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A Data Warehouses is a repository of information integrated from a 

distributed data source. Information stored in a data warehouse is the form of the 

materialized view. Materializing view is a technique to improve query response time 

in a data warehouse. Deciding which of the appropriated views should be materialized 

views is one of the significant problems in data warehouse design. In order to solve 

this problem, constructing a search space close to optimal is a necessary task. It 

provides effective results for the selection of views to be materialized. The Multiple 

View Processing Plan (MVPP) is one of the several approaches to construct the 

optimal search space for the view selection problem. However, some merged queries 

in MVPP provide the query processing cost not close to optimal. Therefore, we 

proposed the re-optimized MVPP algorithm to improve the query processing cost of 

those queries by rewriting them using global common subexpression. 

In the real situation, the requirements are frequently changed by the 

stakeholder. Therefore, the existing materialized views and virtual views derived from 

static materialized view selection should be considered whether they are still suitable 

to support all requirements, the existing and new requirements. In this research, we 

propose an approach for dynamic materialized view selection based on proposed re-

optimized MVPP algorithm. We propose the algorithm to determine the existing 

materialized views and virtual views that are affected by changing the requirement 

rather than all existing resource in the search space.  

  



iv 

 

The experiment shows that our approach, the re-optimized MVPP, improves 

the total query processing cost of MVPP. Also the summation of query processing 

costs and materialized view maintenance costs are reduced after the set of views are 

selected to be materialized by using the Two-Phase Optimization algorithm. For our 

dynamic materialized view selection approach, the experiment shows that our 

approach can specify the member of a set of views to be selected rather than all 

existing views in the search space. It provides optimal total cost without recalculating 

all requirements from scratch. 
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CHAPTER 1 

 

INTRODUCTION 

 

Data warehousing is an approach to integrate data from heterogeneous data 

sources typically from multiple online transaction processing (OLTP) databases. A 

data warehouse is defined as a subject-oriented, integrated, time-varying, nonvolatile 

collection of data that is used primarily for querying and analysis to support 

management decisions for entire organization (Inmon, 2002: 389). The data 

warehouse is often used to support the decision support system. The queries used in 

data warehouse are more complex than those used in the traditional OLTP database. 

These queries are mostly complex of operations that are joins and aggregations of 

large volume of historical data. The query response time is important for analytical 

processing. Therefore, increasing the efficiency of query processing is necessary. In 

order to increase the performance of executing the query, we can use an approach 

which is to store some intermediate results of the queries called materialized views. 

The materialized view is a common technique to reduce query response time by pre-

calculating expensive operations in the data warehouse (Bello, Dias, Downing, 

Feenan, Finnerty, Norcott, Sun, Witkowski, and Ziauddin, 1998: 659).  

Normally, the views or virtual views are the derived relations defined by a 

query in terms of base relations and/or other views. The virtual views are stored in 

database system in form of the query definition in contrast to base relations whose 

tuples are always physically stored in the database system (Garcia-Molina, Ullman 

and Widom, 2009: 341; Elmasri and Navathe, 2010: 133). The view defines a 

function from a set of base relations to a derived relation. This function is typically 

recomputed every time when the view is referred to; benefit being that data provided 

is always up to date. In contrast, materialized view is a view whose contents are 

computed and stored. Materialized view is technique to reduce the response time of 

complex queries by pre-computation the complex queries and physically store in data- 
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base system. The main reason for defining and storing materialized view is to avoid 

accessing the original data source and to increase the efficiency of querying 

performance. Therefore, query accessing performance by using materialized views is 

speed up dramatically from hours or days to seconds or minutes. However, 

materialized views have to be in synchronization with the source data in order to 

maintain the consistency and integrity of the source data. The changing of the source 

data should be reflected to the materialized views. The process of refreshing a 

materialized view in response to the changes in the base relation is called view 

maintenance that incurs a view maintenance cost. Therefore, not only the query 

processing cost but materialized view maintenance cost also has to be considered. As 

materializing view technique has maintenance cost when base tables are changed, it is 

not possible to materialize all views so the tradeoff between performance and view 

maintenance is taken into consideration (Silberschatz, Korth and Sudarshan, 2010: 

597). 

The materialized view selection problem is one of the important problems in 

data warehouse design. It is defined as how to select an appropriate set of views to be 

materialized over a global processing plan by merging optimized individual 

processing plans of queries subjected to the minimum of summation of query 

processing and maintenance cost (Gupta and Mumick, 2005: 24; Zhang, Yao, and 

Yang, 2001: 287). There are three different strategies for materialized view selection 

to facilitate query processing (Yang, Karlapalem and Li, 1997: 139). First, to 

materialize all of the views in the data warehouse can achieve the best performance 

but it may take high maintenance cost, memory space and time constraints. Second, to 

have all the virtual views will have the low view maintenance cost but may take a lot 

of time to answer the queries. Third, some of views will be materialized and others 

will be left to be virtual views. The third strategy provides the tradeoff between 

maintenance cost and query processing cost. Therefore, it is necessary for selecting an 

appropriate set of views to be materialized which minimizes the summation of query 

processing cost and view maintenance cost.  There are two concerning majority tasks 

in order to solve the materialized view selection problem. First, is to generate a search 

space, and second is to design the optimization algorithm for selecting the appropriate 

set of views to be materialized. The appropriated search space structure and view 



 3 

selection methodologies have been considered in order to optimize the query cost, 

view maintenance cost, or both. For the first task, the various well known frameworks 

have been proposed for example Lattice Framework (Harinarayan, Rajaraman and 

Ullman, 1996: 205; Kalnis, Mamoulis and Papadias, 2002: 89), AND-OR DAG 

(Theodorators and Sellis, 1999: 1; Gupta and Mumick, 2005:24) and Multiple View 

Processing Plan (MVPP) (Yang et al., 1997: 136; Yang, Zhang, and Yao, 2001: 282; 

Phuboon-ob and Auepanwiriyakul, 2007: 166; Derakhshan, Dehne, Korn and Stantic, 

2006: 92; 2008:125). The second task can be classified into four categories i.e. 

deterministic, randomized, evolutionary and hybrid algorithm (Yang, Zhang and Yao, 

2001: 282; Zhou, Geng and Xu, 2011: 131). 

 

1.1 Problem Statements 

 

In order to generate the search space, which is the first task to solve 

materialized view selection problem, the common subexpressions of queries have to 

be detected and exploited. The concept of common subexpressions has been applied 

to several areas of query processing (Jarke, 1984: 192; Chen and Dunham, 1998: 493; 

Lehner, Cochrane, Pirahesh and Zahatioudakis, 2001: 391; Zhou, Larson, Freytag and 

Lehner, 2007: 534; Silva, Larson and Zhou, 2012: 1339), and materialized view 

selection problem (Yang et al., 1997: 136; Mistry, Roy, Sudarshan and Ramamrithan, 

2001: 311; Theodoratos and Xu, 2006: 75). However, it is practically impossible to 

consider all common subexpressions between all queries. The MVPP is one of the 

several approaches to construct the optimal search space for view selection problem 

proposed by Yang et al. (1997:138). It is generated by using the Multiple Queries 

Processing (MQP) technique. The reason we choosing the MVPP is that MVPP 

presents the realistic structured query language (SQL) queries and supports a large 

number of queries that reflects the real data warehouse environment. However, as the 

generating of MVPP is constructed by the merging of individual optimal plan in order 

of query weight so merging of incoming query has to use the common subexpressions 

of the previous merging. The benefit of MVPP approach is to avoid a huge search 

space due to the fact that some combination would not be considered. However, it will 
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lose the global optimization, so some queries should be rewritten by using common 

subexpression among queries to gain more optimal query processing cost. 

The second task to solve the materialized view selection is to design the 

selection approach to select the appropriate set of views to be materialized. Normally, 

the materialized view selection approach, that is based on a fixed set of queries, 

frequency of executing the query and frequency of updating the base relation assumed 

to be fixed and time invariant, and a set of views to be materialized selected and 

computed from scratch, is known as Static Materialized View Selection. The objective 

of the static approach is selecting the set of views to be materialized from scratch with 

the minimum of query processing cost, or view maintenance cost, or summation of 

query processing and view maintenance cost.  

However data warehouse is dynamic environment because the requirements 

specified by the various stakeholders are frequently changed and some queries are not 

known in advance to serve the business of the organization. Therefore, the existing 

materialized views derived from the static approach might be changed, and some new 

incoming queries could not be answered by the existing materialized views. Then, the 

new materialized views have to be added for answering the new incoming queries. On 

the other hand, the existing materialized views would be deleted if the query 

frequency of existing query is significantly decreased, or the existing queries are 

deleted due to no longer required.  

In case if we use the static approach to resolve new requirement, we need to 

rerun the static materialized view selection method for all requirements that are 

existing and new requirements. From this context, there are some disadvantages to 

recalculate the new materialized views from scratch. First, re-computing from scratch 

is a waste of the existing resources because not the whole existing resources such as 

queries, materialized views are affected. Second, processing time for selecting views 

from entirely view sets is dissatisfied. Thus, our objective of dynamic materialized 

view selection is to minimize query processing and view maintenance cost based on 

the existing resources and without recalibrating from scratch. This is known as the 

Dynamic Materialized View Selection (Theodorators and Sellis, 1999: 2; Zhang, Yang 

and Karlapalem, 2003: 451; Lawrence and Rau-Chaplin, 2008:48). Therefore, the 

main problems of dynamic materialized view selection are; i.e. how to identify which 
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existing resources are affected due to changed requirements, how to identify the new 

set of views to be materialized and the existing materialized view to be un-

materialized. 

 

1.2 Dissertation Objectives 

 

The dissertation objective is developing the alternative methodology of 

dynamic materialized views selection to support the changing of requirements based 

on the existing resources and avoid re-computing from scratch. The MVPP is the 

structure for search space. The MVPP re-optimization algorithm is proposed to 

improve the total query processing cost of the cheapest MVPP by rewriting the query 

using global common subexpressions as supposing that the more optimal query 

processing cost the less total cost. For dynamic materialized view approach, after new 

requirements are merged into the existing resources, we apply our algorithm to 

identify the affected nodes aiming to reduce the search space in the selection set of 

views to be materialized step. We use Two-phase optimization (2PO) algorithm, the 

combination of Iterative Improvement (II) and Simulated Annealing (SA), to select 

the set of views to be materialized because 2PO provides minimum total cost 

(Phuboon-ob and Auepanwiriyakul, 2007: 166) that is the summation of query 

processing cost and materialized view maintenance cost. The assumption is that the 

application requirements of the designed data warehouse are changed frequently. 

 

1.3 Organization of Dissertation 

 

The remainder of this dissertation is organized as follows. Chapter 2 provides 

review the background and related works mainly focusing on lineage model to 

construct the search space, common subexpression and dynamic materialized view 

selection approach. Chapter 3 clarifies our proposed methodology to optimize MVPP 

and dynamic materialized selection approach in details. Chapter 4 provides the design 

of experiments, result and analysis. Finally, chapter 5 discusses the conclusion of our 

experiments and future works. 



 

 

CHAPTER 2 

 

LITERATURE REVIEW 

 

One of data warehouse designing problems is the view selection problem. The 

problem is how to select a set of views to be materialized aiming to optimize the 

summation of materialized view maintenance cost and query processing cost for all 

queries. As these two costs are in conflict, an approach to ensure a balance between 

materialized view maintenance and query processing costs is taken into account. 

Materializing an appropriate set of views and answering queries using these 

materialized views can significantly speed up the processing of query as processing 

the query using materialized views will be faster than re-computing the virtual views. 

Therefore, materializing all the input queries can achieve the lowest query processing 

cost but the highest view maintenance cost. As materialized views have to be 

maintained in order to keep them consistent with the base relations. The objective to 

resolve this problem is to select the set of views to be materialized which minimizes 

one or more constraint i.e. space constraint (Harinarayan, Rajaraman and Ullman, 

1996: 205; Lawrence and Rau-Chaplin, 2008: 49), query processing cost, view 

maintenance cost, or sum of query processing and view maintenance cost (Yang et al., 

1997: 140; 2003:454; Theodorators and Sellis, 1999: 4; 2000: 12; Phuboon-ob and 

Auepanwiriyakul, 2007: 168).  

There are two major concerning tasks to resolve the materialized view 

selection problem. The first task is to design the lineage model for generating a search 

space. The second task is to design the optimization algorithm for selecting the 

appropriate set of views to be materialized from the search space. Moreover, for the 

dynamic selection problem, the other tasks which are the relevance among the views, 

new views and existing views, and which existing resources are affected have to be 

considered.  
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In this chapter, we review the background and related works on lineage 

models to construct search space, materialized view selection algorithms, dynamic 

materialized view selection approaches, cost model, common subexpression and 

weight of intermediate node in MVPP. 

 

2.1 Query and View Lineage Models for Generating the Search Space 

 

The appropriated data structure is considered for view selection in order to 

optimize the query cost, view maintenance cost, or both. The various well known 

frameworks have been proposed such as Lattice Framework (Harinarayan, Rajaraman 

and Ullman, 1996: 205; Kalnis, Mamoulis and Papadias, 2002: 89; Lawrence and 

Rau-Chaplin, 2008: 54), AND-OR DAG (Theodorators and Sellis, 1999: 1; Gupta and 

Mumick, 2005:24; Sun and Wang, 2009: 1; Zhang, Sun and Wang, 2009: 316; 

Theodoratos and Sellis, 2000: 7; Theodoratos, Dalamagas, Simitsis and Stavropoulos, 

2001: 327)  and Multiple View Processing Plan (Yang, Karlapalem and Li, 1997: 136; 

Yang, Zhang, and Yao, 2001: 282; Zhang, Yang and Karlapalem, 2003: 270; 

Derakhshan, Dehne, Korn and Stantic, 2006: 89; 2008:121; Phuboon-ob and 

Auepanwiriyakul, 2007: 166).  

 

2.1.1. Lattice Framework 

Data warehouse typically have schemes that are designed for querying and 

analysis. To speed up the response times, data will be modeled and viewed in 

multidimensional data cubes (Harinarayan et al., 1996: 205). Each cell of the data 

cube is a view consisting of an aggregation of the interesting information. The 

dependencies among the views can be expressed by a lattice framework. In lattice, 

each node denotes a view or a query and edges represent the dependencies among the 

views or queries. Given two nodes view u and view v, there is a path from u to v if 

queries on v can be answered by using only the result from u denoted by u  v. The  

operator imposes a partial ordering on the queries. The simple example of lattice 

framework in the time dimension: day, month, and year is shown in Figure 2.1.   
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Figure 2.1  Lattice Framework of the Time Dimension 

Source:  Harinarayan et al., 1996: 209. 

 

The Data Cube Lattice is built from the queries involved in the data warehouse 

application. The Data Cube Lattice is a graph whose nodes represent queries or views 

which are characterized by the attributes of the ‘group by’ clause. The edges denote 

the derivability relation between views. The node labeled ‘none’ corresponds to an 

empty set of ‘group by’ attributes. For example in Figure 2.2, if there is a path from 

view Vi to a view Vj, then grouping attributes on Vj can be calculated from grouping 

attributes on Vi. The benefit of this representation is that a query can be used to 

answer other queries.  

 

 

Figure 2.2  Sample Data Cube Lattice Framework for Eight Views 

Source:  Harinarayan et al., 1996:207. 

 

2.1.2. AND-OR DAG 

An expression AND DAG for a query or view V is a directed acyclic graph 

with V as a source node, no incoming edge, and base relations as sink nodes, no 
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outgoing edge (Gupta and Mumick, 2005: 24). Each node has a unique evaluation that 

mean if node u has outgoing edge to nodes v1,v2,…,vi then all of node v1,v2,…,vi are 

required to compute node u. This dependency is indicated by drawing a semicircle, 

called AND arc. For example, Figure 2.3 (a) shows an expression AND-DAG. The 

node view a is computed from set of views {b,c,d}.    

 An expression AND-OR DAG for a query or view V is a directed acyclic graph 

with V as a source node and base relations as sink nodes. Each node has associated 

with one or more AND arcs. More than one AND arc at a node determines the 

multiple ways of computing that node. Figure 2.3 (b) shows the example of an 

expression AND-OR DAG. The node view a can be computed either from the set of 

views {b, c, d} or {d, e, f}. 

 

 

(a) 

 

(b) 

 

Figure 2.3  (a) An Expression AND DAG  (b) An Expression AND-OR DAG 

Source: Gupta and Mumick, 2005: 25. 

 

An AND-OR DAG is constructed by integrating the expression of the 

previous AND-OR DAG. Let Gi-1 be the AND-OR DAG. Gi-1 is formed by merging 

the expression AND-OR DAGs represented by D1, D2,…,Dk. Then Gi be an AND-OR 

DAG is formed by merging D1, D2,…,Dk with Gi-1. The merging process involves: (1) 

matching node in Di with Gi-1 that represent same relational expressions, (2) for the 

unmatched node in Di, identify whether it can be derived from a set of node in Gi-1, 

(3) if node in (2) can be identified, then merge Di to a set of node used to derive Di. 
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Figure 2.4 shows an example of a global plan, for the queries (R   S   T) and (R   S 

  U), Figure 2.4 (a) is AND DAG and Figure 2.4 (b) is AND-OR DAG. 

 

 

(a) 

 

(b) 

    

Figure 2.4  (a) An AND DAG (b) An AND-OR DAG 

Source: Gupta and Mumick, 2005: 30. 

 

2.1.3. Multiple View Processing Plan (MVPP)  

The MVPP is a directed acyclic graph of the relational algebra for a set of 

queries. The MVPP is constructed by merging the individual optimal query plan with 

the shared common subexpressions between the queries (Yang et al., 1997: 138). The 

simple MVPP is shown in Figure 2.5.  

 

 

Figure 2.5  Multiple View Processing Plan (MVPP) 

Source:  Zhang, Yang and Karlapalem, 2003: 453. 
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The leaf node (the node that does not have edges coming into the node) 

represents the base relations. The root node (the node that does not have edges going 

out of the node) represents the queries. Each intermediate node is marked by a 

relational algebra operation and defined as a view. An edge exists between two nodes 

if the operator in the upper level is applied to the view derived by the operator in the 

lower level. The cost for each operation node is labeled at the right side of the node. 

The number of rows produced by this operation is labeled at the left side of the node. 

The frequency to access the queries are labeled on the top of the query node. For 

example, in Figure 2.5, the cost for obtaining tmp3 by using tmp1 and tmp2 is 36m. In 

Figure 2.5, k and m stand for one thousand and one million respectively.  

 

2.2 Materialized View Selection Algorithms 

 

The second task to solve the materialized selection problem is to design the 

optimization algorithms for selecting the appropriate set of views from the search 

space to be materialized. The algorithms for materialized view selection are classified 

into four majority categories: deterministic algorithms, randomized algorithms, 

evolutionary algorithms and hybrid algorithms (Yang, Zhang and Yao, 2001: 282; 

Zhou, Geng and Xu, 2011: 131).  

Deterministic Algorithms is an algorithm which behaves predictably from 

the input. For a given certain input, the deterministic algorithm will always compute 

and give the same results. The deterministic algorithm searches a solution in a 

deterministic manner, and usually applies either by heuristics or by exhaustive search 

to construct a solution step by step (Zhang et al., 2001: 282). The following 

researchers apply the deterministic algorithm to the materialized view selection. 

Harinarayan et al. (1996: 205-216) proposed a greedy algorithm for static materialized 

view selection which focused on the conflict between the space and the average time 

to answer a query based on the concept of lattice framework. Shukla et al. (1998: 492) 

proposed PBS (Pick By Size) algorithms based on lattice frame work. Gupta (1997: 

98); Gupta and Mumick (2005: 24) presented several heuristic algorithms; greedy 

algorithm, Inner-level greedy algorithm, AO-Greedy algorithm, r-level Greedy, 

Inverted-tree Greedy algorithm, and A* heuristic algorithm to select the set of views 
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to be materialized based on AND, OR and AND-OR DAG. Yang et al. (1997: 136) 

proposed a heuristic algorithm based on MVPP to obtain a minimal total cost which is 

the summation of query processing cost and maintenance cost. 

Randomized Algorithms perform a random walk through a search space via 

a series of moves (Ioannidis and Kang, 1990: 312). Each solution in the randomized 

algorithm is a state, which has a cost attached to it, in a search space i.e. a node in the 

graph. The states are connected by edges that are defined by a set of transitions from 

one state to another or neighbor state after applying a transformation. The algorithms 

perform a random walk along the edges according to certain rules, and terminate as 

soon as no more applicable moves exist or a time limit is exceeded. The goal of 

applying randomized algorithm is to find the state with the global minimum cost. 

Sometimes the heuristic algorithm is not general, so the randomized algorithm is an 

effective and general solution. The randomized algorithm may find a reasonable and 

approximate optimization solution in a relative short time. The general algorithms of 

randomized algorithm are Iterative Improvement (II) (Nahar, Sahni and Shragowitz, 

1986:293), Simulated Annealing (SA) (Kirkpatrick, Gelatt and Vecchi, 1983: 671) , 

Two-Phase Optimization (2PO) (Ioannidis and Kang, 1990: 312), Toured Simulated 

Annealing (TSA) (Lanzelotte, Valduriez and Zaït, 1993: 493) and Random Sampling 

(Galindo-Lengaria, Pellenkoft and Kersten, 1994: 85). The following example, 

researches exploit the randomized algorithm for materialized view selection. Kalnis, 

Mamoulis and Papadias explored the application of four randomized algorithms: II, 

SA, RA and 2PO to the view selection problem in data warehouses under the space 

constraint and the maintenance cost constraint. They found that 2PO gives the best 

performance because it converges quickly to a good local minimum. Derakhshan et al. 

(2006: 89) proposed a materialized view selection using SA with MVPP. Their 

method provides a further significant improvement in the quality of the set of 

materialized views compared to the deterministic algorithm and genetic algorithm. 

They extended their work by consider to speed up the computation a parallelization of 

SA (Derakhshan, Stantic, Korn and Dehne, 2008: 126). They proposed Parallel 

Simulated Annealing (PSA) that provided a significant improvement in the quality of 

the obtained set of materialized views over sequential simulated annealing algorithms. 

Theodoratos, Dalamagas, Simitsis, and Stavropoulos (2001: 325) applied SA for the 
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multiple query optimizations based on AND-OR DAG over the space and 

maintenance cost constraint. 

Evolutionary algorithms use a randomized search method similar to natural 

biological evolution i.e. mutation, crossover and natural selection in their search for 

near-optimum solutions. Although an evolutionary algorithm resembles randomized 

algorithms in this aspect, the approach shows enough differences to warrant a 

consideration of its own. The basic idea is to start with a random initial population 

and generate offspring by random variations e.g. crossover and mutation. The “fittest” 

members of the population survive the subsequent selection; the next generation is 

based on these members. The algorithm terminates as soon as there is no further 

improvement over a period of time or after a predetermined number of generations. 

The first evolutionary algorithm developed for materialized view selection problem is 

Genetic Algorithms (GA) based on MVPP (Zhang and Yang, 1999: 116). Zhang and 

Yang proposed a complete approach, GA, to choose materialized views and 

demonstrate that it is practical and effective compared with heuristic approaches. Yu, 

Yao, Choi and Gou (2003: 458) apply GA to the materialized view selection problem 

under maintenance cost constrain. Besides GA, other evolutionary algorithms i.e. Ant 

Colony (Song and Gao, 2010: 534), Particle Swarm (Sun and Wang, 2009:1), 

Memetic (Zhang, Sun and Wang, 2009:315) and Shuffeled Frog Leaping (Li, Qian, 

Jiang and Wang, 2010: 7) were also proposed for the materialized view selection 

problem. 

Hybrid algorithms combine the evolutionary and deterministic algorithms in 

various ways. Zhang et al. (2001:281) proposed several hybrid evolutionary and 

heuristic algorithms for optimizing global processing plans and materialized view 

selection. Their experiment shows that the hybrid algorithm delivers better 

performance than either the evolutionary algorithm or deterministic used alone in 

terms of the minimal query and maintenance cost. Zhou, Geng and Xu (2011: 134) 

proposed the hybrid algorithm that combination of GA and SA, GA and ant colony to 

achieve the queries response time and maintain cost without space constraint. 

The researches mentioned above are focused on the static materialized view 

selection. Static materialized view selection processes all queries together once at the 

beginning. However, if new queries are needed or existing queries are modified, all 
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queries have to be processed again, not simply those parts that have been modified. In 

the next section, we review the dynamic materialized selection approach which solves 

the limitations of static approach. 

 

2.3 Dynamic Materialized View Selection Methodologies 

 

There are some approaches that have been proposed to solve the dynamic 

materialized view selection problem. The variant appropriated lineage models are 

selected to be the search space such as Lattice Framework (Lawrence and Rau-

Chaplin, 2008: 54), AND-OR DAG (Theodorators and Sellis, 1999: 1; 2000: 7; 2001: 

325), and MVPP (Zhang, Yang and Karlapalem, 2003: 451). The selection algorithms 

are applied for selecting the set of views to be materialized such as Genetic Algorithm 

(Zhang, Yang and Karlapalem, 2003: 451), Randomized Algorithm (SA, II, 2PO) 

(Theodoratos, Dalamagas, Simitsis and Stavropoulos, 2001: 325; Lawrence and Rau-

Chaplin, 2008: 47) and Deterministic Algorithm (Theodorators and Sellis, 1999:1; 

2000: 7; Lawrence and Rau-Chaplin, 2008: 47). There are various situations for 

changing requirements taken into account such as materializing only new virtual 

views once the new queries are added, un-materializing the existing materialized 

views when they are no longer used, or materializing new views and un-materializing 

existing materialized views simultaneously. In this section, we review the researches 

for the dynamic materialized view selection. 

Kotidis and Roussopoulos (1999: 372-376) proposed a system called 

DynaMat. DynaMat consolidated the view selection and materialized view 

maintenance problem under a single framework in order to minimize the space 

availability and available downtime of the system. They modeled this system by 

caching fragments of queries or views. The fragment is a portion of the query that 

results from a range selection on its dimension. DynaMat supports the following three 

types of the multidimensional range queries. First is a full range; a full range means 

the value of dimension d is between the minimum value and maximum value. For 

instance of dimension d, its dimension value is between minimum value i.e. 1 and 

maximum values i.e. 50. Second is a single value d, such as dimension d=20. Third is 

an empty range which means the dimension d is not presented in the query. DynaMat 
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includes two operational phases. The first phase is the on-line query answering in 

which DynaMat answers the incoming queries using fragment locator. Fragment 

locator determines whether the materialized results can be efficiently used to answer 

the query or not. DynaMat constantly monitors incoming queries and materializes the 

best set of views. The second phase is the updating phase, DynaMat reconciles the 

current materialized view selection and refreshes the most beneficially subset of it 

within a given maintenance window. The concept of Dynamat is to partitions 

dimensional data into fragments thus DynaMat supports some types of queries not 

wide ranges of queries. Therefore, the total cost of DynaMat will be high because of 

the cost to find a set of fragments to answer the query is high. 

Theodorators and Sellis (1999: 1; 2000: 7) proposed the incremental designing 

of data warehouse that the new set of views has been selected to answer the new 

queries and restricted within the allocated extra space. They used AND-OR DAG as 

the search space structure. The approach subjects to minimize the total cost of 

evaluation cost of the new queries and view maintenance. This approach considers 

only the new incoming queries. All new queries can be answered by using the existing 

and the new materialized views. New queries will be rewritten using the existing 

materialized if new queries can be totally answered by the existing materialized 

views. Selecting a new set of views to be materialized views occurs when the new 

incoming queries cannot totally be answered by the existing materialized views. Then 

the AND-OR DAG for incoming queries is constructed from base relations and 

existing materialized views. The r-greedy algorithm (Theodorators and Sellis, 2000: 

23) and Simulated Annealing (Theodoratos, Dalamagas, Simitsis and Stavropoulos, 

2001: 326) are used for the selection algorithm. 

Zhang, Yang and Karlapalem (1999: 247; 2003: 451) proposed the dynamic 

materialized view selection framework based on MVPP developed by Yang et 

al.(1997: 136). This method considers which existing queries are affected when the 

environment changes (Zhang and Yang, 1999: 252). The environment changes consist 

of three scenarios. (1) Adding new queries or deleting the existing queries, (2) the 

definition of existing query is changed, (3) the query frequency or updating frequency 

is changed. Once changes mentioned above occur, some existing queries would be 

identified as either directly or indirectly affected. The directly affected queries can be 
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identified by considering the existing queries whose intermediate node overlap with 

the changed queries. The indirectly affected queries are the existing queries whose 

intermediate nodes overlap with the directly affected queries. 

 

 

 

Figure 2.6  Example of the Affected Transference 

Source:  Zhang and Yang 1999: 253. 

 

For example MVPP in Figure 2.6 shows the effect to existing queries when the 

new query Q1 is added. The filled triangle is denoted the existing materialized view 

node. The node tmp1 is used to construct the incoming query Q1 and the existing 

query Q2. So, tmp1 is the overlapping node between new incoming query and the 

existing query. Therefore, query Q2 is identified as the directly affected query. The 

indirectly affected queries are considered as following. After new query Q1 is added, 

the weight of tmp1 will increase then tmp1 may be chosen to be materialized rather 

than tmp3 because weight of tmp1 is greater than that of tmp3. The changing of tmp3 

to be un-materialized affects to tmp2 because if weight of tmp3 is less than that of 

tmp2 then tmp2 will be changed from virtual view to materialized view. So, tmp3 is 

the overlapping part with the query Q2 and Q3 then Q3 would be determined as 

indirectly affected query. Therefore, for this example, all nodes used for constructing 

the affected queries either directly or indirectly are the set of candidate nodes to be 

selected to be either materialized or un-materialized. 
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Lawrence and Rau-Chaplin (2008: 47) proposed method for dynamic 

materialized view selection for OLAP under space constraint and available time for 

computing new views. They considered both adding new materialized views and 

discarding the existing materialized views. The objectives of this approach were to 

minimize the sum of query processing cost and materialized view maintenance cost 

under a space constraint. They developed a classical BPUS (Benefit Per Unit Space) 

to derive a greedy solution and three Randomized algorithm (SA, II, 2PO) based on 

Lattice framework. Although their result shows that BPUS overcome the three 

Randomized algorithms, the computation becomes impractically large when the 

number of dimensions grows so the Randomized algorithm offers an attractive 

alternative approach. They implemented BPUS and Randomize algorithm for both 

startup and online phase. The startup phase is a static selection of views to be 

materialized. The online phase is selecting a new set of views by discarding some 

views from startup phase, and adding new ones to be materialized because of the 

space constraint. Supposing M is an existing set of materialized views selected by the 

startup phase and M is a new set of materialized views selected by the online phase. 

In the online phase, once the situation violates the search space constraint during add 

new materialized view and delete the existing materialized view, their proposed 

method to solve this situation was (1) the previously removed view is added back to 

the solution and continue only removing views in M-M until the space constraint is 

satisfied (2) the removed view is re-added, and randomly selected view in M-M is 

removed instead. 

Xu, Theodoratos, Zuzarte, Wu, and Oria (2007: 55) presented the dynamic 

selection problem as the shortest path problem on DAG. The input of the problem is a 

sequence of queries and updated statement. Their approach constructed candidate 

views dynamically by considering common subexpressions of queries and/or views. 

They used a heuristic algorithm to determine a candidate set of views and to decide 

when the materialized views are created or dropped during the execution of 

statements. The cost model has been applied to find the minimum total cost which is 

the sum of processing cost and maintenance cost. This approach works properly for 

the applications where the workloads, the queries and update statements, are executed 

in sequence. For example, some routine queries are given during the day time of every 
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weekday for daily reports; some analytical queries are given during the weekend for 

weekly reports; during the night the data warehouse is updated in response to update 

statements collected during the day. 

 Gong and Zhao (2008: 391) proposed the clustering method for view selecting 

and dynamic materialized view adjustment when adding new queries. Normally, a 

materialized view relates to a SQL statement so materialized views are corresponded 

to the result of SQL statement execution. Therefore, the materialized view can be 

classified as a class. The classifying method is to calculate the similarity of incoming 

SQL statement. The similarity value has to be higher than the decided similarity 

threshold. They determined that query sentence belong to the select, project and join 

structure without subquery statement. They defined the criteria and similarity function 

to judge the similarity between two queries. They used PBS (Pick By Size) algorithm 

for selecting the initial set of materialized views which are the input for generating the 

initial clusters. The number of clustering is not determined. It will be produced 

increasingly in the clustering process. Another given parameter is the similarity 

threshold value. If the similarity value is higher than the similarity threshold then the 

materialized view will be in that cluster. For dynamic phase, when the new queries are 

added, each query will be classified into the cluster according to the similarity 

function. After the query is identified into the cluster, the cost function which includes 

query processing cost and view maintenance cost is calculated. If the space constraint 

is reached, the existing materialized views, less frequently accessed, are replaced by 

the new materialized views.  

 

2.4 Cost Model for Materialized View Selection 

 

The minimization of a cost function is the main objective for both static and 

dynamic materialized view selection problem. Normally, there are two parts in cost 

function, the query processing cost and the materialized view maintenance cost. The 

query processing cost and materialized view maintenance cost are in conflict. To 

achieve low view maintenance cost by accessing the source base relation directly 

many times for multiple queries that have sharable subexpression, the query 

processing cost is high. To achieve low query processing cost by materializing all the 
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input queries, the materialized view maintenance cost is high. So, the combination of 

the query processing cost and materialized view maintenance cost is the optimal 

strategy. The well known cost model used for this research was introduced by Yang et 

al. (1997: 139-140), and it was exploited by some researches (Zhang and Yang, 1999: 

140; Gupta and Mumick, 2005: 26; Phuboon-ob and Auepanwiriyakul, 2007: 167; 

Derakhshan et al., 2006: 91, 2008: 126) for evaluation of their approach. The cost 

model is described in following sections.  

 

2.4.1 Query Processing Cost 

For each query, the cost of query processing is query frequency multiplied by 

the cost of query access from the materialized nodes. Cost of query access is the 

number of rows in the table to answer q.  

Let M is the set of materialized views, 

Q is the set of queries,   

 fq is the frequency of executing queries,   

 MCq  is the cost to compute q from the set of materialized views M.  

Then the total query processing cost is: 

 





Qq

qqngssiqueryproce MCfC )(      (1) 

 

For example, consider query Q4 in Figure 2.5 and suppose that node tmp3 is 

materialized view. The frequency of executing the query Q4 is 10. If node tmp3 is not 

materialized, this query accesses the nodes named tmp1, tmp2, tmp3, and result1. The 

cost of each node is 1k, 12m, 36m, and 36k respectively. So the query processing cost 

for Query Q4 is 10*(1k+12m+36m+36k). If tmp3 is materialized, the query 

processing cost for Query Q4 is 10*36k. It would be beneficial to materialize them, 

reducing the processing cost from 10*(1k+12m+36m+36k) to 10*36k. 
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2.4.2 View Maintenance Cost 

The maintenance cost for the materialized view is the cost for the process of 

updating a materialized view in response to the changes in the base relation. 

Let M is the set of materialized views,  

fu is the frequency of updating base relations,  

)(vCm is the cost of maintenance when v is materialized.  

Then the total maintenance cost is:  

   





Mv

muntenacemai vCfC )(      (2) 

 

For example, consider query Q4 in Figure 2.5 when tmp3 is materialized and 

suppose that the frequency of updating base relation equal to 1. This materialized 

view has maintenance cost whenever the updating of involved base relation occurs. 

The maintenance cost is the number of base relations multiplied by the cost of each 

node. There are two base relations: Item and Sale, and nodes: tmp1. tmp2, and tmp3 

itself are related. Then the view maintenance cost is 2* (1k+12m+36m). 

Our goal is the minimum total cost all feasible sets of materialized views. 

Therefore the total cost of materialized views M is: 

 



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Qq

qqtotal vCfMCfC )()(    (3) 

 

2.5 Common Subexpression 

 

In order to generate the search space for multiple queries, common 

subexpressions among the queries have to be detected and exploited. Thus, the 

original queries will be rewritten using the global common subexpressions. Given a 

query, the optimizer will find an appropriate order for performing the relational 

algebra operations such that the query will be evaluated efficiently. The order in 

which the operations are performed prescribes the order in which the subexpressions 



 21 

of the query are evaluated, and then their results are used to evaluate other 

subexpressions until the whole query is evaluated. A common subexpression is a 

subexpression that appears in more than one query. 

The following SQL statements illustrate the examples of possibility sharable 

subexpression among three queries. 

Q1: select p_brand, min(ps_availqty) 

 from part, partsupp, supplier 

 where s_suppkey = ps_suppkey 

and p_partkey = ps_partkey 

and p_type like ‘%BRASS%’ 

group by p_brand; 

 

Q2: select s_nationkey, max(ps_supplycost) 

 from part, partsupp, supplier 

 where s_suppkey = ps_suppkey 

and p_partkey = ps_partkey 

and p_type like ‘%BRASS%’ 

group by s_nationkey; 

 

Q3: select n_name, variance(ps_availqty) 

 from part, partsupp, supplier, nation 

where s_suppkey = ps_suppkey 

and p_partkey = ps_partkey 

and p_type like ‘%BRASS%’ 

and s_nationkey = n_nationkey 

group by n_name; 

 

Considering the query Q1 and Q2, both queries have the same join base 

relations i.e. PART, PARTSUPP, SUPPLIER, the difference of Q1 and Q2 is group 

by on difference attribute: Q1 group by on p_brand whereas Q2 group by on 

s_nationkey. The third query, Q3, looks similar to the first two queries except that it 

has an additional join with relation NATION and group by on attribute n_name of 

NATION. All three queries have the same selection predicates which is (p_type like 

‘%BRASS%’). A traditional query optimizer would optimize the three queries 

separately and generate an execution plan for each of the queries. It is obvious that 

execution plan of those three queries have sharable subexpressions. Therefore, 

execution times could be reduced by using sharable intermediate results instead of re-

computing conjunctively join of those three base relations three times. For this 
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example (s_suppkey = ps_suppkey) and (p_partkey = ps_partkey) and (p_type like 

‘%BRASS%’) is one of possibly common subexpression of among queries. 

  The concept of common subexpression of queries was introduced by 

Finkelstien (1982: 235).  They used concept of common subexpression to solve the 

multiple queries optimization problem. Their approach was based on the idea of 

building the multiple query optimizations on top of the current single query 

optimizers. In this approach, a single query optimizer generates one optimal plan for 

each query. A plan merger, another component in the system, will examine all the 

plans and merges them to generate a global execution plan. This global plan is derived 

from the shared temporary results of the common parts of the queries. This approach, 

however, may not guarantee the optimal global cost because it may miss some other 

plans, which are not necessary optimal for each query, that contain more common 

subexpression with other queries. The common subexpression, firstly, was focused on 

the subexpression identification, and later included subsumption and overlapping of 

selection condition (Chen and Dunham, 1998: 493). Chen and Dunham used multi-

graph to represent the select-project-join (SPJ) operations and used the heuristic 

method for selecting common subexpression to be the global execution plan. Their 

approach covered the case for identical, subsumption and overlap of SPJ operation. 

The general term of common subexpression was described (Lehne, Cochrane, 

Pirahesh and Zahatioudakis, 2001: 391) as the sharable subexpression between the 

queries that can be used for rewriting the queries either completely or partially. Thus 

their original queries could be rewritten by using the given common subexpressions 

after the common subexpression between a pair of queries was constructed. Zhou, 

Larson, Freytag and Lehner (2007: 533) proposed the algorithm that exploited 

common subexpression for multi-query optimization and materialized view selection 

in a conventional database. They presented a comprehensive mechanism for detecting 

sharable subexpression and constructing candidates covering subexpression that cover 

a set of similar subexpressions. Theodoratos and Xu (2006: 75) proposed the 

technique called closest common subexpression derivator for constructing candidate 

views to be materialized. Once closest common subexpression derivators between the 

queries were determined, the queries were rewritten by using the closest common 

subexpression. 
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2.6 Weight of Node in MVPP 

 

For MVPP structure, the positive weight of node defines the possibility of 

intermediate node to be materialized (Zhang et al., 2003: 454). The weight of node is 

represented by following formula. 
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vO  denotes the queries which use view v. 

vI  denotes the base relations which are used to produce view v. 

q
aC  denotes the accessing cost a for query q using view v. The cost 

of answering query q is the number of rows presented in the 

relation used to construct q. 

r
mC  denotes the maintenance cost m for materialized view v based 

on relation r, which is occasionally updated. 

 fq denotes the frequency of executing a query.  

 fu  denotes the frequency of updating a base relation. 

 

w(v) denotes the weight of a node, the higher of weight the more likely the 

node will be materialized. For example Tmp3 in Figure 2.5, Tmp3 is constructed on 

two base relations Item and Sales, The frequency of updating each base relation is 1. 

Tmp3 is derived by node named Tmp1, Tmp2 and Tmp4 itself. The cost of each node 

is 1k, 12m and 36m, respectively. Tmp3 is accessed by query Q2, Q3 and Q4. The 

frequency of executing query for each query is 2, 1 and 10, respectively. Therefore, 

the weight of Tmp3 is calculated as; the first part (2)(36m) + (1)(36m) + (10)(36m), 

the second part (1)(1k+12m+36m) + (1)(1k+12m+36m) that is equal to 

(2+1+10)(36m) + (2)(1k+12m+36m). 
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The weight of node is exploited to determine how nodes are affected by each 

other in the process of materialization as following rules (Zhang, C. and Yang, J.  

1999: 251). 

Rule 1: when v1 is a descendant of v2, and the static weight w(v1) > w(v2), if 

v1 cannot be materialized, then v2 will not be materialized. 

Rule 2: if v1 is a descendant of v2, and the static weight w(v1) > w(v2), v1 and 

v2 are supporting the same queries, and v1 is materialized, then there is no gain to 

materialize v2. 

Rule 3: If v1 is an ancestor of v2, and the static weight w(v1) > w(v2), v1 and 

v2 are supporting the same queries, if v1 is materialized, then v2 shall not be 

materialized. 

 

According to the previous works in this chapter and to the best of our survey, 

all of the related works have not implemented the dynamic materialized view 

selection using 2PO on MVPP structure, and not mentioned the methods to optimize 

the MVPP. In the next chapter, we focus on the methodology employed in our 

dissertation.



 

 

CHAPTER 3 

 

METHODOLOGY 

 

3.1 Proposed Methodologies 

 

In this chapter, we discuss our proposed approach to solve the dynamic 

materialized view selection problem based on MVPP. The Iterative Improvement 

combined with Simulated Annealing called Two-Phase Optimization (2PO) is the 

optimization algorithm for selecting a set of views to be materialized. As the MVPP 

generated by Yang et al. (1997: 138) will lose the global optimization then we also 

propose the algorithm to optimize MVPP aiming to have more optimal MVPP. For 

the dynamic materialized view selection, we propose the technique to identify which 

existing resources are affected due to changing requirements, and to determine the 

new set of views to be materialized and existing materialized view to be un-

materialized. Our goal for dynamic materialized view selection is to minimize the 

total cost which is summation of query processing cost and materialized view 

maintenance cost based on the existing resources without recalibrating from scratch.  

Therefore, our proposed methodology to solve the dynamic materialized view 

selection problem includes two parts:  

1. The optimization task to improve the MVPP which is a lineage models for 

search space for the materialized view selection. 

2. The approach for Dynamic Materialized View Selection.  

We use MVPP as the lineage model to generate the search space because 

MVPP can present the realistic SQL queries and large number of queries. We propose 

an algorithm to optimize the cheapest MVPP by rewriting the query using common 

subexpression. The details for building the cheapest MVPP are described in section 

3.2. The details of our MVPP re-optimization algorithm are described in section 3.4, 

which uses the concept of a common subexpression that is described in section 3.3. 
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The proposed approach for dynamic materialized view selection is presented 

by diagram in Figure 3.1. The approach consists of two phases, the static phase and 

dynamic phase.  

 

 

 

Figure 3.1  The Diagram for Dynamic Materialized View Selection Approach 

 

Static phase, the first step in diagram, is Static Materialized View Selection 

approach described in section 3.5. The static phase is to generate the re-optimized 

MVPP of the initial requirements that will be the initial search space for the dynamic 

phase once the new requirement occurs. 

Dynamic phase, the second step to the fourth step in the diagram, is the 

Dynamic Materialized View Selection. The second step is to merge new requirements 

into existing MVPP. When the new requirements are added, the characteristic of new 

requirements might impact to the existing MVPP structure in a different situation i.e. 

adding the new queries, deleting the existing queries, changing the definition of 

existing queries, changing the frequency of executing query or frequency of updating 

base relations. The scope of our new requirements includes adding new queries and 

New requirements

Static materialized view selection

Dynamic materialized view selection

Initial MVPP
(1)

merge new requirements 

into existing MVPP (2)

determine affected node
(3)

apply materialized view 

selection algorithm: 2PO (4)

New requirements

Existing MVPP
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deleting existing queries. For changing the definition of existing queries, we 

implement by deleting the existing query and adding query with a new definition. 

Changing the frequency of the executing query or frequency of updating base relation 

is not our scope because it does not impact to the MVPP structure. We will provide 

the analysis of various situations that impact to the existing MVPP structure and the 

merging new requirement into the existing MVPP in section 3.7.1. 

The third step is to determine the existing resources in search space that are 

impacted by the new requirements. The objective of this step is to reduce the search 

space. The details of our algorithm to identify the affected nodes are described in 

section 3.7.2. The affected resource in our research is the intermediated nodes that are 

affected rather than the queries that are affected proposed by Zhang, Yang and 

Karlapalem (2003: 455). In section 4.6.1.6, we validate our assumption that to 

identify the query that is affected will provide too much number of nodes as a 

member of a set of views for the selection step.  

Finally, the fourth step is to select set of views to be materialized. The input of 

the third step will be mapped into a binary string before being input to 2PO. We use 

2PO as the selection algorithm because 2PO provides a minimal total cost comparing 

to the Deterministic algorithm, Simulated Annealing, Genetic Algorithm, and Hybrid 

algorithm (Phuboon-ob and Auepanwiriyakul, 2007: 169). The result from 2PO would 

be an appropriate new set of views to be materialized. Some existing materialized 

views identified as the affected nodes might be un-materialized to the virtual view if 

they are not frequently used by the stakeholders. The aiming of the selection step is 

the minimal total cost which is the summation of query processing cost and 

materialized view maintenance cost. The details of our 2PO and cost model are 

described in section 3.6 and 3.9 respectively. 

After the set of views are materialized, the existing search space will be the 

new search space to support the next round of changing requirements. The “Existing 

MVPP” in diagram illustrates that the existing search space will be adjusted once the 

requirements are changed. Therefore, for each round of dynamic phase, the existing 

MVPP structure will be changed by the previous round. 
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3.2 Multiple View Processing Plan (MVPP) 

 

The MVPP defined by Yang et al. (1997: 138) is a directed acyclic graph that 

presents the query processing plan of a set of queries. A simple MVPP is shown in 

Figure 3.2. 

 

 

Figure 3.2  The Simple MVPP of Three Queries Q1, Q2 and Q3  

 

Suppose that the root node is the node that does not have edges going out of 

the node representing the query, the leaf node is the node that does not have edges 

coming into the node representing the base relation, and the intermediate node is the 

representing operation. A link exists between two nodes, if the operator in the upper 

level is applied to the result derived by the operator in the lower level. Each 

intermediate node in MVPP is marked by a relational algebra operation and the cost 

for processing the operation. Two numbers are associated with each intermediate 

node. The number of rows needed to be read by the operation is labeled on the right 

side and the number of rows generated by the operation is labeled on the left side. The 

frequency of executing the query is labeled on the top of the query. Because of the 

above work and its characteristic, MVPP can present the realistic SQL queries and 

can support the large number of queries that reflect the real data warehouse 
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environment. The algorithm which is used to construct the MVPP is described in 

Figure 3.3. The query cost, in step 2, is the cost of accessing the query node, for 

example Q1 in Figure 3.2 the query cost is 910519. The total query processing cost, in 

step 7, is the summation of query processing cost of all queries that is mentioned in 

section 3.9. 

 

begin 

1. For every optimal query processing plan, if there is a join operation 

involved, push all the select, project operations and aggregate function 

up along the tree. 

2. Create a list of queries in descending order based on the result of their 

query access frequency multiplied by query cost. 

3. Merge all optimal query processing plans in the list according to the 

following order: 

3.1 pick up the first optimal query processing plan from the list 

3.2 incorporate the second query into the first query if they share the 

same base relations 

3.3 incorporate the third query into previous merging, repeat this step 

until all optimal query processing plans are merged. 

4. Move the first optimal query processing plan to the end of the list. 

5. Repeat step 3 and 4 to generate all MVPPs. 

6. Push down select, project and aggregate functions as deep as possible. 

7. Calculate the total query processing cost of each MVPP, and select 

the one which gives the lowest cost. 

end; 

 

Figure 3.3  The Algorithm for Implementing the MVPP 

 

3.3 Common Subexpression 

 

Normally, the search space for a view selection problem is constructed by 

using all common or similar subexpressions among the queries. The concept of a 

common subexpression is initially referred to as an identical or equivalent expression, 

and later the term included expression subsumption. Thereafter, commonality 

between queries has included the possibility for overlapping the select condition.  
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(a) nothing in common 

 
(b) totally overlapping 

 
(c) partially overlapping 

      
           (d)            (e) 

overlapping with more than one query. 

 

Figure 3.4  The Categories of Subexpression Commonalities 

 

There are four categories of commonality between the queries (Chen and 

Dunham, 1998: 3; Lehner, Cochrane, Pirahesh and Zahatioudakis, 2001: 393); (1) 

there is no sharable subexpression shown in Figure 3.4 (a), (2) identical, (3) totally 

overlapping is called subsumption that is a query i is the intermediated query result 

for another query j shown in Figure 3.4 (b), (4) partially overlapping that is a subtree 

of a query i is also the subtree of query j shown in Figure 3.4 (c). One query would 

have partially overlapping with many queries shown in Figure 3.4 (d-e). In Figure 3.4, 

(a) Q1 is constructed on base relations R1 and R2, while Q7 is constructed on R3 and 

R4, these two queries do not have sharable subexpression; (b) Q5 is the intermediate 

query result for Q6; (c) Q2 and Q3 has a subtree that is overlapping sharable 

subexpression; (d) and (e) shows that Q1 has more than one equivalent plan. Q1 has 

overlapping portion with Q4, meanwhile Q1 has alternative equivalent plan that has 

overlapping portion with Q6. After common subexpressions are detected, they are 

exploited to construct the global optimal equivalent plan for multiple queries 

processing plans. We use this concept of common subexpression to optimize the 

cheapest MVPP that is generated by the algorithm in section 3.2. 
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3.4 Proposed Approach to Improve MVPP 

 

In general, to construct search space for a view selection problem by 

considering all possible equivalent plans for all queries is too huge. Constructing 

MVPP shows that it is the practically possible method to generate the search space. 

However, the cheapest MVPP (Yang et al., 1997: 142) can be adjusted to reduce the 

total query processing cost, as the method of merging described in section 3.2 does 

not consider the common subexpressions of among queries. In our approach, the 

queries in the cheapest MVPP whose query processing cost is more than the n
th

 

MVPP are taken into consideration. They would be rewritten by using concept of 

common subexpression. We match these queries with the existing sharable 

subexpressions in a bottom-up way. The MVPP re-optimization algorithm is 

described in the following sections. 

 

3.4.1 The MVPP Re-Optimization Algorithm 

The algorithm to optimize the cheapest MVPP is described in Figure 3.5. This 

approach is for rewriting the certain queries in the cheapest MVPP. It is used to 

optimize the MVPP for the static phase and the dynamic phase. 

 

begin 

1. Input = the cheapest MVPP. 

2. Initial list LV = . 

3. k = number of queries 

4. for i = 1 to k 

      Compare Cq(i) of cheapest MVPP with Cqj(i) of other MVPPs.  

      If Cqj(i) is less than Cq(i) then  

          insert  q(i) into LV.  

5. For queries in LV, consider the possible commonalities with 

exists  global equivalent plan as following:  

5.1 If there is nothing in common with global equivalent plan  

    skip to the next query. 

5.2 If there is one or more overlapping portions, 

 rewrite this query using exists common subexpression in 

MVPP in bottom-up way described in section 3.4.2 

end; 

 

Figure 3.5  The Proposed Algorithm: The MVPP Re-Optimization Algorithm 
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Cq(i) denotes the query processing cost of query i in the cheapest MVPP  

Cqj(i) denotes the query processing cost of query i in the n
th

 MVPP. 

If Cqj(i) less than Cq(i) imply that there is another optimal execution plan 

for query i. 

 

3.4.2 Rewriting the Query Using Common Subexpression 

If a view V is defined as a common subexpression of a set of queries. Query Q 

is called a parent of the view V if it can be answered by using view V. For example, 

Tmp4 in Figure 3.2 is a common subexpression of Q1, Q2 and Q3. Tmp4 is defined 

as view V then Q1, Q2 and Q3 are called parent of Tmp4. The answering using view 

is known as query rewriting using view (Halevy, 2001: 276). Suppose there is a set of 

views, Vm, in MVPP, and a given query Q has the execution plan that doest not use 

Vm. However, Vm can be used to answer the query Q, then we can produce other 

execution plans of query Q by using the set of views Vm and/or base relations. 

For example, Figure 3.6 illustrates the possible individual plans of query Q1 

and MVPP of Q1, Q2 and Q3. Figure 3.6 (a) and (b) are the possible execution plans 

for Q1. The MVPP of Q1, Q2 and Q3 is shown in Figure 3.6 (c). In MVPP, Q1 is 

constructed by using Plan A as shown in Figure 3.6(a) that is {Tmp10   (PARTSUPP 

  PART)}. The other possible plan for Q1 is shown in Figure 3.6 (b) that is {(Tmp10 

  PARTSUPP)   PART}.  

For Plan A in Figure 3.6 (a), Q1 accesses nodes named Tmp1, Tmp2, Tmp3, 

Tmp5, Tmp6, Tmp7, Tmp8, Tmp9, Tmp10, Tmp12 and result1. The processing cost 

of each node is 800000, 200000, 160000000000, 5, 1, 25, 25, 10000, 50000, 

1602400000 and 160240, respectively. The frequency of executing the query Q1 is 2. 

Therefore, the query processing cost of Q1 is (2)*(800000 + 200000 + 160000000000 

+ 5 + 1 + 25 + 25 + 10000 + 50000 +1602400000 + 160240) that is 161,603,620,296. 

For Plan B in Figure 3.6 (b), Q1 accesses nodes named Tmp5, Tmp6, Tmp7, 

Tmp8, Tmp9, Tmp10, Tmp1, Tmp11, Tmp2, Tmp12 and result1. The processing cost 

of each node is 5, 1, 25, 25, 10000, 50000, 800000, 1602400000, 200000, 

32048000000 and 160240, respectively. Therefore, the query processing cost of Q1 is 
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 (2)*(5 + 1 + 25 + 25 + 10000 + 50000 + 800000 + 1602400000 + 200000 + 

320480000000 + 160240) that is 67,303,240,592.  

In Figure 3.6 (c) the query processing cost of MVPP, the summation of query 

processing cost of Q1, Q2 and Q3, is 1,176,430,280,644. However if we rewrite Q1 

using Plan B, that is Tmp11 in Figure 3.6 (c) join with PART, the query processing 

cost of MVPP is 156,799,280,644 which is less than the original MVPP. So we 

should rewrite Q1 in MVPP by using Plan B. 

 

 

(a) Plan A of Q1     (b) Plan B of Q1 

 

 

(c) The MVPP of Q1, Q2 and Q3 

 

Figure 3.6  The Plan of Q1 in MVPP of Q1,Q2 and Q3 
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In our approach, we rewrite the query by comparing the individual plan of that 

query with the common subexpression in MVPP. The query rewriting will be 

processed in a bottom-up way which is calculated from the base relations to the root 

of the equivalent plan. The process to rewrite the queries is shown in Figure 3.7. 

 

1. Push select, project operation and aggregation function of optimal 

individual plan up along the tree  

2. Match optimal individual plan of query with MVPP from base relation to 

the root of query. 

3. Merge the query into MVPP 

3.1 If there are sharable subexpression then  

merge to the subtree which provides the number of base relations 

that are joined conjunctively as much as possible. 

If merged query has select operation same as conjunctively 

joined node then push down select operation. 

3.2 If no sharable subexpression then create new conjunctively joined 

node for each subtree. 

4. Push down select project operation and aggregation function as deep as 

possible. 

 

Figure 3.7  The Rewriting Query Steps 

 

 

3.5 Static Materialized View Selection 

 

The purpose of the static materialized view selection is to generate the initial 

MVPP which is constructed from the initial requirements. The initial MVPP is 

generated by using the approach described as follows. First we use an algorithm 

proposed by Yang et al. mentioned in section 3.2 to generate the cheapest MVPP. 

Next, we apply our MVPP re-optimization algorithm described in section 3.4 to 
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optimize the cheapest MVPP. After the re-optimized MVPP is generated, the 

selection algorithm, which is the Two-Phase Optimization (2PO), is applied to select 

the set of views to be materialized. The final output of the static phase will be the 

initial MVPP structure with materialized view nodes. The steps of static phase is 

shown in Figure 3.8 

 

1. generate the cheapest MVPP introduced by Yang et al. described in 

section 3.2 

2. optimize the cheapest MVPP by applying our MVPP re-optimization 

algorithm described in section 3.4 

3. apply selection algorithms, Two-Phase Optimization, to select set of 

views to be materialized.  

  

Figure 3.8  The Static Materialized View Selection for the Static Phase 

 

3.6 Selection Algorithm: Two-Phase Optimization (2PO) 

 

In this section, we explain the Two-Phase Optimization which is the selection 

algorithm to select the set of views to be materialized. The Two-Phase Optimization 

(2PO) is the combination of Interactive Improvement (II) and Simulated Annealing 

(SA) (Ioannidis and Kang, 1990: 313).  

 

Iterative Improvement (II) 

 The II algorithm, which is the randomized algorithm, starts with the initial 

randomly chosen state and performs random downhill moves until it reaches a local 

minimum. After a local minimum has been reached a new start state is generated 

randomly. This process is repeated until a stop criterion is reached, and then the 

lowest local minimum encountered is the result.  The stop criterion is set to 10 local 

minimum calculated. The II algorithm is shown in Figure 3.9. 
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begin 

 Smin = S; {initial solution} 

 while not (stopping condition) do { 

  S= random state 

  while local minimum not reached do { 

   S = random state in neighbor(S) 

   if cost(S) < cost(S) then S= S 

  } 

  if  cost(S) < cost(Smin) then Smin = S 

   } 

 return(Smin) 

end; 

  

Figure 3.9  The Iterative Improvement (II) Algorithm 

 

Simulated Annealing (SA) 

The SA is a local search algorithm same as II but SA tries to leave from local 

minima by using random moves. It accepts the uphill moves to a neighbor. The initial 

state is randomly generated and moves to a neighbor with the lower cost, downhill 

move, similar to II, but it also accepts an uphill move with some probabilities. The SA 

algorithm is shown in Figure 3.10. 

 

begin 

 S = S0 ; {initial state} 

 T = T0 ; {initial value of time limit} 

 Smin = S; 

 while not(time limit) do { 

  while not(local minimum(S)) do { 

   S' = random state in neighbor(S) 

   ΔC = cost(S') - cost(S) 

   if (ΔC ≤  0) then S = S' 

   if (ΔC > 0) then S = S' with probability e
-ΔC /T

 

   if cost(S) < cost(Smin) then Smin = S 

  } 

  T = reduce(T) 

 } 

 return{Smin}  

end; 

 

Figure 3.10  The Simulated Annealing (SA) Algorithm 
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Once the neighbor cost is greater than the previous cost, the uphill move can 

be accepted with the probability that decreases exponentially with the ratio of the 

change in cost C to a parameter time limit, e
-ΔC/T

, ΔC is the difference between the 

cost of the new state and the previous one. In the inner loop, the algorithm gradually 

decreases value T for allowing SA to accept uphill moves as SA accepts the new 

solution which is that the new cost can be less than or equal to the previous cost with 

the non-zero probability. The probability decreases exponentially with the ratio of the 

change in cost to a parameter time limit, e
-ΔC/time_limit

. For our experiment, the value of 

each parameter for SA is set similar to Phuboon-ob and Auepanwiriyakul (2007: 166) 

including the time limit which is set to 90 at the starting point, and the decrement 

factor for the exponential is set to 0.7. 

 

Two-Phase Optimization Algorithm (2PO) 

2PO combines both II and SA. It begins by running II to find a good local 

minimum, and then applies SA to search for the global minimum from the state found 

by II. Since the output from the MVPP is a DAG, so we map a DAG into a binary 

string. Given the MVPP, we first map a DAG into a binary string of 1s and 0s to 

represent views which will and will not be materialized, respectively. The initial 

binary string of each node is set to 0 indicated that all intermediate nodes are virtual 

view for the starting state. The algorithm is presented in Figure 3.11. 

 

begin 

1. Input the MVPP represented by a DAG 

2. Use depth first search from root nodes to base relations to 

search through all of the nodes in the DAG. 

3. Produce the sequence of nodes into a binary string.  

4. Call Iterative Improvement 

5. Call Simulated Annealing algorithm 

6. Present set of views to materialized with minimum cost 

end; 

  

Figure 3.11  The Materialized View Selection with 2PO 
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3.7 Dynamic Materialized View Selection Approach 

 

3.7.1 MVPP Structure Analysis and Merging New Requirements 

Approach 

There are several kinds of requirement due to the changing of application 

requirements. The new requirements might impact to the changing of existing MVPP 

structure. The requirement can be classified into four situations (Zhang, Yang and 

Karlapalem, 2003: 454) 

1. The existing queries are deleted. 

2. The new queries are added 

3. The definitions of existing query are changed. 

4. The frequencies of executing query and/or the frequencies of updating 

base relation are changed. 

Those above situations are the cause of the possible changing of MVPP 

structure as follows: 

1) The MVPP will be changed for the first and second situation.  

2) The third situation, MVPP structure may or may not be changed depending 

on the selection criteria. For instance in Figure 3.2, condition of Tmp1 is changed 

from year=’1995’ to year=’2000’then MVPP structure is not changed whereas the 

query accessing cost of Q1, Q2 and Q3 maybe changed due to the number of rows 

returned filtered by the selection condition. In our research, changing query definition 

is implemented same as deleting the existing query and adding the new query with the 

new definition.  

3) The fourth situation, changing the frequency of executing query or 

frequency of updating base relation, the query processing cost and maintenance cost 

always changed accordingly. Therefore, there is possibility for the existing 

materialized view to be un-materialized and the virtual view to be materialized. The 

existing MVPP structure is not changed as neither new node is created nor existing 

node is deleted. However, when we rerun the MVPP algorithm to generate the 

cheapest MVPP, the MVPP structure may not the same structure as previously 

generated. Because the order of merging queries may have changed depending on the 

frequency of executing the query multiply with query cost. So the available sharable 
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subexpressions for incoming merged query are changed due to an available sharable 

subexpression of previous merged queries that are changed. For our research, as we 

apply the MVPP re-optimization algorithm to the cheapest MVPP then we rewrite the 

certain queries by using global sharable subexpressions that share for all queries. So, 

after applying our MVPP re-optimization algorithm, the re-optimized MVPP structure 

will be same as previously generated. However whenever the frequency of executing 

queries is changed, the query processing cost of the re-optimized MVPP also changed. 

In case, the subtree of the existing query is the subsumption of the subtree of 

the new query then the existing query can use the subexpression that is shared with 

the new query.  For example, the new query Qc shown in Figure 3.12 (a) is added into 

the existing MVPP shown in Figure 3.12 (b). Considering Tmp5 in Figure 3.12 (b) 

and given c represents the selection algebra (o_orderdate >= ‘1994-01-01’ and 

o_orderdate < ‘1995-01-01’); Tmp5 is the subgraph of existing MVPP and Tmp5 is 

subsumption of (sc ORDERS   LINEITEM) that is Tmp4 in Figure 3.12 (a). So, the 

conjunctively joined of (sc ORDERS   LINEITEM) is sharable subexpression for Qc 

and {Qa, Qb}. However, the existing MVPP does not have this conjunctively joined 

node because Tmp5 in the existing MVPP, Figure 3.12 (b), is the conjunctively joined 

of {scORDERS   (sl_commitdate<l_receiptdate LINEITEM)}. 

  
(a) New Query      (b) Existing MVPP 

 

Figure 3.12  The Subgraph of the Existing MVPP is the Subsumption of the Subtree 

of New Query 
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Because the existing MVPP does not have this sharable subexpression for Qc then we 

have to create a new node, (scORDERS   LINEITEM) to support Qc. If Qa, Qb still 

use Tmp5 then (scORDERS   LINEITEM) will be created specific for Qc only. 

However, if we rewrite Qa, Qb by using (scORDERS   LINEITEM) then 

(scORDERS   LINEITEM) can be shared for all queries that the saving of the 

materialized view maintenance cost.  

To serve this situation there are some approaches such as all select operation 

in existing MVPP are pushed up before we merge new queries into existing MVPP or 

rewriting the existing queries constructed by that node. For push up method, all 

exiting materialized view are affected then the queries use those materialized views  

 

Begin 

1. For every optimal query processing plan for any query, if there is a join 

operation involved, push select, project operations and aggregate 

function up along the tree. 

2. Create a list of the new queries in descending order based on the result 

of their query access frequency multiplied by query cost. 

3. Merge the new query in the list into existing MVPP according to their 

order in the list by comparing as follows: 

3.1 If there is sharable subexpression available for new query  

then 

merge to that sharable subexpression 

If sharable subexpression has select operation and new query 

also has the same select operation  

then  

push down select operation of new query  

3.2 If no sharable subexpression then create new node for new query 

4. Repeat step 3 for other queries until all queries in the list are merged 

into existing MVPP. 

5. Push down select, project and aggregate functions as deep as possible. 

6. Move the first new query to the end of the list. 

7. Repeat step 3 to 6 to generate all new MVPPs. 

8. Calculate total query processing cost based on base relations and 

existing materialized views for each MVPP and select the cheapest 

MVPP. 

9. Apply the MVPP re-optimization algorithm described in section 3.4 to 

the cheapest MVPP. 

end; 

 

Figure 3.13  The Methodology to Merge New Requirements into the Exiting MVPP  



41 

 

also affected even though they are not affected by new queries. As our objective of 

dynamic materialized selection approach is to avoid calculating all resources again. 

Then we choose the rewriting method for only the affected existing queries. We 

rewrite the affected existing query by using a common subexpression that can be 

shared with the new query. 

For adding new requirements into existing MVPP, we have to consider how to 

merge the queries into and existing environment. The approach to add new 

requirements into the existing MVPP is shown in Figure 3.13. 

 

3.7.2 An Approach to Identify the Affected Nodes 

According to our objective of the dynamic materialized view selection, that is 

to avoid rerun static approach when new requirements are changed, the affected nodes 

have to be determined as the member of the set of views to be materialized rather than 

all nodes in the search space. We apply static weight of node and the relevance 

between nodes introduced by Zhang et al. described in section 2.6 for our algorithm. 

The detail of formula is presented below: 

 

     



vv Ir

r

mu

Oq

q

aq vCrfvqfvw C )(*)()(*)()(  

 

w(v) denotes weight of node 

vO  denotes the queries which use view v. 

q
aC  denotes the accessing cost a for query q using view v. The cost of 

answering query q is the number of rows presented in the relation used to construct q. 

   fq denotes the frequency of executing a query.  

vI  denotes the base relations which are used to produce view v. 

r

mC  denotes the maintenance cost m for materialized view v based on base 

relation r, which is occasionally updated. 

 fu  denotes the frequency of updating base relation 
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We propose the affected node identification algorithm shown in Figure 3.14 to 

identify the affected nodes either directly or indirectly after the optimal dynamic 

MVPP is generated. The directly affected nodes are the nodes with positive weight 

w(v) used to construct the new queries. The indirectly affected nodes are the ancestor 

of directly affected nodes with certain weight calculated by the above formula. The 

affected nodes are the member of the set of views to be materialized or un-

materialized, rather than all nodes in the search space. The existing materialized view 

nodes not identified as affected nodes means those nodes are not affected by new 

requirements, such they still have to be the materialized views for supporting the 

existing requirements.  

 

begin 

1. Initial list Mdirect and Mindirect = 

Mdirect   is the set of directly affected node 

Mindirect  is the set of indirectly affected node 

2. For each new query  

3.5 Depth first search from the root to base relations to determine the 

existing intermediate nodes, vi , used to construct the new query. 

3.6 Calculate weight w(v) of each node vi. 

vi, that are conjunctively joined with positive weight, or project 

operation that is not the ancestor of base relation, or select operation, 

are inserted into the list Mdirect. 

3. For each node vi in list Mdirect search its ancestor node uj, uj   Mdirect, up 

to the query node 

3.1 Calculate weight of node uj, 

3.2 If ( weight vi >  weight uj ) and uj is existing materialized view then 

put uj  into list Mindirect     

3.3 If ( weight vi <  weight uj ) then  

traverse in bottom-up way to find the node that return maximum 

weight uj of each branch. 

put uj  into list Mindirect  

end; 

 

Figure 3.14  The Affected Node Identification Algorithm 

 

The conditions to identify the indirectly affected node in step 3 of the affected 

node identification algorithm in Figure 3.14 are explained as follows: 

Referring the rules to determine how nodes are affected by each other in 

MVPP described in section 2.6, we exploit the second and third rule for our algorithm 
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We apply the second rule for condition in line 3.2. For this condition, before 

adding the new requirements, uj is the materialized view. It implies that the weight of 

uj is greater than that of vj. So, uj is possible to be selected to be materialized rather 

than vj. After adding a new requirement, the weight of uj is less than that of vj. It 

implies that vj possible to be selected to be materialized rather than uj. When vi, the 

descendent node of uj with weight greater than that of uj, is materialized so no gain to 

materialize uj. Before adding new requirements, uj is the existing materialized view 

and it is likely to be un-materialized when new requirements are added. Thus, uj have 

to be identified as the indirectly affected node. 

We apply the third rule for condition in line 3.3. The node uj is the ancestor of 

vi, and the weight of uj is greater than vi then uj is possible to be materialized. The 

same as uj+1 if uj+1 > uj then uj+1 is more possible to be materialized rather than uj . 

Thus we have to traverse to look for the maximum weight of uj. As uj would have 

many ancestors that means uj is supporting many queries so we have to traverse 

bottom-up way to find the node that returns the maximum weight uj of each branch.   

 

3.8 Two-Phase Optimization (2PO) for Dynamic Materialized View 

Selection 

 

The final step of dynamic materialized view selection is selecting the set of 

views to be materialized by 2PO. The 2PO algorithm is the combination of II and SA 

explained in section 3.6. We map all nodes in MVPP to binary string according to the 

types of node as follows.  

The intermediate nodes, either existing materialized views or virtual views 

that are identified as affected nodes and new nodes, are mapped into binary strings. 

We initialize these nodes with 0.  

The existing materialized view nodes which are not identified as affected 

nodes are fixed to 1. The reason to fix to 1 is that they always are the materialized 

view to support the existing requirement. We consider the existing materialized views 

not identified as affected nodes because we calculate the query processing cost and 

materialized view maintenance cost for the whole system. Our goal is the minimal 

total cost among all feasible sets of materialized views of all queries. Therefore, all 
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existing materialized views that are not identified as affected nodes have to be 

included for supporting the existing queries. 

The other intermediate nodes neither identified as affected nodes nor existing 

materialized views to support the existing queries are fixed to 0. They are always the 

virtual views that have not been affected. Thus, they are not the member of a set of 

views to be selected.  

The details of algorithm are presented in Figure 3.15.  

 

begin 

1. Input the MVPP represented by a DAG 

2. Use depth first search from root node to base relation to search 

through all of the nodes in the DAG. 

3. Map all intermediate nodes into binary string 1s or 0s as 

follows: 

3.1 initialized with 0 for all affected nodes identified by the 

affected node identification algorithm, and new created nodes.  

3.2 fixed to 1 for all existing materialized view nodes which are 

not identified as affected nodes. 

3.3 fixed to 0 for other nodes that are not the set of views to be 

selected. 

4. Call Iterative Improvement 

5. Call Simulated Annealing algorithm 

6. Present set of views to materialized with minimum cost 

end; 

  

Figure 3.15  The Materialized View Selection with 2PO for the Dynamic Phase 

 

3.9 Cost Model for Dynamic Materialized View Selection 

 

According to (Yang et al., 1997: 140) a linear cost model is used to calculate 

the processing cost of query Q. The cost of answering query Q is the number of rows 

in the base relations used to construct query Q. Denote M be a set of materialized 

views, )(MC
iq  be the cost to compute qi from the set of M, )(vCm  be the cost of 

maintenance when v is materialized, and fa , fu are query and updating frequency 

respectively. Then the total query processing cost is 
Qq

qq MCf )(  and the total 
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maintenance cost is  
Mv

mu vCf . The total cost, which is the summation of query 

processing cost and materialized view maintenance cost, on the set of materialized 

views M is illustrated as follow: 

 





Mv

mu

Qq

qqtotal vCfMCfC )()(     

 

Our goal is the total cost will be minimal for all feasible sets of materialized 

views. 

 

This chapter details our methodologies i.e. the MVPP re-optimization 

algorithm and the dynamic materialized view selection approach. The goal of the 

MVPP re-optimization algorithm is to verify whether the cheapest MVPP is optimal 

and improve the query processing cost of the cheapest MVPP. The dynamic 

materialized view selection approach is to select a set of views, which are the specific 

member of the set of views rather than all nodes in search space, to be materialized or 

un-materialized by avoiding recalculation from scratch, and provides the minimal 

summation of query processing cost and maintenance cost on the set of materialized 

views selected by 2PO. In the next chapter, the design of experiments, result and 

analysis of our methodologies will be described. 

 



 

CHAPTER 4 

 

DESIGN OF EXPERIMENTS AND ANALYSIS OF RESULTS 

 

In previous chapter, we described the methodologies employed in our 

dissertation that includes two parts; the optimization task to improve the cheapest 

MVPP, and the approach for dynamic materialized view selection. In this chapter, we 

discuss the design of the experiments used to evaluate our approach. Our testbed data 

is the TPC Benchmark™H (TPC-H) that is a decision support benchmark. Section 4.1 

provides the details of TPC-H schema revision 2.14.2 and its data set. Section 4.2 

provides a query set with relational algebra query tree which were introduced by 

Phuboon-ob (2009: 51) for static materialized view selection. Section 4.3 provides the 

implementation of the cheapest MVPP proposed by Yang et al.  

For our experiments, it is separated into two parts according to our proposed 

methodologies. First part includes Section 4.4 and 4.5 described the implementation 

of our MVPP re-optimization algorithm. Second part includes Section 4.6 to 4.8 

described the implementation of our dynamic materialized view selection approach, 

2PO for our dynamic materialized view selection. 

 

4.1 TPC Benchmark™H (TPC-H) 

 

The component of TPC-H schema is defined to consist of eight tables (base 

relation) including REGION, NATION, CUSTOMER, SUPPLIER, PART, 

PARTSUPP, LINEITEM AND ORDERS. The relationships between these tables in 

TPC-H schema are illustrated in Figure 4.1.  We run TPC-H schema by Oracle11gR2 

with database size 1 GB that is the minimum required for a test database. The 

cardinalities of each base relation are presented in Table 4.1. The database size can 

scale up to 1 TB according to the scale factor multiple by minimum cardinality of all 

tables except NATION and REGION. 
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Figure 4.1  The TPC-H Schema Revision 2.14.2 

Source:  Transaction Processing Performance Council (TPC), 2011: 12. 

 

Table 4.1  The TPC-H Schema Table Size 

 

Table name 
Relation Size 

(in Tuples) 

Record Size 

(in bytes) 

Table Size 

(in MB) 

REGION 5 124 <1 

NATION 25 128 <1 

CUSTOMER 150,000 179 26 

SUPPLIER 10,000 159 2 

PART 200,000 155 30 

PARTSUPP 800,000 144 110 

LINEITEM 6,000,000 112 641 

ORDERS 1,500,000 104 149 
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4.2 Query Set for Static Materialized View Selection 

 

We separate the query set into two sets. The first set includes Query1 to 

Query7 for static materialized view selection approach. The second set includes 

Query8 to Query13 for dynamic materialized view selection approach. Query1 to 

Query7 were introduced by Phuboon-ob (2009: 51) for static materialized view 

selection problem using 2PO based on MVPP structure. We improve the query 

processing cost of the cheapest MVPP of Query1 to Query7 by our MVPP re-

optimization algorithm and use 2PO to select set of views to be materialized. 

Thereafter, the result of static approach, which is derived in our static phase, is the 

initial search space for the dynamic materialized view selection. The details of 

Query1 to Query7 are discussed in this section. The details of Query8 to Query13 are 

explained in section 4.6. The Query1 to Query7 are denotes as Q1, Q2, Q3, Q4, Q5, 

Q6 and Q7. Suppose that all base relations are updated once and the frequencies of 

executing the query of Q1 to Q7 are 2, 6, 7, 2, 5, 9 and 3 respectively 

We first present the notation used in relational algebra query tree as follows: 

sa represents the select operation, where a is a selection condition on one or 

more attributes of a relation. 

pb represents the project operation, where b is a list of one or more attributes 

of a relation. 

  represents the inner join operation. 

g represents an aggregation function. 

 

The details of queries and their relational algebra query trees are described as 

follows: 
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Query Q1 with the query frequency of 2 produces the minimum supply cost of 

each nation of suppliers in specific region, ASIA. Its relational algebra tree is shown 

in Figure 4.2. 

 

Query Q1 

SELECT  N_NAME, MIN(PS_SUPPLYCOST) 

FROM   PART, PARTSUPP, SUPPLIER, NATION, REGION 

WHERE  P_PARTKEY = PS_PARTKEY 

AND S_SUPPKEY = PS_SUPPKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND R_NAME = ‘ASIA’ 

GROUP BY N_NAME; 

 

 

 

Figure 4.2  Relational Algebra Query Tree of Query Q1 
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Query Q2 with the query frequency of 6 produces number of items that 

customers of each nation in specific region, ASIA, ordered in 1994. Its relational 

algebra tree is shown in Figure 4.3. 

 

Query Q2 

SELECT  N_NAME, COUNT(L_ORDERKEY) 

FROM   CUSTOMER, ORDERS, LINEITEM, NATION, REGION 

WHERE  C_CUSTKEY = O_CUSTKEY 

AND O_ORDERKEY = L_ORDERKEY  

AND C_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND R_NAME = ‘ASIA’ 

AND O_ORDERDATE >= ‘1994-01-01’ 

AND O_ORDERDATE < ‘1995-01-01’ 

GROUP BY N_NAME; 

 

 

 

Figure 4.3  Relational Algebra Query Tree of Query Q2 
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Query Q3 with the query frequency of 7 produces summation of quantities of 

items that suppliers of each nation in specific region, ASIA, ordered in 1994. Its 

relational algebra tree is shown in Figure 4.4. 

 

Query Q3 

SELECT  N_NAME, SUM(L_QUANTITY) 

FROM   ORDERS, LINEITEM, SUPPLIER, NATION, REGION 

WHERE  O_ORDERKEY = L_ORDERKEY  

AND L_SUPPKEY = S_SUPPKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND R_NAME = ‘ASIA’ 

AND O_ORDERDATE >= ‘1994-01-01’ 

AND O_ORDERDATE < ‘1995-01-01’ 

GROUP BY  N_NAME; 

 

 

 

Figure 4.4  Relational Algebra Query Tree of Query Q3 
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Query Q4 with the query frequency of 2 produces summation of supply cost of 

each supplier that their nation same as that of customers in specific region, ASIA. Its 

relational algebra tree is shown in Figure 4.5. 

 

Query Q4 

SELECT  S_NAME, SUM(PS_SUPPLYCOST) 

FROM   PARTSUPP, SUPPLIER, CUSTOMER, NATION, REGION 

WHERE  PS_SUPPKEY = S_SUPPKEY 

AND C_NATIONKEY = S_NATIONKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND R_NAME = ‘ASIA’ 

GROUP BY S_NAME; 

 

 

 

Figure 4.5  Relational Algebra Query Tree of Query Q4 
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Query Q5 with the query frequency of 5 produces number of suppliers’ part 

with specific brand, type and size. Its relational algebra tree is shown in Figure 4.6. 

 

Query Q5 

SELECT  COUNT(PS_SUPPKEY) 

FROM   PARTSUPP, PART 

WHERE  P_PARTKEY = PS_PARTKEY 

AND P_BRAND <> ‘BRAND#45’ 

AND NOT P_TYPE LIKE ‘%BRASS%’ 

AND P_SIZE IN (9, 19, 49); 

 

 

 

Figure 4.6  Relational Algebra Query Tree of Query Q5 
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Query Q6 with the query frequency of 9 produces supply cost summation of 

parts with specific brand, type and size for each supplier. Its relational algebra tree is 

shown in Figure 4.7. 

 

Query Q6 

SELECT  S_NAME, SUM(PS_SUPPLYCOST) 

FROM   SUPPLIER, PARTSUPP, PART 

WHERE  S_SUPPKEY = PS_SUPPKEY 

AND P_PARTKEY = PS_PARTKEY 

AND P_BRAND <> ‘BRAND#45’ 

AND NOT P_TYPE LIKE ‘%BRASS%’ 

AND P_SIZE IN (9,19,49) 

GROUP BY S_NAME; 

 

 

 

Figure 4.7  Relational Algebra Query Tree of Query Q6 
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Query Q7 with the query frequency of 3 produces the discount summation of 

items that customers ordered in 1994 for each market segment. Its relational algebra 

tree is shown in Figure 4.8. 

 

Query Q7 

SELECT  C_MKTSEGMENT, SUM(L_DISCOUNT) 

FROM   CUSTOMER, ORDERS, LINEITEM 

WHERE  C_CUSTKEY = O_CUSTKEY 

AND O_ORDERKEY = L_ORDERKEY  

AND O_ORDERDATE >= ‘1994-01-01’ 

AND O_ORDERDATE < ‘1995-01-01’ 

GROUP BY C_MKTSEGMENT; 

 

 

 

Figure 4.8  Relational Algebra Query Tree of Query Q7 
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4.3 The Cheapest MVPP Implementation 

 

In this section, we build the cheapest MVPP mentioned in section 3.2 for 

materialized view selection. The details are listed below: 

1. For every optimal query processing plan, if there is a join operation 

involved, push all the select, project operations and aggregate function up along the 

tree. 

2. Create a list of queries in descending order based on the result of their 

query access frequency multiplied by query cost. 

3. Merge all optimal query processing plans in the list according to the 

following order: 

3.1 pick up the first optimal query processing plan from the list 

3.2 incorporate the second query into the first query 

3.3 incorporate the third query into previous merging, repeat this step 

until all optimal query processing plans are merged. 

4. Move the first optimal query processing plan to the end of the list. 

5. Repeat step 3 and 4 to generate all MVPPs. 

6. Push down select, project and aggregate functions as deep as possible. 

7. Calculate the total query processing cost of each MVPP, and select the 

one which gives the lowest cost. 

 

In our experiment, all optimal query processing plans of Q1 to Q7, if there is a 

join operation involved, we first push all the select, project operations and aggregate 

function up along the tree. The result of this step is shown in Figure 4.9.  Next in the 

second step, we multiply query access frequency with query cost shown in Table 4.2. 

Table 4.2 illustrates the frequency of executing the query, query cost, and frequency 

of executing the query multiplied with query cost for Q1 to Q7. Later, we create a list 

of these values in descending order. Therefore, the initial list is {Q4, Q7, Q3, Q2, Q6, 

Q1, and Q5}. 
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Figure 4.9  The Result of the First Step to Construct MVPP 

 

Table 4.2  The Query Access Frequency, Query Cost, and Query Access Frequency 

Multiplied by Query Cost 

 

Query 
Query Access 

Frequency(fq) 
Query Cost fq * Query Cost 

Q1 2 160,240 320,480 

Q2 6 184,042 1,104,252 

Q3 7 182,183 1,275,281 

Q4 2 967,519,280 1,935,038,560 

Q5 5 36,276 181,380 

Q6 9 36,276 326,484 

Q7 3 910,519 2,731,557 

 

Third step, all queries in the list are merged to construct the first MVPP. The 

sequence to merge all queries of the first MVPP as follows: first is Q4 follow by Q7, 

then Q3 and so on until Q5 is merged. When Q7 is merged, as no sharable 
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subexpression between Q4 and Q7 then we first join the ORDERS with LINEITEM, 

and then join this result with the CUSTOMER. The result after Q7 is merged shown 

in Figure 4.10 (a). When Q3 is merged, Q3 is constructed on conjunctively joined of 

(REGION   NATION   SUPPLIER   LINEITEM   ORDERS). There are two 

subtrees available for Q3 that are (REGION   NATION   SUPPLIER) and 

(ORDERS   LINEITEM), so a new node is introduced as a join operation between 

those two subtrees. The result after Q3 is merged into the first MVPP shown in Figure 

4.10 (b). When Q2 is merged, there already existing conjunctively join that are 

(REGION   NATION), the remaining base relations are CUSTOMER, ORDERS and 

LINEITEM conjunctively joined already for Q7.  

 

 

(a)  The result after Q7 is merged with Q4 of first MVPP 

 

 

 

(b)  The result after Q3 is merged of the first MVPP 

 

Figure 4.10  The Result of Merging Steps for the First MVPP 
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(c)  The result after Q2 is merged of the first MVPP 

 

 

(d)  The result of the first MVPP after all Queries Q1-Q7 are merged 

 

Figure 4.10 (Continued) 

 

Therefore, the new node is introduced for Q2 as a join operation of those 

results: (REGION   NATION) and (CUSTOMER   ORDERS   LINEITEM). 

Figure 4.10 (c) shows the first MVPP after Q2 is merged. We repeat this step until all 

queries in the list are merged. The result after all queries are merged starting with Q4 

is shown in Figure 4.10 (d). 

Next the fourth step, after the first MVPP is generated, the first element of the 

list is moved to the end of the list. So Q4 is move to the end of the list, the list 

becomes {Q7, Q3, Q2, Q6, Q1, Q5, and Q4} that is the order of merging queries for 
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the second MVPP. We repeat the third step to construct the second MVPP. We start 

with second MVPP equal to Q7. Then merge Q3 into the second MVPP and follow by 

the next query in the list, Q2, Q6, Q1, Q5 and the last query is Q4. Figure 4.11 (a) 

shows the result after merged Q3 into the second MVPP. Figure 4.11 (b) shows the 

result after Q2 is merged into the second MVPP. The result of the second MVPP after 

all queries are merged starting with Q7 is shown in Figure 4.11 (c). 

 

 

(a)  The result after Q3 is merged with Q7 of the second MVPP 

 

 

  

(b)  The result after Q2 is merged of the second MVPP 

 

Figure 4.11  The Result of Merging Steps for the Second MVPP 
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(c)  The result of the second MVPP after queries Q1-Q7 are merged 

 

Figure 4.11  (Continued) 

 

We repeat the third and the fourth step until all MVPPs of seven queries are 

built. The list of queries of the last MVPP is {Q5, Q4, Q7, Q3, Q2, Q6, and Q1}. The 

results of all MVPPs generated in the merging steps are shown in Appendix A. 

After all MVPPs are constructed, we optimize MVPP by push select, project 

and aggregate function down as deep as possible for all MVPPs. Figure 4.12 to 4.18 

show the first MVPP to the last MVPP already optimized.  

 Finally the total query processing costs of MVPP, which is the summation of 

query processing cost of queries in the MVPP, are calculated to determine the 

cheapest one. The query processing cost is the frequency of executing the query 

multiplied with the cost of accessing the nodes to obtain the result of the query. 

For example Q1 in the first MVPP as Figure 4.12, Q1 which has frequency of 

executing query is 2 accesses nodes named Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, 

Tmp7, Tmp8, Tmp18, Tmp22 and result1. The processing cost of each node is 5, 1, 

25, 25, 10000, 50000, 800000, 1602400000, 200000, 32048000000 and 160240, 

respectively. Then, the query processing cost of Q1 is (2)*(5 + 1 + 25 + 25 + 10000 + 

50000 + 800000 + 1602400000 + 200000 + 32048000000 + 160240) that is 

67,303,240,592. The query processing cost of the first MVPP in Figure 4.12 are 
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shown in Table 4.3. The query processing cost of the others MVPPs are provided in 

Appendix A. 

The query processing costs of all MVPPs are shown in Table 4.4. The 

cheapest MVPP is the third MVPP as it provides the minimal total query processing 

cost that is 10,821,545,680,471. The order of query in the list of the cheapest MVPP 

is {Q3, Q2, Q6, Q1, Q5, Q4, and Q7}. 

The result in Table 4.4 shows that the query processing cost of Q1, Q5 and Q6 

of the third MVPP is higher than other MVPPs, although the third MVPP provides the 

minimal total query processing cost. It implies that there are other execution plans for 

these queries that have lower query processing cost. Then, we implement our MVPP 

re-optimization algorithm in section 4.4 to improve the query processing cost of 

problematic queries. 

 

 

 

 

Figure 4.12  The First MVPP, the Queries in the List: {Q4, Q7, Q3, Q2, Q6, Q1, and 

Q5} 
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Figure 4.13  The Second MVPP, the Query in the List: {Q7, Q3, Q2, Q6, Q1, Q5, 

and Q4} 

 

 

 

Figure 4.14  The Third MVPP (the Cheapest MVPP), the Query in the List: {Q3, Q2, 

Q6, Q1, Q5, Q4, and Q7}  
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Figure 4.15  The Fourth MVPP, the Query in the List: {Q2, Q6, Q1, Q5, Q4, Q7, and 

Q3} 

 

 

 

Figure 4.16  The Fifth MVPP, the Query in the List: {Q6, Q1, Q5, Q4, Q7, Q3, and 

Q2} 
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Figure 4.17  The Sixth MVPP, the Query in the List: {Q1, Q5, Q4, Q7, Q3, Q2, and 

Q6} 

 

 

 

Figure 4.18  The Seventh MVPP, the Query in the List: {Q5, Q4, Q7, Q3, Q2, Q6, 

and Q1} 
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Table 4.3  The Query Processing Cost of the First MVPP 

 

Query fq Access from the Nodes Cost of Nodes Query Processing 

Cost 

Q1 2 Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp7, 

Tmp8, Tmp18, Tmp22 and result1 

5, 1, 25, 25, 10000, 50000, 800000, 1602400000, 

200000, 32048000000 and 160240 

67,303,240,592 

Q2 6 Tmp1, Tmp2, Tmp3, Tmp4, Tmp11, Tmp12, 

Tmp13, Tmp14, Tmp9, Tmp15, Tmp17 and 

result2 

5, 1, 25, 25, 6000000, 1500000, 227597, 

1365582000000, 150000, 136577850000, 4552595 

and 184082 

9,013,034,785,980 

Q3 7 Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, 

Tmp11, Tmp12, Tmp13, Tmp14, Tmp16 and 

result3 

5, 1, 25, 25, 10000, 50000, 6000000, 1500000, 

227597, 1365582000000, 1823769557 and 182183 

9,571,896,175,751 

Q4 2 Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, 

Tmp7, Tmp8, Tmp9, Tmp10 and result4 

5, 1, 25, 25, 10000, 50000, 800000, 1602400000, 

150000, 24036000000, and 967519280 

53,213,858,672 

Q5 5 Tmp7, Tmp18, Tmp19, Tmp20 and result5 800000, 200000, 200000, 7255200000 and 36276 36,282,181,380 

Q6 9 Tmp7, Tmp18, Tmp19, Tmp20, Tmp5, Tmp21 

and result6 

800000, 200000, 200000, 7255200000, 10000, 

362760000 and 36276  

68,572,856,484 

Q7 3 Tmp11, Tmp12, Tmp13, Tmp14, Tmp9 , 

Tmp15 and result7 

6000000, 1500000, 227597, 1365582000000, 

150000, 136577850000 and 910519 

4,506,505,914,348 

The total query processing cost of the first MVPP 23,316,809,013,207 
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Table 4.4  The Query Processing Cost of All MVPPs 

 

Query 1st MVPP 2nd MVPP 
3rd MVPP 

(Cheapest MVPP) 
4th MVPP 

Q1 67,303,240,592 323,207,240,592 323,207,240,592 323,207,240,592 

Q2 9,013,034,785,980 9,013,034,785,980 1,697,558,231,916 1,697,558,231,916 

Q3 9,571,896,175,751 9,571,896,175,751 1,997,769,797,079 9,571,896,175,751 

Q4 53,213,858,672 53,213,858,672 53,213,858,672 53,213,858,672 

Q5 36,282,181,380 800,009,181,380 800,009,181,380 800,009,181,380 

Q6 68,572,856,484 1,443,281,456,484 1,443,281,456,484 1,443,281,456,484 

Q7 4,506,505,914,348 4,506,505,914,348 4,506,505,914,348 4,506,505,914,348 

Total 23,316,809,013,207 25,711,148,613,207 10,821,545,680,471 18,395,672,059,143 

 

Query 5th MVPP 6th MVPP 7th MVPP 

Q1 323,207,240,592 67,303,240,592 323,207,240,592 

Q2 9,013,034,785,980 9,013,034,785,980 9,013,034,785,980 

Q3 9,571,896,175,751 9,571,896,175,751 9,571,896,175,751 

Q4 53,213,858,672 53,213,858,672 53,213,858,672 

Q5 800,009,181,380 36,282,181,380 800,009,181,380 

Q6 1,443,281,456,484 68,572,856,484 1,443,281,456,484 

Q7 4,506,505,914,348 4,506,505,914,348 4,506,505,914,348 

Total 25,711,148,613,207 23,316,809,013,207 25,711,148,613,207 

 

The 3rd MVPP is the cheapest MVPP because it provides the minimum query processing cost. 



68 

 

4.4 The Re-Optimized MVPP Implementation 

 

The objective of the MVPP re-optimization algorithm, described in Figure 3.5 

in section 3.4, is to reduce the total query processing cost of the cheapest MVPP.  The 

details of algorithm are listed below: 

1. Input = the cheapest MVPP 

2. Initial list LV = . 

3. k = number of queries 

4. for i = 1 to k 

      Compare Cq(i) of cheapest MVPP with Cqj(i) of other MVPPs.  

      If Cqj(i) less than Cq(i) then  

          insert  q(i) into LV.  

5. For queries in LV, consider the possible commonalities with exists  

global equivalent plan as following:  

5.1 If there is nothing in common with global equivalent plan  

    skip to the next query. 

5.2 If there is more than one overlapping portion 

 rewrite this query using exists common subexpression in 

MVPP in bottom-up way  

 

The implementations of the MVPP re-optimization algorithm are explained as 

follows. 

  First, the cheapest MVPP is the input of MVPP re-optimization algorithm and 

initial the list LV=. Next, the query processing cost of each query in the cheapest 

MVPP is compared with other MVPPs. Using the query processing cost in Table 4.4, 

the details of comparison are described as follows: 

Q1: its query processing cost of the cheapest MVPP is 323,207,240,592 

whereas its query processing cost of the first and the sixth MVPP is 

67,303,240,592.  

Q2: its query processing cost of the cheapest MVPP is less than other 

MVPPs but is equal to the fourth MVPP. 
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Q3: its query processing cost of the cheapest MVPP is less than other 

MVPPs 

Q4: its query processing cost is equal to all MVPPs. 

Q5:  its query processing cost of the cheapest MVPP is 800,009,181,380 

whereas its query processing cost of the first and the sixth MVPP is 

36,282,181,380.  

Q6:  its query processing cost of the cheapest MVPP is 1,443,281,456,484 

whereas its query processing cost of the first and the sixth MVPP is 

68,572,856,484.  

Q7:  its query processing cost is equal to all MVPPs.  

  

 So the result of the list LV contains {Q1, Q5, Q6} because their query 

processing cost of the cheapest MVPP are more than other MVPPs. 

Thereafter, the queries in the list are considered to be rewritten if they can use 

alternative common subexpression available in the cheapest MVPP.  

For Q1, query processing plan that is used in the cheapest MVPP is shown in 

Figure 4.19 (a). Considering optimal query processing plan of Q1 in Figure 4.2, there 

are possible common subexpression with the other queries in the cheapest MVPP in 

Figure 4.14 as follows: 

- Tmp6 in Figure 4.2 is Tmp6 in Figure 4.14. 

- Tmp8 in Figure 4.2 is Tmp17 in Figure 4.14. In Figure 4.14, as Tmp17 is the 

ancestor of Tmp6 then Tmp17 should be chosen to be common subexpression for Q1 

rather than Tmp6. 

- Tmp19 in Figure 4.14 is overlapping portion of Q1, Q5 and Q6. Tmp19 in 

Figure 4.14, the cheapest MVPP, is Tmp4 of Q5 in Figure 4.6 and Tmp4 of Q6 in 

Figure 4.7. 

Because Q1 has overlapping with several queries and its query processing cost 

in the cheapest MVPP is higher than that of the first and the sixth MVPP so Q1 in the 

cheapest MVPP would be rewritten as follows:  

- We match optimal query processing plan of Q1 in bottom-up way from leaf 

node up to the query node. 

- We can match the node in optimal query processing plan of Q1 with the 
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nodes in the cheapest MVPP at node Tmp6 and Tmp17 in Figure 4.14. Tmp17 in 

Figure 4.14 is the conjunctively join of the base relations i.e. REGION, NATION, 

SUPPLIER, and PARTSUPP of Q1.  

- The new node is introduced to join remain base relation, PART, with Tmp17 

called Tmp19 in Figure 4.19 (b) and Figure 4.20. 

We present the equivalent plan of Q1 in MVPP before and after rewritten as 

Figure 4.19. Suppose that R, N, S, PS and P represent the base relation REGION, 

NATION, SUPPLIER, PARTSUPP AND PART respectively. After rewrite Q1, the 

execution plan of Q1 in the MVPP, shown as Figure 4.19 (b), is same as the 

individual optimal query plan of Q1 in Figure 4.2. Tmp17 in Figure 4.19 (b) is Tmp8 

of Figure 4.2. Tmp19 in Figure 4.19 (b) is the Tmp10 of Figure 4.2. The query 

processing cost of Q1 after rewritten is reduced from 323,207,240,592 to 

67,303,240,592. 

    
(a) Q1 before rewriting, black node represents the node has to be rewritten 

   
(b) Q1 after rewriting, black node represents the new node after rewriting 

 

Figure 4.19  The Execution Plan of Q1 Before and After Rewriting 
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For Q5 and Q6, they do not have sharable subexpression with other queries in 

the cheapest MVPP. Therefore, Q5 and Q6 are ignored to rewrite.  

Finally we push select, project operation and aggregate function down as deep 

as possible for all affected queries. The result of re-optimized cheapest MVPP is 

shown in Figure 4.20. Considering the impact to Q5 and Q6 after select operation is 

push down. In the cheapest MVPP in Figure 4.14, select operation of Q5 and Q6, that 

is “P_BRAND <> ‘BRAND#45’ AND NOT P_TYPE LIKE ‘%BRASS%’ AND 

P_SIZE IN (9,19,49)”, cannot be pushed down beyond Tmp18  because Q1 is also 

derived from Tmp19 which uses the result from Tmp18 without these selection 

operation. After Q1 is rewritten, this operation can be pushed down beyond 

conjunctively joined node. The select operation node is Tmp20 and the conjunctively 

joined node is Tmp21 in Figure 4.20. So, the query processing cost of Q5 and Q6 in 

Figure 4.20 is less than the cheapest MVPP. The query processing cost after the 

cheapest MVPP is re-optimized is shown in Table 4.5. The result shows that the total 

query processing cost of MVPP after re-optimized is reduced from 

10,821,545,680,471 to 8,427,206,080,471. 

 

 

 

Figure 4.20  The Cheapest MVPP after Applying the MVPP Re-Optimization 
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Table 4.5  The Query Processing Cost of the Cheapest MVPP and the Re-Optimized 

MVPP 

 

Query The Cheapest MVPP The Re-optimized MVPP 

Query number 1 (Q1) 323,207,240,592 67,303,240,592 

Query number 2 (Q2) 1,697,558,231,916 1,697,558,231,916 

Query number 3 (Q3) 1,997,769,797,079 1,997,769,797,079 

Query number 4 (Q4) 53,213,858,672 53,213,858,672 

Query number 5 (Q5) 800,009,181,380 36,282,181,380 

Query number 6 (Q6) 1,443,281,456,484 68,572,856,484 

Query number 7 (Q7) 4,506,505,914,348 4,506,505,914,348 

Total 10,821,545,680,471 8,427,206,080,471 

 

The result from Table 4.5 shows that our MVPP re-optimization algorithm 

reduces the total query processing cost of the cheapest MVPP. Moreover, we further 

validate our re-optimized MVPP by implementing the selection a set of view to be 

materialized by 2PO in section 4.5. Our expectation is that the total cost which is the 

summation of query processing cost and materialized view maintenance cost of the re-

optimized MVPP should less than that of the cheapest MVPP. 

   

4.5 Evaluation of the MVPP Re-Optimization Algorithm 

 

We evaluate our MVPP re-optimization algorithm by selecting the set of 

views to be materialized by 2PO. Our goal is that the total cost of the re-optimized 

MVPP should less than that of the cheapest MVPP for all costs which are all-virtual 

view, all-materialized views and materialized view.  

The details of implementing 2PO for materialized view selection are described 

in Figure 4.21. 
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begin 

7. Input the MVPP represented by a DAG 

8. Use depth first search from root nodes to base relations to 

search through all of the nodes in the DAG. 

9. Produce the sequence of nodes into a binary string.  

10. Call Iterative Improvement 

11. Call Simulated Annealing algorithm 

12. Present set of views to materialized with minimum cost 

end; 

  

Figure 4.21  The Materialized View Selection with 2PO 
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Figure 4.22  The Cheapest MVPP with Materialized Views 
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So initially, the binary string of above mapping {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} indicates that all intermediate node are virtual views. 

The result, after 2PO algorithm is applied to select the set of views to be materialized, 

{0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1} indicates that Tmp19, 

Tmp6, Tmp15, Tmp11 and Tmp24 are materialized views. Figure 4.22 represents the 

cheapest MVPP with materialized views after 2PO is applied. 

Considering query Q1 in the cheapest MVPP in Figure 4.14, its frequency of 

executing the query is 2, before materializing the intermediate nodes, Q1 accesses the 

nodes named Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp16, Tmp18, Tmp19, 

Tmp22 and result1. The cost of each node is 5, 1, 25, 25, 10000, 50000, 800000, 

200000, 160000000000, 1602400000 and 160240, respectively. So, the query 

processing cost of query Q1 is (2)*(5 + 1 + 25 + 25 + 10000 + 50000 + 800000 + 

200000 + 160000000000 + 1602400000 + 160240) = 323,207,240,592.  

After Tmp6 and Tmp19 are materialized, Q1 accesses the nodes named Tmp6, 

Tmp19, Tmp22 and result1. The cost of each node is 2003, 800000, 1602400000 and 

160240, respectively. So, the query processing cost of Q1 using materialized views, 

Tmp6 and Tmp19, 2*(2003 + 800000 + 1602400000 + 160240) that is 3,206,724,486. 

It would be beneficial to materialize them, reducing the processing cost from 

323,207,240,592 to 3,206,724,486.  

However, there is materialized view maintenance cost whenever an update of 

involved base relations occurs. Tmp6 is constructed on three base relations, and 

accesses nodes Tmp1, Tmp2, Tmp3, Tmp4, Tmp5 and the node itself. The cost of 

each node is 5, 1, 25, 25, 10000 and 50000, respectively. Then, the materialized view 

maintenance cost of Tmp6 is 3*(5 + 1 + 25 + 25 + 10000 + 50000) that is 180,168. 

The view maintenance cost of Tmp19, which is constructed on two base relations and 

accesses nodes Tmp18, Tmp19 and the node itself, is 2*(800000 + 200000 + 

160000000000) that is 320,002,000,000.  

After materialized views those five nodes, the total query processing cost is 

469,452,527,576 and materialized view maintenance cost is 5,892,778,110,452. So 

the total cost of the cheapest MVPP is 6,362,230,638,028. The materialized view 

maintenance cost and query processing cost of the cheapest MVPP are shown Table 

4.6 and 4.7 respectively. 
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Table 4.6  The Maintenance Cost of the Cheapest MVPP 

 

Materialized 

View 

Number of 

Base Relations 

Constructed from Nodes Maintenance Cost 

Tmp6 3 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp5, Tmp6 

180,168 

Tmp11 5 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp5, Tmp6, Tmp7, Tmp8, 

Tmp9, Tm10, Tmp11 

1,426,977,515,570 

Tmp15 5 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp12, Tmp13, Tmp9, Tmp10, 

Tmp14, Tmp7, Tmp15 

1,414,630,939,520 

Tmp19 2 Tmp16, Tmp18, Tmp19 320,002,000,000 

Tmp24 2 Tmp7, Tmp9, Tmp10, Tmp24 2,731,179,455,194 

Total materialized view maintenance cost 5,892,790,090,452 

 

Table 4.7  The Query Processing Cost of the Cheapest MVPP 

 

Query Access from Node Query Processing Cost 

Query number 1 (Q1) Tmp6, Tmp19, Tmp22, result1 3,206,724,486 

Query number 2 (Q2) Tmp15, result2 2,208,984 

Query number 3 (Q3) Tmp11, result3 2,550,562 

Query number 4 (Q4) Tmp6, Tmp16, Tmp17, Tmp12, 

Tmp23, result4 

53,213,742,566 

Query number 5 (Q5) Tmp19, Tmp20, result5 8,181,380 

Query number 6 (Q6) Tmp19, Tmp20, Tmp21, Tmp5, 

result6 

3,279,656,484 

Query number 7 (Q7) Tmp24, Tmp12, Tmp25, result7 409,739,463,114 

Total query processing cost 469,452,527,576 
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We apply the 2PO algorithm to the re-optimized MVPP in Figure 4.20. The 

materialize views are Tmp6, Tmp11, Tmp15, Tmp21 and Tmp24. Figure 4.23 

represents the re-optimized MVPP with materialized views after 2PO is applied. The 

results from 2PO for the re-optimized MVPP are provided in Appendix E. 

 

 
 represents materialized view nodes 

 

Figure 4.23  The Re-Optimized MVPP with Materialized View Nodes Selected by 

2PO 

 

 

After 2PO is applied to select the set of views to be materialized, the total 

query processing cost is 533,527,035,440 and the materialized view maintenance cost 

is 5,587,300,890,452. Therefore, the total cost of the re-optimized MVPP is 

6,120,827,925,892. The materialized view maintenance cost of materialized views 

and the query processing cost of the re-optimized MVPP are shown in Table 4.8 and 

4.9 respectively. 
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Table 4.8  The Maintenance Cost of the Re-Optimized MVPP 

 

Materialized 

View 

Number of 

Base Relations 

Constructed from Nodes Maintenance 

Cost 

Tmp6 3 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp5, Tmp6 

180,168 

Tmp11 5 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp5, Tmp6, Tmp7, Tmp8, 

Tmp9, Tm10, Tmp11 

1,426,977,515,570 

Tmp15 5 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp12, Tmp13, Tmp9, Tmp10, 

Tmp14, Tmp7, Tmp15 

1,414,630,939,520 

Tmp21 2 Tmp16, Tmp18, Tmp20, Tmp21 14,512,800,000 

Tmp24 2 Tmp7, Tmp9, Tmp10, Tmp24 2,731,179,455,194 

Total materialized view maintenance cost 5,587,300,890,452 

 

Table 4.9  The Query Processing Cost of the Re-Optimized MVPP 

  

Query Access from Node Query Processing Cost 

Query number 1 (Q1) Tmp6, Tmp16, Tmp17, Tmp18, 

Tmp19, result1 

67,303,124,486 

Query number 2 (Q2) Tmp15, result2 2,208,984 

Query number 3 (Q3) Tmp11, result3 2,550,562 

Query number 4 (Q4) Tmp6, Tmp16, Tmp17, Tmp12, 

Tmp23, result4 

53,213,742,566 

Query number 5 (Q5) Tmp21, result5 362,760 

Query number 6 (Q6) Tmp21, Tmp5, Tmp22, result6 3,265,582,968 

Query number 7 (Q7) Tmp24, Tmp12, Tmp25, result7 409,739,463,114 

Total query processing cost 533,527,035,440 
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We calculate the query processing cost, materialized view maintenance cost 

and total cost of all-virtual-views, all-materialized views and materialized views on 

the set of materialized views selected by 2PO algorithm. All costs of the cheapest 

MVPP are shown in Table 4.10 and all costs of the re-optimized MVPP are shown in 

Table 4.11.  

 

Table 4.10  The Query Processing Cost, Maintenance Cost and Total Cost of the 

Cheapest MVPP 

 

 
Cost of 

Query Processing 

Cost of 

Maintenance 
Total Cost 

All-virtual view 10,821,545,680,471 0 10,821,545,680,471 

All-materialized 

views 
1,940,978,234 9,090,266,440,303 9,092,207,418,537 

2PO 469,452,527,576 5,892,790,090,452 6,362,242,618,028 

 

Table 4.11  The Query Processing Cost, Maintenance Cost and Total Cost of the Re-

Optimized MVPP 

 

 Cost of query 

Processing 

Cost of  

Maintenance 
Total Cost 

All-virtual view 8,427,206,080,471 0 8,427,206,080,471 

All-materialized 

views 
1,940,978,234 7,686,779,440,303 7,688,720,418,537 

2PO 533,527,035,440 5,587,300,890,452 6,120,827,925,892 

 

The comparisons of all costs for the cheapest MVPP and the re-optimized 

MVPP are shown in Table 4.12. The comparison result shows that all total costs of 

the re-optimized MVPP are less than that of the cheapest MVPP. The total cost of all-

virtual view reduced from 10,821,545,680,471 to 8,427,206,080,471, the total cost of 

all-materialized views is reduced from 9,092,207,418,537 to 7,688,720,418,537, and 
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the total cost of selecting materialized views using 2PO algorithm is reduced from 

6,362,242,618,028 to 6,120,827,925,892. 

 

Table 4.12  The Comparison of Total Costs of the Cheapest MVPP and the Re-

Optimized MVPP 

 

 Total Cost 

 The Cheapest MVPP The Re-Optimized MVPP 

All-virtual view 10,821,545,680,471 8,427,206,080,471 

All-materialized views 9,092,207,418,537 7,688,720,418,537 

2PO 6,362,242,618,028 6,120,827,925,892 

 

The above experiments are the static materialized view selection, and applying 

our MVPP re-optimization algorithm to improve the query processing cost of MVPP. 

However, the static approach has to be processed repeatedly all requirements, existing 

and new requirements, whenever the requirements are changed. In the next section, 

the experiments of dynamic materialized view selection to support the new 

requirements will be presented. The MVPP, shown in Figure 4.23, will be used as an 

initial search space for the dynamic phase. 
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4.6 Dynamic Materialized View Implementation 

 

According to the changing requirement situations in section 3.7.1 include (1) 

the existing queries are deleted, (2) the new queries are added, (3) the definitions of 

existing query are changed and (4) the frequencies of executing queries and/or the 

frequencies of updating base relations are changed. For our new requirements that we 

are implementing includes the new queries are added and the existing queries are 

deleted. In case of the definition of existing queries is changed, we implement by 

deleting the existing query and re-adding the query with new definition. In case, when 

the frequency of executing query and/or frequency of updating base relations is 

changed, the query processing cost and maintenance cost always changed 

accordingly. The existing MVPP structure is not changed as neither new node is 

created nor the existing node is deleted. The nodes in existing MVPP, used to 

construct the queries might be affected. Therefore, it is possible that the existing 

materialized views will be un-materialized, and the virtual views will be materialized 

according to the cost function. Further investigation, for the case subtree of existing 

query is the subsumption of subtree of new query, so the existing query can be 

rewritten using the sharable subexpression with new query. We show our example 

experiment of this case as Example A in Appendix B. 

We design the scenario for our experiments regarding to the types of 

commonality mentioned in section 3.3 to investigate how the existing MVPP is 

affected by adding each type of query. The scenarios cover three commonalities that 

are (1) nothing in common (2) subsumption (3) partially overlapping. Moreover, we 

also implement the query deletion and addition of the query that is constructed on all 

base relations.  

The following scenarios are the design of our experiments to validate our 

dynamic materialized view approach.  

(1) Adding new query identified as nothing in common with existing MVPP is 

described in section 4.6.1.2. 

(2) Adding new query identified as subsumption of existing MVPP is 

described in section 4.6.1.3.  
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(3) Adding new query identified as partial overlapping with existing MVPP is 

described in section 4.6.1.4 

(4) Deleting the existing query to see the effect of deletion the existing query 

to MVPP is described in section 4.6.1.5. 

(5) Adding new query constructed on all base relations, described in section 

4.6.1.6. We would like to verify that our affected node identification algorithm is 

valid even new query use all base relations. Using all base relations is possible and all 

existing queries are affected by the new query. 

(6) As in real environment, several types of new query are added together then 

we add all types of query simultaneously into the existing MVPP for our experiment. 

The detail of this scenario is described in 4.6.2 and 4.6.3.   

In our experiment, the initial MVPP structure generated in the static phase as 

shown in Figure 4.23 is the initial MVPP for the dynamic phase. 

 

4.6.1 Query Sets and Implementation of Scenarios 

 

4.6.1.1 Query Set for New Requirements 

In this section, we explain the selected queries for dynamic phase 

covering our above scenarios. The queries are constructed on base relations and/or the 

existing materialized view(s) generated in the static phase. The query set for dynamic 

phase includes Query8 to Query13. Their SQL statements and relational algebra query 

trees are described as follows: 
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Query Q8 with the query frequency of 6 produces the maximum of item’s tax 

for each brand for specific part type and the committed date is before receipt date. Its 

relational algebra tree is shown in Figure 4.24. 

 

Query Q8 

SELECT  P_BRAND, MAX(L_TAX) 

FROM   PART, LINEITEM 

WHERE  P_PARTKEY = L_PARTKEY 

AND P_TYPE LIKE '%BRASS%' 

AND L_COMMITDATE < L_RECEIPTDATE 

GROUP BY  P_BRAND; 

 

 

 

Figure 4.24  Relational Algebra Query Tree of Query Q8 
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Query Q9 with the query frequency of 4 produces the average total price of 

orders occurred in 1994 for each nation of customers in specific region, ASIA. Its 

relational algebra tree is shown in Figure 4.25. 

 

Query Q9 

SELECT  N_NAME, AVG(O_TOTALPRICE) 

FROM   REGION, NATION, CUSTOMER, ORDERS 

WHERE  C_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND C_CUSTKEY = O_CUSTKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND R_NAME = 'ASIA' 

GROUP BY  N_NAME; 

 

 

 

Figure 4.25  Relational Algebra Query Tree of Query Q9 
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Query Q10 with the query frequency of 5 produces the minimum discount for 

each type of order’s priority occurred in 1994. Its relational algebra tree is shown in 

Figure 4.26. 

 

Query Q10 

SELECT  O_ORDERPRIORITY, MIN(L_DISCOUNT) 

FROM   ORDERS, LINEITEM 

WHERE  O_ORDERKEY = L_ORDERKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

GROUP BY  O_ORDERPRIORITY; 

 

 

 

Figure 4.26  Relational Algebra Query Tree of Query Q10 
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Query Q11 with the query frequency of 5 produces the summation of extended 

price for each status of order occurred in 1994 and the committed date is before 

receipt date. Its relational algebra tree is shown in Figure 4.27. 

 

Query Q11 

SELECT  O_ORDERSTATUS, SUM(L_EXTENDEDPRICE) 

FROM   PARTSUPP, LINEITEM, ORDERS 

WHERE  O_ORDERKEY = L_ORDERKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND L_COMMITDATE < L_RECEIPTDATE 

GROUP BY  O_ORDERSTATUS; 

 

 

 

Figure 4.27  Relational Algebra Query Tree of Query Q11 
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Query Q12 with the query frequency of 2 produces the maximum of extended 

price for each supplier in specific region, ASIA, and specific part type that committed 

date is before receipt date. Its relational algebra tree is shown in Figure 4.28. 

 

Query Q12 

SELECT  N_NAME, MAX(L_EXTENDEDPRICE) 

FROM   REGION, NATION, SUPPLIER, PARTSUPP, PART, LINEITEM 

WHERE  S_SUPPKEY = PS_SUPPKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND PS_PARTKEY = P_PARTKEY 

AND P_TYPE LIKE '%BRASS%' 

AND L_COMMITDATE < L_RECEIPTDATE 

AND R_NAME = 'ASIA' 

GROUP BY  N_NAME; 

 

 

Figure 4.28  Relational Algebra Query Tree of Query Q12 
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Query Q13 with the query frequency of 5 produces the average of extended 

price for each brand that customer in region, ASIA, ordered in 1994 with specific part 

type that available quantity is more than 200, and the committed date is before receipt 

date. Its relational algebra tree is shown in Figure 4.29. 

 

Query Q13 

SELECT  P_BRAND, AVG(L_EXTENDEDPRICE) 

FROM  REGION, NATION, SUPPLIER, CUSTOMER, PART, ORDERS, 

PARTSUPP, LINEITEM 

WHERE  C_CUSTKEY = O_CUSTKEY 

AND C_NATIONKEY = S_NATIONKEY  

AND S_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND S_SUPPKEY = PS_SUPPKEY 

AND P_PARTKEY = PS_PARTKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND L_COMMITDATE < L_RECEIPTDATE 

AND P_TYPE LIKE '%BRASS%' 

AND PS_AVAILQTY < 2000 

AND R_NAME = 'ASIA' 

GROUP BY  P_BRAND; 
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Figure 4.29  Relational Algebra Query Tree of Query Q13 

 

  Suppose that all base relations are updated once and the frequencies of 

executing a query of Q8, Q9, Q10, Q11, Q12 and Q13 are 6, 4, 5, 5, 2 and 5 

respectively.  

 

The relevance of the new queries to existing MVPP generated in static phase 

shown in Figure 4.23 is explained as follows:  

Q8 is classified as nothing in common because there is neither conjunctive 

joined nor select operation sharable subexpression with existing MVPP. 

Q9 and Q10 are classified as totally overlapping or subsumption. Tmp9 in 
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Q11 and Q12 are classified as partially overlapping. Q11 is partially 

overlapping with Q7, the materialized view Tmp24 in existing MVPP is the sharable 

subexpression for Q7 and Q11. The other nodes of Q11 are not the sharable 

subexpression with the existing MVPP. Q12 is partially overlapping with Q1 and Q4. 

Tmp17 is sharing subexpression for Q12, Q1 and Q4. Tmp19 is sharable 

subexpression for Q12 and Q1. The other nodes of Q12 are not sharable 

subexpression with the existing MVPP. 

Q13 is constructed by using all base relations in TPC-H schema and it has 

sharable subexpressions with existing MVPP that will be explained in section 4.6.1.6. 

 

4.6.1.2 Analysis Result of the Nothing in Common Data Set 

We add only Q8 into existing MVPP, as Q8 does not have shareable 

subexpression with the existing MVPP then new nodes Tmp26, Tmp27 and Tmp28 

are created to support Q8. Figure 4.30 shows MVPP after Q8 is merged. 

Next, the affected node identification algorithm mentioned in section 3.7.2 is 

applied to identify the affected nodes. We first depth first search to find the existing 

nodes used to construct Q8 that are Tmp7 and Tmp18. Although Q8 is built on 

existing intermediate nodes, Tmp7 and Tmp18, both nodes are the project operation 

the ancestor of base relation that is not taken into consideration as the directly affected 

node. Thus, only new nodes {Tmp26, Tmp27 and Tmp28} are the set of views to be 

selected to be new materialized views. 

Therefore, the number of nodes to be selected in the dynamic phase is 3 nodes. 

All nodes are new nodes to support new requirements, whereas the number of nodes 

to be selected by rerun static approach for all queries is 28 nodes described below. 

Thereafter, the selection algorithm, 2PO, is applied to select the set of views to be 

materialized. The result is that only Tmp28 is materialized. 

To evaluate the performance of our dynamic approach by the static approach 

is performed on the set of all queries which includes Q1 to Q7 and Q8. Figure 4.31 

shows the re-optimized MVPP generated by static approach for Q1 to Q7 and Q8. The 

MVPP structure in Figure 4.31 provides the same structure as the dynamic approach 

in Figure 4.30. The comparison of the results from the static approach and the 

dynamic approach are shown in Table 4.13. The result shows that although total cost 
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of the static approach equal to the dynamic approach, the number of nodes to be 

selected by dynamic approach is 3 nodes, which all are new nodes, whereas the 

number of nodes to be selected by static approach that we have to rerun from the 

beginning is 28 nodes for all queries, Q1 to Q7 and Q8. 

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 represents new materialized view node selected in dynamic phase 

 

Figure 4.30  The Existing Re-Optimized MVPP with Q8 by Dynamic Approach 

 

 
 represents materialized view node same as static approach for Q1-Q7 

 represents additional materialized view node selected by static approach 

 

Figure 4.31  The Re-Optimized MVPP for Q1-Q7, and Q8 by Static Approach  
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Table 4.13  The Comparison of the Result from the Static Approach and the Dynamic 

Approach for the Nothing in Common Data Set  

 

Approach Number of 

Nodes to be 

Selected 

Cost of 

Query Processing 

Cost of 

Maintenance 

Total Cost 

Static 28 533,536,140,392 5,891,229,392,788 6,424,765,533,180 

Dynamic 3 533,536,140,392 5,891,229,392,788 6,424,765,533,180 

 

The conclusion for the query identified as nothing in common is that as new 

queries do not have sharable subexpression with the existing MVPP so new 

intermediate nodes have to be created to support new query. The existing nodes are 

not affected by new queries. The only new intermediate nodes are the member of 

nodes to be the set of views to select to be new materialize view. Therefore, we have 

not to recalibrate all queries, existing and new queries, again for the nothing in 

common data set.  

 

4.6.1.3 Analysis Result of the Subsumption Data Set 

We add Q9 and Q10, classified as subsumption or totally overlapping, 

into the existing MVPP. There is no new intermediate node generated because Q9 and 

Q10 are constructed on the existing intermediate nodes that would be either virtual 

views or materialized views. Q9 is subgraph of existing MVPP without materialized 

view in that subgraph whilst Q10 uses the existing materialized view. The MVPP 

after merging Q9 and Q10 is shown in Figure 4.32.  
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 represents materialized view node selected in static phase for Q1-Q7 

 represents new materialized view node selected in dynamic phase 

 

Figure 4.32  The Existing Re-Optimized MVPP with Q9 and Q10 by Dynamic 

Approach 

 

Next, the affected node identification algorithm mentioned in Figure 3.14 in 

section 3.7.2 is applied to identify the affected nodes. The details of algorithm are list 

below: 

1. For each new query  

1.1 Depth first search from the root to base relations to determine the 

existing intermediate nodes, vi , used to construct the new query. 

1.2 Calculate weight w(v) of each node vi. 

vi , that are conjunctively joined with positive weight or project operation 

that is not the ancestor of base relation or select operation, are inserted into 

the list Mdirect. 

2. For each node vi in list Mdirect search its ancestor node uj, uj   Mdirect, up to 

the query node 

2.1 calculate weight of node uj, 

2.2  if ( weight vi >  weight uj ) and uj is existing materialized view then  

put uj  into list indirectly affected node, Mindirect  

2.3 if ( weight vi <  weight uj ) then  

traverse in bottom-up way to find the node that return maximum 

weight uj of each branch. 

put uj  into list Mindirect  

region nation supplier lineitem orders

Q3

[5][1]

[1][1]

sr_name=’ASIA’  

pr_regionkey

p n_regionkey 
     n_nationkey 
     n_name   

[25][25]

[25][5]
[10000][10000]

[50000][2003]

p s_nationkey
     s_suppkey

[6000000][6000000]

[1201113] [12018000000]

[182183]

Tmp1

Tmp2

Tmp3

Tmp4
Tmp5

Tmp6

Tmp7

Tmp8

Tmp9

Tmp11

[273369715461]

[182183]result3

p l_suppkey
     l_orderkey
     l_quantity
     l_tax 
     l_discount

p o_orderkey 
     o_custkey 
     o_totalprice   
     o_orderpriority

so_orderdate

>=’1994-01-01'   

  o_orderdate

<’1995-01-01' 

[227597][227597]

Tmp10

[227597] [1500000]

7

customer

[150000][150000]
Tmp12

Tmp13
[750000]

[30183]

[46008] [6869560251]

Tmp14

Q2

[184082]result2

[184082]

Tmp15

[276048000000]

6

[160240] [1602400000]

Tmp17

partsupp

[800000][800000]

p ps_suppkey
     ps_partkey
     ps_supplycost 
     ps_avaiqty 

Tmp16

part

[200000][200000]

[160240]
[32048000000]

p p_partkey 
     p_brand  
     p_type 
     p_size 
 

Q1

[160240]result1

2

Tmp18

Tmp19

[200000][9069]

Tmp20

Tmp21

[36276] [7255200000]

s p_brand<>’BRAND#45’ 

      not p_type like ‘%BRASS%’ 

      p_size in (9,19,49)  

Q5

[36276]result5

Q6

Tmp22[36276]

[36276]

[362760000]

result6

9

5
Q4

[967519280]

Tmp23 [24036000000]

result4 [967519280]

Tmp24

[910519]
[1365582000000

Q7

Tmp25

result7

[910519] [136577850000]

[910519]

23

gn_name
   sum(l_quantity)

gcount
   (ps_suppkey) 

Q10

[910519]result10

5

go_orderpriority
    min(l_discount)    

Q9
4

gn_name
    avg(o_totalprice)    

result9 [46008]

[150000] [5] [25] [10000] [6000000] [1500000] [800000] [200000]

gn_name 
   min( ps_suppltcost )

p c_nationkey
     c_custkey    
     c_acctbal 
     c_mktsegment

gn_name 
    count(l_orderkye)

gc_mktsegment  
    sum(l_discount)

gs_name
    sum(ps_supplycost)    

gs_name
    sum(ps_supplycost)



93 

We first depth first search to find the existing nodes used to construct Q9 and 

Q10. The existing nodes used to construct Q9 are {Tmp14, Tmp10, Tmp9, Tmp13, 

Tmp4, Tmp3, Tmp2, Tmp1 and Tmp12} and Q10 are {Tmp24, Tmp10, Tmp9 and 

Tmp7}.  

 

The weight w(v) is calculated as: 

 

     
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w(v) denotes weight of node 

vO  denotes the queries which use view v. 

q
aC  denotes the accessing cost a for query q using view v. The cost of 

answering query q is the number of rows presented in the relation used to construct q. 

   fq denotes the frequency of executing a query.  

vI  denotes the base relations which are used to produce view v. 

r

mC  denotes the maintenance cost m for materialized view v based on base 

relation r, which is occasionally updated. 

 fu  denotes the frequency of updating base relation 

 

We calculate the weight of nodes used to construct Q9 and Q10 for example 

Tmp14. Tmp14 is derived by four base relations and accessed by Q2 and Q9. Q2 is 

the existing query which its frequency of executing the query is 6. Q9 is new query 

which its frequency of executing the query is 4. Then, weight of Tmp14 is {(6 + 4) * 

6869560251} – {4 * (5 + 1 + 25 + 25 + 150000 + 750000 + 1500000 + 227597 + 

6869560251)} = 41,206,850,894. As weight of Tmp14 is positive then Tmp14 is 

identified as the directly affected node. The weights of existing nodes used to 

construct Q9 and Q10 are shown in Table 4.14. The details of weight calculation are 

provided in Appendix D. 
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Table 4.14  The Weight of the Existing Nodes for Construct Q9 and Q10 

 

Existing Node Weight ( w(v) ) 

Tmp1 100 

Tmp2 15 

Tmp3 500 

Tmp4 413 

Tmp7 120,000,000 

Tmp9 36,000,000 

Tmp10 3,962,328 

Tmp12 2,100,000 

Tmp13 4,799,832 

Tmp14 41,206,850,894 

Tmp24 8,193,476,544,806 

 

Later the intermediate nodes, which are the conjunctively joined nodes with 

positive weight, or project operation that is not the ancestor of base relation or select 

operation, are the directly affected nodes. From Table 4.14, the directly affected nodes 

are {Tmp1, Tmp2, Tmp4, Tmp9, Tmp10, Tmp13, Tmp14 and Tmp24}. The weight of 

those nodes is increased because more queries build on them. 

Thereafter, we identify the indirectly affected nodes that are the ancestor 

nodes, with certain weight w(v), of directly affected nodes described as follows.  

Tmp1, its ancestor is Tmp2 that is the directly affected node, so skip to the 

next node in the list. 

Tmp2, its ancestor is Tmp4 that is the directly affected node, so skip to the 

next node in the list. 

Tmp4, its ancestor nodes are Tmp6 and Tmp13. We consider only Tmp6 

because Tmp13 is already in the list of directly affected node that we have to identify 

the indirectly affected node of Tmp13 instead. The weight of ancestor nodes of Tmp4 

and Tmp6 are shown in Table 4.15. As weight of Tmp6 which is 369,832 is higher 

than that of Tmp4 which is 413 shown in Table4.14, and Tmp6 has the ancestor 

nodes. Then we continues move up to the query node to look for the ancestors that 
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provide the maximum weight of each branch. The branch, which includes Tmp6, 

Tmp8 and Tmp11, returns weight of Tmp11 as the maximum weight. The other 

ancestor nodes of Tmp6 are Tmp17, Tmp19 and Tmp23. Their weights are negative. 

Then, the indirectly affected node of Tmp4 is only Tmp11.  

Next node in the directly affected node list is Tmp9, its ancestor is Tmp10 that 

is the directly affected node, so skip to the next node in the list. 

Tmp10, its ancestor is Tmp24 that is the directly affected node, so skip to the 

next node in the list. 

Tmp13, its ancestor is Tmp14 that is the directly affected node, so skip to the 

next node in the list. 

Tmp14, its ancestor is only Tmp15. As weight of Tmp15, shown in Table 

4.15, is higher than that of Tmp14 then Tmp15 is identified as the indirectly affected 

node.  The last directly affected node is Tmp24, its ancestor is Tmp25. As weight of 

Tmp25, shown in Table 4.15, is negative then it is not identified as the indirectly 

affected node. 

 

Table 4.15  The Weight of Ancestor Nodes of Directly Affected Node of Q9, Q10 

 

Directly Affected Node Ancestor  Node Weight of Ancestor Node 

Tmp4 Tmp6 369,832 

 Tmp8 36,029,759,776 

 Tmp11 486,610,492,657 

 Tmp17 -3,440,224 

 Tmp19 -104,160,300,280 

 Tmp23 -80,125,050,280 

Tmp14 Tmp15 241,657,060,480 

Tmp24 Tmp25 -4,096,769,632,791 

 

Then, the affected nodes are: 

Directly affected nodes: Tmp14, Tmp13, Tmp10, Tmp9, Tmp4, 

Tmp2, Tmp1 and Tmp24 

Indirectly affected nodes: Tmp11, Tmp15 
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Therefore, the number of nodes to be selected in the dynamic phase is 10 

nodes, all nodes are the existing nodes, whereas the number of nodes to be selected by 

running the static approach is 25 nodes described below. Thereafter, the selection 

algorithm, 2PO, is applied to select the set of views to be materialized. The result is 

that Tmp13 and Tmp10 are changed from virtual views to materialized views because 

their weights are increased enough to be materialized to support new requirements.  

To evaluate the performance of our dynamic approach by the static approach 

is performed on the set of all queries which includes Q1 to Q7 and Q9, Q10. After we 

apply our MVPP re-optimization algorithm to the cheapest MVPP, the MVPP 

structure in Figure 4.33 provides the same structure as the dynamic approach in 

Figure 4.32. The comparison of result from the static approach and the dynamic 

approach are shown in Table 4.16. The result shows that although total cost of static 

approach equal to the dynamic approach, the number of nodes to be selected by the 

dynamic approach is less than that of static approach that we have to rerun from the 

beginning for all queries Q1 to Q7, Q9 and Q10.  

 

 
 represents materialized view node same as static approach for Q1-Q7 

 represents additional materialized view node selected by static approach 

 

Figure 4.33  The Re-Optimized MVPP for Q1-Q7, and Q9-Q10 by Static Approach 
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Table 4.16  The Comparison of the Result from the Static Approach and the Dynamic 

Approach for the Subsumption Data Set 

 

Approach Number of 

Nodes to be 

Selected 

Cost of  

Query Processing 

Cost of 

Maintenance 

Total Cost 

Static 25 561,015,596,786 5,587,305,318,217 6,148,320,915,003 

Dynamic 10 561,015,596,786 5,587,305,318,217 6,148,320,915,003 

 

The conclusion for the query identified as subsumption of the existing MVPP 

is that the existing node might be changed from the virtual view to materialized view 

depending on the frequency of executing the queries. If the frequency is higher, it is 

more likely that the nodes will be materialized. There is no new node created as the 

new queries can be totally derived from the existing nodes. Therefore, we have not to 

rerun the materialized view selection using static approach for all queries again. 

 

4.6.1.4 Analysis Result of the Partially Overlapping Data Set 

We add Q11 and Q12, classified as partially overlapping, into the 

existing MVPP. Some new intermediate nodes have to be created as they are not 

sharable subexpression with the existing query. The subtree of Q11 is constructed on 

the existing materialized view, Tmp24. Q12 is constructed on the virtual views, 

Tmp19. Figure 4.34 shows MVPP after Q11 and Q12 are merged into existing 

MVPP. 
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 represents materialized view node selected in static phase for Q1-Q7 

 

Figure 4.34  The Existing Re-Optimized MVPP with Q11 and Q12 by Dynamic 

Approach 

 

Next, the affected node identification algorithm is applied to identify the 

affected nodes as follows:  

We first depth first search to find the intermediate nodes used to construct Q11 

and Q12. The intermediate nodes used to construct Q11 are {Tmp28, Tmp16, Tmp27, 

Tmp24, Tmp10, Tmp9 and Tmp7}. Tmp27 and Tmp28 are new intermediate nodes, 

the others are existing intermediate nodes, and Tmp24 is the existing materialized 

view. The intermediate nodes used to construct Q12 are {Tmp30, Tmp26, Tmp7, 

Tmp29, Tmp19, Tmp18, Tmp17, Tmp16, Tmp6, Tmp5, Tmp4, Tmp3, Tmp2 and 

Tmp1}. Tmp30, Tmp29, Tmp26 are new intermediate nodes and the others are the 

existing intermediate nodes. 

Later, we calculate the weight w(v) of the existing intermediate node used to 

construct Q11 and Q12. For example, the weight of Tmp17 is (2 + 2 + 2) * 

(1602400000) – (4) * (5 + 1 + 25 + 25 + 10000 + 50000 + 800000 + 1602400000) = 

41,206,850,894. As weight of Tmp17, conjunctive joined nodes, is positive then it is 

identified as the directly affected node. The weights of existing nodes used to 

construct Q11 and Q12 are shown in Table 4.17.  

region nation supplier lineitem orders

Q3

[5][1]

[1][1]

sr_name=’ASIA’  

pr_regionkey

p n_regionkey 
     n_nationkey 
     n_name   

[25][25]

[25][5]

[10000][10000]

[50000][2003]

p s_nationkey
     s_suppkey

[6000000][6000000]

[1201113]
[12018000000]

[182183]

Tmp1

Tmp2

Tmp3

Tmp4

Tmp5

Tmp6

Tmp7

Tmp8

Tmp9

Tmp11

[273369715461]

[182183]result3

p l_suppkey
     l_orderkey
     l_quantity
     l_tax
     l_commitdate
     l_receiptdate
     l_extendedprice

p o_orderkey 
     o_custkey 
     o_totalprice
     o_orderstatus

so_orderdate

>=’1994-01-01'   

  o_orderdate

<’1995-01-01' 

[227597][227597]

Tmp10

[227597] [1500000]

7

customer

[150000][150000]

Tmp12

Tmp13 [750000]
[30183]

[46008] [6869560251]

Tmp14

Q2

[184082]result2

[184082]

Tmp15
[276048000000]

6

[32192]

[1602400000]

Tmp17

partsupp

[800000][800000]

p ps_suppkey
     ps_partkey
     ps_supplycost 
     ps_avaiqty 

Tmp16

part

[200000][200000]

[160240] [32048000000]

p p_partkey 
     p_brand  
     p_type 
     p_size 
 

Q1

[160240]result1

2

Tmp18

Tmp19

[200000][9069]

Tmp20

Tmp21

[36276] [7255200000]

sp_brand<>’BRAND#45’ 

     not p_type like ‘%BRASS%’ 

     p_size in (9,19,49)  

Q5

[36276]result5

Q6

Tmp22[36276]

[36276]

[362760000]

result6

9

5

Q4

[967519280]

Tmp23

[24036000000]

result4 [967519280]

Tmp24

[910519] [1365582000000

Q7

Tmp25

result7

[910519] [136577850000]

[910519]

23

gn_name
   sum(l_quantity )

gcount
   (ps_suppkey) 

[6000000]

Tmp26

s l_commitdate 

< l_receiptdate

[3793296]

Q12

2

Q11

5

[575169]

[460135200000][575169]

[910519]
[575169]

Tmp27

go_orderstatus
    sum(l_extendedprice)    

result12

Tmp28

gn_name
    
max(l_extendedprice)    

Tmp29

Tmp30

[160240]

[160240]

s p_type 

like ‘%BRASS%’

[122113784832][152424]

[152424]

[150000] [5] [25] [10000] [6000000]

result11

[1500000] [800000] [200000]

s l_commitdate < l_receiptdate

gn_name 
   min( ps_suppltcost )

p c_nationkey
     c_custkey    
     c_acctbal 
     c_mktsegment

gn_name 
    count(l_orderkye)

gc_mktsegment  
    sum(l_discount)

gs_name
    sum(ps_supplycost)    

gs_name
    sum(ps_supplycost)



99 

Table 4.17  The Weight of the Existing Nodes for Construct Q11 and Q12 

 

Existing Node Weight (w(v) ) 

Tmp1 90 

Tmp2 13 

Tmp3 450 

Tmp4 363 

Tmp5 210,000 

Tmp6 469,832 

Tmp7 120,000,000 

Tmp9 30,000,000 

Tmp10 3,051,940 

Tmp16 15,200,000 

Tmp17 3,201,359,776 

Tmp18 3,400,000 

Tmp19 -40,065,300,280 

Tmp24 8,193,476,544,806 

 

Later intermediate nodes, which are the conjunctively joined nodes with 

positive weight or project operation that is not the ancestor of base relation or select 

operation, are the directly affected nodes. Therefore, from Table 4.17 the directly 

affected nodes are {Tmp1, Tmp2, Tmp4, Tmp6, Tmp9, Tmp10, Tmp17 and Tmp24}. 

Thereafter, we identify the indirectly affected nodes that are the ancestor 

nodes, with certain weight w(v), of the directly affected nodes as follows.  

Tmp1, its ancestor is Tmp2 that is the directly affected node, so skip to the 

next node in the list. 

Tmp2, its ancestor is Tmp4 that is the directly affected node, so skip to the 

next node in the list. 

Tmp4, its ancestors are Tmp6 and Tmp13. Tmp6 is the directly affected node 

then we will identify the indirectly affected node of Tmp6 instead. The weights of 

ancestor nodes of Tmp4 on branch Tmp13 are shown in Table 4.18. As weight of 
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Tmp15 is the maximum weight of this branch then Tmp15 is the indirectly affected 

node.  

Tmp6, its ancestors are Tmp8 and Tmp17. Tmp17 is the directly affected node 

then we will identify the indirectly affected nodes of Tmp17 instead. The weights of 

ancestor nodes of Tmp6 on branch Tmp8 are shown in Table 4.18. As weight of 

Tmp11 is the maximum weight of this branch then Tmp11 is the indirectly affected 

node. 

 

Table 4.18  The Weight of Ancestor Nodes of Directly Affected Node of Q11, Q12 

 

Directly Affected Node Ancestor  Node Weight of Ancestor Node 

Tmp4 Tmp13 1,799,832 

 Tmp14 13,728,609,890 

 Tmp15 241,657,060,480 

Tmp6 Tmp8 36,029,759,776 

 Tmp11 486,610,492,657 

Tmp17 Tmp19  -40,065,300,280 

 Tmp23  -80,125,050,280 

Tmp24 Tmp25 -4,096,769,632,791 

 

Tmp9, its ancestor is Tmp10 that is the directly affected node, so skip to the 

next node in the list. 

Tmp10, its ancestor is Tmp24 that is the directly affected node, so skip to the 

next node in the list. 

Tmp17, its ancestor nodes are Tmp19 and Tmp23. The weights of Tmp19 and 

Tmp23 are shown in Table 4.18. As weight of Tmp19 and Tmp23 is negative then 

Tmp19 and Tmp23 are not the indirectly affected nodes. 

The last node in the directly affected node list is Tmp24, its ancestor node is 

only Tmp25. As weight of Tmp25 is negative as shown in table 4.18, then Tmp25 is 

not identified as the indirectly affected node. 
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Then, the affected nodes are: 

Directly affected nodes: Tmp1, Tmp2, Tmp4, Tmp6, Tmp9, Tmp10, 

Tmp17 and Tmp24 

Indirectly affected nodes: Tmp11, Tmp15 

 

Therefore, the number of nodes to be selected in the dynamic phase is 15 

nodes, 10 existing nodes and 5 new created nodes, whereas the number of nodes to be 

selected by running the static approach is 30 nodes described below. Thereafter, the 

selection algorithm, 2PO, is applied to select the set of views to be materialized. The 

result is that Tmp17 is materialized and Tmp6 is un-materialized. Tmp17 is the 

existing virtual view changed to materialize view.  

 
 represents materialized view node selected in static phase for Q1-Q7 

 represents new materialized view node selected in dynamic phase 

 represents un-materialized node in dynamic phase 

 

Figure 4.35  The Existing Re-Optimized MVPP with Q11 and Q12 by Dynamic 

Approach after Applying 2PO 

 

 Considering in Figure 4.35, Tmp6 is created to support Q1, Q3, Q4 and Q12. 

When Tmp11 and Tmp17 are materialized because of adding Q11 and Q12, then Q1 

and Q4 are rewritten by using Tmp17 instead of Tmp6, Q12 is derived by Tmp17, and 

Q3 is derived by Tmp11. So, those queries are not derived by Tmp6 anymore. 
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Therefore Tmp6 is un-materialized. If Tmp6 is materialized, it will provides higher 

materialized view maintenance cost but the query processing cost is not reduced, 

reflecting the higher total cost.  

To evaluate the performance of our dynamic approach by the static approach 

is performed on the set of all queries which includes Q1 to Q7, Q11 and Q12. We 

generate 9 MVPPs for 9 queries by Yang et al. algorithm and select the cheapest 

MVPP shown in Figure 4.36. 

 

 

Figure 4.36  The Cheapest MVPP for Q1-Q7, and Q11-Q12 by Static Approach 

 

Later, we apply our MVPP re-optimization algorithm to the cheapest MVPP. 

The MVPP structure shown in Figure 4.37 provides the same structure as our dynamic 

approach in Figure 4.35.  

Finally, we apply 2PO algorithm to select the set of views to be materialized. 

Figure 4.37 shows the MVPP with materialized view node generated by rerun static 

approach for Q1 to Q7, Q11 and Q12. The comparison of results from the static 

approach and the dynamic are shown in Table 4.19. The result shows that although 

total cost of static approach equal to the dynamic approach, the number of nodes to be 

selected by the dynamic approach is less than that of the static approach. 
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 represents materialized view node same as static approach for Q1-Q7 

 represents additional materialized view node selected by static approach 

 

Figure 4.37  The Re-Optimized MVPP for Q1-Q7, and Q11-Q12 by Static Approach 

 

Table 4.19  The Comparison of the Result from the Static Approach and the Dynamic 

Approach for Partially Overlapping Data Set  
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Total Cost 
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Dynamic 15 3,352,056,780,640 5,593,713,750,508 8,945,770,531,148 

 

The conclusion for the query identified as partially overlapping with the 

existing MVPP is that the existing node might be changed from virtual view to 

materialized view and virtual view might be materialized to support the new queries. 

New intermediate nodes are created to support new queries for the not the sharable 
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region nation supplier lineitem orders

Q3

[5][1]

[1][1]

sr_name=’ASIA’  

pr_regionkey

p n_regionkey 
     n_nationkey 
     n_name   

[25][25]

[25][5]

[10000][10000]

[50000][2003]

p s_nationkey
     s_suppkey 
     s_name

[6000000][6000000]

[1201113]
[12018000000]

[182183]

Tmp1

Tmp2

Tmp3

Tmp4

Tmp5

Tmp6

Tmp7

Tmp8

Tmp9

Tmp11

[273369715461]

[182183]result3

p l_suppkey
     l_orderkey
     l_quantity
     l_tax
     l_extendedprice
     l_commitdate
     l_receiptdate   
     l_discount

p o_orderkey 
     o_custkey 
     o_totalprice
     o_orderstatus

so_orderdate

>=’1994-01-01'   

  o_orderdate

<’1995-01-01' 

[227597][227597]

Tmp10

[227597] [1500000]

7

customer

[150000][150000]

Tmp12

Tmp13 [750000]
[30183]

[46008] [6869560251]

Tmp14

Q2

[184082]result2

[184082]

Tmp15
[276048000000]

6

[32192]

[1602400000]

Tmp17

partsupp

[800000][800000]

p ps_suppkey
     ps_partkey
     ps_supplycost 
     ps_avaiqty 

Tmp16

part

[200000][200000]

[160240] [32048000000]

p p_partkey 
     p_brand  
     p_type 
     p_size 
 

Q1

[160240]result1

2

Tmp18

Tmp19

[200000][9069]

Tmp20

Tmp21

[36276] [7255200000]

sp_brand<>’BRAND#45’ 

     not p_type like ‘%BRASS%’ 

     p_size in (9,19,49)  

Q5

[36276]result5

Q6

Tmp22[36276]

[36276]

[362760000]

result6

9

5

Q4

[967519280]

Tmp23

[24036000000]

result4 [967519280]

Tmp24

[910519] [1365582000000

Q7

Tmp25

result7

[910519] [136577850000]

[910519]

23

gn_name
   sum(l_quantity)

gcount
   (ps_suppkey) 

[6000000]

Tmp26

s l_commitdate 

< l_receiptdate

[3793296]

Q12

2

Q11

5

[575169]

[460135200000][575169]

[910519]
[575169]

Tmp27

go_orderstatus
    sum(l_extendedprice)    

result12

Tmp28

gn_name
    
max(l_extendedprice)    

Tmp29

Tmp30

[160240]

[160240]

s p_type 

like ‘%BRASS%’

[122113784832][152424]

[152424]

[150000] [5] [25] [10000] [6000000]

result11

[1500000] [800000] [200000]

s l_commitdate < l_receiptdate

p c_nationkey
     c_custkey    
     c_acctbal
     c_mktsegment

gn_name 
    count(l_orderkye)

gc_mktsegment  
    sum(l_discount)

gs_name
    sum(ps_supplycost)    

gn_name 
   min( ps_suppltcost )

gs_name
    sum(ps_supplycost)



104 

4.6.1.5 Analysis Result of Deleting the Query 

Deleting the query from data warehouse is the possible situation when 

the existing query is no longer required. We implement the deleting scenario by 

deleting Q3 from the existing MVPP shown in Figure 4.38. 

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure 4.38  The Re-Optimized MVPP Structure with Deleting Q3 for Dynamic and 

Static Approach 

 

After Q3 is deleted, we apply the affected node identification algorithm to 

identify the affected nodes described as follows: 

We first depth first search to find the existing nodes used to construct Q3. The 

nodes used to build Q3 are {Tmp11, Tmp10, Tmp9, Tmp8, Tmp7, Tmp6, Tmp5, 

Tmp4, Tmp3, Tmp2 and Tmp1}. After Q3 is deleted, the nodes used to construct only 

Q3 are deleted that are Tmp11 and Tmp8; the nodes used to construct Q3 and the 

other queries are remained and identified as the directly affected nodes. 

Later, we calculate the weight w(v) of the existing node used to construct the 

query. For example, weight of Tmp6 is (2+2)*(50000) – (3)*(5+1+25+25+5000) that 

is 184,832. The weights of existing nodes used to construct Q3 are shown in Table 

4.20. 
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Table 4.20  The Weight of the Existing Nodes for Q3 

 

Existing Node Weight ( w (v) ) 

Tmp1 45 

Tmp2 4 

Tmp3 225 

Tmp4 138 

Tmp5 120,000 

Tmp6 19,832 

Tmp7 48,000,000 

Tmp9 12,000,000 

Tmp10 320,776 

 

Later intermediate nodes, which are the conjunctively joined nodes with 

positive weight, or project operation that is not the ancestor of base relation or select 

operation, are the directly affected nodes. Therefore, from Table 4.20 the directly 

affected nodes are {Tmp1, Tmp2, Tmp4, Tmp6, Tmp9 and Tmp10}. 

Thereafter, we identify the indirectly affected nodes that are the ancestor 

nodes, with certain weight w(v), of the directly affected node described as follows: 

Tmp1, its ancestor is Tmp2 that is the directly affected node, so skip to the 

next node in the list. 

Tmp2, its ancestor is Tmp4 that is the directly affected node, so skip to the 

next node in the list. 

Tmp4, its ancestors are Tmp6 and Tmp13. Tmp6 is the directly affected node, 

we will identify the indirectly affected node of Tmp6 instead. The weights of ancestor 

nodes of Tmp4 on branch Tmp13 are shown in Table 4.21. As weight of Tmp15 is the 

maximum of this branch then it is identified as the indirectly affected node. 

Tmp6, its ancestor nodes are Tmp17, Tmp19 and Tmp23. The weights of 

ancestor nodes of Tmp6 are shown in Table 4.21. As their weight is negative then 

Tmp6 does not have ancestor node that is identified as the indirectly affected node.  

Tmp9, its ancestor is Tmp10 that is the directly affected node, so skip to the 

next node in the list. 
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Tmp10, the last node in the directly affected node list, its ancestor nodes are 

Tmp24 and Tmp25. Their weights are shown in Table 4.21. As weight of Tmp24 is 

the maximum of this branch then it is identified as the indirectly affected node. 

 

Table 4.21  The Weight of Ancestor Nodes of Directly Affected Node of Q3 

 

Directly Affected Node Ancestor  Node Weight of Ancestor Node 

Tmp4 Tmp13 1,799,832 

 Tmp14 13,728,609,890 

 Tmp15 241,657,060,480 

Tmp6 Tmp17 -3,440,224 

 Tmp19 -104,160,300,280 

 Tmp23 -80,125,050,280 

Tmp10 Tmp24 1,365,566,544,806 

 Tmp25 -4,096,769,632,791 

 

 

Then, the affected nodes are: 

Directly affected nodes: Tmp10, Tmp9, Tmp6, Tmp4, Tmp2 and 

Tmp1 

Indirectly affected nodes: Tmp15 and Tmp24 

 

Therefore, the number of nodes to be selected in the dynamic phase is 8 

existing nodes, whereas the number of nodes to be selected by rerun static approach 

for all queries, Q1, Q2, Q4, Q5, Q6 and Q7, is 23.  

Finally, the selection algorithm, 2PO, is applied to select the set of views to be 

materialized. Figure 4.38 show the re-optimized MVPP with materialized view nodes. 

In Figure 4.38, there is neither virtual view to be materialized nor materialized view to 

be un-materialized. The existing materialized view, Tmp6, is still the materialized 

view to support the other queries, Q1 and Q4. However its weight is reduced from 

369,832 to 19,832. The comparison of results from the static approach and dynamic 

approach are shown in Table 4.22.  The result shows that although total cost of the 
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static approach equal to the dynamic approach, the number of nodes to be selected by 

dynamic approach is less than that of the static approach. 

 

Table 4.22  The Comparison of the Result from the Static and the Dynamic Approach 

for Deleting Query Q3 

 

Approach Number of 

Nodes to be 

Selected 

Cost of 

Query Processing 

Cost of 

 Maintenance 

Total Cost 

Static 23 533,524,484,878 4,160,323,374,882 4,693,847,859,760 

Dynamic 8 533,524,484,878 4,160,323,374,882 4,693,847,859,760 

 

By the result of experiment and behavior of deleting the query, we classify 

deleting the existing query into the subsumption data set because the existing query is 

subsumption of MVPP. The weight of existing nodes that are affected is reduced 

because the frequency of executing the queries is decreased then the first part of 

weight w(v),   
 vOq

q

aq vqf C )(*)( , is reduced. Therefore, the existing materialized node 

that used to construct the deleted query may or may not be un-materialized. 

 

4.6.1.6 Analysis Result of Adding the Query Constructed on All 

Base Relations 

Moreover, to validate our affected node identification algorithm that 

aim to reduce the size of search space, we do further experiment by adding new 

query, Q13, which is constructed on all base relations in TPC-H schema. The purpose 

to implement this scenario is that the new query constructed on all base relations 

would possible to affect to all queries in the existing MVPPs. So, if we identify the 

query is affected rather than the intermediate node then all nodes used to derive those 

queries are the set of affected nodes. 

The dynamic MVPP after Q13 is merged into the existing re-optimized 

MVPPP is shown in Figure 4.39. 
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 represents materialized view node selected in static phase for Q1-Q7 

 

Figure 4.39  The Existing Re-Optimized MVPP with Q13 by Dynamic Approach 
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We first depth first search to find the existing nodes used to construct Q13 that 

are {Tmp19, Tmp18, Tmp17, Tmp16, Tmp6, Tmp5, Tmp4, Tmp3, Tmp2, Tmp1, 

Tmp25, Tmp24, Tmp10, Tmp9, Tmp7, and Tmp12}.  

Thereafter, we calculate the weight w(v) of the existing nodes used to 

construct Q13. For example Tmp19 is (2+5)*(32048000000) – (3)*(2003 + 800000 + 

1602400000 + 32048000000) = 123,382,393,991. So the directly affected nodes are 

{Tmp19, Tmp17, Tmp6, Tmp4, Tmp2, Tmp1, Tmp24, Tmp10 and Tmp9}. The 

weights of the existing node used to construct Q13 are shown in Table 4.23. 

 

Table 4.23  The Weight of the Existing Nodes for Construct Q13 

 

Existing Node Weight ( w (v) ) 

Tmp1 105 

Tmp2 16 

Tmp3 525 

Tmp4 438 

Tmp5 240,000 

Tmp6 619,832 

Tmp7 120,000,000 

Tmp9 30,000,000 

Tmp10 3,051,940 

Tmp12 2,250,000 

Tnp16 17,600,000 

Tmp17 8,008,559,776 

Tmp18 4,000,000 

Tmp19 56,078,699,720 

Tmp24 8,193,476,544,806 

Tmp25 -3,413,880,382,791 

 

Later the intermediate nodes, which are the conjunctively joined nodes with 

positive weight, or project operation that is not the ancestor of base relation or select 
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operation, are identified as the directly affected nodes. Therefore, the directly affected 

nodes are {Tmp19, Tmp17, Tmp6, Tmp4, Tmp2, Tmp1, Tmp24, Tmp10 and Tmp9}. 

Next step, we identify the indirectly affected nodes that are the ancestor nodes, 

with certain weight w(v), of the directly affected nodes described as follows: 

Tmp1, its ancestor is Tmp2 that is the directly affected node, so skip to the 

next node in the list. 

Tmp2, its ancestor is Tmp4 that is the directly affected node, so skip to the 

next node in the list. 

Tmp4, its ancestors are Tmp6 and Tmp13. Tmp6 is the directly affected node 

then we will identify the indirectly affected node of Tmp6 instead. The weights of 

ancestor nodes of Tmp4 on branch Tmp13 are shown in Table 4.24. As weight of 

Tmp15 is the maximum of this branch then it is identified as the indirectly affected 

node. 

Tmp6, its ancestors are Tmp8 and Tmp17. Tmp17 is the directly affected node 

then we will identify the indirectly affected node of Tmp17 instead. The weights of 

ancestor nodes of Tmp6 on branch Tmp8 are shown in Table 4.24. As weight of 

Tmp11 is the maximum of this branch then it is identified as the indirectly affected 

node. 

Tmp9, its ancestor is Tmp10 that is the directly affected node, so skip to the 

next node in the list. 

Tmp10, its ancestor is Tmp24 that is the directly affected node, so skip to the 

next node in the list. 

Tmp17, its ancestors are Tmp19 and Tmp23. As Tmp19 is identified as the 

directly affected node then we consider Tmp23 only. From Table 4.24, the weight of 

Tmp23 is negative then Tmp23 is not the indirectly affected node.  

Tmp24, the last node in the directly affected node list, its ancestor is Tmp25. 

From Table 4.24, the weight of Tmp25 is negative then Tmp25 is not identified as the 

indirectly affected node. 

  



111 

Table 4.24  The Weight of Ancestor Nodes for the Directly Affected Node of Q13 

 

Directly Affected Nodes Ancestor  Nodes Weight of Ancestor Node 

Tmp4 Tmp13 1,799,832 

 Tmp14 13,728,609,890 

 Tmp15 241,657,060,480 

Tmp6 Tmp8 36,029,999,776 

 Tmp11 486,610,792,657 

Tmp24 Tmp25 -3,413,880,382,791 

 

Therefore, the affected nodes are: 

Directly affected nodes: Tmp19, Tmp17, Tmp6, Tmp4, Tmp2, 

Tmp1, Tmp24, Tmp10 and Tmp9 

Indirectly affected nodes: Tmp11 and Tmp15 

 

Therefore, the number of nodes to be selected in the dynamic phase is 14 

nodes, 11 existing nodes and 3 new created nodes, whereas the number of nodes to be 

selected by the static approach for all queries is 28 nodes described below. Thereafter, 

the selection algorithm, 2PO, is applied to select the set of views to be materialized. 

The result is that Tmp19 and Tmp17 are the existing virtual views changed to 

materialize views whilst Tmp6, the existing materialized view, is un-materialized to 

be virtual view. Tmp6 is un-materialized because it is not accessed by any queries 

anymore; Q4 derived by materialized view Tmp17 instead.  
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 represents materialized view node selected in static phase for Q1-Q7 

  represents materialized view node selected in dynamic phase 

 represents un-materialized node in dynamic phase 

 

Figure 4.40  The Existing Re-Optimized MVPP with Q13 by Dynamic Approach 

after Applying 2PO 

 

To evaluate the performance of our dynamic approach by the static approach 

is performed on the set of all queries which includes Q1 to Q7 and Q13. We generate 

all MVPPs for those 8 queries by Yang et al. algorithm and select the cheapest MVPP 

shown in Figure 4.41. Later, we apply our MVPP re-optimization algorithm to the 

cheapest MVPP thus Q1, Q5, Q6 and Q13 have to be rewritten because their query 

processing cost is higher than that of the other MVPPs. The MVPP after applying our 

MVPP re-optimization algorithm in Figure 4.42 provides the same structure as our 

dynamic approach in Figure 4.40. 
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Figure 4.41  The Cheapest MVPP for Query Q1 to Q7, and Q13 by Static Approach 

 

 
 represents materialized view node same as static approach for Q1-Q7 

 represents additional materialized view node selected by static approach 

 

Figure 4.42  The Re-Optimized Cheapest MVPP for Query Q1 to Q7, and Q13 by 

Static Approach  
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Finally, we apply 2PO algorithm to select the set of views to be materialized. 

The comparison of the results from the static approach and the dynamic approach for 

Q1 to Q7 and Q13 are shown in Table 4.25. The result shows that although the total 

cost of dynamic approach equal to the static approach the number of nodes to be 

selected by the dynamic approach is less than that of the static approach.  

 

Table 4.25  The Comparison of the Result for the Static Approach and the Dynamic 

Approach for Query Q1-Q7 and Q13 

 

Approach Number of 

Nodes to be 

Selected 

Cost of 

Query Processing 

Cost of 

 Maintenance 

Total Cost 

Static 28 1,164,589,162,793 5,593,713,750,508 6,758,302,913,301 

Dynamic 14 1,164,589,162,793 5,593,713,750,508 6,758,302,913,301 

 

The conclusion for adding the query constructed on all base relations is that 

we can identify the specific existing nodes that are affected to be the set of views for 

selection to be materialized. Considering the Figure 4.39, if we identify the query is 

affected rather than node is affected then all 7 existing queries includes 25 nodes that 

are affected. 

The details of the affected node identification algorithm results for section 

4.6.1.3 to 4.6.1.6 are provided in Appendix D. 

 

4.6.2 Merging New Requirements into the Existing MVPP 

Implementation 

In the real situation, however, there are several types of new query added 

simultaneously, so we add all queries Q8-Q13 together into the existing MVPP. The 

method for merging new requirements into the existing MVPP, mentioned in Figure 

3.13 in section 3.7.1, is applied when many queries are added. The details are listed as 

follows: 
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1. For every optimal query processing plan for any query, if there is a join 

operation involved, push select, project operations and aggregate function up along 

the tree. 

2. Create a list of the new queries in descending order based on the result of 

their query access frequency multiplied by query cost. 

3. Merge the new query in the list into existing MVPP according to their order 

in the list by comparing as follows: 

3.1 If there is sharable subexpression available for new query  

then 

merge to that sharable subexpression 

If sharable subexpression has select operation and new query 

also has the same select operation  

then  

push down select operation of new query  

3.2 If no sharable subexpression then create new node for new query 

4. Repeat step 3 for other queries until all queries in the list are merged into 

existing MVPP. 

5. Push down select, project and aggregate functions as deep as possible. 

6. Move the first new query to the end of the list. 

7. Repeat step 3 to 6 to generate all new MVPPs. 

8. Calculate total query processing cost based on base relations and existing 

materialized views for each MVPP and select the cheapest MVPP. 

9. Apply the re-optimized algorithm described in section 3.4 to the cheapest 

MVPP. 

 

First, for every optimal query plan of the new requirements, select, project 

operations and aggregate functions are pushed up along the tree, if there is a join 

operation involved. Thereafter, we calculate the weight which is the frequency of 

executing the query multiplied with the query cost of queries shown in Table 4.26. 

We create a list of queries and order them based on descending order of their weight. 

Then the initial list is {Q10, Q8, Q11, Q12, Q9 and Q13}. 
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Table 4.26  The Query Access Frequency, Query Cost, and Query Access Frequency 

Multiplied by Query Cost of Q8 to Q13 

 

Query 
Frequency of 

Executing Query(fq) 
Query Cost fq * Query Cost 

Q8 6 758,746 4,552,476 

Q9 4 46,008 184,032 

Q10 5 910,519 4,552,595 

Q11 5 575,169 2,875,845 

Q12 2 152,424 304,848 

Q13 5 215 1,075 

 

Thereafter, all queries in the list are merged into the existing re-optimized 

MVPP, generated in the static phase, shown as Figure 4.23. 

Starting with Q10 that has conjunctively join (ORDERS   LINEITEM) that 

already available in the existing MVPP that is Tmp24. However, Tmp24 includes the 

select operation (so_orderdate>=’1994-01-01’ and o_orderdate <’1995-01-01’ ORDER) then this select 

operation of Q10 is push down. So, Q10 is merged into the existing MVPP at Tmp24 

and no new intermediate node created for Q10. Figure 4.43 (a) show the dynamic 

MVPP when Q10 is merged into the existing MVPP. Next, when Q8 is merged, as 

there is no conjunctive joined node for PART and LINEITEM then new intermediate 

node is introduced. The first dynamic MVPP when Q8 is merged is shown in Figure 

4.43 (b). Later, when Q11 is merged, the existing conjunctive joined node is available 

for subtree of Q11 that is Tmp24. The remaining base relation is PARTSUPP then the 

new node is introduced as a join operation between Tmp24 and PARTSUPP, {Tmp24 

  PARTSUPP}.  The first dynamic MVPP, after Q11 is merged, is shown in Figure 

4.43 (c). 
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 represents materialized view node selected by static approach for Q1-Q7 

 

(a) The first dynamic MVPP after Q10 is merged into the existing MVPP 

 

 
 represents materialized view node selected by static approach for Q1-Q7 

 

(b) The first dynamic MVPP after Q8 is merged into the existing MVPP 

 

Figure 4.43  The Result of Merging Steps for the First Dynamic MVPP 
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 represents materialized view node selected by static approach for Q1-Q7 

 

(c) The first dynamic MVPP after Q11 is merged into the existing MVPP 

 

 
 represents materialized view node selected by static approach for Q1-Q7 

 

(d)  The first dynamic MVPP after Q12 is merged into the existing MVPP 

 

Figure 4.43  (Continued) 
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represents materialized view node selected by static approach for Q1-Q7 

 

(e) The first dynamic MVPP after Q9 is merged into the existing MVPP 

 

Figure 4.43  (Continued) 
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Table 4.27  The Possible Execution Plans for Q13 in the First Dynamic MVPP 

  

Plan Execution Plan 

Plan 1 (REGION   NATION   SUPPLIER   PARTSUPP   PART)  

that is Tmp19,  (LINEITEM   ORDERS   CUSTOMER) that is 

Tmp25. Its query processing cost is 869,827,064,180 

Plan 2 {(REGION   NATION   SUPPLIER   PARTSUPP   PART) 

  LINEITEM} that is Q12 and then join with ORDERS   

CUSTOMER. Its query processing cost is 817,446,813,290 

 

As we match the optimal individual plan of query from the leaf node to the 

root node with the existing MVPP and merge it to the subgraph of MVPP which 

provides the number of base relations that are conjunctive joined as much as possible. 

Then, the second plan is chosen, also the second plan provide query processing cost 

less than that of the first plan. The details of query processing cost of these plans are 

provided in Appendix B. Figure 4.43 (f) shows the MVPP after Q8-Q13 are merged. 

 
 represents materialized view node selected by static approach for Q1-Q7 

 

(f) The first dynamic MVPP after all new queries are merged 

 

Figure 4.43  (Continued) 
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Next step of merging process, we push down the select, project and aggregate 

functions for the first dynamic MVPP as deep as possible to optimize MVPP. The 

first dynamic MVPP after optimized is shown in Figure 4.44 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure 4.44  The First Dynamic MVPP after Optimized, Queries in the List { Q10, 

Q8, Q11, Q12, Q9 and Q13} 

 

After the first dynamic MVPP is generated, the first element of the list is 

moved to the end of the list. So Q10 is moved to the end of list, the list becomes {Q8, 

Q11, Q12, Q9, Q13 and Q10}. We start the second dynamic MVPP with Q8, as there 

is no conjunctive joined node available in the existing MVPP for base relation PART 

and LINEITEM then new intermediate node introduced to support Q8. The dynamic 

MVPP when Q8 is merged is shown in Figure 4.45 (a). 
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 represents materialized view node selected in static phase for Q1-Q7 

 

(a)  The second dynamic MVPP after Q8 is merged into the existing MVPP 

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

(b)  The second dynamic MVPP after Q11 is merged into the existing MVPP 

 

Figure 4.45  The Result of Merging Steps for the Second Dynamic MVPP 
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 represents materialized view node selected in static phase for Q1-Q7 

 

(c)  The second dynamic MVPP after all new queries are merged 

 

Figure 4.45  (Continued) 
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 represents materialized view node selected in static phase for Q1-Q7 

 

Figure 4.46  The Second Dynamic MVPP: the Queries in the List {Q8, Q11, Q12, 

Q9, Q13 and Q10} 

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure 4.47  The Third Dynamic MVPP: the Queries in the List {Q11, Q12, Q9, Q13, 

Q10 and Q8} 
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 represents materialized view node selected in static phase for Q1-Q7 

 

Figure 4.48  The Fourth Dynamic MVPP: the Queries in the List {Q12, Q9, 

Q13,Q10, Q8 and Q11} 

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure 4.49  The Fifth Dynamic MVPP: the Queries in the List {Q9, Q13, Q10, Q8, 

Q11 and Q12} 
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 represents materialized view node selected in static phase for Q1-Q7 

 

Figure 4.50  The Sixth Dynamic MVPP: the Queries in the List {Q13,Q10, Q8, Q11, 

Q12 and Q9} 
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Thereafter, we apply our MVPP re-optimization algorithm to the cheapest one. 

The result is that the query processing cost of Q1 to Q12 is equal to the other MVPPs, 

and the query processing cost of Q13 is equal to the second to the fourth MVPPs, and 

less than that of the fifth and the sixth MVPP. Therefore, there is no query have to be 

rewritten. 

In the next section, we will identify the affected node as the member of set of 

views to be selected by implementing our affected node identification algorithm, 



 

 
1
2
8
 

Table 4.28  The Query Processing Cost of All Dynamic MVPPs 

 

Query 1
st
 MVPP 2

nd
 MVPP 3

rd
 MVPP 4

th
 MVPP 5

th
 MVPP 6

th
 MVPP 

Q1 67,303,124,486 67,303,124,486 67,303,124,486 67,303,124,486 67,303,124,486 67,303,124,486 

Q2 2,208,984 2,208,984 2,208,984 2,208,984 2,208,984 2,208,984 

Q3 2,550,562 2,550,562 2,550,562 2,550,562 2,550,562 2,550,562 

Q4 53,213,742,566 53,213,742,566 53,213,742,566 53,213,742,566 53,213,742,566 53,213,742,566 

Q5 362,760 362,760 362,760 362,760 362,760 362,760 

Q6 3,265,582,968 3,265,582,968 3,265,582,968 3,265,582,968 3,265,582,968 3,265,582,968 

Q7 409,739,463,114 409,739,463,114 409,739,463,114 409,739,463,114 409,739,463,114 409,739,463,114 

Q8 911,790,059,484 911,790,059,484 911,790,059,484 911,790,059,484 911,790,059,484 911,790,059,484 

Q9 27,488,935,648 27,488,935,648 27,488,935,648 27,488,935,648 27,488,935,648 27,488,935,648 

Q10 9,105,190 9,105,190 9,105,190 9,105,190 9,105,190 9,105,190 

Q11 2,300,691,981,035 2,300,691,981,035 2,300,691,981,035 2,300,691,981,035 2,300,691,981,035 2,300,691,981,035 

Q12 311,554,998,998 311,554,998,998 311,554,998,998 311,554,998,998 311,554,998,998 311,554,998,998 

Q13 817,446,813,290 817,446,813,290 817,446,813,290 817,446,813,290 869,827,064,180 869,827,064,180 

Total 4,902,508,929,085 4,902,508,929,085 4,902,508,929,085 4,902,508,929,085 4,954,889,179,975 4,954,889,179,975 
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4.6.3 The Affected Node Identification Algorithm Implementation  

In this section, we describe the implementation of our affected node 

identification algorithm mentioned in 3.7.2. The algorithm aims to reduce the size of 

search space of dynamic MVPP for selecting views to be materialized. It is applied to 

the dynamic re-optimized MVPP generated in the previous section as shown in Figure 

4.44.  

To identify the directly affected node 

Initial list of the directly affected node Mdirect =   

Start with Q8, we do depth first search to find the nodes that are used to build 

query Q8. The existing nodes used to build Q8 are {Tmp18, Tmp7} 

Q9: the existing nodes used to build Q9 are {Tmp14, Tmp10, Tmp9, Tmp13, 

Tmp4, Tmp3, Tmp2, Tmp1 and Tmp12}.  

Q10: the existing nodes used to build Q10 are {Tmp24, Tmp10, Tmp9 and 

Tmp7}.  

Q11: the existing nodes used to build Q11 are {Tmp16, Tmp24, Tmp10, 

Tmp9 and Tmp7}. 

Q12: the existing nodes used to build Q12 are {Tmp19, Tmp18, Tmp17, 

Tmp16, Tmp6, Tmp5, Tmp4, Tmp3, Tmp2, Tmp1 and Tmp7}. 

Q13: the existing nodes used to build Q13 are {Tmp19, Tmp18, Tmp17, 

Tmp16, Tmp6, Tmp5, Tmp4, Tmp3, Tmp2, Tmp1, Tmp7, Tmp10, Tmp9 and 

Tmp12}.  

So the existing nodes used to build new queries Q8-Q13 are {Tmp1, Tmp2, 

Tmp3, Tmp4, Tmp5, Tmp6. Tmp7, Tmp9, Tmp10, Tmp12, Tmp13, Tmp14, Tmp16, 

Tmp17, Tmp18, Tmp19, Tmp24}. 

Next we calculate weight w(v) for the existing nodes used to construct new 

queries. For example Tmp19, it is accessed by Q1, Q12 and Q13 which their 

frequencies of executing the query are 2, 2 and 5, respectively. Tmp19 is constructed 

from nodes Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp16, Tmp17 and Tmp18.. 

The cost of each node and Tmp19 is 5, 1, 25, 25, 10000, 50000, 800000, 1602400000, 

200000, 32048000000, respectively. Therefore, its weight is calculated as (2 + 2 + 5) 

* (32048000000) - (5) * (5 + 1 + 25 + 25 + 10000 + 50000 + 800000 + 1602400000 + 

200000 + 32048000000) that is 120,174,699,720. 
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From the result, Tmp19 is possible to be materialized view as its weight is 

positive. In static phase, shown Figure 4.23, only Q1 is used Tmp19, then the weight 

of Tmp19 is negative that is (-3,206,804,006). The weight of Tmp19 is changed from 

negative in the static phase to positive in the dynamic phase because there are 

additional queries, Q12 and Q13, are constructed on Tmp19. 

The weights of the existing nodes used to construct the new queries are shown 

in Table 4.29. 

 

Table 4.29  The Weight of the Existing Nodes for Constructing All New Queries 

 

Existing Node Weight ( w (v) ) 

Tmp1 135 

Tmp2 22 

Tmp3 675 

Tmp4 588 

Tmp5 260,000 

Tmp6 719,832 

Tmp7 228,000,000 

Tmp9 51,000,000 

Tmp10 6,238,298 

Tmp12 2,850,000 

Tmp13 4,799,832 

Tmp14 41,206,850,894 

Tmp16 23,200,000 

Tmp17 11,213,359,776 

Tmp18 5,600,000 

Tmp19 120,174,699,720 

Tmp24 15,021,386,544,806 

 

Later intermediate nodes, which are the conjunctively joined nodes with 

positive weight, or project operation that is not the ancestor of base relation or select 

operation, are inserted into the list of directly affected node Mdirect.. Therefore, from 
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Table 4.29, the directly affected nodes are {Tmp1, Tmp2, Tmp4, Tmp6, Tmp9, 

Tmp10, Tmp13, Tmp14, Tmp17, Tmp19 and Tmp24}. Tmp3, Tmp5, Tmp7, Tmp12, 

Tmp16 and Tmp18 are the projection nodes and the ancestor of base relations, so they 

are not identified as the directly affected node. 

 

To identify the indirectly affected node 

Next step, we identify the indirectly affected nodes that are the ancestor nodes, 

with certain weight w(v), of the directly affected nodes described as follows: 

Tmp1, its ancestor is Tmp2 that is already in Mdirect , so skip to the next node 

in the list. 

Tmp2, its ancestor is Tmp4 that is already in Mdirect , so skip to the next node 

in the list. 

Tmp4, its ancestor nodes are Tmp13 and Tmp6 that are already in Mdirect , so 

skip to the next node in the list.  

Tmp6, its ancestor nodes are Tmp8 and Tmp17, as Tmp17 already in Mdirect 

then we will consider the indirectly affected node of Tmp17 later. From Tmp6, we 

move up to Tmp8, the ancestor node of Tmp8 is Tmp11 only. We compare the weight 

of node Tmp6, Tmp8 and Tmp11 to identify the maximum weight of this branch. The 

weights of these nodes are shown in Table 4.30. As the weight of Tmp11 is the 

maximum weight of this branch then Tmp11 is identified as the indirectly affected 

node. 

 Tmp9, its ancestor is Tmp10 only that is already in the directly list, so we skip 

to the next node in the list.  

Tmp10, its ancestors are Tmp24, Tmp11 and Tmp14 that all are already in the 

list, so we skip to the next node.  

Tmp13, its ancestor is only Tmp14 that is already in the list.  

Tmp14, its ancestor is Tmp15. As weight of Tmp15, shown in Table 4.30, is 

higher than that of Tmp14 then Tmp15 is the indirectly affected node. 

Tmp17, its ancestors are Tmp19 and Tmp23. The weight of Tmp23 is 

negative, shown in Table 4.30, then Tmp23 is not taken into consideration. Tmp19 is 

already in the list of directly affected node then there is no the indirectly affected node 

of Tmp17.  
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Tmp19 does not have the existing ancestor node. Then we skip to the next 

node in the list. 

Tmp24, the last node in Mdirect , its ancestor node is only Tmp25. From Table 

4.30, as weight of Tmp25 is negative then it is not the indirectly affected node. 

 

Table 4.30  The Weight of Ancestor Node of Directly Affected Node of New Queries 

 

Directly Affected Node Ancestor  Node Weight of Ancestor Node 

Tmp6 Tmp8 36,029,759,776 

 Tmp11 486,610,492,657 

Tmp14 Tmp15 241,657,060,480 

Tmp17 Tmp23 - 80,125,050,280 

Tmp24 Tmp25 -4,096,769,632,791 

 

Therefore, the existing nodes identified as affected nodes includes 

Directly affected nodes: Tmp1, Tmp2, Tmp4, Tmp6, Tmp9, 

Tmp10, Tmp13, Tmp14, Tmp17, Tmp19, 

and Tmp24 

Indirectly affected nodes: Tmp11, Tmp15 

 

The new intermediate nodes are created to support the new requirements are 

Tmp26, Tmp27, Tmp28, Tmp29, Tmp30, Tmp31, Tmp32, Tmp33, Tmp34 and 

Tmp35.  

Therefore, the total number of nodes to be selected in the dynamic phase is 23, 

13 existing node and 10 new nodes, whereas the number of nodes to select by the 

static approach, that is presenting in section 4.8, is 35 nodes. Those 23 nodes are the 

member of set of views to be materialized or un-materialized for the materialized 

view selection process described in the next section. 

In the next section, we are presenting the implementation of selection 

algorithm, 2PO, to select the set of views to be materialized or un-materialized.  
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4.7 Two-Phase Optimization for Dynamic Materialized View Selection 

 

We use the Two-Phase Optimization (2PO) algorithm to select the set of views 

to be materialized. The search space is the MVPP after new requirements are merged 

shown in Figure 4.44. We first map all nodes in DAG to the binary string using depth 

first search. There are three types of node to map to binary string regarding to the 

algorithm in Figure 3.15 in section 3.8. The binary string of 1s and 0s represent views 

which will and will not be materialized, respectively. The mapping rule is 

implemented as follows: 

1) The affected node, both the directly and the indirectly affected node, and 

new created nodes are mapped into binary string.  

The list of affected node is {Tmp1, Tmp2, Tmp4, Tmp6, Tmp9, Tmp10, 

Tmp13, Tmp14, Tmp17, Tmp19, Tmp24, Tmp11, and Tmp15}. 

The list of new created nodes is {Tmp26, Tmp27, Tmp28, Tmp29, Tmp30, 

Tmp31, Tmp32, Tmp33, Tmp34 and Tmp35}. 

These nodes are initially set to 0.  

2) All existing materialized view node which is not identified as the affected 

node that is Tmp21 is fixed to 1. The reason to fix Tmp21 to 1 is that Tmp21 is 

always the materialized view to support the existing requirement. 

3) The other nodes are fixed to 0. The nodes are {Tmp3, Tmp5, Tmp7, Tmp8, 

Tmp12, Tmp16, Tmp18, Tmp20, Tmp22, Tmp23 and Tmp25}. They are the virtual 

views that have not been affected by changing the requirements.  

Therefore searching through the DAG in Figure 4.44 using depth first search, 

we obtain the mapping array as follow: 

[Tmp19,0], [Tmp18,0], [Tmp17,0], [Tmp16,0], [Tmp6,0], [Tmp5,0], 

[Tmp4,0], [Tmp3,0], [Tmp2,0], [Tmp1,0], [Tmp15,0], [Tmp7,0], [Tmp14,0], 

[Tmp10,0], [Tmp9,0], [Tmp13,0], [Tmp12,0], [Tmp11,0], [Tmp8,0], [Tmp23,0], 

[Tmp21,1], [Tmp20,0], [Tmp22,0], [Tmp25,0], [Tmp24,0], [Tmp28,0], [Tmp26,0], 

[Tmp27, 0], [Tmp30, 0], [Tmp29, 0], [Tmp32,0], [Tmp31, 0], [Tmp35,0], [Tmp34,0], 

[Tmp33, 0] 

So the binary string of above mapping is 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0}  
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The result by 2PO algorithm is {1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 

0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0 , 0, 0, 0, 0, 0, 0} indicates that Tmp10, Tmp11, Tmp13, 

Tmp15, Tmp17, Tmp19, Tmp21, Tmp24, Tmp27 and Tmp28 are materialized views. 

The meaning of each materialized view described as follows: 

- Tmp11, Tmp15, Tmp21 and Tmp24 are the materialized view. They are the 

existing materialized views selected in the static phase and also still be the 

materialized views in dynamic phase. 

- Tmp10, Tmp13, Tmp17, and Tmp19 are the virtual views in the static phase 

and changed to materialized views in the dynamic phase.  

- Tmp27 and Tmp28 are the new materialized views to support the new 

queries. 

- Tmp6 is the existing materialized view in the static phase and it is un-

materialized in the dynamic phase because Tmp17 and Tmp19 are materialized then 

Tmp6 is not used by any query anymore. 

 

Table 4.31  The Query Processing Cost of Dynamic Approach for All Queries 

 

Query Access from Node Query Processing Cost 

Query number 1 (Q1) Tmp19, result1 640,960 

Query number 2 (Q2) Tmp15, result2 2,208,984 

Query number 3  (Q3) Tmp11, result3 2,550,562 

Query number 4 (Q4) Tmp17, Tmp12, Tmp23, result4 50,007,659,040 

Query number 5 (Q5) Tmp21, result5 362,760 

Query number 6 (Q6) Tmp21, Tmp5, Tmp22, result6 3,265,582,968 

Query number 7 (Q7) Tmp24, Tmp12, Tmp25, result7 409,739,463,114 

Query number 8 (Q8) Tmp28, result8 9,104,952 

Query number 9 (Q9) Tmp13, result9 27,479,456,156 

Query number 10 (Q10) Tmp24, result10 9,105,190 

Query number 11 (Q11) Tmp24, Tmp29, Tmp16, Tmp30 

and result11 

2,300,691,981,035 

Query number 12 (Q12) Tmp19, Tmp31, Tmp27, Tmp32 

and result12 

244,236,102,064 
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Table 4.31 (Continued) 

 

Query Access from Node Query Processing Cost 

Query number 13 (Q13) Tmp19, Tmp31, Tmp27, Tmp32, 

Tmp33, Tmp10, Tmp34, Tmp35 

and result13 

649,149,570,955 

Total query processing cost 3,684,593,788,740 

 

Table 4.32  The Maintenance Cost of Dynamic Approach for All Queries 

 

Materialized 

View 

Number of 

Base Relations 

Constructed from Nodes Maintenance 

Cost 

Tmp10 1 Tmp9, Tmp10 1,727,597 

Tmp11 5 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp5, Tmp6, Tmp7, Tmp8, 

Tmp9, Tm10, Tmp11 

1,426,977,515,570 

Tmp13 3 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp12, Tmp13 

2,700,168 

Tmp15 5 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp12, Tmp13, Tmp9, Tmp10, 

Tmp14, Tmp7, Tmp15 

1,414,630,939,520 

Tmp17 4 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp6, Tmp16, Tmp17 

6,413,040,224 

Tmp19 5 Tmp1, Tmp2, Tmp3, Tmp4,Tmp6, 

Tmp16, Tmp17, Tmp18, Tmp19 

168,257,300,280 

Tmp21 2 Tmp16, Tmp18, Tmp20, Tmp21 14,512,800,000 

Tmp24 2 Tmp7, Tmp9, Tmp10, Tmp24 2,731,179,455,194 

Tmp27 1 Tmp7, Tmp27 12,000,000 

Tmp28 2 Tmp7, Tmp27, Tmp18 ,Tmp28 303,928,502,336 

Total materialized view maintenance cost 6,065,915,980,889 
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The total query processing cost after the set of views are selected by 2PO is 

3,684,593,788,740 as shown in Table 4.31. The total materialized view maintenance 

cost is 6,065,915,980,889 as shown in Table 4.32. The total cost which is summation 

of query processing cost and maintenance cost is 9,750,509,769,629.  Figure 4.51 is 

represented the dynamic MVPP after 2PO is applied. 

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 represents new materialized view node selected in dynamic phase 

 represents un-materialized node in dynamic phase 

 

Figure 4.51  The Dynamic MVPP for Q8-Q13 after Applying 2PO  

 

 In the next section, we are presenting the evaluation of our dynamic approach 

by rerun static approach of all requirements, the existing queries and the new queries. 
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4.8 Result and Analysis of Dynamic Materialized View Selection 

 

To evaluate the performance of our dynamic approach by the static approach 

is performed on the set of all queries which includes the initial requirements, Q1-Q7, 

and new requirements, Q8-Q13. We build MVPP algorithm by Yang et al., the 

implementation step mentioned in section 4.3, to generate 13 MVPPs for 13 queries 

and select the cheapest MVPP. The cheapest MVPP for Q1-Q13 is shown in Figure 

4.52.  

 

 

Figure 4.52  The Cheapest MVPP of Q1-Q13 by Static Approach 

 

Next, we apply our MVPP re-optimization algorithm to the cheapest MVPP, 

then Q1, Q5, Q6, Q12 and Q13 have to be rewritten as their query processing cost is 

higher than that of other MVPPs. After the MVPP re-optimization algorithm is 

applied to the cheapest MVPP, the result is shown in Figure 4.53. The MVPP 

structure after applying our re-optimized algorithm, shown in Figure 4.53, provides 

the same structure as our dynamic approach in Figure 4.51.  
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 represents materialized view node selected by static approach for Q1-Q13 

 

Figure 4.53  The Re-Optimized MVPP of Q1-Q13 by Static Approach 

 

Table 4.33 shows the comparison of the result from the dynamic approach and 

the static approach. We compare the number of nodes to be selected to be 

materialized. The number of nodes infers to the size of search space. The number of 

node for dynamic approach is 23 nodes whereas for the static approach is 35 nodes, 

although the total cost of dynamic materialized view selection equal to the static 

approach.  

 

Table 4.33  The Comparison of the Result from the Static Approach and the Dynamic 

Approach for All Queries 

 

Approach Number of 

Nodes 

Cost of Query 

Processing 

Cost of 

Maintenance 

Total Cost 

Static 35 3,684,593,788,740 6,065,915,980,889 9,750,509,769,629 

Dynamic 23 3,684,593,788,740 6,065,915,980,889 9,750,509,769,629 
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4.9 The Second Experiment for Dynamic Materialized View Selection 

 

4.9.1 Static Materialized View Selection for the Initial Requirements 

The query set of initial requirements include Q4, Q15, Q22, Q33, Q40, Q43 

and Q50 shown in Figure 4.54. The details of their SQL statements are provided in 

Appendix F. 

 

 

(a) Query Q4 

 

(b) Query Q15 

 

(c) Query Q22 

 

 

(d) Query Q33 

 

(e) Query Q40 

 

Figure 4.54  The Relational Algebra Query Tree for the Initial Queries: Q4, Q15, 

Q22, Q33, Q40, Q43 and Q50 
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(f) Query Q43 

 

(g) Query Q50 

 

Figure 4.54  (Continued) 

 

We order the queries in descending order of the query access frequency 

multiplied with query cost shown in Table 4.34. Then, the order of queries for the first 

MVPP is {Q4, Q33, Q22, Q15, Q43, Q40 and Q50} and the last order is {Q50, Q4, 

Q33, Q22, Q15, Q43 and Q40}. 
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Table 4.34  The Query Access Frequency, Query Cost, and Query Access Frequency 

Multiply Query Cost 

 

Query 
Query Access 

Frequency(fq) 
Query Cost fq * Query Cost 

Q4 6 3,793,296 22,759,776 

Q15 5 160,232 801,160 

Q22 3 575,169 1,725,507 

Q33 6 759,474 4,556,844 

Q40 4 6,492 25,968 

Q43 7 22,778 159,446 

Q50 5 215 1,075 

 

The query processing costs of all MVPPs for query set {Q4, Q15, Q22, Q33, 

Q40, Q43 and Q50} are computed and shown in Table 4.35. The cheapest MVPP is 

the fifth MVPP as shown in Figure 4.55.  

 
 

Figure 4.55  The Cheapest MVPP for the Second Experiment: the Queries in the List 

{Q43, Q40, Q50 Q4, Q33, Q22 and Q15} 
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Table 4.35  The Query Processing Cost of All MVPPs 

 

Query 1st MVPP 2nd MVPP 3rd MVPP 4th MVPP 

Q4 18,207,907,119,552 18,207,907,119,552 18,207,907,119,552 18,207,907,119,552 

Q15 168,250,451,160 168,250,451,160 168,250,451,160 840,009,851,160 

Q22 12,039,079,457,322 12,039,079,457,322 4,315,574,657,322 12,039,079,457,322 

Q33 18,253,477,108,284 3,656,709,383,196 18,253,477,108,284 3,656,709,383,196 

Q40 134,600,384,632 11,570,291,056 134,600,384,632 672,007,903,472 

Q43 28,735,371,933,681 28,735,371,933,681 10,713,860,733,681 29,065,873,503,681 

Q50 20,525,276,724,865 20,525,276,724,865 20,525,276,724,865 20,761,338,241,345 

Total 98,063,963,179,496 83,344,165,360,832 72,318,947,179,496 85,242,925,459,728 

 

Query 5th MVPP 

(cheapest) 

6th MVPP 7th MVPP 

Q4 18,207,907,119,552 18,207,907,119,552 18,207,907,119,552 

Q15 168,250,451,160 168,250,451,160 168,250,451,160 

Q22 4,315,574,657,322 12,039,079,457,322 12,039,079,457,322 

Q33 3,656,709,383,196 3,656,709,383,196 3,656,709,383,196 

Q40 11,570,291,056 11,570,291,056 11,570,291,056 

Q43 10,713,860,733,681 28,735,371,933,681 28,735,371,933,681 

Q50 870,692,174,234 176,201,501,795* 176,201,501,795* 

Total 37,944,564,810,201 62,995,090,137,762 62,995,090,137,762 

 

Note: * query processing cost of nth MVPP less than the cheapest MVPP 
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We apply the MVPP re-optimization algorithm to the cheapest MVPP. The 

query processing cost of queries of the cheapest MVPP are compared with the other 

MVPPs. The result shows that Q50 of the sixth and the seventh MVPP is less than 

that of the cheapest MVPP, so Q50 is possible to be rewritten.  

When we match the individual plan of Q50 with the cheapest MVPP, Tmp12 

is the common subexpression that consists of the most number of base relations that 

are (REGION   NATION   SUPPLIER   PARTSUPP   PART) the same as 

individual plan of Q50 from the base relations to the query node. The next base 

relations matched with individual plan are LINEITEM and ORDERS that they are 

already joined conjunctively, Tmp18. As there is no another plan for Q50 in the 

cheapest MVPP then the execution plan of Q50 in the cheapest MVPP is optimal 

when Q50 is sharing the subexpression with other queries. Therefore, the cheapest 

MVPP is the optimal MVPP. 

Next, 2PO is applied to the optimal MVPP to select the set of views to be 

materialized. The result of 2PO is that {Tmp9, Tmp11, Tmp15, Tmp18, Tmp19, 

Tmp26 and Tmp27} are materialized shown in Figure 4.56. 

 
 represents materialized view node 

 

Figure 4.56  The Optimal MVPP with Materialized Views for Initial Requirements  
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The MVPP in Figure 4.56 is the initial search space for dynamic phase. The 

query processing cost, materialized view maintenance cost and total cost of all-

virtual-views, all-materialized-views and materialized views selected by 2PO 

algorithm of the cheapest MVPP are shown in Table 4.36. 

 

Table 4.36  The Query Processing Cost, Maintenance Cost and Total Cost of the 

Optimal MVPP 

 

 Cost of  

Query Processing 

Cost of 

Maintenance 

Total Cost 

All-virtual view 37,944,564,810,201 0 37,944,564,810,201 

All-materialized view 30,029,776 36,413,780,040,394 36,413,810,070,170 

2PO 1,836,434,674,685 14,884,264,303,377 16,720,698,978,062 

 

In conclusion, Q50 is possible to be rewritten as its query processing cost of 

the cheapest MVPP is more than that of the sixth and the seventh MVPP. After the 

MVPP re-optimization algorithm is applied, Q50 is forced to use the common 

subexpression that is available in the cheapest MVPP, and Q50 is still constructed 

with the same query plan of the cheapest MVPP. Therefore, the cheapest MVPP is the 

optimal MVPP. 

 

4.9.2 Dynamic Materialized View Selection for the Second Experiment 

The query set for the dynamic phase consists of Q3, Q6, Q28, Q30, Q31 and 

Q47. Their relation algebra query trees are shown in Figure 4.57. The details of their 

SQL statements are provided in Appendix F. 
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(a) Query Q3 

 
(b) Query Q28 

 
(c) Query Q6 

 
(d) Query Q30 

 
(e) Query Q31 

 
(f) Query Q47 

 

Figure 4.57  The Relational Algebra Query Tree for the New Queries: Q3, Q6, Q28, 

Q30, Q32 and Q47 
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The new queries are merged into the existing MVPP derived from the static 

phase, Figure 4.56, according to the merging steps mentioned in section 3.7.1. The 

result of the optimal dynamic MVPP is shown in Figure 4.58. 

 
 represents materialized view node selected in static phase for initial requirements 

 

Figure 4.58  The Optimal Dynamic MVPP Constructed by Merging Steps 
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Indirectly affected nodes: Tmp19, Tmp26 

 

Therefore, the number of nodes to be selected by 2PO in the dynamic phase is 

21 nodes, 15 existing nodes and 6 new created nodes.  
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Thereafter, the selection algorithm, 2PO, is applied to select the set of views to 

be materialized. The result is that the existing materialized views {Tmp9, Tmp11, 

Tmp15, Tmp18, Tmp19, Tmp26 and Tmp27}, the virtual views {Tmp6 and Tmp17}, 

and new virtual views {Tmp29, Tmp30} are materialized. Figure 4.59 shows the 

dynamic MVPP with materialized views selected by 2PO. 

 

 
 represents materialized view node selected in static phase for initial requirements 

 represents new materialized view node selected in dynamic phase 

 

Figure 4.59  The Dynamic MVPP after Applying 2PO 
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To evaluate the performance of our dynamic approach by the static approach 

is performed on the set of all queries which includes the initial requirements {Q4, 

Q15, Q22, Q33, Q40, Q43 and Q50} and the new requirements {Q3, Q6, Q28, Q30, 

Q31 and Q47}. The results of the static approach, after applying our MVPP re-

optimization algorithm and 2PO to select the set of views to materialized, is shown in 

Figure 4.60. According to the result, {Tmp3, Tmp4, Tmp12, Tmp14, Tmp21, Tmp23, 

Tmp24, Tmp29, Tmp33, Tmp34 and Tmp35} are the materialized views. 

 
 represents materialized view node selected 

 

Figure 4.60  The Re-Optimized MVPP by Static Approach for All Queries  
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execution plans of Q31 and Q47 have sharable subexpression, and both are 

constructed using optimal individual plan. For this reason, the static approach, before 

selecting the set of views to be materialized, the execution plans of Q31 and Q47 that 

provide the minimal query processing cost have to be chosen. 

The query processing cost, materialized view maintenance cost and total cost 

of the static and the dynamic approach are shown in Table 4.37. 

 

Table 4.37  The Comparison of the Results from the Static Approach and the 

Dynamic Approach for the Second Experiment 

 

Approach Number 

of  Nodes 

Cost of  

Query Processing 

Cost of  

Maintenance 

Total Cost 

Static 35 3,429,632,748,193 15,862,487,308,569 19,292,120,056,762 

Dynamic 21 3,838,202,906,833 14,960,158,671,142 18,798,361,577,975 

 

In conclusion, the static approach requires 35 intermediate nodes to be 

selected while our dynamic approach requires 21 intermediate nodes to be selected, 

15 existing nodes and 6 new nodes.  

The total cost after 2PO is applied is that the dynamic approach provides total 

cost less than the static approach. The static approach provide the lower query 

processing because the execution plan of Q31 and Q47 in MVPP are close to their 

optimal individual plan. However, dynamic approach provides the lower materialized 

view maintenance cost because the new queries are constructed on the available 

sharable common subexpression in the existing MVPP that is the benefit to reduce the 

maintenance cost. 

 The query processing cost and materialized view maintenance cost for the 

dynamic approach are shown in Table 4.38 and 4.39, respectively. The query 

processing cost and materialized view maintenance cost of the static approach are 

shown in Table 4.40 and 4.41, respectively. 
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Table 4.38  The Query Processing Cost of the Dynamic Approach 

 

Query fq Accessed nodes Cost of  

Query Processing 

Q4 2 Tmp26(materialized view), result4  45,519,552 

Q15 5 Tmp5, Tmp27(materialized view), Tmp28, result15 8,013,252,320 

Q22 3 Tmp10, Tmp20, Tmp19(materialized view), 

result22 

345,105,451,014 

Q33 6 Tmp15(materialized view), result33 9,113,688 

Q40 4 Tmp9(materialized view), Tmp11(materialized 

view), Tmp12, result40 

5,155,298,792 

Q43 7 Tmp5, Tmp19(materialized view), Tmp10, Tmp20, 

Tmp21, Tmp22, Tmp23 and result43 

1,449,432,585,629 

Q50 5 Tmp9(materialized view), Tmp11(materialized 

view), Tmp12, Tmp18(materialized view), Tmp22, 

Tmp24,  Tmp25, result50 

28,673,453,690 

Q3 4 Tmp29(materialized view), result3 30,346,368 

Q6 7 Tmp27(materialized view), result6 2,243,248 

Q28 5 Tmp9(materialized view), result28 321,720 

Q30 4 Tmp13, Tmp17(materialized view), Tmp31, 

Tmp30(materialized view), Tmp32 and result30 

1,131,696,008,452 

Q31 5 Tmp6(materialized view), Tmp18(materialized 

view), Tmp33, result31 

5,763,780,255 

Q47 5 Tmp15(materialized view), Tmp17(materialized 

view), Tmp34, result47 

864,275,532,105 

Total query processing cost 3,838,202,906,833 

 

Table 4.39  The Maintenance Cost of the Dynamic Approach 

 

Materialized 

View 

Number of Base 

Relation 

Derived by Nodes Maintenance Cost 

Tmp6 3 Tmp1, 2, 3, 4, 5, 6 180,168 

Tmp9 4 Tmp1, 2, 3, 4, 5, 6, 7, 8, 9 6,413,681,184 

Tmp11 1 Tmp10, 11 400,000 
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Table 4.39 (Continued) 

 

Materialized 

View 

Number of Base 

Relation 

Derived by Nodes Maintenance Cost 

Tmp15 5 Tmp1,2,3 4, 5, 6, 7, 8, 13, 14, 15 3,047,265,055,480 

Tmp17 1 Tmp16, 17 1,727,597 

Tmp18 2 Tmp13, 14, 16, 17, 18 1,726,713,034,618 

Tmp19 3 Tmp7, 13, 14, 16, 17, 18, 19 3,970,477,551,927 

Tmp26 2 Tmp7, 13, 14, 26 6,069,299,200,000 

Tmp27 2 Tmp7, 10, 11, 27 64,095,200,000 

Tmp29 2 Tmp5, 13, 14, 29 75,889,940,000 

Tmp30 3 Tmp1, 2, 3, 4, 22, 30 2,700,168 

Total materialized view maintenance cost 14,960,158,671,142 

  

Table 4.40  The Query Processing Cost of the Static Approach 

 

Query fq Accessed Nodes Cost of 

Query Processing 

Q4 2 Tmp35(materialized view), result4 45,519,552 

Q15 5 Tmp4(materialized view), Tmp5, Tmp6, result15 8,013,252,320 

Q22 3 Tmp2, Tmp24(materialized view), Tmp25, result22 345,105,451,014 

Q33 6 Tmp33(materialized view), result33 9,113,688 

Q40 4 Tmp3(materialized view), Tmp29(materialized 

view), Tmp30, result40 

5,155,298,792 

Q43 7 Tmp2, Tmp5, Tmp11, Tmp24(materialized view), 

Tmp25, Tmp26, Tmp27, result43 

1,449,432,585,629 

Q50 5 Tmp3(materialized view), Tmp11, 

Tmp23(materialized view), Tmp29(materialized 

view), Tmp30, Tmp31, Tmp32, result50 

28,673,453,690 

Q3 4 Tmp34(materialized view), result3 30,346,368 

Q6 7 Tmp4(materialized view), result6 2,243,248 

Q28 5 Tmp29(materialized view), result28 321,720 
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Table 4.40 (Continued) 

 

Query fq Accessed Nodes Cost of 

Query Processing 

Q30 4 Tmp12(materialized view), Tmp13, Tmp15, 

Tmp14(materialized view), Tmp16, Tmp17, result30 

1,131,672,008,452 

Q31 5 Tmp21(materialized view), result31 576,860 

Q47 5 Tmp1, Tmp21(materialized view), Tmp22, result47 461,492,576,860 

Total query processing cost 3,429,632,748,193 

 

Table 4.41  The Maintenance Cost of the Static Approach 

 

Materialized 

view 

Number of 

Base Relation 

Derived by Nodes Maintenance Cost 

Tmp3 1 Tmp2, 3 400,000 

Tmp4 2 Tmp1, 2, 3, 4 64,095,200,000 

Tmp12 3 Tmp7, 8, 9, 10, 11, 12 2,700,168 

Tmp14 1 Tmp13, 14 1,727,597 

Tmp21 5 Tmp5, 7, 8, 9, 10, 13, 14, 16, 18, 

19, 20, 21 

902,328,817,595 

Tmp23 2 Tmp13, 14, 16, 19, 23 1,726,713,034,618 

Tmp24 3 Tmp1, 13, 14, 16, 19, 23, 24 3,970,477,551,927 

Tmp29 4 Tmp1, 5, 7, 8, 9, 10, 18, 28, 29 6,413,681,184 

Tmp33 5 Tmp1, 5, 7, 8, 9, 10, 16, 18, 19, 

28, 33 

3,047,265,055,480 

Tmp34 2 Tmp5, 16, 19, 24 75,889,940,000 

Tmp35 2 Tmp1, 16, 19, 35 6,069,299,200,000 

Total materialized view maintenance cost 15,862,487,308,569 
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4.10 Analysis of the Affected Node Identification Algorithm 

 

In this section, we provide the analysis and testing result of the characteristic 

of affected nodes derived by the affected node identification algorithm mentioned in 

section 3.7.2. According to the affected node identification algorithm, the properties 

of nodes that determine whether the affected nodes are (1) the conjunctive joined 

node with positive weight, or (2) project operation node is not the ancestor of base 

relation, or (3) the ancestor of directly affected node with the certain weight.  

Conversely, the properties of nodes that are the unaffected nodes include:  

(1) They are the project operations that are the ancestor of base relation. 

(2) They are the conjunctive joined node with negative weights. 

(3) The property of the indirectly affected node is the node as in line 3.3 in 

algorithm that provides the maximum weight of each branch. Then, the ancestor of 

the directly affected nodes, that its weight is not maximum weight, is unaffected node. 

 

The experiments in the following sections show that the total cost is not 

minimal when the unaffected nodes are materialized. 

The first and the second cases are presented by the second experiment and the 

third case is presented by the first experiment. 

For the second experiment that is shown in Figure 4.59, the existing nodes are 

neither indirectly nor directly affected nodes include: 

Tmp3, Tmp5, Tmp7, Tmp10, Tmp12, Tmp13, Tmp20, Tmp21, Tmp22, 

Tmp23, Tmp24, Tmp25 and Tmp28 

The project operation nodes, that are the ancestor of base relation, include 

Tmp3, Tmp5, Tmp7, Tmp10, Tmp13 and Tmp22. The conjunctive joined nodes with 

negative weight include Tmp12, Tmp20, Tmp21, Tmp23, Tmp24, Tmp25 and 

Tmp28. 

 

4.10.1 Case I: Materializing the Project Operation which is the Ancestor 

of Base Relation 

This property provides the total cost is not minimal because the number of 

tuples to be read is equal to the number of tuples produced from this operation. The 
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project operation, represented by algebra notation:, specifics the attributes from a 

base relation to be selected. The query processing cost and materialized view 

maintenance cost in cost model is formulated by the number of tuples not the 

attributes of the base relation. 

 

Example 1: Tmp5 

The materializing Tmp5 affect to Q15. The frequency of executing query Q15 

is 5. 

Considering the query processing cost of Q15 before and after Tmp5 is 

materialized. 

Before Tmp5 is materialized:  

Q15 accesses nodes Tmp5, Tmp28, Tmp27 (materialized view) and result15.  

The cost of each node is 10000, 1602320000, 160232 and 160232, 

respectively. The query processing cost of Q5 is (5)*(10000 + 1602320000 + 160232 

+ 160232) that is 8,013,252,320. 

The materialized view maintenance cost of Tmp5 is 0. 

After Tmp5 is materialized: 

Q15 accesses nodes Tmp5 (materialized view), Tmp28, Tmp27 (materialized 

view) and result15. The cost of each node is 10000, 1602320000, 160232 and 160232, 

respectively. 

The query processing cost of Q5 is (5)*(10000 + 1602320000 + 160232 + 

160232) that is 8,013,252,320. 

The materialized view maintenance cost of Tmp5 is (1)*(10000). 

Therefore, the query processing cost of Q5 is 8,013,252,320 for either Tmp5 

be materialized view or virtual view. However, there is additional materialized view 

maintenance cost when Tmp5 is materialized. Therefore, total cost is increased by the 

materialized view maintenance cost of Tmp5. 

  

Example 2: Tmp5, Tmp10, Tmp22 

The materializing Tmp5, Tmp10 and Tmp22 together affect to Q43. The 

frequency of executing query Q43 is 7. 
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Considering the query processing cost of Q43 before and after these three 

nodes are materialized as Q43 derived on those nodes. 

Before these nodes are materialized: 

Q43 accesses nodes Tmp5, Tmp19 (materialized view), Tmp10, Tmp20, 

Tmp21, Tmp22, Tmp23 and result43. The query processing cost is (7)*(10000 + 

575169 + 200000 + 115033800000 + 5751690000 + 150000 + 86275350000 + 

22778) that is 1,449,432,585,629. 

The materialized view maintenance cost of Tmp22, Tmp5, Tmp10 are 0. 

After these nodes are materialized: 

Q43 accesses nodes Tmp5 (materialized view), Tmp19 (materialized view), 

Tmp10 (materialized view), Tmp20, Tmp21, Tmp22 (materialized view), Tmp23 and 

result43. The query processing cost is (7)*(10000 + 575169 + 200000 + 

115033800000 + 5751690000 + 150000 + 86275350000 + 22778) that is 

1,449,432,585,629. 

The materialized view maintenance cost of Tmp5, Tmp10, Tmp22 are 

(1)*(10000), (1)*(200000), (1)*(150000), respectively. The total materialized view 

maintenance cost for the three nodes is 360,000. 

Therefore, the query processing cost of Q43 is 1,449,432,585,629 for either 

those nodes be materialized views or virtual views. However, there is additional 

materialized maintenance cost when Tmp5, Tmp10, Tmp22 are materialized. 

Therefore, total cost is increased by the summation of materialized view maintenance 

cost of these nodes. 

 

Example 3: Tmp10 

In Figure 4.59, only Q22 derived from Tmp10 directly, other queries derived 

from materialized views Tmp27 and Tmp11, the ancestor of Tmp10. The frequency of 

executing the query Q22 is 3 

Before Tmp10 is materialized: 

Q22 accesses nodes Tmp19 (materialized view), Tmp10, Tmp20 and result22. 

The query processing cost of Q22 is (3)*(575169 + 200000 + 115033800000 + 

575169) that is 345,105,451,014. 

The materialized view maintenance cost of Tmp10 is 0. 
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After Tmp10 is materialized: 

Q22 accesses nodes Tmp19 (materialized view), Tmp10 (materialized view), 

Tmp20 and result22. The query processing cost of Q22 is (3)*(575169 + 200000 + 

115033800000 + 575169) that is 345,105,451,014. 

The materialized view maintenance cost of Tmp10 is (1)*(200000) = 200000. 

Therefore, the query processing cost of Q22 is 345,105,451,014 for either 

those nodes be materialized views or virtual views. However, there is additional 

materialized view maintenance cost when those nodes are materialized. Therefore, 

total cost is increased by the summation of materialized view maintenance cost of 

those nodes. 

 

4.10.2 Case 2: Materializing the Conjunctive Joined Node with Negative 

Weight 

According to the weight formula mentioned in section 3.7.2, the first part 

presents the query processing cost and the second part presents the materialized view 

maintenance cost. The positive weight of node defines the possibility of node to be 

materialized. When the node with negative weight becomes a materialized view, the 

maintenance cost increases. In the second experiment, Tmp12, Tmp20, Tmp21, 

Tmp23, Tmp24, Tmp25, Tmp28 are the conjunctive joined nodes with negative 

weight. The following examples show that the total cost is not minimal when the 

conjunctive joined nodes with negative are materialized. 

 

Example 4: Tmp25 

Tmp25 is used to construct Q50. The frequency of executing query Q50 is 5. 

Tmp25 is constructed on 8 base relations. It is derived from the nodes Tmp1, Tmp2, 

Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8, Tmp9, Tmp10, Tmp11, Tmp12, Tmp13, 

Tmp14, Tmp16, Tmp17, Tmp18, Tmp22 and Tmp24. The cost of each node and 

Tmp25 is 5, 1, 25, 25, 10000, 50000, 800000, 1602400000, 160240, 200000, 200000, 

1288745976, 6000000, 6000000, 1500000, 227597, 863342789712, 150000, 

3733997148 and 711150000, respectively. 
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So, the weight of Tmp25 is calculated as: 

w(Tmp25) = (5)*(711150000) - (8)*(5 + 1 + 25 + 25 + 10000 + 50000 + 

800000 + 1602400000 + 160240 + 200000 + 200000 + 1288745976 + 6000000 + 

6000000 + 1500000 + 227597 + 863342789712 + 150000 + 3733997148 + 

711150000) that is (-6,961,999,295,832). 

To materialize Tmp25, the materialized view maintenance cost of Tmp25 is 

6,965,555,045,832. So the total materialized view maintenance cost is increased by 

the materialized view maintenance cost of Tmp25. 

Once Tmp25 is materialized, Q50 will be derived from materialized view 

Tmp25 instead, then the query processing cost of Q50 is reduced from 

28,674,895,230 to 1,075 (5*215).  

Then, the total cost is increased by 6,936,880,151,677 as the materialized view 

maintenance cost is increased by 6,965,555,045,832 whilst the query processing cost 

is reduced by 28,674,894,155 (28,674,895,230 - 1,075). 

Although the query processing cost of Q50 is reduced from 28,674,895,230 to 

1,075, the decrease of query processing cost is less than the increase of materialized 

view maintenance cost of Tmp25. So, the total cost increases. 

 

Example 5: Tmp12 

Tmp12 is accessed by Q40 and Q50 with the frequency of executing query is 4 

and 5, respectively. Tmp12 is constructed on 5 base relations. Tmp12 is derived from 

nodes Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8, Tmp9, Tmp10 and 

Tmp11. The cost of each node and Tmp12 is 5, 1, 25, 25, 10000, 50000, 800000, 

1602400000, 160240, 200000, 200000, and 1288745976, respectively. 

So, the weight of Tmp12 is calculated as: 

w(Tmp12) = (4+5)*(1288745976) - (5)*(5 + 1 + 25 + 25 + 10000 + 50000 + 

800000 +1602400000 + 160240 + 200000 + 200000 + 1288745976) that is (-

2,864,117,576). 

To materialize Tmp12, Q40 and Q50 will derive from Tmp12 instead of 

Tmp9. However, Tmp9 still should be materialized to support Q28. Example 6 

provides the result for the case Tmp9 is virtual view. 

The materialized view maintenance cost of Tmp12 is 14,462,831,360. 
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For this case, Tmp11 should be un-materialized as there is no query derived 

from Tmp11. The materialized view maintenance cost of Tmp11 is 400,000. So, the 

maintenance cost is increased by 14,462,431,360 (14,462,831,360 - 400,000). 

Q40 derived from the result of Tmp12 and result40. The query processing cost 

of Q40 derived from Tmp12 is (4)*(6492 + 6492) that is 51,936. 

Q50 derived from the result of Tmp12, the result of Tmp18, Tmp24, Tmp22, 

Tmp25 and result50. The query processing cost of Q50 derived from Tmp12 is 

(5)*(6492 + 575169 + 3733997148 + 150000 + 711150000 + 215) that is 

22,229,395,120. 

So, query processing cost of Q40 when derived from Tmp12 decreases from 

5,156,452,024 to 51,936. The query processing cost of Q50 when derived from 

Tmp12 decreased from 28,674,895,230 to 22,229,395,120. So, the total query 

processing cost is reduced by 11,601,900,198 ((5,156,452,024 - 51,936) + 

(28,674,895,230 - 22,229,395,120)). 

Therefore, the total cost is increased by 2,860,531,162 (14,462,431,360 - 

11,601,900,198). 

 

Example 6: Tmp12 is materialized; Tmp9 and Tmp11 are virtual view 

 For this example, there is one more query, Q28 that is affected when 

compared with Example 5. The materialized view maintenance cost is reduced due to 

Tmp9 is un-materialized. The query processing cost of Q40 and Q50 are the same as 

Example 5. 

 If Tmp9 are materialized, Q28 accesses nodes Tmp9 (materialized view) and 

result28. The query processing cost of Q28 is 321,720. 

 If Tmp9 is un-materialized, Q28 accesses nodes Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp5, Tmp6, Tmp7, Tmp8, Tmp9 and result28. The query processing cost of Q28 is 

increased by 8,017,262,340. 

 Comparing with Example 5, the total query processing cost of this example is 

increased by 8,016,940,620 (8,017,262,340 - 321,720). The materialized view 

maintenance cost of Tmp9 is 6,413,681,184. Then, the total materialized maintenance 

cost is reduced by 6,413,081,184 compared with Example 5. 
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Therefore, the total cost is increased by 1,603,859,436 (8,016,940,620 - 

6,413,081,184). 

 

Example 7: Tmp20 is materialized and Tmp19 is virtual view 

Tmp20 is accessed by Q22 and Q43, when Tmp20 is materialized; Tmp19 is 

un-materialized as Tmp20 is ancestor of Tmp19. Also there is no more query beside 

Q22 and Q43 accesses Tmp19. 

The weight of Tmp20 is calculated as follows: 

Tmp20 is constructed on 4 base relations. Tmp20 is accessed by Q22 and Q43 

with the frequency of executing query is 3 and 7, respectively. Tmp20 is derived from 

nodes Tmp7, Tmp10, Tmp13, Tmp14, Tmp16, Tmp17, Tmp18 and Tmp19. The cost 

of each node and Tmp20 is 8000000, 200000, 6000000, 6000000, 1500000, 227597, 

863342789712, 460135200000and 115033800000, respectively. 

So, the weight of Tmp20 is calculated as: 

w(Tmp20) = (3+7)*(115033800000) - (4)*(8000000 + 200000 + 6000000 + 

6000000 + 1500000 + 227597 + 863342789712 + 460135200000 + 115033800000) 

that is (-4,603,796,869,236). 

The materialized view maintenance cost of Tmp20 is 5,754,134,869,236 and 

Tmp19 is 3,970,499,151,927. Then, the total materialized view maintenance cost is 

increased by 1,783,635,717,309 (5,754,134,869,236 - 3,970,499,151,927). 

When Tmp20 is materialized, Q22 accesses the result of Tmp20 and result22. 

The query processing cost of Q22 is 3,451,014 ((3)*(575169 + 575169)). The query 

processing cost of Q22 is reduced from 345,105,451,014 to 3,451,014. 

Q43 accesses the result of Tmp20, Tmp21, Tmp22, Tmp23 and result43. The 

query processing cost of Q42 is 644,194,585,629 ((7)*(575169 + 10000 + 

5751690000 + 150000 + 86275350000 + 22778)). The query processing cost of Q43 

is reduced from 1,449,432,585,629 to 644,194,585,629. 

Therefore, the total cost is increased by 633,295,717,309 as the maintenance 

cost is increased by 1,783,635,717,309 whilst the total query processing cost is 

reduced by 1,150,340,000,000. 

The results of the above examples with negative weights are shown in Table 

4.42.   
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Table 4.42  The Cost of All Queries for the Negative Weight Property 

 

Example Cost of 

Query Processing 

Cost of 

Maintenance 

Total Cost 

* 3,838,202,906,833 14,960,158,671,142 18,798,361,577,975 

4 3,809,528,012,678 21,925,713,716,974 25,735,241,729,652 

5 3,826,601,006,635 14,974,621,102,502 18,801,222,109,137 

6 3,834,617,947,255 14,968,207,421,318 18,802,825,368,573 

7 2,687,862,906,833 16,743,794,388,451 19,431,657,295,284 

Note: * is the minimal total cost 

 

The result of all above examples when nodes with negative weights are 

materialized show that the total query processing cost is reduced but the decreasing of 

query processing cost is less than the increasing of materialized view maintenance 

cost. Therefore, the total cost is increased. 

 

4.10.3 Case 2: Materializing the Node without the Maximum Weight of 

the Branch 

We explain this property by using the result of the first experiment. We 

represent the result of the first experiment again in Figure 4.61 and Table 4.43.   
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 represents materialized view node selected in static phase for Q1-Q7 

 represents new materialized view node selected in dynamic phase 

 represents un-materialized node in dynamic phase 

 

Figure 4.61  The Dynamic MVPP for Q8-Q13 after Applying 2PO  

 

Table 4.43  The Minimum Total Cost of the First Experiment 

  

Materialized view Cost of  

Query Processing 

Cost of  

Maintenance 

Total Cost 

Tmp10, 11, 13, 15, 

17, 19, 21, 24, 27, 28 

3,684,593,788,740 6,065,915,980,889 9,750,509,769,629 

 

The directly affected nodes are Tmp1, Tmp2, Tmp4, Tmp6, Tmp9, Tmp10, 

Tmp13, Tmp14, Tmp17, Tmp19, and Tmp24. The directly affected nodes that have 

ancestor nodes, not in the list of directly affected nodes, are shown in Table 4.44. 

In Table 4.44, Tmp6 is the directly affected node used to construct new 

queries Q12 and Q13. It has 2 ancestor nodes, Tmp8 and Tmp11. Tmp11 provides the 

maximum weight of this branch, Tmp6  Tmp8  Tmp11, then Tmp11 is 

determined as indirectly affected node but not Tmp8. 
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Table 4.44  The Weight of Ancestor Nodes of Directly Affected Node of New 

Queries 

 

Directly Affected Node Ancestor  Node Weight of Ancestor Node 

Tmp6 Tmp8 36,029,759,776 

 Tmp11 486,610,492,657 

Tmp14 Tmp15 241,657,060,480 

Tmp17 Tmp23 - 80,125,050,280 

Tmp24 Tmp25 -4,096,769,632,791 

 

We provide the experiment to validate that only the node with the maximum 

weight should be considered as an indirectly affected node as follows.  

Our assumption is that if Tmp8 is possible to be the affected node then the 

total cost has to be less than the minimum total cost in Table 4.43 when Tmp8 is 

materialized. 

There are two scenarios for this experiment; (1) Tmp8 and Tmp11 are 

materialized view, (2) Tmp8 is materialized and Tmp11 is a virtual view. If one out of 

two scenarios provides the total cost less than minimum cost, then Tmp8 has to be 

determined as an affected node. 

 

Example 8: The first scenario, Tmp8 and Tmp11 are materialized 

Tmp8 and Tmp11 support Q3, then the query processing cost of Q3 might be 

affected when Tmp8, Tmp11 are either materialized or virtual views.  

All costs in Table 4.43 already include materialized view Tmp11, so we 

consider additional cost due to Tmp8 be materialized. 

Tmp8 is constructed on 4 base relations, and derived from the nodes Tmp1, 

Tmp2, Tmp3, Tmp4, Tmp5, Tmp6 and Tmp7. The cost of each node and Tmp8 is 5, 

1, 25, 25, 10000, 50000, 6000000 and 12018000000, respectively. The materialized 

view maintenance cost for Tmp8 is 48,096,240,224 ((4)*(5 + 1 + 25 + 25 + 10000 + 

50000 + 6000000 + 12018000000)). 

The total maintenance cost is 6,114,012,221,113 (6,065,915,980,889 + 

48,096,240,224).  
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The total query processing cost is the same as query processing cost in Table 

4.43 that is 3,684,593,788,740 even Tmp8 is materialized as there is only Q3 derived 

from Tmp8. 

Therefore, the total cost is 9,798,606,009,853 (3,684,593,788,740 + 

6,114,012,221,113). That is greater than that in Table 4.44.  

For this assumption, it is obviously that the maintenance cost is increased 

without the benefit to speed up query process of Q3 as Q3 derived from Tmp11 

(materialized view) directly. 

 

Example 9: The second scenario, Tmp8 is materialized view and Tmp11 is 

virtual view 

For this scenario, the query processing cost of Q3 is changed as Q3 has to 

derive from Tmp8 and Tmp11 instead Tmp11 only as in Example 8. 

Q3 with the frequency of executing query is 7 and accesses the nodes Tmp8 

(materialized view), Tmp10, Tmp11 and result8. The query processing cost of Q3 is 

1,913,599,284,478 ((7)*(1201113 + 227597 + 273369715461 + 182183)). It is 

changed from 2,550,562 to 1,913,599,284,478. Therefore, the total query processing 

cost is increased by 1,913,596,733,916 (1,913,599,284,478 - 2,550,562). 

The materialized view maintenance cost of Tmp11 and Tmp8 is 

1,426,977,515,570 and 48,096,240,224, respectively. The total materialized view 

maintenance cost is reduced by 1,378,881,275,346 (1,426,977,515,570 - 

48,096,240,224). 

As the query processing is increased and maintenance cost is reduced, then the 

total cost is increased by 534,715,458,570 (1,913,596,733,916 - 1,378,881,275,346). 

When we materialize Tmp8 and un-materialize Tmp11, the total cost is greater 

than the total cost in Table 4.43. According to our assumptions, Tmp8 should not be 

determined as affected node because it provides the higher total cost than minimal 

total cost in Table 4.43. 

The results of all above examples show that when the unaffected nodes are 

materialized, the total cost always increases. Therefore, it is not necessary to include 

these nodes for materializing. 
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We further validate our affected node identification algorithm using the 

second experiment by setting all nodes in search space as the member of nodes to be 

selected for 2PO. Our assumption is that if any solutions provide the total cost, which 

unaffected nodes is included, less than the minimal total cost in Table 4.37, then our 

affected node determination is not efficient enough. The result of selecting all nodes is 

shown in Table 4.45. The result shows that the state providing the minimum total cost 

is materializing {Tmp6, Tmp9, Tmp11, Tmp15, Tmp17, Tmp18, Tmp19, Tmp26, 

Tmp27, Tmp29 and Tmp30}. The set of materialized view is same as our dynamic 

approach as shown in Table 4.46. The query processing cost is 3,838,202,906,833, the 

materialized view maintenance cost is 14,960,158,671,142 and the total cost which is 

summation of query processing cost and materialized view maintenance cost is 

18,798,361,577,975, the same as Table 4.37. 

We provide the explanation for some example states in following sections that 

include the unaffected node. The state including unaffected nodes do not provide the 

minimum total cost. 

 

Analysis of the Conjunctive Joined Node with Negative Weight Property 

In Table 4.45, the 14th state includes conjunctive joined node with negative 

weight that is Tmp12. 

The total cost of the 14th state is greater than that of the 15th state. Tmp12 is 

not determined as affected node as its weight is negative. Although Tmp12 is 

materialized in the 14th state and total cost is less than the 11th state, the total cost of 

the 14th state is more than the 15th state. Tmp12 is built by Tmp9 and Tmp11. The 

weights of Tmp9 and Tmp11 are positive. So, materializing Tmp9 and Tmp11 

together provides total cost less than materializing Tmp12. The other example states 

compared with the 16th state, the 18th state includes Tmp23 and the 23rd state 

includes Tmp25. The weights of Tmp23 and Tmp25 are negative. When materializing 

Tmp23 and Tmp25, the total cost of the 18th and the 23rd state are greater than the 

16th state even though the query processing cost of both states are less than that of 

16th state 
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Analysis of the project operation node, the ancestor of base relation property 

From Table 4.45, the following states are the example states that include 

project node that is the ancestor of base relations. 

Initial state: Tmp15, 18, 19, 26, 27, Cmaintenace: 14,877,850,042,025  

4th state:  Tmp5, 15, 18, 19, 26, 27, Cmaintenace: 14,877,850,052,025 

8th state: Tmp10, 15, 18, 19, 26, 27, Cmaintenace: 14,877,850,242,025 

The costs of query processing of all above states are same, 4,012,431,182,390, 

but the costs of maintenance are difference. In the 4th state, Tmp5 is the ancestor of 

base relation, SUPPLIER. Comparing the 4th state with the initial state, the 

maintenance cost is increased by the materialized view maintenance cost of Tmp5, 

10,000. Considering the 8th state, Tmp10 is the ancestor of base relation, PART, the 

total cost of the 8th state is greater than the initial state by the materialized view 

maintenance cost of Tmp10, 200,000. Also, the 18th to the 25th state has the 

materialized views same as the 16th state plus additional nodes. The weights of 

additional nodes are negative. Therefore, the total cost of these states is greater than 

that of 16th state. 
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The 2PO result for setting all nodes are the members of search space  

The initial state for 2PO is that all nodes are set to 0. The output generated by II is that {Tmp15, Tmp18, Tmp19, Tmp26 and 

Tmp17} are materialized that is the initial state of SA of the 2PO. 

 

Table 4.45  The States Generated by 2PO of Dynamic Phase for All Nodes   

  
State Materialized View Cost of Query Processing Cost of Maintenance Total Cost 

0 Tmp15, 18, 19, 26, 27 (the initial state for SA) 4,012,431,182,390 14,877,850,042,025 18,890,281,224,415 

1 Tmp7, 14, 15, 18, 19, 27 22,220,256,782,390 8,808,563,642,025 31,028,820,424,415 

2 Tmp7, 13, 15, 18, 19, 27 22,220,256,782,390 8,808,557,642,025 31,028,814,424,415 

3 Tmp15, 18, 19, 26, 28 4,228,751,610,766 14,914,704,632,025 19,143,456,242,791 

4 Tmp5, 15, 18, 19, 26, 27 4,012,431,182,390 14,877,850,052,025 18,890,281,424,415 

5 Tmp7, 11, 15, 18, 19, 26 4,396,994,700,534 14,813,756,042,025 19,210,750,742,559 

6 Tmp7, 10, 15, 18, 19, 26 4,397,000,459,606 14,813,755,842,025 19,210,756,301,631 

7 Tmp15, 18, 20, 26, 27 2,862,091,182,390 16,661,478,559,334 19,523,569,741,724 

8 Tmp10, 15, 18, 19, 26, 27 4,012,431,182,390 14,877,850,242,025 18,890,281,424,415 

9 Tmp8, 14, 18, 19, 26, 27 7,637,008,803,006 11,837,010,026,769 19,474,018,829,775 

10 Tmp8, 13, 18, 19, 26, 27 7,637,082,663,342 11,837,004,026,769 19,474,086,690,111 

11 Tmp6, 15, 18, 19, 26, 27 4,012,430,079,383 14,877,850,222,193 18,890,280,301,576 

12 Tmp4, 5, 15, 18, 19, 26, 27 4,012,431,181,217 14,877,850,042,137 18,890,281,223,354 

13 Tmp4, 15, 18, 19, 26, 27 4,012,431,181,217 14,877,850,042,137 18,890,281,223,354 

14 Tmp6, 12, 15, 18, 19, 26, 27 3,986,400,439,685 14,892,313,053,553 18,878,713,493,238 

15 Tmp6, 9, 15, 18, 19, 26, 27 3,989,983,818,331 14,884,263,903,377 18,874,247,721,708 
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Table 4.45  (Continued) 

 
State Materialized View Cost of Query Processing Cost of Maintenance Total Cost 

16 Tmp6, 9, 11, 15, 18, 19, 26, 27 3,989,980,218,911 14,884,264,303,377 18,874,244,522,288 

17 Tmp6, 8, 11, 15, 18, 19, 26, 27 3,989,983,101,991 14,884,263,662,417 18,874,246,764,408 

18 Tmp6, 9, 11, 15, 18, 19, 23, 26, 27 2,540,547,952,174 24,067,588,334,828 26,608,139,170,082 

19 Tmp6, 9, 11, 15, 18, 19, 22, 21, 26, 27 3,144,480,388,911 22,105,657,267,519 25,250,137,656,430 

20 Tmp6, 9, 11, 15, 18, 19, 21, 26, 27 3,144,480,388,911 22,105,657,117,519 25,250,137,506,430 

21 Tmp5, 6, 9, 11, 15, 18, 19, 20, 26, 27 3,184,742,218,911 20,638,372,110,210 23,823,114,329,121 

22 Tmp6, 9, 11, 15, 18, 20, 26, 27 3,184,742,218,911 20,638,372,100,210 23,823,114,319,121 

23 Tmp6, 9, 11, 15, 18, 19, 25, 26, 27 3,961,306,767,371 21,849,821,076,806 25,811,127,844,177 

24 Tmp5, 6, 9, 11, 15, 18, 19, 24, 26, 27 3,961,663,290,001 20,104,164,525,348 24,065,827,815,349 

25 Tmp6, 9, 11, 15, 18, 19, 24, 26, 27 3,961,663,290,001 20,104,164,515,348 24,065,827,805,349 

26 Tmp6, 9, 11, 15, 18, 19, 26, 27, 29 3,838,215,512,095 14,960,155,970,974 18,798,371,483,069 

27 Tmp5, 6, 9, 11, 14, 15, 18, 19, 26, 27 3,989,947,392,095 14,884,278,040,974 18,874,225,433,069 

28 Tmp6, 9, 11, 15, 18, 19, 26, 27, 29, 32 2,722,547,177,757 16,374,786,910,494 19,097,334,088,251 

29 Tmp6, 9, 11, 13, 15, 18, 19, 26, 27, 29, 31 3,826,762,625,461 14,987,650,722,590 18,814,413,348,051 

30 Tmp6, 9, 11, 15, 18, 19, 26, 27, 29, 31 3,826,762,625,461 14,987,644,722,590 18,814,407,348,051 

31 Tmp6, 9, 11, 15, 17, 18, 19, 26, 27, 29, 30 (the minimal state) 3,838,202,906,833 14,960,158,671,142 18,798,361,577,975 

32 Tmp6, 9, 11, 15, 18, 19, 26, 27, 29, 30 3,838,208,906,833 14,960,156,943,545 18,798,365,850,378 

33 Tmp4, 6, 9, 11, 15, 17, 18, 19, 22, 26, 27, 29 3,838,212,386,121 14,960,156,121,086 18,798,368,507,207 

34 Tmp9, 11, 15, 17, 18, 19, 26, 27, 29, 30, 33 3,832,440,280,298 16,691,479,770,464 20,523,920,050,762 

35 Tmp6, 9, 11, 15, 17, 18, 19, 26, 27, 29, 34 2,973,928,528,448 19,654,011,127,168 22,627,939,655,616 

36 Tmp6, 8, 11, 14, 15, 17, 18, 19, 26, 27, 29 6,620,974,199,060 16,606,746,071,688 23,227,720,270,748 
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The 2PO result for only affected node and new nodes are the members of search space 

Initial State for II is all nodes set to 0. The output generated by II is that {Tmp15, Tmp18, Tmp19, Tmp26 and Tmp27} are 

materialized that is the initial state for SA of the 2PO. 

Table 4.46  The States Generated by 2PO of Dynamic Phase for Affected Nodes 

 
State Materialized View Cost of Query Processing Cost of Maintenance Total Cost 

0 Tmp15, 18, 19, 26, 27 (the initial state for SA) 4,012,431,182,390 14,877,850,042,025 18,890,281,224,415 

1 Tmp14, 15, 18, 19, 27 22,220,256,782,390 8,808,562,842,025 31,028,819,624,415 

2 Tmp11, 15, 18, 19, 26 4,396,994,700,534 14,813,755,242,025 19,210,749,942,559 

3 Tmp8, 14, 18, 19, 26, 27 7,637,008,803,006 11,837,010,026,769 19,474,018,829,775 

4 Tmp6, 15, 18, 19, 26, 27 4,012,430,079,383 14,877,850,222,193 18,890,280,301,576 

5 Tmp4, 15, 18, 19, 26, 27 4,012,431,181,217 14,877,850,042,137 18,890,281,223,354 

6 Tmp6, 9, 11, 15, 18, 19, 26, 27 3,989,980,218,911 14,884,264,303,377 18,874,244,522,288 

7 Tmp6, 8, 11, 15, 18, 19, 26, 27 3,989,983,101,991 14,884,263,662,417 18,874,246,764,408 

8 Tmp6, 9, 11, 15, 18, 19, 26, 27, 29 3,838,215,512,095 14,960,155,970,974 18,798,371,483,069 

9 Tmp6, 9, 11, 14, 15, 18, 19, 26, 27 3,989,947,392,095 14,884,278,030,974 18,874,225,423,069 

10 Tmp6, 9, 11, 15, 18, 19, 26, 27, 29, 32 2,722,547,177,757 16,374,786,910,494 19,097,334,088,251 

11 Tmp6, 9, 11, 15, 18, 19, 26, 27, 29, 31 3,826,762,625,461 14,987,644,722,590 18,814,407,348,051 

12 Tmp6, 9, 11, 15, 17, 18, 19, 26, 27, 29, 30 (the minimal state) 3,838,202,906,833 14,960,158,671,142 18,798,361,577,975 

13 Tmp6, 9, 11, 15, 18, 19, 26, 27, 29, 30 3,838,208,906,833 14,960,156,943,545 18,798,365,850,378 

14 Tmp9, 11, 15, 17, 18, 19, 26, 27, 29, 30, 33 3,832,440,280,298 16,691,479,770,464 20,523,920,050,762 

15 Tmp6, 9, 11, 15, 17, 18, 19, 26, 27, 29, 34 2,973,928,528,448 19,654,011,127,168 22,627,939,655,616 

16 Tmp6, 8, 11, 14, 15, 17, 18, 19, 26, 27, 29 6,620,974,199,060 16,606,746,071,688 23,227,720,270,748 
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In this chapter, we present the experiments designed to evaluate the 

effectiveness of our proposed methodologies that are the MVPP re-optimization 

algorithm and the dynamic materialized view selection approach. The experiment 

results do show that our MVPP re-optimization algorithm improve the query 

processing cost of the search space. The dynamic approach also help support new 

requirements that can avoid the repeatedly run all requirements, the existing and the 

new requirements, and the affected node identification algorithm can reduce the size 

of search space. The conclusion of our methodologies to solve the dynamic 

materialized view selection problem will be presented in the next chapter. 



 

 

CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 

 

Materializing view is a technique to improve the query performance in a data 

warehouse. However, materialize views have maintenance cost, so materialization of 

all views is not possible. Deciding which of the appropriated views are to be 

materialized is one of the most important problems in data warehouse design. In order 

to solve this problem, constructing a search space to identify a set of views to be 

materialized is a necessary task. To generate the search space, it is practically 

impossible to consider all common subexpressions among queries because of the 

numerous numbers of possible common subexpressions. The MVPP is one of the 

several approaches to constructing the optimal search space for the view selection 

problem. As the generating of MVPP is constructed by merging the individual 

optimal plans in order of the frequency of executing query multiplied with query cost. 

Thus, merging of incoming query has to use the common subexpressions of the 

previous merging. Therefore, it will lose the global optimization.  

We propose the MVPP re-optimization algorithm to verify whether the 

cheapest MVPP is optimal, and to improve the query processing cost of the cheapest 

MVPP by rewriting the query using the concept of commonality of common 

subexpression for all queries. Our goal is to preserve global optimization by reducing 

the query processing cost of the cheapest MVPP. The result shows that the total query 

processing cost of MVPP is reduced if the query can be rewritten. After materialized 

views are selected by selection algorithm, 2PO, the total cost, which is the summation 

of query processing cost and materialized view maintenance cost, is reduced as well.  

Moreover, in the real situation, the requirements specified by the various 

stakeholders are frequently changed and such changes will cause the existing 

resources to be changed. We start our dynamic materialized view selection with the 

static phase by implementing the static materialized view selection for the initial  
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requirements. In static phase, we apply our MVPP re-optimization algorithm to 

improve the cheapest MVPP and apply 2PO algorithm to select a set of views to be 

materialized. Two experiments have been conducted to evaluate the performance of 

the proposed algorithms. The experiments are performed on our testbed 50 queries 

with the combination of base relations. For the first experiment, when the MVPP re-

optimization algorithm is applied, the cheapest MVPP is not the optimal one as some 

queries can be rewritten using an alternative execution plan in the cheapest MVPP. 

After the problematic queries are rewritten, the re-optimized MVPP provides the total 

query processing cost less than that of the cheapest MVPP. Later, we apply 2PO to 

select the set of views to be materialized, the total cost, 6,120,827,925,892, is less 

than the cheapest MVPP, 6,362,230,638,028. For the second experiment, some 

queries in the cheapest MVPP do not provide the minimum query processing cost 

compared with the other MVPPs. However, there is no alternative plan in the cheapest 

MVPP for that problematic query then it cannot be rewritten. Therefore, our MVPP 

re-optimization algorithm can help to verify that the cheapest MVPP is the optimal 

MVPP.  

For the dynamic phase, there are new queries added into the existing MVPP 

generated in the static phase. After the new queries are merged into the existing 

MVPP, the MVPP re-optimization algorithm is applied to preserve the global 

optimization of MVPP. Later, we apply our affected node identification algorithm 

aiming to reduce the search space for selection algorithm, 2PO. The results show that 

our affected node identification algorithm can identify the necessary nodes to be 

selected to be materialized or un-materialized. The number of nodes to be selected by 

our dynamic approach is less than that of the static approach because the static 

approach has to recalibrate from scratch for all requirements, existing and new 

requirements. The number of nodes in the search space for the first experiment is 

reduced from 35 to 23 nodes and the second experiment is reduced from 35 to 21 

nodes. Therefore, the proposed approach achieves our objective of the dynamic 

materialized view selection problem, that is not all existing resources need to be 

considered for materializing.  

Finally, we use 2PO algorithm to select the set of views to be materialized. 

The first experiment of our dynamic approach, after new queries are merged, provides 
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the MVPP structure the same as that of the static approach. The total cost of our 

dynamic approach is equal to the total cost of the static approach despite the fact that 

the number of nodes to be selected by 2PO of the dynamic approach is less than that 

of the static approach. For the second experiment, our dynamic approach provides the 

MVPP structure different from that of the static approach. The result is that the total 

cost of dynamic approach is less than that of static approach, and the number of nodes 

to be selected by 2PO of dynamic approach is less than that of the static approach. We 

also select complex SQL standard queries to cover all categories of subexpression 

commonality to reflect the real situation in which all kinds of relevance with existing 

resource would be added into the existing environment simultaneously. 

In a real application system, there are other constraints that the system should 

consider beside the number of tuples, frequency of executing a query and frequency 

of updating base relations used in cost model such as indexes, system storage 

constraints or time constraints. Also, further study should be done on how to better 

calculate the maintenance cost of a materialized view, such as calculating the cost 

based on maintenance cost of its descendent materialized views. 
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APPENDICES



 

 

APPENDIX A 

 

Result of Merging Queries to Construct MVPPs 

 

In this appendix, the details to merge queries based on order of queries’ weight 

for query set Q1 to Q7 are presented. The first order list of the first MVPPs of this 

query set is {Q4, Q7, Q3, Q2, Q6, Q1, and Q5}.  

 

A.1  The First MVPP 

 

The details of constructing the first MVPP already have been described as 

Figure 4.10 in section 4.3. We represent the first MVPP again in Figure A.1. 

 

 

Figure A.1  The Result of the First MVPP 

 

The details for other MVPPs are described in the follow sections.  

 

A.2  The Second MVPP 

 

The following Figure A.2 shows the result of the second MVPP based on the 

order list {Q7, Q3, Q2, Q6, Q1, Q5 and Q4}. As Q7 is the first query of the second  
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Figure A.2  The Result of the Second MVPP Based on the Order List { Q7, Q3, Q2, 

Q6, Q1, Q5 and Q4} 

 

MVPP then we start the second MVPP with Q7. Next when Q3 is merged, we 

first join REGION with NATION and then join this result with SUPPLIER. There is 

the subtree joined conjunctively of LINEITEM and ORDERS so the new node is 

introduced to join those results i.e. (REGION   NATION   SUPPLIER) and 

(LINEITEM   ORDERS). Figure A.2 (a) shows the result after Q3 is merged into 

MVPP. Next query in the list is query Q2, there are two conjunctively joined nodes 

available in MVPP that are (REGION   NATION) and (LINEITEM   ORDERS   
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CUSTOMER). Therefore, new node is introduced to join those results. Figure A.2 (b) 

shows the result after Q2 is merged into MVPP. Next query in the list is Q6, 

LINEITEM and ORDERS conjunctively joined node is available in the MVPP then 

new node is introduced to join that result with SUPPLIER. Figure A.2 (c) shows the 

result after Q6 is merged into MVPP. Next query is Q1, there are two sharable 

conjunctively joined available for Q1, therefore new node is introduced to join result 

of (REGION   NATION   SUPPLIER) and (LINEITEM   ORDERS). Figure A.2 

(d) shows the result after Q1 is merged into MVPP. Next query is Q5, as Q5 is 

subsumption of Q6 that is already available in the MVPP then no new node is 

generated for Q5. Figure A.2 (e) shows the result after Q5 is merged into MVPP. The 

last query in the list is Q4, the available conjunctively join is (REGION   NATION   

SUPPIER) then new nodes are introduced to join that result with PARTSUPP, and 

then join the result with CUSTOMER. Figure A.2 (f) shows the result of the second 

MVPP after all queries are merged. 

 

A.3  The Third MVPP 

 

After the second MVPP is built, the first element, Q7, of the list is moved to 

the end of the list. Therefore, the new list becomes {Q3, Q2, Q6, Q1, Q5, Q4 and 

Q7}. Figure A.3 shows the result of the third MVPP. As Q3 is the first query of the 

list then we start with the third MVPP equal to Q3. Next query in the list is Q2, when 

we merge Q2 into MVPP only REGION and NATION are already conjunctively 

joined node then new nodes are introduced as join operation between that 

conjunctively joined node with CUSTOMER, then join with ORDERS and then join 

with LINEITEM respectively as shown in Figure A.3 (a). Next when we merge Q6 

into MVPP, as the MVPP does not have possibly sharable conjunctively joined node 

with Q6 then new nodes are introduced as join operation for Q6 as shown in Figure 

A.3 (b). Next query in the list is Q1, when we merge Q1 into MVPP, there are 

sharable conjunctively join for Q1 so only new node is introduced as join operation 

node for those results (REGION   NATION   SUPPLIER) and (LINEITEM   

ORDERS). Figure A.3 (c) shows the result after Q1 is merged into MVPP. Next, Q5 

is subsumption of Q6 that is already available in MVPP then no new node is 
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generated for Q5 as shown in Figure A.3 (d). Next, when we merge Q4 into MVPP, 

new nodes are introduced as join 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure A.3  The Result of the Third MVPP Based on the Order List {Q3, Q2, Q6, Q1, 

Q5, Q4 and Q7}  

 

operation for existing sharable subexpression and base relation that are the 

result of (REGION   NATION) joined with SUPPLIER and then the result is joined 

with PARTSUPP and next join with CUSTOMER respectively. Figure A.3 (e) shows 

the result after Q4 is merged into MVPP. The last query is Q7, as there is no sharable 

conjunctively join in MVPP that Q7 can use, then new nodes are introduced as join 

operation node of (LINEITEM   ORDERS) and its result is joined with 
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CUSTOMER. Figure A.3 (f) shows the result after all queries of the third MVPP are 

merged. 

 

A.4  The Fourth MVPP 
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Figure A.4  The Result of the Fourth MVPP Based on the Order List {Q2, Q6, Q1, 

Q5, Q4, Q7 and Q3} 

 

After the third MVPP is built, the first element of the list, Q3, is moved to the 

end of the list then the new list becomes {Q2, Q6, Q1, Q5, Q4, Q7 and Q3}. Figure 

A.4 shows the result of the fourth MVPP. We start the fourth MVPP equal to Q2 as 
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Q2 is the first query in the list. When Q6 is merged into MVPP, there is no sharable 

between Q2 and Q6 then new nodes are introduced to construct Q6 as shown in 

Figure A.4 (a). Next, when we merge Q1 into MVPP, we first join SUPPLIER with 

joined result of (REGION   NATION). The remaining base relations are PARTSUPP 

and PART already joined for Q6. Then, new node is introduced as join operation for 

that result as shown in Figure A.4 (b). Next Q5 is subsumption of Q6 that is already 

available in MVPP then no new node is generated for Q5 as shown in Figure A.4 (c). 

Next query is Q4, Q4 is merged into MVPP by using sharable join operator of 

(REGION   NATION   SUPPLIER). For PARTSUPP and CUSTOMER, the new 

nodes are introduced as join operation respectively. Figure A.4 (d) shows the result 

after Q4 is merged into MVPP. Next query in the list is Q7, there is no sharable in 

MVPP for Q7 then new nodes are introduced as shown in Figure A.4 (e). The last 

query in the list is Q3, there are two sharable subexpression available in MVPP, 

therefore the new node is introduced to join those results that are (REGION   

NATION   SUPPLIER) and (LINEITEM   ORDERS). Figure A.4 (f) shows the 

result after all queries are merged for the fourth MVPP. 

 

A.5  The Fifth to Seventh MVPPs 

 

We repeat these steps of MVPP algorithm to construct the fifth to seventh 

MVPP based on following order list of query 

The fifth MVPP : {Q6, Q1, Q5, Q4, Q7, Q3 and Q2} 

The sixth MVPP : {Q1, Q5, Q4, Q7, Q3, Q2 and Q6} 

The seventh MVPP : {Q5, Q4, Q7, Q3, Q2, Q6 and Q1} 

The pictorial views of merging each query into MVPP show as Figure A.5 to 

A.7 for the fifth to seventh MVPP respectively. 
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Figure A.5  The Result of the Fifth MVPP Based on the Query List {Q6, Q1, Q5, Q4, 

Q7, Q3 and Q2} 
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Figure A.6  The Result of the Sixth MVPP Based on the Query List {Q1, Q5, Q4, 

Q7, Q3, Q2 and Q6} 
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Figure A.7  The Result of the Seventh MVPP Based on the Query list {Q5, Q4, Q7, 

Q3, Q2, Q6 and Q1} 

 

After all MVPPs are constructed by above steps, we optimize MVPP by push 

select, project and aggregate function down as deep as possible for all MVPPs. Figure 

A.8 to Figure A.14 show the first MVPP to the seventh MVPP already optimized. 

Finally the total query processing costs of MVPP, which is the summation of query 

processing cost of queries in the MVPP, are calculated. The query processing cost is 

the frequency of executing the query multiplied with the cost of accessing the nodes 

to obtain the result of the query. Table A.1 to A.7 show the query processing of 

queries for the first MVPP to the seventh MVPP respectively.  
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Figure A.8  The First MVPP, Queries in the List: {Q4, Q7, Q3, Q2, Q6, Q1, and Q5} 

 

Table A.1  The Query Processing Cost of the First MVPP 

 
Query fq Access from the nodes Cost of Each Nodes Query Processing 

Cost 

Q1 2 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp5, Tmp7, Tmp8, 

Tmp18, Tmp22 and result1 

5, 1, 25, 25, 10000, 50000, 

800000, 1602400000, 200000, 

32048000000 and 160240 

67,303,240,592 

Q2 6 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp11, Tmp12, Tmp13, 

Tmp14, Tmp9, Tmp15, 

Tmp17 and result2 

5, 1, 25, 25, 6000000, 

1500000, 227597, 

1365582000000, 150000, 

136577850000, 4552595 and 

184082 

9,013,034,785,980 

Q3 7 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp5, Tmp6, Tmp11, 

Tmp12, Tmp13, Tmp14, 

Tmp16 and result3 

5, 1, 25, 25, 10000, 50000, 

6000000, 1500000, 227597, 

1365582000000, 1823769557 

and 182183 

9,571,896,175,751 

Q4 2 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp5, Tmp6, Tmp7, Tmp8, 

Tmp9, Tmp10 and result4 

5, 1, 25, 25, 10000, 50000, 

800000, 1602400000, 150000, 

24036000000, and 967519280 

53,213,858,672 

Q5 5 Tmp7, Tmp18, Tmp19, 

Tmp20 and result5 

800000, 200000, 200000, 

7255200000 and 36276 

36,282,181,380 

Q6 9 Tmp7, Tmp18, Tmp19, 

Tmp20, Tmp5, Tmp21 and 

result6 

800000, 200000, 200000, 

7255200000, 10000, 

362760000 and 36276  

68,572,856,484 

Q7 3 Tmp11, Tmp12, Tmp13, 

Tmp14, Tmp9 , Tmp15 and 

result7 

6000000, 1500000, 227597, 

1365582000000, 150000, 

136577850000 and 910519 

4,506,505,914,348 

The total query processing cost of the first MVPP 23,316,809,013,207 
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     n_nationkey 
     n_name   

[25][25]
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Q6

Tmp21
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result6
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5
Q4
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Tmp14
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Q7
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23
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Figure A.9  The Second MVPP, Query in the List: {Q7, Q3, Q2, Q6, Q1, Q5 and Q4} 

 

Table A.2  The Query Processing Cost of the Second MVPP 

 
Query fq Access from the nodes Cost of Nodes Query Processing 

Cost 

Q1 2 Tmp7, Tmp8, Tmp9, 

Tmp10, Tmp11, Tmp12, 

Tmp15, Tmp16, Tmp17, 

Tmp20 and result1 

5, 1, 25, 25, 10000, 50000, 

800000, 200000, 

160000000000, 1602400000 

and 160240 

323,207,240,592 

Q2 6 Tmp7, Tmp8, Tmp9, 

Tmp10, Tmp1, Tmp2, 

Tmp3, Tmp4, Tmp5, 

Tmp6, Tmp14 and result2 

5, 1, 25, 25, 6000000, 1500000, 

227597, 1365582000000, 

150000, 136577850000, 

4552595 and 184082 

9,013,034,785,980 

Q3 7 Tmp7, Tmp8, Tmp9, 

Tmp10, Tmp11, Tmp12, 

Tmp1, Tmp2, Tmp3, 

Tmp4, Tmp13 and result3 

5, 1, 25, 25, 10000, 50000, 

6000000, 1500000, 227597, 

1365582000000, 1823769557 

and 182183 

9,571,896,175,751 

Q4 2 Tmp7, Tmp8, Tmp9, 

Tmp10, Tmp11, Tmp12, 

Tmp15, Tmp21, Tmp5, 

Tmp22 and result4 

5, 1, 25, 25, 10000, 50000, 

800000, 1602400000, 150000, 

24036000000, and 967519280 

53,213,858,672 

Q5 5 Tmp15, Tmp16, Tmp17, 

Tmp18 and result5 

800000, 200000, 

160000000000, 800000 and 

36276 

800,009,181,380 

Q6 9 Tmp15, Tmp16, Tmp17, 

Tmp18, Tmp11, Tmp19 

and result6 

800000, 200000, 

160000000000, 800000, 10000, 

362760000 and 36276 

1,443,281,456,484 

Q7 3 Tmp1, Tmp2, Tmp3, 

Tmp4, Tmp5, Tmp6 and 

result7 

6000000, 1500000, 227597, 

1365582000000, 150000, 

136577850000 and 910519 

4,506,505,914,348 

The total query processing cost of the second MVPP 25,711,148,613,207 
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Figure A.10  The Third MVPP (the Cheapest MVPP), Query in the List: {Q3, Q2, 

Q6, Q1, Q5, Q4 and Q7}  

 

Table A.3  The Query Processing Cost of the Third MVPP 

 
Query fq Access from the nodes Cost of Nodes Query Processing 

Cost 

Q1 2 Tmp1, Tmp2, Tmp3, 

Tmp4, Tmp5, Tmp6, 

Tmp16, Tmp18, Tmp19, 

Tmp22 and result1 

5, 1, 25, 25, 10000, 50000, 

800000, 200000, 160000000000, 

1602400000 and 160240 

323,207,240,592 

Q2 6 Tmp1, Tmp2, Tmp3, 

Tmp4, Tmp12, Tmp13, 

Tmp9, Tmp10, Tmp14, 

Tmp15 and result2 

5, 1, 25, 25, 150000, 750000, 

1500000, 227597, 6869560251, 

6000000, 276048000000 and 

184082 

1,697,558,231,916 

Q3 7 Tmp1, Tmp2, Tmp3, 

Tmp4, Tmp5, Tmp6, 

Tmp7, Tmp8, Tmp9, 

Tmp10, Tmp11 and result2 

5, 1, 25, 25, 10000, 50000, 

6000000, 12018000000, 

1500000, 227597 , 

273369715461 and 182183 

1,997,769,797,079 

Q4 2 Tmp1, Tmp2, Tmp3, 

Tmp4, Tmp5, Tmp6, 

Tmp16, Tmp17, Tmp12, 

Tmp23 

5, 1, 25, 25, 10000, 50000, 

800000, 1602400000, 150000, 

24036000000, and 967519280 

53,213,858,672 

Q5 5 Tmp16, Tmp18, Tmp19, 

Tmp20 and result5 

800000, 200000, 160000000000, 

800000 and 36276 

800,009,181,380 

Q6 9 Tmp16, Tmp18, Tmp19, 

Tmp20, Tmp5, Tmp21 and 

result6 

800000, 200000, 160000000000, 

800000, 10000, 362760000 and 

36276 

1,443,281,456,484 

Q7 3 Tmp7, Tmp9, Tmp10, 

Tmp24, Tmp12, Tmp25 

and result7 

6000000, 1500000, 227597, 

1365582000000, 150000, 

136577850000 and 910519 

4,506,505,914,348 

The total query processing cost of the third MVPP 10,821,545,680,471 
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Figure A.11  The Fourth MVPP, Query in the List: {Q2, Q6, Q1, Q5, Q4, Q7 and 

Q3} 

 

Table A.4  The Query Processing Cost of the Fourth MVPP 

 
Query fq Access from the nodes Cost of Nodes Query Processing 

Cost 

Q1 2 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp16, Tmp18, Tmp12, 

Tmp13, Tmp14, Tmp19 and 

result1 

5, 1, 25, 25, 10000, 50000, 

800000, 200000, 

160000000000, 1602400000 

and 160240 

323,207,240,592 

Q2 6 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp5, Tmp6, Tmp7, Tmp8, 

Tmp9, Tmp10, Tmp11 and 

result2 

5, 1, 25, 25, 150000, 750000, 

1500000, 227597, 6869560251, 

6000000, 276048000000 and 

184082 

1,697,558,231,916 

Q3 7 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp16, Tmp18, Tmp10, 

Tmp7, Tmp8, Tmp22 and 

result3 

5, 1, 25, 25, 10000, 50000, 

6000000, 1500000, 227597, 

1365582000000, 1823769557 

and 182183 

9,571,896,175,751 

Q4 2 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp16, Tmp18, Tmp12, 

Tmp20, Tmp5, Tmp21 and 

result4 

5, 1, 25, 25, 10000, 50000, 

800000, 1602400000, 150000, 

24036000000, and 967519280 

53,213,858,672 

Q5 5 Tmp12, Tmp13, Tmp14, 

Tmp15 and result5 

800000, 200000, 60000000000, 

800000 and 36276 

800,009,181,380 

Q6 9 Tmp12, Tmp13, Tmp14, 

Tmp15, Tmp16, Tmp17 and 

result6 

800000, 200000, 

160000000000, 800000, 10000, 

362760000 and 36276 

1,443,281,456,484 

Q7 3 Tmp10, Tmp7, Tmp8, 

Tmp22, Tmp5, Tmp23 and 

result7  

6000000, 1500000, 227597, 

1365582000000, 150000, 

136577850000 and 910519 

4,506,505,914,348 

The total query processing cost of the fourth MVPP 18,395,672,059,143 
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Figure A.12  The Fifth MVPP, Query in the List: {Q6, Q1, Q5, Q4, Q7, Q3 and Q2} 

 

Table A.5  The Query Processing Cost of the Fifth MVPP 

 
Query fq Access from the nodes Cost of Nodes Query Processing 

Cost 

Q1 2 Tmp7, Tmp8, Tmp9, 

Tmp10, Tmp5, Tmp11,  

Tmp1, Tmp2, Tmp3, 

Tmp12 and result1 

5, 1, 25, 25, 10000, 50000, 

800000, 200000, 160000000000, 

1602400000 and 160240 

323,207,240,592 

Q2 6 Tmp7, Tmp8, Tmp9,  

Tmp16, Tmp17, Tmp18, 

Tmp19, Tmp14, Tmp20, 

Tmp22 and result2 

5, 1, 25, 25, 6000000, 1500000, 

227597, 1365582000000, 

150000, 136577850000, 

4552595 and 184082 

9,013,034,785,980 

Q3 7 Tmp7, Tmp8, Tmp9, 

Tmp10, Tmp5, Tmp11,  

Tmp21, Tmp16, Tmp17, 

Tmp18, Tmp19, result3 

5, 1, 25, 25, 10000, 50000, 

6000000, 1500000, 227597, 

1365582000000, 1823769557 

and 182183 

9,571,896,175,751 

Q4 2 Tmp7, Tmp8, Tmp9, 

Tmp10, Tmp5, Tmp11,  

Tmp1, Tmp13, Tmp14, 

Tmp15 and result4 

5, 1, 25, 25, 10000, 50000, 

800000, 1602400000, 150000, 

24036000000, and 967519280 

53,213,858,672 

Q5 5 Tmp1, Tmp2, Tmp3, Tmp4 

result5 

800000, 200000, 160000000000, 

800000 and 36276 

800,009,181,380 

Q6 9 Tmp1, Tmp2, Tmp3, 

Tmp4, Tmp5, Tmp6 and 

result6 

800000, 200000, 160000000000, 

800000, 10000, 362760000 and 
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1,443,281,456,484 
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result7 

6000000, 1500000, 227597, 

1365582000000, 150000, 
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The total query processing cost of the fifth MVPP 25,711,148,613,207 
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Figure A.13  The Sixth MVPP, Query in the List: {Q1, Q5, Q4, Q7, Q3, Q2, and Q6} 

 

Table A.6  The Query Processing Cost of the Sixth MVPP 

 
Query fq Access from the nodes Cost of Nodes Query Processing 

Cost 

Q1 2 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp5, Tmp6, Tmp7, Tmp8, 

Tmp9, Tmp10 and result1 

5, 1, 25, 25, 10000, 50000, 

800000, 1602400000, 200000, 

32048000000 and 160240 

67,303,240,592 

Q2 6 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp15, Tmp16, Tmp17, 

Tmp18, Tmp13, Tmp19, 

Tmp11 and result2 

5, 1, 25, 25, 6000000, 1500000, 

227597, 1365582000000, 

150000, 136577850000, 

4552595 and 184082 

9,013,034,785,980 

Q3 7 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp5, Tmp6, Tmp15, 

Tmp16, Tmp17, Tmp18, 

Tmp20 and result3 

5, 1, 25, 25, 10000, 50000, 

6000000, 1500000, 227597, 

1365582000000, 1823769557 

and 182183 

9,571,896,175,751 

Q4 2 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp5, Tmp6, Tmp7, Tmp8, 

Tmp13, Tmp1, Tmp2, Tmp3, 

Tmp4, Tmp5, Tmp6, Tmp7, 

Tmp8, Tmp14 and result4 

5, 1, 25, 25, 10000, 50000, 

800000, 1602400000, 150000, 

24036000000, and 967519280 

53,213,858,672 

Q5 5 Tmp7, Tmp9, Tmp11, 

Tmp12  result5 

800000, 200000, 200000, 

7255200000 and 36276 

36,282,181,380 

Q6 9 Tmp7, Tmp9, Tmp11, 

Tmp12 , Tmp5, Tmp22 

result6 

800000, 200000, 200000, 

7255200000, 10000, 

362760000 and 36276  

68,572,856,484 

Q7 3 Tmp15, Tmp16, Tmp17, 

Tmp18, Tmp13, Tmp19 and 

result7 

6000000, 1500000, 227597, 

1365582000000, 150000, 

136577850000 and 910519 

4,506,505,914,348 

The total query processing cost of the sixth MVPP 23,316,809,013,207 
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Figure A.14  The Seventh MVPP, Query in the List: {Q5, Q4, Q7, Q3, Q2, Q6, and 

Q1} 

 

Table A.7  The Query Processing Cost of the Seventh MVPP 

 
Query fq Access from the nodes Cost of Nodes Query Processing 

Cost 

Q1 2 Tmp5, Tmp6, Tmp7, 

Tmp8, Tmp9, Tmp10, 

Tmp1, Tmp2, Tmp3, 

Tmp22 and result1 

5, 1, 25, 25, 10000, 50000, 

800000, 200000, 

160000000000, 1602400000 

and 160240 

323,207,240,592 

Q2 6 Tmp5, Tmp6, Tmp7, 

Tmp8, Tmp14, Tmp15, 

Tmp16, Tmp17, Tmp12, 

Tmp18, Tmp20 and result2 

5, 1, 25, 25, 6000000, 1500000, 

227597, 1365582000000, 

150000, 136577850000, 

4552595 and 184082 

9,013,034,785,980 

Q3 7 Tmp5, Tmp6, Tmp7, 

Tmp8, Tmp9, Tmp10, 

Tmp14, Tmp15, Tmp16, 

Tmp17, Tmp19 and result3 

5, 1, 25, 25, 10000, 50000, 

6000000, 1500000, 227597, 

1365582000000, 1823769557 

and 182183 

9,571,896,175,751 

Q4 2 Tmp5, Tmp6, Tmp7, 

Tmp8, Tmp9, Tmp10, 

Tmp1, Tmp11, Tmp12, 

Tmp13 and result4 

5, 1, 25, 25, 10000, 50000, 

800000, 1602400000, 150000, 

24036000000, and 967519280 

53,213,858,672 

Q5 5 Tmp1, Tmp2, Tmp3, Tmp4 

and result5 

800000, 200000, 

160000000000, 800000 and 

36276 

800,009,181,380 

Q6 9 Tmp1, Tmp2, Tmp3, 

Tmp4, Tmp9, Tmp21 and 

result6 

800000, 200000, 

160000000000, 800000, 10000, 

362760000 and 36276 

1,443,281,456,484 

Q7 3 Tmp14, Tmp15, Tmp16, 

Tmp17, Tmp12, Tmp18 

and result7 

6000000, 1500000, 227597, 

1365582000000, 150000, 

136577850000 and 910519 

4,506,505,914,348 

The total query processing cost of the seventh MVPP 25,711,148,613,207 
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Figure A.15  The Cheapest MVPP after Re-Optimized. 

 

Table A.8  The Query Processing Cost of the Re-Optimized MVPP 

 
Query fq Access from the nodes Cost of Nodes Query Processing 

Cost 

Q1 2 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp5, Tmp6, Tmp16, 

Tmp17, Tmp18, Tmp19 and 

result1 

5, 1, 25, 25, 10000, 50000, 

800000, 1602400000, 200000, 

32048000000 and 160240 

67,303,240,592 

Q2 6 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp12, Tmp13, Tmp9, 

Tmp10, Tmp14, Tmp15 and 

result2 

5, 1, 25, 25, 150000, 750000, 

1500000, 227597, 

6869560251, 6000000, 

276048000000 and 184082 

1,697,558,231,916 

Q3 7 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp5, Tmp6, Tmp7, Tmp8, 

Tmp9, Tmp10, Tmp11 and 

result3 

5, 1, 25, 25, 10000, 50000, 

6000000, 12018000000, 

1500000, 227597 , 

273369715461 and 182183 

1,997,769,797,079 

Q4 2 Tmp1, Tmp2, Tmp3, Tmp4, 

Tmp5, Tmp6, Tmp16, 

Tmp17, Tmp12, Tmp23 and 

result4 

5, 1, 25, 25, 10000, 50000, 

800000, 1602400000, 150000, 

24036000000, and 967519280 

53,213,858,672 

Q5 5 Tmp16, Tmp18, Tmp20, 

Tmp21 and result5 

800000, 200000, 200000, 

7255200000 and 36276 

36,282,181,380 

Q6 9 Tmp16, Tmp18, Tmp20, 

Tmp21, Tmp5, Tmp22 and 

result6 

800000, 200000, 200000, 

7255200000, 10000, 

362760000 and 36276  

68,572,856,484 

Q7 3 Tmp7, Tmp9, Tmp10, 

Tmp24, Tmp12, Tmp25 and 

result7 

6000000, 1500000, 227597, 

1365582000000, 150000, 

136577850000 and 910519 

4,506,505,914,348 

The total query processing cost of the re-optimized MVPP 8,427,206,080,471 

Figure A.15 is the cheapest MVPP after applying our MVPP re-optimization 

algorithm. Table A.8 shows the query processing cost of re-optimized MVPP.
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APPENDIX B 

 

Result of Using Common Subexpression 

 

This appendix provides the analysis result for using sharable subexpression of 

new querieswhen they are merged into existing MVPP. Example A shows the details 

of merging new query in which the subgraph of existing MVPP is the subtree of new 

query. This situation is mentioned in section 4.6 that is the existing query can use 

sharable subexpression with new query. Therefore, the existing query is rewritten to 

use sharable subexpression with new query rather than creating the new node to 

support only new query. 

    

B.1  Example A 

 

Suppose that the queries for the static phase are Q19, Q22 and Q31, the initial 

requirements, and the new requirement added in dynamic phase is Q1. The individual 

optimal plan of Q1, Q19, Q22 and Q31 are shown in Figure B.1 

   
       (a) Query Q1    (b) Query Q19 

 

Figure B.1  Relational Algebra Query Tree of Query Q1, Q19, Q22 and Q31
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(c) Query Q22         (d) Query Q31 

 

Figure B.1  (Continued)  

 

Suppose that the re-optimized existing MVPP of initial requirements, Q19, 

Q22 and Q31, is shown in Figure B.2. The optimal dynamic MVPP after Q1 is added 

into existing MVPP is shown in Figure B.3.  

Figure B.4 is the re-optimized MVPP generated by rerunning the static 

approach for all queries, Q1, Q19, Q22 and Q31. 

 
 represents materialized view node 

 

Figure B.2  The Re-Optimized Existing MVPP in Static Phase for Q19, Q22 and Q31  
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 represents materialized view node 

 

Figure B.3  The Optimal MVPP of Dynamic Phase by Adding New Query Q1  

    

 
 represents materialized view node 

 

Figure B.4  The Re-Optimized Cheapest MVPP by the Static Approach for Q19, 

Q22, Q31 and Q1 
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Table B.1 shows the query processing cost of all queries for the static 

approach and the dynamic approach after the materialized view are selected. Table 

B.2 shows the comparison of the result from the static approach and the dynamic 

approach. 

 

Table B.1  The Query Processing Cost 

 

Query Static Approach Dynamic Approach 

Query number 1 (Q1) 9,105,190 9,105,190 

Query number 19 (Q19) 276,083,393,841 276,083,393,841 

Query number 22  (Q22) 1,725,517,188,621 1,725,513,451,014 

Query number 31 (Q31) 5,770,009,600 5,763,780,255 

Total 2,007,379,697,252 2,007,369,730,300 

 

Table B.2  The Total Query Processing Cost, Maintenance Cost and Total Cost 

 

Approach Cost of  

Query Processing 

Cost  

of Maintenance 

Total Cost 

Static 2,007,379,697,252 1,365,589,907,765 3,372,969,605,017 

Dynamic 2,007,369,730,300 1,726,723,846,934 3,734,093,577,234 

 

In conclusion, from the existing MVPP shown in Figure B.2, the node Tmp5 is 

the subgraph of existing MVPP. Tmp5 is the subsumption of new query Q1 node 

Tmp4 in Figure B.1 (a). Because the selection condition of Tmp5 in Figure B.2 same 

as Tmp4 in Figure B.1 (a), which is LINEITEM and ORDERS with selection 

(so_orderdate >= ‘1994-01-01’ and o_orderdate<’1995-01-01’), plus the additional selection 

(sl_commitdate < l_receiptdate) that is node Tmp2 in Figure B.2.  

In Figure B.2 the materialized views are Tmp5 and Tmp15. After the optimal 

MVPP generated by dynamic approach, Figure B.3, Tmp20 is the new materialized 

view selected to support new query Q1. Comparing the dynamic approach result with 

static approach, Figure B.4, the number of materialized views of dynamic approach is 
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more than that of static approach. In Figure B.4, the result of MVPP by rerunning 

static approach, Tmp4 is the sharable conjunctive joined operation among the queries. 

All three queries can be derived from Tmp4 whilst Tmp5 in Figure B.3 are used for 

Q19 and Q22 only. So, Tmp4 in Figure B.4 is simple common subexpression than 

Tmp5 in Figure B.3. Therefore, the materialized view maintenance cost of dynamic 

materialized view approach is higher than that of the static approach.  

The result of Table B.2 shows that after selecting view to be materialized, the 

total cost of static approach, 3,372,969,605,017, is less than dynamic approach, 

3,734,093,577,234. Although the total query processing cost of dynamic approach is 

less than that of static approach, the query processing cost is not less than enough to 

make the total cost less than static approach. Therefore, the existing query should be 

rewritten to sharable subexpression with new query that the saving of the materialized 

view maintenance cost.  

 

B.2  Example B 

 

Normally there possibly to have more than one alternative plans when new 

query is merged into search space. This example shows the experiment how to choose 

the query processing plan for new query when new query is merged into the existing 

MVPP if new query has many query processing plan. We use the experiment in 

section 4.6.3 to explain this situation. According to Figure 4.43 (e) and (f), there are 

two possible plan of Q13 when Q13 is merged into MVPP that Q12 already in the 

MVPP.  

 

Plan 1: {(REGION   NATION   SUPPLIER   PARTSUPP   PART)} join with 

{(LINEITEM)   ORDERS   CUSTOMER)}. The first subgraph is Tmp19 and the 

second subgraph is Tmp25. Plan 1 provides query processing cost of Q13 = 

869,818,249,255. Figure B.5 shows the MVPP when merge Q13 into the existing 

MVPP that Q12 already merged in the MVPP. Figure B.6 shows the optimized MVPP 

by all select, project and aggregation function are pushed down as deep as possible  
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 represents materialized view node selected by static approach for Q1-Q7 

 

Figure B.5  Plan1: The Dynamic MVPP after Q13 is Merged into the Existing Re-

Optimized MVPP 

 
 represents materialized view node selected by static approach for Q1-Q7 

 represents new materialized view node selected by dynamic approach 

 

Figure B.6  Plan 1: The Dynamic Cheapest MVPP of Q8-Q13 after Optimized 
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Plan 2: {(REGION   NATION   SUPPLIER   PARTSUPP   PART)   

LINEITEM}   ORDERS   CUSTOMER. 

{(REGION   NATION   SUPPLIER   PARTSUPP   PART)   LINEITEM} is the 

intermediate result of Q12 

 
 represents materialized view node selected by static approach for Q1-Q7 

 

Figure B.7  Plan 2: The Dynamic MVPP after Q13 is merged into the Existing Re-

Optimized MVPP 

 
 represents materialized view node selected by static approach for Q1-Q7 

 represents new materialized view node selected by dynamic approach 

 

Figure B.8  Plan 2: The Re-Optimized Cheapest Dynamic MVPP of Q8-Q13 
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The first subgraph, {(REGION   NATION   SUPPLIER   PARTSUPP   

PART)   LINEITEM}, is the intermediate result of Q12. Next, the result is joined 

with ORDERS and later joined with CUSTOMER, respectively. Figure Plan 2 in 

Figure B.7 shows the MVPP when merge Q13 into the existing MVPP that Q12 

already merged in MVPP. Plan 2 provides the query processing cost of Q13 is 

817,447,115,675. Figure B.8 shows the optimize MVPP by all select, project and 

aggregation function are pushed down as deep as possible.  

As we match the optimal individual plan of query from leaf node to the root 

node with the MVPP and merge to subgraph of MVPP which provides the number of 

base relations that are joined conjunctively as much as possible. Therefore, the second 

plan is chosen because the first subgraph of second plan is constructed on 6 base 

relations more than others subgraphs. Also the second plan provides the query 

processing cost less than the first plan. The query processing cost of Q13 for Plan 1 

and Plan 2 are calculated and shown in Table B.3.  

 

Table B.3  The Query Processing Cost of Q13 

 

Plan Accessed from the nodes Cost of node Query 

processing cost 

1 Tmp6(materialized view),  

Tmp16, Tmp17, Tmp18,  

Tmp19, Tmp31, Tmp33, 

Tmp24(materialized view), 

Tmp12, Tmp25, Tmp34, 

Tmp35 and result13 

2003, 800000, 1602400000, 

200000, 32048000000, 

160240, 32192, 910519, 

150000, 136577850000, 

910519, 3733997148, 215 

869,827,064,180 

2 Tmp6(materialized view), 

Tmp16, Tmp17, Tmp18, 

Tmp19, Tmp31,  

Tmp7, Tmp27, Tmp32, 

Tmp33, Tmp9, Tmp10, 

Tmp34, Tmp12, Tmp35 and 
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160240,  
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227597, 6998835347, 

150000, 711150000, 215 

817,446,813,290 

 



 

 

APPENDIX C 

 

Result of Merging Queries to Construct Dynamic MVPPs 

 

In this appendix, the details to merge new queries, Q8 to Q13, into the existing 

re-optimized MVPP are presented. The existing re-optimized MVPP is generated in 

the static phase for initial requirements, Q1 to Q7, shown in Figure 4.23.  

  

C.1  The First Dynamic MVPP 

 

The first order list of the first dynamic MVPPs of this query set is {Q10, Q8, 

Q11, Q12, Q9, and Q13}. The details of constructing the first dynamic MVPP already 

have been described as Figure 4.41 in section 4.6.2. We represent the first dynamic 

MVPP again in Figure C.1. 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.1  The First Dynamic MVPP after All New Queries are Merged
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We push down select, project and aggregate function for the first dynamic 

MVPP as deep as possible to optimize MVPP. The first dynamic MVPP is shown in 

Figure C.2. The query processing cost of each query after the first dynamic MVPP is 

optimized shown in Table C.1. 

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.2  The First Dynamic MVPP after Optimized 
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Table C.1  The Query Processing Cost of the First to the Fourth Dynamic MVPP 

 

Query fq List of Accessed Nodes Cost of Nodes Query Processing 

Cost 

Q1 2 Tmp6(materialized view), Tmp16, Tmp17, Tmp18, 

Tmp19 and result1 

2003, 800000, 1602400000, 200000, 32048000000 

and 160240 

67,303,124,486 

Q2 6 Tmp15(materialized view) and result2 184082 and 184082 2,208,984 

Q3 7 Tmp11(materialized view) and result3 182183 and 182183 2,550,562 

Q4 2 Tmp6(materialized view), Tmp16, Tmp17,Tmp12, 

Tmp23 and result4 

2003, 800000, 1602400000, 150000, 24036000000, 

and 967519280 
53,213,742,566 

Q5 5 Tmp21(materialized view) and result5 36276  and 36276 362,760 

Q6 9 Tmp21(materialized view), Tmp5, Tmp22, and result6 36276, 10000, 362760000 and 36276 3,265,582,968 

Q7 3 Tmp24(materialized view), Tmp12, Tmp25 and result7 910519, 150000, 136577850000 and 910519 409,739,463,114 

Q8 6 Tmp7, Tmp27, Tmp18, Tmp26, Tmp28 and result8 6000000, 6000000, 200000, 200000, 

151951851168 and 758746 

911,790,059,484 

Q9 4 Tmp1, Tmp2, Tmp3, Tmp4, Tmp12, Tmp13, Tmp9, 

Tmp10, Tmp14 and result 9 

5, 1, 25, 25, 150000, 750000, 1500000, 227597, 

6869560251 and 46008 

27,488,935,648 

Q10 5 Tmp24(materialized view) and result10 910519, 910519 9,105,190 

Q11 5 Tmp24(materialized view), Tmp29, Tmp16, Tmp30 and 

result11 

910519, 575169, 800000, 460135200000 and 

575169  

2,300,691,981,035 
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Table C.1 (Continued) 

 

Quer

y 
fq List of Accessed Nodes Cost of Nodes Query 

Processing Cost 

Q12 2 Tmp6(materialized view), Tmp16, Tmp17, 

Tmp18, Tmp19, Tmp31, Tmp7, Tmp27, Tmp32 

and result12 

2003, 800000, 1602400000, 200000, 32048000000, 

160240, 6000000, 6000000, 122113784832 and 

152424 

311,554,998,998 

Q13 5 Tmp6(materialized view), Tmp16, Tmp17, 

Tmp18, Tmp19, Tmp7, Tmp27, Tmp31, Tmp32, 

Tmp33, Tmp9, Tmp10, Tmp34, Tmp12, Tmp35 

and result13 

2003, 800000, 1602400000, 200000, 32048000000, 

160240, 6000000, 6000000, 122113784832, 152424, 

1500000, 227597, 6998835347, 150000, 711150000 

and 215 

817,446,813,290 

The total query processing cost of the first MVPP 4,902,508,929,08

5 
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C.2  The Second Dynamic MVPP 

 

After the first dynamic MVPP is generated, the first element of the list is 

moved to the end of the list. So Q10 is moved to the end of list, the list becomes {Q8, 

Q11, Q12, Q9, Q13 and Q10}. 

We start the second dynamic MVPP with Q8, as there is no conjunctively join 

available in existing MVPP for PART and LINEITEM. Then, a new intermediate 

node is introduced. The second dynamic MVPP when Q8 is merged is shown as 

Figure C.3 (a). Next, when Q11 is merged, the existing join conjunctively 

intermediate node is available for subtree of Q11 that is Tmp24. There is remaining 

base relation, PARTSUPP, then the new node is introduced as a join operation 

between Tmp24 and PARTSUPP, {Tmp24   PARTSUPP}. The second dynamic 

MVPP when Q11 is merged, is shown as Figure C.3 (b). 

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.3 (a)  The Second Dynamic MVPP after Merging Q8 into the Existing Re-
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 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.3 (b)  The Second Dynamic MVPP after Merging Q11 into the Existing Re-

Optimized MVPP 

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.3 (c)  The Second Dynamic MVPP after Merging Q12 into the Existing Re-

Optimized MVPP 
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 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.3 (d)  The Second Dynamic MVPP after Merging Q9 into the Existing Re-

Optimized MVPP 
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 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.3 (e)  The Second Dynamic MVPP after Merging Q13 into the Existing Re-

Optimized MVPP 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.3 (f)  The Second Dynamic MVPP after All New Queries are Merged 
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Next step of the merging new queries into the existing MVPP process, we 

push down select, project and aggregate function for the second dynamic MVPP as 

deep as possible to optimize MVPP. The second dynamic MVPP after optimized is 

shown in Figure C.4. The query processing cost of each query after the second 

dynamic MVPP is optimized same as the query processing cost of the first dynamic 

MVPP shown in Table C.1. 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.4  The Second Dynamic MVPP after Optimized 
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conjunctively joined node is available that is Tmp19. The remaining base relation is 

LINEITEM, then the new node is introduced as a join operation between Tmp19 and 

LINEITEM.  The third dynamic MVPP when Q12 is merged shown as Figure C.5 (b). 

Later, when Q9 is merged, the existing conjunctively joined node is available for Q9 

that is Tmp14. As Q9 is subsumption of existing MVPP then no new node is 

introduced. The third dynamic MVPP when Q9 is merged shown as Figure C.5 (c). 

Thereafter, we merge Q13 at the intermediate result of Q12, then join with ORDERS, 

and CUSTOMER shown in Figure C.5 (d). The next query in the list is Q10. Q10 has 

conjunctively joined (ORDERS   LINEITEM) that is already available in the existing 

MVPP, Tmp24. The select operation (so_orderdate>=’1994-01-01’ and o_orderdate <’1995-01-01’ 

ORDER) of Q10 is pushed down as Tmp24 has this operation. New intermediate node 

are not created for Q10 as Q10 is subsumption of existing MVPP. Figure C.5(e) show 

dynamic MVPP when Q10 is merged into the existing MVPP.  The last query in the 

list is Q8, when Q8 is merged, Q8 is classified as nothing in common with existing 

MVPP then the sharable expression is not available for Q8. So, the new intermediate 

node is introduced to join PART and LINEITEM. The dynamic MVPP when Q8 is 

merged shown as Figure C.5 (f). 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.5 (a)  The Third Dynamic MVPP after Merging Q11 into the Existing Re-

Optimized MVPP 
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 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.5 (b)  The Third Dynamic MVPP after Merging Q12 into the Existing Re-

Optimized MVPP 

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.5 (c)  The Third Dynamic MVPP after Merging Q9 into the Existing Re-

Optimized MVPP 
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 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.5 (d)  The Third Dynamic MVPP after Merging Q13 into the Existing Re-

Optimized MVPP 

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.5 (e)  The Third Dynamic MVPP after Merging Q10 into the Existing Re-

Optimized MVPP 
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 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.5 (f)  The Third Dynamic MVPP after All New Queries are Merged 

 

Next step of merging is to push down select, project and aggregate function 

for first dynamic MVPP as deep as possible to optimize MVPP. The third dynamic 

MVPP after optimized is shown in Figure C.6. The query processing cost of each 

query after the third dynamic MVPP is optimized same as the query processing cost 

of the first dynamic MVPP shown in Table C.1. 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.6  The Third Dynamic MVPP after Optimized 

region nation supplier lineitem orders

Q3

[5][1]

[1][1]

sr_name=’ASIA’  

pr_regionkey

p n_regionkey 
     n_nationkey 
     n_name   

[25][25]

[25][5]
[10000][10000]

[50000][2003]

p s_nationkey
     s_suppkey 
      s_name

[6000000][6000000]

[1201113] [12018000000]

[182183]

Tmp1

Tmp2

Tmp3

Tmp4
Tmp5

Tmp6

Tmp7

Tmp8

Tmp9

Tmp11

[273369715461]

[182183]result3

p l_suppkey
     l_orderkey
     l_quantity 
     l_discount

p o_orderkey 
     o_custkey 
     o_totalprice   
     o_orderpriority

so_orderdate

>=’1994-01-01'   

  o_orderdate

<’1995-01-01' 

[227597][227597]

Tmp10

[227597] [1500000]

7

customer

[150000][150000]
Tmp12

Tmp13
[750000]

[30183]

[46008] [6869560251]

Tmp14

Q2

[184082]result2

[184082]

Tmp15

[276048000000]

6

[160240] [1602400000]

Tmp17

partsupp

[800000][800000]

p ps_suppkey
     ps_partkey
     ps_supplycost 
     ps_avaiqty 

Tmp16

part

[200000][200000]

[160240]
[32048000000]

p p_partkey 
     p_brand  
     p_type 
     p_size 
 

Q1

[160240]result1

2

Tmp18

Tmp19

[200000][9069]

Tmp20

Tmp21

[36276] [7255200000]

s p_brand<>’BRAND#45’ 

      not p_type like ‘%BRASS%’ 

      p_size in (9,19,49)  

Q5

[36276]result5

Q6

Tmp22

[36276]

[36276]

[362760000]

result6

9

5

Q4

[967519280]

Tmp23 [24036000000]

result4

[967519280]

Tmp24

[910519]
[1365582000000

Q7

Tmp25

result7

[910519] [136577850000]

[910519]

2

3

gn_name
   sum(l_quantity)

gcount
   (ps_suppkey) 

Q10

Q8Q9

Q11

Q12
Q13

[150000] [5] [25] [10000] [6000000] [1500000] [800000] [200000]

p c_nationkey
     c_custkey    
     c_acctbal
     c_mktsegment

gn_name 
    count(l_orderkye) gc_mktsegment  

    sum(l_discount)

gs_name
    sum(ps_supplycost)    

gn_name 
   min( ps_suppltcost )

gs_name
    sum(ps_supplycost)

region nation supplier lineitem orders

[5][1]

[1][1]

sr_name=’ASIA’  

pr_regionkey

p n_regionkey 
     n_nationkey 
     n_name   

[25][25]

[25]
[5]

[10000][10000]

[50000][2003]

p s_nationkey
     s_suppkeyTmp1

Tmp2

Tmp3

Tmp4

Tmp5

Tmp6

Tmp9

p o_orderkey 
     o_custkey 
     o_totalprice   
     o_orderpriority

so_orderdate

>=’1994-01-01'   

  o_orderdate

<’1995-01-01' 

[227597][227597]

Tmp10

[227597] [1500000]

customer

[150000][150000]

Tmp12

Tmp13
[750000][30183]

[46008] [6869560251]

Tmp14

Q2

[184082]result2

[184082]

Tmp15

[276048000000]

6

[1602400000]

Tmp17

partsupp

p ps_suppkey
     ps_partkey
     ps_supplycost 
     ps_avaiqty 

part

[200000][200000]

p p_partkey 
     p_brand  
     p_type 
     p_size 
 

Tmp18

[200000][9069]
Tmp20

Tmp21

[36276] [7255200000]

sp_brand<>’BRAND#45’ 

     not p_type like ‘%BRASS%’ 

     p_size in (9,19,49)  

Tmp22

[36276] [362760000]

[967519280]

Tmp23 [24036000000]

Tmp25

[910519] [136577850000]

Q9
4

gn_name
    avg(o_totalprice)    

result9 [46008]

[460135200000]
[575169]

Tmp30

[160240]

Q8

[758746]

6

result8

g max(p_brand)    

[758746] [151951851168]
Tmp28

Q1

[160240]
result1

2

go_orderstatus
    sum(l_extendedprice)    

Q11

5

[575169]
result11

Q6

[36276]
result6

9

[800000][800000]

Tmp16

[6000000]Tmp27

s l_commitdate 

< l_receiptdate

[3793296]

[6000000][6000000]

Tmp7

p l_suppkey
     l_orderkey
     l_quantity 
     l_tax
     l_discount
     l_extendedprice
     l_commitdate
     l_receiptdate

[910519]
[575169]

Tmp29

Tmp24

[910519] [1365582000000 [200000]
[40058]

Tmp26

s p_type 

like ‘%BRASS%’

[160240]
[32048000000]

Tmp19

Q7

result7 [910519]

3

[1201113] [12018000000]

Tmp8

Q3

[182183]
result3

7

gn_name
   sum(l_quantity )

sps_availgty<200

Q4

result4 [967519280]

2

result10

Q10

[910519]

5

go_orderpriority
    
min(l_discount)    

s l_commitdate 

< l_receiptdate

Tmp33

gcount
   (ps_suppkey) 

Q5

[36276]result5

5

[150000] [5] [25] [10000] [6000000] [1500000] [800000] [200000]

Q12

2

result12

gn_name
    max(l_extendedprice)    

[152424]

[152424]

[160240][32192]

Tmp31

s p_type 

like ‘%BRASS%’

Tmp32

[122113784832]

[182183]

Tmp11

[273369715461]

[215]

Q13
5

result13 [215]

gp_brand, 
   
avg(l_extendedprice) 

Tmp35

[152424]

Tmp34

[30751]

[4741]

[6998835347]

[711150000]

gn_name 
   min( ps_suppltcost )

p c_nationkey
     c_custkey    
     c_acctbal 
     c_mktsegment

gn_name 
    count(l_orderkye)

gc_mktsegment  
    sum(l_discount)

gs_name
    sum(ps_supplycost)    gs_name

    sum(ps_supplycost)



218 

We repeat these steps of merging algorithm to construct the fourth to sixth 

dynamic MVPP based on following order list of query 

The fourth dynamic MVPP : {Q12, Q9, Q13, Q10, Q8 and Q11} 

The fifth dynamic MVPP : {Q9, Q13, Q10, Q8, Q11 and Q12} 

The sixth dynamic MVPP : {Q13, Q10, Q8, Q11, Q12 and Q9} 

 

The pictorial views of merging each query into MVPP show in section C.7 to 

C.12 the fourth to the sixth dynamic MVPP respectively. 

 

C.4  The Fourth Dynamic MVPP 

 

The fourth dynamic MVPP : {Q12, Q9, Q13, Q10, Q8 and Q11} 

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.7 (a)  The Third Dynamic MVPP after Merging Q12 into the Existing Re-

Optimized MVPP 
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 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.7 (b)  The Third Dynamic MVPP after Merging Q9 into the Existing Re-

Optimized MVPP 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.7 (c)  The Third Dynamic MVPP after Merging Q13 into the Existing Re-

Optimized MVPP 
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 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.7 (d)  The Third Dynamic MVPP after Merging Q10 into the Existing Re-

Optimized MVPP 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.7 (e)  The Third Dynamic MVPP after Merging Q8 into the Existing Re-

Optimized MVPP 
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 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.7 (f)  The Fourth Dynamic MVPP after All New Queries are Merged 

 

The fourth dynamic MVPP after optimized is shown in Figure C.8. The query 

processing cost of each query after the fourth dynamic MVPP is optimized same as 

the query processing cost of the first dynamic MVPP shown in Table C.1. 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.8  The Fourth Dynamic MVPP after Optimized  
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C.5  The Fifth Dynamic MVPP 

 

The fifth dynamic MVPP : { Q9, Q13, Q10, Q8, Q11 and Q12} 

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.9 (a)  The Fifth Dynamic MVPP after Merging Q9 into the Existing Re-

Optimized MVPP 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.9 (b)  The Fifth Dynamic MVPP after Merging Q13 into the Existing Re-

Optimized MVPP 
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 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.9 (c)  The Fifth Dynamic MVPP after Merging Q10 into the Existing Re-

Optimized MVPP 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.9 (d)  The Fifth Dynamic MVPP after Merging Q8 into the Existing Re-

Optimized MVPP 
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 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.9 (e)  The Fifth Dynamic MVPP after Merging Q11 into the Existing Re-

Optimized MVPP 

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.9 (f)  The Fifth Dynamic MVPP after All New Queries are Merged 
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The fifth dynamic MVPP after optimized is shown in Figure C.10. The query 

processing cost of each query after the fifth dynamic MVPP is optimized shown in 

Table C.2. 

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.10  The Fifth Dynamic MVPP after Optimized 
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Table C.2  The Query Processing Cost of the Fifth and the Sixth Dynamic MVPP 

 

Query fq List of Accessed Nodes Cost of Nodes Query Processing 

Cost 

Q1 2 Tmp6(materialized view), Tmp16, Tmp17, Tmp18, 

Tmp19 and result1 

2003, 800000, 1602400000, 200000, 32048000000 

and 160240 

67,303,124,486 

Q2 6 Tmp15(materialized view) and result2 184082 and 184082 2,208,984 

Q3 7 Tmp11(materialized view) and result3 182183 and 182183 2,550,562 

Q4 2 Tmp6(materialized view), Tmp16, Tmp17,Tmp12, 

Tmp23 and result4 

2003, 800000, 1602400000, 150000, 24036000000, 

and 967519280 
53,213,742,566 

Q5 5 Tmp21(materialized view)  and result5 36276  and 36276 362,760 

Q6 9 Tmp21(materialized view), Tmp5, Tmp22, and 

result6 

36276, 10000, 362760000 and 36276 
3,265,582,968 

Q7 3 Tmp24(materialized view), Tmp12, Tmp25 and 

result7 

910519, 150000, 136577850000 and 910519 
409,739,463,114 

Q8 6 Tmp7, Tmp27, Tmp18, Tmp26, Tmp28 and result8 6000000, 6000000, 200000, 200000, 151951851168 

and 758746 

911,790,059,484 

Q9 4 Tmp1, Tmp2, Tmp3, Tmp4, Tmp12, Tmp13, 

Tmp9, Tmp10, Tmp14 and result 9 

5, 1, 25, 25, 150000, 750000, 1500000, 227597, 

6869560251 and 46008 

27,488,935,648 

Q10 5 Tmp24(materialized view) and result10 910519, 910519 9,105,190 

Q11 5 Tmp24(materialized view), Tmp29, Tmp16, 

Tmp30 and result11 

910519, 575169, 800000, 460135200000 and 575169  2,300,691,981,035 
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Table C.2 (Continued) 

 

Query fq List of Accessed Nodes Cost of Nodes Query Processing 

Cost 

Q12 2 Tmp6(materialized view), Tmp16, Tmp17, Tmp18, 

Tmp19, Tmp31, Tmp7, Tmp27, Tmp32 and 

result12 

2003, 800000, 1602400000, 200000, 32048000000, 

160240, 6000000, 6000000, 122113784832 and 

152424 

311,554,998,998 

Q13 5 Tmp6(materialized view), Tmp16, Tmp17, Tmp18, 

Tmp19, Tmp31, Tmp33, Tmp24(materialized 

view), Tmp12, Tmp25, Tmp34, Tmp35 and 

result13 

2003, 800000, 1602400000, 200000, 32048000000, 

160240, 32192, 910519, 150000, 136577850000, 

910519, 3733997148 and 215 

869,827,064,180 

The total query processing cost of the first MVPP 4,954,889,179,975 
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C.6  The Sixth Dynamic MVPP 

The sixth dynamic MVPP : {Q13, Q10, Q8, Q11, Q12 and Q9} 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.11 (a)  The Sixth Dynamic MVPP after Merging Q13 into the Existing Re-

Optimized MVPP 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.11 (b)  The Sixth Dynamic MVPP after Merging Q10 into the Existing Re-

Optimized MVPP 
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 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.11 (c)  The Sixth Dynamic MVPP after Merging Q8 into the Existing Re-

Optimized MVPP 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.11 (d)  The Sixth Dynamic MVPP after Merging Q11 into the Existing Re-

Optimized MVPP 
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 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.11 (e)  The Sixth Dynamic MVPP after Merging Q12 into the Existing Re-

Optimized MVPP 

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.11 (f)  The Sixth Dynamic MVPP after All New Queries are Merged 
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The sixth dynamic MVPP after optimized is shown in Figure C.12. The query 

processing cost of each query after the sixth dynamic MVPP is optimized same as the 

fifth dynamic MVPP as shown in Table C.2. 

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure C.12  The Sixth Dynamic MVPP after Optimized 
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APPENDIX D 

 

Result of Affected Node Identification Algorithm 

 

In this appendix, we are presenting the result of directly and indirectly affected 

node that are identified by an affected node identification algorithm. The affected 

node identification algorithm is shown in Figure D.1 

 

begin 

1. Initial list Mdirect and Mindirect = 

Mdirect   is the set of directly affected node 

Mindirect  is the set of indirectly affected node 

2. For each new query  

2.1  Depth first search from the root to base relations to determine 

the existing intermediate nodes, vi , used to construct the new query. 

2.2 Calculate weight w(v) of each node vi.  

vi , that are conjunctively joined with positive weight or project 

operation that is not the ancestor of base relation or select 

operation, are inserted into the list Mdirect. 

3 For each node vi in list Mdirect search its ancestor node uj, uj   Mdirect, 

up to the query node 

3.1 calculate weight of node uj, 

3.2 if ( weight vi >  weight uj ) and uj is existing materialized view 

then put uj  into list Mindirect     

3.3 if ( weight vi <  weight uj ) then  

traverse in bottom-up way to find the node that return 

maximum weight uj of each branch. 

 put uj  into list Mindirect  

end; 

 

Figure D.1  The Affected Node Identification Algorithm 
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w(v) denotes weight of node 

vO  denotes the queries which use view v. 
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q
aC  denotes the accessing cost a for query q using view v. The cost of 

answering query q is the number of rows presented in the relation used to construct q. 

fq denotes the frequency of executing a query.  

vI  denotes the base relations which are used to produce view v. 

r

mC  denotes the maintenance cost m for materialized view v based on base 

relation r, which is occasionally updated. 

 fu  denotes the frequency of updating base relation 

 

D.1  The Affected Node of The Subsumption Data Set 

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 represents new materialized view node selected in dynamic phase 

 

Figure D.2  The Existing Re-Optimized MVPP with Q9 and Q10 by Dynamic 

Approach 

 

Considering Figure D.2, The existing nodes used to construct Q9 are {Tmp14, 
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{Tmp24, Tmp10, Tmp9 and Tmp7}. According to Table 4.14 showing the weight of 

the existing node used to construct Q9 and Q10, the details of weight calculation are 

shown in Table D.1. The details of weight calculation of each node according to Table 

4.15, the weight of ancestor node of directly affected node, are shown in Table D.2.   
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Table D.1 The Weight of the Existing Node to Construct Q9 and Q10 

 

Existing 

Node 

Query Derived Node Number of 

Base 

Relations 

Weight ( w(v) ) 

Tmp1 Q1,Q2,Q3,Q4,Q9 Tmp1 1 (2+6+7+2+4)(5) – (1)(5) 100 

Tmp2 Q1,Q2,Q3,Q4,Q9 Tmp1, 2 1 (2+6+7+2+4)(1) – (1)(5+1) 15 

Tmp3 Q1,Q2,Q3,Q4,Q9 Tmp1,2,3 1 (2+6+7+2+4)(25) – (1)(25) 500 

Tmp4 Q1,Q2,Q3,Q4,Q9 Tmp1,2, 3, 4 2 (2+6+7+2+4)(25) – (2)(5+1+25+25) 413 

Tmp7 Q2,Q3,Q7,Q10 Tmp7 1 (6+7+3+5) (6000000) – (1)(6000000) 120,000,000 

Tmp9 Q2,Q3,Q7,Q9,Q10 Tmp9 1 (6+7+3+5+4) (1500000) – (1) (1500000) 36,000,000 

Tmp10 Q2,Q3,Q7,Q9,Q10 Tmp9, 10 1 (6+7+3+5+4)(227597) – (1)(1500000+227597) 3,962,328 

Tmp12 Q4, Q7, Q2, Q9 Tmp12 1 (2+3+6+4)(150000) – (1)(150000) 2,100,000 

Tmp13 Q2,Q9 Tmp1, 2, 3, 4, 12, 13 3 (6+4)(750000) – (3)(5+1+25+25+150000+750000) 4,799,832 

Tmp14 Q2,Q9 Tmp1, 2, 3, 4, 12, 13, 9, 10, 14 4 (6+4)(6869560251) – 

(4)(5+1+25+25+150000+750000+ 

+1500000+227597+6869560251) 

41,206,850,894 

Tmp24 Q7,Q10 Tmp7, 9, 10, 24 2 (3+5)(1365582000000) – 

(2)(6000000+1500000+227597+1365582000000) 

8,193,476,544,806 
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Table D.2  The Weight of Ancestor Node of Directly Affected Node of Q9, Q10 

 

Directly 

Affected 

Node 

Ancestor  

Node 

Query Derived Node Number of 

Base 

Relations 

Weight of Ancestor Node 

Tmp4 Tmp6 

 

Q1,Q3,Q4 Tmp1, 2, 3, 4, 5, 6 3 (2+7+2) (50000) – (3)*(5+1+25+25+10000 

+50000) 

369,832 

 Tmp8 Q7 Tmp1, 2, 3, 4, 5, 6, 7, 8 4 (7)(12018000000) – (4)(5+1+25+25 +10000 

+50000 +6000000+12018000000) 

36,029,759,776 

 Tmp11 Q7 Tmp1, 2, 3, 4, 5, 6, 7, 8, 9, 10 5 (7)(273369715461) – (5) (5+1+25 +25 + 

10000+ 50000 +6000000 +12018000000+ 

1500000 +227597+273369715461) 

486,610,492,657 

 Tmp17 Q1,Q4 Tmp1, 2, 3, 4, 5, 6, 16, 17 4 (2+2)(1602400000) – (4)(5+1+25+25 

+10000+50000+800000+1602400000) 

-3,440,224 

 Tmp19 Q1 Tmp1, 2, 3, 4, 5, 6, 16, 17, 19 5 (2)(32048000000) – (5)(5+1+25+25 

+10000+50000+800000+1602400000 

+200000+32048000000) 

-104,160,300,280 

 Tmp23 Q4 Tmp1, 2, 3, 4, 5, 6, 16, 17, 

12, 23 

5 (2)(24036000000) – (5)(5+1+25+25 +10000 

+50000+800000+1602400000 

+150000+24036000000) 

-80,125,050,280 
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Table D.2  (Continued) 

 

Directly 

Affected 

Node 

Ancestor  

Node 

Query Derived Node Number 

of Base 

Relations 

Weight of Ancestor Node 

Tmp14 Tmp15 Q2 Tmp1, 2, 3, 4, 12, 13, 

9, 10, 14, 7, 15 

5 (6)(276048000000) – (5)(5+1+25+25+ 

150000+750000+ 1500000 +227597 + 

6869560251+6000000 +276048000000) 

241,657,060,480 

Tmp24 Tmp25 Q7 Tmp7, 9, 10, 24 3 (3)(136577850000) – 

(3)(6000000+1500000+227597 

+1365582000000+150000+136577850000 

-

4,096,769,632,791 

 

Therefore, the affected nodes are: 

Directly affected nodes: Tmp14, Tmp13, Tmp10, Tmp9, Tmp4, Tmp2, Tmp1 and Tmp24 

Indirectly affected nodes: Tmp11, Tmp15 
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D.2  The Affected Node of The Partially Overlapping Data Set Data Set 

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 represents new materialized view node selected in dynamic phase 

 

Figure D.3  The Existing Re-Optimized MVPP with Q11 and Q12 by Dynamic 

Approach 
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Tmp6, Tmp5, Tmp4, Tmp3, Tmp2, Tmp1 and Tmp7}. According to Table 4.17 

showing the weight of the existing node used to construct Q11 and Q12, the details of 

weight calculation are shown in Table D.3. The details of weight calculation of each 

node according to Table 4.18, the weight of ancestor node of directly affected node, 

are shown in Table D.4.   
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Table D.3  The Weight of the Existing Node to Construct Q11 and Q12 

 

Existing 

Node 

Query Derived Node Number of 

Base 

Relations 

Weight ( w(v) ) 

Tmp1 Q1,Q2,Q3,Q4,Q12 Tmp1 1 (2+6+7+2+2)(5) – (1)(5) 90 

Tmp2 Q1,Q2,Q3,Q4,Q12 Tmp1,2 1 (2+6+7+2+2)(1) – (1)(5+1) 13 

Tmp3 Q1,Q2,Q3,Q4,Q12 Tmp3 1 (2+6+7+2+2)(25) – (1)(25) 450 

Tmp4 Q1,Q2,Q3,Q4,Q12 Tmp1, 2, 3, 4 2 (2+6+7+2+2)(25) – (2)(5+1+25+25) 363 

Tmp5 Q1,Q3,Q4,Q6,Q12 Tmp5 1 (2+7+2+9+2)(10000) – (1)(10000) 210,000 

Tmp6 Q1,Q3,Q4,Q12 Tmp1, 2, 3, 4, 5, 6 3 (2+7+2+2)(50000) – (3) (5+1+25+25 +10000 + 50000) 469,832 

Tmp7 Q2,Q3,Q7,Q11 Tmp7 1 (6+7+3+5)(6000000) – (1)(6000000) 120,000,000 

Tmp9 Q2,Q3,Q7,Q11 Tmp9 1 (6+7+3+5)(1500000) – (1) (1500000) 30,000,000 

Tmp10 Q2,Q3,Q7,Q11 Tmp9, 10 1 (6+7+3+5)(227597) – (1) (1500000+227597) 3,051,940 

Tmp16 Q1,Q4,Q5,Q6, Q12 Tmp16 1 (2+2+5+9+2)(800000) – (1)(800000) 15,200,000 

Tmp17 Q1,Q4,Q12 Tmp1,2,3, 4, 5, 6, 16, 17 4 (2+2+2)(1602400000) – (4) (5+1+25+25+ 

+10000+50000+800000+1602400000) 

3,201,359,776 

Tmp18 Q1,Q5,Q6,Q12 Tmp18 1 (2+5+9+2)(200000) – (1) (200000) 3,400,000 

Tmp19 Q1,Q12 Tmp1,2,3,4,5,6,16,17,18,

19 

5 (2+2)(32048000000) – (5) (5+1+25+25+10000 +50000 

+800000+1602400000 +200000 +32048000000) 

-40,065,300,280 

Tmp24 Q7,Q11 Tmp7, 9, 10, 24 2 (3+5)(1365582000000) – (2)(6000000 

+1500000+227597+1365582000000) 

8,193,476,544,806 

  



 

 

2
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Table D.4  The Weight of Ancestor Node of Directly Affected Node of Q11, Q12 

 
Directly 

Affected 

Node 

Ancestor  

Node 

Query Derived Node Number 

of Base 

Relations 

Weight of Ancestor Node 

Tmp4 Tmp13 Q2 Tmp1, 2, 3, 4, 12, 13 3 (6)(750000) – (3)(5+1+25+25+150000+ 750000) 1,799,832 

 Tmp14 Q2 Tmp1,2,3, 4, 12, 9, 10, 13, 

14 

4 (6)(6869560251) – (4)( 5+1+25+25+150000 

+750000 + 1500000 +227597+6869560251) 

13,728,609,890 

 Tmp15 Q2 Tmp1,2,3,4, 7,12,9,10,13,14, 

15 

5 (6)(276048000000) – (5)( 5+1+25+25+ 150000 + 

750000 + 1500000 +227597 +6869560251 

+6000000 +276048000000) 

241,657,060,480 

Tmp6 Tmp8 Q3 Tmp1,2,3,4,5,6,7,8 4 (7)(12018000000) – (4) (5+1+25+25+ 10000 

+50000+6000000+12018000000) 

36,029,759,776 

 Tmp11 Q3 Tmp1,2,3,4,5,6,7,8,9,10,11 5 (7)(273369715461) – (5) (5+1+25+25 +10000 

+50000+6000000+12018000000+ 1500000 

+227597+273369715461) 

486,610,492,657 

Tmp17 Tmp19 Q1,Q12 Tmp1,2,3,4,5,6,16,17,18,19 5 (2+2)(32048000000) – (5) (5+1+25+25+10000 

+50000+800000+1602400000 +200000 

+32048000000) 

 -40,065,300,280 

 Tmp23 Q4 Tmp1,2,3,4,5,6, 12,16,17, 23 5 (2)(24036000000) – (5) (5+1+25+25 +10000 

+50000 +800000+1602400000 +150000 + 

24036000000) 

 -80,125,050,280 

 

  



 

 

2
4
0

 

Table D.4  (Continued) 

 

Directly 

Affected 

Node 

Ancestor  

Node 

Query Derived Node Number 

of Base 

Relations 

Weight of Ancestor Node 

Tmp24 Tmp25 Q7 Tmp7, 9,10, 12,24,25, 3 (3)(136577850000) – (3)(6000000+1500000 

+227597+150000+ 1365582000000+ 

136577850000) 

-4,096,769,632,791 

 

Therefore, the affected nodes are: 

Directly affected nodes: Tmp1, Tmp2, Tmp4, Tmp6, Tmp9, Tmp10, Tmp17 and Tmp24 

Indirectly affected nodes: Tmp11, Tmp15 
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D.3  The Affected Node of Deleting the Query 

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure D.4  The Re-Optimized MVPP with Deleting Q3 by Dynamic and Static 

Approach 

 

Considering Figure D.4, The existing nodes used to construct Q3 are {Tmp11, 

Tmp10, Tmp9, Tmp8, Tmp7, Tmp6, Tmp5, Tmp4, Tmp3, Tmp2, Tmp1}. After Q3 

deleted, the nodes used to construct only Q3 are deleted that are Tmp11 and Tmp8, 

the nodes used to construct Q3 and the other queries are remained and might be 

identified as the directly affected node. According to Table 4.20 showing the weight 

of the existing node for Q3, the details of weight calculation are shown in Table D.5. 

The details of weight calculation of each node according to Table 4.21, the weight of 

ancestor node of directly affected node, are shown in Table D.6. 

region nation supplier lineitem orders

Q3

[5][1]

[1][1]

sr_name=’ASIA’  

pr_regionkey

p n_regionkey 
     n_nationkey 
     n_name   

[25][25]

[25][5]
[10000][10000]

[50000][2003]

p s_nationkey
     s_suppkey

[6000000][6000000]

[1201113] [12018000000]

[182183]

Tmp1

Tmp2

Tmp3

Tmp4

Tmp5

Tmp6

Tmp7

Tmp8

Tmp9

Tmp11

[273369715461]

[182183]result3

p l_suppkey
     l_orderkey
     l_quantity
     l_tax

p o_orderkey 
     o_custkey 
     o_totalprice

so_orderdate>=’1994-01-01'   

  o_orderdate<’1995-01-01' 

[227597][227597]

Tmp10

[227597] [1500000]

7

customer

[150000][150000]
Tmp12

Tmp13
[750000][30183]

[46008] [6869560251]

Tmp14

Q2

[184082]result2

[184082]

Tmp15

[276048000000]

6

[160240] [1602400000]

Tmp17

partsupp

[800000][800000]

p ps_suppkey
     ps_partkey
     ps_supplycost 
     ps_avaiqty 

Tmp16

part

[200000][200000]

[160240] [32048000000]

p p_partkey 
     p_brand  
     p_type 
     p_size 
 

Q1

[160240]result1

2

Tmp18

Tmp19

[200000][9069]

Tmp20

Tmp21

[36276] [7255200000]

sp_brand<>’BRAND#45’ 

     not p_type like ‘%BRASS%’ 

     p_size in (9,19,49)  

Q5

[36276]result5

Q6

Tmp22
[36276]

[36276]

[362760000]

result6

9

5
Q4

[967519280]

Tmp23

[24036000000]

result4 [967519280]

Tmp24

[910519] [1365582000000

Q7

Tmp25

result7

[910519] [136577850000]

[910519]

23

gn_name
    sum (l_quantity)

gcount
    (ps_suppkey)

[150000] [5] [25] [10000] [6000000] [1500000] [800000] [200000]

gn_name 
   min( ps_suppltcost )

p c_nationkey
     c_custkey    
     c_acctbal 
     c_mktsegment

gn_name 
    count(l_orderkye)

gc_mktsegment  
    sum(l_discount)

gs_name
    sum(ps_supplycost)    gs_name

    sum(ps_supplycost)
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Table D.5  The Weight of the Existing Node of Q3 

 

Existing 

Node 

Query Derived Node Number 

of Base 

Relations 

Weight ( w(v) ) 

Tmp1 Q1,Q2,Q4 Tmp1 1 (2+6+7+2)(5) – (1)(5) 45 

Tmp2 Q1,Q2,Q4 Tmp1,2 1 (2+6+7+2)(1) – (1)(5+1) 4 

Tmp3 Q1,Q2,Q4 Tmp3 1 (2+6+7+2)(25) – (1)(25) 225 

Tmp4 Q1,Q2,Q4 Tmp1,2,3,4 2 (2+6+7+2)(25) – (2)(5+1+25+25) 138 

Tmp5 Q1,Q4,Q6 Tmp5 1 (2+2+9)(10000) – (1)(10000) 120,000 

Tmp6 Q1,Q4 Tmp1,2,3,4,5,6 3 (2+2)(50000) – (3)(5+1+25+25+10000+50000) 19,832 

Tmp7 Q2,Q7 Tmp7 1 (6+3)(6000000) – (1)(6000000) 48,000,000 

Tmp9 Q2,Q7 Tmp9 1 (6+3)(1500000) – (1)(1500000) 12,000,000 

Tmp10 Q2,Q7 Tmp9,10 1 (6+3)(227597) – (1)(1500000+227597) 320,776 
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Table D.6  The Weight of Ancestor Node of Directly Affected Node of Q3 

 

Directly 

Affected 

Node 

Ancestor  

Node 

Query Derived Node Number 

of Base 

Relations 

Weight of Ancestor Node 

Tmp4 Tmp13 Q2 Tmp1, 2, 3, 4, 12, 13 3 (6)(750000) – (3)(5+1+25+25+150000+ 

750000) 

1,799,832 

 Tmp14 Q2 Tmp1,2,3, 4, 12, 9, 10, 13, 14 4 (6)(6869560251) – (4)( 5+1+25+25+150000 

+750000 + 1500000 +227597+6869560251) 

13,728,609,890 

 Tmp15 Q2 Tmp1,2,3,4, 7,12,9,10,13,14, 15 5 (6)(276048000000) – (5)( 5+1+25+25+ 150000 

+ 750000 + 1500000 +227597 

+6869560251+6000000 +276048000000) 

241,657,060,480 

Tmp6 Tmp17 Q1,Q4 Tmp1,2,3,4,6,16,17 4 (2+2)(1602400000) – (4) (5+1+25+25+ 

+10000+50000+800000+1602400000) 

-3,440,224 

 Tmp19 Q4 Tmp1,2,3,4,6,16,17,18,19 5 (2)(32048000000) – (5) (5+1+25+25+ 

+10000+50000+800000+1602400000 

+200000+32048000000) 

-104,160,300,280 

 Tmp23 Q4 Tmp1,2,3,4,6,12,16,17,23 5 (2)(24036000000) – (5) (5+1+25+25+ 

+10000+50000+800000+1602400000 +150000 

+ 24036000000) 

-80,125,050,280 

Tmp10 Tmp24 Q7 Tmp7, 9,10, 24 2 (3)(1365582000000) – (2)(6000000 

+1500000+227597+1365582000000) 

1,365,566,544,806 

 



 

 

2
4
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Table D.6  (Continued) 

 

Directly 

Affected 

Node 

Ancestor  

Node 

Query Derived Node Number 

of Base 

Relations 

Weight of Ancestor Node 

Tmp10 Tmp25 Q7 Tmp7, 9,10, 12,24,25, 3 (3)(136577850000) – (3)(6000000+1500000 

+227597+150000+ 1365582000000+ 

136577850000) 

-4,096,769,632,791 

 

Therefore, the affected nodes are: 

Directly affected nodes: Tmp10, Tmp9, Tmp6, Tmp4, Tmp2 and Tmp1 

Indirectly affected nodes: Tmp15 and Tmp24 
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D.4  The Affected Node of Adding Query Constructed on All Base 

Relations  

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 represents materialized view node selected in dynamic phase 

 

Figure D.5  The Existing Re-Optimized MVPP with Q13 by Dynamic Approach 

 

Considering Figure D.5, the existing nodes used to construct Q3 are {Tmp19, 

Tmp18, Tmp17, Tmp16, Tmp6, Tmp5, Tmp4, Tmp3, Tmp2, Tmp1, Tmp25, Tmp24, 

Tmp10, Tmp9, Tmp7, and Tmp12}. According to Table 4.23 showing the weight of 

the existing node used to construct Q13, the details of weight calculation are shown in 

Table D.7. The details of weight calculation of each node according to Table 4.24, the 

weight of ancestor node of directly affected node, are shown in Table D.8. 

  

 

 

region nation supplier lineitem orders

[5][1]

[1][1]

sr_name=’ASIA’  

pr_regionkey

p n_regionkey 
     n_nationkey 
     n_name   

[25][25]

[25]
[5]

[10000][10000]

[50000][2003]

p s_nationkey
     s_suppkey

[182183]

Tmp1

Tmp2

Tmp3

Tmp4

Tmp5

Tmp6

Tmp9

Tmp11

[273369715461]

p o_orderkey 
     o_custkey 
     o_totalprice  

so_orderdate>=’1994-01-01'   

  o_orderdate<’1995-01-01' 

[227597][227597]

Tmp10

[227597] [1500000]

customer

[150000][150000]

Tmp12

Tmp13
[750000][30183]

[46008] [6869560251]

Tmp14

Q2

[184082]result2

[184082]

Tmp15

[276048000000]

6

[1602400000]

Tmp17

partsupp

p ps_suppkey
     ps_partkey
     ps_supplycost 
     ps_avaiqty 

part

[200000][200000]

p p_partkey 
     p_brand  
     p_type 
     p_size 
 

Tmp18

[200000][9069]
Tmp20

Tmp21

[36276] [7255200000]

sp_brand<>’BRAND#45’ 

     not p_type like ‘%BRASS%’ 

     p_size in (9,19,49)  

Tmp22

[36276] [362760000]

[967519280]

Tmp23 [24036000000]

Tmp25

[910519] [136577850000]

[160240]

Q1

[160240]
result1

2

Q6

[36276]
result6

9

[800000][800000]

Tmp16

[6000000][6000000]

Tmp7 p l_suppkey
     l_orderkey
     l_tax
     l_quantity 
     l_extendedprice
     l_commitdate
     l_receiptdate

Tmp24

[910519] [1365582000000

[160240]

[32048000000]
Tmp19

Q7

result7 [910519]

3

[1201113] [12018000000]

Tmp8

Q3

[182183]
result3

7

gn_name
   sum(l_quantity )

[3733997148][215]

[575169] [6492]
[160240]

s p_type 

like ‘%BRASS%’ 

ps_availgty<200

[910519]

Q4

result4 [967519280]

2
Q13

5

result13 [215]

gp_brand
   avg(l_extendedprice) 

s l_commitdate 

< l_receiptdate

Tmp27
Tmp26

Tmp28

gcount
   (ps_suppkey) 

Q5

[36276]result5

5

[150000] [5] [25] [10000] [6000000] [1500000] [800000] [200000]

gn_name 
   min( ps_suppltcost )

p c_nationkey
     c_custkey    
     c_acctbal 
     c_mktsegment

gn_name 
    count(l_orderkye)

gc_mktsegment  
    sum(l_discount)

gs_name
    sum(ps_supplycost)    

gs_name
    sum(ps_supplycost)
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Table D.7  The Weight of the Existing Node to Construct Q13 

 

Existing 

Node 

Query Derived Node Number 

of Base 

Relations 

Weight ( w(v) ) 

Tmp1 Q1,Q2,Q3,Q4,Q13 Tmp1 1 (2+6+7+2+5)(5) – (1)(5) 105 

Tmp2 Q1,Q2,Q3,Q4,Q13 Tmp1,2 1 (2+6+7+2+5)(1) – (1)(5+1) 16 

Tmp3 Q1,Q2,Q3,Q4,Q13 Tmp3 1 (2+6+7+2+5)(25) – (1)(25) 525 

Tmp4 Q1,Q2,Q3,Q4,Q13 Tmp1,2,3,4 2 (2+6+7+2+5)(25) – (2)(5+1+25+25) 438 

Tmp5 Q1,Q3,Q4,Q6,Q13 Tmp5 1 (2+7+2+9+5)(10000) – (1)(10000) 240,000 

Tmp6 Q1,Q3,Q4,Q13 Tmp1,2,3,4,5,6 3 (2+7+2+5)(50000) – (3)(5+1+25+25+10000+50000) 619,832 

Tmp7 Q2,Q3,Q7,Q13 Tmp7 1 (6+7+3+5)(6000000) – (1)(6000000) 120,000,000 

Tmp9 Q2,Q3,Q7,Q13 Tmp9 1 (6+7+3+5)(1500000) – (1)(1500000) 30,000,000 

Tmp10 Q2,Q3,Q7,Q13 Tmp9,10 1 (6+7+3+5)(227597) – (1)(1500000+227597) 3,051,940 

Tmp12 Q2, Q4,Q7,Q13 Tmp12 1 (6+2+3+5)(150000) – (1)(150000) 2,250,000 

Tnp16 Q1,Q4,Q5,Q 6, Q13 Tmp16 1 (2+2+5+9+5)(800000) – (1)(800000) 17,600,000 

Tmp17 Q1,Q4,Q13 Tmp1,2,3,4,5,6,16,17 4 (2+2+5)( 1602400000) – (4)(5+1+25+25+10000 

+50000+800000+1602400000) 

8,008,559,776 

Tmp18 Q1,Q5,Q6,Q13 Tmp18 1 (2+5+9+5)(200000) – (1)(200000) 4,000,000 

Tmp19 Q1,Q13 Tmp1,2,3,4,5,6,16,17,18,19 5 (2+5)(32048000000) – (5)(5+1+25+25+10000 

+50000+800000+1602400000+200000+32048000000) 

56,078,699,720 
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Table D.7  (Continued) 

 
Existing 

Node 

Query Derived Node Number 

of Base 

Relations 

Weight ( w(v) ) 

Tmp24 Q7,Q13 Tmp7,9,10,24 2 (3+5)(1365582000000) –(2)(6000000+ 1500000+ 

227597+ 1365582000000) 

8,193,476,544,806 

Tmp25 Q7,Q13 Tmp7,9,10,12,24,25 3 (3+5)(136577850000) –(3)(6000000+ 1500000+ 

227597+ 150000+1365582000000+136577850000) 

-3,413,880,382,791 

 

Table D.8  The Weight of Ancestor Node of Directly Affected Node of Q13 

 
Directly 

Affected 

Node 

Ancestor  

Node 

Query Derived Node Number 

of Base 

Relations 

Weight of Ancestor Node 

Tmp4 Tmp13 Q2 Tmp1, 2, 3, 4, 12, 13 3 (6)(750000) – (3)(5+1+25+25+150000+ 

750000) 

1,799,832 

 Tmp14 Q2 Tmp1,2,3, 4, 12, 9, 10, 13, 14 4 (6)(6869560251) – (4)( 5+1+25+25+150000 

+750000 + 1500000 +227597+6869560251) 

13,728,609,890 

 Tmp15 Q2 Tmp1,2,3,4, 7,12,9,10,13,14, 

15 

5 (6)(276048000000) – (5)( 5+1+25+25+ 150000 

+ 750000 + 1500000 +227597 

+6869560251+6000000 +276048000000) 

241,657,060,480 
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Table D.8  (Continued) 

 
Directly 

Affected 

Node 

Ancestor  

Node 

Query Derived Node Number 

of Base 

Relations 

Weight of Ancestor Node 

Tmp6 Tmp8 Q3 Tmp1,2,3,4,5,6,7,8 4 (7)(12018000000) – (4) (5+1+25+25+ 

+10000+50000+6000000+12018000000) 

36,029,759,776 

 Tmp11 Q3 Tmp1,2,3,4,5,6,7,8,9,10,11 5 (7)(273369715461) – (5) (5+1+25+25+ 

+10000+50000+6000000+12018000000+ 

1500000 +227597+273369715461) 

486,610,492,657 

Tmp24 Tmp25 Q7,Q13 Tmp7,9,10,12,24,25 3 (3+5)(136577850000) –(3)(6000000+ 

1500000+ 227597+ 

150000+1365582000000+136577850000) 

-3,413,880,382,791 

 

Therefore, the affected nodes are: 

Directly affected nodes: Tmp19, Tmp17, Tmp6, Tmp4, Tmp2, Tmp1, Tmp24, Tmp10 and Tmp9 

Indirectly affected nodes: Tmp11 and Tmp15 
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D.5  The Affected Node for Adding All Queries of the First Experiment  

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure D.6  The First Dynamic MVPP after Optimized, Queries in the List:{ Q10, 

Q8, Q11, Q12, Q9 and Q13} 

 

The initial requirements for the first experiment are Q1 to Q7. The new 

requirements are Q8 to Q13 that are merged into the existing re-optimized MVPP. 

The existing MVPP is generated from Q1 to Q7 in the static phase by static 

materialized view selection approach. 

According to Table 4.29 showing the weight of the existing node used to 

construct all new queries, the details of weight calculation are shown in Table D.9. 

The details of weight calculation of each node according to Table 4.30, the weight of 

ancestor node of directly affected node, are shown in Table D.10 

 

region nation supplier lineitem orders

[5][1]

[1][1]

sr_name=’ASIA’  

pr_regionkey

p n_regionkey 
     n_nationkey 
     n_name   

[25][25]

[25]
[5]

[10000][10000]

[50000][2003]

p s_nationkey
     s_suppkeyTmp1

Tmp2

Tmp3

Tmp4

Tmp5

Tmp6

Tmp9

p o_orderkey 
     o_custkey 
     o_totalprice   
     o_orderpriority

so_orderdate

>=’1994-01-01'   

  o_orderdate

<’1995-01-01' 

[227597][227597]

Tmp10

[227597] [1500000]

customer

[150000][150000]

Tmp12

Tmp13
[750000][30183]

[46008] [6869560251]

Tmp14

Q2

[184082]result2

[184082]

Tmp15

[276048000000]

6

[1602400000]

Tmp17

partsupp

p ps_suppkey
     ps_partkey
     ps_supplycost 
     ps_avaiqty 

part

[200000][200000]

p p_partkey 
     p_brand  
     p_type 
     p_size 
 

Tmp18

[200000][9069]
Tmp20

Tmp21

[36276] [7255200000]

sp_brand<>’BRAND#45’ 

     not p_type like ‘%BRASS%’ 

     p_size in (9,19,49)  

Tmp22

[36276] [362760000]

[967519280]

Tmp23 [24036000000]

Tmp25

[910519] [136577850000]

Q9
4

gn_name
    avg(o_totalprice)    

result9 [46008]

[460135200000]
[575169]

Tmp30

[160240]

Q8

[758746]

6

result8

g max(p_brand)    

[758746] [151951851168]
Tmp28

Q1

[160240]
result1

2

go_orderstatus
    sum(l_extendedprice)    

Q11

5

[575169]
result11

Q6

[36276]
result6

9

[800000][800000]

Tmp16

[6000000]Tmp27

s l_commitdate 

< l_receiptdate

[3793296]

[6000000][6000000]

Tmp7

p l_suppkey
     l_orderkey
     l_quantity 
     l_tax
     l_discount
     l_extendedprice
     l_commitdate
     l_receiptdate

[910519]
[575169]

Tmp29

Tmp24

[910519] [1365582000000 [200000]
[40058]

Tmp26

s p_type 

like ‘%BRASS%’

[160240]
[32048000000]

Tmp19

Q7

result7 [910519]

3

[1201113] [12018000000]

Tmp8

Q3

[182183]
result3

7

gn_name
   sum(l_quantity )

sps_availgty<200

Q4

result4 [967519280]

2

result10

Q10

[910519]

5

go_orderpriority
    
min(l_discount)    

s l_commitdate 

< l_receiptdate

Tmp33

gcount
   (ps_suppkey) 

Q5

[36276]result5

5

[150000] [5] [25] [10000] [6000000] [1500000] [800000] [200000]

Q12

2

result12

gn_name
    max(l_extendedprice)    

[152424]

[152424]

[160240][32192]

Tmp31

s p_type 

like ‘%BRASS%’

Tmp32

[122113784832]

[182183]

Tmp11

[273369715461]

[215]

Q13
5

result13 [215]

gp_brand, 
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Table D.9  The Weight of the Existing Node of All Queries of the First Experiment 

 

Existing 

Node 

Query Derived Node Number 

of Base 

Relations 

Weight ( w(v) ) 

Tmp1 Q1,Q2,Q3,Q4,Q9,Q12,Q13 Tmp1 1 (2+6+7+2+4+2+5)(5) – (1)(5) 135 

Tmp2 Q1,Q2,Q3,Q4,Q9,Q12,Q13 Tmp1,2 1 (2+6+7+2+4+2+5)(1) – (1)(5+1) 22 

Tmp3 Q1,Q2,Q3,Q4,Q9,Q12,Q13 Tmp3 1 (2+6+7+2+4+2+5)(25) – (1)(25) 675 

Tmp4 Q1,Q2,Q3,Q4,Q9,Q12,Q13 Tmp1,2,3,4 2 (2+6+7+2+4+2+5)(25) – (2)(5+1+25+25) 588 

Tmp5 Q1,Q3, Q4,Q12,Q13 Tmp5 1 (2+7+2+9+2+5)(10000) – (1)(10000) 260,000 

Tmp6 Q1,Q3,Q4,Q12,Q13 Tmp1,2,3,4,5,6 3 (2+7+2+2+5)(50000) – 

(3)(5+1+25+25+10000+50000) 

719,832 

Tmp7 Q2,Q3,Q7,Q8,Q10,Q11,Q12,Q13 Tmp7 1 (6+7+3+6+5+5+2+5)(6000000) – 

(1)(6000000) 

228,000,000 

Tmp9 Q2,Q3,Q7,Q9,Q10,Q11,Q13 Tmp9 1 (6+7+3+4+5+5+5)(1500000) – (1)(1500000) 51,000,000 

Tmp10 Q2,Q3,Q7,Q9,Q10,Q11,Q13 Tmp9,10 1 (6+7+3+4+5+5+5)(227597) – 

(1)(1500000+227597) 

6,238,298 

Tmp12 Q2, Q4,Q7,Q9,Q13 Tmp12 1 (6+2+3+4+5)(150000) – (1)(150000) 2,850,000 

Tmp13 Q2,Q9 Tmp1, 2, 3, 4, 12, 13 3 (6+4)(750000) – (3) (5 + 1 + 25 + 25 + 

150000 + 750000) 

4,799,832 
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Table D.9  (Continued) 

 
Existing 

Node 

Query Derived Node Number 

of Base 

Relations 

Weight ( w(v) ) 

Tmp14 Q2,Q9 Tmp1, 2, 3, 4, 12, 13, 9, 10, 

14 

4 (6+4)(6869560251) – 

(4)(5+1+25+25+150000+750000+ 

+1500000+227597+6869560251) 

41,206,850,894 

Tmp16 Q1,Q4,Q5,Q 6,Q11,Q12,Q13 Tmp16 1 (2+2+5+9+5+2+5)(800000) – (1)(800000) 23,200,000 

Tmp17 Q1,Q4,Q12,Q13 Tmp1,2,3,4,5,6,16,17 4 (2+2+2+5)(1602400000) – (4) (5+1+25+25+ 

+10000+50000+800000+1602400000) 

11,213,359,776 

Tmp18 Q1,Q5,Q6,Q8,Q12,Q13 Tmp18 1 (2+5+9+6+2+5)(200000) – (1) (200000) 5,600,000 

Tmp19 Q1,Q12,Q13 Tmp1,2,3,4,5,6,16,17,18,19 5 (2+2+5)(32048000000) – (5)(5+1+25+25 

+10000+50000+800000+1602400000 

+200000+32048000000) 

120,174,699,720 

Tmp24 Q7,Q10,Q11 Tmp7,9,10,24 2 (3+5+5)(1365582000000) – (2)(6000000+ 

1500000+ 227597+ 1365582000000) 

15,021,386,544,806 
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Table D.10  The Weight of Ancestor Node of Directly Affected Node of All Queries of the First Experiment 

 
Directly 

Affected 

Node 

Ancestor  

Node 

Query Derived Node Number of 

Base 

Relations 

Weight of Ancestor Node 

Tmp6 Tmp8 Q3 Tmp1,2,3,4,5,6,7,8 4 (7)(12018000000) – (4) (5+1+25+25+ 

+10000+50000+6000000+12018000000) 

36,029,759,776 

 Tmp11 Q3 Tmp1,2,3,4,5,6,7,8,9,10,11 5 (7)(273369715461) – (5) (5+1+25+25+ 

+10000+50000+6000000+12018000000+ 

1500000 +227597+273369715461) 

486,610,492,657 

Tmp14 Tmp15 Q2 Tmp1,2,3,4, 7,12,9,10,13,14, 

15 

5 (6)(276048000000) – (5)( 5+1+25+25+ 

150000 + 750000 + 1500000 +227597 

+6869560251+6000000 +276048000000) 

241,657,060,480 

Tmp17 Tmp23 Q4 Tmp1, 2, 3, 4, 5, 6, 16, 17, 12, 

23 

5 (2)(24036000000) – (5)(5+1+25+25+10000 

+50000+800000+1602400000 +150000 

+24036000000) 

- 80,125,050,280 

Tmp24 Tmp25 Q7 Tmp7, 9, 10, 24 3 (3)(136577850000) – (3)(6000000+1500000 

+227597 +1365582000000 +150000 

+136577850000 

-4,096,769,632,791 

 

Therefore, the affected nodes are: 

Directly affected nodes: Tmp1, Tmp2, Tmp4, Tmp6, Tmp9, Tmp10, Tmp13, Tmp14, Tmp17, Tmp19, and Tmp24 

Indirectly affected nodes: Tmp11, Tmp15 
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D.6  The Affected Node for Adding All Queries of the Second Experiment 

 

 
 represents materialized view node selected in static phase for Q1-Q7 

 

Figure D.9  The Dynamic MVPP after Merged All New Queries and Optimized 

 

The initial requirements for the second experiment are {Q4, Q15, Q22, Q33, 

Q40, Q43 and Q50} shown in section 4.9.1. The new requirements {Q3, Q6, Q28, 

Q30, Q31 and Q47} shown in section 4.9.2 are merged into the existing re-optimized 

MVPP. The existing MVPP is generated from {Q4, Q15, Q22, Q33, Q40, Q43 and 

Q50} in the static phase by static materialized view selection approach. 

Table D.11 shows the details of weight calculation of the existing node used to 

construct all new queries, {Q3, Q6, Q28, Q30, Q31 and Q47}. The details of weight 

calculation of ancestor node of directly affected node, are shown in Table D.12. 
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Table D.11  The Weight of the Existing Node of the Second Experiment of the Second Experiment 

 

Existing 

Node 

Query Derived Node Number of 

Base 

Relations 

Weight ( w(v) ) 

Tmp1 Q33,Q40,Q50,Q28,Q30,Q31,Q47 Tmp1 1 (6+4+5+5+4+5+5)(5) – (1)(5) 165 

Tmp2 Q33,Q40,Q50,Q28,Q30,Q31,Q47 Tmp1, 2 1 (6+4+5+5+4+5+5) (1) – (1)(5+1) 28 

Tmp3 Q33,Q40,Q50,Q28,Q30,Q31,Q47 Tmp3 1 (6+4+5+5+4+5+5) (25) – (1)(25) 825 

Tmp4 Q33,Q40,Q50,Q28,Q30,Q31,Q47 Tmp1, 2, 3, 4 2 (6+4+5+5+4+5+5) (25) – (2)(5+1+25+25) 738 

Tmp5 Q15 Q33,Q40,Q43,Q50,Q28,Q31, 

Q47 

Tmp5 1 (5+6+4+7+5+5+5+5)(10000) – (1)(10000) 450,000 

Tmp6 Q28,Q33,Q40, Q31,Q47 Tmp1, 2, 3, 4, 5, 6 3 (5+6+4+5+5)(50000) – 

(3)(5+1+25+25+10000+50000) 

1,069,832 

Tmp7 Q4,Q15,Q22,Q33,Q40,Q43,Q50, 

Q6, Q28,Q30,Q47 

Tmp7 1 (6+5+3+6+4+7+5+4+7+5+4+5)(800000) 

– (1)(800000) 

44,800,000 

Tmp8 Q28,Q33,Q40, Q47 Tmp1, 2, 3, 4, 5, 6, 7, 8 4 (5+6+4+5)(1602400000) – 

(4)(5+1+25+25+10000+50000+ 800000 + 

1602400000) 

25,634,959,776 

Tmp9 Q28,Q40, Q50 Tmp1, 2, 3, 4, 5, 6, 7, 8, 9 4 (5+4+5)(160240) – 

(4)(5+1+25+25+10000+50000+ 800000 + 

1602400000 + 160240) 

-6,411,437,824 

Tmp10 Q6,Q15,Q22,Q40,Q43,Q50 Tmp10 1 (7+5+3+4+7+5)(200000) – (1)(200000) 6,000,000 

Tmp11 Q6, Q15, Q40 Tmp10, 11 1 (7+5+4)(200000) – (1)(200000+200000) 2,800,000 
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Table D.11  (Continued) 

 

Existing 

Node 

Query Derived Node Number of 

Base 

Relations 

Weight ( w(v) ) 

Tmp13 Q4,Q22,Q33,Q43,Q50,Q30,Q3,

Q31,Q47 

Tmp13 1 (6+3+6+7+5+4+4+5+5)(6000000) – 

(1)(6000000) 

264,000,000 

Tmp14 Q4,Q22,Q33,Q43,Q50,Q3,Q31, 

Q47 

Tmp13, 14 1 (6+3+6+7+5+4+5+5) (6000000) – 

(1)(6000000+6000000) 

234,000,000 

Tmp15 Q33,Q47 Tmp1, 2, 3, 4, 5, 6, 7, 8, 13, 

14, 15 

5 (6+5)(607837751040) – (5)(5+1+25+ 25 

+10000+50000+ 800000 + 1602400000 

+ 6000000 + 6000000 + 607837751040) 

3,638,950,205,960 

Tmp16 Q22,Q43,Q50,Q31,Q47 Tmp16 1 (3+7+5+5+5)(1500000)  – (1)(1500000) 36,000,000 

Tmp17 Q22,Q43,Q50,Q31,Q47 Tmp16, 17 1 (3+7+5+5+5)(227597) – 

(1)(1500000+227597) 

3,962,328 

Tmp18 Q22,Q43,Q50,Q31 Tmp13, 14, 16, 17, 18 2 (3+7+5+5)(863342789712) – 

(2)(6000000 + 6000000+ 

1500000+227597 + 863342789712) 

15,540,142,759,622 

Tmp22 Q43,Q50,Q30 Tmp22 1 (7+5+4)(150000) – (1)(150000) 2,250,000 

Tmp27 Q6, Q15 Tmp7, 10, 11, 27 2 (7+5)(32046400000) – (2)(800000+ 

200000 +200000 + 32046400000) 

320,461,600,000 
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Table D.12  The Weight of Ancestor Node of Directly Affected Node of the Second Experiment 

 
Directly 

Affected 

Node 

Ancestor  

Node 

Query Derived Node Number 

of Base 

Relations 

Weight of Ancestor Node 

Tmp11 Tmp12 Q40,Q50 Tmp1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

11, 12 

5 (4+5)(1288745976) – (5)( 5+1+25+25 

+10000 +50000+ 800000 + 1602400000 + 

160240+ 200000+ 200000+ 1288745976) 

-2,864,117,576 

 Tmp24 Q50 Tmp1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

11, 12, 13, 14, 16, 17, 18, 24 

7 (5)( 3733997148) - (7)(5+1+25+25 +10000 

+50000+ 800000 + 1602400000 + 160240+ 

200000+ 200000+ 1288745976 + 6000000 + 

6000000+ 1500000+227597 + 

863342789712  +3733997148) 

-6,071,211,579,363 

 Tmp25 Q50 Tmp1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

11, 12, 13, 14, 16, 17, 18, 22, 

24, 25 

8 (5)( 711150000) - (8)(5+1+25+25 +10000 

+50000+ 800000 + 1602400000 + 160240+ 

200000+ 200000+ 1288745976 + 6000000 + 

6000000+ 1500000+227597 + 

863342789712  +3733997148 + 150000+ 

711150000) 

-6,961,999,295,832 

Tmp14 Tmp26 Q4 Tmp7, 13, 14, 26 2 (6)(3034636800000) - (2) (6000000 + 

6000000 +800000 + 3034636800000) 

12,138,521,600,000 

Tmp18 Tmp19 Q22,Q43 Tmp7, 13, 14, 16, 17, 18, 19 3 (3+7)(460135200000) – (3)(6000000 + 

6000000 + 1500000+227597 + 

863342789712 + 8000000+ 460135200000) 

630,852,848,073 
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Table D.12  (Continued 

 

Directly 

Affected 

Node 

Ancestor  

Node 

Query Derived Node Number of 

Base 

Relations 

Weight of Ancestor Node 

Tmp18 Tmp20 Q22,Q43 Tmp7, 13, 14, 16, 17, 18, 19, 

10, 20 

4 (3+7)(115033800000) – (4)(6000000 + 

6000000+ 1500000+227597 + 863342789712 

+ 8000000+ 460135200000 + 200000 + 

115033800000) 

-4,603,796,869,236 

 Tmp21 Q43 Tmp7, 13, 14, 16, 17, 18, 19, 

10, 20, 5, 21 

5 (7)(5751690000) – (5)(6000000 + 6000000+ 

1500000+227597 + 863342789712 + 

8000000 + 460135200000 + 200000 + 

115033800000 + 10000 + 5751690000) 

-7,181,165,256,545 

 Tmp23 Q43 Tmp7, 13, 14, 16, 17, 18, 19, 

10, 20, 5, 21, 22, 23 

6 (7)(86275350000) – (6)(6000000 + 6000000+ 

1500000 + 227597 + 863342789712 + 

8000000 + 460135200000 + 200000 + 

115033800000 + 10000 + 5751690000 + 

150000 + 86275350000) 

-8,579,438,053,854 

Tmp27 Tmp28 Q15 Tmp5, 7, 10, 11, 27, 28 3 (5)(1602320000) – (3)(800000+ 200000 

+200000 + 32046400000 + 10000 + 

1602320000) 

-92,938,190,000 
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From Table D.12, as weight of Tmp12, Tmp20, Tmp21, Tmp23, Tmp24, 

Tmp25 and Tmp28 are negative then they are not the indirectly affected node.  

Tmp26 is the indirectly affected node as its weight is greater than that of Tmp14. For 

Tmp19, although its weight is less than that of Tmp18, Tmp19 is the existing 

materialized view then Tmp19 is identified as the indirectly affected node (align with 

the condition in line 3.2 of affected node identification algorithm in Figure D.1). 

 

Therefore, the affected nodes are: 

Directly affected nodes: Tmp1, Tmp2, Tmp4, Tmp6, Tmp8, Tmp9, 

Tmp11, Tmp14, Tmp15, Tmp16, Tmp17, 

Tmp18, Tmp27 

Indirectly affected nodes: Tmp19, Tmp26 

 



 

 

APPENDIX E 

 

Result of Selection Algorithm 

 

E.1  Two-Phase Optimization Algorithm 

 

The Two-Phase Optimization (2PO) is the combination of Interactive 

Improvement (II) and Simulated Annealing (SA) (Ioannidis and Kang, 1990:313). 

The algorithm is presented in Figure E.1 

 

begin 

1. Input the MVPP represented by a DAG 

2. Use depth first search from root nodes to base relations to 

search through all of the nodes in the DAG. 

3. Produce the sequence of nodes into a binary string.  

4. Call Iterative Improvement 

5. Call Simulated Annealing algorithm 

6. Present set of views to materialized with minimum cost 

end; 

  

Figure E.1  The Materialized View Selection with 2PO 

 

The Interactive Improvement algorithm is shown in Figure E.2. In our 

experiment, the stop criterion is set to 10 local minimum. 

begin 

 Smin = S; {initial solution} 

 while not (stopping condition) do { 

  S= random state 

  while local minimum not reached do { 

   S = random state in neighbor(S) 

   if cost(S) < cost(S) then S= S 

  } 

  if  cost(S) < cost(Smin) then Smin = S   

 } 

 return(Smin) 

end; 

  

Figure E.2  The Iterative Improvement (II) Algorithm
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The Simulated Annealing algorithm is shown in Figure E.3. 

 

begin 

 S = S0 ; {initial state} 

 T = T0 ; {initial value of time limit} 

 Smin = S; 

 while not(time limit) do { 

  while not(local minimum(S)) do { 

   S' = random state in neighbor(S) 

   ΔC = cost(S') - cost(S) 

   if (ΔC ≤  0) then S = S' 

   if (ΔC > 0) then S = S' with probability e
-ΔC /T

 

   if cost(S) < cost(Smin) then Smin = S 

  } 

  T = reduce(T) 

 } 

 Return{Smin}  

end; 

 

Figure E.3  The Simulated Annealing (SA) Algorithm 

  

For our experiment, the value of each parameter includes time limit which is 

set to 90 at the starting point, decrement factor is set to 0.7. 

 

The Result of the Re-Optimized MVPP 

 

 

Figure E.4  The Cheapest MVPP after Re-Optimized 
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We map DAG in Figure E.4 to binary string as [Tmp19,0], [Tmp18,0], [Tmp17,0], [Tmp16,0],  [Tmp6,0], [Tmp5,0], [Tmp4,0], 

[Tmp3,0], [Tmp2,0], [Tmp1,0], [Tmp15,0], [Tmp7,0], [Tmp14,0], [Tmp10,0], [Tmp9,0], [Tmp13,0], [Tmp12,0], [Tmp11,0], [Tmp8,0], 

[Tmp23,0],  [Tmp21,0], [Tmp20,0], [Tmp22,0], [Tmp25,0], [Tmp24,0] that is {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, indicates 

that all nodes are virtual views. The result generated by II is shown in Table E.1 

Table E.1  The Result of II of 2PO for the Re-Optimized MVPP  

 Total Cost of Initial 

State 

Initial State Total cost of Local 

Minimum State 

Local Minimum State 

1 8,427,206,080,471 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 6,732,979,232,178 {0,1,0,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,1,0,1} 

2 8,144,566,532,161 {0,1,1,1,0,1,1,0,1,0,1,0,0,0,0,0,1,0,1,1,0,0,1,1,0} 7,188,391,010,923 {1,1,1,1,0,1,0,0,0,0,0,1,1,0,0,1,0,0,0,1,0,0,1,0,1} 

3 8,136,058,882,811 {0,0,0, 1,0,0,0,0,1,0,1,1,0,1,0,0,1,0,0,1,1,0,0,1,0} 7,585,650,363,648 {0,0,1,0,0,1,1,1,0,0,0,1,1,1,0,0,1,1,0,0,0,1,0,0,1} 

4 8,359,334,708,009 {0,1,0,0, 1,0,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,0,1,0,0} 7,116,835,738,107 {1,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1} 

5 6,708,459,311,979 {0,0,0,0,0,1,0,1,0,0,1,0,0,0,1,1,0,0,1,1,0,1,1,0, 1} 6,657,098,483,266 {0,1,0,0,1,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,0,1,1,0,1} 

6 7,935,408,327,177 {1,1,0,0,0,0,0,0,0,1,0,0,1,0,1,1,0,1,0,1, 1,0,0,0,0} 6,624,915,356,922 {0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,1,0,0,1,0,1} 

7 7,820,946,154,678 {1,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,1,0,0, 1,0,0,1,0} 6,978,758,638,497 {0,0,1,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,0,1,1,0,0,0,1} 

8 7,688,298,740,389 {0,0,0,0, 1,0,1,1,0,0,0,0,1,1,1,0,0,1,0,0,1,0,0,1,0} 6,775,762,552,571 {0,0,0,0,0,1,0,1,0,0,1,0,0,0,1,1,0,0,1,1,0,1,1,0,0} 

9 7,499,403,494,665 {0,1,0,0,0,1,1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,1,0,1, 0} 7,106,331,542,563 {1,1,1,1,0,1,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,1,0,1} 

10 6,768,696,656,658 {0,0,1,0,0,1,1,0,0,0,0,1,0,0,0,1,0,0,1, 1,1,0,1,1,0} 6,768,699,388,215 {0,0,1,0,0,1,1,0,0,0,0,1,0,0,0,1,0,0,1,1,1,1,0,1,0} 

For 10 local minimum, the minimum cost is 6,624,915,356,922 that is the initial state for SA. The state is {0,0,0,0,0, 

0,0,0,0,1,0,0,0,1,0, 0,0,1,0,1,0,0,1,0,1} represent the nodes as [Tmp19,0],  [Tmp18,0], [Tmp17,0], [Tmp16,0],  [Tmp6,0], [Tmp5,0], 

[Tmp4,0], [Tmp3,0], [Tmp2,0], [Tmp1,1], [Tmp15,0], [Tmp7,0], [Tmp14,0], [Tmp10,1], [Tmp9,0], [Tmp13,0] [Tmp12,0], [Tmp11,1], 

[Tmp8,0], [Tmp23,1],  [Tmp21,0], [Tmp20,0], [Tmp22,1], [Tmp25,0], [Tmp24,1].   



 

 

2
6
2
 

The value of arguments:  T0 = 90, T = reduce(T); decrement factor is set to 0.7 

S0 = 6,624,915,356,922; the summation of query processing cost and materialized view maintenance cost 

of initial state. The binary string of initial state is {0,0,0,0,0, 0,0,0,0,1,0,0,0,1,0, 0,0,1,0,1,0,0,1,0,1}   

Table E.2  The Result of SA of 2PO for the Re-Optimized MVPP 

T 

(Ti-1-0.7) 

S Cost(S) – Cost(S) 

ΔC 

probability 

e
-ΔC /T

 

S The State of S 

    6,624,915,356,922  

90.0 6,624,915,356,947 25 0.7574 6,624,915,356,947 {0,0,1,0,1,0,1,0,0,0,1,1,0,0,1,0,0,1,1,0,0,1,0,0,1} 

89.3 6,624,915,356,752 -170 - 6,624,915,356,752 {0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,1,0,1} 

88.6 6,624,915,356,747 -5 - 6,624,915,356,747 {0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,1,0,1} 

87.9 6,624,915,536,915 180,168 0.0000 6,624,915,356,747 {1,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,1,0,1} 

87.2 6,259,209,787,966 -365,705,568,781 - 6,259,209,787,966 {0,0,1,0,0,1,1,0,0,0,0,1,0,0,1,0,0,1,1,0,0,1,0,0,1} 

86.5 6,259,209,842,028 54,062 0.0000 6,259,209,787,966 {0,0,1,0,1,0,1,0,0,0,1,1,0,0,1,0,0,1,1,0,0,1,0,0,1} 

85.8 6,172,139,022,926 -87,070,765,040 - 6,172,139,022,926 {0,0,0,0,1,0,1,0,0,0,1,1,0,0,1,0,0,1,1,0,1,1,0,0,1} 

85.1 6,124,035,032,590 -48,103,990,336 - 6,124,035,032,590 {0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,1} 

84.4 6,120,827,925,892 -3,207,106,698 - 6,120,827,925,892 {0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,1} 

83.7 6,168,924,166,116 48,096,240,224 0.0000 6,120,827,925,892 {0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,1} 

: : : :  : 

: : : : 6,120,827,925,892 : 

2.5 6,120,829,653,489 1,727,597 0.0000 6,120,827,925,892 {0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,1,0,0,0,1} 

1.8 6,120,827,925,897 5 0.0000 6,120,827,925,892 {0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,1,0,0,0,1} 

1.1 6,120,828,075,892 150,000 0.0000 6,120,827,925,892 {0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,1,0,0,0,1} 

0.4 6,120,827,926,004 112 0.0000 6,120,827,925,892 {0,0,0,0,1,0,1,0,0,1,1,0,0,0,0,0,0,1,0,0,1,0,0,0,1} 

      

 

So the output generated by SA is {0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,1}. The total cost of this state is 6,120,827,925,892 

[Tmp19,0],  [Tmp18,0], [Tmp17,0], [Tmp16,0],  [Tmp6,1], [Tmp5,0], [Tmp4,0], [Tmp3,0], [Tmp2,0], [Tmp1,0], [Tmp15,1], [Tmp7,0], 

[Tmp14,0], [Tmp10,0], [Tmp9,0], [Tmp13,0] [Tmp12,0], [Tmp11,1], [Tmp8,0], [Tmp23,0],  [Tmp21,1], [Tmp20,0], [Tmp22,0], 

[Tmp25,0], [Tmp24,1] 
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E.2  Deterministic Algorithm 

 

We further implement another selection algorithm, Deterministic Algorithm, 

aiming to validate our methodologies. We use 2PO and Deterministic Algorithm 

because 2PO has provided the minimal total cost whereas Deterministic has provided 

the maximal total cost (Phuboon-ob and Auepanwiriyakul, 2007:171; 2009:103). The 

Deterministic algorithm is proposed by Yang et al. This algorithm is to find a set of 

materialized views that provide the minimal sum of query processing cost and view 

maintenance cost. The Deterministic algorithm is described in Figure E.5. 

 

begin 

1. M = φ ; 

      2.  Calculate w(v)        

 
 


v vOq Ir

r

mu

q

aq vCrfvCqfvw )(*)()(*)()(  

3. create list LV for all the nodes (with positive value of weights) based on the 

descending order of their weights w(v); 

4. pick up the first one v from LV; 

5. generate Ov, Iv, and Sv 

6. calculate Cs of v  

  
  


v v vOq MSu Ir

r

mu

q

a

q

aqs vCrfuCvCqfC )(*)()}()(*)({  

7. if Cs > 0, then 

insert v into M; 

remove v from LV; 

    else  

remove v and all the nodes listed after v from LV who are in the subtree 

rooted at v; 

8. repeat step 3 until LV = φ ; 

9. for each v ∈ M, if D(v) ⊂ M, then remove v from M; 

end; 

 

Figure E.5 Deterministic Algorithm for Materialized View Selection 

Source:  Yang et al., 1997: 141. 

 

fq denotes the frequency of executing a query  

fu denotes the frequency of updating on base relation. 
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w(v)  denotes the weight of a node The first part of this formula indicates the 

benefit if node v is materialized, the second part indicates the cost for 

materialized view maintenance. 

LV  is the list of nodes based on descending order of w(v). 

Sv  is the set of leaf nodes and intermediate nodes which are used to 

produce v. 

M  is the set of materialized views. 

Dv  is the set of ancestors of v. 

Cs  is the cost of a node. The first part of this formula is the saving in 

access cost if v is to be materialized. The second part is the additional 

view maintenance cost for v.  

 

We provide simple explanation for executing the Deterministic Algorithm to 

the cheapest MVPP described in section 4.3 shown again in Figure E.2 as follows: 

 

 

 

Figure E.6  The Third MVPP (the Cheapest MVPP), Query in the List: {Q3, Q2, Q6, 

Q1, Q5, Q4, and Q7}  
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Initially LV =  {Tmp18, Tmp24, Tmp11, Tmp15, Tmp8, Tmp14, Tmp7, Tmp9, 

Tmp16, Tmp17, Tmp10, Tmp13, Tmp12, Tmp6, Tmp5, Tmp3, Tmp4, 

and Tmp1} 

M = φ 

Starting with Tmp18; 

OTmp18  = {Q1, Q5, Q6}, 

ITmp18   = {PART, PARTSUPP}, 

Sv  = {Tmp16, Tmp17} 

Cs  = ( (2+9+5) * (160000000000) - (1000000) ) - 320,002,000,000  

=  2,239,997,000,000 > 0, so Tmp18 is inserted into M. 

For Tmp24, Tmp11 and Tmp15, their costs of are greater than zero, so those 

views are inserted into M too. 

For Tmp8, although its cost is greater than zero, its parent Tmp11 is already in 

M, then Tmp8 is ignored. By the same reason, Tmp7, Tmp6, Tmp5, Tmp4 and Tmp1 

are ignored accordingly. For Tmp14, its parent Tmp15 is already in M then Tmp14 is 

ignored. By the same reason, Tmp13, Tmp12, Tmp9, and Tmp10 are ignored 

accordingly. Tmp16 and Tmp7 also are ignored as its parent Tmp18 already in M. As 

a result of this algorithm, the selected views are Tmp11, Tmp15, Tmp18 and Tmp24.  

Considering query Q1 in the cheapest MVPP in Figure E.2, its query access 

frequency is 2, before materializing the intermediate node, this query accesses the 

nodes named Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp16, Tmp17, Tmp18 

Tmp21 and result1. The cost of each node is 5, 1, 25, 25, 10000, 50000, 800000, 

200000, 160000000000, 1602400000 and 160240 respectively. So, the query 

processing cost of query Q1 is  

2 * (5 + 1 + 25 + 25 + 10000 + 50000 + 800000 + 200000 + 160000000000 + 

1602400000 + 160240) = 323,207,240,592.  

After Tmp18 is materialized, the query processing cost for Query Q1 is 

2*1,603,420,296 that is 3,206,840,592. It would be beneficial to materialize them, 

reducing the processing cost from 323,207,240,592 to 3,206,840,592. However, these 

views have maintenance cost whenever an update of an involved base relation occurs. 
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The view maintenance cost is 2 * (800000 + 200000 + 160000000000) that is 

320,002,000,000. 

Using these four materialized view selected by Deterministic algorithm, we 

achieve 469,452,759,788 as query processing cost, and 5,892,777,930,284 as 

materialized view maintenance cost. It would be beneficial to materialize them, 

reducing the total cost from 9,353,211,451,044 to 6,362,230,690,072. Table E.1 and 

Table E.2 show the maintenance cost of each materialized node and the query 

processing cost of each query of cheapest MVPP respectively. 

 

Table E.3  The Maintenance Cost of the Cheapest MVPP 

Materialized View Maintenance Cost 

Tmp11 1,426,977,515,570 

Tmp15 1,414,630,939,520 

Tmp18 320,002,000,000 

Tmp24 2,731,167,475,194 

Total 5,892,777,930,284 

 

Table E.4  The Query Processing of the Cheapest MVPP 

 

Query Query Processing Cost 

Query number 1 (Q1) 3,206,840,592 

Query number 2 (Q2) 2,208,984 

Query number 3 (Q3) 2,550,562 

Query number 4 (Q4) 53,213,858,672 

Query number 5 (Q5) 8,181,380 

Query number 6 (Q6) 3,279,656,484 

Query number 7 (Q7) 409,739,463,114 

Total 469,452,759,788 

 

 The Deterministic algorithm is used to select the set of views to be 

materialized views for the data set in Appendix F. The comparison of the result of 

Deterministic and 2PO are also provided in Appendix F.



 

 

 

APPENDIX F 

 

Result of Testbed 

 

In this appendix, we provide the experiments to evaluate our approach that are 

running with 50 queries (Phuboon-ob, 2009: 133) on TPC-H schema. The details of 

queries and experiment results are described as follows. 

 

F.1  Query Set of Testbed 

 

Query Q1 with the query frequency of 5 produces the minimum discount of 

items for each type of order’s priority that are ordered in 1994. Its relational algebra 

tree is shown in Figure F.1. 

 

Query Q1 

SELECT  O_ORDERPRIORITY, MIN(L_DISCOUNT) 

FROM   ORDERS, LINEITEM 

WHERE  O_ORDERKEY = L_ORDERKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

GROUP BY  O_ORDERPRIORITY; 

 

Figure F.1  Relational Algebra Query Tree of Query Q1 
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Query Q2 with the query frequency of 6 produces the maximum tax for each 

brand with specific part type and the committed date is before receipt date. Its 

relational algebra tree is shown in Figure F.2. 

 

Query Q2 

SELECT  P_BRAND, MAX(L_TAX) 

FROM   PART, LINEITEM 

WHERE  P_PARTKEY = L_PARTKEY 

AND P_TYPE LIKE '%BRASS%' 

AND L_COMMITDATE < L_RECEIPTDATE 

GROUP BY  P_BRAND; 

 

 

 

 

Figure F.2  Relational Algebra Query Tree of Query Q2 
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Query Q3 with the query frequency of 4 produces the summation of quantity 

of item for each supplier with the committed date is before receipt date. Its relational 

algebra tree is shown in Figure F.3. 

 

Query Q3 

SELECT S_NAME, SUM(L_QUANTITY) 

FROM   SUPPLIER, LINEITEM 

WHERE  S_SUPPKEY = L_SUPPKEY 

AND L_COMMITDATE < L_RECEIPTDATE 

GROUP BY  S_NAME; 

 

 

 

 

 

Figure F.3  Relational Algebra Query Tree of Query Q3 
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Query Q4 with the query frequency of 6 produces the average cost of supply 

for type of returned item with the committed date is before receipt date. Its relational 

algebra tree is shown in Figure F.4. 

 

Query Q4 

SELECT  L_RETURNFLAG, AVG(PS_SUPPLYCOST) 

FROM   PARTSUPP, LINEITEM 

WHERE  PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND L_COMMITDATE < L_RECEIPTDATE 

GROUP BY  L_RETURNFLAG; 

 

 

 

 

 

Figure F.4  Relational Algebra Query Tree of Query Q4 
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Query Q5 with the query frequency of 9 produces the summation of total price 

of orders for each market segment of customer that are ordered in 1994. Its relational 

algebra tree is shown in Figure F.5. 

 

Query Q5 

SELECT  C_MKTSEGMENT, COUNT(O_TOTALPRICE) 

FROM   CUSTOMER, ORDERS 

WHERE  C_CUSTKEY = O_CUSTKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

GROUP BY  C_MKTSEGMENT; 

 

 

 

 

Figure F.5  Relational Algebra Query Tree of Query Q5 
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Query Q6 with the query frequency of 7 produces the variance of available 

quantity for each part type with specific part. Its relational algebra tree is shown in 

Figure F.6. 

 

Query Q6 

SELECT  P_TYPE, VARIANCE(PS_AVAILQTY) 

FROM   PART, PARTSUPP 

WHERE  P_PARTKEY = PS_PARTKEY 

AND P_TYPE LIKE '%BRASS%' 

GROUP BY  P_TYPE; 

 

 

 

Figure F.6  Relational Algebra Query Tree of Query Q6 
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Query Q7 with the query frequency of 5 produces the standard deviation of 

cost of supply for each supplier and available quantity for supply part more than 2000. 

Its relational algebra tree is shown in Figure F.7. 

 

Query Q7 

SELECT  S_NAME, STDDEV(PS_SUPPLYCOST) 

FROM   SUPPLIER, PARTSUPP 

WHERE  S_SUPPKEY = PS_SUPPKEY 

AND PS_AVAILQTY < 2000 

GROUP BY  S_NAME; 

 

 

 

Figure F.7  Relational Algebra Query Tree of Query Q7 
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Query Q8 with the query frequency of 3 produces the standard deviation of 

discount for each priority type of orders that are ordered in 1994 for customer market 

segment BUILDING. Its relational algebra tree is shown in Figure F.8. 

 

Query Q8 

SELECT  O_ORDERPRIORITY, STDDEV(L_DISCOUNT) 

FROM   CUSTOMER, ORDERS, LINEITEM 

WHERE  C_CUSTKEY = O_CUSTKEY 

AND C_MKTSEGMENT = 'BUILDING' 

AND O_ORDERKEY = L_ORDERKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

GROUP BY  O_ORDERPRIORITY; 

 

 

 

Figure F.8  Relational Algebra Query Tree of Query Q8 
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Query Q9 with the query frequency of 6 produces the variance of item 

quantity for each nation of suppliers and items are ordered in 1994. Its relational 

algebra tree is shown in Figure F.9. 

 

Query Q9 

SELECT  S_NATIONKEY, VARIANCE(L_QUANTITY) 

FROM   SUPPLIER, ORDERS, LINEITEM 

WHERE  S_SUPPKEY = L_SUPPKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

GROUP BY  S_NATIONKEY; 

 

 

 

 

Figure F.9  Relational Algebra Query Tree of Query Q9 
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Query Q10 with the query frequency of 7 produces number of items for each 

part brand with specific part type and the committed date is before receipt date. Its 

relational algebra tree is shown in Figure F.10. 

 

Query Q10 

SELECT  P_BRAND, COUNT(L_TAX) 

FROM   PART, LINEITEM, PARTSUPP 

WHERE  P_PARTKEY = L_PARTKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND P_TYPE LIKE '%BRASS%' 

AND L_COMMITDATE < L_RECEIPTDATE 

GROUP BY  P_BRAND; 

 

 

 

Figure F.10  Relational Algebra Query Tree of Query Q10 
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Query Q11 with the query frequency of 9 produces the average of cost of 

supply for each nation of supplier with specific the committed date is before receipt 

date. Its relational algebra tree is shown in Figure F.11. 

 

Query Q11 

SELECT  S_NATIONKEY, AVG(PS_SUPPLYCOST) 

FROM   SUPPLIER, PARTSUPP, LINEITEM 

WHERE  S_SUPPKEY = PS_SUPPKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND L_COMMITDATE < L_RECEIPTDATE 

GROUP BY  S_NATIONKEY; 

 

 

 

 

Figure F.11  Relational Algebra Query Tree of Query Q11 

lineitem

[6000000]

Tmp1

p l_suppkey
     l_partkey
     l_tax

partsupp

p ps_suppkey
     ps_partkey
  

s l_commitdate 

< l_receiptdate

[800000][800000]

[3793296]

[3793296]

[3034636800000]

Tmp2 Tmp3

Tmp4

[3793296]

[3793296]

[800000][6000000]

supplier

p s_suppkey 
     s_nationkey
  

[10000]

Tmp5

[10000]

[10000]

Q11

[3793296]

9

result

gs_nationkey
   avg(ps_supplycost)

[3793296] [37932960000]
Tmp6

partkey

suppkey



278 

 

Query Q12 with the query frequency of 5 produces the summation of extended 

price for each type of order status ordered in 1994 and the committed date is before 

receipt date. Its relational algebra tree is shown in Figure F.12. 

 

Query Q12 

SELECT  O_ORDERSTATUS, SUM(L_EXTENDEDPRICE) 

FROM   ORDERS, PARTSUPP, LINEITEM 

WHERE  O_ORDERKEY = L_ORDERKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND L_COMMITDATE < L_RECEIPTDATE 

GROUP BY  O_ORDERSTATUS; 

 

 

 

 

Figure F.12  Relational Algebra Query Tree of Query Q12 
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Query Q13 with the query frequency of 7 produces the standard deviation of 

tax for each types of order’s priority that customer ordered in 1994. Its relational 

algebra tree is shown in Figure F.13. 

 

Query Q13 

SELECT  O_ORDERPRIORITY, STDDEV (L_TAX) 

FROM   CUSTOMER, ORDERS, LINEITEM 

WHERE  C_CUSTKEY = O_CUSTKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

GROUP BY O_ORDERPRIORITY; 

 

 

 

 

Figure F.13  Relational Algebra Query Tree of Query Q13 
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Query Q14 with the query frequency of 7 produces the minimum total price of 

order for each nation of customer that customer have same nation of supplier and 

customer ordered in 1994. Its relational algebra tree is shown in Figure F.14. 

 

Query Q14 

SELECT  C_NATIONKEY, MIN(O_TOTALPRICE) 

FROM   SUPPLIER, CUSTOMER, ORDERS 

WHERE  C_NATIONKEY = S_NATIONKEY 

AND C_CUSTKEY = O_CUSTKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

GROUP BY  C_NATIONKEY; 

 

 

 

 

Figure F.14  Relational Algebra Query Tree of Query Q14 
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Query Q15 with the query frequency of 5 produces the minimum of available 

quantity for each type brand for specific part type. Its relational algebra tree is shown 

in Figure F.15. 

 

Query Q15 

SELECT  P_BRAND, MIN(PS_AVAILQTY) 

FROM   SUPPLIER,PART, PARTSUPP 

WHERE  S_SUPPKEY = PS_SUPPKEY 

AND P_PARTKEY = PS_PARTKEY 

AND P_TYPE LIKE '%BRASS%' 

GROUP BY  P_BRAND; 

 

 

 

 

Figure F.15  Relational Algebra Query Tree of Query Q15 
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Query Q16 with the query frequency of 8 produces the maximum of supply 

cost for each brand with specific part type and available quantity more than 2000. Its 

relational algebra tree is shown in Figure F.16. 

 

Query Q16 

SELECT  P_BRAND, MAX(PS_SUPPLYCOST) 

FROM   SUPPLIER, PARTSUPP, PART 

WHERE  S_SUPPKEY = PS_SUPPKEY 

AND PS_PARTKEY = P_PARTKEY 

AND PS_AVAILQTY < 2000 

AND P_TYPE LIKE ‘%BRASS%’ 

GROUP BY  N_NAME; 

 

 

 

 

Figure F.16  Relational Algebra Query Tree of Query Q16 
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Query Q17 with the query frequency of 8 produces the summation of discount 

for each nation of customer specific market segment BUIILDING and ordered in 

1994. Its relational algebra tree is shown in Figure F.17. 

 

Query Q17 

SELECT  N_NAME, SUM(L_DISCOUNT) 

FROM   NATION, CUSTOMER, ORDERS, LINEITEM 

WHERE  C_CUSTKEY = O_CUSTKEY 

AND C_NATIONKEY = N_NATIONKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND C_MKTSEGMENT = 'BUILDING' 

GROUP BY  N_NAME; 

 

 

 

Figure F.17  Relational Algebra Query Tree of Query Q17 
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Query Q18 with the query frequency of 4 produces the average of item 

quantity for each nation of supplier that supplier were ordered in 1994 and the 

committed date is before receipt date. Its relational algebra tree is shown in Figure 

F.18. 

 

Query Q18 

SELECT  N_NAME, AVG(L_QUANTITY) 

FROM   NATION, SUPPLIER, ORDERS, LINEITEM 

WHERE  S_SUPPKEY = L_SUPPKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND L_COMMITDATE < L_RECEIPTDATE 

GROUP BY  N_NAME; 

 

 

Figure F.18  Relational Algebra Query Tree of Query Q18 
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Query Q19 with the query frequency of 3 produces the number of item for 

each customer nation for customers who have nation same as supplier and ordered in 

1994 and the committed date is before receipt date. Its relational algebra tree is shown 

in Figure F.19. 

 

Query Q19 

SELECT  C_NATIONKEY, COUNT(L_QUANTITY) 

FROM   SUPPLIER, CUSTOMER, ORDERS, LINEITEM 

WHERE  C_CUSTKEY = O_CUSTKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND S_SUPPKEY = L_SUPPKEY 

AND C_NATIONKEY = S_NATIONKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND L_COMMITDATE < L_RECEIPTDATE 

GROUP BY  C_NATIONKEY; 

 

 

Figure F.19  Relational Algebra Query Tree of Query Q19  
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Query Q20 with the query frequency of 7 produces the variance of supply cost 

for each nation of supplier and the item have the committed date is before receipt 

date. Its relational algebra tree is shown in Figure F.20. 

 

Query Q20 

SELECT  N_NAME, VARIANCE(PS_SUPPLYCOST) 

FROM   NATION, SUPPLIER, PARTSUPP, LINEITEM 

WHERE  S_SUPPKEY = PS_SUPPKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND L_COMMITDATE < L_RECEIPTDATE 

GROUP BY  N_NAME; 

 

 

 

Figure F.20  Relational Algebra Query Tree of Query Q20  
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Query Q21 with the query frequency of 6 produces the standard deviation of 

extended price for each supplier nation for items that have the committed date is 

before receipt date and specific part type. Its relational algebra tree is shown in Figure 

F.21. 

 

Query Q21 

SELECT  S_NATIONKEY, STDDEV(L_EXTENDEDPRICE) 

FROM   SUPPLIER, PARTSUPP, PART, LINEITEM 

WHERE  S_SUPPKEY = PS_SUPPKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND PS_PARTKEY = P_PARTKEY 

AND P_TYPE LIKE '%BRASS%' 

AND L_COMMITDATE < L_RECEIPTDATE 

GROUP BY  S_NATIONKEY; 

 

 

 

Figure F.21  Relational Algebra Query Tree of Query Q21  
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Query Q22 with the query frequency of 3 produces the minimum of extended 

price for each part brand for items that were ordered in 1994 with the committed date 

is before receipt date. Its relational algebra tree is shown in Figure F.22. 

 

Query Q22 

SELECT  P_BRAND, MIN(L_EXTENDEDPRICE) 

FROM   PART, ORDERS, PARTSUPP, LINEITEM 

WHERE  P_PARTKEY = PS_PARTKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND L_COMMITDATE < L_RECEIPTDATE 

GROUP BY  P_BRAND; 

 

 

Figure F.22  Relational Algebra Query Tree of Query Q22  
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Query Q23 with the query frequency of 3 produces the maximum of extended 

price for each nation of customer that ordered in 1994 with the committed date is 

before receipt date. Its relational algebra tree is shown in Figure F.23. 

 

Query Q23 

SELECT  C_NATIONKEY, MAX(L_EXTENDEDPRICE) 

FROM   CUSTOMER, ORDERS, PARTSUPP, LINEITEM 

WHERE  C_CUSTKEY = O_CUSTKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND L_COMMITDATE < L_RECEIPTDATE 

GROUP BY  C_NATIONKEY; 

 

 

Figure F.23  Relational Algebra Query Tree of Query Q23 
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Tmp2

[3793296]
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Tmp6

[800000]

Tmp7
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suppkey

customer
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     c_nationkey

Tmp8
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Tmp9

[575169]

custkey

[86275350000]

Q23

[575169]

3

result

gc_nationkey
   max(l_extendedprice)

p ps_suppkey
     ps_partkey

s l_commitdate

    < l_receiptdate
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Query Q24 with the query frequency of 5 produces the summation of extended 

price for each nation of supplier that was ordered in 1994 with the committed date is 

before receipt date. Its relational algebra tree is shown in Figure F.24. 

 

Query Q24 

SELECT  S_NATIONKEY, SUM(L_EXTENDEDPRICE) 

FROM   SUPPLIER, ORDERS, PARTSUPP, LINEITEM 

WHERE  S_SUPPKEY = PS_SUPPKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND L_COMMITDATE < L_RECEIPTDATE 

GROUP BY  S_NATIONKEY; 

 

 

 

Figure F.24  Relational Algebra Query Tree of Query Q24  
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partkey
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supplier
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Tmp9
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Q24
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5

result

gs_nationkey
   sum(l_extendedprice)

p ps_suppkey
     ps_partkey

s l_commitdate 

< l_receiptdate

suppkey
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Query Q25 with the query frequency of 4 produces the average of total price 

of order for each nation of customer in specific region, ASIA and ordered in 1994. Its 

relational algebra tree is shown in Figure F.25. 

 

Query Q25 

SELECT  N_NAME, AVG(O_TOTALPRICE) 

FROM   REGION, NATION, CUSTOMER, ORDERS 

WHERE   C_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND C_CUSTKEY = O_CUSTKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND R_NAME = 'ASIA' 

GROUP BY  N_NAME; 

 

 

Figure F.25  Relational Algebra Query Tree of Query Q25 

region nation customer orders
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     c_custkey

[227597][227597]
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result
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     o_orderkey 
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custkey
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regionkey
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    o_orderdate
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[1500000][227597]

Tmp7
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avg(o_totalprice)

4

[1500000][150000][25][5]
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Query Q26 with the query frequency of 6 produces the number of orders for 

each nation of customer and supplier who have the same nation and order was made 

in 1994 with the committed date is before receipt date. Its relational algebra tree is 

shown in Figure F.26. 

 

Query Q26 

SELECT  N_NAME, COUNT(O_TOTALPRICE) 

FROM   NATION, SUPPLIER, CUSTOMER, ORDERS 

WHERE  C_NATIONKEY = S_NATIONKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND C_CUSTKEY = O_CUSTKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

GROUP BY  N_NAME; 

 

 

 

Figure F.26  Relational Algebra Query Tree of Query Q26 

customer orders
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result

6
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    count(o_totalprice)
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[91038610]



293 

 

Query Q27 with the query frequency of 9 produces the variance of available 

quantity of supply part for each nation of supplier for specific part type and available 

quantity more than 2000. Its relational algebra tree is shown in Figure F.27. 

 

Query Q27 

SELECT  N_NAME, VARIANCE(PS_AVAILQTY) 

FROM   NATION, SUPPLIER, PART, PARTSUPP 

WHERE  S_SUPPKEY = PS_SUPPKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND P_PARTKEY = PS_PARTKEY 

AND P_TYPE LIKE '%BRASS%' 

AND PS_AVAILQTY < 2000 

GROUP BY  N_NAME; 

 

 

Figure F.27  Relational Algebra Query Tree of Query Q27 
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p ps_partkey
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9
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result
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Query Q28 with the query frequency of 5 produces the standard deviation of 

supply cost for each nation of supplier in specific region, ASIA and available quantity 

of supply part more than 2000. Its relational algebra tree is shown in Figure F.28. 

 

Query Q28 

SELECT  N_NAME, STDDEV(PS_SUPPLYCOST) 

FROM   REGION, NATION, SUPPLIER, PARTSUPP 

WHERE  S_SUPPKEY = PS_SUPPKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND PS_AVAILQTY < 2000 

AND R_NAME = 'ASIA' 

GROUP BY  N_NAME; 

 

 

 

 

Figure F.28  Relational Algebra Query Tree of Query Q28 
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[32172]result
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5
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Query Q29 with the query frequency of 7 produces the summation of item 

quantity for each nation of supplier in specific region, ASIA with ordered date in 

1994 and the committed date is before receipt date. Its relational algebra tree is shown 

in Figure F.29. 

 

Query Q29 

SELECT  N_NAME, SUM(L_QUANTITY) 

FROM   REGION, NATION, SUPPLIER, LINEITEM 

WHERE  S_SUPPKEY = L_SUPPKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND L_COMMITDATE < L_RECEIPTDATE 

AND R_NAME = 'ASIA' 

GROUP BY  N_NAME; 

 

 

Figure F.29  Relational Algebra Query Tree of Query Q29  

region nation supplier lineitem
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Tmp6
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Tmp9

[759474]result

p l_suppkey
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suppkey

nationkey

regionkey

gn_name
   sum(l_quantity)

7

[6000000][10000][25][5]

[6000000][3793296]

Tmp8

s l_commitdate

    < l_receiptdate

[759474]

[3793296][3793296]
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Query Q30 with the query frequency of 4 produces the maximum of discount 

for each nation of customer in specific region, ASIA with ordered date in 1994. Its 

relational algebra tree is shown in Figure F.30. 

 

Query Q30 

SELECT  N_NAME, MAX(L_DISCOUNT) 

FROM   REGION, NATION, CUSTOMER, ORDERS, LINEITEM 

WHERE  C_CUSTKEY = O_CUSTKEY 

AND C_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND R_NAME = 'ASIA' 

GROUP BY N_NAME; 

 
 

Figure F.30  Relational Algebra Query Tree of Query Q30 
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4
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Tmp10
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Query Q31 with the query frequency of 5 produces the summation of item 

quantity for each nation of supplier in specific region, ASIA with ordered date in 

1994 and the committed date is before receipt date. Its relational algebra tree is shown 

in Figure F.31. 

 

Query Q31 

SELECT  N_NAME, SUM(L_QUANTITY) 

FROM   REGION, NATION, SUPPLIER, ORDERS, LINEITEM 

WHERE  S_SUPPKEY = L_SUPPKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND L_COMMITDATE < L_RECEIPTDATE 

AND R_NAME = 'ASIA' 

GROUP BY  N_NAME; 

 
 

Figure F.31  Relational Algebra Query Tree of Query Q31  

region nation supplier lineitem orders
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suppkey
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so_orderdate

>=’1994-01-01'  

o_orderdate
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Tmp11
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5

gn_name
     sum(l_quantity)
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[6000000][3793296]

Tmp7

[3793296][3793296]

s l_commitdate 

< l_receiptdate
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Query Q32 with the query frequency of 8 produces the average of item 

quantity for each nation of supplier that have nation same as nation of customer with 

ordered date in 1994 and the committed date is before receipt date. Its relational 

algebra tree is shown in Figure F.32. 

 

Query Q32 

SELECT  N_NAME, AVG(L_QUANTITY) 

FROM   NATION, SUPPLIER, CUSTOMER, ORDERS, LINEITEM 

WHERE  C_CUSTKEY = O_CUSTKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND S_SUPPKEY = L_SUPPKEY 

AND C_NATIONKEY = S_NATIONKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND L_COMMITDATE < L_RECEIPTDATE 

GROUP BY  N_NAME; 

 

 

Figure F.32  Relational Algebra Query Tree of Query Q32  
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Query Q33 with the query frequency of 6 produces the number of supply part 

for each nation of supplier in specific region, ASIA, with the committed date is before 

receipt date. Its relational algebra tree is shown in Figure F.33. 

 

Query Q33 

SELECT  N_NAME, COUNT(PS_SUPPLYCOST) 

FROM   REGION, NATION, SUPPLIER, PARTSUPP, LINEITEM 

WHERE  S_SUPPKEY = PS_SUPPKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND L_COMMITDATE < L_RECEIPTDATE 

AND R_NAME = 'ASIA' 

GROUP BY  N_NAME; 

 

 

Figure F.33  Relational Algebra Query Tree of Query Q33  
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Query Q34 with the query frequency of 4 produces the summation of quantity 

of lineitem for each nation of supplier that are ordered in 1994 for specific region, 

ASIA. Its relational algebra tree is shown in Figure F.34 

 

Query Q34 

SELECT  N_NAME, SUM(L_QUANTITY) 

FROM   ORDERS, LINEITEM, SUPPLIER, NATION, REGION 

WHERE  O_ORDERKEY = L_ORDERKEY  

AND L_SUPPKEY = S_SUPPKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND R_NAME = ‘ASIA’ 

AND O_ORDERDATE >= ‘1994-01-01’ 

AND O_ORDERDATE < ‘1995-01-01’ 

GROUP BY  N_NAME; 

 

 

Figure F.34  Relational Algebra Query Tree of Query Q34  
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Query Q35 with the query frequency of 6 produces standard deviation of 

extended price for each brand’s part that customer ordered in 1994, and the committed 

date is before receipt date. Its relational algebra tree is shown in Figure F.35. 

 

Query Q35 

SELECT  P_BRAND, STDDEV(L_EXTENDEDPRICE) 

FROM   CUSTOMER, PART, ORDERS, PARTSUPP, LINEITEM 

WHERE  C_CUSTKEY = O_CUSTKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND P_PARTKEY = PS_PARTKEY 

AND P_TYPE LIKE '%BRASS%' 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND L_COMMITDATE < L_RECEIPTDATE 

GROUP BY  P_BRAND; 

 

 

Figure F.35  Relational Algebra Query Tree of Query Q35  
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Query Q36 with the query frequency of 8 produces the minimum cost supply 

for each brand ordered in 1994 and the committed date is before receipt date. Its 

relational algebra tree is shown in Figure F.36. 

 

Query Q36 

SELECT  P_BRAND, MIN(PS_SUPPLYCOST) 

FROM   SUPPLIER, PART, ORDERS, PARTSUPP, LINEITEM 

WHERE  S_SUPPKEY = PS_SUPPKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND P_PARTKEY = PS_PARTKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND L_COMMITDATE < L_RECEIPTDATE 

GROUP BY  P_BRAND; 

 

 

Figure F.36  Relational Algebra Query Tree of Query Q36  
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Query Q37 with the query frequency of 3 produces the maximum of extended 

price for each nation of customer that ordered in 1994 and the committed date is 

before receipt date. Its relational algebra tree is shown in Figure F.37. 

 

Query Q37 

SELECT  C_NATIONKEY, MAX(L_EXTENDEDPRICE) 

FROM   SUPPLIER, CUSTOMER, ORDERS, PARTSUPP, LINEITEM 

WHERE  C_CUSTKEY = O_CUSTKEY 

AND C_NATIONKEY = S_NATIONKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND S_SUPPKEY = PS_SUPPKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND L_COMMITDATE < L_RECEIPTDATE 

GROUP BY  C_NATIONKEY; 

 

 

Figure F.37  Relational Algebra Query Tree of Query Q37  
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[10000]

p s_supplykey
     s_nationkey

Tmp8

[10000]

[10000]

Tmp9

[575169]

supplykey

[5751690000]

Q37

[22778]

3

result

gc_nationkey
   max(l_extenedprice)

p ps_suppkey
     ps_partkey 
     ps_supplycost

s l_commitdate

    < l_receiptdate

customer

[150000]

pc_custkey
   c_nationkey

Tmp10

[150000]

[15000]

Tmp11

[22778]
custkey

nationkey

[86275350000]
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Query Q38 with the query frequency of 5 produces the minimum of cost of 

supply for nation of suppliers in specific region, ASIA. Its relational algebra tree is 

shown in Figure F.38. 

 

Query Q38 

SELECT  N_NAME, MIN (PS_SUPPLYCOST) 

FROM   PART, PARTSUPP, SUPPLIER, NATION, REGION 

WHERE  P_PARTKEY = PS_PARTKEY 

AND S_SUPPKEY = PS_SUPPKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_ REGIONKEY 

AND R_NAME = 'ASIA' 

GROUP BY  N_NAME; 

 

 

 

Figure F.38  Relational Algebra Query Tree of Query Q38  

region nation supplier partsupp part

Q38

[5][1]

[1][1]

sr_name=

’ASIA’  

pr_regionkey pn_regionkey 
    n_nationkey
    n_name    

[25][25]

[25][5]
[10000][10000]

[50000][2003]

ps_nationkey
     s_suppkey

[800000]

[200000]

[800000]

[200000]
[160240] [1602400000]

[160240]

Tmp1

Tmp2 Tmp3

Tmp4
Tmp5

Tmp6

Tmp7

Tmp8

Tmp9

Tmp10 [32048000000]

[160240]result

pps_suppkey
     ps_partkey
     ps_supplycost

pp_partkey 

partkey

suppkey

nationkey

regionkey

gn_name
     min(ps_supplycost)

5

[200000][800000][10000][25][5]
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Query Q39 with the query frequency of 7 produces the average of total priced 

for each nation of customer in specific region, ASIA, that ordered in 1994. Its 

relational algebra tree is shown in Figure F.39. 

 

Query Q39 

SELECT  N_NAME, AVG(O_TOTALPRICE) 

FROM   REGION, NATION, SUPPLIER, CUSTOMER, ORDERS 

WHERE  C_NATIONKEY = S_NATIONKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND C_CUSTKEY = O_CUSTKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND R_NAME = 'ASIA' 

GROUP BY  N_NAME; 

 

 

Figure F.39  Relational Algebra Query Tree of Query Q39  

region nation supplier customer orders

Q39

[5][1]

[1][1]

sr_name

=’ASIA’  

pr_regionkey

pn_regionkey 
   n_nationkey
   n_name    

[25][25]

[25][5]
[10000][10000]

[50000]
[2003]

ps_nationkey
     s_suppkey

[12093991] [30450000]

Tmp1

Tmp2 Tmp3

Tmp4

Tmp5

Tmp6

Tmp7

Tmp8

Tmp9

Tmp11
[2752556069627]

[18435748]result

pc_nationkey

po_orderkey
    o_totalprice 

orderkey

nationkey

nationkey

regionkey

so_orderdate

>=’1994-01-01'  

o_orderdate

<’1995-01-01' 

[227597][227597]
Tmp10

[227597] [1500000]

7

gn_name
    avg(o_totalprice)

[1500000][150000][10000][25][5]

[18435748]

[150000][150000]
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Query Q40 with the query frequency of 4 produces the maximum of available 

quantity of part for each supplier’s nation in specific region, ASIA, specific part type 

and available quantity is more than 2000. Its relational algebra tree is shown in Figure 

F.40. 

 

Query Q40 

SELECT  N_NAME, COUNT(PS_AVAILQTY) 

FROM   REGION, NATION, SUPPLIER, PART, PARTSUPP 

WHERE  S_SUPPKEY = PS_SUPPKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND P_PARTKEY = PS_PARTKEY 

AND P_TYPE LIKE '%BRASS%' 

AND PS_AVAILQTY < 2000 

AND R_NAME = 'ASIA' 

GROUP BY  N_NAME; 

 

 

Figure F.40  Relational Algebra Query Tree of Query Q40  

region nation supplier partsupp part

Q40

[5][1]

[1][1]

sr_name=

’ASIA’  

pr_regionkey pn_regionkey 
    n_nationkey
    n_name    

[25][25]

[25][5]
[10000][10000]

[50000]
[2003]

ps_nationkey
     s_suppkey

[40058][40058]
[32172] [319979250]

[6492]

Tmp1

Tmp2 Tmp3

Tmp4
Tmp5

Tmp6
Tmp8

Tmp9
Tmp11

Tmp12 [1288745976]

[6492]result

pps_suppkey
     ps_partkey
     ps_availqty

pp_partkey 

partkey

suppkey

nationkey

regionkey

gn_name
     count(ps_availqty)

4

[200000][800000][10000][25][5]

[800000][159750]
Tmp7

[159750][159750]

[200000][40058]

Tmp10

s ps_availqty

    < 2000 

s p_type like 

‘%BRASS%’
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Query Q41 with the query frequency of 3 produces the minimum of item 

quantity for each nation of customers that their nation same nation of supplier in 

specific region, ASIA, and customer’s orders occurred in 1994 and the committed 

date is before receipt date. Its relational algebra tree is shown in Figure F.41. 

 

Query Q41 

SELECT  N_NAME, MIN(L_QUANTITY) 

FROM   REGION, NATION, SUPPLIER, CUSTOMER, ORDERS, LINEITEM 

WHERE  C_CUSTKEY = O_CUSTKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND S_SUPPKEY = L_SUPPKEY 

AND C_NATIONKEY = S_NATIONKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND L_COMMITDATE < L_RECEIPTDATE 

AND R_NAME = 'ASIA' 

GROUP BY  N_NAME; 

 

 

Figure F.41  Relational Algebra Query Tree of Query Q41  

region nation supplier lineitem orders

Q41

[5][1]

[1][1]

sr_name

=’ASIA’  

pr_regionkey

pn_regionkey 
   n_nationkey
   n_name    

[25][25]

[25][5]
[10000][10000]

[50000]
[2003]

ps_nationkey
     s_suppkey

Tmp1

Tmp2 Tmp3

Tmp4

Tmp5

Tmp6

Tmp8

Tmp9

Tmp10

Tmp12

[4558]result

pc_nationkey

po_orderkey
    o_totalprice 

orderkey

nationkey

regionkey

so_orderdate

>=’1994-01-01'  

o_orderdate

<’1995-01-01' 

[227597][227597]
Tmp11

[227597] [1500000]

3

gn_name
    min(l_availqty)

[1500000] [150000][10000][25][5]

[150000][150000]

customer

Tmp7

pl_suppkey
    l_orderkey
    l_quantity 

Tmp13

[3793296]

[6000000]

s l_commitdate

    < l_receiptdate

[6000000]

Tmp14

[3793296][3793296]

[4558]

suppkey

nationkey

custkey

[759474] [7597971888]

[26258321084][115372]

[17305800000]
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Query Q42 with the query frequency of 2 produces the maximum of extended 

price for each nation of suppliers in specific region, ASIA, specific part type and 

committed date is before receipt date. Its relational algebra tree is shown in Figure 

F.42. 

 

Query Q42 

SELECT  N_NAME, MAX(L_EXTENDEDPRICE) 

FROM   REGION, NATION, SUPPLIER, PARTSUPP, PART, LINEITEM 

WHERE  S_SUPPKEY = PS_SUPPKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND PS_PARTKEY = P_PARTKEY 

AND P_TYPE LIKE '%BRASS%' 

AND L_COMMITDATE < L_RECEIPTDATE 

AND R_NAME = 'ASIA' 

GROUP BY  N_NAME; 

 
 

Figure F.42  Relational Algebra Query Tree of Query Q42  

region nation supplier partsupp lineitem

Q42

[5][1]

[1][1]

sr_name=

’ASIA’  

pr_regionkey pn_regionkey 
    n_nationkey
    n_name    

[25][25]

[25][5]
[10000][10000]

[50000][2003]

ps_nationkey
     s_suppkey

[800000][800000]

[160240] [1602400000]

[759474]

Tmp1

Tmp2 Tmp3

Tmp4
Tmp5

Tmp6

Tmp7

Tmp8

Tmp10

Tmp11 [607837751040]

[152424]
result

pps_suppkey
     ps_partkey
     ps_supplycost

pl_partkey 
    l_suppkey 
    

partkey

suppley

suppkey

nationkey

regionkey

gn_name
     max(l_extendedprice)

2

[6000000][800000][10000][25][5]

[3793296]

Tmp9

[6000000]

s l_commitdate 

< l_receiptdate

[3793296][3793296]

part

Tmp13

pp_partkey 
    
    

[200000]

[40058]
Tmp12

s p_type

      like ‘%BRASS%’ 

[40058][40058]

[152424]
Tmp14 [30423009492]

partkey

[200000]
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Query Q43 with the query frequency of 7 produces the summation of extended 

price of each brand of part that are ordered in 1994 which committed date is before 

receipt date, and the nation of customers same that of suppliers. Its relational algebra 

tree is shown in Figure F.43. 

 

Query Q43 

SELECT  P_BRAND, SUM(L_EXTENDEDPRICE) 

FROM   SUPPLIER, CUSTOMER, PART, ORDERS, PARTSUPP, LINEITEM 

WHERE  C_CUSTKEY = O_CUSTKEY 

AND C_NATIONKEY = S_NATIONKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND S_SUPPKEY = PS_SUPPKEY 

AND P_PARTKEY = PS_PARTKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND L_COMMITDATE < L_RECEIPTDATE 

GROUP BY  P_BRAND; 

 

 

Figure F.43  Relational Algebra Query Tree of Query Q43  

lineitem orders

[6000000]

[3793296]

Tmp1
Tmp3

p l_orderkey
     l_partkey
     l_suppkey
     l_extendedprice

p o_orderkey
     o_custkey    

so_orderdate

>=’1994-01-01'   

  o_orderdate

<’1995-01-01' 

[227597]
[227597]

Tmp4

[227597] [1500000]

Tmp5

[575169] [863342789712]

orderkey

[6000000] [1500000]

Tmp2

[3793296]

[3793296]

partsupp

[800000][800000]

Tmp6

[800000]

Tmp7

[575169] [460135200000]
partkey

suppkey

part

[200000]

p p_partkey
      p_brand

Tmp8

[200000]

[200000]

Tmp9

[575169]

partkey

[115033800000]

Q43

7

result

gp_brand
   sum(l_extendedprice)

p ps_suppkey
     ps_partkey 
     ps_supplycost

s l_commitdate

    < l_receiptdate

supplier

[150000]

pc_custkey
    c_nationkey

Tmp10

[150000]

[15000]

Tmp11
custkey

customer

[10000]

ps_nationkey 
   s_suupkey

Tmp12

[10000]

[10000]

Tmp13 nationkey

suppkey

[22778]

[22778]

[86275350000]

[575169]
[5751690000]
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Query Q44 with the query frequency of 3 produces the average of account 

balance for each nation of supplier that same as nation of customer in specific region, 

ASIA. Its relational algebra tree is shown in Figure F.44 

 

Query Q44 

SELECT  N_NAME, AVG(C_ACCBAL) 

FROM   PARTSUPP, SUPPLIER, CUSTOMER, NATION, REGION 

WHERE  PS_SUPPKEY = S_SUPPKEY 

AND C_NATIONKEY = N_NATIONKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND R_NAME = ‘ASIA’ 

GROUP BY  N_NAME;  

 

 

 

Figure F.44  Relational Algebra Query Tree of Query Q44  

region nation supplier partsupp customer

Q44

[5][1]

[1][1]

sr_name

=’ASIA’  

pr_regionkey

pn_regionkey 
    n_nationkey
    n_name    

[25][25]

[25][5] [10000][10000]

[50000][2003]

ps_nationkey
     s_suppkey

[800000]

[150000]

[800000]

[150000]
[160240] [1602400000]

[967519280]

Tmp1

Tmp2
Tmp3

Tmp4
Tmp5

Tmp6
Tmp7

Tmp8
Tmp9

Tmp10 [24036000000]

result

pps_suppkey

pc_nationkey   
     c_acctbal

nationkey

suppkey

nationkey

regionkey

[967519280]

gn_name
    avg(c_acctbal)

3

[150000][800000][10000][25][5]
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Query Q45 with the query frequency of 8 produces variance of extended price 

for each nation of supplier which ordered in 1994 for specific part type, brand and the 

committed date is before receipt date. Its relational algebra tree is shown in Figure 

F.45 

Query Q45 

SELECT  S_NATIONKEY, VARIANCE (L_EXTENDEDPRICE) 

FROM   SUPPLIER, PARTSUPP, PART, LINEITEM, ORDERS 

WHERE  SUPPKEY = PS_SUPPKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND PS_PARTKEY = P_PARTKEY 

AND P_BRAND <> 'BRAND#45' 

AND P_TYPE LIKE '%BRASS%' 

AND L_COMMITDATE < L_RECEIPTDATE 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

GROUP BY  S_NATIONKEY; 

 

 

Figure F.45  Relational Algebra Query Tree of Query Q45  

part partsupp lineitem orders

Q45

sp_brand<>’BRAND#45'

p_type like ‘%BRASS%’  

pr_regionkey

pps_partkey 
    ps_suppkey   

[30800000000][154000]

[584167584000][729689]

pl_commitdate 
< l_receiptdate

[227597][227597]

[110845] [166075027333]

Tmp1

Tmp2

Tmp3

Tmp4

Tmp6

Tmp7 Tmp9

Tmp10

[110845]
result

p o_orderkey 

orderkey

partkey

suppkey

partkey

so_orderdate>=’1994-01-01'  

    o_orderdate<’1995-01-01' 

[1500000][227597]

Tmp8

gs_nationkey
     variance(l_extendedprice)

8

[1500000][6000000][800000][200000]

supplier

[10000][10000]

Tmp11

ps_suppkey
    s_nationkey

[10000]

[110845] [1108450000]

Tmp12

suppkey

[6000000][3793296]

[3793296][3793296]

pl_partkey
    l_suppkey
    l_orderkey
    l_extendedprice

[200000][38500]

[38500][38500] [800000][800000]

Tmp5
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Query Q46 with the query frequency of 9 produces the maximum of total price 

for each nation of customers in specific region, ASIA, ordered in 1994. Its relational 

algebra tree is shown in Figure F.46. 

 

Query Q46 

SELECT  N_NAME, MAX (O_TOTALPRICE) 

FROM   CUSTOMER, ORDERS, LINEITEM, NATION, REGION 

WHERE  C_CUSTKEY = O_CUSTKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND C_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND R_NAME = 'ASIA' 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

GROUP BY  N_NAME; 

 

 

 

Figure F.46  Relational Algebra Query Tree of Query Q46 (Q2 of 2nd set)  

region nation customer orders lineitem

Q46

[5][1]
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Tmp1

Tmp2

Tmp3

Tmp4

Tmp5

Tmp6 Tmp8

Tmp9

Tmp10

Tmp11

[276048000000]

[184082]result

po_custkery      
     o_orderkey 
     o_totalprice

pl_orderkey 

orderkey

custkey

nationkey

regionkey

so_orderdate>=’1994-01-01'  

o_orderdate<’1995-01-01' 

[1500000]

[227597] Tmp7

gn_name
    meax(o_totalprice)

[5] [25] [150000] [1500000] [60000000]

9
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Query Q47 with the query frequency of 5 produces standard deviation of 

extended price for each nation of supplier in specific region, ASIA, and orders are 

occurred in 1994 that committed date is before receipt date. Its relational algebra tree 

is shown in Figure F.47. 

 

Query Q47 

SELECT  N_NAME, STDDEV(L_EXTENDEDPRICE) 

FROM  REGION, NATION, SUPPLIER, ORDERS, PARTSUPP, LINEITEM 

WHERE  S_SUPPKEY = PS_SUPPKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND L_COMMITDATE < L_RECEIPTDATE 

AND R_NAME = 'ASIA' 

GROUP BY  N_NAME; 

 

 

Figure F.47  Relational Algebra Query Tree of Query Q47  

region nation supplier partsupp lineitem

Q47
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[1][1]
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[25][25]
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     s_suppkey

[800000][800000]

[160240] [1602400000]

[759474]

Tmp1

Tmp2 Tmp3

Tmp4 Tmp5

Tmp6 Tmp7

Tmp8
Tmp10

Tmp11 [607837751040]

[152424]
result

pps_suppkey
     ps_partkey

pl_partkey 
    l_suppkey
    l_orderkey
    l_extendedprice 

partkey

suppley

suppkey

nationkey

regionkey

gn_name
     max(l_extendedprice)

5

[6000000][800000][10000][25][5]

[3793296]

Tmp9

[6000000]

s l_commitdate 

< l_receiptdate

[3793296][3793296]

orders

Tmp13

po_orderkey 
    

[1500000]

[227597]
Tmp12

[227597]

[152424]
Tmp14 [30423009492]

orderkey

so_orderdate

>=’1994-01-01'   

  o_orderdate

<’1995-01-01' 

[1500000]

[227597]
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Query Q48 with the query frequency of 6 produces the maximum of extended 

price for each nation of customers in specific region, ASIA, that ordered in 1994 for 

specific part type and committed date is before receipt date. Its relational algebra tree 

is shown in Figure F.48. 

 

Query Q48 

SELECT  N_NAME, MAX(L_EXTENDEDPRICE) 

FROM  REGION, NATION, CUSTOMER, ORDERS, LINEITEM, 

PARTSUPP, PART 

WHERE  C_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND PS_PARTKEY = P_PARTKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND L_COMMITDATE < L_RECEIPTDATE 

AND P_TYPE LIKE ‘%BRASS%’ 

AND R_NAME = 'ASIA' 

GROUP BY  N_NAME; 

 

Figure F.48  Relational Algebra Query Tree of Query Q48  

region nation customer orders

Q48
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result
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regionkey

so_orderdate

     >=’1994-01-01'  

    o_orderdate

    <’1995-01-01' 

[1500000][227597]

Tmp7

gn_name
     max(l_extendedprice)

6

[1500000][150000][25][5]

lineitem

[3793296][3793296]

Tmp11

pl_orderkey
     l_extendedprice

[6000000]
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Tmp12

orderkey
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Tmp10

partsupp
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Tmp13

suppkey

partkey
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Tmp14
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Tmp16
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[40058]
Tmp15

s p_type

      like ‘%BRASS%’ 
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[200000]
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Tmp17
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Query Q49 with the query frequency of 4 produces the minimum of cost of 

supply for each nation of suppliers in specific region, ASIA, that orders occurred in 

1994 with committed date is before receipt date. Its relational algebra tree is shown in 

Figure F.49. 

 

Query Q49 

SELECT N_NAME, MIN(PS_SUPPLYCOST) 

FROM REGION, NATION, SUPPLIER, PART, ORDERS, PARTSUPP, 

LINEITEM 

WHERE  S_SUPPKEY = PS_SUPPKEY 

AND S_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND P_PARTKEY = PS_PARTKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND L_COMMITDATE < L_RECEIPTDATE 

AND R_NAME = 'ASIA' 

GROUP BY  N_NAME; 

 

 

Figure F.49  Relational Algebra Query Tree of Query Q49  

region nation supplier partsupp lineitem
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4
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Query Q50 with the query frequency of 5 produces the average of extended 

price for each brand for customer in region, ASIA, nation of customer and supplier 

are same and customer ordered in 1994 with specific part type that available quantity 

is more than 200, and the committed date is before receipt date. Its relational algebra 

tree is shown in Figure F.50 

 

Query Q50 

SELECT  P_BRAND, AVG(L_EXTENDEDPRICE) 

FROM  REGION, NATION, SUPPLIER, CUSTOMER, PART, ORDERS, 

PARTSUPP, LINEITEM 

WHERE  C_CUSTKEY = O_CUSTKEY 

AND C_NATIONKEY = S_NATIONKEY  

AND S_NATIONKEY = N_NATIONKEY 

AND N_REGIONKEY = R_REGIONKEY 

AND O_ORDERKEY = L_ORDERKEY 

AND S_SUPPKEY = PS_SUPPKEY 

AND P_PARTKEY = PS_PARTKEY 

AND PS_PARTKEY = L_PARTKEY 

AND PS_SUPPKEY = L_SUPPKEY 

AND O_ORDERDATE >= '1994-01-01' 

AND O_ORDERDATE < '1995-01-01' 

AND L_COMMITDATE < L_RECEIPTDATE 

AND P_TYPE LIKE '%BRASS%' 

AND PS_AVAILQTY < 2000 

AND R_NAME = 'ASIA' 

GROUP BY  P_BRAND; 
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Figure F.50  Relational Algebra Query Tree of Query Q50 
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The following sections are the result of query testbed provided in section F.1. 

We first represent the symbol of the nodes in MVPP as follows. 

 represents a materialized view node selected by 2PO algorithm in static 

phase 

 represents a materialized view node selected by Deterministic algorithm in 

static phase 

 represents a new materialized view node selected by 2PO algorithm  in 

dynamic phase 

 

F.2  The First Query Set 

 

As our experiment includes two phases, static phase and dynamic phase then 

the queries are separated into two set for of each experiment. The first set, the initial 

requirement, is for static phase. The second set, new requirements, is for dynamic 

phase. 

The queries for the first query set as follows: 

Queries for static phase: {Q7, Q10, Q21, Q27, Q33, Q38 and Q42}  

Queries for dynamic phase: {Q6, Q8, Q16, Q30, Q35 and Q50} 

 

F.2.1  Static Phase with the MVPP Re-Optimization Algorithm 

The order of queries according to their frequency of executing the query 

multiplied with the query cost is shown in Table F.1. Then, the order of queries of the 

first MVPP is {Q10, Q33, Q21, Q38, Q7, Q42 and Q27}, and the last order list is 

{Q27, Q10, Q33, Q21, Q38, Q7 and Q42}. The query processing costs of all MVPPs 

for query set {Q7, Q10, Q21, Q27, Q33, Q38, and Q42} are shown in Table F.2. The 

cheapest MVPP is the sixth and seventh MVPP as shown in Figure F.51. 

The query processing cost of query of the cheapest MVPP are compared with 

other MVPPs. The result shows that query processing cost of Q27 of the first to the 

fifth MVPP is less than that of the cheapest MVPP. Then, Q27 in the cheapest MVPP 

is possible to be rewritten. The re-optimized MVPP, after Q27 in the cheapest MVPP 

is rewritten, is shown in Figure F.52. 
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Table F.1  The Query Access Frequency, Query Cost, and Query Access Frequency 

Multiplied by Query Cost 

 

Query Query Access 

Frequency(fq) 

Query Cost fq * Query Cost 

Q7 5 159,750 798,750 

Q10 7 758,746 5,311,222 

Q21 6 758,746 4,552,476 

Q27 9 31,864 286,776 

Q33 6 759,474 4,556,844 

Q38 5 160240 801,200 

Q42 5 152424 762,120 

 

Table F.2  The Query Processing Cost of the MVPPs for the First Query Set 

 

Query 1st  

MVPP 

2nd 

MVPP 

3rd  

MVPP 

4th  

MVPP 

5th  

MVPP 

6th MVPP 

(cheapest) 

7th MVPP 

(cheapest) 

Q7 7,996,348

,750 

7,996,348,

750 

7,996,348,

750 

7,996,348,

750 

40,008,848

,750 

7,996,348,

750 

7,996,348,

750 

Q10 5,312,722

,822,470 

5,312,722,

822,470 

5,312,722,

822,470 

5,312,722,

822,470 

5,312,722,

822,470 

4,479,058,

896,998 

4,479,058,

896,998 

Q21 4,599,282

,686,784 

4,599,282,

686,784 

4,599,282,

686,784 

4,599,282,

686,784 

4,599,282,

686,784 

3,884,718,

160,284 

3,884,718,

160,284 

Q27 71,996,43

5,901* 

71,996,435

,901* 

71,996,435

,901* 

71,996,435

,901* 

129,618,93

5,901* 

291,303,52

4,277 

291,303,52

4,277 

Q33 3,657,033

,383,196 

3,657,033,

383,196 

3,657,033,

383,196 

3,657,033,

383,196 

3,695,118,

683,196 

3,656,709,

383,196 

3,656,709,

383,196 

Q38 168,258,1

01,480 

168,258,10

1,480 

168,258,10

1,480 

168,258,10

1,480 

840,109,85

1,355 

168,258,10

1,480 

168,258,10

1,480 

Q42 311,658,7

01,696 

311,658,70

1,696 

311,658,70

1,696 

311,658,70

1,696 

1,279,748,

732,616 

311,550,70

1,696 

311,550,70

1,696 

Total 14,128,94

8,480,277 

14,128,948

,480,277 

14,128,948

,480,277 

14,128,948

,480,277 

15,896,610

,561,072 

12,799,595

,116,681 

12,799,595

,116,681 

 

Note: * query processing cost of nth MVPP less than the cheapest MVPP 
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Figure F.51  The Cheapest MVPP of the First Query Set in Static Phase 

 

 
 

Figure F.52  The Re-Optimized MVPP of the First Query Set in Static Phase 
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The total query processing cost of the cheapest MVPP is 12,799,595,116,681. 

After Q27 is rewritten, the total query processing cost is reduced to 

12,581,422,028,305.  

We further evaluate the MVPP re-optimization algorithm by selecting the set 

of view to be materialized. Figure F.53 and F.54 show the cheapest MVPP and the re-

optimized MVPP after Deterministic and 2PO are applied, respectively. The query 

processing cost, materialized view maintenance cost and total cost of all-virtual-

views, all-materialized-views and selection materialized view by Deterministic and 

2PO of the cheapest MVPP and the re-optimized MVPP are shown in Table F.3 and 

Table F.4 respectively. 

 

 

Figure F.53 (a) The Cheapest MVPP of the First Query Set Selected by Deterministic 
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Figure F.53 (b) The Cheapest MVPP of the First Query Set Selected by 2PO 

 

 
 

Figure F.54 (a)  The Re-Optimized MVPP of the First Query Set by Deterministic 
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Figure F.54 (b)  The Re-Optimized MVPP of the First Query Set by 2PO 
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2PO 292,686,142,972 5,202,416,789,776 5,495,102,932,748 

Deterministic 581,114,524,945 5,138,321,589,776 5,719,436,114,721 
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Table F.4  The Query Processing Cost, Maintenance Cost and Total Cost of the Re-

Optimized MVPP of the First Query Set 

 
 Cost of 

Query Processing 

Cost of 

Maintenance 

Total Cost 

All-virtual view 12,581,422,028,305 0 12,581,422,028,305 

All-materialized view 16,612,116 8,694,762,487,060 8,694,779,099,176 

2PO 289,800,706,225 5,138,333,589,776 5,428,134,296,001 

Deterministic 297,811,870,883 5,135,123,369,776 5,432,935,240,659 

 

Conclusion result of the MVPP re-optimization algorithm: 

The result shows the total cost as follows: 

All-virtual view: reduced from 12,799,595,116,681 to 12,581,422,028,305 

All-materialized view: reduced from 8,792,289,358,776 to 8,694,779,099,176 

Selected views to be materialized:  

2PO: reduced from 5,495,102,932,748 to 5,428,134,296,001 

Deterministic reduced from: 5,719,436,114,721 to 5,432,935,240,659 

 

F.2.2  Dynamic Phase Result 

The queries {Q6, Q8, Q16, Q30, Q35 and Q50} are merged into the existing 

re-optimized MVPP, Figure F.54. The result of the dynamic MVPP is shown in 

Figure F.55.  
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Figure F.55  The Optimal Dynamic MVPP of the First Query Set 

 

After the dynamic MVPPs are generated and the optimal one is selected, the 

affected node identification algorithm is applied to identify the affected nodes. The 

existing nodes used to construct the new queries are shown in Table F.5. Their 

weights are shown in Table F.6. 

 

Table F.5  The Existing Nodes Used to Construct New Queries 

 

New Queries Existing Nodes 

Q6 Tmp7, 9, 15, 16 

Q8 Tmp13 

Q16 Tmp5, 7, 11, 12, 15, 19 

Q30 Tmp1, 2, 3, 4, 13 

Q35 Tmp7, 9, 13, 14, 15, 16, 17 

Q50 Tmp1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 22, 23 
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Table F.6  The Weight of the Existing Node for Constructing New Queries 

 

Existing Node Weight ( w (v) ) 

Tmp1 60 

Tmp2 7 

Tmp3 525 

Tmp4 213 

Tmp5 320,000 

Tmp6 469,832 

Tmp7 31,200,000 

Tmp8 14,418,159,776 

Tmp9 5,600,000 

Tmp10 56,078,699,720 

Tmp11 9,600,000 

Tmp12 19,166,780,000 

Tmp13 108,000,000 

Tmp14 102,000,000 

Tmp15 4,000,000 

Tmp16 576,832,800,000 

Tmp17 5,981,895,246,720 

Tmp19 33,597,063,000 

Tmp22 -168,257,781,000 

Tmp23 -620,262,645,936 

 

The intermediate nodes, which are the conjunctively joined nodes with 

positive weight, project operation that is not the ancestor of base relation and select 

operation, are inserted into the list of directly affected node. Therefore, the directly 

affected are {Tmp1, Tmp2, Tmp4, Tmp6, Tmp8, Tmp10, Tmp11, Tmp12, Tmp14, 

Tmp15, Tmp16, Tmp17 and Tmp19}. 

Next, we identify the indirectly affected nodes. The directly affected nodes 

that their ancestors are not the directly affected node are Tmp8 and Tmp10. The 

weights of the ancestor node of those nodes are shown in Table F.7. 
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Table F.7  The Weight of Ancestor Node of Directly Affected Node of New Queries 

 

Directly Affected Node Ancestor  Node Weight of Ancestor Node 

Tmp8 Tmp21 599,761,450,760 

Tmp10 Tmp22 -168,257,781,000 

 Tmp23 -620,262,645,936 

 

Tmp21 is identified as the indirectly affected node as its weight greater than 

that of Tmp8. Tmp22 and Tmp23 are not the indirectly affected node as their weight 

are negative. 

 

The result of affected nodes show as follows. 

Directly affected nodes: Tmp1, Tmp2, Tmp4, Tmp6, Tmp8, Tmp10, 

Tmp11, Tmp12, Tmp14, Tmp15, Tmp16, Tmp17 

and Tmp19 

Indirectly affected nodes: Tmp21 

 

Therefore, the number of nodes to be the member of set of views to be selected 

by 2PO is 28 nodes, 14 existing nodes and 14 new created nodes.  

 
 

Figure F.56  The Materialized View Selected by 2PO for the Dynamic MVPP of the 

First Query Set 
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After the affected nodes are identified, the selection algorithm, 2PO, is applied 

to select the set of views to be materialized. The result is that the existing materialized 

view {Tmp10, Tmp12, Tmp14, Tmp17, Tmp19 and Tmp21} are still materialized, the 

virtual view {Tmp16} is materialized and the new nodes {Tmp25, Tmp32, Tmp36} 

are materialized. Figure F.56 shows the result after the materialized are selected by 

2PO. 

We rerun static approach for all queries {Q7, Q10, Q21, Q27, Q33, Q38 and 

Q42} and {Q6, Q8, Q16, Q30, Q35 and Q50}. The result of the static approach for all 

queries is shown in Figure F.57. After our MVPP re-optimization algorithm is applied 

to the cheapest MVPP, the MVPP structure of static approach in Figure F.57 provides 

same structure as that of dynamic MVPP in Figure F.56. 

 

 
 

Figure F.57  The Re-Optimized MVPP by Static Approach for All Queries of the 

First Query Set 

 

The query processing cost, materialized view maintenance cost and total cost 

of the static and dynamic approach on the set of materialized views selected by 2PO 

are shown in Table F.8. 
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Table F.8  The Comparison of the Result from the Static Approach and the Dynamic 

Approach for the First Query Set 

 

Approach Number 

of  Nodes 

Cost of 

Query Processing 

Cost of 

Maintenance 

Total Cost 

Static 37 4,709,318,228,610 5,240,142,056,783 9,949,460,285,393 

Dynamic 28 4,709,318,228,610 5,240,142,056,783 9,949,460,285,393 

 

Conclusion result of the dynamic phase: 

In Figure F.57, we rerun static approach for all queries; the search space 

contains 37 intermediated nodes for static materialized view selection whereas our 

dynamic approach for additional queries, the set of intermediated nodes to be selected 

is 28 nodes, 14 existing nodes and 14 new nodes. The result in Table F.8 shows that 

even though all costs of static are same as costs of dynamic approach; the number of 

nodes to be selected of dynamic is less than static approach. 

 

  



330 

 

F.3  The Second Query Set 

 

Queries for static phase: {Q4, Q12, Q23, Q33, Q36, Q40 and Q41}  

Queries for dynamic phase: {Q22, Q15, Q21, Q28, Q31 and Q50} 

 

F.3.1  Static Phase with the MVPP Re-Optimization Algorithm 

The order of queries according to their frequency of executing the query 

multiplied with the query cost is shown in Table F.9. Then, the order of queries of the 

first MVPP is {Q4, Q36, Q33, Q12, Q23, Q40 and Q41} and the last order is {Q41, 

Q4, Q36, Q33, Q12, Q23 and Q40}. The query processing costs of all MVPPs for the 

query set {Q4, Q12, Q23, Q33, Q36, Q40 and Q41} are shown in Table F.10. The 

cheapest MVPP is the second and the third MVPP as shown in Figure F.58. 

 

Table F.9  The Query Access Frequency, Query Cost, and Query Access Frequency 

Multiplied by Query Cost 

 

Query Query Access 

Frequency(fq) 

Query Cost fq * Query Cost 

Q4 6 3,793,296 22,759,776 

Q12 5 575,169 2,875,845 

Q23 3 575,169 1,725,507 

Q33 6 759,474 4,556,844 

Q36 8 575,169 4,601,352 

Q40 4 6,492 25,968 

Q41 3 4,558 13,674 
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Table F.10  The Query Processing Cost of The MVPPs for the Second Query Set 

 
Query 1st  

MVPP 

2nd 

MVPP 

(cheapest) 

3rd MVPP 

(cheapest) 

4th  

MVPP 

5th  

MVPP 

6th  

MVPP 

7th  

MVPP 

Q4 
18,207,907,

119,552 

18,207,907

,119,552 

18,207,907

,119,552 

18,207,907

,119,552 

18,207,907

,119,552 

18,207,907

,119,552 

18,207,907

,119,552 

Q12 
19,489,962,

428,870 

6,617,454,

428,870 

6,617,454,

428,870 

6,617,454,

428,870 

6,617,454,

428,870 

19,489,962

,428,870 

19,489,962

,428,870 

Q23 
11,952,803,

957,322 

4,229,299,

157,322 

4,229,299,

157,322 

4,229,299,

157,322 

4,229,299,

157,322 

11,952,803

,957,322 

11,952,803

,957,322 

Q33 
18,253,477,

108,284 

3,656,709,

383,196 

3,656,709,

383,196 

18,253,477

,108,284 

18,253,477

,108,284 

3,656,709,

383,196 

3,656,709,

383,196 

Q36 
32,150,225,

486,192 

11,554,212

,686,192 

11,554,212

,686,192 

11,554,212

,686,192 

11,554,212

,686,192 

32,150,225

,486,192 

32,150,225

,486,192 

Q40 
6,443,239,2

04* 

11,570,291

,056 

11,570,291

,056 

6,443,239,

204 

6,443,239,

204 

11,570,291

,056 

11,570,291

,056 

Q41 
2,645,437,1

66,178 

2,645,437,

166,178 

2,645,437,

166,178 

2,645,437,

166,178 

2,645,437,

166,178 

593,308,53

4,119* 

593,308,53

4,119* 

Total 
102,706,25

6,505,602 

46,922,590

,232,366 

46,922,590

,232,366 

61,514,230

,905,602 

61,514,230

,905,602 

86,062,487

,200,307 

86,062,487

,200,307 

Note: * query processing cost of nth MVPP less than the cheapest MVPP 

 
 

Figure F.58  The Cheapest MVPP of  the Second Query Set in Static Phase  
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The query processing cost of query of the cheapest MVPP are compared with 

other MVPPs. The result shows that Q40 and Q41 of the first MVPP is less than the 

cheapest. So both queries are possible to be rewritten. 

For Q40, there is only one possible plan in the cheapest MVPP for Q40 that is 

{Tmp8}   PARTSUPP. Tmp8 is sharable conjunctively join with Q33. So Q40 still 

use the same plan in the cheapest MVPP.  

For Q41, there is only one possible plan for Q41 as sharable subexpression 

already constructed in the cheapest MVPP. That are {REGION   NATION   

SUPPLIER}, Tmp6, and {LINEITEM   ORDERS}, Tmp14. So Q41 still use the 

same plan in the cheapest MVPP.  

 Therefore the cheapest MVPP provides the minimal MVPP. 

Next, selection algorithms are applied to the optimal MVPP in Figure F.58 to 

select the set of views to be materialized to be the initial search space for dynamic 

phase. The result of Deterministic is shown in Figure F.59 (a). The result of 2PO is 

that {Tmp6, Tmp10, Tmp11, Tmp14, Tmp15, Tmp19} are the materialized views as 

shown in Figure F.59 (b). We show the query processing cost, materialized view 

maintenance cost and total cost of all-virtual-views, all-materialized-views and 

selection materialized view by 2PO algorithm of the cheapest MVPP in Table F.11. 

 
 

Figure F.59 (a) The Optimal MVPP of  the Second Query Set by Deterministic 
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Figure F.59 (b) The Optimal MVPP of the Second Query Set by 2PO 

 

Table F.11  The Query Processing Cost, Maintenance Cost and Total Cost of the 

Static Phase of the Second Query Set 

 

 Cost of  

Query Processing 

Cost of 

Maintenance 

Total Cost 

All-virtual view 34,783,985,485,998 0 34,783,985,485,998 

All-materialized view 21,385,782 31,252,800,172,180 31,252,821,557,962 

2PO 1,292,099,197,067 14,813,755,422,193 16,105,854,619,260 

Deterministic 1,292,099,603,438 14,813,755,242,025 16,105,854,845,463 

 

Conclusion result of the MVPP re-optimization algorithm: 

For the second query set, although Q40 and Q41 are possibly to be rewritten, 

after the MVPP re-optimization algorithm is applied for those queries they are forced 

to use the sharable subexpression that available in the MVPP rather than created new 

execution plan equal to the plan in the sixth and the seventh MVPP. Then, query 

processing plan of Q40, Q41 are the optimal plan for the cheapest MVPP. 
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F.3.2  Dynamic Phase Result 

The queries of the dynamic phase, {Q22, Q15, Q21, Q28, Q31 and Q50}, are 

merged into the existing re-optimized MVPP, Figure F.59 (b). The result of the 

dynamic MVPP is shown in Figure F.60.  

 
 

Figure F.60  The Optimal Dynamic MVPP of the Second Query Set 

 

After the dynamic MVPPs are generated and the optimal one is selected, the 

affected node identification algorithm is applied to identify the affected nodes. The 

existing nodes used to construct new queries are shown in Table F.12. Their weights 

are shown in Table F.13. 

 

Table F.12  The Existing Nodes Used to Construct New Queries 

 

New Queries Existing Nodes 

Q15 Tmp5, 7, 9, 10, 18, 19 

Q21 Tmp5, 7, 9, 10, 18, 19 

Q22 Tmp7, 9, 10, 12, 13, 14, 15, 18, 25 

Q28 Tmp1, 2, 3, 4, 5, 6, 7, 8, 20 

Q31 Tmp1, 2, 3, 4, 5, 6, 9, 10, 12, 13, 14, 22 

Q50 Tmp1, 2, 3, 4, 5, 6, 7, 8, 9, 10,12,13,14,16, 18,19,21 
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Table F.13  The Weight of the Existing Node for Constructing All New Queries 

 

Existing Node Weight ( w (v) ) 

Tmp1 135 

Tmp2 22 

Tmp3 675 

Tmp4 588 

Tmp5 400,000 

Tmp6 1,219,832 

Tmp7 40,800,000 

Tmp8 25,634,959,776 

Tmp9 270,000,000 

Tmp10 164,698,320 

Tmp12 46,500,000 

Tmp13 5,555,507 

Tmp14 25,900,260,649,574 

Tmp15 4,772,097,868,185 

Tmp16 1,500,000 

Tmp18 6,000,000 

Tmp19 3,600,000 

Tmp20 -6,412,239,024 

Tmp21 -2,864,117,576 

Tmp22 -4,313,315,662,784 

Tmp25 -4,833,826,082,420 

 

The intermediate nodes, which are the conjunctively joined nodes with 

positive weight, project operation that is not the ancestor of base relation and select 

operation, are inserted into the list of directly affected node. Therefore, the directly 

affected are {Tmp1, Tmp2, Tmp4, Tmp6, Tmp8, Tmp10, Tmp12, Tmp13, Tmp14, 

Tmp15, Tmp19 and Tmp20}. 
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Next, we identify the indirectly affected nodes. The directly affected nodes 

that their ancestors are not the directly affected node are Tm6, Tmp8, Tmp10, Tmp15 

and Tmp19. The weights of the ancestor node of those nodes are shown in Table F.14. 

In table F.14, Tmp11 is the indirectly affected node as its weight greater than 

Tmp8. Tmp20 is select operation node. The other nodes are not directly affected node 

as they are conjunctively join node with negative weight. 

 

Table F.14  The Weight of Ancestor Node of Directly Affected Node of New Queries 

 

Directly Affected Node Ancestor  Node Weight of Ancestor Node 

Tmp6 Tmp22 -4,313,315,662,784 

 Tmp23 -40,375,843,660 

Tmp8 Tmp11 599,772,484,280 

Tmp10 Tmp24 -21,186,592 

Tmp15 Tmp25 -4,833,826,082,420 

Tmp19 Tmp21 -2,864,117,576 

 

The result of affected nodes show as follows. 

Directly affected nodes: Tmp1, Tmp2, Tmp4, Tmp6, Tmp8, Tmp10, 

Tmp12, Tmp13, Tmp14, Tmp15, Tmp19 and 

Tmp20 

Indirectly affected nodes: Tmp11 

  

Therefore, the number of nodes to be the member of set of views to be 

materialized is 18 nodes, 13 existing nodes and 5 new created nodes. 

After the affected nodes are identified, the selection algorithm, 2PO, is applied 

to select the set of views to be materialized. The result is that the existing materialized 

views {Tmp6, Tmp11, Tmp10, Tmp14, Tmp15 and Tmp19} are still materialized, the 

existing virtual view {Tmp8} is materialized and the new node {Tmp27} is 

materialized. Figure F.61 shows the result after 2PO select the set of views to be 

materialized. 

We rerun static approach for all queries {Q4, Q12, Q23, Q33, Q36, Q40 and 

Q41} and {Q15, Q21, Q22, Q28, Q31 and Q50}. The result of the static approach for 
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all queries is shown in Figure F.62. After our MVPP re-optimization algorithm is 

applied to the cheapest MVPP, the MVPP structure of static approach in Figure F.62 

provides same structure as that of dynamic MVPP in Figure F.61.   

The query processing cost, materialized view maintenance cost and total cost 

of the static and dynamic approach are computed as shown in Table F.15. 

 

 

 

Figure F.61  The Materialized Views Selected by 2PO for the Dynamic MVPP of the 

Second Query Set 
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Figure F.62  The Re-Optimized MVPP by Static Approach for All Queries of the 

Second Query Set 

 

Table F.15  The Comparison of the Result from the Static Approach and the Dynamic 

Approach of the Second Query Set 

 

Approach Number 

of  Nodes 

Cost of 

Query Processing 

Cost of  

Maintenance 

Total Cost 

Static 31 5,329,761,453,158 14,884,283,889,969 20,214,045,343,127 

Dynamic 18 5,329,761,453,158 14,884,283,889,969 20,214,045,343,127 

 

Conclusion result of the dynamic phase: 

In Figure F.62, we rerun static approach for all queries; the search space 

contains 31 intermediated nodes for static materialized view selection whereas our 

dynamic approach for additional queries, the set of intermediated nodes to be selected 

is 17 nodes, 12 existing nodes and 5 new created nodes. The result in Table F.15 

shows that even though all costs of dynamic approach are same as cost of static 

approach, the number of nodes to be selected of dynamic less than static approach.  
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F.4  The Third Query Set 

 

Queries for static phase: {Q1, Q8, Q9, Q19, Q30, Q31 and Q41} 

Queries for dynamic phase: {Q2, Q10, Q25, Q29, Q33 and Q42} 

 

F.4.1  Static Phase with the MVPP Re-Optimization Algorithm 

The order of queries according to their frequency of executing the query 

multiplied with the query cost is shown in Table F.16. Then, the order of queries of 

the first MVPP is {Q9, Q1, Q30, Q31, Q8, Q19 and Q41} and the last order is {Q41, 

Q9, Q1, Q30, Q31, Q8, and Q19}. The query processing costs of all MVPPs of query 

set {Q1, Q8, Q9, Q19, Q30, Q31 and Q41} are shown in Table F.17. The cheapest 

MVPP is the third MVPP as shown in Figure F.63 

 

Table F.16  The Query Access Frequency, Query Cost, and Query Access Frequency 

Multiplied by Query Cost 

 

Query Query Access 

Frequency(fq) 

Query Cost fq * Query Cost 

Q1 5 910,519 4,552,595 

Q8 3 183,273 549,819 

Q9 6 910,519 5,463,114 

Q19 3 22,278 66,834 

Q30 4 184,082 736,328 

Q31 5 115,372 576,860 

Q41 3 4,558 13,674 
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Table F.17  The Query Processing Cost of the Third Query Set 

 
Query 1st  

MVPP 

2nd  

MVPP 

3rd MVPP 

(cheapest) 

4th  

MVPP 

5th  

MVPP 

6th  

MVPP 

7th  

MVPP 

Q1 6,827,953

,190,580 

6,827,953,

190,580 

6,827,953,

190,580 

6,827,953,

190,580 

6,827,953,

190,580 

6,827,953,

190,580 

6,827,953,

190,580 

Q8 4,506,506

,464,167 

4,506,506,

464,167 

4,199,188,

832,610 

4,199,191,

564,167 

4,199,191,

564,167 

4,506,506,

464,167 

4,506,506,

464,167 

Q9 8,248,175

,028,696 

8,248,175,

028,696 

8,248,175,

028,696 

8,248,175,

028,696 

8,248,175,

028,696 

8,248,175,

028,696 

8,248,175,

028,696 

Q19 4,372,853

,582,682 

4,523,761,

082,682 

4,216,446,

182,682 

4,216,446,

182,682 

4,216,446,

182,682 

4,382,914,

082,682 

4,372,853,

582,682 

Q30 5,572,292

,026,848 

5,572,292,

026,848 

1,131,705,

487,944 

6,008,675,

289,016 

6,008,675,

289,016 

5,572,292,

026,848 

5,572,292,

026,848 

Q31 6,873,494

,146,945 

6,833,714,

385,255 

902,329,39

4,455 

902,329,39

4,455 

6,873,494,

146,945 

6,873,494,

146,945 

902,329,39

4,455 

Q41 4,176,014

,005,725 

4,152,146,

148,711 

593,315,15

4,231 

593,315,15

4,231 

4,216,446,

469,860 

4,382,914,

369,860 

593,315,15

4,231 

Total 40,577,28

8,445,643 

40,664,548

,326,939 

26,119,113

,241,198 

30,996,085

,803,827 

40,590,381

,871,946 

40,794,249

,309,778 

31,023,424

,841,659 

 

 
 

Figure F.63  The cheapest MVPP of the Third Query Set of the Static Phase 
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Figure F.64 (a)  The optimal MVPP of the Third Query by Deterministic 

 

 

 
 

Figure F.64 (b)  The optimal MVPP of the Third Query by 2PO 
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The query processing cost of query of the cheapest MVPP are compared with 

other MVPPs. The result is that query processing of all queries of the cheapest MVPP 

is less than other MVPPs. Therefore the cheapest MVPP is the minimal MVPP.  

Next, selection algorithm are applied to the optimal MVPP in Figure F.63 to 

select the set of views to be materialized to be the initial search space for dynamic 

phase. The result of the Deterministic is shown in Figure F.64 (a). The result of 2PO 

is that {Tmp6, Tmp16, Tmp23, Tmp18} are the materialized views as shown in 

Figure F.64 (b). We show the query processing cost, materialized view maintenance 

cost and total cost of all-virtual-views, all-materialized-views and selection 

materialized view by 2PO algorithm of the cheapest MVPP in Table F.18. 

 

Table F.18  The Query Processing Cost, Maintenance Cost and Total Cost of the 

Static Phase 

 
 Cost of  

Query Processing 

Cost of 

Maintenance 

Total Cost 

All-virtual view 26,119,113,241,198 0 26,119,113,241,198 

All-materialized view 11,960,724 16,649,310,570,792 16,649,322,531,516 

2PO 306,035,672,471 7,832,700,983,345 8,138,736,655,816 

Deterministic 306,035,672,471 7,832,699,255,748 8,138,736,655,816 

 

Conclusion result of the MVPP re-optimization algorithm: 

Accordingly to Table F.18, after the MVPP re-optimization algorithm is 

applied, the query processing of all queries of the cheapest MVPP is less than that of 

other MVPPs, so the cheapest MVPP is the optimal MVPP. 

 

F.4.2  Dynamic Phase Result 

The queries of the dynamic phase, {Q2, Q10, Q25, Q29, Q33 and Q42}, are 

merged into the existing re-optimized MVPP, Figure F.64. The result of the dynamic 

MVPP is shown in Figure F.65.  
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Figure F.65  The Optimal Dynamic MVPP of the Third Query Set 

 

After the dynamic MVPPs are generated and the optimal one is selected, the 

affected node identification algorithm is applied to identify the affected nodes. The 

existing nodes are used to construct the new queries are shown in Table F.19. Their 

weights are shown in Table F.20. 

 

Table F.19  The Existing Nodes Used to Construct New Queries 

 

New Queries Existing Nodes 

Q2 Tmp10, 14 

Q10 Tmp10, 14 

Q25 Tmp1, 2, 3, 4, 5, 6, 7, 8, 9 

Q29 Tmp1, 2, 3, 4, 10, 12, 13, 14, 15 

Q33 Tmp1, 2, 3, 4, 10, 12, 13, 14, 15 

Q42 Tmp1, 2, 3, 4, 10, 12, 13, 14, 15 
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Table F.20  The Weight of the Existing Node for Constructing All New Queries 

 

Existing Node Weight ( w (v) ) 

Tmp1 55 

Tmp2 6 

Tmp3 275 

Tmp4 188 

Tmp5 1,050,000 

Tmp6 3,299,832 

Tmp7 42,000,000 

Tmp8 4,872,716 

Tmp9 27,467,730,392 

Tmp10 168,000,000 

Tmp12 160,000 

Tmp13 1,269,832 

Tmp14 36,000,000 

Tmp15 30,343,647,328 

 

The intermediate nodes, which are the conjunctively joined nodes with 

positive weight, project operation that is not the ancestor of base relation and select 

operation, are inserted into the list of directly affected node. Therefore, the directly 

affected are {Tmp1, Tmp2, Tmp4, Tmp6, Tmp8, Tmp9, Tmp13, Tmp14 and Tmp15}. 

Next, we identify the indirectly affected nodes. The directly affected nodes that 

their ancestors are not the directly affected node are Tmp8, Tmp9 and Tmp15. The 

weights of the ancestor node of those nodes are shown in Table F.21. 
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Table F.21  The Weight of Ancestor Node of Directly Affected Node of New Queries 

 

Directly Affected Node Ancestor  Node Weight of Ancestor Node 

Tmp8 Tmp17 136,554,444,806 

 Tmp18 3,994,303,717,209 

 Tmp19 -4,199,188,282,791 

Tmp8 Tmp20 -5,598,918,620,907 

 Tmp21 -5,604,673,082,464 

Tmp9 Tmp11 -310,408,939,520 

Tmp15 Tmp16 480,503,214,229 

 Tmp22 -1,134,712,881,114 

 

Tmp18 is identified as the indirectly affected node as its weight is the 

maximum weight of this branch. Tmp11 is not indirectly affected node as its weight 

negative. Tmp16 is indirectly affected node as its weight is greater than Tmp15. 

 

The result of affected nodes show as follows.  

Directly affected nodes: Tmp1, Tmp2, Tmp4, Tmp6, Tmp8, Tmp9, 

Tmp13, Tmp14, Tmp15 

Indirectly affected nodes: Tmp16, Tmp18 

 

Therefore, the number of nodes to be the member of set of views to be 

selected by 2PO is 17 nodes, 11 existing nodes and 6 new created nodes. 

After the affected nodes are identified, the selection algorithm, 2PO, is applied 

to select the set of views to be materialized. The result is that the existing materialized 

views {Tmp8, Tmp16, Tmp18, Tmp23} are still materialized, the existing virtual 

views {Tmp9, Tmp15} are materialized view, the new nodes {Tmp27, Tmp29, 

Tmp30} are materialized and the existing materialized view {Tmp6} is un-

materialized. 

We rerun static approach for all queries {Q1, Q8, Q9, Q19, Q30, Q31 and 

Q41} and {Q2, Q10, Q25, Q29, Q33 and Q42}. The result of the static approach for  
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 represents un-materialized node in dynamic phase 

 

Figure F.66  The Dynamic MVPP of the Third Query Set 

 

 
 

Figure F.67  The Re-Optimized MVPP by Static Approach for All Queries of the 

Third Query Set  
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all queries is shown in Figure F.67. After our MVPP re-optimization algorithm is 

applied to the cheapest MVPP, the MVPP structure in Figure F.67 provides same 

structure as that of dynamic MVPP in Figure F.66. The query processing cost, 

materialized view maintenance cost and total cost of the static and dynamic approach 

are computed as shown in Table F.22. 

 

Table F.22  The Comparison of the Result from the Static Approach and the Dynamic 

Approach of  the Third Query Set 

 

Approach Number 

of  Nodes 

Cost of 

Query Processing 

Cost of  

Maintenance 

Total Cost 

Static 31 184,748,883,173 13,766,731,003,390 13,951,479,886,563 

Dynamic 17 184,748,883,173 13,766,731,003,390 13,951,479,886,563 

 

Conclusion result of the dynamic phase: 

In Figure F.67, we rerun static approach for all queries; the search space 

contains 31 intermediated nodes for static materialized view selection whereas our 

dynamic approach for additional queries, the set of intermediated nodes to be selected 

is 17 nodes, 11 existing nodes and 6 new created nodes. The result in Table F.22 

shows that even though all costs of dynamic approach are same as cost of static 

approach, the number of nodes to be selected of dynamic less than static approach.
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