2) = 56.336842 

mean (Y3) = 20.784211 

Covariance matrix of Y 

99.296199 28.568626 59.028129

28.568626 22.248012 5.7839474

59.028129 5.7839474 45.271404

 





 
 
 
  

 

    

Determinant of covariance matrix of Y = 1728.503662 

 

The proposed method mean (Y1) = 21.923529 

mean (Y2) = 56.623529 

mean (Y3) = 19.182353 

Covariance matrix of Y 
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80.849412 37.384963 37.726434

37.384963 23.918162 11.817316

37.726434 11.817316 23.410294

 





 
 
 
  

 

   

Determinant of covariance matrix of Y = 552.499113 

 

4.5  Parameter Estimation for MMR Data with Y-outliers  

 

  When assessing the parameter estimates for MMR data with Y-outliers, least 

squares estimation is inefficient and can be biased since the variance of the estimates 

is inflated and outliers can be masked. Specifically, least squares estimates are highly 

non-robust to outliers where outliers are observations which do not follow the pattern 

of the other observations. For obtaining the parameter estimates of data with outliers, 

a Multivariate Weighted Least Squares (MWLS) estimator, given by 

1

MWLS
ˆ ( ) B X WX X WY , is used, where 1

W = V  , i.e. the weight matrix is 

determined by V
-1

 or the weight is inversely proportional to the corresponding error 

variance. To find the parameter estimates of data with outliers, a weight function in 

the form of a weight matrix to reduce the influence of outliers. The estimates of the 

regression coefficients using the proposed method were compared to those of the 

MCD and MVE methods.  

 For the multivariate multiple regression model, the parameter estimates are 

obtained in this form 

  
1 1 1ˆ ˆ ˆ( ) [( ) ( ) ( )] ( ) ( ) ( )p n p p nvec vec  

 
     B = I X Σ Ι I X I X Σ Ι Y  

where  

ˆ( )vec B  has size [(q + 1) x p]  x 1 , 

( )vec Y  has size (n  x p) x 1 , 

pI  has size p x p , 

X  has size n x (q + 1) , 

ˆ
Σ  has size p x p , 

nΙ  has size n x n , 
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( )p I X  has size np x [(q + 1) x p] and 

ˆ( )n Σ Ι  has size np x np.  

When comparing the properties of the estimation procedures, the study 

focused on the values of Bias and Mean Squared Error (MSE) of the estimated 

coefficients. Conclusions on the comparison of estimates were drawn based upon the 

lowest Bias and MSE.  

Their average values of Bias and MSE were computed and compared using 

1,000 replications in the simulation study and the formula are as follows:  

 

    
1000

11000

1 ˆBias k

k

 B B  

 

MSE = 
1000

1

1 ˆ ˆ( ) ( )
1000

k k

k

  B B B B  

 

where  k  is the index of replication. 

The obtained results of Bias and MSE for 18 cases were in Tables 4.19 – 4.36, as 

shown in Appendix E. 

For most of the values of Bias and MSE in the case of a sample size of 20, the 

proposed method gave lower values than the compared methods, especially in the 

case of data containing 10% and 20% Y-outliers. However, in the case of data 

containing 30% outliers in the Y-direction, higher values were obtained than with the 

compared methods. For most of the values of Bias and MSE in the case of a sample 

size of 60, the proposed method gave lower values of Bias and MSE than the others 

with any percentage of Y-outliers. 

 

 



 

CHAPTER 5 

 

CONCLUSION 

 

5.1  Multivariate Multiple Regression Analysis with Y-Outliers 

 

The MMR model generalizes the multiple regression model where the 

prediction of several dependent variables is required from the same set of independent 

variables, i.e. it is the extension of univariate multiple regression to various dependent 

variables. In MMR, each response is assumed to result in its own univariate 

regression model (with the same set of explanatory variables), and the errors linked to 

the dependent variables may be correlated. MMR data with the existence of Y-outliers 

can randomly change the values of the estimators. A capable technique for the 

treatment of these observations or an insight of available methods is necessary. 

Outlier detection in an MMR model is of interest since in real situations there may be 

data containing correlated variables, especially correlation between dependent 

variables which may lead to incorrectly detecting the observations as outliers in the 

direction of dependent variables.  

This study has focused on an alternative method that considers the covariance 

matrix of the dependent variables to detect outliers in the Y-direction of the MMR 

model for sample data based on the fundamental assumptions of the MMR model 

denoted by (A1)-(A3). An attempt has been made to find a useful algorithm by 

considering the residuals. The idea based on the squared distances of the residuals was 

used to detect the outliers in the Y-direction for MMR data containing correlated 

variables, especially correlation between dependent variables. A simulation study was 

used to compare the proposed method with the MD, MCD and MVE methods in the 

case of different correlation matrices, covariance matrices, sample sizes and 

dimensions.  



51 

In the resampling algorithm of the MCD and MVE methods, the best subsets 

could be overlooked because of the random resampling of the data set, leading to 

possible mistakes in detecting outliers, and furthermore, it requires a lot of 

computational time in the case of a large sample size. To use less time in finding the 

robust estimates of the location and covariance matrices, this study applied the 

squared distances of the residuals in the proposed algorithm concerned with the 

approximated covariance matrix of error so that, in the multivariate case, not only the 

stretch of an observation from the centroid of the data but also the spread of the data 

was considered.   

In the case of a correlation of 0.1 between the dependent variables, the 

percentage of correct detection decreased whereas the variances of the dependent 

variables increased, and the results were the same for the case of correlations of 0.5 

and 0.9 between the dependent variables. A higher percentage of correct detection 

was obtained in the case of data having smaller variances in the direction of the 

dependent variables. Furthermore, in the case of low variance, the percentage of 

correct detection increased when the correlations between dependent variables 

increased, and the results were the same for the case of medium and high variance.  

In most cases, the proposed method could correctly detect Y-outliers at a 

higher percentage and with a lower percentage of incorrect detection, especially in the 

cases of 10% and 20% outliers. However, in the case of 30% outliers, the proposed 

method obtained a lower percentage of correct detection than the other methods, but 

the percentages of correct detection increased as the sample size increased. It was 

found that the proposed algorithm could be used efficiently with data having a large 

sample size since less time was used in the computation. Furthermore, the proposed 

cutoff value cIQR was flexible based on sample size, and the quantity of outliers in 

the data and the requirements of researchers who wanted to delete the observations 

which were furthest away from the cluster of the data, causing the bias of the 

estimator and high variance of the data. 

When data contain outliers, the ordinary least-squares estimator is no longer 

appropriate. For obtaining the parameter estimates of data with outliers, the 

Multivariate Weighted Least Squares (MWLS) estimator was analyzed. For 
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comparing the properties of the estimation procedures, the values of the Bias and 

Mean Squared Error (MSE) of the estimated coefficients was focused on. 

 

 

5.2  Discussion  

  

It can be seen from the simulation that the MD method was very vulnerable to 

outliers since the classical mean and classical covariance matrix were affected by 

them. When sample data contained Y-outliers, the multivariate outlier detection 

method seemed to be more difficult since correlations between the dependent 

variables were also of concern. This study attempted to derive an alternative 

algorithm for multivariate multiple regression data by applying the squared distances 

of the residuals in obtaining the robust estimates of the location and covariance 

matrices which were used to calculate the robust distances of Y. The proposed method 

reduced the steps of the resampling algorithm of the Minimum Covariance 

Determinant method and Minimum Volume Ellipsoid method for which a lot of time 

is spent on finding the best subset containing approximately 50% of data for 

calculating the robust estimates of the location and covariance matrices. Here, the 

proposed method could be used to alleviate the more complicated steps of the MCD 

and MVE methods and yielded higher percentages of correct detection for a not very 

high percentage of outliers. For a higher percentage of outliers, e.g. 30%, the 

percentages of correct detection of the proposed method were slightly less than those 

two methods but were closer as the sample size increased. However, the drawback of 

the proposed method was the necessity of plotting all points of data for investigating 

observations that deviate highly from the data cluster to find an appropriate cutoff 

value. 

The estimates of the regression coefficients using the proposed method were 

compared to those using the MCD and MVE methods. For most of the values of Bias 

and MSE in the case of a large sample size, the proposed method gave lower values of 

Bias and MSE than the others with any percentage of Y-outliers. 
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5.3  Conclusion 

 

          Outlier detection in the Y-direction for multivariate multiple regression data is 

of interest since there are correlations between the dependent variables, which are one 

cause of difficulty in detecting multivariate outliers. Furthermore, the existence of 

outliers may randomly change the values of the estimators. Having an alternative 

method that can detect those outliers is necessary so that reliable results can be 

obtained. This dissertation started by emphasizing the previous work in the literature 

and covered the multivariate outlier detection methods that have been developed by 

many researchers. In this study, the Mahalanobis Distance method, the Minimum 

Covariance Determinant method and the Minimum Volume Ellipsoid method were 

considered and compared with the proposed method, which tried to solve the outlier 

detection problem when data contained the correlated dependent variables and had a 

very large sample size. The proposed method was based on the squared distances of 

the residuals used to find the robust estimates of the location and covariance matrices 

for calculating the robust distances of Y. The principal advantage of the proposed 

algorithm is to solve the complicated problem of a resampling algorithm which occurs 

when the sample size is large. The behavior of the proposed method was evaluated 

through Monte Carlo simulation studies. It was demonstrated that the proposed 

method could be an alternative method used to detect outliers in the cases of low, 

medium and high correlations/variances of the dependent variables. Specifically, 

simulations with contaminated datasets indicated that the proposed method could be 

applied efficiently in the case of data having large sample sizes.  

 

5.4  Recommendation for Future Research 

 

An extension of this study could be to use a larger sample size than 20, 60 and 

a higher p than 2, 3, and it is desirable to propose an alternative method which could 

be used to detect Y-outliers in the case of the percentage of the outliers close to 50%. 

Furthermore, an attempt could be made to use a sample with different dimensions 

between the independent and dependent variables in the simulation study.  
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APPENDIX A 

Proof of Theorem 3.2.1 

 

Theorem  3.2.1     If ( , )pi iN Σy μ  where i i
Bμ x , then 1 2ˆ

i pi asymptotic
rΣ r     

for all  i = 1,…,n  provided that 
1 1

( ) ( )=
1 1n q n q

Y - XB Y - XB R RΣ ˆ ˆˆ  
   

 is an 

unbiased estimator of Σ . 

 

Proof 

 

Let Y be an np matrix of p dependent variables, μ  denote the center and 

describes the location of the distribution and Σ  be the covariance matrix of the data 

which describes the scale of the distribution. 

11 12 1 1

21 22 2 2

1 2 x

y y ... y

y y ... y

y y ... y

p

p

n n np nn p

   
   
    
   
       

Y

y

y

y

 

If iy  is distributed as ( , )p iN Σμ , then 1( - ) ( - )i i i i
μ Σ μy y  has a chi-squared 

distribution with p degrees of freedom (Srivastava, 2002).   

Denote ˆR Y Y   be an np matrix of residuals containing 
i
r  for each 

observation      i = 1, … , n. Then  ( )ˆR Y Y HY I H YY      , where  

1
( )H X X X X

  . That is, R is a linear function of Y and we obtain 

( ) ( ) ( ) ( )E ER I H Y I H XB 0       since ( )I H X 0  . 

Recall that ( , )p ii N μ Σy . It is easily seen that ( , )pi N 0r Σ  and hence 

1 2

i i p

rΣ r   . 
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 And we have 
ˆ ˆ( ) ( )

1 1
E E

n q n q

  


   

  
   

   

R R Y XB Y XB
Σ  , thus  

ˆ ˆ( ) ( )

1

ˆ
n q

 

 


Y XB Y XB
Σ   is an unbiased estimator of Σ  (Rencher, 2002). 

Now let us replace the population parameter μ  and Σ  by their unbiased 

estimators, then we obtain the squared distance of the residuals, 
1

i i

ˆrΣ r , for each 

observation i = 1,…, n, is asymptotically distributed as chi-squared distribution with p 

degrees of freedom; that is,  

 1 2ˆ
i i pasymptotic

rΣ r        where   ˆ
1n q




 

R R
Σ  . 

 

And we obtained the expectation and variance of 
1

i i

ˆrΣ r  as follows:  
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APPENDIX B 

Proof of Theorem 3.2.2 

 

Theorem  3.2.2 The asymptotic expectation and the asymptotic variance of the 

squared distances of the residuals are p and 2p, respectively, i.e., 

1ˆ( )i iE p rΣ r    and    
1

2ˆ( )i i pV  rΣ r  

 

Proof   

 

 Let  1ˆui i i

 rΣ r     for  i = 1, …, n . 

Since  1 2ˆ
i i pasymptotic

rΣ r   , we obtain the moments of order k for each u i  as 

follows: 

 
 
2

2

2(u ) kk

i
asymptotic

p
k

p
E

 



   

Thus,   (u )i
asymptotic

E p     and    2 2(u ) (u ) [ (u )] 2i i i
asymptotic

V E E p    
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APPENDIX C 

 In this appendix, the data from a study by Rohwer (given in Timm, 1975) on 

kindergarten children is shown. 

group SES ID SAT PPVT Raven 

1 Low 1 49 48 8 

1 Low 2 47 76 13 

1 Low 3 11 40 13 

1 Low 4 9 52 9 

1 Low 5 69 63 15 

1 Low 6 35 82 14 

1 Low 7 6 71 21 

1 Low 8 8 68 8 

1 Low 9 49 74 11 

1 Low 10 8 70 15 

1 Low 11 47 70 15 

1 Low 12 6 61 11 

1 Low 13 14 54 12 

1 Low 14 30 55 13 

1 Low 15 4 54 10 

1 Low 16 24 40 14 

1 Low 17 19 66 13 

1 Low 18 45 54 10 

1 Low 19 22 64 14 

1 Low 20 16 47 16 

1 Low 21 32 48 16 

1 Low 22 37 52 14 

1 Low 23 47 74 19 

1 Low 24 5 57 12 

1 Low 25 6 57 10 

1 Low 26 60 80 11 

1 Low 27 58 78 13 
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group SES ID SAT PPVT Raven 

1 Low 28 6 70 16 

1 Low 29 16 47 14 

1 Low 30 45 94 19 

1 Low 31 9 63 11 

1 Low 32 69 76 16 

1 Low 33 35 59 11 

1 Low 34 19 55 8 

1 Low 35 58 74 14 

1 Low 36 58 71 17 

1 Low 37 79 54 14 

2 High 38 24 68 15 

2 High 39 8 82 11 

2 High 40 88 82 13 

2 High 41 82 91 18 

2 High 42 90 82 13 

2 High 43 77 100 15 

2 High 44 58 100 13 

2 High 45 14 96 12 

2 High 46 1 63 10 

2 High 47 98 91 18 

2 High 48 8 87 10 

2 High 49 88 105 21 

2 High 50 4 87 14 

2 High 51 14 76 16 

2 High 52 38 66 14 

2 High 53 4 74 15 

2 High 54 64 68 13 

2 High 55 88 98 16 

2 High 56 14 63 15 

2 High 57 99 94 16 
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group SES ID SAT PPVT Raven 

2 High 58 50 82 18 

2 High 59 36 89 15 

2 High 60 88 80 19 

2 High 61 14 61 11 

2 High 62 24 102 20 

2 High 63 24 71 12 

2 High 64 24 102 16 

2 High 65 50 96 13 

2 High 66 8 55 16 

2 High 67 98 96 18 

2 High 68 98 74 15 

2 High 69 50 78 19 
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group SES ID n s ns na ss 

1 Low 1 1 2 6 12 16 

1 Low 2 5 14 14 30 27 

1 Low 3 0 10 21 16 16 

1 Low 4 0 2 5 17 8 

1 Low 5 2 7 11 26 17 

1 Low 6 2 15 21 34 25 

1 Low 7 0 1 20 23 18 

1 Low 8 0 0 10 19 14 

1 Low 9 0 0 7 16 13 

1 Low 10 3 2 21 26 25 

1 Low 11 8 16 15 35 24 

1 Low 12 5 4 7 15 14 

1 Low 13 1 12 13 27 21 

1 Low 14 2 1 12 20 17 

1 Low 15 3 12 20 26 22 

1 Low 16 0 2 5 14 8 

1 Low 17 7 12 21 35 27 

1 Low 18 0 6 6 14 16 

1 Low 19 12 8 19 27 26 

1 Low 20 3 9 15 18 10 

1 Low 21 0 7 9 14 18 

1 Low 22 4 6 20 26 26 

1 Low 23 4 9 14 23 23 

1 Low 24 0 2 4 11 8 

1 Low 25 0 1 16 15 17 

1 Low 26 3 8 18 28 21 

1 Low 27 1 18 19 34 23 

1 Low 28 2 11 9 23 11 

1 Low 29 0 10 7 12 8 

1 Low 30 8 10 28 32 32 
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group SES ID n s ns na ss 

1 Low 31 2 12 5 25 14 

1 Low 32 7 11 18 29 21 

1 Low 33 2 5 10 23 24 

1 Low 34 0 1 14 19 12 

1 Low 35 1 0 10 18 18 

1 Low 36 6 4 23 31 26 

1 Low 37 0 6 6 15 14 

2 High 38 0 10 8 21 22 

2 High 39 7 3 21 28 21 

2 High 40 7 9 17 31 30 

2 High 41 6 11 16 27 25 

2 High 42 20 7 21 28 16 

2 High 43 4 11 18 32 29 

2 High 44 6 7 17 26 23 

2 High 45 5 2 11 22 23 

2 High 46 3 5 14 24 20 

2 High 47 16 12 16 27 30 

2 High 48 5 3 17 25 24 

2 High 49 2 11 10 26 22 

2 High 50 1 4 14 25 19 

2 High 51 11 5 18 27 22 

2 High 52 0 0 3 16 11 

2 High 53 5 8 11 12 15 

2 High 54 1 6 10 28 23 

2 High 55 1 9 12 30 18 

2 High 56 0 13 13 19 16 

2 High 57 4 6 14 27 19 

2 High 58 4 5 16 21 24 

2 High 59 1 6 15 23 28 

2 High 60 5 8 14 25 24 
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group SES ID n s ns na ss 

        

2 High 61 4 5 11 16 22 

2 High 62 5 7 17 26 15 

2 High 63 0 4 8 16 14 

2 High 64 4 17 21 27 31 

2 High 65 5 8 20 28 26 

2 High 66 4 7 19 20 13 

2 High 67 4 7 10 23 19 

2 High 68 2 6 14 25 17 

2 High 69 5 10 18 27 26 
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APPENDIX D 

 

 In this appendix, Chemical Reaction data given in Box and Youle (1955) is 

shown. 

 

ID Y1 Y2 Y3  X1 X2 X3 

1 41.5 45.9 11.2  162 23 3 

2 33.8 53.3 11.2  162 23 8 

3 27.7 57.5 12.7  162 30 5 

4 21.7 58.8 16  162 30 8 

5 19.9 60.6 16.2  172 25 5 

6 15 58 22.6  172 25 8 

7 12.2 58.6 24.5  172 30 5 

8 4.3 52.4 38  172 30 8 

9 19.3 56.9 21.3  167 27.5 6.5 

10 6.4 55.4 30.8  177 27.5 6.5 

11 37.6 46.9 14.7  157 27.5 6.5 

12 18 57.3 22.2  167 32.5 6.5 

13 26.3 55 18.3  167 22.5 6.5 

14 9.9 58.9 28  167 27.5 9.5 

15 25 50.3 22.1  167 27.5 3.5 

16 14.1 61.1 23  177 20 6.5 

17 15.2 62.9 20.7  177 20 6.5 

18 15.9 60 22.1  160 34 7.5 

19 19.6 60.6 19.3  160 34 7.5 
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APPENDIX E 

Tables 4.1 – 4.36 

 

Table 4.1  Percentages of Correction in Detecting Y-outliers in the Case of Data   

                  having High Variances, Correlations of 0.9, and p = 2 

 

  

n 

 

%Y 

Outlier 

var(y1)=9    ,    var(y2)=10    

 correlation of  0.9 

Proposed  MD  MCD  MVE 

 

 

 

 

 

 

p=2 

 

 

 

 

20 

10 98.15  

(2.16) 

41.75 

(0.07) 

97.00 

(5.87) 

97.15 

(6.10) 

20 95.15 

(4.50) 

2.43 

(0.07) 

93.45 

(2.78) 

94.25 

(2.84) 

30 84.70 

(10.47) 

0.57 

(0.08) 

80.47 

(1.60) 

80.37 

(2.34) 

 

 

60 

10 99.40 

(1.31) 

47.52 

(0.10) 

99.12 

(2.70) 

99.25 

(2.73) 

20 99.10 

(2.86) 

6.43 

(0.10) 

96.40 

(1.45) 

98.08 

(1.39) 

30 88.39 

(3.18) 

1.28 

(0.12) 

90.39 

(0.47) 

94.57 

(0.52) 
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Table 4.2  Percentages of Correction in Detecting Y-outliers in the Case of Data  

                  having High Variances, Correlations of 0.5, and p = 2 

 

  

n 

 

%Y 

Outlier 

var(y1)=9    ,    var(y2)=10    

 correlation of  0.5 

Proposed  MD  MCD  MVE 

 

 

 

 

 

 

p=2 

 

 

 

 

20 

10 95.65 

(2.43) 

38.50 

(0.11) 

92.45 

(6.07) 

93.90 

(6.53) 

20 93.60 

(4.15) 

3.08 

(0.13) 

85.48 

(3.07) 

87.83 

(3.52) 

30 83.52 

(11.32) 

0.98 

(0.12) 

70.72 

(2.21) 

70.67 

(3.32) 

 

 

60 

10 96.32 

(1.34) 

44.05 

(0.19) 

95.00 

(3.03) 

95.53 

(2.65) 

20 96.53 

(2.92) 

6.45 

(0.19) 

89.32 

(1.53) 

93.01 

(1.51) 

30 86.39 

(4.35) 

1.36 

(0.24) 

75.66 

(0.64) 

80.97 

(0.83) 
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Table 4.3  Percentages of Correction in Detecting Y-outliers in the Case of Data    

                  having High Variances, Correlations of 0.1, and p = 2 

 

  

n 

 

%Y 

Outlier 

var(y1)=9    ,    var(y2)=10    

 correlation of  0.1 

Proposed  MD  MCD  MVE 

 

 

 

 

 

 

p=2 

 

 

 

 

20 

10 92.85 

(2.42) 

35.00 

(0.12) 

87.70 

(6.39) 

89.15 

(6.65) 

20 91.83 

(4.61) 

3.40 

(0.14) 

78.28 

(3.32) 

80.48 

(3.64) 

30 79.87 

(12.17) 

0.88 

(0.19) 

61.82 

(2.75) 

59.62 

(3.92) 

 

 

60 

10 92.85 

(1.65) 

41.05 

(0.27) 

91.92 

(2.91) 

94.62 

(3.07) 

20 94.74 

(3.20) 

6.58 

(0.31) 

84.19 

(1.44) 

88.03 

(1.54) 

30 85.75 

(4.44) 

1.81 

(0.32) 

69.97 

(0.81) 

72.58 

(1.09) 
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Table 4.4  Percentages of Correction in Detecting Y-outliers in the Case of Data   

                  having High Variances, Correlations of 0.9, and p = 3 

 

  

n 

 

%Y 

Outlier 

var(y1)=9    ,    var(y2)=10   ,   var(y3)=10 

 correlation of  0.9 

Proposed  MD  MCD  MVE 

 

 

 

 

 

 

p=3 

 

 

 

 

20 

10 98.25 

(3.03) 

23.40 

(0.04) 

94.70 

(12.04) 

96.90 

(11.66) 

20 90.45 

(10.44) 

0.90 

(0.04) 

90.23 

(7.25) 

91.65 

(7.07) 

30 84.23 

(30.59) 

0.18 

(0.08) 

78.98 

(5.02) 

73.33 

(6.44) 

 

 

60 

10 99.53 

(0.14) 

46.20 

(0.22) 

98.27 

(55.34) 

98.15 

(37.83) 

20 99.24 

(6.17) 

3.15 

(0.03) 

94.38 

(41.70) 

96.29 

(33.76) 

30 90.06 

(15.16) 

0.59 

(0.04) 

93.62 

(0.90) 

92.91 

(0.88) 
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Table 4.5  Percentages of Correction in Detecting Y-outliers in the Case of Data  

                  having High Variances, Correlations of 0.5, and p = 3 

 

  

n 

 

%Y 

Outlier 

var(y1)=9    ,    var(y2)=10   ,   var(y3)=10 

 correlation of  0.5 

Proposed  MD  MCD  MVE 

 

 

 

 

 

 

p=3 

 

 

 

 

20 

10 99.30 

(3.23) 

23.00 

(0.06) 

95.65 

(12.52) 

97.15 

(11.65) 

20 90.08 

(9.05) 

1.33 

(0.06) 

92.00 

(7.13) 

94.05 

(6.61) 

30 84.63 

(30.37) 

0.42 

(0.10) 

81.90 

(4.44) 

78.10 

(5.61) 

 

 

60 

10 99.85 

(0.15) 

38.92 

(0.08) 

96.85 

(46.95) 

98.48 

(38.20) 

20 99.43 

(5.77) 

3.10 

(0.08) 

98.02 

(2.06) 

98.12 

(1.60) 

30 89.55 

(13.44) 

0.67 

(0.09) 

94.96 

(0.90) 

94.27 

(0.86) 
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Table 4.6  Percentages of Correction in Detecting Y-outliers in the Case of Data  

                  having High Variances, Correlations of 0.1, and p = 3 

 

  

n 

 

%Y 

Outlier 

var(y1)=9    ,    var(y2)=10   ,   var(y3)=10 

 correlation of  0.1 

Proposed  MD  MCD  MVE 

 

 

 

 

 

 

p=3 

 

 

 

 

20 

10 99.25 

(3.48) 

25.75 

(0.11) 

96.60 

(12.15) 

98.35 

(11.38) 

20 90.55 

(8.99) 

1.18 

(0.11) 

94.18 

(6.68) 

95.33 

(6.40) 

30 82.37 

(30.22) 

0.38 

(0.16) 

83.08 

(4.61) 

78.23 

(5.87) 

 

 

60 

10 99.92 

(0.17) 

39.58 

(0.13) 

97.03 

(47.19) 

99.10 

(38.01) 

20 99.52 

(5.58) 

3.58 

(0.12) 

93.99 

(40.77) 

97.64 

(32.42) 

30 89.50 

(12.88) 

0.85 

(0.15) 

96.72 

(0.90) 

96.49 

(0.87) 
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Table 4.7  Percentages of Correction in Detecting Y-outliers in the Case of Data  

                  having Medium Variances, Correlations of 0.9, and p = 2 

 

  

n 

 

%Y 

Outlier 

var(y1)=5    ,    var(y2)=6    

 correlation of  0.9 

Proposed  MD  MCD  MVE 

 

 

 

 

 

 

p=2 

 

 

 

 

20 

10 99.95 

(1.94) 

58.35 

(0.07) 

99.95 

(5.59) 

99.95 

(6.47) 

20 98.05 

(3.99) 

2.33 

(0.06) 

99.25 

(2.39) 

99.38 

(2.63) 

30 87.53 

(7.75) 

0.52 

(0.06) 

97.35 

(0.49) 

97.38 

(0.71) 

 

 

60 

10 100.00 

(0.92) 

60.45 

(0.06) 

100.00 

(2.81) 

100.00 

(3.01) 

20 99.95 

(2.67) 

5.38 

(0.06) 

99.90 

(1.50) 

100.00 

(1.66) 

30 89.31 

(0.99) 

0.91 

(0.10) 

99.44 

(0.75) 

99.92 

(0.78) 
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Table 4.8  Percentages of Correction in Detecting Y-outliers in the Case of Data  

                  having Medium Variances, Correlations of 0.5, and p = 2 

 

  

n 

 

%Y 

Outlier 

var(y1)=5    ,    var(y2)=6    

 correlation of  0.5 

Proposed  MD  MCD  MVE 

 

 

 

 

 

 

p=2 

 

 

 

 

20 

10 99.85 

(2.46) 

49.95 

(0.06) 

98.80 

(5.62) 

99.25 

(5.88) 

20 97.60 

(3.93) 

2.20 

(0.18) 

97.13 

(2.61) 

97.88 

(2.46) 

30 86.38 

(7.65) 

0.63 

(0.16) 

92.20 

(0.93) 

91.97 

(1.34) 

 

 

60 

10 100.00 

(1.09) 

54.33 

(0.10) 

99.90 

(2.71) 

100.00 

(2.79) 

20 99.90 

(2.74) 

5.73 

(0.11) 

99.14 

(1.30) 

99.87 

(1.38) 

30 89.04 

(1.16) 

1.29 

(0.12) 

98.33 

(0.64) 

99.25 

(0.65) 
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Table 4.9  Percentages of Correction in Detecting Y-outliers in the Case of Data  

                  having Medium Variances, Correlations of 0.1, and p = 2 

 

  

n 

 

%Y 

Outlier 

var(y1)=5    ,    var(y2)=6    

 correlation of  0.1 

Proposed  MD  MCD  MVE 

 

 

 

 

 

 

p=2 

 

 

 

 

20 

10 99.35 

(2.53) 

44.50 

(0.11) 

96.45 

(5.46) 

96.85 

(5.92) 

20 96.85 

(3.70) 

3.50 

(0.10) 

93.23 

(2.71) 

94.35 

(2.93) 

30 85.12 

(9.42) 

0.97 

(0.16) 

83.27 

(1.57) 

82.50 

(2.27) 

 

 

60 

10 99.65 

(1.49) 

52.62 

(0.15) 

99.27 

(2.85) 

99.18 

(2.96) 

20 99.73 

(2.59) 

6.24 

(0.18) 

97.25 

(1.32) 

98.73 

(1.50) 

30 88.93 

(1.26) 

1.21 

(0.21) 

92.92 

(0.57) 

96.40 

(0.65) 
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Table 4.10  Percentages of Correction in Detecting Y-outliers in the Case of Data  

                    having Medium Variances, Correlations of 0.9, and p = 3 

 

  

n 

 

%Y 

Outlier 

var(y1)=5    ,    var(y2)=6   ,    var(y3)=5    

 correlation of  0.9 

Proposed  MD  MCD  MVE 

 

 

 

 

 

 

p=3 

 

 

 

 

20 

10 99.00 

(3.05) 

26.60 

(0.03) 

97.05 

(12.26) 

97.60 

(11.58) 

20 91.88 

(9.81) 

0.80 

(0.06) 

94.00 

(6.74) 

95.63 

(6.46) 

30 84.95 

(30.36) 

0.27 

(0.06) 

86.65 

(3.90) 

83.07 

(4.69) 

 

 

60 

10 99.97 

(0.14) 

42.48 

(0.04) 

98.08 

(47.34) 

99.33 

(38.68) 

20 99.78 

(6.86) 

2.88 

(0.04) 

99.23 

(1.86) 

98.81 

(1.45) 

30 91.04 

(12.78) 

0.52 

(0.04) 

97.86 

(0.73) 

98.88 

(0.60) 
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Table 4.11  Percentages of Correction in Detecting Y-outliers in the Case of Data  

                    having Medium Variances, Correlations of 0.5, and p = 3 

 

  

n 

 

%Y 

Outlier 

var(y1)=5    ,    var(y2)=6   ,    var(y3)=5    

 correlation of  0.5 

Proposed  MD  MCD  MVE 

 

 

 

 

 

 

p=3 

 

 

 

 

20 

10 99.45 

(3.16) 

24.65 

(0.07) 

97.95 

(12.32) 

98.75 

(11.15) 

20 92.23 

(9.53) 

1.08 

(0.08) 

95.08 

(6.26) 

96.83 

(5.87) 

30 84.22 

(29.87) 

0.18 

(0.06) 

86.88 

(4.01) 

84.57 

(4.37) 

 

 

60 

10 99.98 

(0.14) 

42.85 

(0.04) 

97.72 

(47.28) 

99.40 

(38.87) 

20 99.78 

(6.50) 

2.98 

(0.04) 

99.39 

(2.06) 

99.89 

(1.39) 

30 91.03 

(12.30) 

0.50 

(0.06) 

98.39 

(0.69) 

98.93 

(0.61) 
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Table 4.12  Percentages of Correction in Detecting Y-outliers in the Case of Data  

                    having Medium Variances, Correlations of 0.1, and p = 3 

 

  

n 

 

%Y 

Outlier 

var(y1)=5    ,    var(y2)=6   ,    var(y3)=5    

 correlation of  0.1 

Proposed  MD  MCD  MVE 

 

 

 

 

 

 

p=3 

 

 

 

 

20 

10 99.70 

(3.34) 

27.75 

(0.03) 

98.25 

(12.26) 

99.25 

(11.41) 

20 92.05 

(9.04) 

1.10 

(0.04) 

95.60 

(6.61) 

96.88 

(6.42) 

30 84.57 

(28.87) 

0.35 

(0.05) 

89.62 

(3.46) 

86.00 

(4.19) 

 

 

60 

10 99.98 

(0.16) 

43.30 

(0.06) 

98.02 

(47.06) 

99.17 

(38.31) 

20 99.87 

(6.38) 

2.91 

(0.06) 

99.31 

(1.90) 

99.38 

(1.32) 

30 90.60 

(11.21) 

0.71 

(0.08) 

98.49 

(0.76) 

99.01 

(0.60) 
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Table 4.13  Percentages of Correction in Detecting Y-outliers in the Case of Data  

                    having Low Variances, Correlations of 0.9, and p = 2 

 

  

n 

 

%Y 

Outlier 

var(y1)=1    ,    var(y2)=2    

 correlation of  0.9 

Proposed  MD  MCD  MVE 

 

 

 

 

 

 

p=2 

 

 

 

 

20 

10 100 

(1.72) 

85.85 

(0.06) 

100.00 

(5.69) 

100.00 

(5.86) 

20 99.68 

(4.31) 

2.50 

(0.07) 

100.00 

(2.32) 

100.00 

(2.53) 

30 88.52 

(4.23) 

0.52 

(0.09) 

100.00 

(0.26) 

100.00 

(0.34) 

 

 

60 

10 100.00 

(0.82) 

87.53 

(0.04) 

100.00 

(2.70) 

100.00 

(2.61) 

20 100.00 

(3.00) 

4.24 

(0.03) 

100.00 

(1.48) 

100.00 

(1.41) 

30 87.69 

(0.18) 

0.75 

(0.06) 

100.00 

(0.63) 

100.00 

(0.63) 
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Table 4.14  Percentages of Correction in Detecting Y-outliers in the Case of Data  

                    having Low Variances, Correlations of 0.5, and p = 2 

 

  

n 

 

%Y 

Outlier 

var(y1)=1    ,    var(y2)=2    

 correlation of  0.5 

Proposed  MD  MCD  MVE 

 

 

 

 

 

 

p=2 

 

 

 

 

20 

10 100.00 

(2.51) 

77.15 

(0.06) 

100.00 

(6.04) 

100.00 

(6.53) 

20 99.40 

(3.80) 

2.25 

(0.08) 

100.00 

(2.47) 

100.00 

(2.75) 

30 87.85 

(4.74) 

0.43 

(0.10) 

100.00 

(0.26) 

100.00 

(0.28) 

 

 

60 

10 100.00 

(1.16) 

83.03 

(0.03) 

100.00 

(2.80) 

100.00 

(2.82) 

20 100.00 

(2.86) 

4.29 

(0.05) 

100.00 

(1.45) 

100.00 

(1.53) 

30 87.77 

(0.19) 

0.79 

(0.08) 

100.00 

(0.83) 

100.00 

(0.85) 
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Table 4.15  Percentages of Correction in Detecting Y-outliers in the Case of Data  

                    having Low Variances, Correlations of 0.1, and p = 2 

 

  

n 

 

%Y 

Outlier 

var(y1)=1    ,    var(y2)=2    

 correlation of  0.1 

Proposed  MD  MCD  MVE 

 

 

 

 

 

 

p=2 

 

 

 

 

20 

10 100.00 

(2.57) 

76.35 

(0.02) 

100.00 

(5.86) 

100.00 

(6.42) 

20 99.13 

(3.88) 

2.13 

(0.05) 

100.00 

(2.51) 

100.00 

(2.96) 

30 88.35 

(3.89) 

0.47 

(0.08) 

100.00 

(0.34) 

100.00 

(0.43) 

 

 

60 

10 100.00 

(1.36) 

79.23 

(0.11) 

100.00 

(2.92) 

100.00 

(3.00) 

20 100.00 

(3.00) 

5.05 

(0.11) 

100.00 

(1.77) 

100.00 

(1.66) 

30 87.90 

(0.25) 

0.85 

(0.15) 

100.00 

(0.86) 

100.00 

(0.84) 
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Table 4.16  Percentages of Correction in Detecting Y-outliers in the Case of Data  

                    having Low Variances, Correlations of 0.9, and p = 3 

 

  

n 

 

%Y 

Outlier 

var(y1)=1    ,    var(y2)=2   ,    var(y3)=1    

 correlation of  0.9 

Proposed  MD  MCD  MVE 

 

 

 

 

 

 

p=3 

 

 

 

 

20 

10 99.60 

(3.17) 

28.35 

(0.03) 

98.20 

(12.90) 

99.35 

(12.23) 

20 93.75 

(10.16) 

1.00 

(0.04) 

97.33 

(6.30) 

98.68 

(5.92) 

30 85.53 

(28.73) 

0.27 

(0.05) 

92.18 

(3.03) 

90.58 

(3.38) 

 

 

60 

10 100.00 

(0.14) 

46.07 

(0.02) 

97.58 

(48.22) 

99.47 

(39.83) 

20 99.93 

(8.32) 

2.51 

(0.02) 

99.68 

(1.64) 

100.00 

(1.10) 

30 92.16 

(10.16) 

0.42 

(0.02) 

99.49 

(0.51) 

99.79 

(0.44) 
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Table 4.17  Percentages of Correction in Detecting Y-outliers in the Case of Data  

                    having Low Variances, Correlations of 0.5, and p = 3 

 

  

n 

 

%Y 

Outlier 

var(y1)=1    ,    var(y2)=2   ,    var(y3)=1    

 correlation of  0.5 

Proposed  MD  MCD  MVE 

 

 

 

 

 

 

p=3 

 

 

 

 

20 

10 99.95 

(3.27) 

28.80 

(0.03) 

98.35 

(12.55) 

99.10 

(11.71) 

20 93.45 

(10.28) 

1.23 

(0.02) 

91.40 

(5.89) 

93.40 

(5.61) 

30 86.00 

(28.22) 

0.30 

(0.02) 

92.27 

(2.86) 

89.87 

(3.26) 

 

 

60 

10 100.00 

(0.14) 

47.32 

(0.03) 

98.33 

(47.21) 

99.50 

(39.98) 

20 99.98 

(8.29) 

2.68 

(0.04) 

99.88 

(1.67) 

100.00 

(1.09) 

30 92.53 

(9.99) 

0.46 

(0.05) 

99.45 

(0.55) 

99.96 

(0.38) 
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Table 4.18  Percentages of Correction in Detecting Y-outliers in the Case of Data  

                    having Low Variances, Correlations of 0.1, and p = 3 

 

  

n 

 

%Y 

Outlier 

var(y1)=1    ,    var(y2)=2   ,    var(y3)=1    

 correlation of  0.1 

Proposed  MD  MCD  MVE 

 

 

 

 

 

 

p=3 

 

 

 

 

20 

10 99.90 

(3.13) 

29.05 

(0.04) 

98.45 

(12.90) 

99.10 

(11.77) 

20 93.20 

(8.88) 

1.08 

(0.08) 

96.75 

(6.26) 

98.43 

(5.89) 

30 86.97 

(28.09) 

0.40 

(0.07) 

92.20 

(3.29) 

90.42 

(3.71) 

 

 

60 

10 100.00 

(0.14) 

47.57 

(0.04) 

98.50 

(49.02) 

99.45 

(40.90) 

20 99.92 

(8.14) 

2.47 

(0.05) 

99.80 

(1.63) 

100.00 

(0.98) 

30 91.68 

(10.39) 

0.51 

(0.05) 

99.43 

(0.53) 

99.90 

(0.39) 
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Table 4.19  The Values of Bias and MSE for Data having High Variances,  

                    Correlations of 0.9, and  p = 2 

 

 

Number of 

Dependent 

Variables 

 

Sample 

Size 

 

Percentages 

of 

Y-outliers 

 

Properties 

of 

Parameter 

Estimates 

variances of  9, 10 

correlation of  0.9 

 

proposed 

 

MCD 

 

MVE 

 

 

 

 

 

 

p=2 

 

 

 

n=20 

 

10% 

Bias 0.06 0.44 0.43 

MSE 16.56 27.78 29.84 

 

20% 

Bias 1.04 0.27 0.30 

MSE 40.81 41.51 35.27 

 

30% 

Bias 3.61 1.61 1.49 

MSE 125.74 93.55 109.55 

 

 

 

n=60 

 

10% 

Bias 0.05 0.09 0.09 

MSE 5.36 7.16 7.32 

 

20% 

Bias 0.30 0.37 0.27 

MSE 6.94 8.72 7.78 

 

30% 

Bias 1.19 1.18 0.76 

MSE 22.60 14.14 10.69 
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Table 4.20  The Values of Bias and MSE for Data having High Variances,  

                    Correlations of 0.5, and  p = 2 

 

 

Number of 

Dependent 

Variables 

 

Sample 

Size 

 

Percentages 

of 

Y-outliers 

 

Properties 

of 

Parameter 

Estimates 

variances of  9, 10 

correlation of  0.5 

 

proposed 

 

MCD 

 

MVE 

 

 

 

 

 

 

p=2 

 

 

 

n=20 

 

10% 

Bias 0.46 2.69 1.05 

MSE 17.09 25.83 22.86 

 

20% 

Bias 0.69 2.42 2.34 

MSE 36.07 53.34 52.74 

 

30% 

Bias 4.58 6.04 6.80 

MSE 139.78 125.23 154.01 

 

 

 

n=60 

 

10% 

Bias 0.17 0.66 0.48 

MSE 3.96 5.21 4.81 

 

20% 

Bias 0.54 1.58 1.22 

MSE 5.32 10.77 8.85 

 

30% 

Bias 2.83 4.14 3.71 

MSE 26.23 31.66 30.36 

 

 

 

 

 

 

 

 

 

 

 

 



90 

 

Table 4.21  The Values of Bias and MSE for Data having High Variances,  

                    Correlations of 0.1, and  p = 2 

 

 

Number of 

Dependent 

Variables 

 

Sample 

Size 

 

Percentages 

of 

Y-outliers 

 

Properties 

of 

Parameter 

Estimates 

variances of  9, 10 

correlation of  0.1 

 

proposed 

 

MCD 

 

MVE 

 

 

 

 

 

 

p=2 

 

 

 

n=20 

 

10% 

Bias 0.89 2.86 2.69 

MSE 14.14 25.78 25.83 

 

20% 

Bias 2.13 5.41 5.09 

MSE 37.94 59.78 56.91 

 

30% 

Bias 7.25 9.52 10.20 

MSE 175.65 143.09 174.23 

 

 

 

n=60 

 

10% 

Bias 0.49 3.28 0.85 

MSE 3.58 17.15 4.61 

 

20% 

Bias 1.04 2.55 2.50 

MSE 6.05 12.55 11.97 

 

30% 

Bias 3.56 6.20 5.96 

MSE 23.88 44.13 44.29 
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Table 4.22  The Values of Bias and MSE for Data having High Variances,  

                    Correlations of 0.9, and  p = 3 

 

 

Number of 

Dependent 

Variables 

 

Sample 

Size 

 

Percentages 

of 

Y-outliers 

 

Properties 

of 

Parameter 

Estimates 

variances of  9, 10, 10 

correlation of  0.9 

 

proposed 

 

MCD 

 

MVE 

 

 

 

 

 

 

p=3 

 

 

 

n=20 

 

10% 

Bias 1.06 4.28 3.63 

MSE 61.73 220.01 180.72 

 

20% 

Bias 5.95 6.06 5.89 

MSE 323.71 399.35 415.74 

 

30% 

Bias 14.78 11.16 12.87 

MSE 1260.84 999.70 1207.91 

 

 

 

n=60 

 

10% 

Bias 19.40 14.65 57.90 

MSE 5950.79 82107.9 8676.30 

 

20% 

Bias 41.44 29.38 36.55 

MSE 1912.62 6297.34 5790.02 

 

30% 

Bias 8.47 37.77 39.04 

MSE 3124.20 3178.96 3015.38 
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Table 4.23  The Values of Bias and MSE for Data having High Variances,  

                    Correlations of 0.5, and  p = 3 

 

 

Number of 

Dependent 

Variables 

 

Sample 

Size 

 

Percentages 

of 

Y-outliers 

 

Properties 

of 

Parameter 

Estimates 

variances of  9, 10, 10 

correlation of  0.5 

 

proposed 

 

MCD 

 

MVE 

 

 

 

 

 

 

p=3 

 

 

 

n=20 

 

10% 

Bias 0.75 3.39 2.97 

MSE 44.09 112.43 94.12 

 

20% 

Bias 4.40 5.29 3.99 

MSE 235.86 234.14 198.26 

 

30% 

Bias 17.11 7.80 8.81 

MSE 1303.07 561.61 728.82 

 

 

 

n=60 

 

10% 

Bias 31.35 41.30 52.93 

MSE 6096.65 7834.34 8197.55 

 

20% 

Bias 40.99 44.70 47.13 

MSE 1887.81 2376.04 2275.15 

 

30% 

Bias 9.86 41.44 38.98 

MSE 1227.17 2652.14 2982.26 
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Table 4.24  The Values of Bias and MSE for Data having High Variances,  

                    Correlations of 0.1, and  p = 3 

 

 

Number of 

Dependent 

Variables 

 

Sample 

Size 

 

Percentages 

of 

Y-outliers 

 

Properties 

of 

Parameter 

Estimates 

variances of  9, 10, 10 

correlation of  0.1 

 

proposed 

 

MCD 

 

MVE 

 

 

 

 

 

 

p=3 

 

 

 

n=20 

 

10% 

Bias 0.27 2.63 2.40 

MSE 31.52 80.28 59.58 

 

20% 

Bias 3.19 3.51 3.47 

MSE 126.58 129.38 181.81 

 

30% 

Bias 19.07 9.31 9.69 

MSE 1383.23 642.07 792.59 

 

 

 

n=60 

 

10% 

Bias 31.93 42.06 61.15 

MSE 6208.55 8386.11 8870.94 

 

20% 

Bias 42.60 35.68 42.96 

MSE 1677.57 6514.17 5380.06 

 

30% 

Bias 7.14 42.73 43.38 

MSE 1421.32 2251.31 2576.63 
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Table 4.25  The Values of Bias and MSE for Data having Medium Variances,  

                    Correlations of 0.9, and  p = 2 

 

 

Number of 

Dependent 

Variables 

 

Sample 

Size 

 

Percentages 

of 

Y-outliers 

 

Properties 

of 

Parameter 

Estimates 

variances of  5, 6 

correlation of  0.9 

 

proposed 

 

MCD 

 

MVE 

 

 

 

 

 

 

p=2 

 

 

 

n=20 

 

10% 

Bias 0.18 0.33 0.32 

MSE 8.88 17.18 17.38 

 

20% 

Bias 0.38 0.15 0.18 

MSE 20.40 16.18 16.64 

 

30% 

Bias 1.76 0.28 0.16 

MSE 119.20 23.99 38.33 

 

 

 

n=60 

 

10% 

Bias 0.03 0.11 0.10 

MSE 0.51 0.59 0.59 

 

20% 

Bias 0.07 0.08 0.08 

MSE 3.19 3.78 3.69 

 

30% 

Bias 0.50 0.11 0.11 

MSE 14.36 4.06 3.97 
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Table 4.26  The Values of Bias and MSE for Data having Medium Variances,  

                    Correlations of 0.5, and  p = 2 

 

 

Number of 

Dependent 

Variables 

 

Sample 

Size 

 

Percentages 

of 

Y-outliers 

 

Properties 

of 

Parameter 

Estimates 

variances of  5, 6 

correlation of  0.5 

 

proposed 

 

MCD 

 

MVE 

 

 

 

 

 

 

p=2 

 

 

 

n=20 

 

10% 

Bias 0.26 0.99 1.01 

MSE 7.39 11.47 11.27 

 

20% 

Bias 0.65 1.65 1.37 

MSE 17.52 29.11 21.13 

 

30% 

Bias 3.30 2.15 2.20 

MSE 49.35 39.69 48.29 

 

 

 

n=60 

 

10% 

Bias 0.15 0.33 0.33 

MSE 2.11 2.64 2.60 

 

20% 

Bias 0.16 0.33 0.24 

MSE 2.34 3.06 2.53 

 

30% 

Bias 0.75 0.54 0.33 

MSE 5.06 4.62 3.46 
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Table 4.27  The Values of Bias and MSE for Data having Medium Variances,  

                    Correlations of 0.1, and  p = 2 

 

 

Number of 

Dependent 

Variables 

 

Sample 

Size 

 

Percentages 

of 

Y-outliers 

 

Properties 

of 

Parameter 

Estimates 

variances of  5, 6 

correlation of  0.1 

 

proposed 

 

MCD 

 

MVE 

 

 

 

 

 

 

p=2 

 

 

 

n=20 

 

10% 

Bias 0.32 1.36 1.29 

MSE 5.33 12.07 13.43 

 

20% 

Bias 0.61 1.90 1.71 

MSE 10.34 23.42 22.72 

 

30% 

Bias 4.76 5.79 5.60 

MSE 101.64 98.89 107.18 

 

 

 

n=60 

 

10% 

Bias 0.25 0.44 0.39 

MSE 1.60 2.19 2.11 

 

20% 

Bias 0.29 0.74 0.53 

MSE 1.71 3.20 2.21 

 

30% 

Bias 1.36 1.64 1.14 

MSE 7.33 8.67 5.78 
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Table 4.28  The Values of Bias and MSE for Data having Medium Variances,  

                    Correlations of 0.9, and  p = 3 

 

 

Number of 

Dependent 

Variables 

 

Sample 

Size 

 

Percentages 

of 

Y-outliers 

 

Properties 

of 

Parameter 

Estimates 

variances of  5, 6, 5 

correlation of  0.9 

 

proposed 

 

MCD 

 

MVE 

 

 

 

 

 

 

p=3 

 

 

 

n=20 

 

10% 

Bias 0.49 3.08 2.59 

MSE 38.63 99.18 79.94 

 

20% 

Bias 3.58 3.60 2.80 

MSE 239.42 256.95 221.00 

 

30% 

Bias 18.73 7.62 8.23 

MSE 1325.28 779.97 1023.40 

 

 

 

n=60 

 

10% 

Bias 38.39 38.95 52.40 

MSE 6027.35 8315.57 8410.48 

 

20% 

Bias 49.08 51.83 51.25 

MSE 1837.05 2383.34 2187.54 

 

30% 

Bias 8.09 49.13 52.57 

MSE 1101.28 2395.24 2230.79 
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Table 4.29  The Values of Bias and MSE for Data having Medium Variances,  

                    Correlations of 0.5, and  p = 3 

 

 

Number of 

Dependent 

Variables 

 

Sample 

Size 

 

Percentages 

of 

Y-outliers 

 

Properties 

of 

Parameter 

Estimates 

variances of  5, 6, 5 

correlation of  0.5 

 

proposed 

 

MCD 

 

MVE 

 

 

 

 

 

 

p=3 

 

 

 

n=20 

 

10% 

Bias 0.64 2.66 2.09 

MSE 32.67 75.39 53.85 

 

20% 

Bias 3.47 2.46 1.99 

MSE 152.52 170.43 126.26 

 

30% 

Bias 11.33 5.91 7.22 

MSE 976.64 645.46 772.16 

 

 

 

n=60 

 

10% 

Bias 18.22 39.55 49.86 

MSE 5974.80 8480.40 8639.39 

 

20% 

Bias 45.33 50.62 51.13 

MSE 1752.79 2302.57 2132.96 

 

30% 

Bias 9.29 48.90 49.41 

MSE 1731.96 2204.88 2232.37 
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Table 4.30  The Values of Bias and MSE for Data having Medium Variances,  

                    Correlations of 0.1, and  p = 3 

 

 

Number of 

Dependent 

Variables 

 

Sample 

Size 

 

Percentages 

of 

Y-outliers 

 

Properties 

of 

Parameter 

Estimates 

variances of  5, 6, 5 

correlation of  0.1 

 

proposed 

 

MCD 

 

MVE 

 

 

 

 

 

 

p=3 

 

 

 

n=20 

 

10% 

Bias 0.50 1.98 1.77 

MSE 18.19 42.43 35.85 

 

20% 

Bias 4.40 2.38 2.05 

MSE 127.16 100.58 89.03 

 

30% 

Bias 19.12 6.66 6.72 

MSE 1357.04 484.67 624.95 

 

 

 

n=60 

 

10% 

Bias 39.28 44.25 52.15 

MSE 6008.67 8471.78 8681.96 

 

20% 

Bias 46.20 51.57 52.80 

MSE 1872.95 2510.96 2265.17 

 

30% 

Bias 8.49 51.19 51.80 

MSE 2064.17 2432.44 2309.82 
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Table 4.31  The Values of Bias and MSE for Data having Low Variances,  

                    Correlations of 0.9, and  p = 2 

 

 

Number of 

Dependent 

Variables 

 

Sample 

Size 

 

Percentages 

of 

Y-outliers 

 

Properties 

of 

Parameter 

Estimates 

variances of  1, 2 

correlation of  0.9 

 

proposed 

 

MCD 

 

MVE 

 

 

 

 

 

 

p=2 

 

 

 

n=20 

 

10% 

Bias 0.14 0.16 0.18 

MSE 2.17 3.76 3.82 

 

20% 

Bias 0.06 0.08 0.09 

MSE 4.43 3.29 3.45 

 

30% 

Bias 1.47 0.16 0.16 

MSE 85.69 3.12 3.14 

 

 

 

n=60 

 

10% 

Bias 0.03 0.15 0.15 

MSE 0.64 0.84 0.84 

 

20% 

Bias 0.02 0.08 0.10 

MSE 0.72 0.851 0.89 

 

30% 

Bias 0.08 0.07 0.06 

MSE 2.54 0.90 0.90 
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Table 4.32  The Values of Bias and MSE for Data having Low Variances,  

                    Correlations of 0.5, and  p = 2 

 

 

Number of 

Dependent 

Variables 

 

Sample 

Size 

 

Percentages 

of 

Y-outliers 

 

Properties 

of 

Parameter 

Estimates 

variances of  1, 2 

correlation of  0.5 

 

proposed 

 

MCD 

 

MVE 

 

 

 

 

 

 

p=2 

 

 

 

n=20 

 

10% 

Bias 0.10 0.33 0.37 

MSE 1.16 1.59 1.66 

 

20% 

Bias 0.15 0.21 0.19 

MSE 4.13 1.49 1.47 

 

30% 

Bias 2.11 0.04 0.04 

MSE 87.03 1.49 1.50 

 

 

 

n=60 

 

10% 

Bias 1.76 0.28 0.16 

MSE 49.19 23.99 38.33 

 

20% 

Bias 0.03 0.04 0.05 

MSE 0.62 0.69 0.71 

 

30% 

Bias 0.05 0.03 0.03 

MSE 3.70 0.79 0.79 
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Table 4.33  The Values of Bias and MSE for Data having Low Variances,  

                    Correlations of 0.1, and  p = 2 

 

 

Number of 

Dependent 

Variables 

 

Sample 

Size 

 

Percentages 

of 

Y-outliers 

 

Properties 

of 

Parameter 

Estimates 

variances of  1, 2 

correlation of  0.1 

 

proposed 

 

MCD 

 

MVE 

 

 

 

 

 

 

p=2 

 

 

 

n=20 

 

10% 

Bias 0.17 0.22 0.22 

MSE 1.51 2.15 2.15 

 

20% 

Bias 0.13 0.10 0.10 

MSE 6.89 2.01 2.06 

 

30% 

Bias 2.13 0.12 0.13 

MSE 93.51 2.17 2.20 

 

 

 

n=60 

 

10% 

Bias 0.03 0.21 0.21 

MSE 0.38 0.44 0.44 

 

20% 

Bias 0.04 0.16 0.17 

MSE 0.44 0.48 0.50 

 

30% 

Bias 0.16 0.12 0.12 

MSE 3.37 0.54 0.55 
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Table 4.34  The Values of Bias and MSE for Data having Low Variances,  

                    Correlations of 0.9, and  p = 3 

 

 

Number of 

Dependent 

Variables 

 

Sample 

Size 

 

Percentages 

of 

Y-outliers 

 

Properties 

of 

Parameter 

Estimates 

variances of  1, 2, 1 

correlation of  0.9 

 

proposed 

 

MCD 

 

MVE 

 

 

 

 

 

 

p=3 

 

 

 

n=20 

 

10% 

Bias 0.24 1.81 1.24 

MSE 10.15 38.04 25.97 

 

20% 

Bias 2.76 1.56 1.61 

MSE 179.52 58.00 99.89 

 

30% 

Bias 17.75 4.42 3.96 

MSE 1257.64 546.54 565.48 

 

 

 

n=60 

 

10% 

Bias 22.95 39.80 50.61 

MSE 6138.73 8682.07 8049.09 

 

20% 

Bias 45.03 48.32 50.03 

MSE 1666.78 2147.07 2070.82 

 

30% 

Bias 11.96 48.57 48.76 

MSE 3284.29 1937.76 1920.40 
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Table 4.35  The Values of Bias and MSE for Data having Low Variances,  

                    Correlations of 0.5, and  p = 3 

 

 

Number of 

Dependent 

Variables 

 

Sample 

Size 

 

Percentages 

of 

Y-outliers 

 

Properties 

of 

Parameter 

Estimates 

variances of  1, 2, 1 

correlation of  0.5 

 

proposed 

 

MCD 

 

MVE 

 

 

 

 

 

 

p=3 

 

 

 

n=20 

 

10% 

Bias 0.27 1.28 0.91 

MSE 8.54 29.13 19.47 

 

20% 

Bias 4.09 1.14 1.11 

MSE 200.37 93.17 41.87 

 

30% 

Bias 17.83 4.19 4.18 

MSE 1190.51 434.48 565.04 

 

 

 

n=60 

 

10% 

Bias 39.53 31.28 42.55 

MSE 5865.95 7866.70 8152.82 

 

20% 

Bias 47.36 52.61 53.99 

MSE 1756.22 2275.56 2243.25 

 

30% 

Bias 8.53 51.54 52.11 

MSE 3542.64 2134.62 2055.68 
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Table 4.36  The Values of Bias and MSE for Data having Low Variances,  

                    Correlations of 0.1, and  p = 3 

 

 

Number of 

Dependent 

Variables 

 

Sample 

Size 

 

Percentages 

of 

Y-outliers 

 

Properties 

of 

Parameter 

Estimates 

variances of  1, 2, 1 

correlation of  0.1 

 

proposed 

 

MCD 

 

MVE 

 

 

 

 

 

 

p=3 

 

 

 

n=20 

 

10% 

Bias 0.31 1.31 1.00 

MSE 6.90 53.37 20.97 

 

20% 

Bias 3.71 1.63 1.21 

MSE 202.15 179.14 56.73 

 

30% 

Bias 18.12 3.50 4.59 

MSE 1271.77 473.29 582.21 

 

 

 

n=60 

 

10% 

Bias 33.09 39.85 54.94 

MSE 6250.74 8362.71 8731.83 

 

20% 

Bias 42.49 49.54 48.88 

MSE 1639.94 2200.00 2019.19 

 

30% 

Bias 7.91 48.64 47.23 

MSE 3658.88 2083.97 1899.45 
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