DYNAMIC MATERIALIZED VIEW SELECTION BASED ON
TWO-PHASE OPTIMIZATION

Boontita Suchyukorn

A Dissertation Submitted in Partial
Fulfillment of the Requirements for the Degree of
Doctor of Philosophy (Computer Science)
School of Applied Statistics
National Institute of Development Administration
2013

DYNAMIC MATERIALIZED VIEW SELECTION BASED ON
TWO-PHASE OPTIMIZATION
Boontita Suchyukorn

School of Applied Statistics

Associate Professor Major Advisor

(Raweewan Auepanwiriyakul, Ph.D.)

The Examining Committee Approved This Dissertation Submitted in Partial
Fulfillment of the Requirements for the Degree of Doctor of Philosophy (Computer

Science).

Associate Professor7... DT RRA AR < - <« v v emmenaanaenn Committee Chairperson

(Surapong Auwatanamongkol, Ph.D.)

-

Associate Professor Committee

(Raweewan Auepanwiriyakul, Ph.D.)

£ 1 -,/ -
Assistant Professor L./JL’J ’ Committee
(Ohm Sornil, Ph.D.)
Cf'n.arw/
Assistant Professor NAYNY T . Committee
(Charun Sanrach, Ph.D.)

(Siwiga Dusadenoad, Ph.D.)
April 2014

ABSTRACT

Title of Dissertation Dynamic Materialized View Selection Based on

Two-Phase Optimization

Author Ms. Boontita Suchyukorn
Degree Doctor of Philosophy (Computer Science)
Year 2013

A Data Warehouses is a repository of information integrated from a
distributed data source. Information stored in a data warehouse is the form of the
materialized view. Materializing view is a technique to improve query response time
in a data warehouse. Deciding which of the appropriated views should be materialized
views is one of the significant problems in data warehouse design. In order to solve
this problem, constructing a search space close to optimal is a necessary task. It
provides effective results for the selection of views to be materialized. The Multiple
View Processing Plan (MVPP) is one of the several approaches to construct the
optimal search space for the view selection problem. However, some merged queries
in MVPP provide the query processing cost not close to optimal. Therefore, we
proposed the re-optimized MVPP algorithm to improve the query processing cost of
those queries by rewriting them using global common subexpression.

In the real situation, the requirements are frequently changed by the
stakeholder. Therefore, the existing materialized views and virtual views derived from
static materialized view selection should be considered whether they are still suitable
to support all requirements, the existing and new requirements. In this research, we
propose an approach for dynamic materialized view selection based on proposed re-
optimized MVPP algorithm. We propose the algorithm to determine the existing
materialized views and virtual views that are affected by changing the requirement

rather than all existing resource in the search space.

The experiment shows that our approach, the re-optimized MVPP, improves
the total query processing cost of MVPP. Also the summation of query processing
costs and materialized view maintenance costs are reduced after the set of views are
selected to be materialized by using the Two-Phase Optimization algorithm. For our
dynamic materialized view selection approach, the experiment shows that our
approach can specify the member of a set of views to be selected rather than all
existing views in the search space. It provides optimal total cost without recalculating

all requirements from scratch.

ACKNOWLEDGEMENTS

The author would like to express sincere thanks and really appreciation to my
advisor, Associate Professor Dr. Raweewan Auepanwiriyakul, for her kindness in
providing valuable advice, support, encouragement and guidance throughout the time
of formulating the dissertation. | have been learned more than study by her coaching
with kindness and very nice attitude. | cannot express my gratitude enough.

I would also to thanks and appreciation to all of the committee members,
Associate Professor Dr. Surapong Auwatanamongkol, Assistant Professor Dr. Ohm
Sornil and Assistant Professor Dr. Charun Sanrach, for their thoughtful comments and
suggestions.

| also wish to express my thanks to all lecturers and staffs at the School of
Applied Statistics, National Institute of Development Administration, for their kind
support. 1 am also thankful to the NIDA Library and Information Center for their help
in checking the format of the dissertation.

I would like to voice my special thanks to Mr. Sakchai Hanprasertporn, my
former senior manager, for his kind support and encourage me the chance to have the
work and study together. Also, | wish to extend thanks to my colleagues, classmates
and all kanlayanamitr for providing me the encouragement.

Finally, 1 would like to thanks to my beloved family for giving me their love
and support, and to present the accomplishment of this dissertation to my mother, and

passed away father and sister.

Boontita Suchyukorn

April 2014

TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF TABLES

LIST OF FIGURES

CHAPTER 1 INTRODUCTION
1.1 Problem Statements
1.2 Dissertation Objectives
1.3 Organization of Dissertation
CHAPTER 2 LITERATURE REVIEW
2.1 Query and View Lineage Models for Generating the
Search Space
2.2 Materialized View Selection Algorithms
2.3 Dynamic Materialized View Selection Methodologies
2.4 Cost Model for Materialized View Selection
2.5 Common Subexpression
2.6 Weight of Node in MVVPP
CHAPTER 3 METHODOLOGY
3.1 Proposed Methodologies
3.2 Multiple View Processing Plan (MVPP)
3.3 Common Subexpression
3.4 Proposed Approach to Improve MVPP
3.5 Static Materialized View Selection
3.6 Selection Algorithm: Two-Phase Optimization (2PO)

Page

Vi

Xii

~N o o1 o1 W

11
14
18
20
23
25
25
28
29
31
34
35

vii

3.7 Dynamic Materialized View Selection Approach
3.7.1 MVPP Structure Analysis and Merging New
Requirements Approach
3.7.2 An Approach to Identify the Affected Nodes
3.8 Two-Phase Optimization (2PO) for Dynamic Materialized
View Selection
3.9 Cost Model for Dynamic Materialized View Selection
CHAPTER 4 DESIGN OF EXPERIMENTS AND ANALYSIS
OF RESULTS
4.1 TPC Benchmark™H (TPC-H)
4.2 Query Set for Static Materialized View Selection
4.3 The Cheapest MVPP Implementation
4.4 The Re-Optimized MVPP Implementation
4.5 Evaluation of the MVPP Re-Optimization Algorithm
4.6 Dynamic Materialized View Implementation
4.6.1 Query Sets and Implementation of Scenarios
4.6.2 Merging New Requirements into the Existing MVPP
Implementation
4.6.3 The Affected Node Identification Algorithm
Implementation
4.7 Two-Phase Optimization for Dynamic Materialized View
Selection
4.8 Result and Analysis of Dynamic Materialized View
Selection
4.9 The Second Experiment for Dynamic Materialized View
Selection
4.10 Analysis of the Affected Node Identification Algorithm
CHAPTER 5 CONCLUSION AND FUTURE WORK
BIBLIOGRAPHY
APPENDICES
Appendix A Result of Merging Queries to Construct MVVPPs
Appendix B Result of Using Common Subexpression

38
38

41
43

44
46

46
48
56
68
72
80
81

114

129

133

137

139

153

170

173

179

180
197

viii

Appendix C Result of Merging Queries to Construct Dynamic MVPPs
Appendix D Result of Affected Node Identification Algorithm
Appendix E Result of Selection Algorithm
Appendix F Result of Testbed

BIOGRAPHY

205
232
259
267
348

Tables

4.1
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

411

4.12

4.13

4.14
4.15

4.16

4.17

LIST OF TABLES

The TPC-H Schema Table Size

The Query Access Frequency, Query Cost, and Query Access
Frequency Multiplied by Query Cost

The Query Processing Cost of the First MVPP

The Query Processing Cost of All MVPPs

The Query Processing Cost of the Cheapest MVPP and the Re-
Optimized MVPP

The Maintenance Cost of the Cheapest MVPP

The Query Processing Cost of the Cheapest MVPP

The Maintenance Cost of the Re-Optimized MVPP

The Query Processing Cost of the Re-Optimized MVPP

The Query Processing Cost, Maintenance Cost and Total Cost of
the Cheapest MVPP

The Query Processing Cost, Maintenance Cost and Total Cost of
the Re-Optimized MVPP

The Comparison of Total Costs of the Cheapest MVPP and the
Re-Optimized MVPP

The Comparison of the Result from the Static Approach and the
Dynamic Approach for the Nothing in Common Data Set

The Weight of the Existing Nodes for Construct Q9 and Q10
The Weight of Ancestor Nodes of Directly Affected Node of Q9,
Q10

The Comparison of the Result from the Static Approach and the
Dynamic Approach for the Subsumption Data Set

The Weight of the Existing Nodes for Construct Q11 and Q12

Page

47
S7

66
67
72
75
75
77
77
78
78
79

91

94
95

97

99

4.18

4.19

4.20

4.21

4.22

4.23
4.24

4.25

4.26

4.27

4.28
4.29

4.30

4.31

4.32
4.33

4.34

4.35

The Weight of Ancestor Nodes of Directly Affected Node of
Q11, Q12

The Comparison of the Result from the Static Approach and the
Dynamic Approach for Partially Overlapping Data Set

The Weight of the Existing Nodes for Q3

The Weight of Ancestor Nodes of Directly Affected Node of Q3
The Comparison of the Result from the Static and the Dynamic
Approach for Deleting Query Q3

The Weight of the Existing Nodes for Construct Q13

The Weight of Ancestor Nodes for the Directly Affected Node
of Q13

The Comparison of the Result for the Static Approach and the
Dynamic Approach for Query Q1-Q7 and Q13

The Query Access Frequency, Query Cost, and Query Access
Frequency Multiplied by Query Cost of Q8 to Q13

The Possible Execution Plans for Q13 in the First Dynamic
MVPP

The Query Processing Cost of All Dynamic MVPPs

The Weight of the Existing Nodes for Constructing All New
Queries

The Weight of Ancestor Node of Directly Affected Node of
New Queries

The Query Processing Cost of Dynamic Approach for All
Queries

The Maintenance Cost of Dynamic Approach for All Queries
The Comparison of the Result from the Static Approach and the
Dynamic Approach for All Queries

The Query Access Frequency, Query Cost, and Query Access
Frequency Multiply Query Cost

The Query Processing Cost of All MVPPs

100

103

105

106

107

109
111

114

116

120

128
130

132

134

135
138

141

142

Xi

4.36 The Query Processing Cost, Maintenance Cost and Total Cost of 144
the Optimal MVPP

4.37 The Comparison of the Results from the Static Approach and the 149
Dynamic Approach for the Second Experiment

4.38 The Query Processing Cost of the Dynamic Approach 150
4.39 The Maintenance Cost of the Dynamic Approach 150
4.40 The Query Processing Cost of the Static Approach 151
4.41 The Maintenance Cost of the Static Approach 152
4.42 The Cost of All Queries for the Negative Weight Property 160
4.43 The Minimum Total Cost of the First Experiment 161
4.44 The Weight of Ancestor Nodes of Directly Affected Node of 162
New Queries

4.45 The States Generated by 2PO of Dynamic Phase for All Nodes 166
4.46 The States Generated by 2PO of Dynamic Phase for Affected 168
Nodes

Figures

2.1
2.2
2.3

2.4
2.5
2.6
3.1

3.2
3.3
3.4
3.5

3.6
3.7
3.8
3.9
3.10
3.11
3.12

3.13

3.14

LIST OF FIGURES

Lattice Framework of the Time Dimension

Sample Data Cube Lattice Framework for Eight Views

(@) An Expression AND DAG (b) An Expression AND-OR
DAG

(@) An AND DAG (b) An AND-OR DAG

Multiple View Processing Plan (MVPP)

Example of the Affected Transference

The Diagram for Dynamic Materialized View Selection
Approach

The Simple MVPP of Three Queries Q1, Q2 and Q3

The Algorithm for Implementing the MVVPP

The Categories of Subexpression Commonalities

The Proposed Algorithm: The MVPP Re-Optimization
Algorithm

The Plan of Q1 in MVPP of Q1,Q2 and Q3

The Rewriting Query Steps

The Static Materialized View Selection for the Static Phase
The Iterative Improvement (I1) Algorithm

The Simulated Annealing (SA) Algorithm

The Materialized View Selection with 2PO

The Subgraph of the Existing MVPP is the Subsumption of the

Subtree of New Query

The Methodology to Merge New Requirements into the Exiting

MVPP
The Affected Node Identification Algorithm

Page

10
10
16
26

28
29
30
31

33
34
35
36
36
37
39

40

42

3.15

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412

4.13

4.14

4.15

4.16

4.17

4.18

4.19
4.20

4.21

Xiii

The Materialized View Selection with 2PO for the Dynamic
Phase

The TPC-H Schema Revision 2.14.2

Relational Algebra Query Tree of Query Q1

Relational Algebra Query Tree of Query Q2

Relational Algebra Query Tree of Query Q3

Relational Algebra Query Tree of Query Q4

Relational Algebra Query Tree of Query Q5

Relational Algebra Query Tree of Query Q6

Relational Algebra Query Tree of Query Q7

The Result of the First Step to Construct MVVPP

The Result of Merging Steps for the First MVPP

The Result of Merging Steps for the Second MVPP

The First MVPP, the Queries in the List: {Q4, Q7, Q3, Q2, Q6,
Q1, and Q5}

The Second MVPP, the Query in the List: {Q7, Q3, Q2, Q6, Q1,
Q5, and Q4}

The Third MVPP (the Cheapest MVVPP), the Query in the List:

{Q3, Q2, Q6, Q1, Q5, Q4, and Q7}

The Fourth MVPP, the Query in the List: {Q2, Q6, Q1, Q5, Q4,
Q7, and Q3}

The Fifth MVPP, the Query in the List: {Q6, Q1, Q5, Q4, Q7,
Q3, and Q2}

The Sixth MVPP, the Query in the List: {Q1, Q5, Q4, Q7, Q3,
Q2, and Q6}

The Seventh MVPP, the Query in the List: {Q5, Q4, Q7, Q3,

Q2, Q6, and Q1}

The Execution Plan of Q1 Before and After Rewriting

The Cheapest MVPP after Applying the MVVPP Re-Optimization
Algorithm

The Materialized View Selection with 2PO

44

47
49
50
51
52
53
54
55
57
58
60
62

63

63

64

64

65

65

70
71

73

4.22
4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

Xiv

The Cheapest MVVPP with Materialized Views

The Re-Optimized MVPP with Materialized View Nodes
Selected by 2PO

Relational Algebra Query Tree of Query Q8

Relational Algebra Query Tree of Query Q9

Relational Algebra Query Tree of Query Q10

Relational Algebra Query Tree of Query Q11

Relational Algebra Query Tree of Query Q12

Relational Algebra Query Tree of Query Q13

The Existing Re-Optimized MVPP with Q8 by Dynamic
Approach

The Re-Optimized MVPP for Q1-Q7, and Q8 by Static
Approach

The Existing Re-Optimized MVPP with Q9 and Q10 by
Dynamic Approach

The Re-Optimized MVPP for Q1-Q7, and Q9-Q10 by Static
Approach

The Existing Re-Optimized MVPP with Q11 and Q12 by
Dynamic Approach

The Existing Re-Optimized MVPP with Q11 and Q12 by
Dynamic Approach after Applying 2PO

The Cheapest MVPP for Q1-Q7, and Q11-Q12 by Static
Approach

The Re-Optimized MVPP for Q1-Q7, and Q11-Q12 by Static
Approach

The Re-Optimized MVPP Structure with Deleting Q3 for
Dynamic and Static Approach

The Existing Re-Optimized MVPP with Q13 by Dynamic
Approach

The Existing Re-Optimized MVPP with Q13 by Dynamic
Approach after Applying 2PO

73
76

82

83

84

85

86

88

90

90

92

96

98

101

102

103

104

108

112

441

4.42

4.43
4.44

4.45
4.46

4.47

4.48

4.49

4.50

451

4.52

4.53

4.54

4.55

4.56

4.57

4.58
4.59

XV

The Cheapest MVPP for Query Q1 to Q7, and Q13 by Static
Approach

The Re-Optimized Cheapest MVPP for Query Q1 to Q7, and
Q13 by Static Approach

The Result of Merging Steps for the First Dynamic MVPP
The First Dynamic MVPP after Optimized, Queries in the List
{Q10, Q8, Q11, Q12, Q9 and Q13}

The Result of Merging Steps for the Second Dynamic MVPP
The Second Dynamic MVPP: the Queries in the List {Q8, Q11,
Q12, Q9, Q13 and Q10}

The Third Dynamic MVPP: the Queries in the List {Q11, Q12,
Q9, Q13, Q10 and Q8}

The Fourth Dynamic MVPP: the Queries in the List {Q12, Q9,
Q13,Q10, Q8 and Q11}

The Fifth Dynamic MVPP: the Queries in the List {Q9, Q13,
Q10, Q8, Q11 and Q12}

The Sixth Dynamic MVPP: the Queries in the List {Q13,Q10,
Q8, Q11, Q12 and Q9}

The Dynamic MVPP for Q8-Q13 after Applying 2PO

The Cheapest MVVPP of Q1-Q13 by Static Approach

The Re-Optimized MVPP of Q1-Q13 by Static Approach

The Relational Algebra Query Tree for the Initial Queries: Q4,
Q15, Q22, Q33, Q40, Q43 and Q50

The Cheapest MVPP for the Second Experiment: the Queries in
the List {Q43, Q40, Q50 Q4, Q33, Q22 and Q15}

The Optimal MVPP with Materialized Views for Initial
Requirements

The Relational Algebra Query Tree for the New Queries: Q3,
Q6, Q28, Q30, Q32 and Q47

The Optimal Dynamic MVPP Constructed by Merging Steps
The Dynamic MVPP after Applying 2PO

113

113

117
121

122
124

124

125

125

126

136

137

138

139

141

143

145

146
147

XVi

4.60 The Re-Optimized MVPP by Static Approach for All Queries 148
4.61 The Dynamic MVPP for Q8-Q13 after Applying 2PO 161

CHAPTER 1

INTRODUCTION

Data warehousing is an approach to integrate data from heterogeneous data
sources typically from multiple online transaction processing (OLTP) databases. A
data warehouse is defined as a subject-oriented, integrated, time-varying, nonvolatile
collection of data that is used primarily for querying and analysis to support
management decisions for entire organization (Inmon, 2002: 389). The data
warehouse is often used to support the decision support system. The queries used in
data warehouse are more complex than those used in the traditional OLTP database.
These queries are mostly complex of operations that are joins and aggregations of
large volume of historical data. The query response time is important for analytical
processing. Therefore, increasing the efficiency of query processing is necessary. In
order to increase the performance of executing the query, we can use an approach
which is to store some intermediate results of the queries called materialized views.
The materialized view is a common technique to reduce query response time by pre-
calculating expensive operations in the data warehouse (Bello, Dias, Downing,
Feenan, Finnerty, Norcott, Sun, Witkowski, and Ziauddin, 1998: 659).

Normally, the views or virtual views are the derived relations defined by a
query in terms of base relations and/or other views. The virtual views are stored in
database system in form of the query definition in contrast to base relations whose
tuples are always physically stored in the database system (Garcia-Molina, Ullman
and Widom, 2009: 341; Elmasri and Navathe, 2010: 133). The view defines a
function from a set of base relations to a derived relation. This function is typically
recomputed every time when the view is referred to; benefit being that data provided
is always up to date. In contrast, materialized view is a view whose contents are
computed and stored. Materialized view is technique to reduce the response time of

complex queries by pre-computation the complex queries and physically store in data-

base system. The main reason for defining and storing materialized view is to avoid
accessing the original data source and to increase the efficiency of querying
performance. Therefore, query accessing performance by using materialized views is
speed up dramatically from hours or days to seconds or minutes. However,
materialized views have to be in synchronization with the source data in order to
maintain the consistency and integrity of the source data. The changing of the source
data should be reflected to the materialized views. The process of refreshing a
materialized view in response to the changes in the base relation is called view
maintenance that incurs a view maintenance cost. Therefore, not only the query
processing cost but materialized view maintenance cost also has to be considered. As
materializing view technique has maintenance cost when base tables are changed, it is
not possible to materialize all views so the tradeoff between performance and view
maintenance is taken into consideration (Silberschatz, Korth and Sudarshan, 2010:
597).

The materialized view selection problem is one of the important problems in
data warehouse design. It is defined as how to select an appropriate set of views to be
materialized over a global processing plan by merging optimized individual
processing plans of queries subjected to the minimum of summation of query
processing and maintenance cost (Gupta and Mumick, 2005: 24; Zhang, Yao, and
Yang, 2001: 287). There are three different strategies for materialized view selection
to facilitate query processing (Yang, Karlapalem and Li, 1997: 139). First, to
materialize all of the views in the data warehouse can achieve the best performance
but it may take high maintenance cost, memory space and time constraints. Second, to
have all the virtual views will have the low view maintenance cost but may take a lot
of time to answer the queries. Third, some of views will be materialized and others
will be left to be virtual views. The third strategy provides the tradeoff between
maintenance cost and query processing cost. Therefore, it is necessary for selecting an
appropriate set of views to be materialized which minimizes the summation of query
processing cost and view maintenance cost. There are two concerning majority tasks
in order to solve the materialized view selection problem. First, is to generate a search
space, and second is to design the optimization algorithm for selecting the appropriate

set of views to be materialized. The appropriated search space structure and view

selection methodologies have been considered in order to optimize the query cost,
view maintenance cost, or both. For the first task, the various well known frameworks
have been proposed for example Lattice Framework (Harinarayan, Rajaraman and
Ullman, 1996: 205; Kalnis, Mamoulis and Papadias, 2002: 89), AND-OR DAG
(Theodorators and Sellis, 1999: 1; Gupta and Mumick, 2005:24) and Multiple View
Processing Plan (MVPP) (Yang et al., 1997: 136; Yang, Zhang, and Yao, 2001: 282;
Phuboon-ob and Auepanwiriyakul, 2007: 166; Derakhshan, Dehne, Korn and Stantic,
2006: 92; 2008:125). The second task can be classified into four categories i.e.
deterministic, randomized, evolutionary and hybrid algorithm (YYang, Zhang and Yao,
2001: 282; Zhou, Geng and Xu, 2011: 131).

1.1 Problem Statements

In order to generate the search space, which is the first task to solve
materialized view selection problem, the common subexpressions of queries have to
be detected and exploited. The concept of common subexpressions has been applied
to several areas of query processing (Jarke, 1984: 192; Chen and Dunham, 1998: 493;
Lehner, Cochrane, Pirahesh and Zahatioudakis, 2001: 391; Zhou, Larson, Freytag and
Lehner, 2007: 534; Silva, Larson and Zhou, 2012: 1339), and materialized view
selection problem (Yang et al., 1997: 136; Mistry, Roy, Sudarshan and Ramamrithan,
2001: 311; Theodoratos and Xu, 2006: 75). However, it is practically impossible to
consider all common subexpressions between all queries. The MVPP is one of the
several approaches to construct the optimal search space for view selection problem
proposed by Yang et al. (1997:138). It is generated by using the Multiple Queries
Processing (MQP) technique. The reason we choosing the MVPP is that MVPP
presents the realistic structured query language (SQL) queries and supports a large
number of queries that reflects the real data warehouse environment. However, as the
generating of MVPP is constructed by the merging of individual optimal plan in order
of query weight so merging of incoming query has to use the common subexpressions
of the previous merging. The benefit of MVPP approach is to avoid a huge search

space due to the fact that some combination would not be considered. However, it will

lose the global optimization, so some queries should be rewritten by using common
subexpression among queries to gain more optimal query processing cost.

The second task to solve the materialized view selection is to design the
selection approach to select the appropriate set of views to be materialized. Normally,
the materialized view selection approach, that is based on a fixed set of queries,
frequency of executing the query and frequency of updating the base relation assumed
to be fixed and time invariant, and a set of views to be materialized selected and
computed from scratch, is known as Static Materialized View Selection. The objective
of the static approach is selecting the set of views to be materialized from scratch with
the minimum of query processing cost, or view maintenance cost, or summation of
query processing and view maintenance cost.

However data warehouse is dynamic environment because the requirements
specified by the various stakeholders are frequently changed and some queries are not
known in advance to serve the business of the organization. Therefore, the existing
materialized views derived from the static approach might be changed, and some new
incoming queries could not be answered by the existing materialized views. Then, the
new materialized views have to be added for answering the new incoming queries. On
the other hand, the existing materialized views would be deleted if the query
frequency of existing query is significantly decreased, or the existing queries are
deleted due to no longer required.

In case if we use the static approach to resolve new requirement, we need to
rerun the static materialized view selection method for all requirements that are
existing and new requirements. From this context, there are some disadvantages to
recalculate the new materialized views from scratch. First, re-computing from scratch
is a waste of the existing resources because not the whole existing resources such as
queries, materialized views are affected. Second, processing time for selecting views
from entirely view sets is dissatisfied. Thus, our objective of dynamic materialized
view selection is to minimize query processing and view maintenance cost based on
the existing resources and without recalibrating from scratch. This is known as the
Dynamic Materialized View Selection (Theodorators and Sellis, 1999: 2; Zhang, Yang
and Karlapalem, 2003: 451; Lawrence and Rau-Chaplin, 2008:48). Therefore, the

main problems of dynamic materialized view selection are; i.e. how to identify which

existing resources are affected due to changed requirements, how to identify the new
set of views to be materialized and the existing materialized view to be un-

materialized.

1.2 Dissertation Objectives

The dissertation objective is developing the alternative methodology of
dynamic materialized views selection to support the changing of requirements based
on the existing resources and avoid re-computing from scratch. The MVPP is the
structure for search space. The MVPP re-optimization algorithm is proposed to
improve the total query processing cost of the cheapest MVPP by rewriting the query
using global common subexpressions as supposing that the more optimal query
processing cost the less total cost. For dynamic materialized view approach, after new
requirements are merged into the existing resources, we apply our algorithm to
identify the affected nodes aiming to reduce the search space in the selection set of
views to be materialized step. We use Two-phase optimization (2PO) algorithm, the
combination of Iterative Improvement (I1) and Simulated Annealing (SA), to select
the set of views to be materialized because 2PO provides minimum total cost
(Phuboon-ob and Auepanwiriyakul, 2007: 166) that is the summation of query
processing cost and materialized view maintenance cost. The assumption is that the

application requirements of the designed data warehouse are changed frequently.

1.3 Organization of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 provides
review the background and related works mainly focusing on lineage model to
construct the search space, common subexpression and dynamic materialized view
selection approach. Chapter 3 clarifies our proposed methodology to optimize MVPP
and dynamic materialized selection approach in details. Chapter 4 provides the design
of experiments, result and analysis. Finally, chapter 5 discusses the conclusion of our

experiments and future works.

CHAPTER 2

LITERATURE REVIEW

One of data warehouse designing problems is the view selection problem. The
problem is how to select a set of views to be materialized aiming to optimize the
summation of materialized view maintenance cost and query processing cost for all
queries. As these two costs are in conflict, an approach to ensure a balance between
materialized view maintenance and query processing costs is taken into account.
Materializing an appropriate set of views and answering queries using these
materialized views can significantly speed up the processing of query as processing
the query using materialized views will be faster than re-computing the virtual views.
Therefore, materializing all the input queries can achieve the lowest query processing
cost but the highest view maintenance cost. As materialized views have to be
maintained in order to keep them consistent with the base relations. The objective to
resolve this problem is to select the set of views to be materialized which minimizes
one or more constraint i.e. space constraint (Harinarayan, Rajaraman and Ullman,
1996: 205; Lawrence and Rau-Chaplin, 2008: 49), query processing cost, view
maintenance cost, or sum of query processing and view maintenance cost (Yang et al.,
1997: 140; 2003:454; Theodorators and Sellis, 1999: 4; 2000: 12; Phuboon-ob and
Auepanwiriyakul, 2007: 168).

There are two major concerning tasks to resolve the materialized view
selection problem. The first task is to design the lineage model for generating a search
space. The second task is to design the optimization algorithm for selecting the
appropriate set of views to be materialized from the search space. Moreover, for the
dynamic selection problem, the other tasks which are the relevance among the views,
new views and existing views, and which existing resources are affected have to be

considered.

In this chapter, we review the background and related works on lineage
models to construct search space, materialized view selection algorithms, dynamic
materialized view selection approaches, cost model, common subexpression and

weight of intermediate node in MVPP.

2.1 Query and View Lineage Models for Generating the Search Space

The appropriated data structure is considered for view selection in order to
optimize the query cost, view maintenance cost, or both. The various well known
frameworks have been proposed such as Lattice Framework (Harinarayan, Rajaraman
and Ullman, 1996: 205; Kalnis, Mamoulis and Papadias, 2002: 89; Lawrence and
Rau-Chaplin, 2008: 54), AND-OR DAG (Theodorators and Sellis, 1999: 1; Gupta and
Mumick, 2005:24; Sun and Wang, 2009: 1; Zhang, Sun and Wang, 2009: 316;
Theodoratos and Sellis, 2000: 7; Theodoratos, Dalamagas, Simitsis and Stavropoulos,
2001: 327) and Multiple View Processing Plan (Yang, Karlapalem and Li, 1997: 136;
Yang, Zhang, and Yao, 2001: 282; Zhang, Yang and Karlapalem, 2003: 270;
Derakhshan, Dehne, Korn and Stantic, 2006: 89; 2008:121; Phuboon-ob and
Auepanwiriyakul, 2007: 166).

2.1.1. Lattice Framework

Data warehouse typically have schemes that are designed for querying and
analysis. To speed up the response times, data will be modeled and viewed in
multidimensional data cubes (Harinarayan et al., 1996: 205). Each cell of the data
cube is a view consisting of an aggregation of the interesting information. The
dependencies among the views can be expressed by a lattice framework. In lattice,
each node denotes a view or a query and edges represent the dependencies among the
views or queries. Given two nodes view u and view v, there is a path from u to v if
queries on v can be answered by using only the result from u denoted by u c v. The ¢
operator imposes a partial ordering on the queries. The simple example of lattice

framework in the time dimension: day, month, and year is shown in Figure 2.1.

RN

Week Month

N v
|

None

Figure 2.1 Lattice Framework of the Time Dimension

Source: Harinarayan et al., 1996: 209.

The Data Cube Lattice is built from the queries involved in the data warehouse
application. The Data Cube Lattice is a graph whose nodes represent queries or views
which are characterized by the attributes of the ‘group by’ clause. The edges denote
the derivability relation between views. The node labeled ‘none’ corresponds to an
empty set of ‘group by’ attributes. For example in Figure 2.2, if there is a path from
view V; to a view Vj, then grouping attributes on V; can be calculated from grouping
attributes on V;. The benefit of this representation is that a query can be used to

answer other queries.

Figure 2.2 Sample Data Cube Lattice Framework for Eight Views
Source: Harinarayan et al., 1996:207.

2.1.2. AND-OR DAG
An expression AND DAG for a query or view V is a directed acyclic graph

with V as a source node, no incoming edge, and base relations as sink nodes, no

outgoing edge (Gupta and Mumick, 2005: 24). Each node has a unique evaluation that
mean if node u has outgoing edge to nodes vi,v,, ...,vi then all of node vi,vs,...,v; are
required to compute node u. This dependency is indicated by drawing a semicircle,
called AND arc. For example, Figure 2.3 (a) shows an expression AND-DAG. The
node view a is computed from set of views {b,c,d}.

An expression AND-OR DAG for a query or view V is a directed acyclic graph
with V as a source node and base relations as sink nodes. Each node has associated
with one or more AND arcs. More than one AND arc at a node determines the
multiple ways of computing that node. Figure 2.3 (b) shows the example of an
expression AND-OR DAG. The node view a can be computed either from the set of
views {b, c, d} or {d, e, f}.

Figure 2.3 (a) An Expression AND DAG (b) An Expression AND-OR DAG
Source: Gupta and Mumick, 2005: 25.

An AND-OR DAG is constructed by integrating the expression of the
previous AND-OR DAG. Let Gj.; be the AND-OR DAG. Gj.; is formed by merging
the expression AND-OR DAGs represented by Dy, D,,...,Dx. Then G; be an AND-OR
DAG is formed by merging D1, D, ...,Dx with Gi_;. The merging process involves: (1)
matching node in D; with Gj.; that represent same relational expressions, (2) for the
unmatched node in D;, identify whether it can be derived from a set of node in Gj.,

(3) if node in (2) can be identified, then merge D; to a set of node used to derive D;.

10

Figure 2.4 shows an example of a global plan, for the queries (R XS T)and (R X S
X U), Figure 2.4 (a) is AND DAG and Figure 2.4 (b) is AND-OR DAG.

RS T REs[U RIS AT R[S <] U

R[>]S

(@)

Figure 2.4 (a) An AND DAG (b) An AND-OR DAG
Source: Gupta and Mumick, 2005: 30.

2.1.3. Multiple View Processing Plan (MVPP)

The MVPP is a directed acyclic graph of the relational algebra for a set of
queries. The MVPP is constructed by merging the individual optimal query plan with
the shared common subexpressions between the queries (Yang et al., 1997: 138). The

simple MVPP is shown in Figure 2.5.

1

@ @
» 10] T
sm -
® 2 Qi 30 360k .
N 5’ \ a 15k
101, L asor T 7
"
Te_ :Lmuuﬂ:\ amount*
e 304 sl o) | "y
THI ngim T sd sum* result
(amount*]_prices) (o] price) | e
g8 max
Uk Hm
mpd
{m

oom | o0k
S tmpl0) \7}‘
) T_name like

MAZDA,

TOYOTA} 003k

o

_ N S0k
,’ ‘101\-)
N mpt_J i ¥
| t)
L name like ’ year="1996" oo
{N{AZDJL
NISSAN,
TOYOTA} s
S0k

Figure 2.5 Multiple View Processing Plan (MVPP)
Source: Zhang, Yang and Karlapalem, 2003: 453.

11

The leaf node (the node that does not have edges coming into the node)
represents the base relations. The root node (the node that does not have edges going
out of the node) represents the queries. Each intermediate node is marked by a
relational algebra operation and defined as a view. An edge exists between two nodes
if the operator in the upper level is applied to the view derived by the operator in the
lower level. The cost for each operation node is labeled at the right side of the node.
The number of rows produced by this operation is labeled at the left side of the node.
The frequency to access the queries are labeled on the top of the query node. For
example, in Figure 2.5, the cost for obtaining tmp3 by using tmp1 and tmp2 is 36m. In

Figure 2.5, k and m stand for one thousand and one million respectively.

2.2 Materialized View Selection Algorithms

The second task to solve the materialized selection problem is to design the
optimization algorithms for selecting the appropriate set of views from the search
space to be materialized. The algorithms for materialized view selection are classified
into four majority categories: deterministic algorithms, randomized algorithms,
evolutionary algorithms and hybrid algorithms (Yang, Zhang and Yao, 2001: 282;
Zhou, Geng and Xu, 2011: 131).

Deterministic Algorithms is an algorithm which behaves predictably from
the input. For a given certain input, the deterministic algorithm will always compute
and give the same results. The deterministic algorithm searches a solution in a
deterministic manner, and usually applies either by heuristics or by exhaustive search
to construct a solution step by step (Zhang et al., 2001: 282). The following
researchers apply the deterministic algorithm to the materialized view selection.
Harinarayan et al. (1996: 205-216) proposed a greedy algorithm for static materialized
view selection which focused on the conflict between the space and the average time
to answer a query based on the concept of lattice framework. Shukla et al. (1998: 492)
proposed PBS (Pick By Size) algorithms based on lattice frame work. Gupta (1997:
98); Gupta and Mumick (2005: 24) presented several heuristic algorithms; greedy
algorithm, Inner-level greedy algorithm, AO-Greedy algorithm, r-level Greedy,
Inverted-tree Greedy algorithm, and A* heuristic algorithm to select the set of views

12

to be materialized based on AND, OR and AND-OR DAG. Yang et al. (1997: 136)
proposed a heuristic algorithm based on MVPP to obtain a minimal total cost which is
the summation of query processing cost and maintenance cost.

Randomized Algorithms perform a random walk through a search space via
a series of moves (loannidis and Kang, 1990: 312). Each solution in the randomized
algorithm is a state, which has a cost attached to it, in a search space i.e. a node in the
graph. The states are connected by edges that are defined by a set of transitions from
one state to another or neighbor state after applying a transformation. The algorithms
perform a random walk along the edges according to certain rules, and terminate as
soon as no more applicable moves exist or a time limit is exceeded. The goal of
applying randomized algorithm is to find the state with the global minimum cost.
Sometimes the heuristic algorithm is not general, so the randomized algorithm is an
effective and general solution. The randomized algorithm may find a reasonable and
approximate optimization solution in a relative short time. The general algorithms of
randomized algorithm are Iterative Improvement (1I) (Nahar, Sahni and Shragowitz,
1986:293), Simulated Annealing (SA) (Kirkpatrick, Gelatt and Vecchi, 1983: 671) ,
Two-Phase Optimization (2PO) (loannidis and Kang, 1990: 312), Toured Simulated
Annealing (TSA) (Lanzelotte, Valduriez and Zait, 1993: 493) and Random Sampling
(Galindo-Lengaria, Pellenkoft and Kersten, 1994: 85). The following example,
researches exploit the randomized algorithm for materialized view selection. Kalnis,
Mamoulis and Papadias explored the application of four randomized algorithms: Il,
SA, RA and 2PO to the view selection problem in data warehouses under the space
constraint and the maintenance cost constraint. They found that 2PO gives the best
performance because it converges quickly to a good local minimum. Derakhshan et al.
(2006: 89) proposed a materialized view selection using SA with MVPP. Their
method provides a further significant improvement in the quality of the set of
materialized views compared to the deterministic algorithm and genetic algorithm.
They extended their work by consider to speed up the computation a parallelization of
SA (Derakhshan, Stantic, Korn and Dehne, 2008: 126). They proposed Parallel
Simulated Annealing (PSA) that provided a significant improvement in the quality of
the obtained set of materialized views over sequential simulated annealing algorithms.

Theodoratos, Dalamagas, Simitsis, and Stavropoulos (2001: 325) applied SA for the

13

multiple query optimizations based on AND-OR DAG over the space and
maintenance cost constraint.

Evolutionary algorithms use a randomized search method similar to natural
biological evolution i.e. mutation, crossover and natural selection in their search for
near-optimum solutions. Although an evolutionary algorithm resembles randomized
algorithms in this aspect, the approach shows enough differences to warrant a
consideration of its own. The basic idea is to start with a random initial population
and generate offspring by random variations e.g. crossover and mutation. The “fittest”
members of the population survive the subsequent selection; the next generation is
based on these members. The algorithm terminates as soon as there is no further
improvement over a period of time or after a predetermined number of generations.
The first evolutionary algorithm developed for materialized view selection problem is
Genetic Algorithms (GA) based on MVPP (Zhang and Yang, 1999: 116). Zhang and
Yang proposed a complete approach, GA, to choose materialized views and
demonstrate that it is practical and effective compared with heuristic approaches. Yu,
Yao, Choi and Gou (2003: 458) apply GA to the materialized view selection problem
under maintenance cost constrain. Besides GA, other evolutionary algorithms i.e. Ant
Colony (Song and Gao, 2010: 534), Particle Swarm (Sun and Wang, 2009:1),
Memetic (Zhang, Sun and Wang, 2009:315) and Shuffeled Frog Leaping (Li, Qian,
Jiang and Wang, 2010: 7) were also proposed for the materialized view selection
problem.

Hybrid algorithms combine the evolutionary and deterministic algorithms in
various ways. Zhang et al. (2001:281) proposed several hybrid evolutionary and
heuristic algorithms for optimizing global processing plans and materialized view
selection. Their experiment shows that the hybrid algorithm delivers better
performance than either the evolutionary algorithm or deterministic used alone in
terms of the minimal query and maintenance cost. Zhou, Geng and Xu (2011: 134)
proposed the hybrid algorithm that combination of GA and SA, GA and ant colony to
achieve the queries response time and maintain cost without space constraint.

The researches mentioned above are focused on the static materialized view
selection. Static materialized view selection processes all queries together once at the

beginning. However, if new queries are needed or existing queries are modified, all

14

queries have to be processed again, not simply those parts that have been modified. In
the next section, we review the dynamic materialized selection approach which solves

the limitations of static approach.

2.3 Dynamic Materialized View Selection Methodologies

There are some approaches that have been proposed to solve the dynamic
materialized view selection problem. The variant appropriated lineage models are
selected to be the search space such as Lattice Framework (Lawrence and Rau-
Chaplin, 2008: 54), AND-OR DAG (Theodorators and Sellis, 1999: 1; 2000: 7; 2001:
325), and MVPP (Zhang, Yang and Karlapalem, 2003: 451). The selection algorithms
are applied for selecting the set of views to be materialized such as Genetic Algorithm
(Zhang, Yang and Karlapalem, 2003: 451), Randomized Algorithm (SA, II, 2PO)
(Theodoratos, Dalamagas, Simitsis and Stavropoulos, 2001: 325; Lawrence and Rau-
Chaplin, 2008: 47) and Deterministic Algorithm (Theodorators and Sellis, 1999:1;
2000: 7; Lawrence and Rau-Chaplin, 2008: 47). There are various situations for
changing requirements taken into account such as materializing only new virtual
views once the new queries are added, un-materializing the existing materialized
views when they are no longer used, or materializing new views and un-materializing
existing materialized views simultaneously. In this section, we review the researches
for the dynamic materialized view selection.

Kotidis and Roussopoulos (1999: 372-376) proposed a system called
DynaMat. DynaMat consolidated the view selection and materialized view
maintenance problem under a single framework in order to minimize the space
availability and available downtime of the system. They modeled this system by
caching fragments of queries or views. The fragment is a portion of the query that
results from a range selection on its dimension. DynaMat supports the following three
types of the multidimensional range queries. First is a full range; a full range means
the value of dimension d is between the minimum value and maximum value. For
instance of dimension d, its dimension value is between minimum value i.e. 1 and
maximum values i.e. 50. Second is a single value d, such as dimension d=20. Third is

an empty range which means the dimension d is not presented in the query. DynaMat

15

includes two operational phases. The first phase is the on-line query answering in
which DynaMat answers the incoming queries using fragment locator. Fragment
locator determines whether the materialized results can be efficiently used to answer
the query or not. DynaMat constantly monitors incoming queries and materializes the
best set of views. The second phase is the updating phase, DynaMat reconciles the
current materialized view selection and refreshes the most beneficially subset of it
within a given maintenance window. The concept of Dynamat is to partitions
dimensional data into fragments thus DynaMat supports some types of queries not
wide ranges of queries. Therefore, the total cost of DynaMat will be high because of
the cost to find a set of fragments to answer the query is high.

Theodorators and Sellis (1999: 1; 2000: 7) proposed the incremental designing
of data warehouse that the new set of views has been selected to answer the new
queries and restricted within the allocated extra space. They used AND-OR DAG as
the search space structure. The approach subjects to minimize the total cost of
evaluation cost of the new queries and view maintenance. This approach considers
only the new incoming queries. All new queries can be answered by using the existing
and the new materialized views. New queries will be rewritten using the existing
materialized if new queries can be totally answered by the existing materialized
views. Selecting a new set of views to be materialized views occurs when the new
incoming queries cannot totally be answered by the existing materialized views. Then
the AND-OR DAG for incoming queries is constructed from base relations and
existing materialized views. The r-greedy algorithm (Theodorators and Sellis, 2000:
23) and Simulated Annealing (Theodoratos, Dalamagas, Simitsis and Stavropoulos,
2001: 326) are used for the selection algorithm.

Zhang, Yang and Karlapalem (1999: 247; 2003: 451) proposed the dynamic
materialized view selection framework based on MVPP developed by Yang et
al.(1997: 136). This method considers which existing queries are affected when the
environment changes (Zhang and Yang, 1999: 252). The environment changes consist
of three scenarios. (1) Adding new queries or deleting the existing queries, (2) the
definition of existing query is changed, (3) the query frequency or updating frequency
is changed. Once changes mentioned above occur, some existing queries would be

identified as either directly or indirectly affected. The directly affected queries can be

16

identified by considering the existing queries whose intermediate node overlap with
the changed queries. The indirectly affected queries are the existing queries whose

intermediate nodes overlap with the directly affected queries.

Figure 2.6 Example of the Affected Transference
Source: Zhang and Yang 1999: 253.

For example MVPP in Figure 2.6 shows the effect to existing queries when the
new query Q1 is added. The filled triangle is denoted the existing materialized view
node. The node tmpl is used to construct the incoming query Q1 and the existing
query Q2. So, tmpl is the overlapping node between new incoming query and the
existing query. Therefore, query Q2 is identified as the directly affected query. The
indirectly affected queries are considered as following. After new query Q1 is added,
the weight of tmpl will increase then tmpl may be chosen to be materialized rather
than tmp3 because weight of tmpl is greater than that of tmp3. The changing of tmp3
to be un-materialized affects to tmp2 because if weight of tmp3 is less than that of
tmp2 then tmp2 will be changed from virtual view to materialized view. So, tmp3 is
the overlapping part with the query Q2 and Q3 then Q3 would be determined as
indirectly affected query. Therefore, for this example, all nodes used for constructing
the affected queries either directly or indirectly are the set of candidate nodes to be

selected to be either materialized or un-materialized.

17

Lawrence and Rau-Chaplin (2008: 47) proposed method for dynamic
materialized view selection for OLAP under space constraint and available time for
computing new views. They considered both adding new materialized views and
discarding the existing materialized views. The objectives of this approach were to
minimize the sum of query processing cost and materialized view maintenance cost
under a space constraint. They developed a classical BPUS (Benefit Per Unit Space)
to derive a greedy solution and three Randomized algorithm (SA, I, 2PO) based on
Lattice framework. Although their result shows that BPUS overcome the three
Randomized algorithms, the computation becomes impractically large when the
number of dimensions grows so the Randomized algorithm offers an attractive
alternative approach. They implemented BPUS and Randomize algorithm for both
startup and online phase. The startup phase is a static selection of views to be
materialized. The online phase is selecting a new set of views by discarding some
views from startup phase, and adding new ones to be materialized because of the
space constraint. Supposing M is an existing set of materialized views selected by the
startup phase and M“is a new set of materialized views selected by the online phase.
In the online phase, once the situation violates the search space constraint during add
new materialized view and delete the existing materialized view, their proposed
method to solve this situation was (1) the previously removed view is added back to
the solution and continue only removing views in M“M until the space constraint is
satisfied (2) the removed view is re-added, and randomly selected view in MM is
removed instead.

Xu, Theodoratos, Zuzarte, Wu, and Oria (2007: 55) presented the dynamic
selection problem as the shortest path problem on DAG. The input of the problem is a
sequence of queries and updated statement. Their approach constructed candidate
views dynamically by considering common subexpressions of queries and/or views.
They used a heuristic algorithm to determine a candidate set of views and to decide
when the materialized views are created or dropped during the execution of
statements. The cost model has been applied to find the minimum total cost which is
the sum of processing cost and maintenance cost. This approach works properly for
the applications where the workloads, the queries and update statements, are executed

in sequence. For example, some routine queries are given during the day time of every

18

weekday for daily reports; some analytical queries are given during the weekend for
weekly reports; during the night the data warehouse is updated in response to update
statements collected during the day.

Gong and Zhao (2008: 391) proposed the clustering method for view selecting
and dynamic materialized view adjustment when adding new queries. Normally, a
materialized view relates to a SQL statement so materialized views are corresponded
to the result of SQL statement execution. Therefore, the materialized view can be
classified as a class. The classifying method is to calculate the similarity of incoming
SQL statement. The similarity value has to be higher than the decided similarity
threshold. They determined that query sentence belong to the select, project and join
structure without subquery statement. They defined the criteria and similarity function
to judge the similarity between two queries. They used PBS (Pick By Size) algorithm
for selecting the initial set of materialized views which are the input for generating the
initial clusters. The number of clustering is not determined. It will be produced
increasingly in the clustering process. Another given parameter is the similarity
threshold value. If the similarity value is higher than the similarity threshold then the
materialized view will be in that cluster. For dynamic phase, when the new queries are
added, each query will be classified into the cluster according to the similarity
function. After the query is identified into the cluster, the cost function which includes
query processing cost and view maintenance cost is calculated. If the space constraint
is reached, the existing materialized views, less frequently accessed, are replaced by

the new materialized views.

2.4 Cost Model for Materialized View Selection

The minimization of a cost function is the main objective for both static and
dynamic materialized view selection problem. Normally, there are two parts in cost
function, the query processing cost and the materialized view maintenance cost. The
query processing cost and materialized view maintenance cost are in conflict. To
achieve low view maintenance cost by accessing the source base relation directly
many times for multiple queries that have sharable subexpression, the query

processing cost is high. To achieve low query processing cost by materializing all the

19

input queries, the materialized view maintenance cost is high. So, the combination of
the query processing cost and materialized view maintenance cost is the optimal
strategy. The well known cost model used for this research was introduced by Yang et
al. (1997: 139-140), and it was exploited by some researches (Zhang and Yang, 1999:
140; Gupta and Mumick, 2005: 26; Phuboon-ob and Auepanwiriyakul, 2007: 167;
Derakhshan et al., 2006: 91, 2008: 126) for evaluation of their approach. The cost

model is described in following sections.

2.4.1 Query Processing Cost
For each query, the cost of query processing is query frequency multiplied by
the cost of query access from the materialized nodes. Cost of query access is the
number of rows in the table to answer g.
Let M is the set of materialized views,
Q is the set of queries,
fq is the frequency of executing queries,

Cq(M) iis the cost to compute g from the set of materialized views M.

Then the total query processing cost is:

Cqueryprocessing = ZQ quq (M) (l)
ge

For example, consider query Q4 in Figure 2.5 and suppose that node tmp3 is
materialized view. The frequency of executing the query Q4 is 10. If node tmp3 is not
materialized, this query accesses the nodes named tmpl, tmp2, tmp3, and resultl. The
cost of each node is 1k, 12m, 36m, and 36k respectively. So the query processing cost
for Query Q4 is 10*(1k+12m+36m+36k). If tmp3 is materialized, the query
processing cost for Query Q4 is 10*36k. It would be beneficial to materialize them,
reducing the processing cost from 10*(1k+12m+36m+36k) to 10*36k.

20

2.4.2 View Maintenance Cost
The maintenance cost for the materialized view is the cost for the process of
updating a materialized view in response to the changes in the base relation.
Let M is the set of materialized views,
f, is the frequency of updating base relations,

C,, (v) is the cost of maintenance when v is materialized.

Then the total maintenance cost is:

Cmai ntenace Z fqu (V) 2

veM

For example, consider query Q4 in Figure 2.5 when tmp3 is materialized and
suppose that the frequency of updating base relation equal to 1. This materialized
view has maintenance cost whenever the updating of involved base relation occurs.
The maintenance cost is the number of base relations multiplied by the cost of each
node. There are two base relations: Item and Sale, and nodes: tmpl. tmp2, and tmp3
itself are related. Then the view maintenance cost is 2* (1k+12m+36m).

Our goal is the minimum total cost all feasible sets of materialized views.

Therefore the total cost of materialized views M is:

Ctotal = Z chq (M) + Z fqu (V) (3)

qeQ veM
2.5 Common Subexpression

In order to generate the search space for multiple queries, common
subexpressions among the queries have to be detected and exploited. Thus, the
original queries will be rewritten using the global common subexpressions. Given a
query, the optimizer will find an appropriate order for performing the relational
algebra operations such that the query will be evaluated efficiently. The order in

which the operations are performed prescribes the order in which the subexpressions

21

of the query are evaluated, and then their results are used to evaluate other
subexpressions until the whole query is evaluated. A common subexpression is a
subexpression that appears in more than one query.

The following SQL statements illustrate the examples of possibility sharable
subexpression among three queries.

QL select p_brand, min(ps_availqty)
from part, partsupp, supplier
where s_suppkey = ps_suppkey
and p_partkey = ps_partkey
and p_type like ‘“%BRASS%’
group by p_brand;

Q2: select s_nationkey, max(ps_supplycost)
from part, partsupp, supplier
where s_suppkey = ps_suppkey
and p_partkey = ps_partkey
and p_type like ‘%BRASS%’
group by s_nationkey;

Qa3: select n_name, variance(ps_availqty)
from part, partsupp, supplier, nation
where s_suppkey = ps_suppkey
and p_partkey = ps_partkey
and p_type like ‘“%BRASS%’
and s_nationkey = n_nationkey
group by n_name;

Considering the query Q1 and Q2, both queries have the same join base
relations i.e. PART, PARTSUPP, SUPPLIER, the difference of Q1 and Q2 is group
by on difference attribute: Q1 group by on p_brand whereas Q2 group by on
s_nationkey. The third query, Q3, looks similar to the first two queries except that it
has an additional join with relation NATION and group by on attribute n_name of
NATION. All three queries have the same selection predicates which is (p_type like
‘%BRASS%’). A traditional query optimizer would optimize the three queries
separately and generate an execution plan for each of the queries. It is obvious that
execution plan of those three queries have sharable subexpressions. Therefore,
execution times could be reduced by using sharable intermediate results instead of re-

computing conjunctively join of those three base relations three times. For this

22

example (s_suppkey = ps_suppkey) and (p_partkey = ps_partkey) and (p_type like
‘%BRASS%’) is one of possibly common subexpression of among queries.

The concept of common subexpression of queries was introduced by
Finkelstien (1982: 235). They used concept of common subexpression to solve the
multiple queries optimization problem. Their approach was based on the idea of
building the multiple query optimizations on top of the current single query
optimizers. In this approach, a single query optimizer generates one optimal plan for
each query. A plan merger, another component in the system, will examine all the
plans and merges them to generate a global execution plan. This global plan is derived
from the shared temporary results of the common parts of the queries. This approach,
however, may not guarantee the optimal global cost because it may miss some other
plans, which are not necessary optimal for each query, that contain more common
subexpression with other queries. The common subexpression, firstly, was focused on
the subexpression identification, and later included subsumption and overlapping of
selection condition (Chen and Dunham, 1998: 493). Chen and Dunham used multi-
graph to represent the select-project-join (SPJ) operations and used the heuristic
method for selecting common subexpression to be the global execution plan. Their
approach covered the case for identical, subsumption and overlap of SPJ operation.
The general term of common subexpression was described (Lehne, Cochrane,
Pirahesh and Zahatioudakis, 2001: 391) as the sharable subexpression between the
queries that can be used for rewriting the queries either completely or partially. Thus
their original queries could be rewritten by using the given common subexpressions
after the common subexpression between a pair of queries was constructed. Zhou,
Larson, Freytag and Lehner (2007: 533) proposed the algorithm that exploited
common subexpression for multi-query optimization and materialized view selection
in a conventional database. They presented a comprehensive mechanism for detecting
sharable subexpression and constructing candidates covering subexpression that cover
a set of similar subexpressions. Theodoratos and Xu (2006: 75) proposed the
technique called closest common subexpression derivator for constructing candidate
views to be materialized. Once closest common subexpression derivators between the
queries were determined, the queries were rewritten by using the closest common

subexpression.

23

2.6 Weight of Node in MVPP

For MVPP structure, the positive weight of node defines the possibility of
intermediate node to be materialized (Zhang et al., 2003: 454). The weight of node is

represented by following formula.

W)= 3 {fqm)*(cg(v))}— > {1 +(cho)} @)

qeOy rely

Oy denotes the queries which use view v.

ly denotes the base relations which are used to produce view v.

cg denotes the accessing cost a for query g using view v. The cost

of answering query g is the number of rows presented in the

relation used to construct g.

Crﬁ] denotes the maintenance cost m for materialized view v based

on relation r, which is occasionally updated.
fq denotes the frequency of executing a query.
fu denotes the frequency of updating a base relation.

w(Vv) denotes the weight of a node, the higher of weight the more likely the
node will be materialized. For example Tmp3 in Figure 2.5, Tmp3 is constructed on
two base relations Item and Sales, The frequency of updating each base relation is 1.
Tmp3 is derived by node named Tmpl, Tmp2 and Tmp4 itself. The cost of each node
is 1k, 12m and 36m, respectively. Tmp3 is accessed by query Q2, Q3 and Q4. The
frequency of executing query for each query is 2, 1 and 10, respectively. Therefore,
the weight of Tmp3 is calculated as; the first part (2)(36m) + (1)(36m) + (10)(36m),
the second part (1)(1k+12m+36m) + (1)(1k+12m+36m) that is equal to
(2+1+10)(36m) + (2)(1k+12m+36m).

24

The weight of node is exploited to determine how nodes are affected by each
other in the process of materialization as following rules (Zhang, C. and Yang, J.
1999: 251).

Rule 1: when v1 is a descendant of v2, and the static weight w(vl) > w(v2), if
v1 cannot be materialized, then v2 will not be materialized.

Rule 2: if v1 is a descendant of v2, and the static weight w(v1) > w(v2), v1 and
v2 are supporting the same queries, and v1 is materialized, then there is no gain to
materialize v2.

Rule 3: If v1 is an ancestor of v2, and the static weight w(vl) > w(v2), v1 and
v2 are supporting the same queries, if vl is materialized, then v2 shall not be

materialized.

According to the previous works in this chapter and to the best of our survey,
all of the related works have not implemented the dynamic materialized view
selection using 2PO on MVPP structure, and not mentioned the methods to optimize
the MVPP. In the next chapter, we focus on the methodology employed in our

dissertation.

CHAPTER 3

METHODOLOGY

3.1 Proposed Methodologies

In this chapter, we discuss our proposed approach to solve the dynamic
materialized view selection problem based on MVPP. The Iterative Improvement
combined with Simulated Annealing called Two-Phase Optimization (2PO) is the
optimization algorithm for selecting a set of views to be materialized. As the MVPP
generated by Yang et al. (1997: 138) will lose the global optimization then we also
propose the algorithm to optimize MVPP aiming to have more optimal MVPP. For
the dynamic materialized view selection, we propose the technique to identify which
existing resources are affected due to changing requirements, and to determine the
new set of views to be materialized and existing materialized view to be un-
materialized. Our goal for dynamic materialized view selection is to minimize the
total cost which is summation of query processing cost and materialized view
maintenance cost based on the existing resources without recalibrating from scratch.

Therefore, our proposed methodology to solve the dynamic materialized view
selection problem includes two parts:

1. The optimization task to improve the MVPP which is a lineage models for
search space for the materialized view selection.

2. The approach for Dynamic Materialized View Selection.

We use MVPP as the lineage model to generate the search space because
MVPP can present the realistic SQL queries and large number of queries. We propose
an algorithm to optimize the cheapest MVPP by rewriting the query using common
subexpression. The details for building the cheapest MVPP are described in section
3.2. The details of our MVPP re-optimization algorithm are described in section 3.4,

which uses the concept of a common subexpression that is described in section 3.3.

26

The proposed approach for dynamic materialized view selection is presented
by diagram in Figure 3.1. The approach consists of two phases, the static phase and

dynamic phase.

Initial MVVPP

@)

Static materialized view selection

Dynamic materialized view selection
—— Existing MVPP

New requirements —> «——— New requirements

Y Y

merge new requirements
into existing MVPP ;)

A

determine affected node
®3)

Y
apply materialized view
selection algorithm: 2PO (4

Figure 3.1 The Diagram for Dynamic Materialized View Selection Approach

Static phase, the first step in diagram, is Static Materialized View Selection
approach described in section 3.5. The static phase is to generate the re-optimized
MVPP of the initial requirements that will be the initial search space for the dynamic
phase once the new requirement occurs.

Dynamic phase, the second step to the fourth step in the diagram, is the
Dynamic Materialized View Selection. The second step is to merge new requirements
into existing MVPP. When the new requirements are added, the characteristic of new
requirements might impact to the existing MVPP structure in a different situation i.e.
adding the new queries, deleting the existing queries, changing the definition of
existing queries, changing the frequency of executing query or frequency of updating

base relations. The scope of our new requirements includes adding new queries and

27

deleting existing queries. For changing the definition of existing queries, we
implement by deleting the existing query and adding query with a new definition.
Changing the frequency of the executing query or frequency of updating base relation
IS not our scope because it does not impact to the MVPP structure. We will provide
the analysis of various situations that impact to the existing MVPP structure and the
merging new requirement into the existing MVPP in section 3.7.1.

The third step is to determine the existing resources in search space that are
impacted by the new requirements. The objective of this step is to reduce the search
space. The details of our algorithm to identify the affected nodes are described in
section 3.7.2. The affected resource in our research is the intermediated nodes that are
affected rather than the queries that are affected proposed by Zhang, Yang and
Karlapalem (2003: 455). In section 4.6.1.6, we validate our assumption that to
identify the query that is affected will provide too much number of nodes as a
member of a set of views for the selection step.

Finally, the fourth step is to select set of views to be materialized. The input of
the third step will be mapped into a binary string before being input to 2PO. We use
2P0 as the selection algorithm because 2PO provides a minimal total cost comparing
to the Deterministic algorithm, Simulated Annealing, Genetic Algorithm, and Hybrid
algorithm (Phuboon-ob and Auepanwiriyakul, 2007: 169). The result from 2PO would
be an appropriate new set of views to be materialized. Some existing materialized
views identified as the affected nodes might be un-materialized to the virtual view if
they are not frequently used by the stakeholders. The aiming of the selection step is
the minimal total cost which is the summation of query processing cost and
materialized view maintenance cost. The details of our 2PO and cost model are
described in section 3.6 and 3.9 respectively.

After the set of views are materialized, the existing search space will be the
new search space to support the next round of changing requirements. The “Existing
MVPP” in diagram illustrates that the existing search space will be adjusted once the
requirements are changed. Therefore, for each round of dynamic phase, the existing

MVPP structure will be changed by the previous round.

28

3.2 Multiple View Processing Plan (MVPP)

The MVPP defined by Yang et al. (1997: 138) is a directed acyclic graph that
presents the query processing plan of a set of queries. A simple MVPP is shown in

Figure 3.2.

5

Q3 3 15
@ w@
result [910519]
n name [910519] result [910519]
0 avg(l_quantity)
mp
: tdd
[910519] 'Ys_natlonkey ’Y?_‘aiv

variance(l_quantity) Tmp6

[1365582000000 [150000] [150000]

A
Morderkey - TmpS
Tmp9 T
10000 s_custkey
10 oy 22758IC) 2275571 feonoooo) () 15000000
TCo_orderkey Tmp3
Tmpl o-custkey TTI_orderkey
12275971 [150000] T_tax
TESS—”S%‘:]%T("S,V Go_orderdate>="1994-01/01"
TUn_nationkey - o_orderdate<’1995-01-0f1'
nation supplier order lineitem customer

Figure 3.2 The Simple MVPP of Three Queries Q1, Q2 and Q3

Suppose that the root node is the node that does not have edges going out of
the node representing the query, the leaf node is the node that does not have edges
coming into the node representing the base relation, and the intermediate node is the
representing operation. A link exists between two nodes, if the operator in the upper
level is applied to the result derived by the operator in the lower level. Each
intermediate node in MVPP is marked by a relational algebra operation and the cost
for processing the operation. Two numbers are associated with each intermediate
node. The number of rows needed to be read by the operation is labeled on the right
side and the number of rows generated by the operation is labeled on the left side. The
frequency of executing the query is labeled on the top of the query. Because of the
above work and its characteristic, MVVPP can present the realistic SQL queries and
can support the large number of queries that reflect the real data warehouse

29

environment. The algorithm which is used to construct the MVPP is described in
Figure 3.3. The query cost, in step 2, is the cost of accessing the query node, for
example Q1 in Figure 3.2 the query cost is 910519. The total query processing cost, in
step 7, is the summation of query processing cost of all queries that is mentioned in

section 3.9.

begin
1. For every optimal query processing plan, if there is a join operation
involved, push all the select, project operations and aggregate function
up along the tree.
2. Create a list of queries in descending order based on the result of their
query access frequency multiplied by query cost.
3. Merge all optimal query processing plans in the list according to the
following order:
3.1 pick up the first optimal query processing plan from the list
3.2 incorporate the second query into the first query if they share the
same base relations
3.3 incorporate the third query into previous merging, repeat this step
until all optimal query processing plans are merged.
Move the first optimal query processing plan to the end of the list.
Repeat step 3 and 4 to generate all MVPPs.
Push down select, project and aggregate functions as deep as possible.
Calculate the total query processing cost of each MVPP, and select
the one which gives the lowest cost.
end;

No ok

Figure 3.3 The Algorithm for Implementing the MVVPP

3.3 Common Subexpression

Normally, the search space for a view selection problem is constructed by
using all common or similar subexpressions among the queries. The concept of a
common subexpression is initially referred to as an identical or equivalent expression,
and later the term included expression subsumption. Thereafter, commonality

between queries has included the possibility for overlapping the select condition.

30

R1 R2 R3 R4

(@) nothing in common

AT

(b) totally overlapping (c) partially overlapping
Q4 fQil & Q6
(d) (e)

overlapping with more than one query.

Figure 3.4 The Categories of Subexpression Commonalities

There are four categories of commonality between the queries (Chen and
Dunham, 1998: 3; Lehner, Cochrane, Pirahesh and Zahatioudakis, 2001: 393); (1)
there is no sharable subexpression shown in Figure 3.4 (a), (2) identical, (3) totally
overlapping is called subsumption that is a query i is the intermediated query result
for another query j shown in Figure 3.4 (b), (4) partially overlapping that is a subtree
of a query i is also the subtree of query j shown in Figure 3.4 (c). One query would
have partially overlapping with many queries shown in Figure 3.4 (d-e). In Figure 3.4,
(a) Q1 is constructed on base relations R1 and R2, while Q7 is constructed on R3 and
R4, these two queries do not have sharable subexpression; (b) Q5 is the intermediate
query result for Q6; (c) Q2 and Q3 has a subtree that is overlapping sharable
subexpression; (d) and (e) shows that Q1 has more than one equivalent plan. Q1 has
overlapping portion with Q4, meanwhile Q1 has alternative equivalent plan that has
overlapping portion with Q6. After common subexpressions are detected, they are
exploited to construct the global optimal equivalent plan for multiple queries
processing plans. We use this concept of common subexpression to optimize the

cheapest MVPP that is generated by the algorithm in section 3.2.

31

3.4 Proposed Approach to Improve MVPP

In general, to construct search space for a view selection problem by
considering all possible equivalent plans for all queries is too huge. Constructing
MVPP shows that it is the practically possible method to generate the search space.
However, the cheapest MVPP (YYang et al., 1997: 142) can be adjusted to reduce the
total query processing cost, as the method of merging described in section 3.2 does
not consider the common subexpressions of among queries. In our approach, the
queries in the cheapest MVPP whose query processing cost is more than the n™
MVPP are taken into consideration. They would be rewritten by using concept of
common subexpression. We match these queries with the existing sharable
subexpressions in a bottom-up way. The MVPP re-optimization algorithm is

described in the following sections.

3.4.1 The MVPP Re-Optimization Algorithm
The algorithm to optimize the cheapest MVPP is described in Figure 3.5. This
approach is for rewriting the certain queries in the cheapest MVPP. It is used to

optimize the MVPP for the static phase and the dynamic phase.

begin
1. Input = the cheapest MVPP.
2. Initial list LV = ¢.
3. k = number of queries
4.fori=1tok
Compare Cq(i) of cheapest MVPP with Cq; (i) of other MVPPs.
If Cq; (i) is less than Cq(i) then
insert q(i) into LV.
5. For queries in LV, consider the possible commonalities with
exists global equivalent plan as following:
5.1 If there is nothing in common with global equivalent plan
skip to the next query.
5.2 If there is one or more overlapping portions,
rewrite this query using exists common subexpression in
MVPP in bottom-up way described in section 3.4.2
end;

Figure 3.5 The Proposed Algorithm: The MVPP Re-Optimization Algorithm

32

Cq(i) denotes the query processing cost of query i in the cheapest MVPP
Cq; (i) denotes the query processing cost of query i in the n™" MVPP.
If Cq; (i) less than Cq(i) imply that there is another optimal execution plan

for query i.

3.4.2 Rewriting the Query Using Common Subexpression

If a view V is defined as a common subexpression of a set of queries. Query Q
is called a parent of the view V if it can be answered by using view V. For example,
Tmp4 in Figure 3.2 is a common subexpression of Q1, Q2 and Q3. Tmp4 is defined
as view V then Q1, Q2 and Q3 are called parent of Tmp4. The answering using view
is known as query rewriting using view (Halevy, 2001: 276). Suppose there is a set of
views, Vp, in MVPP, and a given query Q has the execution plan that doest not use
V. However, V,, can be used to answer the query Q, then we can produce other
execution plans of query Q by using the set of views V, and/or base relations.

For example, Figure 3.6 illustrates the possible individual plans of query Q1
and MVPP of Q1, Q2 and Q3. Figure 3.6 (a) and (b) are the possible execution plans
for Q1. The MVPP of Q1, Q2 and Q3 is shown in Figure 3.6 (c). In MVPP, Q1 is
constructed by using Plan A as shown in Figure 3.6(a) that is {Tmp10 x (PARTSUPP
X PART)}. The other possible plan for Q1 is shown in Figure 3.6 (b) that is {(Tmp10
X PARTSUPP) } PART}.

For Plan A in Figure 3.6 (a), Q1 accesses nodes named Tmpl, Tmp2, Tmp3,
Tmp5, Tmp6, Tmp7, Tmp8, Tmp9, Tmpl10, Tmpl2 and resultl. The processing cost
of each node is 800000, 200000, 160000000000, 5, 1, 25, 25, 10000, 50000,
1602400000 and 160240, respectively. The frequency of executing the query Q1 is 2.
Therefore, the query processing cost of Q1 is (2)*(800000 + 200000 + 160000000000
+5+ 1+ 25+ 25+ 10000 + 50000 +1602400000 + 160240) that is 161,603,620,296.

For Plan B in Figure 3.6 (b), Q1 accesses nodes named Tmp5, Tmp6, Tmp7,
Tmp8, Tmp9, Tmpl10, Tmpl, Tmpll, Tmp2, Tmpl2 and resultl. The processing cost
of each node is 5, 1, 25, 25, 10000, 50000, 800000, 1602400000, 200000,
32048000000 and 160240, respectively. Therefore, the query processing cost of Q1 is

33

(2)*(5 + 1 + 25 + 25 + 10000 + 50000 + 800000 + 1602400000 + 200000 +

320480000000 + 160240) that is 67,303,240,592.

In Figure 3.6 (c) the query processing cost of MVPP, the summation of query
processing cost of Q1, Q2 and Q3, is 1,176,430,280,644. However if we rewrite Q1
using Plan B, that is Tmp11 in Figure 3.6 (c) join with PART, the query processing
cost of MVPP is 156,799,280,644 which is less than the original MVVPP. So we

should rewrite Q1 in MVPP by using Plan B.

2 2
U@ Q1@

resum£[1soz4o] resulllg[lﬁlﬁdo]

=

Tmp12
[160240] () [32048000000]

min i
Tmp12 (ps_suppltcost)

Tmp3
[160000000000]

P9
[10000}410000] ..y

Yorin
(ps_suppltcost)

Tmp6 Tmp2 Tmi
p6 Tmp9 Tmp2
= 2000001 [200000] TmpL
800000] mon 10000] 200000
ot regionk [[25] [800000] £ [d T " 12510 [25] (10000} [11: d [800000] [800000][!
r_regionkey p_partkey TCr_regionke! s_nationkey
"™ Om T s nationkey | T BS-SOBRY Phand - Tmps L\ ooy ssuppkey, T s suppkey
Or name Tn reﬁiclke s_suppkey ps_supplycost prsize 1Bl T regionke E?E%‘PIWEOS[
- Aaonkey ps_avaigty Or_name n-natlonkey Peavhlaty
='ASIA® f_name = ASIA’ _name
[5] [25] [10000] [s] [25] [10000]
region nation supplier partsupp part region nation supplier partsupp

(@) Plan A of Q1 (b) Plan B of Q1

e 2
2
resul |l%[967519280] result1()[160240] g

results X [36276]
Ymin

(ps_suppltcost) 'y

Yau

g ‘count
(c_acctbal) (ps_suppkey)

Tmp14 [160240]
() r24036000000]

[967519280] Tmp4
6276) O [300000]
Gb_brand<>'BRAND#45"
not p_type like ‘%BRASS%’
p_size in (9,19,49)

Tmp3
[800000]! . [160000000000]

Tm
[2000014[10000] Tmp2

Tmpl
[200000] " [200000]

[800000]

[800000]

TU s_nationkey
T 2O s_suppkey T ps_sup Key T g—@g’:"éey
IT c_nationkey (1[5 . ppartkey b-tvpe
ke Ot name T tsgioniey pe-sipplycos 2
- =" ASIA _name
[5] [25] [10000]
customer region nation supplier partsupp part

(c) The MVPP of Q1, Q2 and Q3

Figure 3.6 The Plan of Q1 in MVPP of Q1,02 and Q3

[200000]

34

In our approach, we rewrite the query by comparing the individual plan of that
query with the common subexpression in MVPP. The query rewriting will be
processed in a bottom-up way which is calculated from the base relations to the root
of the equivalent plan. The process to rewrite the queries is shown in Figure 3.7.

1. Push select, project operation and aggregation function of optimal
individual plan up along the tree
2. Match optimal individual plan of query with MVPP from base relation to
the root of query.
3. Merge the query into MVPP
3.1 If there are sharable subexpression then
merge to the subtree which provides the number of base relations
that are joined conjunctively as much as possible.
If merged query has select operation same as conjunctively
joined node then push down select operation.
3.2 If no sharable subexpression then create new conjunctively joined
node for each subtree.
4. Push down select project operation and aggregation function as deep as

possible.

Figure 3.7 The Rewriting Query Steps

3.5 Static Materialized View Selection

The purpose of the static materialized view selection is to generate the initial
MVPP which is constructed from the initial requirements. The initial MVPP is
generated by using the approach described as follows. First we use an algorithm
proposed by Yang et al. mentioned in section 3.2 to generate the cheapest MVPP.
Next, we apply our MVPP re-optimization algorithm described in section 3.4 to

35

optimize the cheapest MVPP. After the re-optimized MVPP is generated, the
selection algorithm, which is the Two-Phase Optimization (2PO), is applied to select
the set of views to be materialized. The final output of the static phase will be the
initial MVPP structure with materialized view nodes. The steps of static phase is

shown in Figure 3.8

1. generate the cheapest MVPP introduced by Yang et al. described in
section 3.2

2. optimize the cheapest MVVPP by applying our MVPP re-optimization
algorithm described in section 3.4

3. apply selection algorithms, Two-Phase Optimization, to select set of

views to be materialized.

Figure 3.8 The Static Materialized View Selection for the Static Phase

3.6 Selection Algorithm: Two-Phase Optimization (2PO)

In this section, we explain the Two-Phase Optimization which is the selection
algorithm to select the set of views to be materialized. The Two-Phase Optimization
(2PO) is the combination of Interactive Improvement (1I) and Simulated Annealing
(SA) (loannidis and Kang, 1990: 313).

Iterative Improvement (11)

The Il algorithm, which is the randomized algorithm, starts with the initial
randomly chosen state and performs random downhill moves until it reaches a local
minimum. After a local minimum has been reached a new start state is generated
randomly. This process is repeated until a stop criterion is reached, and then the
lowest local minimum encountered is the result. The stop criterion is set to 10 local

minimum calculated. The Il algorithm is shown in Figure 3.9.

36

begin
Smin = Sw; {initial solution}
while not (stopping condition) do {
S=random state
while local minimum not reached do {
S’ = random state in neighbor(S)
if cost(S’) < cost(S) then S= S’

}
if cost(S) < cost(Smin) then Spmin =S
}
return(Smin)

end;

Figure 3.9 The Iterative Improvement (Il) Algorithm

Simulated Annealing (SA)

The SA is a local search algorithm same as Il but SA tries to leave from local

minima by using random moves. It accepts the uphill moves to a neighbor. The initial
state is randomly generated and moves to a neighbor with the lower cost, downhill

move, similar to 11, but it also accepts an uphill move with some probabilities. The SA

algorithm is shown in Figure 3.10.

begin

S =Sy ; {initial state}

T =Ty ; {initial value of time limit}

Smin=S;

while not(time limit) do {

while not(local minimum(S)) do {

S' = random state in neighbor(S)
AC = cost(S") - cost(S)
if (AC< 0)thenS=9S

if (AC > 0) then S = S with probability e *¢/T

if cost(S) < cost(Smin) then Spin = S

T =reduce(T)
}
return{Smin}
end;

Figure 3.10 The Simulated Annealing (SA) Algorithm

37

Once the neighbor cost is greater than the previous cost, the uphill move can
be accepted with the probability that decreases exponentially with the ratio of the
change in cost C to a parameter time limit, e““’", AC is the difference between the
cost of the new state and the previous one. In the inner loop, the algorithm gradually
decreases value T for allowing SA to accept uphill moves as SA accepts the new
solution which is that the new cost can be less than or equal to the previous cost with
the non-zero probability. The probability decreases exponentially with the ratio of the
change in cost to a parameter time limit, e 2™ Eor our experiment, the value of
each parameter for SA is set similar to Phuboon-ob and Auepanwiriyakul (2007: 166)
including the time limit which is set to 90 at the starting point, and the decrement

factor for the exponential is set to 0.7.

Two-Phase Optimization Algorithm (2PO)

2PO combines both Il and SA. It begins by running Il to find a good local
minimum, and then applies SA to search for the global minimum from the state found
by Il. Since the output from the MVPP is a DAG, so we map a DAG into a binary
string. Given the MVPP, we first map a DAG into a binary string of 1s and 0s to
represent views which will and will not be materialized, respectively. The initial
binary string of each node is set to 0 indicated that all intermediate nodes are virtual
view for the starting state. The algorithm is presented in Figure 3.11.

begin
1. Input the MVPP represented by a DAG
2. Use depth first search from root nodes to base relations to
search through all of the nodes in the DAG.
Produce the sequence of nodes into a binary string.
Call Iterative Improvement
Call Simulated Annealing algorithm
Present set of views to materialized with minimum cost

ok

end;

Figure 3.11 The Materialized View Selection with 2PO

38

3.7 Dynamic Materialized View Selection Approach

3.7.1 MVPP Structure Analysis and Merging New Requirements
Approach

There are several kinds of requirement due to the changing of application
requirements. The new requirements might impact to the changing of existing MVPP
structure. The requirement can be classified into four situations (Zhang, Yang and
Karlapalem, 2003: 454)

1. The existing queries are deleted.

2. The new queries are added

3. The definitions of existing query are changed.

4. The frequencies of executing query and/or the frequencies of updating

base relation are changed.

Those above situations are the cause of the possible changing of MVPP
structure as follows:

1) The MVPP will be changed for the first and second situation.

2) The third situation, MVPP structure may or may not be changed depending
on the selection criteria. For instance in Figure 3.2, condition of Tmpl is changed
from year="1995" to year="2000’then MVPP structure is not changed whereas the
query accessing cost of Q1, Q2 and Q3 maybe changed due to the number of rows
returned filtered by the selection condition. In our research, changing query definition
is implemented same as deleting the existing query and adding the new query with the
new definition.

3) The fourth situation, changing the frequency of executing query or
frequency of updating base relation, the query processing cost and maintenance cost
always changed accordingly. Therefore, there is possibility for the existing
materialized view to be un-materialized and the virtual view to be materialized. The
existing MVPP structure is not changed as neither new node is created nor existing
node is deleted. However, when we rerun the MVPP algorithm to generate the
cheapest MVPP, the MVPP structure may not the same structure as previously
generated. Because the order of merging queries may have changed depending on the

frequency of executing the query multiply with query cost. So the available sharable

39

subexpressions for incoming merged query are changed due to an available sharable
subexpression of previous merged queries that are changed. For our research, as we
apply the MVPP re-optimization algorithm to the cheapest MVPP then we rewrite the
certain queries by using global sharable subexpressions that share for all queries. So,
after applying our MVPP re-optimization algorithm, the re-optimized MVPP structure
will be same as previously generated. However whenever the frequency of executing
queries is changed, the query processing cost of the re-optimized MVPP also changed.

In case, the subtree of the existing query is the subsumption of the subtree of
the new query then the existing query can use the subexpression that is shared with
the new query. For example, the new query Qc shown in Figure 3.12 (a) is added into
the existing MVPP shown in Figure 3.12 (b). Considering Tmp5 in Figure 3.12 (b)
and given c represents the selection algebra (o_orderdate >= °1994-01-01" and
o_orderdate < ‘1995-01-01"); TmpS5 is the subgraph of existing MVPP and Tmp5 is
subsumption of (6 ORDERS X LINEITEM) that is Tmp4 in Figure 3.12 (a). So, the
conjunctively joined of (o ORDERS X LINEITEM) is sharable subexpression for Qc
and {Qa, Qb}. However, the existing MVPP does not have this conjunctively joined
node because Tmp5 in the existing MVPP, Figure 3.12 (b), is the conjunctively joined
of {ocORDERS X (G1_commitdate<!_receiptdate LINEITEM)}.

3 5
a
Y) @
result_a [575169]
5 result_b ()[575169]
Qc o_orderstatus
' 'Ystddev(l_tax) ysﬁm(lfextendedprice)
Tmps8 [575169] ~ [460135200000]
result_c ()[910519] [575169] [86275350000] Tmp7 Dxisuppkey

Mcustkey

'Yo_order riority
min(l_discount)

[800000]
Tmpé

[800000]

TU ps_suppkey
ps_partkey

Tme7 13793206] () [3793296] 12275971 [227597]

TU o_orderkey
o_orderstatus

[1500000]

I-discount mp2 4 5, o_orderdate
>="1994-01-01'
o_orderdate
<’1995-01-01'
[1500000]

orders

(a) New Query

[6000000]
lineitem

[227507] TMP2 Ve 1 suppkey
T o_orderk ke
g—g{dgﬁpﬁﬁmy TUs_custkey I:extende%price
I_orderkey 1227597 O[1500000] 13793296] () [6000000] [p757]
T

Tmp3 i

orde

TmplT o5 |_commitdate
< |_receiptdate
|'_'|[150000] [6000000]

customer lineitem

Oo_orderdate
>="1994-01-01'
o_orderdate
<’1995-01-01"
[1500000]

s

[[Jrso0000]

partsupp

(b) Existing MVVPP

Figure 3.12 The Subgraph of the Existing MVPP is the Subsumption of the Subtree

of New Query

40

Because the existing MVPP does not have this sharable subexpression for Qc then we
have to create a new node, (ccORDERS X LINEITEM) to support Qc. If Qa, Qb still
use Tmp5 then (ccORDERS X LINEITEM) will be created specific for Qc only.
However, if we rewrite Qa, Qb by using (ccORDERS X LINEITEM) then
(ccORDERS M LINEITEM) can be shared for all queries that the saving of the
materialized view maintenance cost.

To serve this situation there are some approaches such as all select operation
in existing MVPP are pushed up before we merge new queries into existing MVPP or
rewriting the existing queries constructed by that node. For push up method, all

exiting materialized view are affected then the queries use those materialized views

Begin

1. For every optimal query processing plan for any query, if there is a join
operation involved, push select, project operations and aggregate
function up along the tree.

2. Create a list of the new queries in descending order based on the result
of their query access frequency multiplied by query cost.

3. Merge the new query in the list into existing MVPP according to their
order in the list by comparing as follows:

3.1 If there is sharable subexpression available for new query

then
merge to that sharable subexpression
If sharable subexpression has select operation and new query
also has the same select operation
then
push down select operation of new query

3.2 If no sharable subexpression then create new node for new query

4. Repeat step 3 for other queries until all queries in the list are merged

into existing MVPP.

Push down select, project and aggregate functions as deep as possible.

Move the first new query to the end of the list.

Repeat step 3 to 6 to generate all new MVPPs.

Calculate total query processing cost based on base relations and

existing materialized views for each MVPP and select the cheapest

MVPP.

9. Apply the MVPP re-optimization algorithm described in section 3.4 to
the cheapest MVPP.

ONo O

end;

Figure 3.13 The Methodology to Merge New Requirements into the Exiting MVVPP

41

also affected even though they are not affected by new queries. As our objective of
dynamic materialized selection approach is to avoid calculating all resources again.
Then we choose the rewriting method for only the affected existing queries. We
rewrite the affected existing query by using a common subexpression that can be
shared with the new query.

For adding new requirements into existing MVPP, we have to consider how to
merge the queries into and existing environment. The approach to add new
requirements into the existing MVPP is shown in Figure 3.13.

3.7.2 An Approach to Identify the Affected Nodes

According to our objective of the dynamic materialized view selection, that is
to avoid rerun static approach when new requirements are changed, the affected nodes
have to be determined as the member of the set of views to be materialized rather than
all nodes in the search space. We apply static weight of node and the relevance
between nodes introduced by Zhang et al. described in section 2.6 for our algorithm.

The detail of formula is presented below:

wy) = Y1, @*(C) Zinmcm)

qe0, rel,

w(v) denotes weight of node

O, denotes the queries which use view v.

Cg denotes the accessing cost a for query q using view v. The cost of
answering query g is the number of rows presented in the relation used to construct g.
fq denotes the frequency of executing a query.

I denotes the base relations which are used to produce view v.

\

C,, denotes the maintenance cost m for materialized view v based on base

relation r, which is occasionally updated.

fu denotes the frequency of updating base relation

42

We propose the affected node identification algorithm shown in Figure 3.14 to
identify the affected nodes either directly or indirectly after the optimal dynamic
MVPP is generated. The directly affected nodes are the nodes with positive weight
w(V) used to construct the new queries. The indirectly affected nodes are the ancestor
of directly affected nodes with certain weight calculated by the above formula. The
affected nodes are the member of the set of views to be materialized or un-
materialized, rather than all nodes in the search space. The existing materialized view
nodes not identified as affected nodes means those nodes are not affected by new
requirements, such they still have to be the materialized views for supporting the

existing requirements.

begin
1. [Initial list Mirect and Mindirect:¢
Mirect is the set of directly affected node
Mindirect is the set of indirectly affected node
2. For each new query
3.5 Depth first search from the root to base relations to determine the
existing intermediate nodes, v;, used to construct the new query.
3.6 Calculate weight w(v) of each node vi;.
vi, that are conjunctively joined with positive weight, or project
operation that is not the ancestor of base relation, or select operation,
are inserted into the list Mgirect.
3. For each node v; in list Myirect S€@rch its ancestor node u;j Uj & Mairect, UP
to the query node
3.1 Calculate weight of node uj,
3.2 If (weight v; > weight u;) and u; is existing materialized view then
put u; into list Mingirect
3.3 If (weight v; < weight u;) then
traverse in bottom-up way to find the node that return maximum
weight u; of each branch.
pUt Uj into list Mindirect
end,

Figure 3.14 The Affected Node Identification Algorithm

The conditions to identify the indirectly affected node in step 3 of the affected
node identification algorithm in Figure 3.14 are explained as follows:
Referring the rules to determine how nodes are affected by each other in

MVPP described in section 2.6, we exploit the second and third rule for our algorithm

43

We apply the second rule for condition in line 3.2. For this condition, before
adding the new requirements, u; is the materialized view. It implies that the weight of
u;j is greater than that of vj. So, uj is possible to be selected to be materialized rather
than v;. After adding a new requirement, the weight of u; is less than that of v; It
implies that v; possible to be selected to be materialized rather than u;, When v, the
descendent node of u; with weight greater than that of u;, is materialized so no gain to
materialize u;. Before adding new requirements, u; is the existing materialized view
and it is likely to be un-materialized when new requirements are added. Thus, u; have
to be identified as the indirectly affected node.

We apply the third rule for condition in line 3.3. The node u; is the ancestor of
vi, and the weight of u; is greater than v; then u; is possible to be materialized. The
same as Uj+1 If uj+1 > uj then uj+1 is more possible to be materialized rather than u; .
Thus we have to traverse to look for the maximum weight of u;. As u; would have
many ancestors that means u; is supporting many queries so we have to traverse

bottom-up way to find the node that returns the maximum weight u; of each branch.

3.8 Two-Phase Optimization (2PO) for Dynamic Materialized View

Selection

The final step of dynamic materialized view selection is selecting the set of
views to be materialized by 2PO. The 2PO algorithm is the combination of 1l and SA
explained in section 3.6. We map all nodes in MVPP to binary string according to the
types of node as follows.

The intermediate nodes, either existing materialized views or virtual views
that are identified as affected nodes and new nodes, are mapped into binary strings.
We initialize these nodes with 0.

The existing materialized view nodes which are not identified as affected
nodes are fixed to 1. The reason to fix to 1 is that they always are the materialized
view to support the existing requirement. We consider the existing materialized views
not identified as affected nodes because we calculate the query processing cost and
materialized view maintenance cost for the whole system. Our goal is the minimal

total cost among all feasible sets of materialized views of all queries. Therefore, all

44

existing materialized views that are not identified as affected nodes have to be
included for supporting the existing queries.

The other intermediate nodes neither identified as affected nodes nor existing
materialized views to support the existing queries are fixed to 0. They are always the
virtual views that have not been affected. Thus, they are not the member of a set of
views to be selected.

The details of algorithm are presented in Figure 3.15.

begin
1. Input the MVPP represented by a DAG
2. Use depth first search from root node to base relation to search
through all of the nodes in the DAG.
3. Map all intermediate nodes into binary string 1s or Os as
follows:
3.1 initialized with O for all affected nodes identified by the
affected node identification algorithm, and new created nodes.
3.2 fixed to 1 for all existing materialized view nodes which are
not identified as affected nodes.
3.3 fixed to O for other nodes that are not the set of views to be
selected.
Call Iterative Improvement
Call Simulated Annealing algorithm
6. Present set of views to materialized with minimum cost
end;

oA~

Figure 3.15 The Materialized View Selection with 2PO for the Dynamic Phase
3.9 Cost Model for Dynamic Materialized View Selection

According to (Yang et al., 1997: 140) a linear cost model is used to calculate
the processing cost of query Q. The cost of answering query Q is the number of rows
in the base relations used to construct query Q. Denote M be a set of materialized

views, Cq. (M) be the cost to compute g; from the set of M, Cp,(v) be the cost of
maintenance when v is materialized, and f, , f, are query and updating frequency

respectively. Then the total query processing cost is Z quq(M) and the total
geQ

45

maintenance cost is Z fqu (V) The total cost, which is the summation of query
veM

processing cost and materialized view maintenance cost, on the set of materialized

views M is illustrated as follow:

Ctotal = Z quq (M) + Z fqu (V)

geQ veM

Our goal is the total cost will be minimal for all feasible sets of materialized

views.

This chapter details our methodologies i.e. the MVPP re-optimization
algorithm and the dynamic materialized view selection approach. The goal of the
MVPP re-optimization algorithm is to verify whether the cheapest MVPP is optimal
and improve the query processing cost of the cheapest MVPP. The dynamic
materialized view selection approach is to select a set of views, which are the specific
member of the set of views rather than all nodes in search space, to be materialized or
un-materialized by avoiding recalculation from scratch, and provides the minimal
summation of query processing cost and maintenance cost on the set of materialized
views selected by 2PO. In the next chapter, the design of experiments, result and

analysis of our methodologies will be described.

CHAPTER 4

DESIGN OF EXPERIMENTS AND ANALYSIS OF RESULTS

In previous chapter, we described the methodologies employed in our
dissertation that includes two parts; the optimization task to improve the cheapest
MVPP, and the approach for dynamic materialized view selection. In this chapter, we
discuss the design of the experiments used to evaluate our approach. Our testbed data
is the TPC Benchmark™H (TPC-H) that is a decision support benchmark. Section 4.1
provides the details of TPC-H schema revision 2.14.2 and its data set. Section 4.2
provides a query set with relational algebra query tree which were introduced by
Phuboon-ob (2009: 51) for static materialized view selection. Section 4.3 provides the
implementation of the cheapest MVPP proposed by Yang et al.

For our experiments, it is separated into two parts according to our proposed
methodologies. First part includes Section 4.4 and 4.5 described the implementation
of our MVPP re-optimization algorithm. Second part includes Section 4.6 to 4.8
described the implementation of our dynamic materialized view selection approach,

2P0 for our dynamic materialized view selection.

4.1 TPC Benchmark™H (TPC-H)

The component of TPC-H schema is defined to consist of eight tables (base
relation) including REGION, NATION, CUSTOMER, SUPPLIER, PART,
PARTSUPP, LINEITEM AND ORDERS. The relationships between these tables in
TPC-H schema are illustrated in Figure 4.1. We run TPC-H schema by Oraclel1gR2
with database size 1 GB that is the minimum required for a test database. The
cardinalities of each base relation are presented in Table 4.1. The database size can
scale up to 1 TB according to the scale factor multiple by minimum cardinality of all
tables except NATION and REGION.

PART(P)
SF*200,000

PARTKEY (PK)

47

NAME

MFGR

BRAND

TYPE

SIZE

CONTAINER

RETAILPRICE

COMMENT

SUPPLIER(S)
SF*10,000

SUPPKEY (PK)

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

PARTSUPP(PS_) LINEITEM(L) ORDERS(O.) J
SF*800,000 SF*6,000,000 SF*1,500,000
PARTKEY (PK) ORDERKEY (PK) ORDERKEY (PK)
SUPPKEY (PK)]_L PARTKEY CUSTKEY
AVAILQTY ﬁ SUPPKEY ORDERSTATUS
SUPPLYCOST LINENUMBER (PK) TOTALPRICE
COMMENT QUANTITY ORDERDATE
CUSTOMER(C) EXTENDEDPRICE ORDERPRIORITY
SF*150,000 DISCOUNT CLERK
CUSTKEY PK) TAX SHIPPRIORITY
NAME RETURNFLAG COMMENT
ADDRESS LINESTATUS
NATIONKEY SHIPDATE
PHONE COMMITDATE
ACCTBAL RECEIPTDATE
MIKTSEGMENT SHIPINSTRUCT
COMMENT SHIPMODE
COMMENT
NATION(N.)
25 REGION(R.)

COMMENT

NATIONKEY (PK)

5

NAME

REGIONKEY (PK)

REGIONKEY

—

NAME

COMMENT

COMMENT

Figure 4.1 The TPC-H Schema Revision 2.14.2

Source: Transaction Processing Performance Council (TPC), 2011: 12.

Table 4.1 The TPC-H Schema Table Size

Table name Relation Size Record Size Table Size
(in Tuples) (in bytes) (in MB)
REGION 5 124 <1
NATION 25 128 <1
CUSTOMER 150,000 179 26
SUPPLIER 10,000 159 2

PART 200,000 155 30
PARTSUPP 800,000 144 110
LINEITEM 6,000,000 112 641
ORDERS 1,500,000 104 149

48

4.2 Query Set for Static Materialized View Selection

We separate the query set into two sets. The first set includes Queryl to
Query7 for static materialized view selection approach. The second set includes
Query8 to Queryl3 for dynamic materialized view selection approach. Queryl to
Query7 were introduced by Phuboon-ob (2009: 51) for static materialized view
selection problem using 2PO based on MVPP structure. We improve the query
processing cost of the cheapest MVPP of Queryl to Query7 by our MVPP re-
optimization algorithm and use 2PO to select set of views to be materialized.
Thereafter, the result of static approach, which is derived in our static phase, is the
initial search space for the dynamic materialized view selection. The details of
Queryl to Query?7 are discussed in this section. The details of Query8 to Query13 are
explained in section 4.6. The Queryl to Query7 are denotes as Q1, Q2, Q3, Q4, Q5,
Q6 and Q7. Suppose that all base relations are updated once and the frequencies of
executing the query of Q1 to Q7 are 2, 6, 7, 2, 5, 9 and 3 respectively

We first present the notation used in relational algebra query tree as follows:

G, represents the select operation, where a is a selection condition on one or
more attributes of a relation.

Tty represents the project operation, where b is a list of one or more attributes

of a relation.

X represents the inner join operation.

Y represents an aggregation function.

The details of queries and their relational algebra query trees are described as

follows:

49

Query Q1 with the query frequency of 2 produces the minimum supply cost of

each nation of suppliers in specific region, ASIA. Its relational algebra tree is shown

in Figure 4.2.
Query Q1
SELECT N_NAME, MIN(PS_SUPPLYCOST)
FROM PART, PARTSUPP, SUPPLIER, NATION, REGION
WHERE P_PARTKEY =PS_PARTKEY

AND S_SUPPKEY = PS_SUPPKEY
AND S_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY
AND R NAME = ‘ASIA’

GROUP BY N_NAME;

2

Q1@

result | 11602407

n_name
Tmp10 min(ps_supplycost)

[160240] [32048000000]

Tmp8 Tmp9
[160240] () [1602400000] 12000001 () [200000]
suppkey A
Tmp6 Tmp7
[2003] [50000] [800000] [800000]
nationkey A TUp_partkey
Tmp5
[10000] () [10000] TUps_suppkey
ps_partkey
Tmp2 ps_supplycost
[1] TImp3
[25] _
TCr_regionkey TUs_nationkey
Tmpl - s_suppkey
1 5 ionk
[] [(]5 r_name n'?__”raegb%%e)y
N n_name
=’ASIA’
éI[S] [25] [] 200007 [Jrsooooo] [] [200000]
region nation supplier partsupp part

Figure 4.2 Relational Algebra Query Tree of Query Q1

50

Query Q2 with the query frequency of 6 produces number of items that
customers of each nation in specific region, ASIA, ordered in 1994. Its relational

algebra tree is shown in Figure 4.3.

Query Q2

SELECT N_NAME, COUNT(L_ORDERKEY)

FROM CUSTOMER, ORDERS, LINEITEM, NATION, REGION
WHERE C_CUSTKEY = O_CUSTKEY

AND O_ORDERKEY = L_ORDERKEY

AND C_NATIONKEY = N_NATIONKEY

AND N_REGIONKEY = R_REGIONKEY

AND R_NAME = ‘ASIA’

AND O _ORDERDATE >= 1994-01-01"

AND O_ORDERDATE < 1995-01-01°
GROUP BY N_NAME;

6

2@

result [[184082]

n_name

Tmp11 count(l_orderkey)

[184082] [276048000000]

Tmp9
[46008]

[6869560251] [6000000

custkey M Tmp10
Tmp6 Tmp8
[30183] [750000] [227597K) [227597]
A TUl_orderkey
TCo_custkery
[150000] () [150000] 0_orderkey
X 0_totalprice
Tmp2 Tmp5
(1 [227597] | Tmp7
[25] . 1500000
TCr_regionkey TUc_nationkey CA ! 1
Tmpl c_custkey
[1] [5] Oo_orderdate>="1994-01-01'
Or_name TCn_regionkkey 0_orderdate<’1995-01-01
=’ ASIA” n_nationkey
[5] [25] []i250000] []1500000] [] 160000000]
region nation customer orders lineitem

Figure 4.3 Relational Algebra Query Tree of Query Q2

51

Query Q3 with the query frequency of 7 produces summation of quantities of
items that suppliers of each nation in specific region, ASIA, ordered in 1994. Its

relational algebra tree is shown in Figure 4.4.

Query Q3

SELECT N_NAME, SUM(L_QUANTITY)

FROM ORDERS, LINEITEM, SUPPLIER, NATION, REGION
WHERE O_ORDERKEY = L_ORDERKEY

AND L_SUPPKEY =S_SUPPKEY

AND S_NATIONKEY = N_NATIONKEY

AND N_REGIONKEY = R_REGIONKEY

AND R_NAME = ‘ASIA’

AND O _ORDERDATE >= 1994-01-01"

AND O_ORDERDATE < 1995-01-01°
GROUP BY N_NAME;

7

@

resulté[182183]

n_name
sum(l_quantity)

Tmpll

[182183] [273369715461]

X orderkey

Tmp8
[1201113] [12018000000] 557507 [227597]
Tmp suppkey Mmp10
[2003] [50000] [6000000] () [6000000]
ATmp7 TCo_orderkey
TUl_suppkey
[10000] I_orderkey
Tmp2 I Tmp5 |_quantity Tmp9
[[227597] C‘>[1500000]
A
i TUs_nationke:

Tm[% T;]_reglonkey Tonregionkey s Suppkey’ O'o_orderdate>="1994-01-01"
Or name n_nationkey o_orderdate <*1995-01-01'
= ASIA’

[5] [25] [] r20000] []e0oo000] [] [£500000]
region nation supplier lineitem orders

Figure 4.4 Relational Algebra Query Tree of Query Q3

52

Query Q4 with the query frequency of 2 produces summation of supply cost of
each supplier that their nation same as that of customers in specific region, ASIA. Its

relational algebra tree is shown in Figure 4.5.

Query Q4

SELECT S_NAME, SUM(PS_SUPPLYCOST)

FROM PARTSUPP, SUPPLIER, CUSTOMER, NATION, REGION
WHERE PS SUPPKEY =S_SUPPKEY

AND C_NATIONKEY =S_NATIONKEY
AND S_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY
AND R_NAME = ‘ASIA’

GROUP BY S_NAME;

2

oZy

resultg[967519280]

s_name
sum(ps_supplycost)

[24036000000]

Tmpl0
[967519280]
nationkey

Tmp8
[160240]

[1602400000] [150000]
suppkey

[150000]
N
Tmp9

Tmp6
[2003]

[50000] (8000001 () [800000]

A
Tmp7

[10000]

Tmp2 M Tmp5
[1] TCps_suppkey
ps_supplycost

Tmpl Tlr_regionkey p onk nsg_nsatﬂ)%r?(keiy TCc_nationkey
Qs nationkey

Or_name S_hame

=’ ASIA’

5] [25] []rz0000] [Jrsooooo; [] [250000]
region nation supplier partsupp customer

Figure 4.5 Relational Algebra Query Tree of Query Q4

53

Query Q5 with the query frequency of 5 produces number of suppliers’ part

with specific brand, type and size. Its relational algebra tree is shown in Figure 4.6.

Query Q5

SELECT COUNT(PS_SUPPKEY)
FROM PARTSUPP, PART

WHERE P_PARTKEY = PS_PARTKEY

AND P_BRAND <> ‘BRAND#45’
AND NOT P_TYPE LIKE ‘%BRASS%’
AND P_SIZE IN (9, 19, 49);

5

@

resultg [36276]

'Ycount(ps_suppkey)

Tmp4

136276](_) [7255200000]

Tmp2 Imp3
[9069] () [9069] [800000]

X
TUp_partkey
Tmpl TCBs_gartlﬁgg
19069] () [200000] S_Suppkey

Op_brand<>’BRAND#45

not p_type like ‘“%BRASS%’
p_size in (9,19,49)

[200000] []s00000]
part partsupp

[800000]

Figure 4.6 Relational Algebra Query Tree of Query Q5

54

Query Q6 with the query frequency of 9 produces supply cost summation of
parts with specific brand, type and size for each supplier. Its relational algebra tree is

shown in Figure 4.7.

Query Q6

SELECT S_NAME, SUM(PS_SUPPLYCOST)
FROM SUPPLIER, PARTSUPP, PART
WHERE S_SUPPKEY =PS_SUPPKEY

AND P_PARTKEY =PS_PARTKEY
AND P_BRAND <> ‘BRAND#45’
AND NOT P_TYPE LIKE ‘%BRASS%’
AND P_SIZE IN (9,19,49)

GROUPBY S_NAME;

9

®@

result g [36276]

s_name
sum(ps_supplycost)

Tmp6

[36276]() [362760000]

Tmp4

[36276] A< [7255200000] [10000] [10000]
A
X partkey Tmps
Tmp2
[9069] [9069] [800000] [800000] TTs_suppkey
A Tmo3 S_name
m
Tmp1 TUp_partkey p
9069 200000
[] [] T s_gart ea/
BSiBBee
O'p_brand<>"BRAND#45’ —
not p_type like ‘%BRASS%’
p_size in (9,19,49)
[200000] [] rsoooo00] [] r20000]
part partsupp supplier

Figure 4.7 Relational Algebra Query Tree of Query Q6

55

Query Q7 with the query frequency of 3 produces the discount summation of
items that customers ordered in 1994 for each market segment. Its relational algebra

tree is shown in Figure 4.8.

Query Q7

SELECT C_MKTSEGMENT, SUM(L_DISCOUNT)
FROM CUSTOMER, ORDERS, LINEITEM
WHERE C_CUSTKEY = O_CUSTKEY

AND O_ORDERKEY = L_ORDERKEY

AND O _ORDERDATE >= 1994-01-01"

AND O_ORDERDATE < 1995-01-01°
GROUP BY C_MKTSEGMENT;

3

U@

result $[910519]

¢_mktsegment
sum(l_discount)

Tmp6
[910519]

Tmp4
[910519] < [1365582000000 [150000]() [150000]
A
Rorderkey Tmp5
Tmp2 TUc_custke
[227597] [227597] [6000000] [6000000] ¢_mktsegment
Tmp3
TCo_orderkey 1 me
Tmpl 0_custkey T o&derke
12275971 () [1500000] T_discountt
Oo_orderdate>="1994-01-1'
0_orderdate<’1995-01-01
[1500000] [Jre0000000] [Jrzs0000]
orders lineitem customer

Figure 4.8 Relational Algebra Query Tree of Query Q7

56

4.3 The Cheapest MVPP Implementation

In this section, we build the cheapest MVPP mentioned in section 3.2 for
materialized view selection. The details are listed below:

1. For every optimal query processing plan, if there is a join operation
involved, push all the select, project operations and aggregate function up along the
tree.

2. Create a list of queries in descending order based on the result of their
query access frequency multiplied by query cost.

3. Merge all optimal query processing plans in the list according to the
following order:

3.1 pick up the first optimal query processing plan from the list

3.2 incorporate the second query into the first query

3.3 incorporate the third query into previous merging, repeat this step
until all optimal query processing plans are merged.

4. Move the first optimal query processing plan to the end of the list.

5. Repeat step 3 and 4 to generate all MVPPs.

6. Push down select, project and aggregate functions as deep as possible.

7. Calculate the total query processing cost of each MVPP, and select the

one which gives the lowest cost.

In our experiment, all optimal query processing plans of Q1 to Q7, if there is a
join operation involved, we first push all the select, project operations and aggregate
function up along the tree. The result of this step is shown in Figure 4.9. Next in the
second step, we multiply query access frequency with query cost shown in Table 4.2.
Table 4.2 illustrates the frequency of executing the query, query cost, and frequency
of executing the query multiplied with query cost for Q1 to Q7. Later, we create a list
of these values in descending order. Therefore, the initial list is {Q4, Q7, Q3, Q2, Q6,

Q1, and Q5}.

57

Q2
Q ’
x /[;4
part partsupp
m part partsupp supplier ngxx

region nation supplier partsu art _ - .
g PP partsupp P region nation customer orders lineitem

A 1
A \\ Ay ﬁii\\

region nation supplier linei orders = - .
Y PP LUl region nation supplier partsupp customer

Figure 4.9 The Result of the First Step to Construct MVPP

Table 4.2 The Query Access Frequency, Query Cost, and Query Access Frequency
Multiplied by Query Cost

Query Access

Query Frequency(f,) Query Cost fq* Query Cost
Q1 2 160,240 320,480
Q2 6 184,042 1,104,252
Q3 7 182,183 1,275,281
Q4 2 967,519,280 1,935,038,560
Q5 5 36,276 181,380
Q6 9 36,276 326,484
Q7 3 910,519 2,731,557

Third step, all queries in the list are merged to construct the first MVVPP. The
sequence to merge all queries of the first MVPP as follows: first is Q4 follow by Q7,

then Q3 and so on until Q5 is merged. When Q7 is merged, as no sharable

58

subexpression between Q4 and Q7 then we first join the ORDERS with LINEITEM,
and then join this result with the CUSTOMER. The result after Q7 is merged shown
in Figure 4.10 (a). When Q3 is merged, Q3 is constructed on conjunctively joined of
(REGION X NATION X SUPPLIER X LINEITEM X ORDERS). There are two
subtrees available for Q3 that are (REGION X NATION x SUPPLIER) and
(ORDERS X LINEITEM), so a new node is introduced as a join operation between
those two subtrees. The result after Q3 is merged into the first MVVPP shown in Figure
4.10 (b). When Q2 is merged, there already existing conjunctively join that are
(REGION M NATION), the remaining base relations are CUSTOMER, ORDERS and
LINEITEM conjunctively joined already for Q7.

Q4
region nation supplier partsupp customer order I|ne|tem

(@) The result after Q7 is merged with Q4 of first MVPP

Q4

"
A A

region nation supplier partsupp customer order lineitem

(b) The result after Q3 is merged of the first MVVPP

Figure 4.10 The Result of Merging Steps for the First MVPP

59

region nation supplier partsupp customer order lineitem

(c) The result after Q2 is merged of the first MVPP

Q1

region nation supplier partsupp customer order lineitem part

(d) The result of the first MVPP after all Queries Q1-Q7 are merged

Figure 4.10 (Continued)

Therefore, the new node is introduced for Q2 as a join operation of those
results: (REGION X NATION) and (CUSTOMER X ORDERS X LINEITEM).
Figure 4.10 (c) shows the first MVPP after Q2 is merged. We repeat this step until all
queries in the list are merged. The result after all queries are merged starting with Q4
is shown in Figure 4.10 (d).

Next the fourth step, after the first MVPP is generated, the first element of the
list is moved to the end of the list. So Q4 is move to the end of the list, the list
becomes {Q7, Q3, Q2, Q6, Q1, Q5, and Q4} that is the order of merging queries for

60

the second MVPP. We repeat the third step to construct the second MVPP. We start
with second MVPP equal to Q7. Then merge Q3 into the second MVPP and follow by
the next query in the list, Q2, Q6, Q1, Q5 and the last query is Q4. Figure 4.11 (a)
shows the result after merged Q3 into the second MVPP. Figure 4.11 (b) shows the
result after Q2 is merged into the second MVPP. The result of the second MVPP after

all queries are merged starting with Q7 is shown in Figure 4.11 (c).

4
M\ "\

region nation supplier customer order lineitem

(@) The result after Q3 is merged with Q7 of the second MVPP

Q2 Q3

AN, A

region nation supplier customer order lineitem

(b) The result after Q2 is merged of the second MVPP

Figure 4.11 The Result of Merging Steps for the Second MVPP

61

Q2 Q3 Qs Q7 Q5

7
region nation supplier partsupp customer order lineitem part

(c) The result of the second MVPP after queries Q1-Q7 are merged
Figure 4.11 (Continued)

We repeat the third and the fourth step until all MVPPs of seven queries are
built. The list of queries of the last MVPP is {Q5, Q4, Q7, Q3, Q2, Q6, and Q1}. The
results of all MVVPPs generated in the merging steps are shown in Appendix A.

After all MVVPPs are constructed, we optimize MVPP by push select, project
and aggregate function down as deep as possible for all MVPPs. Figure 4.12 to 4.18
show the first MVPP to the last MVVPP already optimized.

Finally the total query processing costs of MVPP, which is the summation of
query processing cost of queries in the MVPP, are calculated to determine the
cheapest one. The query processing cost is the frequency of executing the query
multiplied with the cost of accessing the nodes to obtain the result of the query.

For example Q1 in the first MVPP as Figure 4.12, Q1 which has frequency of
executing query is 2 accesses nodes named Tmpl, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6,
Tmp7, Tmp8, Tmpl8, Tmp22 and resultl. The processing cost of each node is 5, 1,
25, 25, 10000, 50000, 800000, 1602400000, 200000, 32048000000 and 160240,
respectively. Then, the query processing cost of Q1 is (2)*(5 + 1 + 25 + 25 + 10000 +
50000 + 800000 + 1602400000 + 200000 + 32048000000 + 160240) that is
67,303,240,592. The query processing cost of the first MVPP in Figure 4.12 are

62

shown in Table 4.3. The query processing cost of the others MVPPs are provided in
Appendix A.

The query processing costs of all MVPPs are shown in Table 4.4. The
cheapest MVPP is the third MVPP as it provides the minimal total query processing
cost that is 10,821,545,680,471. The order of query in the list of the cheapest MVPP
is {Q3, Q2, Q6, Q1, Q5, Q4, and Q7}.

The result in Table 4.4 shows that the query processing cost of Q1, Q5 and Q6
of the third MVPP is higher than other MVPPs, although the third MVPP provides the
minimal total query processing cost. It implies that there are other execution plans for
these queries that have lower query processing cost. Then, we implement our MVPP

re-optimization algorithm in section 4.4 to improve the query processing cost of
problematic queries.

6 3 7

2 2 9
fort Q7 o) U@ U@ Q6 5
*@

. result4 | [967519280] .

result? 910519 resultl 16024 resulté [36276]

resut() [184082] [] result3(_)[182183] [160240]
»YS name results [36276]
'Yc_mktsegmem ’Ynfname B sum(ps_supplycost) 'n_name 'Ys_name
gﬁng?(]liovderkye) sum(l_discount) sum(l_quantity) Tmp10 Ym,n(ps_suppltcost) sum(ps_supplycost)

Tmpl6

Tmpl7

[967519280] ’
11840821 QQ

[24036000000]

(O 1823769557]

Tmp13 Gp_brand<>"BRAND#45°
not p_type like ‘%BRASS%’
rearsor; Oizrson)
b9 [800000] () [800000] p_size in (9,19,49)
1150000] () [150000] 120000] () [20000] Q-Qiderkey Tmp7
[6000000]()[6000000] o_totalprice 1200000 () [200000]
Tmpll Tmp12 T ps,su;z key
[25] 227507 ps_partkey mp18
TUr_regionkey T $ T_,nua;%;que@ey T ; [: 1(_)[1500000] Ez_gl\l/glgg ycost TC b partkey
0 i pl1 5] s_name | ’osrugg'kg - p,?rand
é_ggaélgg;ey OB . ey gty G orderdate>=1994-01-01' ok
¢mktsegment Gr_name="ASIA’ R:ngm%n © - orderdate<’1995-01-01'
[] r1s0000] [5] [25] [10000] [6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem

orders partsupp part

Figure 4.12 The First MVPP, the Queries in the List: {Q4, Q7, Q3, Q2, Q6, Q1, and
Q5}

63

2 2
3 0@ o21" } @ 9 5
6 U@ ol
@ =@
resull4[967519280]
result1()[160240]
result3 / [182183]
result7 O [o10519] " resutts O [36276]
n_name 's_name results & [36276]
result2! [184082] 'Ysum(liquantity) ’Ysim(ps,supplycost) 'Yn_name
"/c,mktsegmem min(ps_suppltcost) "/s,name
'Yniname sum(l_discount) Tmp22 sum(ps_supplycogt) .
_— count(l_orderkye) Tmp13 [967519280] ’ [24036000000] Tmp20 fggi‘suppkey)
4552505 1823769557 !
tas0a) (. ! nezies) Il ! 11602401 C)[1602400000] Tmp1s
X Tmpé X [36276] () [362760000]
() [136577850000 X
Tmpl8
7 s6276) O [800000]
Op_brand<>’BRAND#45"
not p_type like ‘%BRASS%’
p_size in (9,19,49)
‘ Tmpl7
X Tmp3 18000001 [160000000000]
[227597J[227597) X
TmpS Tmp10 [5() [25] 4
150000 O [150000] ® Tmp110) L 9-Qidsrkey
Tmp8 [10000]4[10000] Tmpl @) o_totalprice Tipl5 Tmp1§ O
wQOwm Tmpo [60000001y[6000000] mp2 O 200000] % [200000]
12510 (251 P [800000] A [800000]
i s naug(nkey [227597]()[1500000]
T Tur_regionkey ssuppkey TU |_suppkey X T K TU p_partkey
me? s_name |orderkey oot brand
T _Cnalignkey w1 T regionk oy I’gﬁgm:g Oo_prderdate>="1994-01-01' Es:supplr%osl E;§¥z"§
Cr,ja‘c‘é(Y Gr_name="ASIA" nn:nr?an?g €) - o_drderdate<1995-01-01' ps_avaiqty
c_mktsegment -
[5] [25] [] 00001 [6000000] %]
customer region nation supplier lineitem orders partsupp part

Figure 4.13 The Second MVPP, the Query in the List: {Q7, Q3, Q2, Q6, Q1, Q5,
and Q4}

7 2 2
3 @ o2 1@ 9 s
6 Q@ Q Q6
@@ & J
result4 | [967519280]
msm [182183] result1()[160240]
result? [910519] result [36276]
'n_name Vs name n_name results J [36276]
resuz() [184082) ysﬂm(l_quanli(y) sum(ps_supplycost) Yan(ps_suppltcost)
'Ycimk(segmenl 'Ysiname
’Yn_na"(,le st sum(l_discount) mp23 sum(ps_supplycopt) ot
count(l_orderkye} u
Tmp1s Tmpll [273369715461[;;67519280] X [24036000000] Tmp22 s Suppkey)
182183
[184082) () [276048000000] — [] [160240] O [1602400000] _—
o [o10519] () [136577850000] [36276] () [362760000]

%
Tmp20
136276) () [800000]

Tmpl4
[46008] () [6869560251]
X
Tmp13
30183) C [750000

/
Tmpl2

O'p_brand<>'BRAND#45"
not p_type like ‘%BRASS%’
p_size in (9,19,49)

82QQ0000
P
Tmpl9
Tmpl0 [800000]! . [160000000000]

127597([227597] >
Tmpa [51C) [25]
1250000]) [150000] ® Tmps O) g:‘guzglI rhey
Tmp2 [10000]4[10000] o_totalprice Tmp1
Tmp16
mQw Tmp3 {s000000f te00o000] oo PO 120000015 z60000]
251 [25] " P [800000] 4 [800000]
7597
TUr_regionkey TC s_natignkey TU |_suppkey (227597K J11500000] TU p_partkey
T c_nationkey Bl e ity |Corderkey 4 TC Laereti ';ey p_brand
g}gg}ﬁg v mOE T reﬁiorl(ke)y s-eme I*Eﬁgﬂﬂg Go_prderdate>=’1994-01-01' gs:gupplkxzosl E:‘s){zpeE
c_mkisegment Or_name="ASIA’ e - 0_grderdate<'1995-01-01' ps_avaiqly
[5] [Jresl [10000] [6000000] %]
customer region nation supplier lineitem orders partsupp part

Figure 4.14 The Third MVPP (the Cheapest MVPP), the Query in the List: {Q3, Q2,
Q6, Q1, Q5, Q4, and Q7}

Snane |) n_name
sum(ps_suj COSt) -
(ps_supply! min(ps_suppltcost)

Y

's_name
sum(ps_supplycopt)

Y

Tmp21

[967519280] . [24036000000]
%

Y

[276048000000]

nﬁnamle derkc ¢
count(]_orderkye; ‘count

(- ¥e) Tmp24 (ps_suppkey)
[182183]

TmplL [1823769557]

7 2 2
3 ° U@ U@ 9 s
6 U@ Q3 S 5
Q2 B ¢
result4 | [967519280]
s QO 162183) O result1()[160240]
result? [910519] resulté [36276]
n_name results 4 [36276]
result2(_) [184082] YsUm(Lquanlity) i
Ye_mktsegment
sum(l_discount)

% (D11602400000] S
[36276] () [362760000]

Tmpl5
1362761 () [800000]

Op_brand<>’BRAND#45"
not p_type like ‘%BRASS%’
p_size in (9,19,49)
Tmp6
[30183] (Q (750009
Tmpl4
18000001 [160000000000]

[227597)

Tmp5 A
{250000]C) [150000] T o grdoriey
Tmp2 [100004[10000] ~ Tmp10 o_totalprice Tp12
1 [6000000]N[6000000
u : ! Tmp? [800000] X [800000] 1200000]

12275971)[1500000]
A

T ionk tionki
T e nationkey T™E reglomtey TC s-atigey T sy e”,‘,ﬁi{, 70 ps_suppkey T pjfraa%ey
Scé‘%agliggkey wo® Tin_regionk 5 e Fgﬁgﬂﬂg Go_prderdate>="1994-01-01 ﬁgzsggpl?%ost E’ggg
¢Zmkisegment Gr_name="ASIA’ e - o_qrderdate<’1995-01-01' pe_avaiqly
5] [25] [] 1200001 [6000000] %
customer region nation supplier lineitem orders partsupp part

Figure 4.15 The Fourth MVPP, the Query in the List: {Q2, Q6, Q1, Q5, Q4, Q7, and
Q3}

7 2 2
3 Y Q4 @ 9
; @ o ’
e =@
2@
result4 | [967519280]
resultl(C)[160240]
msu,m [182183]
result7 (L) [910519] results () [36276]
s_name results & [36276]
Q) o) L i VSR oot | Yo e
'Ycimklsegmenl min(ps_suppltcost) 'Ysiname
'Yn name sum(1_discount) Tmp1s sum(ps_supplycogt)
count(l_orderkye) ' count
— Tmpa1 [967519280] {.) [24036000000] Tmp12 (ps_suppkey)
4552505 1823769557] X
11820821) L 1 usz1es 1 ! 11602401) [1602400000] Tps
X Tmp20 X [36276] (™) [362760000]

[910519] ' [136577850000] X
X Tmp4
136276) () [800000]
O'p_brand<>'BRAND#45"
not p_type like ‘%BRASS%’
p_size in (9,19,49)
Tmp3
Tmp18 18000001 [160000000000]
127597([227597] 1
Tmpl4 Tmp10 [5] 25]
so000] () [150000] P B O Q-gidsrkey
Tmps X Tmp5s Tmpl o_totalprice — Tmpz
wOmwm Tmp9 [10000141[10000] - (60000001 [6000000] Tmp17 [200000]’ [200000]
251 [25] e2rsonO)p ' [800000] A [800000]
) 1500000
TUr_regionkey the
TC ¢_natipnkey Tmp7? reglonkey TE g‘s"uag;%vy T IL;:J(Eﬁy A TC ps_suppkey o brand ”
%%élgs}’ (1 [. s_name I~ uanutyy Oo brderdate>="1994-01-01' ps_partkey p_type
“mkisegment ASTAe Tin regionksy IZquantity | = pssupplycost posize
- Gr_name="ASIA 1 ation o_drderdate<’1995-01-01' ps_avaigly
[5] [Jres1 [] r20000] [6000000] %]
customer region nation supplier lineitem orders partsupp part

Figure 4.16 The Fifth MVPP, the Query in the List: {Q6, Q1, Q5, Q4, Q7, Q3, and
Q2}

65

2 9
AU@ ol 5
Q5

Q2@ off) e@ Q4

resultd

[967519280]

result7 (_)[910519] result3(_)[182183] result1 () [160240] results () [36276]

result2 [184082]

results [36276]

's_name
& mktsegment 'Yn,name . sum(ps_supplycost) n_name s name
Ygﬁﬁ?\?icrderkye) ysﬁm(l,dlscount) sum(l_quantity) Tmpld yan(ps_suppltcost) Ysﬁm(ps;upp lycost)

Tmp21 [967519280] [24036000000] cout
184082 Q145559 (ps_suppkey)
[] Tmp22

Tmpl2
[7255200000]

Tmp11
[90691(C) [200000]

Op_brand<>"BRAND#45"
not p_type like ‘%BRASS%’
p_size in (9,19,49)

Orzzrson

[227597]

Tmpl3
[150000] () [150000]

1800000]) [800000]
120000}) [10000] Tmp1s

Tmp2 O Oy Jme9
160000007) [6000000] o totalprice 200000 200000
mQ Tmp3 Tmp16 TC ps_suppkey L 101 !
(251 TU s_nationke pe-parsey.
y 227597 1500000 s_supplycost
. TCr_regionkey s_‘sup;ﬁ(ey TC 1 suppke: L 100 1 Bsza\,‘;?q{, T p_partkey
TU c_nationkey Tmpl “name _suppkey p_bran
R " Om orderkey pban
cmkisegment TC ntegionkey - quandty G| orderdate>=1994-01-01" B-bype
- O'r_name="ASIA fname - o| orderdate<’1995-01-01"
[tso000] [25] [10000] [6000000] [1500000] [800000] [] 1200000]
customer region nation supplier lineitem orders partsupp part

Figure 4.17 The Sixth MVPP, the Query in the List: {Q1, Q5, Q4, Q7, Q3, Q2, and
Q6}

2

2
Qs. @ R ¢ 5

“® e
result4 | [967519280]
[182183] resultl(_)[160240]

,Y YS n;

©

3
6 Q@
Q2@

result3

result? [910519] resulté [36276]

;_name
result2() [184082] sum(ps_supplycost) results X 1362761

¥

n_name
sum(l_quantity) 'ann

ame
c_mktsegment min(ps_suppltcost)

sum(l_discount)

'Ysiname
n_name sum(ps_supplycogt)
count(l_orderkye)

'Y%oum ")
Tmp20 ps_suppkey)
[154052] [4552595] (11602400000
[1 Tmp2l
[36276] () [362760000]
Tmp4
[800000]

G p_brand<>’BRAND#45
not p_type like ‘%BRASS%’
p_size in (9,19,49)

Tmpl6 [160000000000]
12275971 227597]
Tmp12 derk
o_orderkey
[150000] /) [150000] otustkey
Egzio[wooo] TmpLe o-totalprice mpt O Tmp2
[6000000]~[6000000] 200000]
eorssnOpoann fs00000] X [eooono] 2000001 X 200000]
N 1500000
1 TUr_regionkey . TU |_suppkey x [! T ps_suppke T p, _gar!key
TC ¢_nationkey 11 ()[s] T s {uan%key I_orderkey Ss’parpt eyy 57 tyrggd
F,Jggéfga’ T feaiﬂf!(ke}/ s:nagr?e 4 rﬂﬂgﬂ{ig Go_prderdate>="1994-01-01' FSZSUPN%’COSl posize
c_mktsegment Or_name="ASIA’ nﬁmr?argg €) - 0_drderdate<’1995-01-01' ps_avaiqty
[5] [25] [10000] [6000000] \J_L[
customer region nation supplier lineitem orders partsupp part

Figure 4.18 The Seventh MVPP, the Query in the List: {Q5, Q4, Q7, Q3, Q2, Q6,
and Q1}

Table 4.3 The Query Processing Cost of the First MVPP

Query fq Access from the Nodes Cost of Nodes Query Processing
Cost

Q1 2 Tmpl, Tmp2, Tmp3, Tmp4, Tmp5, Tmp7, 5, 1, 25, 25, 10000, 50000, 800000, 1602400000, 67,303,240,592
Tmp8, Tmp18, Tmp22 and resultl 200000, 32048000000 and 160240

Q2 6 Tmpl, Tmp2, Tmp3, Tmp4, Tmpll, Tmpl2, 5, 1, 25, 25, 6000000, 1500000, 227597, 9,013,034,785,980
Tmpl13, Tmpl4, Tmp9, Tmpl5, Tmpl7 and 1365582000000, 150000, 136577850000, 4552595
result2 and 184082

Q3 7 Tmpl, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, 5, 1, 25, 25, 10000, 50000, 6000000, 1500000, 9,571,896,175,751
Tmpll, Tmpl2, Tmpl3, Tmpld, Tmpl6 and 227597, 1365582000000, 1823769557 and 182183
result3

Q4 2 Tmpl, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, 5, 1, 25, 25, 10000, 50000, 800000, 1602400000, 53,213,858,672
Tmp7, Tmp8, Tmp9, Tmp10 and result4 150000, 24036000000, and 967519280

Q5 5 Tmp7, Tmpl8, Tmpl9, Tmp20 and result5 800000, 200000, 200000, 7255200000 and 36276 36,282,181,380

Q6 9 Tmp7, Tmpl8, Tmpl9, Tmp20, Tmp5, Tmp21 800000, 200000, 200000, 7255200000, 10000, 68,572,856,484
and result6 362760000 and 36276

Q7 3 Tmpll, Tmpl2, Tmpl3, Tmpl4, Tmp9 , 6000000, 1500000, 227597, 1365582000000, 4,506,505,914,348
Tmpl5 and result? 150000, 136577850000 and 910519

The total query processing cost of the first MVPP

23,316,809,013,207

99

Table 4.4 The Query Processing Cost of All MVVPPs

3rd MVPP
Query 1st MVPP 2nd MVPP 4th MVPP
(Cheapest MVPP)
Q1 67,303,240,592 323,207,240,592 323,207,240,592 323,207,240,592
Q2 9,013,034,785,980 9,013,034,785,980 1,697,558,231,916 1,697,558,231,916
Q3 9,571,896,175,751 9,571,896,175,751 1,997,769,797,079 9,571,896,175,751
Q4 53,213,858,672 53,213,858,672 53,213,858,672 53,213,858,672
Q5 36,282,181,380 800,009,181,380 800,009,181,380 800,009,181,380
Q6 68,572,856,484 1,443,281,456,484 1,443,281,456,484 1,443,281,456,484
Q7 4,506,505,914,348 4,506,505,914,348 4,506,505,914,348 4,506,505,914,348
Total 23,316,809,013,207 25,711,148,613,207 10,821,545,680,471 18,395,672,059,143
Query 5th MVPP 6th MVPP 7th MVPP
Q1 323,207,240,592 67,303,240,592 323,207,240,592
Q2 9,013,034,785,980 9,013,034,785,980 9,013,034,785,980
Q3 9,571,896,175,751 9,571,896,175,751 9,571,896,175,751
Q4 53,213,858,672 53,213,858,672 53,213,858,672
Q5 800,009,181,380 36,282,181,380 800,009,181,380
Q6 1,443,281,456,484 68,572,856,484 1,443,281,456,484
Q7 4,506,505,914,348 4,506,505,914,348 4,506,505,914,348
Total 25,711,148,613,207 23,316,809,013,207 25,711,148,613,207

The 3rd MVPP is the cheapest MVPP because it provides the minimum query processing cost.

L9

68

4.4 The Re-Optimized MVPP Implementation

The objective of the MVPP re-optimization algorithm, described in Figure 3.5
in section 3.4, is to reduce the total query processing cost of the cheapest MVVPP. The
details of algorithm are listed below:

1. Input = the cheapest MVPP
2. Initial list LV = ¢.
3. k= number of queries
4. fori=1tok
Compare Cq(i) of cheapest MVPP with Cq; (i) of other MVPPs.
If Cq; (i) less than Cq(i) then
insert q(i) into LV.
5. For queries in LV, consider the possible commonalities with exists
global equivalent plan as following:
5.1 If there is nothing in common with global equivalent plan
skip to the next query.
5.2 If there is more than one overlapping portion
rewrite this query using exists common subexpression in

MVPP in bottom-up way

The implementations of the MVPP re-optimization algorithm are explained as
follows.

First, the cheapest MVPP is the input of MVPP re-optimization algorithm and
initial the list LV=¢. Next, the query processing cost of each query in the cheapest
MVPP is compared with other MVPPs. Using the query processing cost in Table 4.4,
the details of comparison are described as follows:

Q1: its query processing cost of the cheapest MVPP is 323,207,240,592
whereas its query processing cost of the first and the sixth MVPP is
67,303,240,592.

Q2: its query processing cost of the cheapest MVPP is less than other
MVPPs but is equal to the fourth MVPP.

69

Q3: its query processing cost of the cheapest MVPP is less than other
MVPPs

Q4: its query processing cost is equal to all MVPPs.

Q5: its query processing cost of the cheapest MVPP is 800,009,181,380
whereas its query processing cost of the first and the sixth MVPP is
36,282,181,380.

Q6: its query processing cost of the cheapest MVVPP is 1,443,281,456,484
whereas its query processing cost of the first and the sixth MVPP is
68,572,856,484.

Q7: its query processing cost is equal to all MVPPs.

So the result of the list LV contains {Q1, Q5, Q6} because their query
processing cost of the cheapest MVVPP are more than other MVPPs.

Thereafter, the queries in the list are considered to be rewritten if they can use
alternative common subexpression available in the cheapest MVPP.

For Q1, query processing plan that is used in the cheapest MVPP is shown in
Figure 4.19 (a). Considering optimal query processing plan of Q1 in Figure 4.2, there
are possible common subexpression with the other queries in the cheapest MVPP in
Figure 4.14 as follows:

- Tmp6 in Figure 4.2 is Tmp6 in Figure 4.14.

- Tmp8 in Figure 4.2 is Tmpl7 in Figure 4.14. In Figure 4.14, as Tmp17 is the
ancestor of Tmp6 then Tmp17 should be chosen to be common subexpression for Q1
rather than Tmp6.

- Tmp19 in Figure 4.14 is overlapping portion of Q1, Q5 and Q6. Tmp19 in
Figure 4.14, the cheapest MVPP, is Tmp4 of Q5 in Figure 4.6 and Tmp4 of Q6 in
Figure 4.7.

Because Q1 has overlapping with several queries and its query processing cost
in the cheapest MVPP is higher than that of the first and the sixth MVPP so Q1 in the
cheapest MVPP would be rewritten as follows:

- We match optimal query processing plan of Q1 in bottom-up way from leaf
node up to the query node.

- We can match the node in optimal query processing plan of Q1 with the

70

nodes in the cheapest MVPP at node Tmp6 and Tmpl7 in Figure 4.14. Tmpl7 in
Figure 4.14 is the conjunctively join of the base relations i.e. REGION, NATION,
SUPPLIER, and PARTSUPP of Q1.

- The new node is introduced to join remain base relation, PART, with Tmp17
called Tmp19 in Figure 4.19 (b) and Figure 4.20.

We present the equivalent plan of Q1 in MVPP before and after rewritten as
Figure 4.19. Suppose that R, N, S, PS and P represent the base relation REGION,
NATION, SUPPLIER, PARTSUPP AND PART respectively. After rewrite Q1, the
execution plan of Q1 in the MVPP, shown as Figure 4.19 (b), is same as the
individual optimal query plan of Q1 in Figure 4.2. Tmp17 in Figure 4.19 (b) is Tmp8
of Figure 4.2. Tmpl9 in Figure 4.19 (b) is the Tmpl0 of Figure 4.2. The query
processing cost of Q1 after rewritten is reduced from 323,207,240,592 to
67,303,240,592.

2

u@

resultli [160240]
Yo name
‘

Q1

200000)
800000] X (800000] | 1% [200000]

Tmps!
[1000014[10000]

[25] [10000]
region nation supplier partsupp part R N S PS P

(a) Q1 before rewriting, black node represents the node has to be rewritten
A@

resultli [160240]

LA QL

32048000000]
X
[200000] () [200000]

mp18.

Tmp19
[160240]

Tmp17
[160240] () [1602400000]

Tmpé
[2003) [50000]

800000]) 800000
Tmp4 Tmp16
B Qes e
[10000] [10000]

Tmp2 .

3

mOm 2510 [25) I g:j“ ;
TUs_nationkey | BSsupplycost

Tmpl Tur_regionkey S suppkey Be-avhiaty ud artkey

H@E)]

TC n_regionko b

ASIAY LI -
Gr_name="ASIA opetion &

(51 251 [10000] [800000] [200000]

nnnnnnn pplier parsupp et R N S PS P

(b) Q1 after rewriting, black node represents the new node after rewriting

Figure 4.19 The Execution Plan of Q1 Before and After Rewriting

71

For Q5 and Q6, they do not have sharable subexpression with other queries in
the cheapest MVVPP. Therefore, Q5 and Q6 are ignored to rewrite.

Finally we push select, project operation and aggregate function down as deep
as possible for all affected queries. The result of re-optimized cheapest MVPP is
shown in Figure 4.20. Considering the impact to Q5 and Q6 after select operation is
push down. In the cheapest MVPP in Figure 4.14, select operation of Q5 and Q6, that
is “P_ BRAND <> ‘BRAND#45> AND NOT P _TYPE LIKE ‘%BRASS%’ AND
P_SIZE IN (9,19,49)”, cannot be pushed down beyond Tmpl8 because Q1 is also
derived from Tmpl9 which uses the result from Tmpl8 without these selection
operation. After Q1 is rewritten, this operation can be pushed down beyond
conjunctively joined node. The select operation node is Tmp20 and the conjunctively
joined node is Tmp21 in Figure 4.20. So, the query processing cost of Q5 and Q6 in
Figure 4.20 is less than the cheapest MVPP. The query processing cost after the
cheapest MVPP is re-optimized is shown in Table 4.5. The result shows that the total
query processing cost of MVPP after re-optimized is reduced from
10,821,545,680,471 to 8,427,206,080,471.

6 3 7 2 2 9
2@ Q7 e@ *@ 1e o 5
*@
resultd | [967519280]
result? 910519] It result1(C)[160240 results () [36276]
resoiz() [184082] [] result3(C)[182183] []
results [36276]
’Yn name yiu'l?{” g supplycost)
’Yﬂ,"ame 'Yc,mMsegment sum(l_quantity) Tmp23 pe-supply 'Yn name s_name
count(l_orderkye) sum(l_discount) mp: min(ps_suppltcost) sum(ps_supplycost)
Tmpll [967519280] [24036000000]

Tmp15
[184082]

X

[182183] [273369715461]

count
[276048000000] 1\ 025 (ps_suppkey)

[910519] ' [136577850000]

P
&
Tmpg 36276] G [7255200000]
[1201113] () [12018006Q

<N AR

X

Tmp20
190691 [200000]

Op_brpnd<>"BRAND#45
not p_type like ‘%BRASS%’

Tmp12 1800000] () p_size in (9,19,49)
150000
[1O [150000] . ﬁ:&&%{ﬁ Tmp16
- 200000 200000
wQm Tmpo T ps suppkcy 1200000} () [200000]
TUr_regionk eI el ' 1227597)[1500000] E?:E’SE'pfyyws(mets
T ¢ patipnkey Tmpy L] 19 T s-Datignkey T |supphey ps avaiaty p.partkey
lame —)_!
Cr’amcﬂ%gmem ¢ U n_regionkey - 1" Quantity O orderdate>="1994-01-01" boype
- Or_name="ASIA” nZnationker I § ’
- n_name orderdate<’1995-01-01'
[150000] [5] [25] [10000] [6000000] [1500000] [800000] [] 200000
customer region nation supplier lineitem orders partsupp part

Figure 4.20 The Cheapest MVPP after Applying the MVVPP Re-Optimization
Algorithm

72

Table 4.5 The Query Processing Cost of the Cheapest MVPP and the Re-Optimized

MVPP
Query The Cheapest MVPP The Re-optimized MVPP
Query number 1 (Q1) 323,207,240,592 67,303,240,592
Query number 2 (Q2) 1,697,558,231,916 1,697,558,231,916
Query number 3 (Q3) 1,997,769,797,079 1,997,769,797,079
Query number 4 (Q4) 53,213,858,672 53,213,858,672
Query number 5 (Q5) 800,009,181,380 36,282,181,380
Query number 6 (Q6) 1,443,281,456,484 68,572,856,484
Query number 7 (Q7) 4,506,505,914,348 4,506,505,914,348
Total 10,821,545,680,471 8,427,206,080,471

The result from Table 4.5 shows that our MVPP re-optimization algorithm
reduces the total query processing cost of the cheapest MVVPP. Moreover, we further
validate our re-optimized MVPP by implementing the selection a set of view to be
materialized by 2PO in section 4.5. Our expectation is that the total cost which is the
summation of query processing cost and materialized view maintenance cost of the re-
optimized MVPP should less than that of the cheapest MVPP.

4.5 Evaluation of the MVPP Re-Optimization Algorithm

We evaluate our MVPP re-optimization algorithm by selecting the set of
views to be materialized by 2PO. Our goal is that the total cost of the re-optimized
MVPP should less than that of the cheapest MVPP for all costs which are all-virtual
view, all-materialized views and materialized view.

The details of implementing 2PO for materialized view selection are described
in Figure 4.21.

73

begin

7. Input the MVPP represented by a DAG

8. Use depth first search from root nodes to base relations to

search through all of the nodes in the DAG.

9. Produce the sequence of nodes into a binary string.

10. Call Iterative Improvement

11. Call Simulated Annealing algorithm

12. Present set of views to materialized with minimum cost
end;

Figure 4.21 The Materialized View Selection with 2PO

We apply the 2PO algorithm to the cheapest MVPP in Figure 4.14. We first
search through the DAG for Figure 4.14 using depth first search, we obtain the
mapping array as follow:

[Tmp22,0], [Tmpl19,0], [Tmp18,0], [Tmpl6,0], [Tmp6,0], [Tmp5,0],
[Tmp4,0], [Tmp3,0], [Tmp2,0], [Tmpl,0], [Tmpl5,0], [Tmp7,0], [Tmpl4,O0],
[Tmp10,0], [Tmp9,0], [Tmp13,0], [Tmpl12,0], [Tmpll,0], [Tmp8,0], [Tmp23,0],
[Tmpl7,0], [Tmp20,0], [Tmp21,0], [Tmp25,0], [Tmp24,0]

7 2 2
. Q4 Ql. 9 5
6 7@ s Qs
e o
resultd | [967519280]
resul!S [182183] resultl(C)[160240]
result? [910519] resulté [36276]
'n_name Vs name n_name results X (362761
result2! [184082] ysum(liquamily) sum(ps_supplycost) Yan(ps_suppltcost)
'Yc,mktsegmenl 'Ys,name
'Yn_nam(le e sum(I_discount) mp23 sum(ps_supplycopt) .
count(l_orderkye} count
- Tmpi1 [967519280] X3 [24036000000] Tmp22 (ps_suppkey)
us40s2) @ (276040000000) [182183] @Y [273369715461] 11602401 C) [1602400000] Tmp21
D
to10519] () [136577850000] 1362761 (") [362760000]

X
X X
Tmp20
Tmpl4
46008] () [6869560251] 1362761 O [800000]
™ O'p_brand<>’BRAND#45"
not p_type like ‘%BRASS%"
p_size in (9,19,49)

PR
v‘ Tmp19
Tmp10 [800000] @) [260000000000]
1227597 227597] X
Tmp12 Tmp4 [5; 25]
1250000]) [150000] (e Tmps O S-Sy
[10000}4[10000]
[Tmp3

Tmpl3
130183 C [750009

X

Tmp2 Tmp7 ‘ o_totalprice Tmpl
Tmpl6
1 [6000000][6000000] 2
. Tmp9 [800000] K [800000] 12000001 [200000]
eI 227597 [2500000]
TUr_regionkey TU s_natignkey TC |_suppkey TU p_partkey
T ¢ nationke L S-Ubpkey | orderkey 4 W pss—s‘aﬁ tey p_brand
E%ESEESY Y me T regionkey s-hame {-gggﬂ{:g Go_prderdate>="1994-01-01' ES:EUW.Y%OS. p-type
c_mkisegment Gr_name="ASIA nhatlonke: - o_grderdate<'1995-01-01' ps_avaigly
5] [Jres1 [10000] [6000000] %]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node

Figure 4.22 The Cheapest MVPP with Materialized Views

74

So initially, the binary string of above mapping {0, 0,0,0,0,0,0,0,0,0, 0, 0,
0,0,00000,0,0,0,0,0, 0} indicates that all intermediate node are virtual views.
The result, after 2PO algorithm is applied to select the set of views to be materialized,
{0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0, 0, 0, 1} indicates that Tmp19,
Tmp6, Tmpl5, Tmpll and Tmp24 are materialized views. Figure 4.22 represents the
cheapest MVPP with materialized views after 2PO is applied.

Considering query Q1 in the cheapest MVPP in Figure 4.14, its frequency of
executing the query is 2, before materializing the intermediate nodes, Q1 accesses the
nodes named Tmpl, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmpl6, Tmpl8, Tmpl9,
Tmp22 and resultl. The cost of each node is 5, 1, 25, 25, 10000, 50000, 800000,
200000, 160000000000, 1602400000 and 160240, respectively. So, the query
processing cost of query Q1 is (2)*(5 + 1 + 25 + 25 + 10000 + 50000 + 800000 +
200000 + 160000000000 + 1602400000 + 160240) = 323,207,240,592.

After Tmp6 and Tmp19 are materialized, Q1 accesses the nodes named Tmpé,
Tmp19, Tmp22 and resultl. The cost of each node is 2003, 800000, 1602400000 and
160240, respectively. So, the query processing cost of Q1 using materialized views,
Tmp6 and Tmp19, 2*(2003 + 800000 + 1602400000 + 160240) that is 3,206,724,486.
It would be beneficial to materialize them, reducing the processing cost from
323,207,240,592 to 3,206,724,486.

However, there is materialized view maintenance cost whenever an update of
involved base relations occurs. Tmp6 is constructed on three base relations, and
accesses nodes Tmpl, Tmp2, Tmp3, Tmp4, Tmp5 and the node itself. The cost of
each node is 5, 1, 25, 25, 10000 and 50000, respectively. Then, the materialized view
maintenance cost of Tmp6 is 3*(5 + 1 + 25 + 25 + 10000 + 50000) that is 180,168.
The view maintenance cost of Tmp19, which is constructed on two base relations and
accesses nodes Tmpl8, Tmpl9 and the node itself, is 2*(800000 + 200000 +
160000000000) that is 320,002,000,000.

After materialized views those five nodes, the total query processing cost is
469,452,527,576 and materialized view maintenance cost is 5,892,778,110,452. So
the total cost of the cheapest MVPP is 6,362,230,638,028. The materialized view
maintenance cost and query processing cost of the cheapest MVPP are shown Table

4.6 and 4.7 respectively.

75

Table 4.6 The Maintenance Cost of the Cheapest MVPP

Materialized Number of Constructed from Nodes Maintenance Cost
View Base Relations
Tmp6 3 Tmpl, Tmp2, Tmp3, Tmp4, 180,168
Tmp5, Tmp6
Tmpll 5 Tmpl, Tmp2, Tmp3, Tmp4, 1,426,977,515,570

Tmp5, Tmp6, Tmp7, Tmp8,
Tmp9, TM10, Tmpll
Tmpl5 5 Tmpl, Tmp2, Tmp3, Tmp4, 1,414,630,939,520
Tmpl2, Tmpl3, Tmp9, Tmplo,
Tmpl4, Tmp7, Tmpl5

Tmp19 2 Tmp16, Tmp18, Tmpl9 320,002,000,000
Tmp24 2 Tmp7, Tmp9, Tmpl10, Tmp24 2,731,179,455,194
Total materialized view maintenance cost 5,892,790,090,452

Table 4.7 The Query Processing Cost of the Cheapest MVPP

Query Access from Node Query Processing Cost
Query number 1 (Q1) Tmp6, Tmpl9, Tmp22, resultl 3,206,724,486
Query number 2 (Q2) Tmp15, result2 2,208,984
Query number 3 (Q3) Tmpl1l, result3 2,550,562
Query number 4 (Q4) Tmp6, Tmpl6, Tmpl7, Tmpl2, 53,213,742,566
Tmp23, result4
Query number 5 (Q5) Tmpl9, Tmp20, result5 8,181,380
Query number 6 (Q6) Tmpl9, Tmp20, Tmp21, Tmp5, 3,279,656,484
resulté
Query number 7 (Q7) Tmp24, Tmpl2, Tmp25, result? 409,739,463,114

Total query processing cost 469,452,527,576

76

We apply the 2PO algorithm to the re-optimized MVPP in Figure 4.20. The
materialize views are Tmp6, Tmpll, Tmpl5, Tmp2l and Tmp24. Figure 4.23
represents the re-optimized MVPP with materialized views after 2PO is applied. The
results from 2PO for the re-optimized MVPP are provided in Appendix E.

6 3 7 2 2 9
1
B ¢ 79 ¢ @ “@ 2@ x@ ;
o
resultd | [967519280]
resulizQ) [184082] result? () [910519] - result3()[182183] result1()[160240] results () [36276]
'YS name results [36276]
n_name sum(ps_supplycost
'Yniname 'Ycimktsegmen(’Ysﬁm(lfquamity) 023 (ps_supplycost) anname y;name
count(_orderkye) stm(l_discount) me min(ps_suppltcost) sum(ps_supplycost)
Tmp15 Tmpll [967519280) ()
‘count
[184082] [276048000000] 1., o [162183] Ut)

[136577850000]

Tmp20

Tmp13 [9069)) [200000]

p;
01831 () [750000

G'b_brnd<>"BRAND#45"
not p_type like ‘%BRASS%’

Tmpi12 [800000] p_size in (9,19,49)
150000] 150000 i
(2500001 () [150000] gI[ourlg!%rek;y Tmp16
0_totalprice [200000](_) [200000]
e et b s
>_| ‘mpl
)) 12275971 [1500000] ps-supplycost
K X
gy Tops g’” ” TRy (T ey s
qam& 4 WOE TC n_regionke s-name ["quantity Oo| orderdate>="1994-01-01' b-type
c_mktsegment o . N n‘na%orll'l(e)}/ .j,scuum p_size
r_name="ASIA f-name o| orderdate<’1995-01-01'
[150000] [[25] [10000] [6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view nodes

Figure 4.23 The Re-Optimized MVPP with Materialized View Nodes Selected by
2PO

After 2PO is applied to select the set of views to be materialized, the total
query processing cost is 533,527,035,440 and the materialized view maintenance cost
is 5,587,300,890,452. Therefore, the total cost of the re-optimized MVPP is
6,120,827,925,892. The materialized view maintenance cost of materialized views
and the query processing cost of the re-optimized MVPP are shown in Table 4.8 and

4.9 respectively.

77

Table 4.8 The Maintenance Cost of the Re-Optimized MVPP

Materialized Number of

Constructed from Nodes

Maintenance

View Base Relations Cost

Tmp6 3 Tmpl, Tmp2, Tmp3, Tmp4, 180,168
Tmp5, Tmp6

Tmpll 5 Tmpl, Tmp2, Tmp3, Tmp4, 1,426,977,515,570
Tmp5, Tmp6, Tmp7, Tmp8,
Tmp9, Tm10, Tmpll

Tmpl5 5 Tmpl, Tmp2, Tmp3, Tmp4, 1,414,630,939,520
Tmpl2, Tmpl3, Tmp9, Tmplo,
Tmpl4, Tmp7, Tmpl5

Tmp21 2 Tmpl16, Tmpl8, Tmp20, Tmp21 14,512,800,000

Tmp24 2 Tmp7, Tmp9, Tmp10, Tmp24 2,731,179,455,194

Total materialized view maintenance cost 5,587,300,890,452

Table 4.9 The Query Processing Cost of the Re-Optimized MVPP

Query Access from Node Query Processing Cost

Query number 1 (Q1) Tmp6, Tmpl6, Tmpl7, Tmpl8, 67,303,124,486
Tmp19, resultl

Query number 2 (Q2) Tmpl5, result2 2,208,984

Query number 3 (Q3) Tmpll, result3 2,550,562

Query number 4 (Q4) Tmp6, Tmpl6, Tmpl7, Tmpl2, 53,213,742,566
Tmp23, result4

Query number 5 (Q5) Tmp21, results 362,760

Query number 6 (Q6) Tmp21, Tmp5, Tmp22, result6 3,265,582,968

Query number 7 (Q7) Tmp24, Tmpl2, Tmp25, result? 409,739,463,114

Total query processing cost

533,527,035,440

78

We calculate the query processing cost, materialized view maintenance cost
and total cost of all-virtual-views, all-materialized views and materialized views on
the set of materialized views selected by 2PO algorithm. All costs of the cheapest
MVPP are shown in Table 4.10 and all costs of the re-optimized MVPP are shown in
Table 4.11.

Table 4.10 The Query Processing Cost, Maintenance Cost and Total Cost of the

Cheapest MVVPP
Cost of Cost of
)) Total Cost
Query Processing Maintenance
All-virtual view 10,821,545,680,471 0 10,821,545,680,471
Gg\"vr;‘ate”a“zed 1.940.978,234 9,090,266.440303 9.092,207,418,537
2P0 469.452 527 576 5,892,790,090,452 6.362,242.618,028

Table 4.11 The Query Processing Cost, Maintenance Cost and Total Cost of the Re-
Optimized MVPP

Cost of query Cost of
)) Total Cost
Processing Maintenance
All-virtual view 8 427.206,080.471 0 8.427.206,080,471
G!\'erate”a“zed 1,040,978.234 7,686,779,440,303 7,688,720,418 537
2P0 533,527,035440 5,587,300,890,452 6,120.827.925,892

The comparisons of all costs for the cheapest MVPP and the re-optimized
MVPP are shown in Table 4.12. The comparison result shows that all total costs of
the re-optimized MVPP are less than that of the cheapest MVPP. The total cost of all-
virtual view reduced from 10,821,545,680,471 to 8,427,206,080,471, the total cost of
all-materialized views is reduced from 9,092,207,418,537 to 7,688,720,418,537, and

79

the total cost of selecting materialized views using 2PO algorithm is reduced from
6,362,242,618,028 to 6,120,827,925,892.

Table 4.12 The Comparison of Total Costs of the Cheapest MVPP and the Re-
Optimized MVPP

Total Cost

The Cheapest MVPP The Re-Optimized MVPP

All-virtual view 10,821,545,680,471 8,427,206,080,471
All-materialized views 9,092,207,418,537 7,688,720,418,537
2PO 6,362,242,618,028 6,120,827,925,892

The above experiments are the static materialized view selection, and applying
our MVPP re-optimization algorithm to improve the query processing cost of MVPP.
However, the static approach has to be processed repeatedly all requirements, existing
and new requirements, whenever the requirements are changed. In the next section,
the experiments of dynamic materialized view selection to support the new
requirements will be presented. The MVPP, shown in Figure 4.23, will be used as an

initial search space for the dynamic phase.

80

4.6 Dynamic Materialized View Implementation

According to the changing requirement situations in section 3.7.1 include (1)
the existing queries are deleted, (2) the new queries are added, (3) the definitions of
existing query are changed and (4) the frequencies of executing queries and/or the
frequencies of updating base relations are changed. For our new requirements that we
are implementing includes the new queries are added and the existing queries are
deleted. In case of the definition of existing queries is changed, we implement by
deleting the existing query and re-adding the query with new definition. In case, when
the frequency of executing query and/or frequency of updating base relations is
changed, the query processing cost and maintenance cost always changed
accordingly. The existing MVPP structure is not changed as neither new node is
created nor the existing node is deleted. The nodes in existing MVPP, used to
construct the queries might be affected. Therefore, it is possible that the existing
materialized views will be un-materialized, and the virtual views will be materialized
according to the cost function. Further investigation, for the case subtree of existing
query is the subsumption of subtree of new query, so the existing query can be
rewritten using the sharable subexpression with new query. We show our example
experiment of this case as Example A in Appendix B.

We design the scenario for our experiments regarding to the types of
commonality mentioned in section 3.3 to investigate how the existing MVPP is
affected by adding each type of query. The scenarios cover three commonalities that
are (1) nothing in common (2) subsumption (3) partially overlapping. Moreover, we
also implement the query deletion and addition of the query that is constructed on all
base relations.

The following scenarios are the design of our experiments to validate our
dynamic materialized view approach.

(1) Adding new query identified as nothing in common with existing MVPP is
described in section 4.6.1.2.

(2) Adding new query identified as subsumption of existing MVPP is

described in section 4.6.1.3.

81

(3) Adding new query identified as partial overlapping with existing MVPP is
described in section 4.6.1.4

(4) Deleting the existing query to see the effect of deletion the existing query
to MVPP is described in section 4.6.1.5.

(5) Adding new query constructed on all base relations, described in section
4.6.1.6. We would like to verify that our affected node identification algorithm is
valid even new query use all base relations. Using all base relations is possible and all
existing queries are affected by the new query.

(6) As in real environment, several types of new query are added together then
we add all types of query simultaneously into the existing MVPP for our experiment.
The detail of this scenario is described in 4.6.2 and 4.6.3.

In our experiment, the initial MVPP structure generated in the static phase as

shown in Figure 4.23 is the initial MVPP for the dynamic phase.

4.6.1 Query Sets and Implementation of Scenarios

4.6.1.1 Query Set for New Requirements

In this section, we explain the selected queries for dynamic phase
covering our above scenarios. The queries are constructed on base relations and/or the
existing materialized view(s) generated in the static phase. The query set for dynamic
phase includes Query8 to Query13. Their SQL statements and relational algebra query

trees are described as follows:

82

Query Q8 with the query frequency of 6 produces the maximum of item’s tax
for each brand for specific part type and the committed date is before receipt date. Its

relational algebra tree is shown in Figure 4.24.

Query Q8

SELECT P_BRAND, MAX(L_TAX)
FROM PART, LINEITEM

WHERE P_PARTKEY = L_PARTKEY

AND P_TYPE LIKE '%BRASS%'
AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY P_BRAND;

6

@

result8 g [758746]

'Yp_brand
max(l_tax)

[758746] [151951851168]

[3793296] [3793296] [40058] [40058]
Tmp2 Tmp4
TU |_partkey TU p_partkey
I_tax p_brand
[3793296] [6000000] [40058] [200000]
Tmpl Tmp3
O’ |_commitdate G p_type like
< |_receiptdate ‘%BRASS%’
[6000000] [200000]
lineitem part

Figure 4.24 Relational Algebra Query Tree of Query Q8

83

Query Q9 with the query frequency of 4 produces the average total price of
orders occurred in 1994 for each nation of customers in specific region, ASIA. Its

relational algebra tree is shown in Figure 4.25.

Query Q9

SELECT
FROM
WHERE

N_NAME, AVG(O_TOTALPRICE)
REGION, NATION, CUSTOMER, ORDERS
C_NATIONKEY = N_NATIONKEY

AND N_REGIONKEY = R_REGIONKEY
AND C_CUSTKEY = O_CUSTKEY
AND O_ORDERDATE >='1994-01-01'
AND O_ORDERDATE < '1995-01-01'
AND R_NAME ="ASIA'

GROUP BY N_NAME;

4

LX)

result9 é [46008]

'Yn nam

e
avg(o_totalprice)

[6869560251]
custkey

[750000]

nationkey [227597]

[227597]
Tmp8

[25] TC o_custkey

o_totalprice

[150000]
Tmp5 4

. [150000]
regionkey

[28] [227597]
Tmp7
7T c_nationkey
c_custkey

[1500000]

O'o_orderdate

>="1994-01-01'
o_orderdate

<’1995-01-01'

™ ey

I%G r_name="ASIA’ n_name
[5] [25]

region nation

[] r2s0000] [1500000]
customer orders

Figure 4.25 Relational Algebra Query Tree of Query Q9

84

Query Q10 with the query frequency of 5 produces the minimum discount for
each type of order’s priority occurred in 1994. Its relational algebra tree is shown in

Figure 4.26.

Query Q10

SELECT O_ORDERPRIORITY, MIN(L_DISCOUNT)
FROM ORDERS, LINEITEM

WHERE O_ORDERKEY = L_ORDERKEY

AND O_ORDERDATE >='1994-01-01'
AND O_ORDERDATE < '1995-01-01'
GROUP BY O_ORDERPRIORITY;

5
QL@

result10 [910519]

"Yo_orderpriority
min(l_discount)

[1365582000000

[227597]

[6000000]
Tmp3

Tmpl

[6000000] [227597]

7T o_orderkey
o_orderpriority

TU |_orderkey
I_discount 12275971 ()[1500000]
Tmp2
Oo_orderdate>="1994-01-01'
o_orderdate<’1995-01-01"
[6000000] [1500000]
lineitem orders

Figure 4.26 Relational Algebra Query Tree of Query Q10

85

Query Q11 with the query frequency of 5 produces the summation of extended
price for each status of order occurred in 1994 and the committed date is before

receipt date. Its relational algebra tree is shown in Figure 4.27.

Query Q11

SELECT O_ORDERSTATUS, SUM(L_EXTENDEDPRICE)
FROM PARTSUPP, LINEITEM, ORDERS

WHERE O_ORDERKEY = L_ORDERKEY

AND PS_PARTKEY = L_PARTKEY

AND PS_SUPPKEY = L_SUPPKEY

AND O_ORDERDATE >='1994-01-01'

AND O_ORDERDATE < '1995-01-01'

AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY O_ORDERSTATUS;

5
Q11

resultll [575169]

o_orderstatus
sum(l_extendedprice)

[575169]
Tmp7

[460135200000]

x| suppkey
partkey

[575169]
g [863342789712] [500000] () [800000]
Tmp6 4
TU ps_suppkey
3793296 3793296 -
:] : 1 [227597] ps_partkey
Tmp2 Tmp4
TC I_suppkey
| _parke: TC o_orderkey
|"orderkey o_orderstatus
I"extendedprice
[3793296] [6000000] [227597] [1500000]
Tmpl O |_commitdate Tmp3 Oo_orderdate
< |_receiptdate >="1994-01-01'
0_orderdate
<’1995-01-01'
[6000000] [1500000] []so0000]
lineitem orders partsupp

Figure 4.27 Relational Algebra Query Tree of Query Q11

86

Query Q12 with the query frequency of 2 produces the maximum of extended
price for each supplier in specific region, ASIA, and specific part type that committed

date is before receipt date. Its relational algebra tree is shown in Figure 4.28.

Query Q12

SELECT
FROM
WHERE

GROUP BY

[11

Tmp2

mp éﬂ:r_regionkey

1Bl

TmPLT Gt name
="ASIA’
[5]

region

N_NAME, MAX(L_EXTENDEDPRICE)
REGION, NATION, SUPPLIER, PARTSUPP, PART, LINEITEM
S_SUPPKEY = PS_SUPPKEY
AND S_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY
AND PS_PARTKEY = L_PARTKEY
AND PS_SUPPKEY = L_SUPPKEY
AND PS_PARTKEY =P_PARTKEY
AND P_TYPE LIKE '%BRASS%'
AND L_COMMITDATE < L_RECEIPTDATE
AND R_NAME = 'ASIA'
N_NAME;

2

Q@

resultlZé [152424]

'Yn_name

max(l_extendedprice)
[122113784832]

[6418893920]

[3793296] [3793296]

X partkey

[160240] [1602400000]

[40058]
Tmpl0 4

TTI._suppke:
[800000] Eggfég%idprice
TCp_partkey

[40058]

[800000]
M nationkey ~ Tmp7 4

[10000] [3793296] () [6000000]

[40058] (") [200000] Tmp12 1

N
O I_commitdate
Tmp9 A

i < |_receiptdate
TUs_nationkey

s_suppkey TCps_suppkey G p_type like
i s_partke ‘%BRASS%’
i ps_partkey
n_name
[25] [Jrooooy [] 800000] |;L| [200000] []ts000000)
nation supplier partsupp part lineitem

Figure 4.28 Relational Algebra Query Tree of Query Q12

87

Query Q13 with the query frequency of 5 produces the average of extended

price for each brand that customer in region, ASIA, ordered in 1994 with specific part

type that available quantity is more than 200, and the committed date is before receipt

date. Its relational algebra tree is shown in Figure 4.29.

Query Q13
SELECT
FROM

WHERE

GROUP BY

P_BRAND, AVG(L_EXTENDEDPRICE)
REGION, NATION, SUPPLIER, CUSTOMER, PART, ORDERS,
PARTSUPP, LINEITEM

C_CUSTKEY = O_CUSTKEY

AND C_NATIONKEY = S_NATIONKEY

AND S_NATIONKEY = N_NATIONKEY

AND N_REGIONKEY = R_REGIONKEY

AND O_ORDERKEY = L_ORDERKEY

AND S_SUPPKEY = PS_SUPPKEY

AND P_PARTKEY =PS_PARTKEY

AND PS_PARTKEY = L_PARTKEY

AND PS_SUPPKEY = L_SUPPKEY

AND O_ORDERDATE >= '1994-01-01'

AND O_ORDERDATE < '1995-01-01'

AND L_COMMITDATE < L_RECEIPTDATE

AND P_TYPE LIKE '%BRASS%'

AND PS_AVAILQTY < 2000

AND R_NAME = 'ASIA'

P_BRAND;

88

result13 [215]

p_brand
avg(l_extendedprice)

[6998835347]

Tmp18 [150000] [150000]
orderkey Tmp19 4
[24626077632]
DX partkey [227597]
[6492]
Tmp12 [128[%45976] [3793206] () [3793296]
partkey TU c_nationkey
c_custkey
[40058] TT o_orderkey
TCI_suppkey 0_custkey
|_partkey
[50000] [159750] I_orderkey
nationkey Tmp8 n;f’-hpriﬁkey |_extendedprice
s, suppkey - 1227597] (O[1500000]
ps_partkey [3793296] (()[6000000] ~ TMp16 4
Tmp3 [40058] (") [200000] Tmp13 G | commitdate Go_orderdate
[1] Tmp10 - >="1994-01-01'
Tmp2 [25] [15-?—7507 800000] < |_receiptdate o orderdate
m 21¢ '
10 "o G p_type like <*1995-01-01
TC n_regionkey |7Ts_nationkey ps_availqty ‘%BRASS%’
TMPLT Or_name="ASIA” | " " otionkey | & suppkey <2000
5] [25] [10000] (800000] (200000] [teoooooc) [soo0o0y [] 1250000]
region nation supplier partsupp part lineitem orders customer

Figure 4.29 Relational Algebra Query Tree of Query Q13

Suppose that all base relations are updated once and the frequencies of
executing a query of Q8, Q9, Q10, Q11, Q12 and Q13 are 6, 4, 5, 5, 2 and 5

respectively.

The relevance of the new queries to existing MVPP generated in static phase
shown in Figure 4.23 is explained as follows:

Q8 is classified as nothing in common because there is neither conjunctive
joined nor select operation sharable subexpression with existing MVPP.

Q9 and Q10 are classified as totally overlapping or subsumption. Tmp9 in
individual plan of Q9 in Figure 4.25 is subsumption of the existing query Q2 at node
Tmp14 in the existing MVPP, Figure 4.23, and there is no existing materialized view
in this subgraph. Tmp4 in individual plan of Q10 in Figure 4.26 is subsumption of the
existing query Q7 at the materialized view node Tmp24 in Figure 4.23.

89

Q11 and Q12 are classified as partially overlapping. Q11 is partially
overlapping with Q7, the materialized view Tmp24 in existing MVPP is the sharable
subexpression for Q7 and Q11. The other nodes of Q11 are not the sharable
subexpression with the existing MVVPP. Q12 is partially overlapping with Q1 and Q4.
Tmpl7 is sharing subexpression for Q12, Q1 and Q4. Tmpl9 is sharable
subexpression for Q12 and Q1. The other nodes of Q12 are not sharable
subexpression with the existing MVPP.

Q13 is constructed by using all base relations in TPC-H schema and it has

sharable subexpressions with existing MVPP that will be explained in section 4.6.1.6.

4.6.1.2 Analysis Result of the Nothing in Common Data Set

We add only Q8 into existing MVPP, as Q8 does not have shareable
subexpression with the existing MVPP then new nodes Tmp26, Tmp27 and Tmp28
are created to support Q8. Figure 4.30 shows MVPP after Q8 is merged.

Next, the affected node identification algorithm mentioned in section 3.7.2 is
applied to identify the affected nodes. We first depth first search to find the existing
nodes used to construct Q8 that are Tmp7 and Tmpl18. Although Q8 is built on
existing intermediate nodes, Tmp7 and Tmp18, both nodes are the project operation
the ancestor of base relation that is not taken into consideration as the directly affected
node. Thus, only new nodes {Tmp26, Tmp27 and Tmp28} are the set of views to be
selected to be new materialized views.

Therefore, the number of nodes to be selected in the dynamic phase is 3 nodes.
All nodes are new nodes to support new requirements, whereas the number of nodes
to be selected by rerun static approach for all queries is 28 nodes described below.
Thereafter, the selection algorithm, 2PO, is applied to select the set of views to be
materialized. The result is that only Tmp28 is materialized.

To evaluate the performance of our dynamic approach by the static approach
is performed on the set of all queries which includes Q1 to Q7 and Q8. Figure 4.31
shows the re-optimized MVPP generated by static approach for Q1 to Q7 and Q8. The
MVPP structure in Figure 4.31 provides the same structure as the dynamic approach
in Figure 4.30. The comparison of the results from the static approach and the

dynamic approach are shown in Table 4.13. The result shows that although total cost

90

of the static approach equal to the dynamic approach, the number of nodes to be
selected by dynamic approach is 3 nodes, which all are new nodes, whereas the
number of nodes to be selected by static approach that we have to rerun from the

beginning is 28 nodes for all queries, Q1 to Q7 and Q8.

6 3 7 2 2 9 6

@ Q7 €@ U@ 1@ *@ 5 s @
=@ 4

resultd | [967519280]
result7) [910519 resultl results () [36276] result_ad2 () [758746]
resunz [184082] [] result3()[182183] [160240]
Y ame "Ys.name v e O I
i n_name
Ve miseqment sam (1_quantity) Sum(ps_supplycost) nemame olcost) . brandy |
'Ygamle oceriye) sum(_discount) Tmp23 Y Tmp28
K s_name
TmpL1 [o67519280] () [24036000000] sum(ps._qupplycost) Yeount [7587““LQ[151951551155]
Tmp1s X (ps_suppkey) -
240821 [182183] [27336971546; _
[184082] [276048000000] Tmp19 -

Tmp25 P 6761 T [3793206] O |

o [910519) () [136577850000] 12602401 ysz048000000) 271 [362760000] TmpT - 18000000] |

X D ps
- | Tmp26
-
Tmpl4 () 11602400000] e 140081 O (200000
[46008] () [6869560251] _
~ Tmp21 .
X 36276) @ [7255200000] O pﬂ;a/nkc %BRASS%
|_rdsgiptdate X

Tmp13 2 [gggg]Tmpzo ¢
1301831 () [750009 3 [200060]
e [50000] _ /
™ > Tmp10 Gp_brand<>/BRAND#45"
- . .
not p_tyge like ‘%BRASS%
~1227597) [227597] I
\ - 800000] () [800000] p_sige jn (9,19.49)

- S-idrkey Tmp16 /

Tmpa [5]() [25]

120000)) [10000] o
%
Tmp2 TmpS [6000000] j [6000000] o totalprice
! 2000001 () [200000]
wOmn Tmp3 Tmp? Tmpo TC ps_suppley 12000001 () 200000]
251 () [25] 227507] ps_partkey mp18
lcost
P K U s_nationkey TC |_suppkey [1([1500000] pssupp!
Tmplé reglonkey ssuppkey I,Og(iekr:;y Bavhialy T P :é)raarr(‘léey
T g-patprey LB T n_regionke: gianity O orderdate>="1994-01-01" p-ae
X xsn forgionkey i g b
O'r_name="ASIA' o [“commitdate | orderdate<*1995-01-01'

Tmp12
250000] () [150000)

name I-receiptdate

¢ mkisegment
[Jrs0000] 8] [25] []r20000] D [6000000] [1500000] [800000] [2000001
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7
@ represents new materialized view node selected in dynamic phase

Figure 4.30 The Existing Re-Optimized MVPP with Q8 by Dynamic Approach

6 3 7 2 2 9 6
@@ o R *@ i 4 ®@ 5 s @
=@ t
resultd | [967519280]
result7 910519] It ()[16024 result6 [36276] result_ad2 [758746]
resuiz() [184082) & 1 result3()[182183] resul [160240]
Yn,nanl‘e § s _name Yo name resuts () [36276] Ymax 0
Ve mitsegment sum (I_quantity sum(ps_supplycost) nCps supplicost) (p_brand) |
VI ot n_gizoun) o2y Ve pane Y
Tpt - TmpiL [967519280] [24036000000] sami(ps_stjpplycost) ongms‘u - [7:8746]/§)[151951851158]
[182183] pesuppkey) -~ f)
[184082] [276048000000] e Tmp19 Tmp22 - |
27 3793296
(160240) (Jyazoasooo000) P71 [362760000) lw;mp 6000000
X <
- | Tmp26

Tmp1

[160240] [40058] O [200000]

() [1602400000]

25200000, O pﬁ(y;x/hkc %BRASSY’

Tmpts mp20 /
01831 () 75 [200/060]
==\ Op_brand<>/BRAND#45"
1t p_typle like ‘%BRASS%"
Azarse; Opearsen notp
mp12 - 18000007) p_sipe jn (9.19.49)
150000]
12500007 () [150000] - gjlourtgl:-kvekyey Tmpts /
[6000000] 0_totalprice [200000] [200000]
Y " R P
] mp:
ITC s_nationke TC |_suppkey [2275971()[1500000] ps_Supplycost
_— gﬂueg\onkey $patonkey I-SQ%iekey pavalaly T p particy
Tegee WQH 7 p ey ianity G orderdate>="1094-01-01 b
mktsegment Gr_name="ASIA’ patonke [~commitdate | orderdate<"1995-01-01'
- ! I-receiptdate
[150000] 51 1251 [10000] [s000000) [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node same as static approach for Q1-Q7
© represents additional materialized view node selected by static approach

Figure 4.31 The Re-Optimized MVPP for Q1-Q7, and Q8 by Static Approach

91

Table 4.13 The Comparison of the Result from the Static Approach and the Dynamic
Approach for the Nothing in Common Data Set

Approach Number of Cost of Cost of Total Cost
Nodes to be Query Processing Maintenance
Selected
Static 28 533,536,140,392 5,891,229,392,788 6,424,765,533,180
Dynamic 3 533,536,140,392 5,891,229,392,788 6,424,765,533,180

The conclusion for the query identified as nothing in common is that as new
queries do not have sharable subexpression with the existing MVPP so new
intermediate nodes have to be created to support new query. The existing nodes are
not affected by new queries. The only new intermediate nodes are the member of
nodes to be the set of views to select to be new materialize view. Therefore, we have
not to recalibrate all queries, existing and new queries, again for the nothing in

common data set.

4.6.1.3 Analysis Result of the Subsumption Data Set

We add Q9 and Q10, classified as subsumption or totally overlapping,
into the existing MVPP. There is no new intermediate node generated because Q9 and
Q10 are constructed on the existing intermediate nodes that would be either virtual
views or materialized views. Q9 is subgraph of existing MVPP without materialized
view in that subgraph whilst Q10 uses the existing materialized view. The MVPP

after merging Q9 and Q10 is shown in Figure 4.32.

92

6 3 7 2 5 2 9
10
2@ < o e ? u@ ®@ 5

. | =@

o J result4 | [967519280]
result? () [910519] - resuit3()[182183] resultt()[260240] results () [36276]

4 result2() [184082] O esario(ysiosis] O . .
resultg] [46008] Yn name Vs name [36276]
B Yn_name 'c_mktsegment sum(l_quantity) ' sum(ps_supplycost) Yo fame

count(l_orderkye) sum(l_discount) Tmp23 | 124036000000] / miT(ps. suppltcost)
967519280 s name
Tmp15 Tmpll [] o_orderpriority im(ps,_fupplycost) ’Y@ﬂb o)

[184082) @ [276048000000] [182183) [27336971546; J - nddiscout)

er\(avv\iéH) Tmp2s }q / Tmp19 [36276] | Tmp22

avg(o_totalprice 362760000]
\ [910519] [136577850000] » [160240] [32048000000] . []
\ X / X
\ Tmpl’

Tmpld / soz240) () [1602400000]
[46008] () Tmps /
Tmp21

[7255200000]

X
Tmp20
[9069](_) [200000]

O p_brand<>’BRAND#45
not/p_type like ‘%BRASS%"
p_sjze in (9,19,49)

mpt
[1201113] ()
* .o%
=

Tmp18
[200000]

e g
. [227597](_)[1500000] ps_supplycost
TUr_regionke U s_nationkey X
Tps é resloney ey T suwpkey Go_onveraate il T p partey
T ¢ patipnkey (] TC n_regionke [ty >=11994-0L.01 bt
E Or_name="ASIA” n:naﬁ ke I—discount o_orderdate -
¢Zmkisegment - n_nam <"1995-01-01'
[150000] [s] [20000] [6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7
@ represents new materialized view node selected in dynamic phase

Figure 4.32 The Existing Re-Optimized MVPP with Q9 and Q10 by Dynamic
Approach

Next, the affected node identification algorithm mentioned in Figure 3.14 in

section 3.7.2 is applied to identify the affected nodes. The details of algorithm are list
below:

1. For each new query
1.1 Depth first search from the root to base relations to determine the
existing intermediate nodes, v;, used to construct the new query.
1.2 Calculate weight w(v) of each node v;.
vj , that are conjunctively joined with positive weight or project operation
that is not the ancestor of base relation or select operation, are inserted into
the list Mgirect.
2. For each node vj in list Myirect S€@rch its ancestor node u;, Uj & Mairect, Up 1O
the query node
2.1 calculate weight of node u;
2.2 if (weight v; > weight u;) and u; is existing materialized view then
put u; into list indirectly affected node, Mingirect
2.3 if (weight v; < weight u;) then
traverse in bottom-up way to find the node that return maximum
weight u; of each branch.
put u; into list Mindirect

93

We first depth first search to find the existing nodes used to construct Q9 and
Q10. The existing nodes used to construct Q9 are {Tmpl4, Tmpl0, Tmp9, Tmpl3,
Tmp4, Tmp3, Tmp2, Tmpl and Tmp12} and Q10 are {Tmp24, Tmpl10, Tmp9 and
Tmp7}.

The weight w(v) is calculated as:

we) = S1,@*(C W)= 2 {0+ cow)

qe0, rel,

w(v) denotes weight of node

O, denotes the queries which use view v.

Cg denotes the accessing cost a for query q using view v. The cost of

answering query q is the number of rows presented in the relation used to construct g.
fq denotes the frequency of executing a query.

I denotes the base relations which are used to produce view v.

\

C, denotes the maintenance cost m for materialized view v based on base

relation r, which is occasionally updated.

fu denotes the frequency of updating base relation

We calculate the weight of nodes used to construct Q9 and Q10 for example
Tmpl4. Tmpl4 is derived by four base relations and accessed by Q2 and Q9. Q2 is
the existing query which its frequency of executing the query is 6. Q9 is new query
which its frequency of executing the query is 4. Then, weight of Tmp14 is {(6 + 4) *
6869560251} — {4 * (5 + 1 + 25 + 25 + 150000 + 750000 + 1500000 + 227597 +
6869560251)} = 41,206,850,894. As weight of Tmpl4 is positive then Tmpl4 is
identified as the directly affected node. The weights of existing nodes used to
construct Q9 and Q10 are shown in Table 4.14. The details of weight calculation are

provided in Appendix D.

94

Table 4.14 The Weight of the Existing Nodes for Construct Q9 and Q10

Existing Node Weight (w(v))
Tmpl 100
Tmp2 15
Tmp3 500
Tmp4 413
Tmp7 120,000,000
Tmp9 36,000,000
Tmp10 3,962,328
Tmpl2 2,100,000
Tmpl3 4,799,832
Tmpl4 41,206,850,894
Tmp24 8,193,476,544,806

Later the intermediate nodes, which are the conjunctively joined nodes with
positive weight, or project operation that is not the ancestor of base relation or select
operation, are the directly affected nodes. From Table 4.14, the directly affected nodes
are {Tmpl, Tmp2, Tmp4, Tmp9, Tmpl0, Tmpl3, Tmpl4 and Tmp24}. The weight of
those nodes is increased because more queries build on them.

Thereafter, we identify the indirectly affected nodes that are the ancestor
nodes, with certain weight w(v), of directly affected nodes described as follows.

Tmpl, its ancestor is Tmp2 that is the directly affected node, so skip to the
next node in the list.

Tmp2, its ancestor is Tmp4 that is the directly affected node, so skip to the
next node in the list.

Tmp4, its ancestor nodes are Tmp6 and Tmpl3. We consider only Tmp6
because Tmp13 is already in the list of directly affected node that we have to identify
the indirectly affected node of Tmp13 instead. The weight of ancestor nodes of Tmp4
and Tmp6 are shown in Table 4.15. As weight of Tmp6 which is 369,832 is higher
than that of Tmp4 which is 413 shown in Table4.14, and Tmp6 has the ancestor
nodes. Then we continues move up to the query node to look for the ancestors that

95

provide the maximum weight of each branch. The branch, which includes Tmp®,
Tmp8 and Tmpll, returns weight of Tmpll as the maximum weight. The other
ancestor nodes of Tmp6 are Tmpl17, Tmpl9 and Tmp23. Their weights are negative.
Then, the indirectly affected node of Tmp4 is only Tmp11.

Next node in the directly affected node list is Tmp9, its ancestor is Tmp10 that
is the directly affected node, so skip to the next node in the list.

Tmpl0, its ancestor is Tmp24 that is the directly affected node, so skip to the
next node in the list.

Tmpl3, its ancestor is Tmpl4 that is the directly affected node, so skip to the
next node in the list.

Tmp14, its ancestor is only Tmpl5. As weight of Tmpl5, shown in Table
4.15, is higher than that of Tmp14 then Tmpl5 is identified as the indirectly affected
node. The last directly affected node is Tmp24, its ancestor is Tmp25. As weight of
Tmp25, shown in Table 4.15, is negative then it is not identified as the indirectly

affected node.

Table 4.15 The Weight of Ancestor Nodes of Directly Affected Node of Q9, Q10

Directly Affected Node Ancestor Node Weight of Ancestor Node
Tmp4 Tmp6 369,832
Tmp38 36,029,759,776
Tmpll 486,610,492,657
Tmpl7 -3,440,224
Tmp19 -104,160,300,280
Tmp23 -80,125,050,280
Tmpl4 Tmpl5 241,657,060,480
Tmp24 Tmp25 -4,096,769,632,791

Then, the affected nodes are:
Directly affected nodes: Tmp14, Tmpl3, Tmpl0, Tmp9, Tmp4,

Tmp2, Tmpl and Tmp24
Indirectly affected nodes: Tmpll, Tmpl5

96

Therefore, the number of nodes to be selected in the dynamic phase is 10
nodes, all nodes are the existing nodes, whereas the number of nodes to be selected by
running the static approach is 25 nodes described below. Thereafter, the selection
algorithm, 2PO, is applied to select the set of views to be materialized. The result is
that Tmp13 and Tmp10 are changed from virtual views to materialized views because
their weights are increased enough to be materialized to support new requirements.

To evaluate the performance of our dynamic approach by the static approach
is performed on the set of all queries which includes Q1 to Q7 and Q9, Q10. After we
apply our MVPP re-optimization algorithm to the cheapest MVPP, the MVPP
structure in Figure 4.33 provides the same structure as the dynamic approach in
Figure 4.32. The comparison of result from the static approach and the dynamic
approach are shown in Table 4.16. The result shows that although total cost of static
approach equal to the dynamic approach, the number of nodes to be selected by the
dynamic approach is less than that of static approach that we have to rerun from the
beginning for all queries Q1 to Q7, Q9 and Q10.

6 3 7 2 ; 2 9
Q10 1
2@ e €@ 4 X A@ %@ 5

4 Q5

(o) resultd | [967519280] |
result? () [910519] resutia([182183] | result1()[160240] results () [36276]
4 resutiz() [184082] resuit10()[910519] restg L (35276)
n_name s name
TESU‘W(l)[“ﬁUOB] 'chamlj!sgt_;ggsh ’Yslfm(L uantity) ysum(psisupplyotst) 'Yn nante yiﬁ?ﬁ(ejupmycusn A
(¢) Tmp23 1 124036000000] / min(pp_suppltcost)
[967519280] _orderpriority cou

nt
TmpLL 'Y(ps,suppkev)

[182183]

/* min(_discount)

n_name
avg(o_t (\a\prlce) O O (O [362760000]

\

Tmpl4
[46008] ()

Tmpl
/ [160240]
/

Tmpl3

. [750(

not|p_type like ‘%BRASS%’
p_sjze in (9,19,49)

re2rs07Oy227597)

Tmpl12 [800000] [800000]
[150000] Tmp7 TU o_orderkey T8
alprice mp:
6000000} () [6000000] Gordetpriority 12000001 () [200000]
P3 Tmp9 T ps_suppkey
[251() [25] psﬁgan ey
i T s_nationkey [227597](_)[1500000] psSupplycost
. Trpt TUr_regionkey s suppkey T |L§;J£epr’l<<:¥ Go_orderdate psﬁavalqu/ T Hﬂﬁﬁey
"o QY g e A oy b
— Or_name="ASIA’ ! - _
c_mktsegment - n_name <’1995-01-01
[150000] [5] [25] [10000] [6000000] [1500000] [800000] (] r200000)
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node same as static approach for Q1-Q7
© represents additional materialized view node selected by static approach

Figure 4.33 The Re-Optimized MVPP for Q1-Q7, and Q9-Q10 by Static Approach

97

Table 4.16 The Comparison of the Result from the Static Approach and the Dynamic
Approach for the Subsumption Data Set

Approach Number of Cost of Cost of Total Cost
Nodes to be Query Processing Maintenance
Selected
Static 25 561,015,596,786 5,587,305,318,217 6,148,320,915,003
Dynamic 10 561,015,596,786 5,587,305,318,217 6,148,320,915,003

The conclusion for the query identified as subsumption of the existing MVPP
is that the existing node might be changed from the virtual view to materialized view
depending on the frequency of executing the queries. If the frequency is higher, it is
more likely that the nodes will be materialized. There is no new node created as the
new queries can be totally derived from the existing nodes. Therefore, we have not to

rerun the materialized view selection using static approach for all queries again.

4.6.1.4 Analysis Result of the Partially Overlapping Data Set

We add Q11 and Q12, classified as partially overlapping, into the
existing MVPP. Some new intermediate nodes have to be created as they are not
sharable subexpression with the existing query. The subtree of Q11 is constructed on
the existing materialized view, Tmp24. Q12 is constructed on the virtual views,
Tmp19. Figure 4.34 shows MVPP after Q11 and Q12 are merged into existing
MVPP.

98

2
Q2@

9
5
6 3 7 2 2 ®@
11@)
Q@ e Q3 Q4 a@ ©
,esusz[1szAz4J 4 M
1 | results () [36276] T
O resultd | [967519280] Yn_nante rcsulﬂ&j{ﬂslﬁﬂl
result2() [184082] resyie7 ()1910519] resuita([182183] O max(1_ektendedprice) ?
| result1()[160240] < nae
Tmp30 | ysﬁm ps_supplycost)
Ve mkisegment | Yn_name s_name 152424] ([122113784832)
sum(l_discount) | * sTm(l_quantity) stum(ps_supplycost) ' nanfe | Yo_orderstatus resultsy)[36276]
Tmp23 \mp20 miin(pjupplmo%n)p sum(I_extendedprie)
Tmp15 Tmpi1 1967519280] () [24036000000] 13219210 11602401 [s7s168) (4601352000]
[184082] (182183] @)[273369715461] o [36276] | Tmp22
PR ~ Yeount
A% 1 ke BRASST ~ (O [862760000] (ps_suppkey)
() [3e577850000]
Tmpl4
[46008] Tmps
O [12018000000]
[200000]

Op_brpnd<>'BRAND#45®
not p_type like ‘%BRASS%
p_sipe in (9,19,49)

P
SN <
N p2d
‘ [910519 5

Tmp13 4 (75
1301831 () ’ X

[50000]

X

‘ o orderkey 12000901 () [800000]

7 O I_commitdate ocustkey. Tmplé

Tmp2 Tmp5 < |_receiptdate o totalprice
ez i Tmp3 160000001) (6000000] g | 00O . [200000]
mp
251 (28] Tmp? ey frmp1s
TU s_nationkey mp: [227597](_)[1500000] ps_supplycost
_— gﬂfueglunkey R TC | suppkey Go_orderdate iy T p gy
e patipnkey (B T p gegioke gty >=1994-01-01 2
ggglggy Or_name="ASIA" n-ngtonkey Ccommitdate o_orderdate -
¢Zmktsegment nn I-exierdecprice <1995-01-01'
[150000] 8] [25] [10000] 6000000] [1500000] 800000 [rzooocor
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure 4.34 The Existing Re-Optimized MVPP with Q11 and Q12 by Dynamic
Approach

Next, the affected node identification algorithm is applied to identify the
affected nodes as follows:

We first depth first search to find the intermediate nodes used to construct Q11
and Q12. The intermediate nodes used to construct Q11 are {Tmp28, Tmpl6, TmMp27,
Tmp24, Tmpl0, Tmp9 and Tmp7}. Tmp27 and Tmp28 are new intermediate nodes,
the others are existing intermediate nodes, and Tmp24 is the existing materialized
view. The intermediate nodes used to construct Q12 are {Tmp30, Tmp26, Tmp7,
Tmp29, Tmpl9, Tmpl8, Tmpl7, Tmpl6, Tmp6, Tmp5, Tmp4, Tmp3, Tmp2 and
Tmpl}. Tmp30, TMp29, Tmp26 are new intermediate nodes and the others are the
existing intermediate nodes.

Later, we calculate the weight w(v) of the existing intermediate node used to
construct Q11 and Q12. For example, the weight of Tmpl7 is (2 + 2 + 2) *
(1602400000) — (4) * (5 + 1 + 25 + 25 + 10000 + 50000 + 800000 + 1602400000) =
41,206,850,894. As weight of Tmp17, conjunctive joined nodes, is positive then it is
identified as the directly affected node. The weights of existing nodes used to
construct Q11 and Q12 are shown in Table 4.17.

99

Table 4.17 The Weight of the Existing Nodes for Construct Q11 and Q12

Existing Node Weight (w(v))
Tmpl 90
Tmp2 13
Tmp3 450
Tmp4 363
Tmp5 210,000
Tmp6 469,832
Tmp7 120,000,000
Tmp9 30,000,000
Tmpl0 3,051,940
Tmpl6 15,200,000
Tmpl7 3,201,359,776
Tmp18 3,400,000
Tmpl9 -40,065,300,280
Tmp24 8,193,476,544,806

Later intermediate nodes, which are the conjunctively joined nodes with
positive weight or project operation that is not the ancestor of base relation or select
operation, are the directly affected nodes. Therefore, from Table 4.17 the directly
affected nodes are {Tmpl, Tmp2, Tmp4, Tmp6, Tmp9, TMp10, Tmpl7 and Tmp24}.

Thereafter, we identify the indirectly affected nodes that are the ancestor
nodes, with certain weight w(v), of the directly affected nodes as follows.

Tmpl, its ancestor is Tmp2 that is the directly affected node, so skip to the
next node in the list.

Tmp2, its ancestor is Tmp4 that is the directly affected node, so skip to the
next node in the list.

Tmp4, its ancestors are Tmp6 and Tmpl13. Tmpé6 is the directly affected node
then we will identify the indirectly affected node of Tmp6 instead. The weights of

ancestor nodes of Tmp4 on branch Tmpl3 are shown in Table 4.18. As weight of

100

Tmpl5 is the maximum weight of this branch then Tmp15 is the indirectly affected
node.

Tmp6, its ancestors are Tmp8 and Tmpl17. Tmpl7 is the directly affected node
then we will identify the indirectly affected nodes of Tmp17 instead. The weights of
ancestor nodes of Tmp6 on branch Tmp8 are shown in Table 4.18. As weight of
Tmpll is the maximum weight of this branch then Tmp11 is the indirectly affected
node.

Table 4.18 The Weight of Ancestor Nodes of Directly Affected Node of Q11, Q12

Directly Affected Node Ancestor Node Weight of Ancestor Node

Tmp4 Tmpl3 1,799,832
Tmpl4 13,728,609,890
Tmp15 241,657,060,480
Tmp6 Tmp8 36,029,759,776
Tmpll 486,610,492,657
Tmpl7 Tmpl9 -40,065,300,280
Tmp23 -80,125,050,280
Tmp24 Tmp25 -4,096,769,632,791

Tmp9, its ancestor is Tmp10 that is the directly affected node, so skip to the
next node in the list.

Tmpl0, its ancestor is Tmp24 that is the directly affected node, so skip to the
next node in the list.

Tmp1l7, its ancestor nodes are Tmp19 and Tmp23. The weights of Tmp19 and
Tmp23 are shown in Table 4.18. As weight of Tmp19 and Tmp23 is negative then
Tmp19 and Tmp23 are not the indirectly affected nodes.

The last node in the directly affected node list is Tmp24, its ancestor node is
only Tmp25. As weight of Tmp25 is negative as shown in table 4.18, then Tmp25 is
not identified as the indirectly affected node.

101

Then, the affected nodes are:
Directly affected nodes: ~ Tmpl, Tmp2, Tmp4, Tmp6, Tmp9, Tmp10,
Tmpl7 and Tmp24
Indirectly affected nodes: Tmpl11, Tmpl5

Therefore, the number of nodes to be selected in the dynamic phase is 15
nodes, 10 existing nodes and 5 new created nodes, whereas the number of nodes to be
selected by running the static approach is 30 nodes described below. Thereafter, the
selection algorithm, 2P0, is applied to select the set of views to be materialized. The
result is that Tmpl7 is materialized and Tmp6 is un-materialized. Tmpl7 is the

existing virtual view changed to materialize view.

2
2@
6 3

5 9
Qu@ *®

7 2 re)
s o ¢@ “@ u@
resul\lQO[leM] 4 s
1 | s O 278 g
resultd | [967519280] Yn_nante ’95““16575169]
resuliz) [184082] equir7 () [010519] resuita([a82183] O (. Sendecorics
result

160240)

Tmp30| t ! ? ’Yssn p(se,supplycust)

1152424] (O[122113784832] |

| Yo_orderstatus
sum(I_extendedpri

Ve miasegment | yYn name
sam(_discount) | ' sam(l_quantity)

YVooark

[9575;;;5;]3 | \Tmp29 '“'”(P,Supplco%gp o

Tmp1l [24036000000] @242 (21160240] [575166) (l460135200000]

1182183] @)[273369715461] i [36276] | Tmp22

like ‘%BRASSY ~. (O [362760000]
Tmp19

s_name
sum(ps_supplycost)

n_name
ycﬁur\t(l_mderkye) results(")[36276]

b

‘count
(ps_suppkey)

Tmp13
potsz) [
Gp_brind<>'BRAND#45"
93296] () [6000000] t like ‘%6BRASS%"
2 Tmp2e [227597) 1227597] :Osi Ellyr? ?9]1; 49) S
T X .19,
150000] () 150000] 7 O Leomnigae oorderkey
. a totalprice
Tmp12 <1_receiptdate oZ
6000000 0_orderstatus [200000]() [200000]
il [10 16000000] Tmpe| - g sopicy o
' Tmp7 1227597]()[1500000] bs-Supplycost mp
TU s_nationkey | suppk =
Tmp1 gﬂueglonkey Satppkey T I’us:ﬁjeprkg Go_orderdate Beavhlaly T g _graarrl‘léey
I"quanti - . x
T e pationkey L1 JE T g egionke [-antity >=1994-01-01 Baype
ERUES Or_name="ASIA’® nnatonkey [“commitdate o_orderdate -
EEksgmen - P, <Tosoror
[150000] 151 [25] [10000] [6000000] [1500000] [800000] [Trzo0000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7
@ represents new materialized view node selected in dynamic phase
© represents un-materialized node in dynamic phase

Figure 4.35 The Existing Re-Optimized MVPP with Q11 and Q12 by Dynamic
Approach after Applying 2PO

Considering in Figure 4.35, Tmp6 is created to support Q1, Q3, Q4 and Q12.
When Tmpl1 and Tmpl7 are materialized because of adding Q11 and Q12, then Q1
and Q4 are rewritten by using Tmp17 instead of Tmp6, Q12 is derived by Tmp17, and
Q3 is derived by Tmpll. So, those queries are not derived by Tmp6 anymore.

102

Therefore Tmp6 is un-materialized. If Tmp6 is materialized, it will provides higher
materialized view maintenance cost but the query processing cost is not reduced,
reflecting the higher total cost.

To evaluate the performance of our dynamic approach by the static approach
is performed on the set of all queries which includes Q1 to Q7, Q11 and Q12. We
generate 9 MVPPs for 9 queries by Yang et al. algorithm and select the cheapest
MVPP shown in Figure 4.36.

2
e
7 2 resu\(l?O[lEZAZA])
3 3. o]) "/ninavx U@ 5
6 U@ Q max(1_ektendedprice) Q@ 9
5
Q2 J) resultd | [967519280] Tmp24| [122113784832] f Qﬁ. QS.
stz [182183] 1524241 O result1(()[160240] |
result7 () [910519) X ¥ resultil O[575169]
s_nafne N
result2(_) [184082] 'ng”“ﬂ('lﬂzuanmy) sum{ps_supplycost) | Tmp23 Ymm(e, Suppmts‘) result6(_) [36276]
c_miktsegment b orderstatus. A [36276]
[Yn_name ysum(l discount) Tmp26 ! (321027 %L 0240 R results
. count(l_orderkye) Topi 1967519280] () 124036000000] I' LR (N Vs.na
m X like “%BRASS%" Tmp29 sum(ps supplycot)
182183]() [273369715461 ‘count
[184082] ((296048000000] Tmp30 [i) N [| [160240][1602400000] O[460135200000] y(ps suppkey)
> 1o10519) () [136577850000] X / —-

[46003] . [6869560251]

mp13
[30153] . [75

X

[1201113 1201800000
» q

mp27
910519

l not p_type like ‘%BRASS%’
\ p_size in (9,19,49)
Tmp10 | [sooouo] () (160000000000]
[3793296]0 [6000000] \
[227597] @) [227597] (4
Tmp4 [5]() [25] Tmp22 o_orderkey |
[1500001 [150"0"1 & N[~ O Leonmitdate St s \
Tmp2 [10000] [10000] Tmp7 j < |_receiptdate o_totalprice Tmp16 Tmpl7;
wOm [6000000][6000000] Tmpo 12000001 %’ 200000]
[25][25] T s nationk T 1_suppkey zrsaniOpsonooa] [800000] & [800000]
¢_nationkey bie k SOy | ore erkey
s, | meeoney i e g sy by
Cmktsegment 111151 7-:,. 'eﬁ"’lkeyy | exlenuedpnce Go_orderdate>="1994-01-01| h¢ é’upwwﬂ B-re
Gr_name="ASIA L,Sc'g.pma‘e 0_orderdate<'1995-01-01' | PS-aval
disount
[150000] 151 [25] [10000] [Jte000000) [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

9 ommlmate 1_recetbtods

[36276]

[362760000]

Tmp19
O 1800000
Op_brand<>’BRAND#45"

Figure 4.36 The Cheapest MVPP for Q1-Q7, and Q11-Q12 by Static Approach

Later, we apply our MVPP re-optimization algorithm to the cheapest MVPP.
The MVPP structure shown in Figure 4.37 provides the same structure as our dynamic
approach in Figure 4.35.

Finally, we apply 2PO algorithm to select the set of views to be materialized.
Figure 4.37 shows the MVPP with materialized view node generated by rerun static
approach for Q1 to Q7, Q11 and Q12. The comparison of results from the static
approach and the dynamic are shown in Table 4.19. The result shows that although
total cost of static approach equal to the dynamic approach, the number of nodes to be

selected by the dynamic approach is less than that of the static approach.

103

2
Q@ 5 9
6 3 7 2 2 k@
Q2 U@ xQ “@ * Q1 Q@
rcsulmO[mznzn] 5
J | resulis) [36276] Q5
resultd | [o67519280] Yn_nane resuhléjsmea]
resultz) [184082] resute7 () [910519] resuita(182183] max(l_ektendedprice)

| result1(")[160240] f
|

| Yo_orderstatus
Sam(l. extendedprige)

s_name
sum(ps_supplycost)

Y name Tmp3o,
sam(ps_supplycost) [152424] 0[12211378"332]

‘c_mktsegment
sum(l_discount)

¥

n_name
sam(1_quantity) o name
Tmp23 29 min(ps suppltcos(T)
| \Tm: mp!
1967519280] (|) [24036000000] 13219210 [160240] [575169] O[AGDISSZGDDDD]
[36276) | Tmp22
(O [362760000]

n_name
count(l_orderkye) results(")[36276]

Tmp1l
[182183]

b

‘count
(ps_suppkey)

10105107 [136577850000]
X
<]
Tmp8
() 112018000000]
‘I. I =
Tmp13 ’ . Tmp20
(so1s31 () [1500% [200000]

Op_brpnd<>'BRAND#45’
93296] [6000000] - not p_type like ‘%BRASSY%’
rzrsor) Oizzrson) et
P 2 Tmp2e orkey 12000001 C) [200000] p_sipe in (9.19.49)
1150000] () [150000] 7 O 1_commitgate ??:&Z‘EE’Z Tmp16
Tmp12 Tmp2 < |_receiptdate _totalpr
o_orderstatus 200000]
. vt P el e R
Ty R Mo T[T tzrsenQrasooo B Kl T p gty
T ﬂ?s‘igé‘key Tmpll 57 ey [-auaniity Go_orderdate pe_avalqly pbrand
ERislkey mOE 1T n regionke Fitendedprice >="1994-01-01' A%
c_mKkisegment O name="ASIA’ n :na%orﬂ@)y I“commitdate o_orderdate =
! n_name I‘Eﬁ?glo%[r?tam <'1995-01-01"
150000]] [25] [10000] 6000000 1500000 800000]
[] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node same as static approach for Q1-Q7
O represents additional materialized view node selected by static approach

Figure 4.37 The Re-Optimized MVPP for Q1-Q7, and Q11-Q12 by Static Approach

Table 4.19 The Comparison of the Result from the Static Approach and the Dynamic
Approach for Partially Overlapping Data Set

Approach ~ Number of Cost of Query Cost of Total Cost
nodes to be Processing Maintenance

selected

Static 30 3,352,056,780,640 5,593,713,750,508 8,945,770,531,148

Dynamic 15 3,352,056,780,640 5,593,713,750,508 8,945,770,531,148

The conclusion for the query identified as partially overlapping with the
existing MVPP is that the existing node might be changed from virtual view to
materialized view and virtual view might be materialized to support the new queries.
New intermediate nodes are created to support new queries for the not the sharable
subexpression. So, we have not to rerun materialized view selection using static

approach for all queries again.

104

4.6.1.5 Analysis Result of Deleting the Query
Deleting the query from data warehouse is the possible situation when

the existing query is no longer required. We implement the deleting scenario by
deleting Q3 from the existing MVPP shown in Figure 4.38.

6 3

7 2 2 9
@@ @ G@ el1" } L@ o } 5
i o
| resultd | [967519280]
result? () [910519] resuliz()[182183 result1()[160240 resuts () [36276]
resulte() [184082) L T resusOr 1 []
+\/H ¢ Vs _name results (™) [36276]
e ktsegment 17 Sim (1_quantity sum(ps_supplycost) Vs_name
'Yn?name sum(l_discount) T3 Y” name sum(ps_supplycost)
count(I_orderkye) ; i p] ‘ min(ps_suppltcost)
967519280 count
Tmpts | [24036000000] ’Y(ps_suppkey)
[184082] Tmpio
X

Tmp20
[200000]

Gp_briind<>"BRAND#45’
not p_type like ‘%BRASS%’
p_sige in (9,19,49)

rzzrso7) Opzzzsen)

[800000]
S-Oidgkey Tmp1s
£6000000)) [6000000] o totalprice
T
[227597]

(O 1800000]

\Tmp5
Tmp3

[200000] 200000]
Tmp7 mp9 TC ps_suppkey ‘ I 1
Omsl ps_partkey mp18
TC s_nationkey [1500000] ps_suunlyycw T p partke
OB s_suppkey T Ilisudppl;ey bs_avald g’bprand Yy
i "l
T Hg;'ggkey mJel T o edjonkey {-ouantiey G orderdate>="1994-01-01' bS5
Siﬁﬁfss‘gmem Gr_name="ASIA’ R:ngrr?e" © Itax | orderdate<'1995-01-01'
[]txs0000] [5] [25] [10000] [6000000] [1500000] [800000] [200000]
customer region nation

supplier lineitem orders

partsupp part
@ represents materialized view node selected in static phase for Q1-Q7

Figure 4.38 The Re-Optimized MVPP Structure with Deleting Q3 for Dynamic and
Static Approach

After Q3 is deleted, we apply the affected node identification algorithm to
identify the affected nodes described as follows:

We first depth first search to find the existing nodes used to construct Q3. The
nodes used to build Q3 are {Tmpll, Tmpl0, Tmp9, Tmp8, Tmp7, Tmp6, Tmp5,
Tmp4, Tmp3, Tmp2 and Tmpl}. After Q3 is deleted, the nodes used to construct only
Q3 are deleted that are Tmpll and Tmp8; the nodes used to construct Q3 and the
other queries are remained and identified as the directly affected nodes.

Later, we calculate the weight w(v) of the existing node used to construct the
query. For example, weight of Tmp6 is (2+2)*(50000) — (3)*(5+1+25+25+5000) that

is 184,832. The weights of existing nodes used to construct Q3 are shown in Table
4.20.

105

Table 4.20 The Weight of the Existing Nodes for Q3

Existing Node Weight (w (v))
Tmpl 45
Tmp2 4
Tmp3 225
Tmp4 138
Tmp5 120,000
Tmp6 19,832
Tmp7 48,000,000
Tmp9 12,000,000
Tmpl0 320,776

Later intermediate nodes, which are the conjunctively joined nodes with
positive weight, or project operation that is not the ancestor of base relation or select
operation, are the directly affected nodes. Therefore, from Table 4.20 the directly
affected nodes are {Tmpl, Tmp2, Tmp4, Tmp6, Tmp9 and Tmp10}.

Thereafter, we identify the indirectly affected nodes that are the ancestor
nodes, with certain weight w(v), of the directly affected node described as follows:

Tmpl, its ancestor is Tmp2 that is the directly affected node, so skip to the
next node in the list.

Tmp2, its ancestor is Tmp4 that is the directly affected node, so skip to the
next node in the list.

Tmp4, its ancestors are Tmp6 and Tmp13. Tmp6 is the directly affected node,
we will identify the indirectly affected node of Tmp6 instead. The weights of ancestor
nodes of Tmp4 on branch Tmp13 are shown in Table 4.21. As weight of Tmp15 is the
maximum of this branch then it is identified as the indirectly affected node.

Tmp6, its ancestor nodes are Tmpl7, Tmpl9 and Tmp23. The weights of
ancestor nodes of Tmp6 are shown in Table 4.21. As their weight is negative then
Tmp6 does not have ancestor node that is identified as the indirectly affected node.

Tmp9, its ancestor is Tmpl0 that is the directly affected node, so skip to the

next node in the list.

106

Tmpl0, the last node in the directly affected node list, its ancestor nodes are
Tmp24 and Tmp25. Their weights are shown in Table 4.21. As weight of Tmp24 is

the maximum of this branch then it is identified as the indirectly affected node.

Table 4.21 The Weight of Ancestor Nodes of Directly Affected Node of Q3

Directly Affected Node Ancestor Node Weight of Ancestor Node
Tmp4 Tmpl3 1,799,832
Tmpl4 13,728,609,890
Tmp15 241,657,060,480
Tmp6 Tmpl7 -3,440,224
Tmpl9 -104,160,300,280
Tmp23 -80,125,050,280
Tmpl0 Tmp24 1,365,566,544,806
Tmp25 -4,096,769,632,791

Then, the affected nodes are:
Directly affected nodes: Tmpl10, Tmp9, Tmp6, Tmp4, Tmp2 and
Tmpl
Indirectly affected nodes: Tmp15 and Tmp24

Therefore, the number of nodes to be selected in the dynamic phase is 8
existing nodes, whereas the number of nodes to be selected by rerun static approach
for all queries, Q1, Q2, Q4, Q5, Q6 and Q7, is 23.

Finally, the selection algorithm, 2P0, is applied to select the set of views to be
materialized. Figure 4.38 show the re-optimized MVPP with materialized view nodes.
In Figure 4.38, there is neither virtual view to be materialized nor materialized view to
be un-materialized. The existing materialized view, Tmp6, is still the materialized
view to support the other queries, Q1 and Q4. However its weight is reduced from
369,832 to 19,832. The comparison of results from the static approach and dynamic

approach are shown in Table 4.22. The result shows that although total cost of the

107

static approach equal to the dynamic approach, the number of nodes to be selected by

dynamic approach is less than that of the static approach.

Table 4.22 The Comparison of the Result from the Static and the Dynamic Approach
for Deleting Query Q3

Approach | Number of Cost of Cost of Total Cost
Nodes to be | Query Processing Maintenance
Selected
Static 23 533,524,484,878 | 4,160,323,374,882 | 4,693,847,859,760
Dynamic 8 533,524,484,878 | 4,160,323,374,882 | 4,693,847,859,760

By the result of experiment and behavior of deleting the query, we classify
deleting the existing query into the subsumption data set because the existing query is
subsumption of MVPP. The weight of existing nodes that are affected is reduced

because the frequency of executing the queries is decreased then the first part of

weight w(v), Z{fq(q)*(cj(v))}, is reduced. Therefore, the existing materialized node

qe0,

that used to construct the deleted query may or may not be un-materialized.

4.6.1.6 Analysis Result of Adding the Query Constructed on All
Base Relations

Moreover, to validate our affected node identification algorithm that
aim to reduce the size of search space, we do further experiment by adding new
query, Q13, which is constructed on all base relations in TPC-H schema. The purpose
to implement this scenario is that the new query constructed on all base relations
would possible to affect to all queries in the existing MVPPs. So, if we identify the
query is affected rather than the intermediate node then all nodes used to derive those
queries are the set of affected nodes.

The dynamic MVPP after Q13 is merged into the existing re-optimized

MVPPP is shown in Figure 4.39.

108

5
. e
7
u@ 0
3 2
=@ rEsuItlSO[ZlS] o)
6 3 resultq, 1[967519280] B i
Tmpas | | av9(_extendedprice
Q2 @ 182183
® resuia(b] < name 1215 () [3733997148] [160240] 9
Yn_name sum(ps_supplycost) X Fesultl @
sam(_Quantty) Tmp23 | [oaggeon0000) Tmp2l N
result2(_) [184082] result7 N\Tmp26
[910519] 1967519280] () N
575169]_Jo10519] [sa02() [160240] Yn_ndme
_ min{ps_Suppltcost) o i
—~
Tmp1l - G I_commitdate oo ‘y\pe ~ [36276]
n_name 182163 @) [273369715461] < I_receiptdate » b Q5
,chum(\,omerkye) L ! _receip! like ‘UBRASSI

Ve miasegment
sim(l_discount)

5
results. g [36276]

Yeou

int
(ps_suppkey)

s rame

sum(ps_upplycost)

[7255200000]

Tmp13
130183] () [750000]
Tmp20

19069]) [200000]

Gp_brand<>"BRAND#45"
not p_type like ‘%BRASS%"
p_size in (9,19,49)

™o gy

0-totalprice
Tmp3 120000) p10000 (6000000} T[[(’IOSSDOE 1500000 Yo00000 12000001 [200000]
1150000] () [150000] 28] Tmps T 47T | suppiey e Otsoooon) - Tmp18
Tmp12 TUr_regionkey IMtax Tmp P18 1T s suppke U p_partkey
Tmpt [duantity, B5 partkey” pbrand
tenddprice - .]]
T cnaionkey 1 Ol - T ;’;aéifknevy exendeder Go_orderdate>="1994-01-01 5 Supplycost Bf's‘.’z‘f
il Or_name="ASIA’ nngtonkes - [eceiptdate o_orderdate<*1995-01-01' psavaidty =
Cmkisegment - noname
[150000) 8] 25] [10000] 6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@® represents materialized view node selected in static phase for Q1-Q7

Figure 4.39 The Existing Re-Optimized MVPP with Q13 by Dynamic Approach

From Figure 4.39, considering how all existing queries are affected by adding
Q13 as follows:
Q1: Tmpl19 and its descendent nodes are the sharable subexpression
Q2: Tmp4 and its descendent nodes are the sharable subexpression
Q3: Tmp6 and its descendent nodes are the sharable subexpression
Q4: Tmpl7 and its descendent nodes are the sharable subexpression
Q5: Tmpl16, Tmp18 are the projection node
Q6: Tmp16, Tmpl8 are the projection node
Q7: Tmp25 and its descendent nodes are the sharable subexpression
Therefore, if we identify the query is affected by requirement changed rather
than the intermediate node is affected then all intermediate nodes used to construct all
above queries will be the set of affected nodes to be selected in the selection step.
After Q13 is merged into existing MVPP, we apply the affected node

identification algorithm to identify the affected node described as follows:

109

We first depth first search to find the existing nodes used to construct Q13 that
are {Tmpl9, Tmpl8, Tmpl7, Tmpl6, Tmp6, Tmp5, Tmp4, Tmp3, Tmp2, Tmpl,
Tmp25, Tmp24, Tmp10, Tmp9, Tmp7, and Tmpl12}.

Thereafter, we calculate the weight w(v) of the existing nodes used to
construct Q13. For example Tmp19 is (2+5)*(32048000000) — (3)*(2003 + 800000 +
1602400000 + 32048000000) = 123,382,393,991. So the directly affected nodes are
{Tmp19, Tmpl7, Tmp6, Tmp4, Tmp2, Tmpl, Tmp24, Tmpl0 and Tmp9}. The
weights of the existing node used to construct Q13 are shown in Table 4.23.

Table 4.23 The Weight of the Existing Nodes for Construct Q13

Existing Node Weight (w (v))
Tmpl 105
Tmp2 16
Tmp3 525
Tmp4 438
Tmp5 240,000
Tmp6 619,832
Tmp7 120,000,000
Tmp9 30,000,000
Tmpl0 3,051,940
Tmpl2 2,250,000
Tnpl6 17,600,000
Tmpl7 8,008,559,776
Tmpl8 4,000,000
Tmpl9 56,078,699,720
Tmp24 8,193,476,544,806
Tmp25 -3,413,880,382,791

Later the intermediate nodes, which are the conjunctively joined nodes with

positive weight, or project operation that is not the ancestor of base relation or select

110

operation, are identified as the directly affected nodes. Therefore, the directly affected
nodes are {Tmp19, Tmpl7, Tmp6, Tmp4, Tmp2, Tmpl, Tmp24, Tmp10 and Tmp9}.

Next step, we identify the indirectly affected nodes that are the ancestor nodes,
with certain weight w(v), of the directly affected nodes described as follows:

Tmpl, its ancestor is Tmp2 that is the directly affected node, so skip to the
next node in the list.

Tmp2, its ancestor is Tmp4 that is the directly affected node, so skip to the
next node in the list.

Tmp4, its ancestors are Tmp6 and Tmp13. Tmpé6 is the directly affected node
then we will identify the indirectly affected node of Tmp6 instead. The weights of
ancestor nodes of Tmp4 on branch Tmpl3 are shown in Table 4.24. As weight of
Tmp15 is the maximum of this branch then it is identified as the indirectly affected
node.

Tmp6, its ancestors are Tmp8 and Tmpl7. Tmpl7 is the directly affected node
then we will identify the indirectly affected node of Tmp17 instead. The weights of
ancestor nodes of Tmp6 on branch Tmp8 are shown in Table 4.24. As weight of
Tmpll is the maximum of this branch then it is identified as the indirectly affected
node.

Tmp9, its ancestor is Tmpl0 that is the directly affected node, so skip to the
next node in the list.

Tmpl0, its ancestor is Tmp24 that is the directly affected node, so skip to the
next node in the list.

Tmpl7, its ancestors are Tmpl9 and Tmp23. As Tmpl9 is identified as the
directly affected node then we consider Tmp23 only. From Table 4.24, the weight of
Tmp23 is negative then Tmp23 is not the indirectly affected node.

Tmp24, the last node in the directly affected node list, its ancestor is Tmp25.
From Table 4.24, the weight of Tmp25 is negative then Tmp25 is not identified as the
indirectly affected node.

111

Table 4.24 The Weight of Ancestor Nodes for the Directly Affected Node of Q13

Directly Affected Nodes Ancestor Nodes Weight of Ancestor Node

Tmp4 Tmpl13 1,799,832
Tmpl4 13,728,609,890
Tmpl5 241,657,060,480
Tmp6 Tmp8 36,029,999,776
Tmpll 486,610,792,657
Tmp24 Tmp25 -3,413,880,382,791

Therefore, the affected nodes are:

Directly affected nodes: Tmpl9, Tmpl7, Tmp6, Tmp4, Tmp2,
Tmpl, Tmp24, Tmp10 and Tmp9
Indirectly affected nodes: Tmpll and Tmpl5

Therefore, the number of nodes to be selected in the dynamic phase is 14
nodes, 11 existing nodes and 3 new created nodes, whereas the number of nodes to be
selected by the static approach for all queries is 28 nodes described below. Thereafter,
the selection algorithm, 2PO, is applied to select the set of views to be materialized.
The result is that Tmpl9 and Tmpl7 are the existing virtual views changed to
materialize views whilst Tmp6, the existing materialized view, is un-materialized to
be virtual view. Tmp6 is un-materialized because it is not accessed by any queries
anymore; Q4 derived by materialized view Tmp17 instead.

112

5
: . we
*@ +
R J 2
result13 () [215) @
6 3 g resultq L[967519280] Typ prand
&ug(1_extendedprice)
7 Tmp2g | - avd(
2@ R resulta(J[182183] s rame 12151 [3733997148] [160240] B
g D sum(ps_supplycost) P o resultl *@
sum(l_quantity) Tmp23 | 1240360000007 Tmp27,
v ;
resue() [184082] resu?() fo1051] 967519280] \Trﬂnizom
[575169)_pAo10519] eaoz)() [1 Yn-ngme
_ min{ps_suppltcost) oc s
—~
Tmpll < G |_commitdate o ty\pe ~ [36276] 5
name [182183]@P[273369715461] < |_receiptdate % o

like ‘%BRASSY ~

ps_availgty<200 ~
st

[160240]

'c_mktsegment
sam(_discount)

-
—
—

Ys_name
sam(ps_jupplycost)

[136577850000]

Tmp13
130183] () [750000]

Tmp20

Op_brand<>'BRAND#45"
[227597) O r22rs9m
p_size in (9,19,49)

T g orderiey
oTustkey
O [6000000] o_otalprice 1200000)() [200000]
227597
)

) [6000000]

T 120000]) [10000]

e 7T I_suppkey [800000]
800000]
(150000} 510 251 Tmps TmpT A ey [1500000] Tmp16 Qleooooo
Tmp12 TUr_regionkey P18 70 ps_suppkey U p_partkey
" 11 5] TU s_nationkey I-Scend dorice Oo_orderdate>="1994-01-01" pe_part ost "%’aQ"
! -extende ="1994-01- S~Supplycost
T paipney 1O T o egione Sk eommicht orerdte : sueRe b
ERulheY Or_name="ASIA’ iictonkey receiptdate 0_orderdate<"1995-01-01
cmktsegment - n_hame
[150000] 5] [25] [10000] [6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7
@ represents materialized view node selected in dynamic phase
@ represents un-materialized node in dynamic phase

Figure 4.40 The Existing Re-Optimized MVPP with Q13 by Dynamic Approach
after Applying 2PO

To evaluate the performance of our dynamic approach by the static approach
is performed on the set of all queries which includes Q1 to Q7 and Q13. We generate
all MVPPs for those 8 queries by Yang et al. algorithm and select the cheapest MVPP
shown in Figure 4.41. Later, we apply our MVPP re-optimization algorithm to the
cheapest MVPP thus Q1, Q5, Q6 and Q13 have to be rewritten because their query
processing cost is higher than that of the other MVVPPs. The MVPP after applying our
MVPP re-optimization algorithm in Figure 4.42 provides the same structure as our

dynamic approach in Figure 4.40.

not p_type like ‘%BRASS%’

113

2
Q3@
+

7 | 2
resut13(Q)[215] L@

Q3. 2 A Yp_brand
Q4 . avg(l_extendedprice) 9

5
@ =@

3
6 off] OTmpSD
2@ O [215]/1 [711150000] result1(0)[160240]
result3’ [182183] -
resuilts | [967519280] \ Tmp29
result7 O [910519] V's'ﬁprfl(flﬂeq waniy - L7 O [6998835347] results () [36276]
- ~ 36276
resul2() [164082) Ye_mkisegment P Ys_name \ \TmF22§5250776321 ’Yr:‘ﬁrr\‘(a r;;‘se_suppl&cmst) results X T]
stm(l_discounty 11 g sﬁm(ps_supplycué?j’m]Q Tz
Vn_name mp1l | [273369715461] [Vs name
cBunt(l_orderkye) [182183] 7 rmp23 e leom] e supplycod) Yoot
Tmp15 W~ 19675192801 J[24036000000] \// /st ""921 (ps_suppkey)
vailgy< 1602400000
11840821 1276048000000} . g2l P e el] To20
[135577350009// [3793296] _¥[6000000] M [36276] () [362760000]
- . A\
/
Tmp19

[36276] O [800000]

A
[160240] () [1602400000]
pSda

Op_brand<>"BRAND#45
not p_type like ‘%BRASS%’
p_size in (9,19,49)

N [910519]
X I
Tmpl4 <]
46008]
[46008] () [6869560251] T
X . 1201113] ()
Tmp13
130183 (750099 (R
12003] () [50000]
X

Bz

mp18
1800000] () [160000000000]

o_orderkey

Tmp12 ¥ Topa (510 (25
[150000] [150000] Tmps O \ bR
Tmp2 ol [10000}4[10000] Tmp7 > otollprice ¢ Tmp13
mOm Tmp3 (6000000177 [6000000] Tmpo (8000001 . [800000] 2000001y (200000]
P 231 (23] 7T s natignkey T Lsuppkey - (227507)([1500000]
. r_regionkey s}uppc‘(ey |“orderkey TU p_partkey
TC ¢_nationkey Tmpl s”name Tax T PS_SUPEkEY p_brand
%}EE%ESV @B} . - Lquaﬂ"%/ : . . ps,gart ey p_type
¢-mKtsegment T realor](ksiy I_extend_ lr}pncsz Oo_prderdate>="1994-01-01' PsT upp|¥yc05ﬁ prsize
- Gr_name="ASIA’ N onke [RAME o_qrderdate<'1995-01-01' peZavaig
- |_discount
[150000] 5] (s [10000] [Jre000000] [1500000] 800000] [200000]
customer region nation supplier lineitem orders partsupp part

Figure 4.41 The Cheapest MVPP for Query Q1 to Q7, and Q13 by Static Approach

5
) Q3@
7
, *@ 4 ,
:@ resumsO[zm] a@
resultd | [967519280]

6 3 Yp_brand,
Tmpzs | ' avg(l_extendedprice)

Q2 Q7 182183)
° ° resuis(! Vs rae 1215] () [3733997148] [160240] 9
Yn_name sum(ps_supplycost) e’ resultl *@
sum(l_quantity) Tmp23 | 124036000000 TmP26 N
resule() (184082 result?(") (g10519) tsosaazan NTmp27 Yo e
oo Oosia a0 Vol ey
c_mktsegment - resul
Vo name stm(l d?scaum) Tmpl1 M T G |_commitdate G [y\pe\ [36276] 5
count(]_orderkye) [182183]@273369715461] - — <1_receiptdate ke HBRASST ~ oY }
N _ 7 ps_availgty<200 19\ [32048000000]
Tmp1s, [160240] results [36276]
[184087] S 276048000000] _ - I
X -~ Y5 name
Tmp2s | — Sim(ps_supplycost)
9105191 (), [136577850000]
‘count
™ Y Y(us,suupkev)
() [1602400000] Tmpz2
160240]
Tmpl4 Tmpg L [36276]() [362760000]
[46008] () [6869560251] O P54 A
Tmp2t

Tmp24
910519]@)[1365582000000

M I 2011135
Tmp13 Tmpé ’ \
301831 () rs0000] 12003] () [s0000]
X D
3

[36276] @ [7255200000]

Tmp20
[2069%) [200000]

Op_brand<>"BRAND#45"
not p_type like ‘%BRASS%’
p_size in (9,19,49)

Tmp10
[227597] O 122597

Tmpa ()125]
By TC o_orderkey
T2 8}6\@ e iy
o orderpriori 200000
wQOw Jmp! f10000] () 20000] 18000001 ()y800000] . 10D tzooooy
1150000] C) [150000] 2510 1251 TmpSs. 6000000} [6000000] Tmpg. Tmp16 ! mp18
Tmp12 TUr_regionkey Tmp7 AT ILns;A;eprt:{, 12275971 [1500000] P s g _g;r;lézy

T e nationkey (1] ()5] T s patiqokey I"quantity pype
SRty Tn Yeﬂlorli(ey Shame. Y IJE dedh Go_orderdate>="1994-01-01' T DS,SUDﬁkEY pCsize

Cmktsegment Or_name="ASIA’ hama e - e hrace o_orderdate<"1995-01-01' B st

- [recelptdate psavaiqly
n
[150000] 151 [25) [10000] ettt [1500000] [800000] [200000)
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node same as static approach for Q1-Q7
Q represents additional materialized view node selected by static approach

Figure 4.42 The Re-Optimized Cheapest MVPP for Query Q1 to Q7, and Q13 by
Static Approach

114

Finally, we apply 2PO algorithm to select the set of views to be materialized.
The comparison of the results from the static approach and the dynamic approach for
Q1 to Q7 and Q13 are shown in Table 4.25. The result shows that although the total
cost of dynamic approach equal to the static approach the number of nodes to be

selected by the dynamic approach is less than that of the static approach.

Table 4.25 The Comparison of the Result for the Static Approach and the Dynamic
Approach for Query Q1-Q7 and Q13

Approach Number of Cost of Cost of Total Cost
Nodesto be Query Processing Maintenance
Selected
Static 28 1,164,589,162,793 5,593,713,750,508 6,758,302,913,301
Dynamic 14 1,164,589,162,793 5,593,713,750,508 6,758,302,913,301

The conclusion for adding the query constructed on all base relations is that
we can identify the specific existing nodes that are affected to be the set of views for
selection to be materialized. Considering the Figure 4.39, if we identify the query is
affected rather than node is affected then all 7 existing queries includes 25 nodes that
are affected.

The details of the affected node identification algorithm results for section
4.6.1.31t04.6.1.6 are provided in Appendix D.

4.6.2 Merging New Requirements into the Existing MVPP
Implementation
In the real situation, however, there are several types of new query added
simultaneously, so we add all queries Q8-Q13 together into the existing MVPP. The
method for merging new requirements into the existing MVPP, mentioned in Figure
3.13 in section 3.7.1, is applied when many queries are added. The details are listed as

follows:

115

1. For every optimal query processing plan for any query, if there is a join
operation involved, push select, project operations and aggregate function up along
the tree.

2. Create a list of the new queries in descending order based on the result of
their query access frequency multiplied by query cost.

3. Merge the new query in the list into existing MVPP according to their order
in the list by comparing as follows:

3.1 If there is sharable subexpression available for new query
then
merge to that sharable subexpression
If sharable subexpression has select operation and new query
also has the same select operation
then
push down select operation of new query
3.2 If no sharable subexpression then create new node for new query

4. Repeat step 3 for other queries until all queries in the list are merged into
existing MVPP.

5. Push down select, project and aggregate functions as deep as possible.

6. Move the first new query to the end of the list.

7. Repeat step 3 to 6 to generate all new MVPPs.

8. Calculate total query processing cost based on base relations and existing
materialized views for each MVPP and select the cheapest MVPP.

9. Apply the re-optimized algorithm described in section 3.4 to the cheapest
MVPP.

First, for every optimal query plan of the new requirements, select, project

operations and aggregate functions are pushed up along the tree, if there is a join

operation involved. Thereafter, we calculate the weight which is the frequency of

executing the query multiplied with the query cost of queries shown in Table 4.26.

We create a list of queries and order them based on descending order of their weight.

Then the initial list is {Q10, Q8, Q11, Q12, Q9 and Q13}.

116

Table 4.26 The Query Access Frequency, Query Cost, and Query Access Frequency
Multiplied by Query Cost of Q8 to Q13

9 Frequency of 9 Cost f%0 Cost
uer uery Cos uery Cos
Y Executing Query(fy) Y ! y

Q8 6 758,746 4,552,476
Q9 4 46,008 184,032
Q10 5 910,519 4,552,595
Q11 5 575,169 2,875,845
Q12 2 152,424 304,848
Q13 5 215 1,075

Thereafter, all queries in the list are merged into the existing re-optimized
MVPP, generated in the static phase, shown as Figure 4.23.

Starting with Q10 that has conjunctively join (ORDERS » LINEITEM) that
already available in the existing MVPP that is Tmp24. However, Tmp24 includes the
select operation (G orderdate>="1994-01-01" and o_orderdate <'1995-01-01° ORDERY) then this select
operation of Q10 is push down. So, Q10 is merged into the existing MVPP at Tmp24
and no new intermediate node created for Q10. Figure 4.43 (a) show the dynamic
MVPP when Q10 is merged into the existing MVPP. Next, when Q8 is merged, as
there is no conjunctive joined node for PART and LINEITEM then new intermediate
node is introduced. The first dynamic MVPP when Q8 is merged is shown in Figure
4.43 (b). Later, when Q11 is merged, the existing conjunctive joined node is available
for subtree of Q11 that is Tmp24. The remaining base relation is PARTSUPP then the
new node is introduced as a join operation between Tmp24 and PARTSUPP, {Tmp24
> PARTSUPP}. The first dynamic MVPP, after Q11 is merged, is shown in Figure
4.43 (c).

117

6 3 7 2 2 9
10 1
Q2 U@ ol “@ Q @ Q6 5
t Q5
result4 [967519280] /
1910519] result3 ()[182183] / result1()[160240] resulte

Yn_nam

e
sum(l_quantity)

result7

[36276]
result2(_) [184082)

result!

[36276]

%’cou

nt
(ps_suppkey)

s_name (
sum(ps}up? lycost)
'chmk(segment
sum(l_discount)

Y _name
min(ps_suppltcost 'stname
sum(ps_supplycog

Y

n_name
count(l_orderkye)

Tmp1 [967519280]

[276048000000]

[36276] | Tmp22

[136577850000] ' [362760000]

[32048000000]

Tmp21
[7255200000]

< X
5 Tmp20
130183) (750 ‘ 190691 [200000]
O

G p_bfand<>"BRAND#45"
notp_type like ‘%BRASS%’
p_sfze in (9,19,49)

TC o_ord rekey

brce Tmp18
16000000]() [6000000] oorderpriority 12000001 () [200000]
Tmp3 Tmpg T ps_suppley
25] s_partke
_ 1251 1251 T s otionkey 12275971()[1500000] be-Sippiyeost
TUr_regionkey ssuppkey TU |_suppkey sﬁavaquy TU p_partkey
T cTnauEnkey Tmpl s”name | orderkey B . p_brand
Eustkey B[@]8] 0 e Faaniy Go_orderdate>="1994-0]-01 briype
c-mktsegment O name="ASIA" Rpear & X ount o_orderdate<’1995-01-0 -
[150000] 151 [25] [10000] [6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected by static approach for Q1-Q7

(@) The first dynamic MVPP after Q10 is merged into the existing MVPP

3 7

6 2 2 9

@@ o e@ *@ Q0 1@ Q6 5 Q8

t @ 4

resultd | [967519280] [|

result? 910519)] resultl results [36276]
resutiz() [184082] [1 result3()[182183] // [160240] |
results™ [36276]
Yo Ygane |
n_name sum(l_quantity SUI’"(DSﬁSU plycosl) A
’Ycaum(lforderkye) 'chmkl'sggmeml (1_quantity) r n_nam Vs _name |
sum(l_discount) Tmp23 1 124036000006] min(ps| suppltcost) sum(ps_supplycdst
o1l [967519280] () - 1}ccum |
Tmp15 P / (ps_suppkey) |
1184082) @) [276048000000] [182183] [27336971546;
Tmp25 Tmp19 [36276] | Tmp22 ‘
M 1o10519] () [136577850000] 11602401 () {52043000000] (O 1362760000]
] D(] X -~ %
-~
e -~/
Tmpl4 | 1160240] () [1602400000] _
[46008] () [6869560251] Tmp8 - !
X [1201113] X Tmp21 /

- /
— [36276] [7255200000]
9 /

582Q00000 Tmp20,
[90691) 200p00]

[50000] _-
= {mplo
Imps, — ~A227597; [227597]
-
Top?”

Tmp13
30183 ()[750000]

7

G pb and</>‘BRAND#45'
notp :‘[/Jpc like ‘%BRASS%’

' p_s)ze/in (9,19,49)
Tmp12 Tmp4 [5]() [25) T o orderk [800000] () [800000]
1150000) C) [150000] 120000)) [10000] S /Tmp18
X lotalprice
Tmp2 [6000000] () [6000000] o:ome?priomy [200000] () [200000]
mOw 93 Tmpo TU ps_suppkey
2510) 1251 ps_partey
. [227597] 1500000] s_supplycost
T TUr_regionkey T :{‘fsg’;f‘ekyey T I,sué)pkey [Gm mrde]mate Bs:av'éFqu T Hé?ﬁey
i - |“orderkey o —

TC c_natipnk 10 |-orderk —+1094-01.01' type
A 1 oy Fi o v i
c—mktsegment Or_name="ASIA n-hame IZdiscount <1995-01.01'

[150000] [5] [25] [10000] [6000000] (] 15000007 [800000] [r200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected by static approach for Q1-Q7

(b) The first dynamic MVPP after Q8 is merged into the existing MVPP

Figure 4.43 The Result of Merging Steps for the First Dynamic MVPP

118

Q11
6 3 7 2 Qo 4 2 9
Q2 U@ 2@ “@ s | 1@ Q6 s
o e QTB
resultd [967519250,]
result? () [910519] resutia(f182183] I s Qusozaoy resuts O tz6276] |
resule() [184082] Vs_name | | results(™ [36276] |
'Yn,name . sum(ps‘fupplycosl) |
Yn_name 'c_mktsegment sum(]_guantity) Ynlname "Ys_name 1 |
count(l_orderkye) sum(l_discount) 240350000007 ‘ mip(ps_suppltcost) Sim(ps_supplychst |
Tmp11 [967519280] [}?coun(

Tmp15 Tmp22 (ps_suppkey) |

[36276] [362760000]

\

\\\»\.__

Tmpl4 - -
[46008] L
Tmp21
nzsszoooolo']
Tmp24 BEEAN

Tmp13 750000 <\, [910519 85582Q00000 - Tnjp20

1301831 (Y1750000) AR O fpooooo)
o A
NTmp10 G ph al ld<>’BRAND#45"
= \ notfp type like “%BRASS%
_ BarserfOzrs07 ° sp* o 9.19.49)

Tmp12 g7 [800000] _sfe in (3.19:

[150000] 120000] () [10000] = Tcé’}u\g 'é:fy Tmp18

‘o—totalprice
Tmp2 16000000](_) [6000000] Cordetpriority 1200000 () [200000]
mOw Tmpo TC ps_suppkey
ps_partkey
227597](_)[1500000] ps_supplycost
T ke TU s_nationkey [S
0 retionkey TP g ealoniey SZsuppkey T suppkey Go_orderdate Rl TC pparticy

R mOE I-quantity >='1094-01-01' Boype

¢-mkisegment Or_name="ASIA’ [Ctax o_orderdate =

- <’1995-01-01"
[Jrusoo00) 151 [Jiz0000] [6000000] [1500000] [800000] [] tz00000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected by static approach for Q1-Q7

(c) The first dynamic MVPP after Q11 is merged into the existing MVPP

Q12
ou *
| 2
|
|
I
|

9
U@ QW@

5
Q5
result()[160240] resuits () [36276]

oh |
Zinma(fxse,supplycusp () Y e resuIE0) 36276]
f\ N sum(ps_supplycost)
\
\

Q
=3

f

|
resultd [9575119280]

2 10
@ oy J eQ @ ° T
[
[

result? 910519] result3()[182183
result2| [184082] t 1 L]

c_mkisegment 'Ynir\ame y

'Yninartv(\le derkye) sum(l_discount) sum(l_guantity) name
count orderkye;

- 4 Tmp23 2403&000000] | min(ps_suppltcost)

[967519280] () |

~ @

/ count
Tmp15 15?1“;311 S | f.\ / Tmp22 (ps_suppkey)
l184082) @9 [276046000000] 025 D X /7 I\ Tmp1d [3ez7e] [362760000]
X
[o10519] () [136577850000] | /! ‘{1&0240] [32048000000]
X | / X -
-
Tmpla | ot \ -
146008] () [6869560251] Trps | /1160240] () [1602400008) !
X - Tmp21 |

136276] @ (72552000001

[1201113] 6 / X
T N
\v A [90691) [/ooooo]
[50000] k
®) N O p_barld<>’BRAND#45’
Tmps

Tmp13
30183) ()[750000]

=

/ not ke ;
b Jtype like ‘%BRASSY
/ — TarsorOezrson) o /! n(0.19.49)
Tmp12 Tmpa 510 251 S0~ 1800000] () [800000] S| in (9,19
[150000] () [250000] 120000} () [10000] Jmer— TC o_orderkey
M - Tl Tmp18
Tmpz 6000000](_) [6000000] o orderpriority 12000001 () [200000]
mOmw Tmp3 Tmpo TC ps_suppkey
25] 25 s_partke
TCr_regionkey f][! T ssznua“%key [227597][1500000] gs—%"?%"“ TC p_partkey
Tmpr L0 oY T Il,usruEep’lg Go_orderdate ps_avaiq brand
i ™ sy et - iseaior e
ESEtsY Gr_name="ASIA’ nmationke; K o_orderdate
mktsegment - n_name <1995-01-01'
[150000] 5] [Jresl [10000] [6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected by static approach for Q1-Q7

(d) The first dynamic MVPP after Q12 is merged into the existing MVPP

Figure 4.43 (Continued)

119

Q12
Q11 ?
6 3 7 2 o 4 | 2 9
Q9 Q2 @ €@ “@ 1 Lo 1@ Q6 5 08
' | Pl Qs t
\ resultd [%mfzao] | | |
it7 O [910519 It1 its () [36276)
\ resue() [184082] resu [1 result3()[182183] YS e | | result1(")[160240] resul [] . |
\ cﬁmkllsggmem['Yninalme i sum(ps_supplycosf) () < nae e wez7e] |
\ LR e i e S LA Yoot smmens) |
\ mp; 24036000000] \ min(ps_suppltcost)
po67519280) ()" | Q® / Yeount |
\ Tmp15 X/ (ps_suppkey)
7 I
\ P
-t
/ P |
Tmpl4 Tmp, -
/11602401 !

/

—~ Te21597\[227507]

Tmp12 . 1800000] () [800000] P_S|7e in (919:49)
[150000] Jmer— T o_orderiey Tt
fotalprice mp:
6000000]_) [6000000] oordetpriority 1200000]) [200000]
m Jmp3 Tmpo TU ps_suppkey
7T s nationkey 12275971 [1500000] B tost
ok =
T S G, riertae e e
¢ nationkey (I T 1 regionke i-quantity >="1994-01-01' puype
%SEIEEY O _name="ASIA" natiorkey [discourt o_orderdate -
mkisegment n_name <1995-01-01'
[150000] 8] 1251 [10000] [6000000] [1500000] 800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected by static approach for Q1-Q7

(e) The first dynamic MVPP after Q9 is merged into the existing MVPP

Figure 4.43 (Continued)

Next, when Q12 is merged, the existing conjunctive joined node is available
for subtree of Q12 that is Tmp19. The remaining base relation is LINEITEM then the
new node is introduced as a join operation between Tmp19 and LINEITEM, {Tmp19
> LINEITEM}. The first dynamic MVPP when Q12 is merged is shown in Figure
4.43 (d). The next query in the list is Q9, when Q9 is merged the existing conjunctive
joined node is available for Q9 that is Tmpl4. As Q9 is the subsumption of the
existing MVPP then no new node is introduced. The dynamic MVVPP when Q9 is
merged is shown in Figure 4.43(e).

The last query in list is Q13. When Q13 is merged into MVPP that Q12 is
already in the MVPP, there are two possible plans shown in Table 4.27.

120

Table 4.27 The Possible Execution Plans for Q13 in the First Dynamic MVPP

Plan

Execution Plan

Plan 1

Plan 2

(REGION 4 NATION SUPPLIER > PARTSUPP » PART)
that is Tmp19, (LINEITEM x ORDERS x CUSTOMER) that is
Tmp25. Its query processing cost is 869,827,064,180

{(REGION x NATION » SUPPLIER »x PARTSUPP x PART)
> LINEITEM} that is Q12 and then join with ORDERS x
CUSTOMER. Its query processing cost is 817,446,813,290

As we match the optimal individual plan of query from the leaf node to the

root node with the existing MVPP and merge it to the subgraph of MVPP which

provides the number of base relations that are conjunctive joined as much as possible.

Then, the second plan is chosen, also the second plan provide query processing cost

less than that of the first plan. The details of query processing cost of these plans are
provided in Appendix B. Figure 4.43 (f) shows the MVPP after Q8-Q13 are merged.

) Q12
Q13
10
4 Q ot
6 3 o7 @ 4 +o 2 9
Q9 Q@ Q7 | Q3 | | Q1 Q6 5 Q8
resultd, |
i [o67sdo280] | | Q5 4
\ —|-— |
\ resuiz() [184082] resu7 O [9105}9{‘ resulta[mzmaT - - ‘,, I Iresulll[lGOQAO] result6. [36276] :
/ . result [36276]
\ / Ysum(l uantity) SW“(F SUPDW‘ZGSU L I y name . I
\ Yn_name quantity) . Y n sim(ps_supplycdst) |
cauni(_orderkye) Y _mkisegment mp23 | 12403 oooooo] W ps suppltcost
\ sum(1_discount) P I\ ~ |
Tpit [967519280] . Y count
\ Tmp1s / \ X / N Tmp22 (Gssuppkey) |
\ [184082] [?75043°°°°me - 1182183 [27336971545 \f M TmpDd 136276] () [362760000]
XN/ [910519] [136577850000] / \ / ‘{150240] @) —te 6
& y -7t
' -~
- - I
[46008] . [6859560251] !
[1201113 . D8a _ Tmp21 /
H% 136276] @ 72552000001/
/ ‘ s Tmp20
[301831 [7591 190691 [igouoo]

[150000] . [150000]

O p_tanki<>"BRAND#45"
not|p_ftype like “%BRASS%’

1800000] () [800000] P_sfzein (9,19.49)

Tmpa [5]() [25]

X
[11 0 i Tmp3
2s1Q) 1251

Tmp9 TC ps_ supﬁkey
TC s_natignke 12275971 O)11500000] E§ g\%pl ost
TUr_regionkey S3lippkey” TC | supple oty TU p_partkey
T c_nationkey ™% name P e",@ Go_orderdate p_brand
1Ol - .) 1
g;ggnggy mOisl ™ ooty qpanity >='1994-01-01 Boype
¢“mktsegment Or_name="ASIA" nonationke) 0_orderdate
! nZname <1995-01-01'
[150000] 5] [25] [10000] [t6000000] [1500000] []ro0000] [200000]
customer region nation supplier lineitem orders partsupp part

\
RS w wsji
V > \
[50000] >
/)’Tmplo
Tmps \ / _ /[§7597][227597]

1100007 () [10000] Jme? ~ To ord‘?(rkey

S-hobSHCe Tmp18
6000000] o-ordetpriority

5 [6000000] [200000] . [200000]

@ represents materialized view node selected by static approach for Q1-Q7

(f) The first dynamic MVPP after all new queries are merged

Figure 4.43 (Continued)

121

Next step of merging process, we push down the select, project and aggregate
functions for the first dynamic MVPP as deep as possible to optimize MVPP. The
first dynamic MVPP after optimized is shown in Figure 4.44

Q13. 2
3 2@

5
Q10 2
“® .mo - t ? e
result4, L[967519280] dedprice)
[182183] Tmp3s 7 [160240]

[71115¢ oooo]

7
5
resul m [910519] X
esultg
4 resul?() [184082] 15 Yn_name ‘ resultid | .,)
m (I extendedprice) Yo orderpriority 575169
9 5098835347) 7 ! results () [36276
@ s amcsmenty | Yoo 0 quantity) Vi s supp\ycosvf' C‘_ (. mfnd_discount) fezre) 1
t — nae Y max(p_brand)
m(p

7
6 Q Q3

@@

(- e suppkey) !

resuitg | as008) cmmu (1_orderkye)

ey
[24036000000] \ Q‘ 2424) / Yo o
Tmp23]/ ‘ Tmpz2 Y Ve

'n_name
1967519280] () \'Su ailgty<200 ~ min(ps. s|ippltcost)

Tmp1l / 1221137q 832) iy
5751

\ I

\
Tmp14 Y,
46008] [6869560251]
146008] () I] .
¥ “

>
11602401 () [1602400000] P

(27336971546 1Y D [152424] (575169
t [182183) \ A~ s o |
Yo reme \ Tmpts \ / fris2) Q\ﬂ[:'uzum] ~ /
avg(au}un 1[1awazl [275045000000] \ / !/ oo P Ve I
\ Tmp25 /] like ‘%BRASST® | Tmpl 758746] dm”fﬂr 85
[160240] [rs8746] () [151951851166)
\ 910519 (. [136577850000] \ J— Otazoraoonano] 3
\/ q |
|

17255200000] |

s |
Tmp26
{a00s8] O [200000]

/O P
like ‘9%BRASS%"

Tmp20
(9069} [zoonn/vf

Gp_brpnd<>"BRAND#45
0t p_typeflike ‘BRASSY
p_sipe n/,19.49)

Tmp4 (@]t
p2rson) O [227597] /
Moo u@ ey /
250000)) [150000] 00001 m[,ip:m] 0000001 (60000001 HM% ch 1600000 (yso0a00) 200000
T2 it o Togas o1 fonan)
et 70 5 nationke TR sty 1227597} Jins00000] oy
Tmpt m —regionkey SSoppvey” }:E",L“:iﬂ‘.‘.‘;,y Go_orderdate T s suppkey T p ptey
1] 5] A >='1994.01.01 -Sippiveost
Tompnkey U sty It 1994-01-01' b-Supplyost p1yp
Y O rame="ASIA et P . o onderdte beavlaly
Eimidsegment - [-Commitdite <1995.01-01
receiptaate
[150000] 51 [25] [10000] (6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure 4.44 The First Dynamic MVPP after Optimized, Queries in the List { Q10,
Q8, Q11, Q12, Q9 and Q13}

After the first dynamic MVPP is generated, the first element of the list is
moved to the end of the list. So Q10 is moved to the end of list, the list becomes {Q8,
Q11, Q12, Q9, Q13 and Q10}. We start the second dynamic MVPP with Q8, as there
IS no conjunctive joined node available in the existing MVPP for base relation PART
and LINEITEM then new intermediate node introduced to support Q8. The dynamic
MVPP when Q8 is merged is shown in Figure 4.45 (a).

122

3 2 2 9
Q oy } €@ o2 Y 1@ Q6

result4 | [967519280]
resultl|

Y

5
Q5

result7

result2! [184082]

¥

n_name
count(l_orderkye)

[160240] results () [36276]

resulty) [36276]
X

Yn_nam

e
sum(l_quantity)

's_name
sum(ps_supplycost)
Yc_mkisegment

n_nam
sum(l_discount) 24036000000] min(ps| suppltcost) 'Yza',‘rﬁ‘(’gse supplycds
Tmpil [967519280] - ‘?mum
Tmp1s P (ps_suppkey)
[184082) @) [276048000000] [182183]

Tmp22
(O [362760000]

[36276]

[136577850000]

[32048000000]

\
T~ oo —og

[r2ssa00000] !

% /
585 Tmp20/
130183) (750 190691 r200p00]

G pby and</>'BRAND#45'

not| p:Jt!pc like ‘%BRASS%"
p_sjzefin (9,19,49)

TC o_orderkey /
pe e Tmp18
16000000](_) [6000000] oorderpriority 1200000] () [200000]
S Tmpo T pe gy
i T s_nationk 12275971 [1500000] be-Sippiyeost
_— gnr_reglonksy SSuppey TC | suppey Go_orderdate kol T s b
Tc natiEnkey 1Bl Tn regioq(ke)y I:;ﬂ[%?ﬁneyy >="1994-01-01' gigng
i Gr_name="ASIA’ n_nationke: it o_orderdate =
¢_mkisegment é - n-name [discount <1995-01-01'
[150000] [5] [25] [10000] [6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

(@) The second dynamic MVPP after Q8 is merged into the existing MVPP

Q11
6 3 2

7
Q2 U@ ol) U@

resultd | [967519280]
[910519] result3()[182183]

Y

Yo e
24036000000] ‘ mif(ps_supplitcost)

2 9
A@ QW@

5
Q5

e}
=]

result?

resultl| 160240] resulté ' [36276]
result2(_) [184082] [1

Y

—_——

s_name
Sam(es_supplycost) | resulty”) [36276)

it

count
(ps_suppkey)

Yn_name
n_name ktsegment sum(l_quantity)
count(l_orderkye) ()

m
sum(l_discount Tmp23
— [967519280]

[182183]

Vs

_name
sum(ps_supplyc|

Tmp1s
[184082]

[276048000000]
Tmp25
1010519]) [136577850000]

' '
Tmp8 0
[1201113; \ Tmp21
[7255200000)
/
8 \

- ———->

Tmpl4
[46008] ()

\
\

\
~—

Tmp24

(910519 Tjp20
[30183] [00000]
N © p_thakic>BrRAND#S'
- I ike "
 Barser(27507 ”mspf?'rfg'f; 4:;'35RASS%
Tmp12 [800000] () p_s|ge in (3,19,
[150000]

TC o_orderkey
0 IStke:

e Tmp18
[6000000](_) [6000000] oorderpriority 1200000) [200000]
- " e
. . 227597](_)[1500000] ps_supplycost
ke U s_nationkey [&

T ¢ nationkey TMPL gﬂ:r’mgmn & s_suppkey U IL;#‘&P{‘;:Y Go_orderdate psﬁavalq}’y T g_g;r;léey
PR mOel T 0 regionke I-quantiy >='1994-01-01' pue
c_mkisegment G _name="ASIA’ n-mationke; It o_orderdate .

- n_name <1995-01-01'
[150000] [5] [25] [10000] [6000000] [1500000] [800000] []r200000]
customer region nation supplier lineitem orders partsupp

part

@ represents materialized view node selected in static phase for Q1-Q7
(b) The second dynamic MVPP after Q11 is merged into the existing MVPP

Figure 4.45 The Result of Merging Steps for the Second Dynamic MVPP

123

5 Q12
Q13
Q0 qn
6 3 t 7 R 4 QT T 2 9
Q9 @@ U@ | x@ y | Lo 2 “@ 5 Q8
resul
X i i [o675lo280] | | e} 1
\ - , | |
result7 () [9105; 9{' resuits()[182183] — — — | result1()[260240] results () [36276]
\\ ey e 4 ¢ Vs nam —~ | I results(™ [36276] I
Y Yn_name sum(p: supplyl:usu.~ L |
\ Yo sae s uaniy A Y Vi oy
count(_orderkye) 4 Yc_mkisegment Tmp23 | TGP, suppltcost Ps_supply¢ |
\ /| ¥ sam(i_discount) P 2403i5000000]\ X,
\ Tmp1s / T Tmpll [067519280] \. f N ’Y(coum) |
mj S_SU| (€)
\ “840:2] [276043000008) 62153) N/ [36276] TT§§22760000] R
/ Tmp25 Tmp: ‘
\ > /19105191 () [136577850000] B
1
\ -
Tmpl4 \ / TmPLT\ \ P /
1460081 () /so2a0f () 11602400608 !
/ > Tmp21 /
[7255200000]/
8 Tmp20
101831 QI ooeo)) [i&mm

O notfp_ftype like ‘%BRASS%’
TmplZ .] p_sf7p in (9.19.49)
150000 150000 fht
[1 ¢ 1 o2 Tmp18
m
[1”] 12000001 () 200000]
Tmp9 T ps_suppkey
TC s_natignkey [227597)(_)[1500000] E?’?ﬁgpleymsz
TUr_regionkey Suppkey” 1T 1 suppke peavRlaly T p_partkey
! TmpL S hamne |_suppkey Go_orderdate Sand
T c_nationkey "33 () 5) ! |Torderkey ~) -Dran
c‘cus‘EeY [-quantity >='1994-01-01' povp
R T n_regionie {Equantiey poste
e ment O name="ASIA’ iafonkey’ X o_orderdate
n_name <1995-01-01'
[150000] [5] [25] [10000] [6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7
(c) The second dynamic MVPP after all new queries are merged

Figure 4.45 (Continued)

Next, when Q11 is merged, the existing conjunctive joined node is available
for the subtree of Q11 that is Tmp24. The remaining base relation is PARTSUPP then
the new node is introduced as a join operation between Tmp24 and PARTSUPP. The
second dynamic MVPP when Q11 is merged is shown in Figure 4.45 (b). We repeat
this merging step until all new queries in the list are merged into the existing MVPP.
Figure 4.45 (c) shows the second dynamic MVPP after all queries are merged.

Next step of merging process, we push down select, project and aggregate
functions for first dynamic MVPP as deep as possible to optimize MVPP. The second
dynamic MVPP after optimized is shown in Figure 4.46.

After the second dynamic MVPP is generated, the first element of the list is
moved to the end of the list. So, Q8 is moved to the end of list, the list becomes {Q11,
Q12, Q9, Q13, Q10 and Q8}.We repeat merging step to generate all new MVPPs. So
the list of the last dynamic MVPP is {Q13, Q10, Q8, Q11, Q12 and Q9}. Figure 4.46
to Figure 4.50 show the second dynamic MVPP to the last dynamic MVPP already
optimized. The details of merging queries to generate all dynamic MVPPs are
provided in Appendix C.

124

5
Q3@ 2.
Q12

3
7 5 4 5
R Q1o 2 9
6 a@ X] resuna (O 21s) * ? U@ s x@ 6
2@ g resutti2 (152424 e ®
Yp_brand, result10 [910519] QL@ 5 Py
result?(") 910519 resulta 1(967519280] | avg(l_extendedprice) 4 O B@
Tmp3s [160240] 4 result
resuia(U18215%] P A r11150000] y | resultl [es276] resultgl
4 resultz() [184082] s (Y1000, Vo ate | cesorice Yoforderpriess reSUILL | oo (756746
eI Yo midsegment | Yn_name s name T3 coasaagaaz) T -ofendedprice) Yol orderpriorty results () [36276)
I-discount) (i quantity)| * sum(ps_supplycoss™" n(l_discount) 1
sum(| sum(]_quantity) s Tmp33 min(l_discount) N
i / BT = 152424] / Ve o) | Y mexto-brene)
| e Tipas X poran Q224 Tp2 Yo_name L T S 5 P
~ m e 3
vesulrb[AEDDSl count(l_orderkye) [067519280] i Ops_availgty <20~ P2/ e soptcost) /
Tmp1l \ QRZMWVA“?] MP30] 1460135200000]]
A (2733697154651 (1529240 /4~ ~ 4. [575169] () Tmp2z |
\ [162183] L 7/ \ ~ Tmpsl gf :52750000
v s % 7 \ / {s2192) %snzan} . pe2761() [)} |
n_name
avgo. malk\nce»pmgz] [276048000000] 7 \ / X N >~ i | X /Tmm
(% Tmp25 / ke WENﬁEg;Za] Tmply. [rrseras) () [151951851168]
\ 910519] () [136577850000] \ ! Toptr ()[32048000000] _
% -~
\\ \V/ 11602401 () [1602400000] P | - |
Tmp14) / 7 W Tmp2g ll _ |
; (575169]
460081 () [e869560251] 7\ 1%y to10s - |
Q X G Legmmitdate | 7285200000] |
X / rmpu\ e ™
- Tz |
/[910519])\ [1365582000000 [ADDBB]O [200000]
/
_- like “96BRASSY%
Tmp20
1906310 [zuuuu/lﬂ

Op_brind<>"BRAND#45"
not p_typeflike ‘%BRASSY'
p_sife in9.19.49)

Tmp10

/ 7 Tmps)25
B rzrsen Q) 12275971 /
TC o orderkey /
1200007 O [10000] ﬁ}f
1150000} () [150000] Tmp2 s Gorderprority 12000001 (ts00000) 12000001
Tmp12 wQOwm i rmps Tmpts 200000]
1251 mp1s
70 s nationke TC | suppkey (227597)[1500000] s
Tmpy | TFr-fegionkey ey Iordurkey Go orderdate T ps_suppkey T p_partkey
n " wOsl - {gantity >='1094-01-01' BR-Zipoibost Bivee’
< pationkey T n_regionke a =1994-01 o x
&T%ElgéY G _name="ASIA’ Hgmuenleyy oo e o_orderdate ps_avalq posize
miisegment X [commiiate <'1095.01-01
I-feceipidate
150000] 5] 251 [20000) (6000000] 1500000] [800000] 1200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure 4.46 The Second Dynamic MVPP: the Queries in the List {Q8, Q11, Q12,
Q9, Q13 and Q10}

5
3@ 2
3 2 Q2@ .

: f :
o7 10 2
. [J @ “@ resunta() 215] i ¢ ? A@ 5 *@ p
o_brana '55“"12015242” resad s fo10519) QU@ 2 @ ?
@

@@
result7 967519280] avg(l_extendedprice)
[010519] resul | ava(l_s p
resulta (11621831 Tmp3s £ [160240] f results, sl
4 resut) [184082] o (7LLL50000) Yn_name | resultl resulti1 [36276) é rssras]
Tmp34 ax(1_extendedprice) Yof orderpriority [575169]
folY Y Ye_misegment | Yn_name Vs name ~ 7 (6998835347)) ! results () [36276)
sam(i_discount) | <uml quantity) | * sam(ps_supplycosef™" Q_ [, min(l_discount) 1
t BT — [152424] ! 0 'Yssir'\: S supplycost) | Y maxobrand)
24036000000}/ 5 s2424]) Yo_orderstptus. ps s count
[Yn_name Tmp23 |l [30751] Tmpaz 'n_name mqi, exendedprice) (ps. suppkey)
'95“"90[“"”“’] count(l_orderkye) 1967519280] () Ops_availgy<2 ~a P2/ ’Yan(ps. sppltcost) /
Tmp11 4 \ 1221137§4832) —Tm030] 1460135200000) !
A (2733607154631 us2024) 3~ 1575169] () - /
[182183] 4 7 \ ~ Tmpst F ezrsonnn
Vs o 7 \ / (2192) () [1260240] , 6276 () [1 |
Yoggame b oy ™™ ’ N e &
VG0 10tlice) 140g7) S (276048000000 O p o .)
\ Tmp2s, / /o ke wBRASSY | Tmpig | Tmp2s
M 4 o] [7s6745] () [151951851168]
\ 910519) (), [136577850000] \ ! Top ()(22048000000] _
b % -
\\ \V/ 11602401 () [1602400000] P I - |
/ 7 > Tmpzjg ll |
Tmp1d 575169] -~
46008] () (6869560251 4 \ 9105 !
a6008] () [] ! \ // N 5 Lesmitae | [7255200000] |
s ! 1rmp2a _-" = |
Tmp26
06 200000
/105151@\ ssssez00ecdo [40053]0[)
/ /O p-type
like ‘6BRASSY

Tmp20
190631 (200000
/
Gp_brpnd<>"WRAND#45

not p_typeflike ‘%BRASS%"
p_sifeing9.19.49)

.6[

Tmpa ()[25) Tmp10
[EE Lcommitcate 7507 () 1227567] /
7\ receiptate P y
O 110000} S /
[10000] OtAfSce
[150000] () [150000] Tmp2 ey 1800000] (800000]
Tmp5 6000000](_) (6000000 oCorderpriority 1800000)
Tmp2 wQOwm o EZKS] I Tmp] I 1 s Tmpts 12000001 [200000)
mp18
T regionkey U s_nationkey T supokey (2275971500000 S e
Tmpy LT SSippkey Corderkey Go_orderdate ps_suppkey p_partkey
T mQE "%T""w "1994-01-01' g?{fgpl%ust H 'S'em
<_nationkey T n regionicey I >="1994-01- s-SupE]
o O rame="AsiA" Rty Cibcoun o onderte R boe
c_mktsegment |_name [“commitdate <'1995-01-01'
Ireceipicate
150000] 51 1251 [20000) [6000000] [1500000] [800000] 200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure 4.47 The Third Dynamic MVPP: the Queries in the List {Q11, Q12, Q9, Q13,
Q10 and Q8}

125

5
3@ 2
3
) 7 2 i *e : 9
Q10 2
6 «@ *@ resutas () f21s) * ? u@ s *@ 6
2@ Ko brand, resutaz(Yis2zd) 5 e ®
Yp_brand, result10 [910519] QL@ 4
result?(") 910519 resulta 1(967519280] | avg(l_extendedprice) 4 O B@
182183] Tmp3s [160240] 4 result
result3 (711150000] 5 | esulty [6276] result
4 resultzQ) [184082] s QY Yn_name N resul [Tty p—— (756746
Ktsegment _Tmp34. max{lipﬁlenﬂedmce) Yol orderpriority 575169
o] } Ve _mkiseq Yn_name V's_name [6998835347] results (7 [36276]
sam(i_discount) | ¥ sl quantity) | ¢ sam(ps_supplycosi’™ Tmpas mfn(l_discount)
t / [4741] - 4 Ys_nape Y max(p_brand)
[152424] / 1 sum(ps_supplycost)]
" n_name Timp2s X porsy ([Yo pae [— B o)
'““"goumsl count(orderkye) [967519280] // ps_availgy<20 ~a "2/ min(ps sppiost) - /
Tmp1L (2[12211379'“32] 2301 (450135200000) !
A [273369715461¥] (1529240 /4~ ~ 4. [575169] () Tmp22]
[162183] L 7/ \ ~ Tmpsl gf 362760000}
% 7 \ / {s2192) %snzan} . pe2761() [)} |
\ / A Y - 3 s | 4 |
| Jmp2s
[rss7a6] () [151951851166)

>

\
P . Tmpis,
'n_name ’
1§ 2700 totatbice), 1840871 D [276048000000]
¢] N Ve
\ % Tmp2s / / Tike 6BRASSR® | Tmp1g.
(Q, 1136577850000 1602401 0 3000000
\ 910519 L) [] \ ! Tmpr7 [32 1 ~ 5t
\ N/ X | -~
11602401 () [1602400000] |
\ Y s
/ AN | |
8 < 75159, 0 o | _- |
g / / X G Legmmitdate | 7285200000] |
~ Y
R
Tmp2

Tmpts
[46008] () [6869560251]
W Lo~
p: _ 6 |
[ADDEB]O [200000]

/(o105191@)\ (1365582000050
like ‘UBRASSY

/

—~
~
Tmp20
1906310 [200000]
/
Op_brind<>"BRAND#45"
"w276 [600f not p_typeflike ‘%BRASS%"
[3793296] ? Tmp10 p_sipe II\/(QJQ,AQ)
O/ |_commitdate re2rsan) [227597) /
|_receiptdate T o_orderkey /
110000]) [10000] a‘.%ﬁée e
250000) [150000] Tmp2 ordeprioi 1800000] (yg00000]
Tmp5, 6000000] 6000000} o-ordefpriority
Tmp2 mwQu Jmps ! -]7 (5000000} Tmpo Tmps 12000001(.) (z00000)
TUr_regionkey Qe TU . nationkey "7 1 suppkey 122759 (pa500000) mp18
Tmp1 10N Ssuppkey |-orcerkey Go_orderdate ﬂé};};g key T p partkey
s[@]E] H >='1904-01.01 s-Slppiybost -
TC _nationkey ¢ T . regionkey e -suppl ptype
‘r}%élgé G _name="ASIA’ Hg’a“uﬂeyy oo e o_orderdate ps_avalq posize
c_mktsegment - [“commitdate <'1995-01-01"
I~receiptdate
[150000] 51] 10000] (6000000] 1500000] 800000] [200000]
nation supplier lineitem orders partsupp part

region

@ represents materialized view node selected in static phase for Q1-Q7

Figure 4.48 The Fourth Dynamic MVPP: the Queries in the List {Q12, Q9,
Q13,Q10, Q8 and Q11}

5
: . e .
7 Q12 5
6 @ . J t hy Q@ 2 9 .
okl] resumlo [215] * u@ 5 ®@
2@ o ana resuaz2(is2624) 5 x@®
result4 1(967519280] Yp_bran resultlo 4 [910519] QU@ by
70 ot | vl extendecprce) g) " *@
162183] [160240] resul
resultg (L Tmpss | o namd " 36276) resulig
4 result2() [184082] P . Yn_name - result] resultl1 [758746]
®@ Yo rame Yorame @isgQ BT ek prtendecprice) Yol orcerpririty dsmw] eslts (Y o276
’ Y°—"“(<|‘5;g"“”‘0 stm(l quantity) | * Sum(ps_supplycost) | mhn(L_discount) Ys._name 1 anto brend)
sum(]_discount [24036000000] N Tmp32 sum(ps_jupplycost) ¥ max(p|
| Vo o e B (X JRY 5 o Boheer |
msuuao [46008] A k) 1967519280] () Tm;ib - B 7 i pq suppltcost) SUm(_eftendecprice) s suppkey)
Tmp1l N [575169) L Jro10519] QEZIQZ] ~of [57;’22?“ [460135200000] !
A [182133].[27336971545 _= L e Y P O Tmp22 |
\ o — = "G Lcommitda Gps_availgty<2gh 7= &t o276} () [362760000]
b7 Tmp1s - <1_receiptdate - (2192] () [160240] ~ i
' name , X / 2700 i
27500, totalrice) 1276048000000 | TR
[184082] — / > 4 Tmp28
\ (¥ - / like ‘%BRASSR | Tmp1g. | P:
\ Tmp2s | — 7 / [vg it) [7s8746] () [151951851166)
\ 910519) (), [136577850000]) Tmp17 8000000] -
\] / 11602401 () [1602400000] P | - |
- LT PN i |
mp g 75 - |
46008] () [6869560251] o
! 10 1 [12018000000] / " G LeSmmitdate | [7255200000]
1201113 |
X) I / Tmp24 / _- 5] I
Tmp2s
e 200000]
/ 1810519) (1365582008000 [40053]0[)]
/
G p_ype
’ - / ke uBRASSH:
Tmp13 Tmps _ - %BRASSY
201831 O [750000] 4 ~ Tmp20
N, [2003] [50000] 190631 (200000
2 /
Gp_brpnd<>"WRAND#45
TWWG [600£00T not p_typeflike ‘9%6BRASSY%"
Tmpa CY125) Tmp10 p_sie inf9.19.49)
BB Lcommitete pr59m () 227567] ,
7\ receiptate T o orderkey ,
120000] O 10000] SHsHee
250000) () 150000 Tmp2 S 800000]
o Q tsoooo) S e Tmps 16000000}) [6000000] Tmzﬂdwwm"w . Oreooooo 12000001 (200000)
1251() [25) Tmp7-
TUr_regionkey Q TU s_nationkey T Lsudppkey [227597)(_)[1500000] ‘mp18
Tmpl - s_suppkey | Corderkey Go_orderdate TC ps_suppkey TC p_partkey
T enaonkey Q1 - Iquantty Jo.orderdate. s prtkey pbrand
!E T 0 regionke: IMtax >="1994-01-01' Ba-supeycost ptype
IRy raia Dredionkey I"discount o_orderdate ps-avai i
cZmkisegment Gr_name="ASIA' n-name [aronedprice <1995-01-01
Ireceipicate
[150000] 51 251 [10000] [6000000] [1500000] [800000] [200000]
nation supplier lineitem orders partsupp part

region

@ represents materialized view node selected in static phase for Q1-Q7

Figure 4.49 The Fifth Dynamic MVPP: the Queries in the List {Q9, Q13, Q10, Q8,
Q11 and Q12}

126

5
Q3@

2
3 2
, + o@ 5
s o } o] Y Q@ 2 9 6
<! resutis () f21s] Py L@ 5 o J
@ 9 result12((152424 s @
Y. brand. wszezay o1 5
resulta | [967519280] result10 a [910519] QL@ *
result’() [o10519] | avg(l_extendedprice) 4 O B@
[162183] . I [160240] t results resultg
4 \ 101082 result3 Tmp3s | | 1 esi 136276 = (5 [758746]
resuliz() [] 211 13735957148] max(.extendedprice) Yo/ o ° o
o8]] Yn_name Y's_name [215] f) f
X Yc_midsegment sum(l_quantity) | © SUM(ps_supplycost) | Y max(p_brand)
sam(1_discount 24036000000] AN Tmp32 ¥ max(p_brar
| o o | SN o e ezzasesh /
''''' "b””‘”‘l count(I_orderkye) Q " N gmpas / !
Tmpil [575169) S 010519 [32192] ~o/ 3]
A [27336971546; = [6492) L > ~ 575169] Tm
182183] gy o = — e P !
) \ X Z commit Gps_availgty<2q fro152] () (160200 /gf [36276] |
Vo) TS _ < |_eceipdat / / 270 %
avg(0_0tlfrice) 154071 B (276045000000] _ - O ptpe ~ I
\ (% _ - / / ke ‘%BRASS | Tmpi | S L.
\ Tmp2s | — 7 / 105020000 sconooo) [rss7a6] () [151951851166)
\ 9105191), [136577850000] / Tmp17 _-sf
%
\ N / [160: {v (O 126024000001 P ! |
TR o ! I
| — |
~
| -

[7255200000] |

Tmpzs |
140058] O [200000]

/ G p_type
like ‘%BRASS%’
Tmp20
1906310 [200000]
/
Op_brind<>"BRAND#45"

not p_typeflike ‘%BRASSY’
p_sifeing,19.49)
/

oo) T / i . -
146008] () [6869560251] / —
1201113)%[12018000000] ‘ / - mmitdate
M % mpes |7 Teceipte

/ [910519¢ (1365582008000

/

- -7
Tmp13 Tmps ~
30183] [750000] o' -
130183] () (750000] (2003]
>
X
goon
Tmpa C125] Tmp10
15 date

r227ser O 12275971

1200007 O [10000] /

250000]) [150000] Tmp2 £ 1800000] (yg00000]
Tmp5 6000000] 6000000] _orderpriority
Tmp1z QO ez [Tmp]7[1 oo s 1200000]() [200000]
1251 mp18
TU s_nationke T |_suppkey [227597)(_)[1500000] p!
Tmpl Tortegionkey s:suuukEyy Go_orderdate T Ds,swgkev Tp {arlkey
g wQ isowonor B, 2
T n_regionke ='1994-01-(ps_suppl puype
en Gt name="ASIA" ARG o_orderdate bs-avalaly bratke
- fLneme I e <'1095.01-01
Ireceiptaate
[150000] (51 [25) [20000] (6000000 [1500000] [800000] 1200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure 4.50 The Sixth Dynamic MVPP: the Queries in the List {Q13,Q10, Q8, Q11,
Q12 and Q9}

In Figure 4.49 and 4.50 the fifth and the sixth dynamic MVPP, the execution
plan of Q13 in these MVPP is not equal to the first fourth MVPPs, because there is
only one plan, Plan 1 in Table 4.27, available for Q13 in the existing MVPP. In Figure
4.44 to 4.48, because Q12 is merged into MVPP before Q13, then there are two
possible plans for Q13 as described above.

After all dynamic MVPPs are generated, we calculate the weight of all queries
and total query processing cost of MVPP to identify the cheapest one. For example
query Q11 with the frequency of executing the query is 5 in Figure 4.44, Q11
accesses the nodes Tmp24 (existing materialized view), Tmp29, Tmp16, Tmp30 and
resultll. So, the query processing cost of Q11 is (5)*(910519 + 910519 + 800000 +
460,135,200,000 + 575169) that is 2,300,691,981,035. The query processing cost of
all dynamic MVPPs are shown in Table 4.28. The details of query processing cost of
all dynamic MVPPs are provided in Appendix C.

Therefore, from Table 4.28, we choose the first MVPP as the cheapest MVPP
that provides the total query processing cost is 4,902,508,929,085.

127

Thereafter, we apply our MVPP re-optimization algorithm to the cheapest one.
The result is that the query processing cost of Q1 to Q12 is equal to the other MVPPs,
and the query processing cost of Q13 is equal to the second to the fourth MVPPs, and
less than that of the fifth and the sixth MVPP. Therefore, there is no query have to be
rewritten.

In the next section, we will identify the affected node as the member of set of

views to be selected by implementing our affected node identification algorithm,

Table 4.28 The Query Processing Cost of All Dynamic MVPPs

Query 1t MVPP 2" MVPP 3" MVPP 4™ MVPP 5" MVPP 6" MVPP

Q1 67,303,124,486 67,303,124,486 67,303,124,486 67,303,124,486 67,303,124,486 67,303,124,486
Q2 2,208,984 2,208,984 2,208,984 2,208,984 2,208,984 2,208,984
Q3 2,550,562 2,550,562 2,550,562 2,550,562 2,550,562 2,550,562
Q4 53,213,742,566 53,213,742,566 53,213,742,566 53,213,742,566 53,213,742,566 53,213,742,566
Q5 362,760 362,760 362,760 362,760 362,760 362,760
Q6 3,265,582,968 3,265,582,968 3,265,582,968 3,265,582,968 3,265,582,968 3,265,582,968
Q7 409,739,463,114 409,739,463,114 409,739,463,114 409,739,463,114 409,739,463,114 409,739,463,114
Q8 911,790,059,484 911,790,059,484 911,790,059,484 911,790,059,484 911,790,059,484 911,790,059,484
Q9 27,488,935,648 27,488,935648 27,488,935,648 27,488,935,648 27,488,935,648 27,488,935,648
Q10 9,105,190 9,105,190 9,105,190 9,105,190 9,105,190 9,105,190
Q11 2,300,691,981,035 2,300,691,981,035 2,300,691,981,035 2,300,691,981,035 2,300,691,981,035 2,300,691,981,035
Q12 311,554,998,998 311,554,998,998 311,554,998,998 311,554,998,998 311,554,998,998 311,554,998,998
Q13 817,446,813,290 817,446,813,290 817,446,813,290 817,446,813,290 869,827,064,180 869,827,064,180
Total 4,902,508,929,085 4,902,508,929,085 4,902,508,929,085 4,902,508,929,085 4,954,889,179,975 4,954,889,179,975

8¢T

129

4.6.3 The Affected Node Identification Algorithm Implementation

In this section, we describe the implementation of our affected node
identification algorithm mentioned in 3.7.2. The algorithm aims to reduce the size of
search space of dynamic MVPP for selecting views to be materialized. It is applied to
the dynamic re-optimized MVPP generated in the previous section as shown in Figure
4.44,

To identify the directly affected node

Initial list of the directly affected node Mgirect = ¢

Start with Q8, we do depth first search to find the nodes that are used to build
query Q8. The existing nodes used to build Q8 are {Tmp18, Tmp7}

QO9: the existing nodes used to build Q9 are {Tmp14, Tmpl10, Tmp9, Tmpl3,
Tmp4, Tmp3, Tmp2, Tmpl and Tmp12}.

Q10: the existing nodes used to build Q10 are {Tmp24, Tmp10, Tmp9 and
Tmp7}.

Q11: the existing nodes used to build Q11 are {Tmpl6, Tmp24, TmplO0,
Tmp9 and Tmp7}.

Q12: the existing nodes used to build Q12 are {Tmpl9, Tmpl8, Tmpl7,
Tmpl6, Tmp6, Tmp5, Tmp4, Tmp3, Tmp2, Tmpl and Tmp7}.

Q13: the existing nodes used to build Q13 are {Tmpl9, Tmpl8, Tmpl7,
Tmpl6, Tmp6, Tmp5, Tmp4, Tmp3, Tmp2, Tmpl, Tmp7, TmplO, Tmp9 and
Tmpl2}.

So the existing nodes used to build new queries Q8-Q13 are {Tmpl, Tmp2,
Tmp3, Tmp4, TmpS, Tmp6. Tmp7, Tmp9, Tmpl0, Tmpl2, Tmpl3, Tmpld, Tmpl6,
Tmpl7, Tmpl8, Tmpl9, Tmp24}.

Next we calculate weight w(v) for the existing nodes used to construct new
queries. For example Tmpl9, it is accessed by Q1, Q12 and Q13 which their
frequencies of executing the query are 2, 2 and 5, respectively. Tmp19 is constructed
from nodes Tmpl, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmpl6, Tmpl7 and Tmpl8..
The cost of each node and Tmp19 is 5, 1, 25, 25, 10000, 50000, 800000, 1602400000,
200000, 32048000000, respectively. Therefore, its weight is calculated as (2 + 2 + 5)
* (32048000000) - (5) * (5 + 1 + 25 + 25 + 10000 + 50000 + 800000 + 1602400000 +
200000 + 32048000000) that is 120,174,699,720.

130

From the result, Tmp19 is possible to be materialized view as its weight is
positive. In static phase, shown Figure 4.23, only Q1 is used Tmp19, then the weight
of Tmp19 is negative that is (-3,206,804,006). The weight of Tmp19 is changed from
negative in the static phase to positive in the dynamic phase because there are
additional queries, Q12 and Q13, are constructed on Tmp19.

The weights of the existing nodes used to construct the new queries are shown
in Table 4.29.

Table 4.29 The Weight of the Existing Nodes for Constructing All New Queries

Existing Node Weight (w (v))
Tmpl 135
Tmp2 22
Tmp3 675
Tmp4 588
Tmp5 260,000
Tmp6 719,832
Tmp7 228,000,000
Tmp9 51,000,000
Tmpl0 6,238,298
Tmpl2 2,850,000
Tmpl3 4,799,832
Tmpl4 41,206,850,894
Tmpl6 23,200,000
Tmpl7 11,213,359,776
Tmpl8 5,600,000
Tmp19 120,174,699,720
Tmp24 15,021,386,544,806

Later intermediate nodes, which are the conjunctively joined nodes with
positive weight, or project operation that is not the ancestor of base relation or select

operation, are inserted into the list of directly affected node Mgirect. Therefore, from

131

Table 4.29, the directly affected nodes are {Tmpl, Tmp2, Tmp4, Tmp6, Tmp9,
Tmpl0, Tmpl13, Tmpl4, Tmpl7, Tmpl9 and Tmp24}. Tmp3, Tmp5, Tmp7, Tmpl2,
Tmpl16 and Tmp18 are the projection nodes and the ancestor of base relations, so they
are not identified as the directly affected node.

To identify the indirectly affected node

Next step, we identify the indirectly affected nodes that are the ancestor nodes,
with certain weight w(v), of the directly affected nodes described as follows:

Tmpl, its ancestor is Tmp2 that is already in Mgirect , SO SKip to the next node
in the list.

Tmp2, its ancestor is Tmp4 that is already in Mgirect , SO SKip to the next node
in the list.

Tmp4, its ancestor nodes are Tmpl13 and Tmp6 that are already in Mgirect , SO
skip to the next node in the list.

Tmp6, its ancestor nodes are Tmp8 and Tmpl7, as Tmpl7 already in Mgirect
then we will consider the indirectly affected node of Tmpl7 later. From Tmp6, we
move up to Tmp8, the ancestor node of Tmp8 is Tmpl1l only. We compare the weight
of node Tmp6, Tmp8 and Tmp11l to identify the maximum weight of this branch. The
weights of these nodes are shown in Table 4.30. As the weight of Tmpll is the
maximum weight of this branch then Tmpl1 is identified as the indirectly affected
node.

Tmp9, its ancestor is Tmp10 only that is already in the directly list, so we skip
to the next node in the list.

Tmpl0, its ancestors are Tmp24, Tmpll and Tmpl14 that all are already in the
list, so we skip to the next node.

Tmp13, its ancestor is only Tmp14 that is already in the list.

Tmp14, its ancestor is Tmp15. As weight of Tmp15, shown in Table 4.30, is
higher than that of Tmp14 then Tmp15 is the indirectly affected node.

Tmpl7, its ancestors are Tmpl9 and Tmp23. The weight of Tmp23 is
negative, shown in Table 4.30, then Tmp23 is not taken into consideration. Tmp19 is
already in the list of directly affected node then there is no the indirectly affected node
of Tmp17.

132

Tmpl9 does not have the existing ancestor node. Then we skip to the next
node in the list.

Tmp24, the last node in Mgjrect , itS ancestor node is only Tmp25. From Table
4.30, as weight of Tmp25 is negative then it is not the indirectly affected node.

Table 4.30 The Weight of Ancestor Node of Directly Affected Node of New Queries

Directly Affected Node Ancestor Node Weight of Ancestor Node
Tmp6 Tmp8 36,029,759,776

Tmpll 486,610,492,657

Tmpl4 Tmpl5 241,657,060,480

Tmpl7 Tmp23 - 80,125,050,280

Tmp24 Tmp25 -4,096,769,632,791

Therefore, the existing nodes identified as affected nodes includes
Directly affected nodes: Tmpl, Tmp2, Tmp4, Tmp6, Tmp9,
Tmpl0, Tmpl13, Tmpl4, Tmpl7, Tmpl9,
and Tmp24
Indirectly affected nodes: Tmpll, Tmpl5

The new intermediate nodes are created to support the new requirements are
Tmp26, Tmp27, Tmp28, Tmp29, Tmp30, Tmp31l, Tmp32, Tmp33, Tmp34 and
Tmp35.

Therefore, the total number of nodes to be selected in the dynamic phase is 23,
13 existing node and 10 new nodes, whereas the number of nodes to select by the
static approach, that is presenting in section 4.8, is 35 nodes. Those 23 nodes are the
member of set of views to be materialized or un-materialized for the materialized
view selection process described in the next section.

In the next section, we are presenting the implementation of selection

algorithm, 2P0, to select the set of views to be materialized or un-materialized.

133

4.7 Two-Phase Optimization for Dynamic Materialized View Selection

We use the Two-Phase Optimization (2PO) algorithm to select the set of views
to be materialized. The search space is the MVVPP after new requirements are merged
shown in Figure 4.44. We first map all nodes in DAG to the binary string using depth
first search. There are three types of node to map to binary string regarding to the
algorithm in Figure 3.15 in section 3.8. The binary string of 1s and 0s represent views
which will and will not be materialized, respectively. The mapping rule is
implemented as follows:

1) The affected node, both the directly and the indirectly affected node, and
new created nodes are mapped into binary string.

The list of affected node is {Tmpl, Tmp2, Tmp4, Tmp6, Tmp9, TmplO,
Tmpl3, Tmpl4, Tmpl7, Tmpl9, Tmp24, Tmpll, and Tmpl5}.

The list of new created nodes is {Tmp26, Tmp27, Tmp28, Tmp29, Tmp30,
Tmp31, Tmp32, Tmp33, Tmp34 and Tmp35}.

These nodes are initially set to 0.

2) All existing materialized view node which is not identified as the affected
node that is Tmp21 is fixed to 1. The reason to fix Tmp21 to 1 is that Tmp21 is
always the materialized view to support the existing requirement.

3) The other nodes are fixed to 0. The nodes are {Tmp3, Tmp5, Tmp7, Tmp8,
Tmpl2, Tmpl6, Tmpl8, TmMp20, Tmp22, Tmp23 and Tmp25}. They are the virtual
views that have not been affected by changing the requirements.

Therefore searching through the DAG in Figure 4.44 using depth first search,
we obtain the mapping array as follow:

[Tmp19,0], [Tmp18,0], [Tmpl7,0], [Tmpl6,0], [Tmp6,0], [Tmp5,0],
[Tmp4,0], [Tmp3,0], [Tmp2,0], [Tmpl,0], [Tmpl5,0], [Tmp7,0], [Tmpl4,0],
[Tmp10,0], [Tmp9,0], [Tmpl13,0], [Tmpl12,0], [Tmpll,0], [Tmp8,0], [Tmp23,0],
[Tmp21,1], [Tmp20,0], [Tmp22,0], [Tmp25,0], [Tmp24,0], [Tmp28,0], [Tmp26,0],
[Tmp27, 0], [Tmp30, 0], [Tmp29, 0], [Tmp32,0], [Tmp31, O], [Tmp35,0], [Tmp34,0],
[Tmp33, 0]

So the binary string of above mapping is

{0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

134

The result by 2PO algorithm is {1, 0, 1,0,0,0,0,0,0,0,1,0,0,1,0, 1,0, 1,
0,010001,10,10,0,0,0,0, 0, 0} indicates that Tmp10, Tmpll, Tmpl3,
Tmpl5, Tmpl7, Tmpl9, Tmp21, Tmp24, Tmp27 and Tmp28 are materialized views.

The meaning of each materialized view described as follows:

- Tmpll, Tmpl5, Tmp21 and Tmp24 are the materialized view. They are the

existing materialized views selected in the static phase and also still be the

materialized views in dynamic phase.

- Tmp10, Tmpl3, Tmpl7, and Tmp19 are the virtual views in the static phase

and changed to materialized views in the dynamic phase.

- Tmp27 and Tmp28 are the new materialized views to support the new

queries.

- Tmp6 is the existing materialized view in the static phase and it is un-

materialized in the dynamic phase because Tmpl7 and Tmpl19 are materialized then

Tmp6 is not used by any query anymore.

Table 4.31 The Query Processing Cost of Dynamic Approach for All Queries

Query Access from Node Query Processing Cost
Query number 1 (Q1) Tmpl9, resultl 640,960
Query number 2 (Q2) Tmpl5, result2 2,208,984
Query number 3 (Q3) Tmpll, result3 2,550,562
Query number 4 (Q4) Tmpl7, Tmpl2, Tmp23, result4 50,007,659,040
Query number 5 (Q5) Tmp21, result5 362,760
Query number 6 (Q6) Tmp21, Tmp5, Tmp22, result6 3,265,582,968
Query number 7 (Q7) Tmp24, Tmpl12, Tmp25, result? 409,739,463,114
Query number 8 (Q8) Tmp28, result8 9,104,952
Query number 9 (Q9) Tmp13, result9 27,479,456,156
Query number 10 (Q10) Tmp24, result10 9,105,190
Query number 11 (Q11) Tmp24, Tmp29, Tmpl6, Tmp30 2,300,691,981,035

and result1l

Query number 12 (Q12) Tmp19, Tmp31, Tmp27, Tmp32 244,236,102,064

and result12

Table 4.31 (Continued)

135

Query

Access from Node

Query Processing Cost

Query number 13 (Q13)

Tmpl9, Tmp31, Tmp27, Tmp32,

Tmp33, Tmp10, Tmp34, Tmp35

and result13

649,149,570,955

Total query processing cost

3,684,593,788,740

Table 4.32 The Maintenance Cost of Dynamic Approach for All Queries

Materialized Number of Constructed from Nodes Maintenance
View Base Relations Cost
Tmpl0 1 Tmp9, Tmpl10 1,727,597
Tmpll 5 Tmpl, Tmp2, Tmp3, Tmp4, 1,426,977,515,570
Tmp5, Tmp6, Tmp7, Tmp8,
Tmp9, Tm10, Tmpll
Tmp13 3 Tmpl, Tmp2, Tmp3, Tmp4, 2,700,168
Tmpl12, Tmpl3
Tmpl5 5 Tmpl, Tmp2, Tmp3, Tmp4, 1,414,630,939,520
Tmpl12, Tmpl3, Tmp9, Tmp10,
Tmpl4, Tmp7, Tmpl5
Tmpl7 4 Tmpl, Tmp2, Tmp3, Tmp4, 6,413,040,224
Tmp6, Tmpl6, Tmpl7
Tmpl9 5 Tmpl, Tmp2, Tmp3, Tmp4, Tmp6, 168,257,300,280
Tmpl6, Tmpl7, Tmpl8, Tmpl9
Tmp21 2 Tmpl6, Tmpl8, Tmp20, Tmp21 14,512,800,000
Tmp24 2 Tmp7, Tmp9, Tmpl10, Tmp24 2,731,179,455,194
Tmp27 1 Tmp7, Tmp27 12,000,000
Tmp28 2 Tmp7, Tmp27, Tmpl8 ,Tmp28 303,928,502,336
Total materialized view maintenance cost 6,065,915,980,889

136

The total query processing cost after the set of views are selected by 2PO is
3,684,593,788,740 as shown in Table 4.31. The total materialized view maintenance
cost is 6,065,915,980,889 as shown in Table 4.32. The total cost which is summation
of query processing cost and maintenance cost is 9,750,509,769,629. Figure 4.51 is
represented the dynamic MVPP after 2PO is applied.

5
W@ 2
3
) 7 2 0 0@ 5 , \
Q10
6 [ox!] U@ resumao [215] + ? @ 5) 6.
2) s 5 8
@ Hyo_brana e ““1201 2424] o cult10 . [910519] QL@ 5 ©
resut7() [o10519] resultg L[967519280] | avg(_extendedprice) 4 ol t
1 Olne2183] Tmp3s, 7 [160240] t results resultg
4 resul2() [184082) result a5 (7 11150000] Yn_name | resultl result | oo [36276] UL)
®@ Ve miseqment T Yn_name ¥s rame B sy T oendedice Yol orderriority (ljsralue] s (b oare)
s sim(1_discount) | 4 siiml quantity) | ¥ sam(ps_supplycosty™ [¢) M3 nfin(_discount) Vs nae fv max(p_brand)
BT~ _Q\uszm] / P sam(ps_su vmede
7 Yo_orderstatus _supplycost) ‘count
| Yn_name Tmp23 [30751] | S cprice) (ps_suppkey)
'es““bmooa] count(l_orderkye) [967519280] // Ops_availgty<200 ~. ‘[rmpaz V/) 'YH(E 2% sppltcost) . 30T /
Tmpll (2 1221137§4832] mp: P 0
T 27336971546 1¥ [\ [152424] M - [57515910[%01352%00]]
[182183] 7 \ + _Tmpar Tmp22 !
\ 4 \ / {22192) () [160240) ~ &t 136276]() - [362760000] I}
b / ¥ 270 4

Tmpl4
146008] () [6869560251] ta6276) Y [7255200000] |
X1

X
Tmp26 |

X
'n_name Tmp1s ,
avg(ﬂJom\kncw[mm] [276048000000) \ / G p_tPe y [}
\ % Tmp25 / | like %BRASSR® _ | Tmpig. | e
Q [160240] & [7] (151 168]
\ 910519] [136577850000] \ ! Tmp17 [32048000000] — st
> \ Il -
\\ 4 V/ [160240]) [1602400000] P - |
/ 7 X TmpZ/Qq _- - |
575169] o —~ Tmp21 |
7\ / 910519
0 \
~
ao0ss] O 1200000]
G p_type
like ‘9%BRASS%

/

Tmp13
1301831 @ [750000] Tmp20
190691 [200000f
/

Gp_brand<>"BRAND#45"

v
2 mp27 not p_type/like ‘%BRASS%’
v Tmpa . [25] (3793296] Tmpl10 p_sipe IV\/Q‘IQ‘AQ)
7 5] |_commitdate r2rson @ [227597) /
|_receiptdate pus
O noooo] \ ﬁ%‘?‘ﬁy /
[10000] Otiprce
1250000 () [150000] Tmp2 ordetpriorit 1800000 (800000
Tmps5. 160000007 () [6000000] ©_orderpriority 200000]
Tmp12 mOw) T'"9235 Tmm rmpo Tmpi6 [1) [200000]
TUr_regionkey @ TU s_nationkey TU |_suppkey [227597)(_)[1500000] ‘mp18
Tmpl ! s suppkey [orderkey Go_orderdate T ps_suppkey T ppartkey
T ¢ pationkey me T ke e >=°1994-01-01" Bs@uppli}ém B-bren
n_regionke e - A
oy pame=AsIA" fissiey Ficount . ordedite Bume phe
c-mktsegment - n_name \jcommudg(e <'1995-01-01'
Ireceiptdate
[150000] 51 1251 [10000] 00] [1500000] (800000 [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7
@ represents new materialized view node selected in dynamic phase
O represents un-materialized node in dynamic phase

Figure 4.51 The Dynamic MVPP for Q8-Q13 after Applying 2PO

In the next section, we are presenting the evaluation of our dynamic approach

by rerun static approach of all requirements, the existing queries and the new queries.

137

4.8 Result and Analysis of Dynamic Materialized View Selection

To evaluate the performance of our dynamic approach by the static approach
is performed on the set of all queries which includes the initial requirements, Q1-Q7,
and new requirements, Q8-Q13. We build MVPP algorithm by Yang et al., the
implementation step mentioned in section 4.3, to generate 13 MVPPs for 13 queries
and select the cheapest MVPP. The cheapest MVPP for Q1-Q13 is shown in Figure
4.52.

5
Q3@
3 7 2
Q7 Q4
6 4 @ ® result13 O [215] 6
R 4 967519280] 17, g 5 =@
17 result 1 avg(|_extendedprice)
result [910519] 26 o1 }
1 Ol182183)) O "
4 resulzQ) [184082] results / sy 12151 [r1is0000) (36276 [758746)
 Imktsegment sum(ps_supplycost)
&) Ys - dscoon) | YT anity) Py . eits () 278l §
4 N 77 () 1o0eeee | s dprice) | Ymxo_bransy
'n_name Tmp28 Tmp25 mp24) t -
,,,,, o | (46008] ycﬁunt(l,nrdevkw) [967519280] [zwaenumyn{ " N\Ov& | Yn_rlame | Vs name ke |
o ya Borst) ~ | Tmp23] mirk(ps_Suppltcast) TmD33) 0155500000 sum(ps_supplycylst)
Tmpil \ [1574741(1\“7” 1374832 [575169) O - |
Y 27336971545 —
v";[‘gfw&w) ezse) Q. \ Foq = T — ez & Tmp20 |
\ D \ / /[3219936“74(“ Ve | [36276] [362760000], |
Tmp1s, - = 1602400000] ~
| Tmpzt 0 Y
1 [mw][zmmanuuouu] Tmp27 \ | | [190340 O | | -
el < '58746] 51851168
\ Tmp34 [136577850000] | [758 Ap [151951851168]
\ 910519] ‘ _ -t
\ > | _- |
| - |
|
| - |
\ 7 - Tmp19
Tmpl4 5 -
[46008] () [6869560251] 1362761) [g00000] :
I
|
|

like ‘9iBRASS%

,19,49) |
2 7 Tmp30 o
Tmp13 4 Tmete Bl toos (D 2500
130183] () [750000 7 (800000] {, A160000000000] Z
’ [7 O pope
> / like ‘%BRASS%
/7
7 /
7 Tmpa (28]
5] Q /
24 /
1250000] () [150000] Tmp2 trooel rr[;gm] 1500005 yacooooy 200000] 1
Tmp12 mOm Imp3 Trmpt6 ¢ 10) [200000]
[6000000]
TUr_regionkey Qe s maigkey 5 1 fsoooocal 12275971 11500000] Tmpt
Tt LT S3uppley Tmp7 A | orderk I ps_suppey T p_partkey
T[Hﬂ's'%’ékey [1@)G] T b regionke - e Go_orderdate>="1994-01-01' Es:'s]upplgcosl B-tpe
S - Gname="asia Rty g e 090101 Bt B
[150000] 151 [25 [10000] [2500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

Figure 4.52 The Cheapest MVPP of Q1-Q13 by Static Approach

Next, we apply our MVPP re-optimization algorithm to the cheapest MVPP,
then Q1, Q5, Q6, Q12 and Q13 have to be rewritten as their query processing cost is
higher than that of other MVPPs. After the MVPP re-optimization algorithm is
applied to the cheapest MVPP, the result is shown in Figure 4.53. The MVPP
structure after applying our re-optimized algorithm, shown in Figure 4.53, provides

the same structure as our dynamic approach in Figure 4.51.

138

5
we
ve . “® ! -]
6 [ox resutt3 Q) 215) Q2@ .- 2 5 *® 6
2@ Pool'e ae . @
result7 resug{967519260] result 1A . 2
[910519] Otz smco 910519) results o]) e
4 resuz() [184082] e - 215 X yr - [160240] [36276) O o
n_name o xtendedprice) Yo_ordeff 587
& J Vgﬁm(k,“g?gg;‘;.) Va0 ity | Sm@s_suppiycosy b m /’ ¥ 3 results () [36276] K
+ 'n_name - Tmp23 474 | 1 min(_discount) | 'Yn_name | |Ymax(p_brand)
1 count({_orderkye) P23 | 124036000096 my | / min(ps_supplicost) | — Yoo
;Om)num [9675192&0] 1 — // A — Sam(ps. supplycos) (ps_suppkey) |
Tmpil & [1524241() [1221137§4832] [575169] () |
Yoo o [182183] @PI2733697154f: Tmp22 }
i M 6276) () [362760000] |
Tmp1s |
! [276048000000] |
| [184082] X Tmp28
i 25 | (136577850000] [151951851168]
\ 910519 ()
1
| X b
| ! .
| 5!
\ / 0
Tmpl4 5 col
146008] () [6869560251] receipia
I
0 [a6276] @ [7255200000] o
X 40058] [200000]
G piype
Tmp20 o o
Tmp13 ke ‘9%BRASSY
[30183] @ [750000] 190691 [200000]
X

G p_tand<>"BRAND#45"
not p_type liky/“%BRASS%"
p_sipe in (9,£9,49)
Tmpa (1251
15
(3
1250000] () 150000) Tmp2
Tmp12 wOwm

2zrson) @ 122759m)
120000] O [10000]

s
ofotalprice [800000]
oS Corderpriority 18000001 (goo000) 2000001C) [200000]
o 6000000] () [6000000) e e
[25]
@) T s gy { ey 1227591 Of1s00000] mp18
Tpt TUr_regionkey Sy Tmpr A ot 4 X T p_partkey
™ & gaonkey LOE T[y - Go_orderdate>=1994-01-01" < bl
EeclBsy Ot name="ASIA" RO 0_orderdate<'1095.01-01 X psiee
;_mktsegment - n_name
[150000] (5] (251 [20000] D
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected by static approach for Q1-Q13

Figure 4.53 The Re-Optimized MVPP of Q1-Q13 by Static Approach

Table 4.33 shows the comparison of the result from the dynamic approach and
the static approach. We compare the number of nodes to be selected to be
materialized. The number of nodes infers to the size of search space. The number of
node for dynamic approach is 23 nodes whereas for the static approach is 35 nodes,

although the total cost of dynamic materialized view selection equal to the static
approach.

Table 4.33 The Comparison of the Result from the Static Approach and the Dynamic
Approach for All Queries

Approach Number of Cost of Query Cost of Total Cost

Nodes Processing Maintenance

Static 35 3,684,593,788,740 6,065,915,980,889 9,750,509,769,629

Dynamic 23 3,684,593,788,740 6,065,915,980,889 9,750,509,769,629

139

4.9 The Second Experiment for Dynamic Materialized View Selection

4.9.1 Static Materialized View Selection for the Initial Requirements
The query set of initial requirements include Q4, Q15, Q22, Q33, Q40, Q43

and Q50 shown in Figure 4.54. The details of their SQL statements are provided in

Appendix F.

Q15

result () [160232]

Yp_brand
min(ps_availqty)

3
Q22

resulll [575169]

Yr_brand
min(I_extendedprice)

[115033800000]

[200000]

6
Q4
[160232] [1602320000]
Tmp6
result (3793296] [200000]
Yigeumtog [1T6OZ32] zgasonco [100000] orderkey Tmes
mp
(3034636800000] partkey Tmps [8793296] (7)) 3034636800000] . y
Dpartkey [227597] P_partkey
Xpartey 200581 O) [40058] 1800000] () [800000] suppkey Tip § 22> p_brand
Lopkey o2 Tmp3 (3793296) O [e793296] 1B00000P~ oo
137932061 () [3793206] 1800000) [800000] mp: T b partk T ps_partkey U s suppkey P2 10 | orderkey TP 70 o_orderkey
o2 s p_partkey P partkey, e o-orderpriority
TC |_suppkey. P p_bran: bsavailqty [suppkey
I partkey 140058] () [200000 - extendedprice
iFéturntiag T s suppkey [] 5200000 o ps suppkey 227597 Opasooonoy
(3793296) () [s000000] B parker’ LK R, resze6]() (6000000 popatkey Tmps X G, orderdate
Tmp1 pesupply p_type like P11 G 1_commitdate >='1994-01-01'
G |_commitdate “%BRASSY' <1 receiptdate o_orderdate
<I_receiptdate recerp <'1995-01-01'
200000
6000000] 8000001 [1 [8000000] J 1200000] 6000000] 1800000] {1500000] [] [200000]
lineitem partsupp part partsupp supplier lineitem partsupp orders part

(a) Query Q4

(b) Query Q15

6
@

result (‘5 [759474]

'Yniname
ount(ps_suppltcost)

[607837751040]
X partkey

4
Q4o@

result (g [6492]

'Yn_name i
count(ps_availqty)

[6492]

Tmp12() [1288745976]

g partkey

Tmpg
[160240] [3793296]
Tmp10 [2003]
159750]
[~ [[159750]
[800000] T2 partke nationkey Tmps Tlp_partkey
|:Eup;§<¥y TUps_suppkey
ps_partkey
-) [10000] ps_availqty
s parkes [40058] | [200000]
ps_supplycost i [15%5}]07] [800000] rpypy
1 .
Tmp2 TUs_nationkey
Tmp2 TUs_nationkey [3793296] (()[6000000]) . 5 ke . »
" TOn_reg iunlgey S suppkey Tmpo Tur_regionkey n%ﬁﬁ!gnlﬁ%’ SUppKey O ps_availgty O p_type like
noname O Loommitae 1y (s n_name <2000 ‘%BRASS%’
< |_receiptdate m o
T_name=
"ASIA®
[800000] [__](6000000] 51 [25] [10000] [800000] [200000]
region nation supplier partsupp part

[25]

region nation

supplier

[10000]
partsupp lineitem

(e) Query Q40

(d) Query Q33

Figure 4.54 The Relational Algebra Query Tree for the Initial Queries: Q4, Q15,
Q22, Q33, Q40, Q43 and Q50

140

7
Q3@

resullg [22778]

'Yp_brand .
sum(l_extendedprice)

[86275350000]
nationkey

suppkey
[10000]
Tlc_custke)
[800000] ¢ nationkey
[TTs_nationkey
[3793296] [s psﬁsuqﬂkey s_suupkey
ps_partkey
Tmp2 |_orderkey mp4 —Bibpiveost | 7T p_partkey
P2 A ey T o_grdsricey ps_supply: -Bran
7suEpkey . R Yy
IZextendedprice
[227597] (_)[1500000]
[3793296] () [6000000] T

Tmpl mp3 1" Go_orderdate

G |_commitdate >="1994-01-01"
< |_receiptdate o_orderdate
<°1995-01-01'
[5000000] [1500000] [800000] [Jr200000] [TJpasoooo} []fz0000]
lineitem orders partsupp part supplier customer
(f) Query Q43
5
Q50
result () [215]

'Ypfbrand)
avg(l_extendedprice)
[4612650000]

Dx<{custkey
ationkey

e (Y ioosseasasr
Tmp18L It M] 115000} ([250000]
orderkey Tmp194
[30751] mp:
Tmp1s () [24626077632] 12275071 () [227597]
Dsuppkey Tmp7
[3793296] TCo_orderkey
0_custkey
T[:_parlkEy
St €\
[40058] I:o‘#ggrke{/
|_extendedprice
TCp_partkey
pbrene [227597]C {1500000]
Tmp16 Oo_orderdate ﬂ:cﬁcuilkez
T[pps§ S;Sr'?lk{;y/ >="1994-01-01' ¢_nationkey
- o_orderdate
[40058] | [200000] <’1995-01-01
[[800000] Ty [3793206] ([6000000]
Tmp2 TUs_nationkey TMPI3T G 1_commitdate
Th-reglonkey TR raienEy ke G ps_availgty G p_type like <L_receiptate
1151 <2000 “%BRASS%’
‘Ilmp
Or_name=
"ASIA”
(51 [10000] [800000] [] (200000 [[Jr000000] [Jras00000] D [150000]
region nation supplier partsupp part lineitem orders customer

(9) Query Q50

Figure 4.54 (Continued)

We order the queries in descending order of the query access frequency
multiplied with query cost shown in Table 4.34. Then, the order of queries for the first
MVPP is {Q4, Q33, Q22, Q15, Q43, Q40 and Q50} and the last order is {Q50, Q4,
Q33, Q22, Q15, Q43 and Q40}.

141

Table 4.34 The Query Access Frequency, Query Cost, and Query Access Frequency
Multiply Query Cost

Query Access
Query Query Cost fq* Query Cost
Frequency(fy)

Q4 6 3,793,296 22,759,776
Q15 160,232 801,160
Q22 575,169 1,725,507
Q33 759,474 4,556,844

5
3
6
Q40 4 6,492 25,968
7
5

Q43 22,778 159,446
Q50 215 1,075

The query processing costs of all MVPPs for query set {Q4, Q15, Q22, Q33,
Q40, Q43 and Q50} are computed and shown in Table 4.35. The cheapest MVPP is
the fifth MVPP as shown in Figure 4.55.

5 6
7
Q0@ Q3@ 0@

5 4
g Q5@ Qi@ 6 223
resuts2() [215] resultas() [759474] resuttaz() [22778] Q4 2@
[160232]
16492] rogua

Yoo

rand) result1s
avg(1_eftendedprice) 7

[3703206] resultzz(A5[575169]

_brand %
n_name ’Ysum(lie tendedprice) result40
Tmp25 count(pg_supplycost) K
215)() (711150000 Vo_brapd
25t ! Rin(eq availqty) Yo
n

brand
nane Vi retutnfla in{l_extendedprice)
cou (ps,avalluty)yﬁ,g(p " Supplycost)

Tmp23

P 122778] ()[86275350000]

Tmp21l
Tmp12
575169_)[5751690000
X

16492] ()[1288745976]

Tmp20
’ Tmp9 pZ8 ol [575169] [115033800000]
my
[32175 O iso240)1160232] ([1602320000] Ry
g
> O ps_availqty < 2000 A
Tmp8 Tmp27

160240] 1602400000]
L 1 Q) ! Tmp19 [160232] () [33046400000]
&) [575169] () [460135200000] b
R
% Tmp26
Tmpig [3793296]()[3034636800000]
Tmpé % <
12008] (s0000] ' [363342789712]
D] “
Tmpa (51 () 28] /
.

Tmp1l
140058] ()[200000]

TmpZZ [150000] X Tmp14 Obp_type Iike/ %BRASS%"
[150000] T2 Top [3793296][6000000] rezrsen Opazrson _ty
@]] mp3 [10000] O [10000] . Tmp17 Tmp7 Tmp10,
12510 (251 <G| ';:c::‘;:‘;:ia‘e T g ardariey [800000] 800000] [200000] 200000
TUr_regionke) Tmp13, - o_totalprice
Tenatonkey | T glonkey [6000000] 5 [6000000] mpg6 " “gsj:ﬁﬁ:ey
¢_custkey m[Dl] O s rame Key TU 5_suppkey T Lsupﬂkey [227597) ([1500000] ps_suwlgwst TC p_partkey
n-regionkey s_hationkey | partiey ps_avaiq p_brand
Gr_name="ASIA’ Iquantity Go_orderdate>="1994-01-01
[-extendédprice 0_orderdate<1995-01-01'
_receiptdate
[150000] 151 [25) [] toooo) [6000000] [1500000] 800000] 1200000]
customer region nation supplier lineitem orders partsupp part

Figure 4.55 The Cheapest MVPP for the Second Experiment: the Queries in the List
{Q43, Q40, Q50 Q4, Q33, Q22 and Q15}

Table 4.35 The Query Processing Cost of All MVPPs

Query 1st MVPP 2nd MVPP 3rd MVPP 4th MVPP
Q4 18,207,907,119,552 18,207,907,119,552 18,207,907,119,552 18,207,907,119,552
Q15 168,250,451,160 168,250,451,160 168,250,451,160 840,009,851,160
Q22 12,039,079,457,322 12,039,079,457,322 4,315,574,657,322 12,039,079,457,322
Q33 18,253,477,108,284 3,656,709,383,196 18,253,477,108,284 3,656,709,383,196
Q40 134,600,384,632 11,570,291,056 134,600,384,632 672,007,903,472
Q43 28,735,371,933,681 28,735,371,933,681 10,713,860,733,681 29,065,873,503,681
Q50 20,525,276,724,865 20,525,276,724,865 20,525,276,724,865 20,761,338,241,345
Total 98,063,963,179,496 83,344,165,360,832 72,318,947,179,496 85,242,925,459,728
Query 5th MVPP 6th MVPP 7th MVPP
(cheapest)
Q4 18,207,907,119,552 18,207,907,119,552 18,207,907,119,552
Q15 168,250,451,160 168,250,451,160 168,250,451,160
Q22 4,315,574,657,322 12,039,079,457,322 12,039,079,457,322
Q33 3,656,709,383,196 3,656,709,383,196 3,656,709,383,196
Q40 11,570,291,056 11,570,291,056 11,570,291,056
Q43 10,713,860,733,681 28,735,371,933,681 28,735,371,933,681
Q50 870,692,174,234 176,201,501,795* 176,201,501,795*
Total 37,944,564,810,201 62,995,090,137,762 62,995,090,137,762

Note: * query processing cost of nth MVPP less than the cheapest MVPP

44

143

We apply the MVPP re-optimization algorithm to the cheapest MVPP. The
query processing cost of queries of the cheapest MVVPP are compared with the other
MVPPs. The result shows that Q50 of the sixth and the seventh MVPP is less than
that of the cheapest MVPP, so Q50 is possible to be rewritten.

When we match the individual plan of Q50 with the cheapest MVPP, Tmp12
is the common subexpression that consists of the most number of base relations that
are (REGION » NATION x SUPPLIER X PARTSUPP X PART) the same as
individual plan of Q50 from the base relations to the query node. The next base
relations matched with individual plan are LINEITEM and ORDERS that they are
already joined conjunctively, Tmpl18. As there is no another plan for Q50 in the
cheapest MVPP then the execution plan of Q50 in the cheapest MVPP is optimal
when Q50 is sharing the subexpression with other queries. Therefore, the cheapest
MVPP is the optimal MVPP.

Next, 2PO is applied to the optimal MVPP to select the set of views to be
materialized. The result of 2PO is that {Tmp9, Tmpll, Tmpl5, Tmpl8, Tmpl9,
Tmp26 and Tmp27} are materialized shown in Figure 4.56.

5 6 7

Q50 Q3@ @ 5 4

g Q5@ Q40 6 3

22

results2() [215] resulias () [759474] resuttaz() [22778] Q4 2@
Yo_bran result1s () [160232] g
avg(l_extendedprice) Yn_name yslifnl«)(rlantendedprice) X resultd0() 6492] oo 1a () (3703206 resultz2() [575169)]
Tmp25 count(pg_supplycost) - A
1215)([711150000] yn%r“’(’g favailqu)

b_biand
Yn_n min(l_extendedprice)

1_nane N I_retunflag
cou (ps,avallqu;Y.-;lg(p ,_supplycost)

Tmp15
[759474] @) [607837751040]
s [22778] ()[86275350000]

mp:
Tmo12 Tmp21
V s 575169 _)[5751690000
153
[6492] ()[1288745076) Trp20
’ - T2 X (575169 ()[115033800000]
mps
132172] @ [16024071160232] C)[1602320000] M
N 5 A
Tmp19)

Qps_availgty < 2000
Tmps Tmp27
1160240] (J[1602400000]
»‘« Tmp2
p18 [3793296;
>
' [863342789712]

160232] @) 34046400000
(575169] @)[460135200000] ezl by ¢ !
6
[3034636800000]
[50000] s
4»4\
Tmp14
[3793296] [6000000] r2275971 O [227507]

Tmp23

Tmp6
[2003]

[40058] @)200000]

Tmp22 .
[150000] O (250000] Op_type like/ %BRASS%

Tmp2 - Tmp5 o) = ot
6] mp: [10000] [10000] G |_commitdate Tmpl7 mp. . mpl O
[25] < roiptate TUogrdarkey [s000001% [200000] [200000] 3 [200000]
. TCr_regionkey Tmpl3 - o_totalprice
Menatonkey 16000000} & [6000000] Tmp6 TC ps.suppkey
coustkey TR g etokey U s_suppkey T 1_suppkey 12275971 O1500000] Be-Sipbiveost TC p_partkey
Tfegionkey s ationkey [gattkey pevhlaty pbrand
Or_name="ASIA’ ouantity Go_orderdate>="1994-01-01
|-extendedprice 0_orderdate<’1995-01-01'
251 I_receiptdate
: [150000] @ . .[10000] L [6000000] [1500000] 800000] (200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node

Figure 4.56 The Optimal MVVPP with Materialized Views for Initial Requirements

144

The MVPP in Figure 4.56 is the initial search space for dynamic phase. The
query processing cost, materialized view maintenance cost and total cost of all-
virtual-views, all-materialized-views and materialized views selected by 2PO

algorithm of the cheapest MVPP are shown in Table 4.36.

Table 4.36 The Query Processing Cost, Maintenance Cost and Total Cost of the

Optimal MVPP
Cost of Cost of Total Cost
Query Processing Maintenance
All-virtual view 37,944,564,810,201 0 37,944,564,810,201
All-materialized view 30,029,776 36,413,780,040,394 36,413,810,070,170
2PO 1,836,434,674,685 14,884,264,303,377 16,720,698,978,062

In conclusion, Q50 is possible to be rewritten as its query processing cost of
the cheapest MVPP is more than that of the sixth and the seventh MVPP. After the
MVPP re-optimization algorithm is applied, Q50 is forced to use the common
subexpression that is available in the cheapest MVPP, and Q50 is still constructed
with the same query plan of the cheapest MVPP. Therefore, the cheapest MVPP is the
optimal MVPP,

4.9.2 Dynamic Materialized View Selection for the Second Experiment
The query set for the dynamic phase consists of Q3, Q6, Q28, Q30, Q31 and
QA47. Their relation algebra query trees are shown in Figure 4.57. The details of their

SQL statements are provided in Appendix F.

145

5
Q28

result () [32172] 7

Q6

name
stddev(ps_suppltcost)

132172 () [319979250]

[160232]

Vr_ty

_type
variance(ps_availqty)

result

result ()[3793296]

s_name
sum(l_quantity)

[37932960000]

[159750]
[32046400000]

TUps_suppkey X
ps_supplycost partkey

[800000

[25 [10000]
][X] regionkey

Tmp5
[3793296] [3793296] [10000] [800000] [40058]
Tmp2 Tmp3 8] 12510) [25] [159750] () [800000] Tmpl
TU 1_partk TU s_suppkey TU ps_partke TU p_partkey
|iantity shame © TMP Tmp3 Tmp7: gs_fvanqt{/ type
TCn_regionke: 7TUs_nationke
[3793296] () [6000000] h-resienkey Sappkey | O ps_availaty 140058] () [200000]
Tmpt I n_name o
<2000 Tmp2 ol ik
G |_commitdate Tmpl p_type like
< receiptdate Gr_name= “0BRASSY’
PASIA’
[6000000] [10000] 5] [25] [10000] [800000] [8000000] [200000]
lineitem supplier region nation supplier partsupp partsupp part

(a) Query Q3 (b) Query Q28 (c) Query Q6
L@

result | [115372]

[184082] n_name
sum(l_guantity)

n_name
max(I_discount) [115372]

TmpL, [17285403978]

trgouza) () [7s07971c66] [227597]

Mlsuppkey Tmpll
[46008]
oo [6000000]
[50000]
[3793296]
[750000] [227597) Tlo_orderkey
DX ati Tmp8. TU1_suppkey
nationkey To_cu Sékelly Iorderkey
0_orderkey TU orderke I_quantity
[250000] T Sisoount .
w s natonkey 12275971)[1500000]
1227597() [1500000] Tmp2 s_suppkey Tmp10
w Tmp7. TCr_regionkey
Tmp2) - [37932061() [6000000]
TUr_regionkey Tlc_nationkey Go_orderdate Go_orderdate
10 T reqi ¢_custkey >='1994-01-01' LIl et G I_commitdate | >=1994-01-01'
] i
WOl R:L?ISRI?S? o_orderdate Tmpd Or_name nﬂ"%:g'ﬂ%’:(k:y <1 receiptdate o0_orderdate
Tmpl Gv_rrsrrl\e n_name <1995-01-01° S ASIAY . Y _recelp <'1995-01-01'
—ASIAT
[51 [25] [150000] [1500000] [16000000] [5] 1251 [10000] [[] 16000000] [Jizso0000]
region nation customer orders lineitem region nation supplier lineitem orders
(d) Query Q30 (e) Query Q31
5
Q47.
'eS“"(AB [152424]
Yn_name
ax(l_extendedprice)
[152424]

[30423009492]

Tmpl:
M orderkey

[759474]
[227597] [227597]
Tmp13
[3793206]C) [3793296] Tlo_orderkey
Tmp10
[800000] TUl_partkey
I“suppkey
Corderkey
|_extendedprice
TCps_suppkey 227597] () [1500000]
ps_partkey Tmp12

Go_orderdate
Iy >=71994-01-01"
[3793296] (()[6000000] o_orderdate
Tmpo <°1995-01-01'
G |_commitdate

1[%];; <|_receiptdate
Or_name=
"ASIA’
] [800000] [_][6000000] [[]1500000]
region nation supplier partsupp lineitem orders

(f) Query Q47

Figure 4.57 The Relational Algebra Query Tree for the New Queries: Q3, Q6, Q28,
Q30, Q32 and Q47

146

The new queries are merged into the existing MVPP derived from the static
phase, Figure 4.56, according to the merging steps mentioned in section 3.7.1. The

result of the optimal dynamic MVPP is shown in Figure 4.58.

4 5 5
5
3 s @
4 QL@ 5 Qgge. Q , e W@
50 4
QSO, 4 Q! . VESH“BO [3793206] 7 (esu"zgo 132172% O . 4 3
rcsmx31©[1153721 6 X Q43. 4 resulta7(_) [3793; 9640. 6 ; sz.
s I52() [215] n_narhe Q151
VE«U‘GUO [IBADE'\;] t - stu’n:?\m;uamlty) ’YSIHdev(usiSpp\y st) yn,namp Q4 . Q6 .
n_ham 759474 / tddev(l_lextendedprice)
stm(l buantity) Yp_brant results3() [1 resuaaQ) [22778] stddev(p)Y
Y%E;?E;wscoun() ! avg(l_exdendedprice) | ! 15O [160232) | resuita) [3793296] result22() [575169]
! I n_nane I Yp_brand e I resutiaoQ) [6492] 7 resuts) [160232]
} | T[r;pZ] countfps_supplycost) | 4 giim(_ef (endedpn/ée) } ¥ Vp_brard
| 15 1 vrald o name N I in(l Jextendedprice)
! ! Aol ! IR Ve Vi sippyoodf 105 i)
Tmp34
| | Tmp24 | Tmp2: 4
| Tmp33 ran Oy BT3poTIS] | 4 [115372] ()[172854003974]
I pusar2) Qpuis2063567) | [22778) (Qse2rsasoo00] |-~ Tk
1 &1\ ~ . L M= |
Tmp32 | \ ~o = ; |
1182082 ([276048000000] (~. Tmpts | - y‘ i | Tt —
L2AN \ ~ _[750474] @)l60783pecBa0] | ! | [
S/ ~ \ < b ! I ! o0z (Jrizserasore]
A [}
N \ ~
/ A \ »» ! I ‘ X
Tmp3L_/ N \ Tmpo ! 1
[46008] QGSGQSGGZM] N 172] @ 1602401 g |
/’N S~ AN [160232] ([1602320000]
, ~__ \ Gips._availady 2000 X
/ B o TmPB 1SS
/ Z 160240 1602400000 Tmp2d™
Tmp3o ~\o ~[160240] ! LTmP: < Trhplo [1baz32) @ 132046400000]
[30183] Ousonom T q [37932 01379379600001\ [5751‘59] [460135200000] A
A~ ~ \ T~ % Tmp26,
| ~ \ SO TR 18 i [3793206] @ [3034636800000)
I ~o Tmpé \ N ~~/ | 3
/ <. 12003] (is0000] ~ PAREN 75160 @asasezrssniz)
! N e N/ <R |
/ - N S Tmp1l
¥ P
J Tmp4 5] () [25] > ! 40055] @ [200000]
/ S~
Tmp22 , N =~
1250000]C) [150000] P MRl (7S 6000000] 1227597) O [z27507] Gp_type lik} ‘JBRASS%’
Tmp2 Tmp5 [8793296]
wQm Tmp3 ooo0) O 100001 ~_ 10 I_commitgate Tmp7 Tmp O oo
12510) 125] Tmpr3 L Lrceipaae TC o ouderkey 8000001 % [800000] . s 10
" TUr_regionkey o_totalprice [200000] [200000]
momioney | glonkey 16000000] S 7699090 ., Tmprs | TC ps_sunpiey TU p_partkey
c_custkey TC n_name TU s_suppke: |Zpartkey’ 227597] ~suppl
(SIS0 n_nationkey s:naggnk)e,y [orderke L 1(Js00000] T ":{;’a;‘“
Or_name="ASIA’ n_nationkey I'quamityg) _typ
[“extendédprice Oo_orderdate>="1994-01-01'
Idiscount e 0_orderdate<’1995-01-01'
150000 5] [25] 10000 ['en'SSS' é]d e 1500000 [800000] [200000]
[]
customer region nation supplier lingitem orders partsupp part

@ represents materialized view node selected in static phase for initial requirements

Figure 4.58 The Optimal Dynamic MVPP Constructed by Merging Steps

After the dynamic MVPPs are generated and the optimal one is selected, the
affected node identification algorithm is applied. The details of the algorithm are

provided in Appendix D. The affected nodes are shown as follows:

Directly affected nodes: ~ Tmpl, Tmp2, Tmp4, Tmp6, Tmp8, Tmp9,
Tmpll, Tmpl4, Tmpl5, Tmpl6, Tmpl7,
Tmpl8, Tmp27

Indirectly affected nodes: Tmpl9, Tmp26

Therefore, the number of nodes to be selected by 2PO in the dynamic phase is

21 nodes, 15 existing nodes and 6 new created nodes.

147

Thereafter, the selection algorithm, 2P0, is applied to select the set of views to
be materialized. The result is that the existing materialized views {Tmp9, Tmpl1,
Tmp15, Tmpl8, Tmpl9, Tmp26 and Tmp27}, the virtual views {Tmp6 and Tmp17},
and new virtual views {Tmp29, Tmp30} are materialized. Figure 4.59 shows the

dynamic MVPP with materialized views selected by 2PO.

4 5
6 €@ QZB. 047.

5
4 Qi@ 5 e

e
Q0@ 4 0@ resutsQO) ta792296) 7 resullZBO (172},

resu\lMO [379329 6 3
840. 7 2@

A Qs 43
Ot X 1520 [215] Q Yn_narhe Q15 ‘@
184082 resu
result30f y] N YSWU Suantity) s(Hdev(ps stipplysgst) Yn_ namp Q: Q6 .
resuigs Q) 759474~ stddev(extendecprice
V_name sl fuanity) ya')\Tg(l eltendedprice) | resuaa() [22778] / 37932961 A ez 75169)
max(l_f wscoum) i 60232] \ resuIlA []
\ | result15(_) [160232] results () [160232]
‘ Yn_nae I Yp_brand i I resuttaoQ) [6492]
‘ | Tmp25 countfps_supplycost) | 4 im(i_ektendedpriée) | p_brard
| [215] T | fiin(lJextendedprice)
i) | 'n_name I_retunfla
! ! 711150000] v‘ ! 'Yrgvm(p availaty) | Vo, bty Vigew su,?puymeﬂ"amems avaiqty)
Tmp34
|
| Tmp33 | ra '“[9327‘; bo7148) | Tmp2y [115372]‘9[17285400397]
I 18372 Qais206357] fra] | 122778 (Yoorsasooon) |
| M i
p32 | =7 I
[184082] O [276048000000] | ! |
_ - Tmp12 -
/ [6078303ec040] | / [
, ! I te492) ()1288745076]
!
/
/ | | ; %
p3L_/ Tmpo |
[46008] 6869560251]
] %\ 1 172) @I160240] T8 1
/ \T(Fps availgty < 2000 [160232] 150232°°°¢
/ ~
J |Tmp27
I 29\
Tmp3o 1 1mp [1bazs2) @ [320464000h0]
[30183] Ol75ODOOJ 3 O[379329500001\ ¢ [460135200000] by

Tmp26
[3793296] [3034636800000]
N
12003] @50000] AN 7 Al
%

Tmp1l
140058] @) [200000]

Tmpé (5] () [25]

o O [150000] Tmpl4 O I ik} “YBRASS%
L kg ol 3
[150000] 2 TS o7 o308) [6000000] 12275971 O 227597 p_type o
([@)] Tmp3 [10000] @) [10000] \\ G |_commitdate Tmp17 Tmp @) Tmp10
251) 1201 i3 L Lreceipaae T o orderkey 8000001 [800000] s
) 200000} () (200000
T c_nationkey TCr_regionkey {s000000] 039,9 Tmpts lotalprice o b sup :ey [: 10 ¢]
c_custkey T'“Pll o TC n_name TC s_suppkey E (2275971 (O)[1500000] Es:spuppl Jhost T pfankey
Qe n-nationkey s ationkey i p-avaiaty
o x ! Cretumitly - p_type
Gr_name="ASIA’ n_nationkey I-quantity .
H ex(gmedp,.ce Go_orderdate>="1994-01-01
oo et 0_orderdate<"1995-01-01"
I receiptdate
[] 12s0000) 51 1251 [10000) [6900000] [1500000] [300000] [] t200000]
customer region nation supplier lingitem orders partsupp part

@ represents materialized view node selected in static phase for initial requirements
@ represents new materialized view node selected in dynamic phase

Figure 4.59 The Dynamic MVPP after Applying 2PO

148

To evaluate the performance of our dynamic approach by the static approach
is performed on the set of all queries which includes the initial requirements {Q4,
Q15, Q22, Q33, Q40, Q43 and Q50} and the new requirements {Q3, Q6, Q28, Q30,
Q31 and Q47}. The results of the static approach, after applying our MVPP re-
optimization algorithm and 2PO to select the set of views to materialized, is shown in
Figure 4.60. According to the result, {Tmp3, Tmp4, Tmpl2, Tmpl4, Tmp21, Tmp23,
Tmp24, Tmp29, Tmp33, Tmp34 and Tmp35} are the materialized views.

5
6 4 Q7@
5 304. 5 Q33 5 ©@ A
Q0@ Q $ Q2@ ET A esuar() [3793206] . 4 ,
7 4 A e roszse) " Y 6 . e
s resuaoC [184ce2) X Yot Q P
result52! X Q43. resultzs () [32172] resuitzs() [758474] result31 () [115372] 1 ol \e endedpice) 06 .
stddev(l_xtendedpri
Vel semer Tl 1 Yogu vt oy] S (X -
Al ektendedprice) ' e !
- " I resultaa() [2277Bfidevtpssupplycos) IS fuantity) 1 T T reauis () [160222]
} | | ! e Y A resuitz2() [3793296]
Tmp3z Yi_rame | -
e | ou ! n_name _retyml afiance(ps_avaiqt
115 Qrisions) YS%T“E?’HE fendedprice) | countip3 supplycost) \ ! Yo_brand Ycuum(ns huailqty) yiv’;(;isﬁgﬂlycnsvt) fance(ps_avaiqty
} min(ps_availqty)

i
I
1
X i
|
|
|
|

N
Tmp1s
as008] (Q[6669560251]
)

Tmglz Tmpts
130343] @750000] (2008, C50000]

|

|

I

! |

| Tmp22 |

|

@ [92297600000 [Tmp30 |

% (1288745976] |

|

A (% |

g |

|

|

5 |
1

I

N J Tmp25.
()[115033800000]
0320000 (S

Tmp24
[575169] 0435200000]
X 1%
| § ¢ [863342789712] _— [160232] ,
d 532961 [3034636800000], 7
V4 s> 2
‘\» N Tmp3
/ ' ‘\ [40058) @[200000]
Tmp19
5000000
793295] !) 1227597] @ 227507 Op_type like
O I_commitdate ‘%BRASS%'

Tmp6
[160232]

e

Tmp10 151 () (251
K

Tmpll

[150000] [150000]

Tmps Tmpo Tmp5 O TmpT Tmp2
mQumn [10000] [10000] Tmp14
251 [25] Tmp1opLs |-receiptdate T o_ardtirkey [sooooo] [800000) [200000] [200000]
T e natonkey TUr_regionkey [6000000] Esoooogm nglgus ey 1 s sppes
y |_suppkey s_partke!
¢_custkey T'“[Pﬁ o) TC n_name TC s_suppkey |,paélﬁiy 12275971 (O[1500000] Bs:guwlyywﬂ T s‘ﬁfa%ey
n_nationkey s_nationkey I’?gmer’nf?gg psTavaiqty type
i;g;’{‘e”,}"j‘g‘dmme Go_orderdate>="1994-01-01' -
—ASIA® iscount +1995.01-01'
Or_name="ASIA’ Faheount e o_orderdate<’1995-01-01
receiptdate
[150000] 151 1251 [10000] [6000000] [1500000] 800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected

Figure 4.60 The Re-Optimized MVPP by Static Approach for All Queries

It can be seen that the MVPP structure of the static approach shown in Figure
4.60 is not the same as the structure of the dynamic MVPP shown in Figure 4.59. The
execution plan of Q31 and Q47 in the MVPP are different between the two
approaches. As when merging the new queries into the existing MVPP, the relevance
of the new queries to the existing MVPP has to be considered. For instance, when
Q31 and Q47 are merged into existing MVPP in the dynamic phase, Q31 and Q47
have to be constructed by using the common subexpressions that are available in the

existing MVPP as well as their common subexpression. For the static approach, the

149

execution plans of Q31 and Q47 have sharable subexpression, and both are
constructed using optimal individual plan. For this reason, the static approach, before
selecting the set of views to be materialized, the execution plans of Q31 and Q47 that
provide the minimal query processing cost have to be chosen.

The query processing cost, materialized view maintenance cost and total cost

of the static and the dynamic approach are shown in Table 4.37.

Table 4.37 The Comparison of the Results from the Static Approach and the

Dynamic Approach for the Second Experiment

Approach Number Cost of Cost of Total Cost
of Nodes Query Processing Maintenance
Static 35 3,429,632,748,193 15,862,487,308,569 19,292,120,056,762
Dynamic 21 3,838,202,906,833 14,960,158,671,142 18,798,361,577,975

In conclusion, the static approach requires 35 intermediate nodes to be
selected while our dynamic approach requires 21 intermediate nodes to be selected,
15 existing nodes and 6 new nodes.

The total cost after 2PO is applied is that the dynamic approach provides total
cost less than the static approach. The static approach provide the lower query
processing because the execution plan of Q31 and Q47 in MVPP are close to their
optimal individual plan. However, dynamic approach provides the lower materialized
view maintenance cost because the new queries are constructed on the available
sharable common subexpression in the existing MVPP that is the benefit to reduce the
maintenance cost.

The query processing cost and materialized view maintenance cost for the
dynamic approach are shown in Table 4.38 and 4.39, respectively. The query
processing cost and materialized view maintenance cost of the static approach are

shown in Table 4.40 and 4.41, respectively.

Table 4.38 The Query Processing Cost of the Dynamic Approach

150

Query f, Accessed nodes Cost of
Query Processing

Q4 2 Tmp26(materialized view), result4 45,519,552

Q15 5 Tmp5, Tmp27(materialized view), Tmp28, result15 8,013,252,320

Q22 3 Tmpl0, Tmp20, Tmpl9(materialized view), 345,105,451,014
result22

Q33 Tmpl5(materialized view), result33 9,113,688

Q40 4 Tmp9(materialized view), Tmpll(materialized 5,155,298,792
view), Tmp12, result40

Q43 7 Tmp5, Tmpl9(materialized view), Tmpl10, Tmp20, 1,449,432,585,629
Tmp21, Tmp22, Tmp23 and result43

Q50 5 Tmp9(materialized view), Tmpll(materialized 28,673,453,690
view), Tmpl2, Tmpl8(materialized view), Tmp22,
Tmp24, Tmp25, result50

Q3 4 Tmp29(materialized view), result3 30,346,368

Q6 7 Tmp27(materialized view), result6 2,243,248

Q28 5 Tmp9(materialized view), result28 321,720

Q30 4 Tmpl3, Tmpl7(materialized view), Tmp31, 1,131,696,008,452
Tmp30(materialized view), Tmp32 and result30

Q31 5 Tmp6(materialized view), Tmpl8(materialized 5,763,780,255
view), Tmp33, result31

Q47 5 Tmpl5(materialized view), Tmpl7(materialized 864,275,532,105

view), Tmp34, result47

Total query processing cost

3,838,202,906,833

Table 4.39 The Maintenance Cost of the Dynamic Approach

Materialized Number of Base

Derived by Nodes

Maintenance Cost

View Relation

Tmp6 3 Tmpl, 2,3,4,5,6 180,168
Tmp9 4 Tmpl, 2,3,4,5,6,7,8,9 6,413,681,184
Tmpll 1 Tmp10, 11 400,000

151

Table 4.39 (Continued)

Materialized Number of Base Derived by Nodes Maintenance Cost

View Relation
Tmp15 5 Tmpl,2,34,5,6,7,8,13,14,15 3,047,265,055,480
Tmpl7 1 Tmpl6, 17 1,727,597
Tmp18 2 Tmpl3, 14, 16, 17, 18 1,726,713,034,618
Tmp19 3 Tmp7, 13, 14, 16, 17, 18, 19 3,970,477,551,927
Tmp26 2 Tmp7, 13, 14, 26 6,069,299,200,000
Tmp27 2 Tmp7, 10, 11, 27 64,095,200,000
Tmp29 2 Tmpb, 13, 14, 29 75,889,940,000
Tmp30 3 Tmpl, 2, 3,4, 22, 30 2,700,168
Total materialized view maintenance cost 14,960,158,671,142

Table 4.40 The Query Processing Cost of the Static Approach

Query fq Accessed Nodes Cost of
Query Processing
Q4 2 Tmp35(materialized view), result4 45,519,552
Q15 5 Tmp4(materialized view), Tmp5, Tmp6, resultl5 8,013,252,320
Q22 3 Tmp2, Tmp24(materialized view), Tmp25, result22 345,105,451,014
Q33 6 Tmp33(materialized view), result33 9,113,688
Q40 4 Tmp3(materialized view), Tmp29(materialized 5,155,298,792
view), Tmp30, result40
Q43 7 Tmp2, Tmp5, Tmpll, Tmp24(materialized view), 1,449,432,585,629
Tmp25, Tmp26, Tmp27, result43
Q50 5 Tmp3(materialized view), Tmpll, 28,673,453,690
Tmp23(materialized view), Tmp29(materialized
view), Tmp30, Tmp31, Tmp32, result50
Q3 4 Tmp34(materialized view), result3 30,346,368
Q6 7 Tmp4(materialized view), result6 2,243,248
Q28 5 Tmp29(materialized view), result28 321,720

152

Table 4.40 (Continued)

Query fq Accessed Nodes

Cost of
Query Processing

Q30 4 Tmpl2(materialized view), Tmpl3, Tmpl5,
Tmpl4(materialized view), Tmpl6, Tmpl7, result30

1,131,672,008,452

Q31 5 Tmp21l(materialized view), result31 576,860
Q47 5 Tmpl, Tmp2l(materialized view), Tmp22, result47 461,492,576,860
Total query processing cost 3,429,632,748,193

Table 4.41 The Maintenance Cost of the Static Approach

Materialized Number of Derived by Nodes Maintenance Cost
view Base Relation
Tmp3 1 Tmp2, 3 400,000
Tmp4 2 Tmpl, 2, 3,4 64,095,200,000
Tmp12 3 Tmp7,8, 9, 10, 11, 12 2,700,168
Tmpl4 1 Tmpl3, 14 1,727,597
Tmp21 5 Tmp5, 7, 8, 9, 10, 13, 14, 16, 18, 902,328,817,595
19, 20, 21
Tmp23 2 Tmp13, 14, 16, 19, 23 1,726,713,034,618
Tmp24 3 Tmpl, 13, 14, 16, 19, 23, 24 3,970,477,551,927
Tmp29 4 Tmpl, 5,7, 8,9, 10, 18, 28, 29 6,413,681,184
Tmp33 5 Tmpl, 5, 7, 8, 9, 10, 16, 18, 19, 3,047,265,055,480
28, 33
Tmp34 2 Tmp5, 16, 19, 24 75,889,940,000
Tmp35 2 Tmpl, 16, 19, 35 6,069,299,200,000
Total materialized view maintenance cost 15,862,487,308,569

153

4.10 Analysis of the Affected Node Identification Algorithm

In this section, we provide the analysis and testing result of the characteristic
of affected nodes derived by the affected node identification algorithm mentioned in
section 3.7.2. According to the affected node identification algorithm, the properties
of nodes that determine whether the affected nodes are (1) the conjunctive joined
node with positive weight, or (2) project operation node is not the ancestor of base
relation, or (3) the ancestor of directly affected node with the certain weight.

Conversely, the properties of nodes that are the unaffected nodes include:

(1) They are the project operations that are the ancestor of base relation.

(2) They are the conjunctive joined node with negative weights.

(3) The property of the indirectly affected node is the node as in line 3.3 in
algorithm that provides the maximum weight of each branch. Then, the ancestor of

the directly affected nodes, that its weight is not maximum weight, is unaffected node.

The experiments in the following sections show that the total cost is not
minimal when the unaffected nodes are materialized.

The first and the second cases are presented by the second experiment and the
third case is presented by the first experiment.

For the second experiment that is shown in Figure 4.59, the existing nodes are
neither indirectly nor directly affected nodes include:

Tmp3, Tmp5, Tmp7, Tmpl0, Tmpl2, Tmpl3, Tmp20, Tmp2l, Tmp22,
Tmp23, Tmp24, Tmp25 and Tmp28

The project operation nodes, that are the ancestor of base relation, include
Tmp3, Tmp5, Tmp7, Tmpl10, Tmpl3 and Tmp22. The conjunctive joined nodes with
negative weight include Tmpl2, Tmp20, Tmp21, Tmp23, Tmp24, Tmp25 and
Tmp28.

4.10.1 Case I: Materializing the Project Operation which is the Ancestor
of Base Relation
This property provides the total cost is not minimal because the number of

tuples to be read is equal to the number of tuples produced from this operation. The

154

project operation, represented by algebra notation:[], specifics the attributes from a
base relation to be selected. The query processing cost and materialized view
maintenance cost in cost model is formulated by the number of tuples not the

attributes of the base relation.

Example 1: Tmp5

The materializing Tmp5 affect to Q15. The frequency of executing query Q15
is 5.

Considering the query processing cost of Q15 before and after Tmp5 is
materialized.

Before Tmp5 is materialized:

Q15 accesses nodes Tmp5, Tmp28, Tmp27 (materialized view) and result15.

The cost of each node is 10000, 1602320000, 160232 and 160232,
respectively. The query processing cost of Q5 is (5)*(10000 + 1602320000 + 160232
+160232) that is 8,013,252,320.

The materialized view maintenance cost of Tmp5 is 0.

After Tmp5 is materialized:

Q15 accesses nodes Tmp5 (materialized view), Tmp28, Tmp27 (materialized
view) and result15. The cost of each node is 10000, 1602320000, 160232 and 160232,
respectively.

The query processing cost of Q5 is (5)*(10000 + 1602320000 + 160232 +
160232) that is 8,013,252,320.

The materialized view maintenance cost of Tmp5 is (1)*(10000).

Therefore, the query processing cost of Q5 is 8,013,252,320 for either Tmp5
be materialized view or virtual view. However, there is additional materialized view
maintenance cost when Tmpb5 is materialized. Therefore, total cost is increased by the

materialized view maintenance cost of Tmp5.

Example 2: Tmp5, Tmp10, Tmp22
The materializing Tmp5, Tmpl0 and Tmp22 together affect to Q43. The
frequency of executing query Q43 is 7.

155

Considering the query processing cost of Q43 before and after these three
nodes are materialized as Q43 derived on those nodes.

Before these nodes are materialized:

Q43 accesses nodes Tmp5, Tmpl9 (materialized view), Tmpl0, Tmp20,
Tmp21, Tmp22, Tmp23 and result43. The query processing cost is (7)*(10000 +
575169 + 200000 + 115033800000 + 5751690000 + 150000 + 86275350000 +
22778) that is 1,449,432,585,629.

The materialized view maintenance cost of Tmp22, Tmp5, Tmp10 are 0.

After these nodes are materialized:

Q43 accesses nodes Tmp5 (materialized view), Tmpl9 (materialized view),
Tmp10 (materialized view), Tmp20, Tmp21, Tmp22 (materialized view), Tmp23 and
result43. The query processing cost is (7)*(10000 + 575169 + 200000 +
115033800000 + 5751690000 + 150000 + 86275350000 + 22778) that is
1,449,432,585,629.

The materialized view maintenance cost of Tmp5, Tmpl0, Tmp22 are
(1)*(20000), (1)*(200000), (1)*(150000), respectively. The total materialized view
maintenance cost for the three nodes is 360,000.

Therefore, the query processing cost of Q43 is 1,449,432,585,629 for either
those nodes be materialized views or virtual views. However, there is additional
materialized maintenance cost when Tmp5, Tmpl0, Tmp22 are materialized.
Therefore, total cost is increased by the summation of materialized view maintenance

cost of these nodes.

Example 3: Tmp10

In Figure 4.59, only Q22 derived from Tmp10 directly, other queries derived
from materialized views Tmp27 and Tmpl1, the ancestor of Tmp10. The frequency of
executing the query Q22 is 3

Before Tmp10 is materialized:

Q22 accesses nodes Tmpl19 (materialized view), Tmp10, Tmp20 and result22.
The query processing cost of Q22 is (3)*(575169 + 200000 + 115033800000 +
575169) that is 345,105,451,014.

The materialized view maintenance cost of Tmp10 is 0.

156

After Tmp10 is materialized:

Q22 accesses nodes Tmpl9 (materialized view), Tmpl10 (materialized view),
Tmp20 and result22. The query processing cost of Q22 is (3)*(575169 + 200000 +
115033800000 + 575169) that is 345,105,451,014.

The materialized view maintenance cost of TmpZ10 is (1)*(200000) = 200000.

Therefore, the query processing cost of Q22 is 345,105,451,014 for either
those nodes be materialized views or virtual views. However, there is additional
materialized view maintenance cost when those nodes are materialized. Therefore,
total cost is increased by the summation of materialized view maintenance cost of

those nodes.

4.10.2 Case 2: Materializing the Conjunctive Joined Node with Negative
Weight

According to the weight formula mentioned in section 3.7.2, the first part
presents the query processing cost and the second part presents the materialized view
maintenance cost. The positive weight of node defines the possibility of node to be
materialized. When the node with negative weight becomes a materialized view, the
maintenance cost increases. In the second experiment, Tmpl2, Tmp20, Tmp21,
Tmp23, Tmp24, Tmp25, Tmp28 are the conjunctive joined nodes with negative
weight. The following examples show that the total cost is not minimal when the

conjunctive joined nodes with negative are materialized.

Example 4: Tmp25

Tmp25 is used to construct Q50. The frequency of executing query Q50 is 5.
Tmp25 is constructed on 8 base relations. It is derived from the nodes Tmpl, Tmp2,
Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8, Tmp9, Tmpl10, Tmpll, Tmpl2, Tmpl3,
Tmpl4, Tmpl6, Tmpl7, Tmpl8, Tmp22 and Tmp24. The cost of each node and
Tmp25 is 5, 1, 25, 25, 10000, 50000, 800000, 1602400000, 160240, 200000, 200000,
1288745976, 6000000, 6000000, 1500000, 227597, 863342789712, 150000,
3733997148 and 711150000, respectively.

157

So, the weight of Tmp25 is calculated as:

w(Tmp25) = (5)*(711150000) - (8)*(5 + 1 + 25 + 25 + 10000 + 50000 +
800000 + 1602400000 + 160240 + 200000 + 200000 + 1288745976 + 6000000 +
6000000 + 1500000 + 227597 + 863342789712 + 150000 + 3733997148 +
711150000) that is (-6,961,999,295,832).

To materialize Tmp25, the materialized view maintenance cost of Tmp25 is
6,965,555,045,832. So the total materialized view maintenance cost is increased by
the materialized view maintenance cost of Tmp25.

Once Tmp25 is materialized, Q50 will be derived from materialized view
Tmp25 instead, then the query processing cost of Q50 is reduced from
28,674,895,230 to 1,075 (5*215).

Then, the total cost is increased by 6,936,880,151,677 as the materialized view
maintenance cost is increased by 6,965,555,045,832 whilst the query processing cost
is reduced by 28,674,894,155 (28,674,895,230 - 1,075).

Although the query processing cost of Q50 is reduced from 28,674,895,230 to
1,075, the decrease of query processing cost is less than the increase of materialized

view maintenance cost of Tmp25. So, the total cost increases.

Example 5: Tmp12

Tmpl2 is accessed by Q40 and Q50 with the frequency of executing query is 4
and 5, respectively. Tmp12 is constructed on 5 base relations. Tmp12 is derived from
nodes Tmpl, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8, Tmp9, Tmpl0 and
Tmpll. The cost of each node and Tmpl12 is 5, 1, 25, 25, 10000, 50000, 800000,
1602400000, 160240, 200000, 200000, and 1288745976, respectively.

So, the weight of Tmp12 is calculated as:

w(Tmp12) = (4+5)*(1288745976) - (5)*(5 + 1 + 25 + 25 + 10000 + 50000 +
800000 +1602400000 + 160240 + 200000 + 200000 + 1288745976) that is (-
2,864,117,576).

To materialize Tmpl12, Q40 and Q50 will derive from Tmpl2 instead of
Tmp9. However, Tmp9 still should be materialized to support Q28. Example 6
provides the result for the case Tmp9 is virtual view.

The materialized view maintenance cost of Tmp12 is 14,462,831,360.

158

For this case, Tmpll should be un-materialized as there is no query derived
from Tmpll. The materialized view maintenance cost of Tmp11 is 400,000. So, the
maintenance cost is increased by 14,462,431,360 (14,462,831,360 - 400,000).

Q40 derived from the result of Tmp12 and result40. The query processing cost
of Q40 derived from Tmp12 is (4)*(6492 + 6492) that is 51,936.

Q50 derived from the result of Tmp12, the result of Tmpl8, Tmp24, Tmp22,
Tmp25 and result50. The query processing cost of Q50 derived from Tmpl2 is
(5)%(6492 + 575169 + 3733997148 + 150000 + 711150000 + 215) that is
22,229,395,120.

So, query processing cost of Q40 when derived from Tmp12 decreases from
5,156,452,024 to 51,936. The query processing cost of Q50 when derived from
Tmpl2 decreased from 28,674,895,230 to 22,229,395,120. So, the total query
processing cost is reduced by 11,601,900,198 ((5,156,452,024 - 51,936) +
(28,674,895,230 - 22,229,395,120)).

Therefore, the total cost is increased by 2,860,531,162 (14,462,431,360 -
11,601,900,198).

Example 6: Tmp12 is materialized; Tmp9 and Tmp11 are virtual view

For this example, there is one more query, Q28 that is affected when
compared with Example 5. The materialized view maintenance cost is reduced due to
Tmp9 is un-materialized. The query processing cost of Q40 and Q50 are the same as
Example 5.

If Tmp9 are materialized, Q28 accesses nodes Tmp9 (materialized view) and
result28. The query processing cost of Q28 is 321,720.

If Tmp9 is un-materialized, Q28 accesses nodes Tmpl, Tmp2, Tmp3, Tmp4,
Tmp5, Tmp6, Tmp7, Tmp8, Tmp9 and result28. The query processing cost of Q28 is
increased by 8,017,262,340.

Comparing with Example 5, the total query processing cost of this example is
increased by 8,016,940,620 (8,017,262,340 - 321,720). The materialized view
maintenance cost of Tmp9 is 6,413,681,184. Then, the total materialized maintenance

cost is reduced by 6,413,081,184 compared with Example 5.

159

Therefore, the total cost is increased by 1,603,859,436 (8,016,940,620 -
6,413,081,184).

Example 7: Tmp20 is materialized and Tmp19 is virtual view

Tmp20 is accessed by Q22 and Q43, when Tmp20 is materialized; Tmp19 is
un-materialized as Tmp20 is ancestor of Tmp19. Also there is no more query beside
Q22 and Q43 accesses Tmp19.

The weight of Tmp20 is calculated as follows:

Tmp20 is constructed on 4 base relations. Tmp20 is accessed by Q22 and Q43
with the frequency of executing query is 3 and 7, respectively. Tmp20 is derived from
nodes Tmp7, Tmpl10, Tmpl3, Tmpl4, Tmpl6, Tmpl7, Tmpl8 and Tmpl9. The cost
of each node and Tmp20 is 8000000, 200000, 6000000, 6000000, 1500000, 227597,
863342789712, 460135200000and 115033800000, respectively.

So, the weight of Tmp20 is calculated as:

w(Tmp20) = (3+7)*(115033800000) - (4)*(8000000 + 200000 + 6000000 +
6000000 + 1500000 + 227597 + 863342789712 + 460135200000 + 115033800000)
that is (-4,603,796,869,236).

The materialized view maintenance cost of Tmp20 is 5,754,134,869,236 and
Tmp19 is 3,970,499,151,927. Then, the total materialized view maintenance cost is
increased by 1,783,635,717,309 (5,754,134,869,236 - 3,970,499,151,927).

When Tmp20 is materialized, Q22 accesses the result of Tmp20 and result22.
The query processing cost of Q22 is 3,451,014 ((3)*(575169 + 575169)). The query
processing cost of Q22 is reduced from 345,105,451,014 to 3,451,014.

Q43 accesses the result of Tmp20, Tmp21, Tmp22, Tmp23 and result43. The
query processing cost of Q42 is 644,194,585,629 ((7)*(575169 + 10000 +
5751690000 + 150000 + 86275350000 + 22778)). The query processing cost of Q43
is reduced from 1,449,432,585,629 to 644,194,585,629.

Therefore, the total cost is increased by 633,295,717,309 as the maintenance
cost is increased by 1,783,635,717,309 whilst the total query processing cost is
reduced by 1,150,340,000,000.

The results of the above examples with negative weights are shown in Table
4.42.

160

Table 4.42 The Cost of All Queries for the Negative Weight Property

Example Cost of Cost of Total Cost
Query Processing Maintenance
* 3,838,202,906,833 14,960,158,671,142 18,798,361,577,975
4 3,809,528,012,678 21,925,713,716,974 25,735,241,729,652
5 3,826,601,006,635 14,974,621,102,502 18,801,222,109,137
6 3,834,617,947,255 14,968,207,421,318 18,802,825,368,573
7 2,687,862,906,833 16,743,794,388,451 19,431,657,295,284

Note: * is the minimal total cost

The result of all above examples when nodes with negative weights are
materialized show that the total query processing cost is reduced but the decreasing of

query processing cost is less than the increasing of materialized view maintenance

cost. Therefore, the total cost is increased.

4.10.3 Case 2: Materializing the Node without the Maximum Weight of

We explain this property by using the result of the first experiment. We

the Branch

represent the result of the first experiment again in Figure 4.61 and Table 4.43.

161

5
as@ 2
Q7 3 7 2 4 @ 5
Q10 2 9
6 ox]) el] result13 O [215] t ? @ 5 Y) 6
2@ Ho_brang, resuhlZOlSZAZM 5 s @
Vp_bra result10 4 [910519] QL@ ?
'55“"7 [910519] resultg 1 [967519280] | avg(l_extendedprice) T O * o])

resulia (JI162183] Trp3s f [160240] result esulg

4 resuli2() [184082] s QL Y resulty resultil) oo (36276 [758746]
®@ Ve migsegment Yo s na |5qwmu ‘ max\ e>](end edprice) Yol orderpriority 637‘4109] results 16276]
sam(-drscoun) | ¥ quantity) | ¢ Sam(ps_ supplymsa" mp33 nﬂnl discount)
T [4741) X - [15242A| Ys.r na .) 'Y max(p_brand)
240360000001/ Q Yo_order sumips_supplycost) - [yeount
| Tmp23 | [30751] ol Sendedor ice) (ps_suppkey)
rest unb 46008] :ouml (I_orderkye)| tssTs1920] () 7 s avilgy<a® ~a P2 / Yr?w?fps ppltcost) (¢ pri !

Tmpi1 /s \ (’)\122113 §4832] Tm030] 1460135200000 Il
A 273369715464 s2024] {8~ - 1575169] () S

[182183] 7 \ ~Tmp3t mp !

R s, \ / (32192 O tsoeuoy /g? s2761() [362760000] /
7/
45 90 10 m ric >[1BAOBZ [2760480000001 \ Gl h\ e [
/ l like ‘%BRASST® _ | Tmpi [758746] T”[‘i‘szfgsmrnba]
910519] [136577850000] \ ! Tp7 160240 7 132048000000

X

\
\ s

7 Tmp29 |

Tmpla 75169 — |
fa6008] () [6869560251] . [— > [7255200000] I

V A 50
i 2 Tmp2
oo

so058) O [200000]

7 O p-tye
like ‘%BRASS%’

Tmp20
N [9069), [zeuoom’
2 /
Gp_brnd<>"HRAND#45’
not p_typolike ‘9%BRASS%"
4 Tmpa (251 [3793295 Tmp10 p_sie inf.10.49)
4 BRA /_commitdate (250 @ 1227597 /
% A T o gty ;
1150000) () [150000] Tmp2 10000) T"[‘;?De] {6000000]) [5000000] 3%%9?5??§ruy 1800000 (Ygo0000] 200000
Tmp12 mOm pz o np . 1200000]() [200000]
251 [25] ‘mp
TUr_regionkey U s_nationkey T sudppkey 12275971 [1500000) x y Prmp1s
Tmp L ssuppke ordekey Go_orderdate po-suppley TUp_gertiey
1B >="1994-01-01' Iycost
TU c_nationkey L 10 1 regionke \ i x 1994-01-01 bi-Eipp) {cos Bvpe
sava

R G _name="ASIA’ A x Eandedpm o_orderdate psavaiq pslke

Cmkisegment X [-commitdate <'1095-01-01'
Ireceiptdate
[150000] (51 [25] [10000] [6000000] [1500000] [800000] D [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7
@ represents new materialized view node selected in dynamic phase
© represents un-materialized node in dynamic phase

Figure 4.61 The Dynamic MVPP for Q8-Q13 after Applying 2PO

Table 4.43 The Minimum Total Cost of the First Experiment

Materialized view Cost of Cost of Total Cost
Query Processing Maintenance

Tmpl0, 11, 13, 15, 3,684,593,788,740 6,065,915,980,889 9,750,509,769,629

17,19, 21, 24, 27, 28

The directly affected nodes are Tmpl, Tmp2, Tmp4, Tmp6, Tmp9, Tmp10,
Tmpl3, Tmpl4, Tmpl7, Tmpl9, and Tmp24. The directly affected nodes that have
ancestor nodes, not in the list of directly affected nodes, are shown in Table 4.44.

In Table 4.44, Tmp6 is the directly affected node used to construct new
queries Q12 and Q13. It has 2 ancestor nodes, Tmp8 and Tmp11. Tmpl1l provides the
maximum weight of this branch, Tmp6 -> Tmp8 -> Tmpll, then Tmpll is
determined as indirectly affected node but not Tmp8.

162

Table 4.44 The Weight of Ancestor Nodes of Directly Affected Node of New

Queries
Directly Affected Node Ancestor Node Weight of Ancestor Node
Tmp6 Tmp8 36,029,759,776
Tmpll 486,610,492,657
Tmpl4 Tmpl5 241,657,060,480
Tmpl7 Tmp23 - 80,125,050,280
Tmp24 Tmp25 -4,096,769,632,791

We provide the experiment to validate that only the node with the maximum
weight should be considered as an indirectly affected node as follows.

Our assumption is that if Tmp8 is possible to be the affected node then the
total cost has to be less than the minimum total cost in Table 4.43 when Tmp8 is
materialized.

There are two scenarios for this experiment; (1) Tmp8 and Tmpll are
materialized view, (2) Tmp8 is materialized and Tmp11 is a virtual view. If one out of
two scenarios provides the total cost less than minimum cost, then Tmp8 has to be
determined as an affected node.

Example 8: The first scenario, Tmp8 and Tmp11 are materialized

Tmp8 and Tmp11l support Q3, then the query processing cost of Q3 might be
affected when Tmp8, Tmp11 are either materialized or virtual views.

All costs in Table 4.43 already include materialized view Tmpll, so we
consider additional cost due to Tmp8 be materialized.

Tmp8 is constructed on 4 base relations, and derived from the nodes Tmpl,
Tmp2, Tmp3, Tmp4, Tmp5, Tmp6 and Tmp7. The cost of each node and Tmp8 is 5,
1, 25, 25, 10000, 50000, 6000000 and 12018000000, respectively. The materialized
view maintenance cost for Tmp8 is 48,096,240,224 ((4)*(5 + 1 + 25 + 25 + 10000 +
50000 + 6000000 + 12018000000)).

The total maintenance cost is 6,114,012,221,113 (6,065,915,980,889 +
48,096,240,224).

163

The total query processing cost is the same as query processing cost in Table
4.43 that is 3,684,593,788,740 even Tmp8 is materialized as there is only Q3 derived
from Tmp8.

Therefore, the total cost is 9,798,606,009,853 (3,684,593,788,740 +
6,114,012,221,113). That is greater than that in Table 4.44.

For this assumption, it is obviously that the maintenance cost is increased
without the benefit to speed up query process of Q3 as Q3 derived from Tmpll

(materialized view) directly.

Example 9: The second scenario, Tmp8 is materialized view and Tmpll is
virtual view

For this scenario, the query processing cost of Q3 is changed as Q3 has to
derive from Tmp8 and Tmp11 instead Tmpll only as in Example 8.

Q3 with the frequency of executing query is 7 and accesses the nodes Tmp8
(materialized view), Tmp10, Tmpll and result8. The query processing cost of Q3 is
1,913,599,284,478 ((7)*(1201113 + 227597 + 273369715461 + 182183)). It is
changed from 2,550,562 to 1,913,599,284,478. Therefore, the total query processing
cost is increased by 1,913,596,733,916 (1,913,599,284,478 - 2,550,562).

The materialized view maintenance cost of Tmpll and Tmp8 is
1,426,977,515,570 and 48,096,240,224, respectively. The total materialized view
maintenance cost is reduced by 1,378,881,275,346 (1,426,977,515,570 -
48,096,240,224).

As the query processing is increased and maintenance cost is reduced, then the
total cost is increased by 534,715,458,570 (1,913,596,733,916 - 1,378,881,275,346).

When we materialize Tmp8 and un-materialize Tmp11, the total cost is greater
than the total cost in Table 4.43. According to our assumptions, Tmp8 should not be
determined as affected node because it provides the higher total cost than minimal
total cost in Table 4.43.

The results of all above examples show that when the unaffected nodes are
materialized, the total cost always increases. Therefore, it is not necessary to include

these nodes for materializing.

164

We further validate our affected node identification algorithm using the
second experiment by setting all nodes in search space as the member of nodes to be
selected for 2PO. Our assumption is that if any solutions provide the total cost, which
unaffected nodes is included, less than the minimal total cost in Table 4.37, then our
affected node determination is not efficient enough. The result of selecting all nodes is
shown in Table 4.45. The result shows that the state providing the minimum total cost
is materializing {Tmp6, Tmp9, Tmpll, Tmpl5, Tmpl7, Tmpl8, Tmpl9, Tmp26,
Tmp27, Tmp29 and Tmp30}. The set of materialized view is same as our dynamic
approach as shown in Table 4.46. The query processing cost is 3,838,202,906,833, the
materialized view maintenance cost is 14,960,158,671,142 and the total cost which is
summation of query processing cost and materialized view maintenance cost is
18,798,361,577,975, the same as Table 4.37.

We provide the explanation for some example states in following sections that
include the unaffected node. The state including unaffected nodes do not provide the

minimum total cost.

Analysis of the Conjunctive Joined Node with Negative Weight Property

In Table 4.45, the 14th state includes conjunctive joined node with negative
weight that is Tmp12.

The total cost of the 14th state is greater than that of the 15th state. Tmp12 is
not determined as affected node as its weight is negative. Although Tmpl2 is
materialized in the 14th state and total cost is less than the 11th state, the total cost of
the 14th state is more than the 15th state. Tmp12 is built by Tmp9 and Tmpl1. The
weights of Tmp9 and Tmpll are positive. So, materializing Tmp9 and Tmpll
together provides total cost less than materializing Tmpl12. The other example states
compared with the 16th state, the 18th state includes Tmp23 and the 23rd state
includes Tmp25. The weights of Tmp23 and Tmp25 are negative. When materializing
Tmp23 and Tmp25, the total cost of the 18th and the 23rd state are greater than the
16th state even though the query processing cost of both states are less than that of
16th state

165

Analysis of the project operation node, the ancestor of base relation property
From Table 4.45, the following states are the example states that include
project node that is the ancestor of base relations.
Initial state: Tmp15, 18, 19, 26, 27, Chaintenace: 14,877,850,042,025
4th state: Tmpb, 15, 18, 19, 26, 27, Craintenace: 14,877,850,052,025
8th state: Tmp10, 15, 18, 19, 26, 27, Craintenace: 14,877,850,242,025
The costs of query processing of all above states are same, 4,012,431,182,390,
but the costs of maintenance are difference. In the 4th state, Tmp5 is the ancestor of
base relation, SUPPLIER. Comparing the 4th state with the initial state, the
maintenance cost is increased by the materialized view maintenance cost of Tmp5,
10,000. Considering the 8th state, Tmp10 is the ancestor of base relation, PART, the
total cost of the 8th state is greater than the initial state by the materialized view
maintenance cost of Tmpl10, 200,000. Also, the 18th to the 25th state has the
materialized views same as the 16th state plus additional nodes. The weights of
additional nodes are negative. Therefore, the total cost of these states is greater than
that of 16th state.

The 2PO result for setting all nodes are the members of search space
The initial state for 2PO is that all nodes are set to 0. The output generated by Il is that {Tmp15, Tmpl18, Tmpl9, Tmp26 and
Tmp17} are materialized that is the initial state of SA of the 2PO.

Table 4.45 The States Generated by 2PO of Dynamic Phase for All Nodes

State Materialized View Cost of Query Processing Cost of Maintenance Total Cost
0 Tmp15, 18, 19, 26, 27 (the initial state for SA) 4,012,431,182,390 14,877,850,042,025 18,890,281,224,415
1 Tmp7, 14, 15, 18, 19, 27 22,220,256,782,390 8,808,563,642,025 31,028,820,424,415
2 Tmp7, 13, 15, 18, 19, 27 22,220,256,782,390 8,808,557,642,025 31,028,814,424,415
3 Tmpl5, 18, 19, 26, 28 4,228,751,610,766 14,914,704,632,025 19,143,456,242,791
4 Tmpb, 15, 18, 19, 26, 27 4,012,431,182,390 14,877,850,052,025 18,890,281,424,415
5 Tmp7, 11, 15, 18, 19, 26 4,396,994,700,534 14,813,756,042,025 19,210,750,742,559
6 Tmp7, 10, 15, 18, 19, 26 4,397,000,459,606 14,813,755,842,025 19,210,756,301,631
7 Tmpl5, 18, 20, 26, 27 2,862,091,182,390 16,661,478,559,334 19,523,569,741,724
8 Tmpl0, 15, 18, 19, 26, 27 4,012,431,182,390 14,877,850,242,025 18,890,281,424,415
9 Tmp§, 14, 18, 19, 26, 27 7,637,008,803,006 11,837,010,026,769 19,474,018,829,775
10 Tmps§, 13, 18, 19, 26, 27 7,637,082,663,342 11,837,004,026,769 19,474,086,690,111
11 Tmp6, 15, 18, 19, 26, 27 4,012,430,079,383 14,877,850,222,193 18,890,280,301,576
12 Tmp4,5, 15, 18, 19, 26, 27 4,012,431,181,217 14,877,850,042,137 18,890,281,223,354
13 Tmp4, 15, 18, 19, 26, 27 4,012,431,181,217 14,877,850,042,137 18,890,281,223,354
14 Tmp6, 12, 15, 18, 19, 26, 27 3,986,400,439,685 14,892,313,053,553 18,878,713,493,238
15 Tmpe6, 9, 15, 18, 19, 26, 27 3,989,983,818,331 14,884,263,903,377 18,874,247,721,708

991

Table 4.45 (Continued)

State Materialized View Cost of Query Processing Cost of Maintenance Total Cost
16 Tmps, 9, 11, 15, 18, 19, 26, 27 3,989,980,218,911 14,884,264,303,377 18,874,244,522,288
17 Tmps6, 8, 11, 15, 18, 19, 26, 27 3,989,983,101,991 14,884,263,662,417 18,874,246,764,408
18 Tmp6, 9, 11, 15, 18, 19, 23, 26, 27 2,540,547,952,174 24,067,588,334,828 26,608,139,170,082
19 Tmps, 9, 11, 15, 18, 19, 22, 21, 26, 27 3,144,480,388,911 22,105,657,267,519 25,250,137,656,430
20 Tmpé, 9, 11, 15, 18, 19, 21, 26, 27 3,144,480,388,911 22,105,657,117,519 25,250,137,506,430
21 Tmp5, 6,9, 11, 15, 18, 19, 20, 26, 27 3,184,742,218,911 20,638,372,110,210 23,823,114,329,121
22 Tmpé, 9, 11, 15, 18, 20, 26, 27 3,184,742,218,911 20,638,372,100,210 23,823,114,319,121
23 Tmp6, 9, 11, 15, 18, 19, 25, 26, 27 3,961,306,767,371 21,849,821,076,806 25,811,127,844,177
24 Tmp5, 6,9, 11, 15, 18, 19, 24, 26, 27 3,961,663,290,001 20,104,164,525,348 24,065,827,815,349
25 Tmpé6, 9, 11, 15, 18, 19, 24, 26, 27 3,961,663,290,001 20,104,164,515,348 24,065,827,805,349
26 Tmpé6, 9, 11, 15, 18, 19, 26, 27, 29 3,838,215,512,095 14,960,155,970,974 18,798,371,483,069
27 Tmp5, 6,9, 11, 14, 15, 18, 19, 26, 27 3,989,947,392,095 14,884,278,040,974 18,874,225,433,069
28 Tmpé6, 9, 11, 15, 18, 19, 26, 27, 29, 32 2,722,547,177,757 16,374,786,910,494 19,097,334,088,251
29 Tmpé6, 9, 11, 13, 15, 18, 19, 26, 27, 29, 31 3,826,762,625,461 14,987,650,722,590 18,814,413,348,051
30 Tmp6, 9, 11, 15, 18, 19, 26, 27, 29, 31 3,826,762,625,461 14,987,644,722,590 18,814,407,348,051
31 Tmps6, 9,11, 15, 17, 18, 19, 26, 27, 29, 30 (the minimal state) 3,838,202,906,833 14,960,158,671,142 18,798,361,577,975
32 Tmp6, 9, 11, 15, 18, 19, 26, 27, 29, 30 3,838,208,906,833 14,960,156,943,545 18,798,365,850,378
33 Tmp4,6,9, 11, 15, 17, 18, 19, 22, 26, 27, 29 3,838,212,386,121 14,960,156,121,086 18,798,368,507,207
34 Tmp9, 11, 15, 17, 18, 19, 26, 27, 29, 30, 33 3,832,440,280,298 16,691,479,770,464 20,523,920,050,762
35 Tmpé6,9, 11, 15, 17, 18, 19, 26, 27, 29, 34 2,973,928,528,448 19,654,011,127,168 22,627,939,655,616
36 Tmpé, 8, 11, 14, 15, 17, 18, 19, 26, 27, 29 6,620,974,199,060 16,606,746,071,688 23,227,720,270,748

197

The 2PO result for only affected node and new nodes are the members of search space
Initial State for Il is all nodes set to 0. The output generated by Il is that {Tmp15, Tmpl8, Tmpl9, Tmp26 and Tmp27} are

materialized that is the initial state for SA of the 2PO.

Table 4.46 The States Generated by 2PO of Dynamic Phase for Affected Nodes

State Materialized View Cost of Query Processing Cost of Maintenance Total Cost
0 Tmp15, 18, 19, 26, 27 (the initial state for SA) 4,012,431,182,390 14,877,850,042,025 18,890,281,224,415
1 Tmpl4, 15, 18, 19, 27 22,220,256,782,390 8,808,562,842,025 31,028,819,624,415
2 Tmpll, 15, 18, 19, 26 4,396,994,700,534 14,813,755,242,025 19,210,749,942,559
3 Tmp8, 14, 18, 19, 26, 27 7,637,008,803,006 11,837,010,026,769 19,474,018,829,775
4 Tmp6, 15, 18, 19, 26, 27 4,012,430,079,383 14,877,850,222,193 18,890,280,301,576
5 Tmp4, 15, 18, 19, 26, 27 4,012,431,181,217 14,877,850,042,137 18,890,281,223,354
6 Tmp6, 9, 11, 15, 18, 19, 26, 27 3,989,980,218,911 14,884,264,303,377 18,874,244,522,288
7 Tmpé, 8, 11, 15, 18, 19, 26, 27 3,989,983,101,991 14,884,263,662,417 18,874,246,764,408
8 Tmpé6, 9, 11, 15, 18, 19, 26, 27, 29 3,838,215,512,095 14,960,155,970,974 18,798,371,483,069
9 Tmpé6, 9, 11, 14, 15, 18, 19, 26, 27 3,989,947,392,095 14,884,278,030,974 18,874,225,423,069
10 Tmps, 9, 11, 15, 18, 19, 26, 27, 29, 32 2,722,547,177,757 16,374,786,910,494 19,097,334,088,251
11 Tmps, 9, 11, 15, 18, 19, 26, 27, 29, 31 3,826,762,625,461 14,987,644,722,590 18,814,407,348,051
12 Tmps, 9, 11, 15, 17, 18, 19, 26, 27, 29, 30 (the minimal state) 3,838,202,906,833 14,960,158,671,142 18,798,361,577,975
13 Tmps, 9, 11, 15, 18, 19, 26, 27, 29, 30 3,838,208,906,833 14,960,156,943,545 18,798,365,850,378
14 Tmp9, 11, 15, 17, 18, 19, 26, 27, 29, 30, 33 3,832,440,280,298 16,691,479,770,464 20,523,920,050,762
15 Tmps, 9, 11, 15, 17, 18, 19, 26, 27, 29, 34 2,973,928,528,448 19,654,011,127,168 22,627,939,655,616
16 Tmps6, 8, 11, 14, 15, 17, 18, 19, 26, 27, 29 6,620,974,199,060 16,606,746,071,688 23,227,720,270,748

891

169

In this chapter, we present the experiments designed to evaluate the
effectiveness of our proposed methodologies that are the MVPP re-optimization
algorithm and the dynamic materialized view selection approach. The experiment
results do show that our MVPP re-optimization algorithm improve the query
processing cost of the search space. The dynamic approach also help support new
requirements that can avoid the repeatedly run all requirements, the existing and the
new requirements, and the affected node identification algorithm can reduce the size
of search space. The conclusion of our methodologies to solve the dynamic

materialized view selection problem will be presented in the next chapter.

CHAPTER 5

CONCLUSION AND FUTURE WORK

Materializing view is a technique to improve the query performance in a data
warehouse. However, materialize views have maintenance cost, so materialization of
all views is not possible. Deciding which of the appropriated views are to be
materialized is one of the most important problems in data warehouse design. In order
to solve this problem, constructing a search space to identify a set of views to be
materialized is a necessary task. To generate the search space, it is practically
impossible to consider all common subexpressions among queries because of the
numerous numbers of possible common subexpressions. The MVPP is one of the
several approaches to constructing the optimal search space for the view selection
problem. As the generating of MVPP is constructed by merging the individual
optimal plans in order of the frequency of executing query multiplied with query cost.
Thus, merging of incoming query has to use the common subexpressions of the
previous merging. Therefore, it will lose the global optimization.

We propose the MVPP re-optimization algorithm to verify whether the
cheapest MVPP is optimal, and to improve the query processing cost of the cheapest
MVPP by rewriting the query using the concept of commonality of common
subexpression for all queries. Our goal is to preserve global optimization by reducing
the query processing cost of the cheapest MVPP. The result shows that the total query
processing cost of MVPP is reduced if the query can be rewritten. After materialized
views are selected by selection algorithm, 2P0, the total cost, which is the summation
of query processing cost and materialized view maintenance cost, is reduced as well.

Moreover, in the real situation, the requirements specified by the various
stakeholders are frequently changed and such changes will cause the existing
resources to be changed. We start our dynamic materialized view selection with the

static phase by implementing the static materialized view selection for the initial

171

requirements. In static phase, we apply our MVPP re-optimization algorithm to
improve the cheapest MVPP and apply 2PO algorithm to select a set of views to be
materialized. Two experiments have been conducted to evaluate the performance of
the proposed algorithms. The experiments are performed on our testbed 50 queries
with the combination of base relations. For the first experiment, when the MVPP re-
optimization algorithm is applied, the cheapest MVPP is not the optimal one as some
queries can be rewritten using an alternative execution plan in the cheapest MVPP.
After the problematic queries are rewritten, the re-optimized MVPP provides the total
query processing cost less than that of the cheapest MVPP. Later, we apply 2PO to
select the set of views to be materialized, the total cost, 6,120,827,925,892, is less
than the cheapest MVPP, 6,362,230,638,028. For the second experiment, some
queries in the cheapest MVPP do not provide the minimum query processing cost
compared with the other MVVPPs. However, there is no alternative plan in the cheapest
MVPP for that problematic query then it cannot be rewritten. Therefore, our MVPP
re-optimization algorithm can help to verify that the cheapest MVPP is the optimal
MVPP.

For the dynamic phase, there are new queries added into the existing MVPP
generated in the static phase. After the new queries are merged into the existing
MVPP, the MVPP re-optimization algorithm is applied to preserve the global
optimization of MVPP. Later, we apply our affected node identification algorithm
aiming to reduce the search space for selection algorithm, 2PO. The results show that
our affected node identification algorithm can identify the necessary nodes to be
selected to be materialized or un-materialized. The number of nodes to be selected by
our dynamic approach is less than that of the static approach because the static
approach has to recalibrate from scratch for all requirements, existing and new
requirements. The number of nodes in the search space for the first experiment is
reduced from 35 to 23 nodes and the second experiment is reduced from 35 to 21
nodes. Therefore, the proposed approach achieves our objective of the dynamic
materialized view selection problem, that is not all existing resources need to be
considered for materializing.

Finally, we use 2PO algorithm to select the set of views to be materialized.

The first experiment of our dynamic approach, after new queries are merged, provides

172

the MVPP structure the same as that of the static approach. The total cost of our
dynamic approach is equal to the total cost of the static approach despite the fact that
the number of nodes to be selected by 2PO of the dynamic approach is less than that
of the static approach. For the second experiment, our dynamic approach provides the
MVPP structure different from that of the static approach. The result is that the total
cost of dynamic approach is less than that of static approach, and the number of nodes
to be selected by 2PO of dynamic approach is less than that of the static approach. We
also select complex SQL standard queries to cover all categories of subexpression
commonality to reflect the real situation in which all kinds of relevance with existing
resource would be added into the existing environment simultaneously.

In a real application system, there are other constraints that the system should
consider beside the number of tuples, frequency of executing a query and frequency
of updating base relations used in cost model such as indexes, system storage
constraints or time constraints. Also, further study should be done on how to better
calculate the maintenance cost of a materialized view, such as calculating the cost

based on maintenance cost of its descendent materialized views.

BIBLIOGRAPHY

Bello, R. G.; Dias, K.; Downing, A.; Feenan, J.; Finnerty, J.; Norcott, W.D.; Sun, H.;
Witkowski, A. and Ziauddin, M. 1998. Materialized views in ORACLE.
In Proceeding of the 24th VLDB Conference. New York: VLDB. Pp.
659-664.

Chen, F. F. and Dunham, M. H. 1998. Common Subexpression Processing in
Multipler-Query Processing. IEEE Transaction Knowledge Data
Engineering. 10 (May): 493-499.

Choudharil, Y. D. and Shrivastava, S. K., 2012. Cluster Based Approach for
Selection of Materialized Views. International Journal of Advanced
Research in Computer Science and Software Engineering. 2 (June):
315-318.

Derakhshan, R.; Dehne, F.; Korn, O. and Stantic, B. 2006. Simulated Annealing for
Materialized View Selection in Data Warehousing Environment. In
Proceedings of the 24th IASTED International Conference on
Database and Applications. Anaheim, CA: ACTA Press. Pp. 89-94.

Derakhshan, R.; Stantic, B.; Korn, O. and Dehne. F. 2008. Parallel Simulated
Annealing for Materialized View Selection in Data Warehousing
Environment. In Proceeding of Algorithms and Architectures for
Parallel Processing, ICA3PP 2008. A. Bourgeois and S.Q. Zheng, eds.
Berlin, Heidelberg: Springer. Pp. 121-132.

Elmasri, R. and Navathe, S. B. 2010. Fundamentals of Database Systems. 6th ed.
Boston: Pearson/Addison Wesley.

Finkelstien, S. 1982. Common Expression Analysis in Database Applications. In
Proceeding of ACM-SIGMOD International Conference on
Management of Data. New York: ACM. Pp. 235-245.

174

Galindo-Legaria, C. A.; Pellenkoft, A. and Kersten, M. L. 1994. Fast, Randomized
Join-Order Selection-Why Use Transformations. In Proceedings of the
20th International Conference on Very Large Data Bases, September
12-15, 1994 (VLDB’ 94). J. B. Bocca, M. Jarke and C. Zaniolo, eds. San
Francisco, CA: Morgan Kaufmann Publishers. Pp. 85-95.

Garcia-Molina, H.; Ullman, J. D. and Widom, J. 2009. Database Systems: The
Complete Book. 2nd ed. New Jersey: Prentice Hall.

Gong, A. and Zhao, W. 2008. Clustering-Based Dynamic Materialized View
Selection Algorithm. Fifth International Conference on Fuzzy
Systems and Knowledge Discovery, FSKD '08. Jinan Shandong,
China: IEEE. Pp. 391-395.

Gupta, H. 1997. Selection of Views to Materialize in a Data Warehouse. In
Proceedings of the 6th International Conference on Database Theory,
January 08-10, 1997 (ICDT’97). F. N. Afrati and P. G. Kolaitis, eds.
Lecture Notes In Computer Science, vol. 1186. London: Springer-Verlag.
Pp. 98-112.

Gupta, H. and Mumick, 1. S. 2005. Selection of Views to Materialize in a Data
Warehouse. IEEE Transactions on Knowledge and Data Engineering.
17 (January): 24-43.

Harinarayan, V.; Rajaraman, A. and Ullman, J. D. 1996. Implementing Data Cubes
Efficiently. In Proceedings of the 1996 ACM-SIGMOD International
Conference on Management of Data. Montreal, Quebec, Canada, June
04-06, 1996 (SIGMOD '96). J. Widom, ed. New York: ACM. Pp. 205-216.

Halevy, A. Y. 2001. Answering queries using views: A survey. The International
Journal on Very Large Data Bases. 10 (September): 270-294.

Inmon, W. H. 2002. Building the Data Warehouse. 3rd ed. New York: Wiley.

loannidis, Y. E. and Kang, Y. 1990. Randomized Algorithms for Optimizing Large
Join Queries. In Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data. Atlantic City, New Jersey, May 23
- 26, 1990 (SIGMOD '90). New York: ACM. Pp. 312-321.

175

Jarke, M. 1984. Common Subexpression Isolation in Multiple Query Optimization.
In Query Processing in Database Systems. W. Kim, D. Reiner, and D.
Batory, Eds. New York: Springer-Verlag. Pp. 191-205.

Kalnis, P.; Mamoulis, N. and Papadias, D. 2002. View Selection Using Randomized
Search. Data & Knowledge Engineering. 42 (July): 89-111.
Kirkpatrick, S.; Gelatt, C.D. and Vecchi, M.P. 1983. Optimization by Simulated

Annealing. Science. 220 (May): 671-680.

Kotidis, Y. and Roussopoulos, N. 1999. DynaMat: A Dynamic View Management
System for Data Warehouse. In Proceedings of the 25" ACM SIGMOD
International Conference on Management Data. Philadelphia, PA:
ACM. Pp. 371-382.

Lanzelotte, R. S.; Valduriez, P. and Zait, M. 1993. On the Effectiveness of
Optimization Search Strategies for Parallel Execution Spaces. In
Proceedings of the 19th International Conference on Very Large Data
Bases, August 24-27, 1993. R. Agrawal, S. Baker and D. A. Bell, eds. San
Francisco, CA: Morgan Kaufmann Publishers. Pp. 493-504.

Lawrence, M. and Rau-Chaplin, A. 2008. Dynamic View Selection for OLAP.
International Journal of Data Warehousing & Mining. 4 (January -
March): 47-61.

Lehner, W.; Cochrane, B.; Pirahesh, H. and Zahatioudakis, M. 2001. fAST Refresh
Using Mass Query Optimization. In Proceeding of the 17th
International Conference on Data Engineer. Washington, DC: IEEE
Computer Society. Pp. 391-398.

Li, X.; Qian, X.; Jiang, J. and Wang, Z. 2010. Shuffeled Frog Leaping Algorithm for
Materialized Views Selection. Second IEEE International Workshop
on Education Technology and Computer Science. Wuhan, China:
IEEE. Pp. 7-10.

Mistry, H.; Roy, P.; Sudarshan, S. and Ramamrithan, K. 2001. Materialized View
Selection and Maintenance Using Multi-Query Optimization. In
Proceeding of the ACM SIGMOD International Conference on
Management of Data. Santa Barbara, CA: ACM. Pp. 307-318.

176

Nahar, S.; Sahni, S. and Shragowitz, E. 1986. Simulated Annealing and
Combinatorial Optimization. In Proceedings of the 23rd ACM/IEEE
Conference on Design Automation, Las Vegas, Nevada, United States
(DAC’86). Piscataway, NJ: IEEE Press. Pp. 293-2909.

Phuboon-ob, J. and Auepanwiriyakul, R. 2007. Selecting Materialized Views Using
Two-Phase Optimization with Multiple View Processing Plan. World
Academy of Science, Engineering and Technology. 3: 166-171.

Phuboon-ob, J. 2009. Materialized Views Selection Using Two-Phase
Optimization Algorithm. Doctoral dissertation, National Institute of
Development Administration.

Shukla, A.; Deshpande, P. and Naughton, J. F. 1998. Materialized View Selection for
Multidimensional Datasets. In Proceedings of the 24th International
Conference on Very Large Data Bases, August 24-27, 1998. A. Gupta,
O. Shmueli, and J. Widom, eds. San Francisco, CA: Morgan Kaufmann
Publishers. Pp. 488-499.

Silberschatz, A.; Korth, H. F. and Sudarshan, S. 2010. Database System Concepts.
6th ed. Boston: McGraw-Hill.

Silva, Yasin N.; Larson, P. and Zhou, J. 2012. Exploiting Common Subexpressions
for Cloud Query Processing. In ICDE '12 Proceedings of the 2012 IEEE
28th International Conference on Data Engineering. Washington DC:

IEEE Computer Society. Pp. 1337-1348.

Sun, X. and Wang, Z. 2009. An Efficient Materialized Views Selection Algorithm
Based on PSO. International Workshop on Intelligent Systems and
Applications, IEEE Conference. Wuhan, China: IEEE Xplore. Pp. 1-4.

Theodorators, D. and Sellis, T. 1999. Dynamic Data Warehouse Design. In Data
Warehousing and Knowledge Discovery(DaWaK’99). Mohania, M.K.,
Tjoa, A.M., eds. Heidelberg: Springer-Verlag. Pp. 1-10.

Theodoratos, D. and Sellis, T. 2000. Incremental Design of a Data Warehouse.

Journal of Intelligent Information Systems. 15 (July-August): 7-27.

177

Theodoratos, D.; Dalamagas, T.; Simitsis, A. and Stavropoulos, M. 2001. A
Randomized Approach for the Incremental Design of an Evolving Data
Warehouse. In Proceedings of the 20" International Conference on
Conceptual Modeling: Conceptual Modeling. Yokohama, Japan:
Springer Berlin Heidelberg. Pp. 325-338.

Theodoratos, D. and Xu, W. 2006. Computing Closest Common Subexpressions for
View Selection Problem. In Proceeding of the ACM international
workshop on Data warehousing and OLAP (DOLAP 2006). New
York: ACM. Pp.75-82.

Transaction Processing Performance Council (TPC). 2011. TPC Benchmark™H.
Retrieved June, 2011 from http://www.tpc.org/tpch/spec/tpch2.14.2.pdf.

Xu, W.; Theodoratos, D.; Zuzarte, C.; Wu, X. and Oria V. 2007. A Dynamic View
Materialization Scheme for Sequences of Query and Update Statements, In
Data Warehousing and Knowledge Discovery(DaWaK 2007). Berlin,
Heidelberg: Springer-Verlag. Pp. 55-65.

Yang, J.; Karlapalem, K. and Li, Q. 1997. Algorithms for Materialized View Design
in Data Warehousing Environment. In Proceedings of the 23"
International Conference on Very Large Data Bases, August 25-29,
1997 (VLDB’97). M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky,
P. Loucopoulos and M.A. Jeusfeld, eds. San Francisco, CA: Morgan
Kaufmann Publishers. Pp. 136-145.

Yu, Jeffrey Xu; Yao, Xin; Choi, Chi-Hon and Gou, Gang. 2003. Materialized View
Selection as Constrained Evolutionary Optimization. IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and Reviews.
33 (November): 458-467.

Zhang, C.; Yao, X. and Yang, J. 2001. An Evolution Approach to Materialized
Views Selection in a Data Warehouse Environment. IEEE Transaction
on Systems, Man, and Cybernet, Part C. Applications and Reviews.
31 (August): 282-294.

178

Zhang, C. and Yang, J. 1999. Materialized View Evolution Support in Data
Warehouse Environment. In Proceeding of 6™ International Conference
on Database Systems for Advanced Applications. Hsinchu, Taiwan:
IEEE. Pp. 247-254.

Zhang,C. and Yang, J. 1999. Genetic algorithm for materialized view selection in
data warehouse environments. In Proceedings of the International
Conference on Data Warehousing and Knowledge Discovery. London:
ACM. Pp. 116-125.

Zhang, C.; Yang, J. and Karlapalem, K. 2003. Dynamic Materialized View Selection
in Data Warehouse Environment. Informatica (Slovenia) 27(4): 451-460.

Zhang, Q.; Sun, X. and Wang, Z. 2009. An Efficient MA-Based Materialized Views
Selection Algorithm. In IITA International Conference on Control,
Automation and Systems Engineering. Zhangjiajie, China: IEEE.
Pp.315-318.

Zhou, J.; Larson, P.; Freytag, J. and Lehner, W. 2007. Efficient exploitation of
similar subexpressions for query processing. In Proceedings of the 2007
ACM SIGMOD International Conference on Management of Data.
Beijing, China: ACM. Pp. 533-544.

Zhou, L.; Geng, H. and Xu, M. 2011. An Improved Algorithm for Materialized View
Selection. Journal of Computers. 6 (January): 130-138.

APPENDICES

APPENDIX A

Result of Merging Queries to Construct MVPPs

In this appendix, the details to merge queries based on order of queries’ weight

for query set Q1 to Q7 are presented. The first order list of the first MVPPs of this
query set is {Q4, Q7, Q3, Q2, Q6, Q1, and Q5}.

A.1 The First MVPP

The details of constructing the first MVPP already have been described as

Figure 4.10 in section 4.3. We represent the first MVVPP again in Figure A.1.

region nation supplier partsupp customer orders lineitem part

Figure A.1 The Result of the First MVPP

The details for other MVPPs are described in the follow sections.

A.2 The Second MVPP

The following Figure A.2 shows the result of the second MVPP based on the
order list {Q7, Q3, Q2, Q6, Q1, Q5 and Q4}. As Q7 is the first query of the second

181

Q2 Q3
Q3 Q7
Q7
region nation supplier customer orders lineitem region nation supplier customer orders lineitem
(a) (b)

region nation supplier partsupp customer orders lineitem part region nation supplier partsupp customer orders lineitem part

region nation supplier partsupp customer orders lineittm part region nation supplier partsupp customer orders lineitem part

(€) (f)

Figure A.2 The Result of the Second MVPP Based on the Order List { Q7, Q3, Q2,
Q6, Q1, Q5 and Q4}

MVPP then we start the second MVPP with Q7. Next when Q3 is merged, we
first join REGION with NATION and then join this result with SUPPLIER. There is
the subtree joined conjunctively of LINEITEM and ORDERS so the new node is
introduced to join those results i.e. (REGION X NATION x SUPPLIER) and
(LINEITEM x ORDERS). Figure A.2 (a) shows the result after Q3 is merged into
MVPP. Next query in the list is query Q2, there are two conjunctively joined nodes
available in MVPP that are (REGION x NATION) and (LINEITEM X ORDERS x

182

CUSTOMER). Therefore, new node is introduced to join those results. Figure A.2 (b)
shows the result after Q2 is merged into MVPP. Next query in the list is Q6,
LINEITEM and ORDERS conjunctively joined node is available in the MVPP then
new node is introduced to join that result with SUPPLIER. Figure A.2 (c) shows the
result after Q6 is merged into MVPP. Next query is Q1, there are two sharable
conjunctively joined available for Q1, therefore new node is introduced to join result
of (REGION x NATION x SUPPLIER) and (LINEITEM x ORDERS). Figure A.2
(d) shows the result after Q1 is merged into MVPP. Next query is Q5, as Q5 is
subsumption of Q6 that is already available in the MVPP then no new node is
generated for Q5. Figure A.2 (e) shows the result after Q5 is merged into MVPP. The
last query in the list is Q4, the available conjunctively join is (REGION »x NATION Ix
SUPPIER) then new nodes are introduced to join that result with PARTSUPP, and
then join the result with CUSTOMER. Figure A.2 (f) shows the result of the second
MVPP after all queries are merged.

A.3 The Third MVPP

After the second MVPP is built, the first element, Q7, of the list is moved to
the end of the list. Therefore, the new list becomes {Q3, Q2, Q6, Q1, Q5, Q4 and
Q7}. Figure A.3 shows the result of the third MVPP. As Q3 is the first query of the
list then we start with the third MVPP equal to Q3. Next query in the list is Q2, when
we merge Q2 into MVPP only REGION and NATION are already conjunctively
joined node then new nodes are introduced as join operation between that
conjunctively joined node with CUSTOMER, then join with ORDERS and then join
with LINEITEM respectively as shown in Figure A.3 (a). Next when we merge Q6
into MVPP, as the MVPP does not have possibly sharable conjunctively joined node
with Q6 then new nodes are introduced as join operation for Q6 as shown in Figure
A.3 (b). Next query in the list is Q1, when we merge Q1 into MVPP, there are
sharable conjunctively join for Q1 so only new node is introduced as join operation
node for those results (REGION » NATION X SUPPLIER) and (LINEITEM
ORDERS). Figure A.3 (c) shows the result after Q1 is merged into MVVPP. Next, Q5

is subsumption of Q6 that is already available in MVPP then no new node is

183

generated for Q5 as shown in Figure A.3 (d). Next, when we merge Q4 into MVPP,

new nodes are introduced as join

Q2 Q3

#

customer region nation supplier lineitem orders customer region nation supplier lineitem orders partsupp part

part

customer region nation supplier lineitem orders partsupp part customer region nation supplier lineitem orders partsupp part

(€) (f)

Figure A.3 The Result of the Third MVPP Based on the Order List {Q3, Q2, Q6, Q1,
Q5, Q4 and Q7}

operation for existing sharable subexpression and base relation that are the
result of (REGION X NATION) joined with SUPPLIER and then the result is joined
with PARTSUPP and next join with CUSTOMER respectively. Figure A.3 (e) shows
the result after Q4 is merged into MVPP. The last query is Q7, as there is no sharable
conjunctively join in MVPP that Q7 can use, then new nodes are introduced as join
operation node of (LINEITEM » ORDERS) and its result is joined with

184

CUSTOMER. Figure A.3 (f) shows the result after all queries of the third MVPP are

merged.

A.4 The Fourth MVPP

Q2
Q6

customer region nation supplier lineitem orders partsupp part ~ customer region nation supplier lineitem orders partsupp part

(b)

customer region nation supplier lineitem orders partsupp part

customer region nation supplier lineitem orders partsupp ~ part customer region nation supplier lineittm orders partsupp part

(€) ()

Figure A.4 The Result of the Fourth MVVPP Based on the Order List {Q2, Q6, Q1,
Q5, Q4, Q7 and Q3}

After the third MVPP is built, the first element of the list, Q3, is moved to the
end of the list then the new list becomes {Q2, Q6, Q1, Q5, Q4, Q7 and Q3}. Figure
A.4 shows the result of the fourth MVVPP. We start the fourth MVPP equal to Q2 as

185

Q2 is the first query in the list. When Q6 is merged into MVPP, there is no sharable
between Q2 and Q6 then new nodes are introduced to construct Q6 as shown in
Figure A.4 (a). Next, when we merge Q1 into MVPP, we first join SUPPLIER with
joined result of (REGION X NATION). The remaining base relations are PARTSUPP
and PART already joined for Q6. Then, new node is introduced as join operation for
that result as shown in Figure A.4 (b). Next Q5 is subsumption of Q6 that is already
available in MVPP then no new node is generated for Q5 as shown in Figure A.4 (c).
Next query is Q4, Q4 is merged into MVPP by using sharable join operator of
(REGION x NATION X SUPPLIER). For PARTSUPP and CUSTOMER, the new
nodes are introduced as join operation respectively. Figure A.4 (d) shows the result
after Q4 is merged into MVPP. Next query in the list is Q7, there is no sharable in
MVPP for Q7 then new nodes are introduced as shown in Figure A.4 (e). The last
query in the list is Q3, there are two sharable subexpression available in MVPP,
therefore the new node is introduced to join those results that are (REGION X
NATION X SUPPLIER) and (LINEITEM »x ORDERS). Figure A.4 (f) shows the

result after all queries are merged for the fourth MVPP.

A.5 The Fifth to Seventh MVVPPs

We repeat these steps of MVPP algorithm to construct the fifth to seventh
MVPP based on following order list of query
The fifth MVPP : {Q6, Q1, Q5, Q4, Q7, Q3 and Q2}
The sixth MVPP : {Q1, Q5, Q4, Q7, Q3, Q2 and Q6}
The seventh MVPP : {Q5, Q4, Q7, Q3, Q2, Q6 and Q1}
The pictorial views of merging each query into MVVPP show as Figure A.5 to
A.7 for the fifth to seventh MVPP respectively.

186

region nation supplier partsupp part region nation supplier

(b)

partsupp part

- - . L] L] [] L] [] [] []
customer region nation supplier partsupp

part customer region nation supplier lineitem orders partsupp part

customer region nation supplier lineitem orders partsupp

part customer region nation supplier lineitem

(€) ()

orders partsupp part

Figure A.5 The Result of the Fifth MVPP Based on the Query List {Q6, Q1, Q5, Q4,
Q7, Q3 and Q2}

187

region nation supplier partsupp part customer region nation supplier partsupp part
(a) (b)
Q7 | Q4 Q1
Q5
S

customer region nation supplier lineitem orders partsupp part customer region nation supplier lineitem orders partsupp part

customer region nation supplier lineitem orders partsupp part customer region nation supplier lineitem orders partsupp part

(€) (f)

Figure A.6 The Result of the Sixth MVPP Based on the Query List {Q1, Q5, Q4,
Q7, Q3, Q2 and Q6}

188

Q4 Q7 Q4

X Q5
X Q5
X

milhe

customer region nation supplier partsupp part customer region nation supplier lineitem orders partsupp part

(c) (d)

customer region nation supplier lineitem orders partsupp part customer region nation supplier lineitem orders partsupp part

(€) (f)

Figure A.7 The Result of the Seventh MVPP Based on the Query list {Q5, Q4, Q7,
Q3,Q2, Q6 and Q1}

After all MVPPs are constructed by above steps, we optimize MVPP by push
select, project and aggregate function down as deep as possible for all MVPPs. Figure
A.8 to Figure A.14 show the first MVVPP to the seventh MVPP already optimized.
Finally the total query processing costs of MVPP, which is the summation of query
processing cost of queries in the MVPP, are calculated. The query processing cost is
the frequency of executing the query multiplied with the cost of accessing the nodes
to obtain the result of the query. Table A.1 to A.7 show the query processing of
queries for the first MVPP to the seventh MVPP respectively.

6

I [184082]

n_name
count(l_orderkye)

7

o]] 5]

result? g[910519] resulﬁg[musz]

'chmk&segmem
sum(l_discount)

Q2

result2

n_name
sum(l_guantity)

=

Tmpl7
[184082] Q

Tmp9

1150000] () [150000] 120000)) [10000]

TImp3

1251 [25]
iRy
n_name

T
[25]

nation

TCr_regionkey
[51
Or_name="ASIA”

T s natic‘<
ssuppkey
s”name

[TU c_natipnkey
cTus| Ee
¢acctbal
c_mktsegment

[5]

region

[10000]
supplier

[150000]
customer

[967519280]

16000000) [6000000]

ke
i

189

2 2
U@ QU@

resultd | [967519280]

resultL()[160240] resulté

'Ys_name
sum(ps_supplycost) | Yn_name
Tmp10 min(ps_suppltcost)

[24036000000]

rzrsor; O

[800000]
S-Qidiikey 7
o_totalprice
Tmp12
[227597)(_)[1500000]

Oo| orderdate>="1994-01-01'
ol orderdate<’1995-01-01'

Tmpll TT

TU |_suppkey
I:ordpeake?
I_quantity
I_quantity

[6000000]
lineitem

[1500000]
orders

[800000]
partsupp

[36276]

g [36276]

results

200000} 200000]
psﬁsupﬂkey L] L]
ps_partkey
psﬁsuppl{ccs{
psTavaiqty

[] 1200000]
part

Figure A.8 The First MVPP, Queries in the List: {Q4, Q7, Q3, Q2, Q6, Q1, and Q5}

Table A.1 The Query Processing Cost of the First MVVPP

Query fqg Access from the nodes Cost of Each Nodes Query Processing
Cost

Q1 2 Tmpl, Tmp2, Tmp3, Tmp4, 5, 1, 25, 25, 10000, 50000, 67,303,240,592
Tmp5, Tmp7, Tmp8, 800000, 1602400000, 200000,
Tmpl8, Tmp22 and resultl 32048000000 and 160240

Q2 6 Tmpl, Tmp2, Tmp3, Tmp4, 5, 1, 25, 25, 6000000, 9,013,034,785,980
Tmpll, Tmpl2, Tmpl3, 1500000, 227597,
Tmpl4, Tmp9, Tmpl5, 1365582000000, 150000,
Tmpl7 and result2 136577850000, 4552595 and

184082

Q3 7 Tmpl, Tmp2, Tmp3, Tmp4, 5, 1, 25, 25, 10000, 50000, 9,571,896,175,751
Tmp5, Tmp6, Tmpll, 6000000, 1500000, 227597,
Tmpl2, Tmpl3, Tmpl4, 1365582000000, 1823769557
Tmpl6 and result3 and 182183

Q4 2 Tmpl, Tmp2, Tmp3, Tmp4, 5, 1, 25, 25, 10000, 50000, 53,213,858,672
Tmp5, Tmp6, Tmp7, Tmp8, 800000, 1602400000, 150000,
Tmp9, Tmp10 and result4 24036000000, and 967519280

Q5 5 Tmp7, Tmpl8, Tmpl9, 800000, 200000, 200000, 36,282,181,380
Tmp20 and results 7255200000 and 36276

Q6 9 Tmp7, Tmpl8, Tmpl9, 800000, 200000, 200000, 68,572,856,484
Tmp20, Tmp5, Tmp21 and 7255200000, 10000,
resulté 362760000 and 36276

Q7 3 Tmpll, Tmpl2, Tmpl3, 6000000, 1500000, 227597, 4,506,505,914,348
Tmpl4, Tmp9 , Tmpl5 and 1365582000000, 150000,
result? 136577850000 and 910519

The total query processing cost of the first MVPP 23,316,809,013,207

7
3
ol) «®

6

2@

result2£ [184082]

n_name
count(l_orderkye)

[4552595]

Ye_mitsegment
<am_ discount)

Tmps
[150000] O 150000]

T

O

gﬂr_reginnkey
[5]

é]criname:'/\sw
[5]

region

Tmp?
T ¢ pationkey]
gglistkey
¢-dcciba
c_mktsegment

Tonesianlsy
n_name
[25]

customer nation suppl

g [182183]
result? g[emsm] result3

n_name
sum(l_quantity)

[10000}4[10000]

190

2

2
Q@

Q4
resultd | [967519280]
resultL()[160240]

SIS optcos) | Yo vame
sum(ps_supplycos
Ps_SUpplY! min(ps_suppltcost)

9

Q@

Y

Tmp22

() 24036000000
23 [1

4

[TU o_orderke
S-Sustiey”

Tmpl o_totalprice

[eoooooor?[eooooom Tmp15

Tmp2 [800000]

s_natignke! 227597 1500000]

s}uplﬂﬂeyy TC |_suppkey L](2[d

s_name |_orderkey
|_quantity’

[-guantty Go_prderdate>="1994-01-01'

%mematqugs-omr

orders

o

[Jte000000)
lineitem

[10000]

ier partsupp

results g [36276]

[800000]
T ps_supﬁkey
ps_partkey’

S_p
pssupplycost
ps,avalqK/

}

results X [36276]

's_name
sum(ps_supplycogt)

i

count
(ps_suppkey)

Tmp18

Gp_brand<>"BRAND#45"
not p_type like ‘%BRASS%’
p_size in (9,19,49)

part

Figure A.9 The Second MVPP, Query in the List: {Q7, Q3, Q2, Q6, Q1, Q5 and Q4}

Table A.2 The Query Processing Cost of the Second MVPP

Query fq Access from the nodes Cost of Nodes Query Processing
Cost

Q1 2 Tmp7, Tmp8, Tmp9, 5, 1, 25, 25, 10000, 50000, 323,207,240,592
Tmpl0, Tmpll, Tmpl2, 800000, 200000,
Tmpl5, Tmpl6, Tmpl7, 160000000000, 1602400000
Tmp20 and resultl and 160240

Q2 6 Tmp7, Tmp8, Tmp9, 51,25, 25, 6000000, 1500000, 9,013,034,785,980
Tmpl0, Tmpl, Tmp2, 227597, 1365582000000,
Tmp3, Tmp4, Tmp5, 150000, 136577850000,
Tmp6, Tmpl4 and result2 4552595 and 184082

Q3 7 Tmp7, Tmp8, Tmp9, 5, 1, 25, 25, 10000, 50000, 9,571,896,175,751
Tmp10, Tmpll, Tmpl2, 6000000, 1500000, 227597,
Tmpl, Tmp2, Tmp3, 1365582000000, 1823769557
Tmp4, Tmpl3 and result3 and 182183

Q4 2 Tmp7, Tmp8, Tmp9, 5, 1, 25, 25, 10000, 50000, 53,213,858,672
Tmpl0, Tmpll, Tmpl2, 800000, 1602400000, 150000,
Tmpl5, Tmp2l, Tmp5, 24036000000, and 967519280
Tmp22 and result4

Q5 5 Tmpl5, Tmpl6, Tmpl7, 800000, 200000, 800,009,181,380
Tmp18 and result5 160000000000, 800000 and

36276

Q6 9 Tmpl5 Tmpl6, Tmpl7, 800000, 200000, 1,443,281,456,484
Tmpl8, Tmpll, Tmpl9 160000000000, 800000, 10000,
and result6 362760000 and 36276

Q7 3 Tmpl, Tmp2, Tmp3, 6000000, 1500000, 227597, 4,506,505,914,348
Tmp4, Tmp5, Tmp6 and 1365582000000, 150000,
result? 136577850000 and 910519

The total query processing cost of the second MVPP

25,711,148,613,207

191

7

2 2
Q3. U@ A@ 9

5
6 Q6
o (] s@
resultd | [967519280]
s 121 result1()[160240]
results () [36276]

result7? O [910519]
result2() [184082] Yn_name

sum(l_guantity)
YCJW ktsegment
sum(l_discount)

3
U@

s_name results & [36276]
sum(ps_supplycost) yﬁﬂ?g‘f supplicost)

Y

's_name
sum(ps_supplycopt)

n_name
count(l_orderkye)

Tmpll 'Y?ount
ps_suppkey)

Tmp15
1182183]() [273369715461]

[184082] () [276048000000]

Tmp25

e

' Tmp24 N
S }0‘ [910519 65585

Tmp20
[800000]

O'p_brand<>"BRAND#45
not p_type like ‘%BRASS%’
p_size in (9,19,49)

Tmp19
18000001) [160000000000]

[227597(J[227597]

Sty
o_totalprice Tmp16 .
[6000000]
Tmp9 [800000]

[2275971_)[1500000]

Tmp12
1150000 Q) [150000] Tmps O

[1000014[10000]

800000 [200000]

TU p_partkey
¢ st T THE T 2 sy B
S 1 T regionke s_name Iquantity Go_prderdate>="1994-01-01' be-Eippiycost e
¢zdcetbal - . Anatlonke Zquantity be-avaraty -~
c_mKisegment Gr_name="ASIA' I name o_drderdate<’1995-01-01" -
151 [25] [10000] [6000000]
customer region nation supplier lineitem orders partsupp part

Figure A.10 The Third MVPP (the Cheapest MVVPP), Query in the List: {Q3, Q2,
Q6, Q1, Q5, Q4 and Q7}

Table A.3 The Query Processing Cost of the Third MVPP

Query fqg Access from the nodes Cost of Nodes Query Processing
Cost
Q1 2 Tmpl, Tmp2, Tmp3, 5, 1, 25, 25, 10000, 50000, 323,207,240,592

Tmp4, Tmp5, Tmp6, 800000, 200000, 160000000000,
Tmpl6, Tmpl8, Tmpl9, 1602400000 and 160240
Tmp22 and resultl

Q2 6 Tmpl, Tmp2, Tmp3, 5, 1, 25, 25, 150000, 750000, 1,697,558,231,916

Tmp4, Tmpl2, Tmpl3, 1500000, 227597, 6869560251,
Tmp9, Tmpl0, Tmpl4, 6000000, 276048000000 and

Tmpl5 and result2 184082

Q3 7 Tmpl, Tmp2, Tmp3, 5, 1, 25, 25, 10000, 50000, 1,997,769,797,079
Tmp4, Tmp5, Tmp6, 6000000, 12018000000,
Tmp7, Tmp8, Tmp9, 1500000, 227597 ,

Tmpl0, Tmpll and result2 273369715461 and 182183

Q4 2 Tmpl, Tmp2, Tmp3, 5, 1, 25, 25, 10000, 50000, 53,213,858,672

Tmp4, Tmp5, Tmp6, 800000, 1602400000, 150000,
Tmpl6, Tmpl7, Tmpl2, 24036000000, and 967519280

Tmp23
Q5 5 Tmpl6, Tmpl8, Tmpl9, 800000, 200000, 160000000000, 800,009,181,380
Tmp20 and results 800000 and 36276

Q6 9 Tmpl6, Tmpl8, Tmpl9, 800000, 200000, 160000000000, 1,443,281,456,484

Tmp20, Tmp5, Tmp21 and 800000, 10000, 362760000 and

resulté 36276

Q7 3 Tmp7, Tmp9, Tmpl0, 6000000, 1500000, 227597, 4,506,505,914,348
Tmp24, Tmpl2, Tmp25 1365582000000, 150000,
and result7 136577850000 and 910519

The total query processing cost of the third MVPP 10,821,545,680,471

7

3
. e 0@
«2@

g [182183]
i result? é [o10529] "I
result2! [184082]

me

Vg i) Y

Ye_mktsegment
sum(l_discount)

Yn_name
count(l_orderkye)

Tmpll Tmp24
1184082]) [276048000000] Tmp23 [182183]() [1823769557]
X
o 1910519] () [136577850000]

192

2

2
*@ Q1 9
o]
result4 | [967519280]
O [160240]

resultl|

results () [36276]
results X (362761

's_name
sum(ps_supplycost) 'anname

min(ps_suppltcost) 'Ys
Tmp21

1967519280]. () [24036000000] Tt
X

11602401 (J[1602400000]

X >
mp20
Tmpo p [160240] () [1602400000]
[46008] () [6869560251] »’
X A ‘

AN
~>
<
Tmp6 O TmplS o051
130183 CJ [750000
W 12003 () [50000]
/ X

BN

TMP22 >N 1 365885000000
;4

Tmp8
2157227507

5
Q5

sum(ps_supplycoft)

count
(ps_suppkey)

Tmp17
Y4 [36276] (™) [362760000]

Tmp15

[36276] ‘ [800000]

Op_brand<>'BRAND#45"
not p_type like ‘%BRASS%’
p_size in (9,19,49)

Tmp14

1800000] () [160000000000]
X

Tmps Tmp4 5] () [25]
150000; Q) [150000] ® Tmp16 O S-gidstkey
Tmp2 [10000}4[10000] Tmp10) o_totalprice Tmp12 Tmpl O
[HI@]#] Tmp3 [6000000]°[6000000] Tmp7 00000 120000017 [200000]
1251 [25] arsenOtaaoony [800000] A []
Tmol TCr_regionkey T s_sna(in?(nkey TC 1_suppkey T ps_suppke TC p_partkey
TU c_nationkey m[l] Ol Srane Y | orderkey gs’par% eyy p_bran
E%gé}ggy Tn 'eﬁ'orkk%y - Ifﬂﬁgﬂw Go_prderdate>="1994-01-01' pSSUpplycost prsize
c_mktsegment Or_name="ASIA’ ",,—}aagg € - 0_qrderdate<'1995-01-01' ps_avaigty
51 1251 [10000] [Jis000000]
customer region nation supplier lineitem orders partsupp part

Figure A.11 The Fourth MVPP, Query in the List: {Q2, Q6, Q1, Q5, Q4, Q7 and

Q3}

Table A.4 The Query Processing Cost of the Fourth MVPP

Query fg Access from the nodes Cost of Nodes Query Processing
Cost
Q1 2 Tmpl, Tmp2, Tmp3, Tmp4, 5, 1, 25, 25, 10000, 50000, 323,207,240,592
Tmpl6, Tmpl8, Tmpl2, 800000, 200000,
Tmpl3, Tmpl4, Tmpl9 and 160000000000, 1602400000
resultl and 160240
Q2 6 Tmpl, Tmp2, Tmp3, Tmp4, 5, 1, 25, 25, 150000, 750000, 1,697,558,231,916

Tmp5, Tmp6, Tmp7, Tmp8,
Tmp9, Tmpl0, Tmpll and

1500000, 227597, 6869560251,
6000000, 276048000000 and

result2 184082

Q3 7 Tmpl, Tmp2, Tmp3, Tmp4, 5, 1, 25, 25, 10000, 50000, 9,571,896,175,751
Tmpl6, Tmpl8, Tmpl0, 6000000, 1500000, 227597,
Tmp7, Tmp8, Tmp22 and 1365582000000, 1823769557
result3 and 182183

Q4 2 Tmpl, Tmp2, Tmp3, Tmp4, 5, 1, 25, 25, 10000, 50000, 53,213,858,672
Tmpl6, Tmpl8, Tmpl2, 800000, 1602400000, 150000,
Tmp20, Tmp5, Tmp21 and 24036000000, and 967519280
result4

Q5 5 Tmpl2, Tmpl3, Tmpl4, 800000, 200000, 60000000000, 800,009,181,380
Tmp15 and result5 800000 and 36276

Q6 9 Tmpl2, Tmpl3, Tmpl4, 800000, 200000, 1,443,281,456,484
Tmpl5, Tmpl6, Tmpl7 and 160000000000, 800000, 10000,
resulté 362760000 and 36276

Q7 3 Tmpl0, Tmp7, Tmp8, 6000000, 1500000, 227597, 4,506,505,914,348
Tmp22, Tmp5, Tmp23 and 1365582000000, 150000,
result7 136577850000 and 910519

The total query processing cost of the fourth MVPP 18,395,672,059,143

193

7 2

2
3 4 Q1 9
6 U@ @ “9 b ¢ 5

6
Q2 b ¢ *®
resultd | [967519280]
ez QO 162183) O result1()[160240]
result? [910519] resulté [36276]
[184082]

v results X [36276]

s_name
n_name =

result2! sam(l_quantity) sum(ps_supplycost) n_name

min(ps_suppltcost) "/s,nam

e
sum(ps_supplycogt)

"{cﬁmk(segmem
sum(l_discount)

Tmpl5

. [24036000000]
%

’Yniname
count(l_orderkye)

’Yc

ount
(ps_suppkey)

Tmp21 [967519280]
(182183 [1823769557]

[4552595]

Tmp4

160240] () [1602400000] [800000]

[
X
Op_brand<>"BRAND#45’

not p_type like ‘%BRASS%’
p_size in (9,19,49)

Tmp3
1800000]() [160000000000]

[227597)

Tmpl4 ‘TE y
[150000] [150000] . S-Sy
Tmps mpt Tmp16 o_totalprice Tmpt
it Trmpo [10000}4[20000] [6000000}{6000000] R 400000 [200000] Y [200000]
2510) 1251) [800000] & [800000]
Tur_regionkey TC s_natignkey TC 1_suppkey . K Jasoooco) T p_partkey
Tc nanEnkey Tmp? SSlibpkey I_Dré]erkey 4 W P5,5”Pﬁk9y brand
gy Ol i s_name Iquantity Go_prderdate>="1994-01-01" BB ost ptype
c_mktsegment . N nﬁ‘{gﬂ{)ﬂkﬁe}}’ I"quantity | bs_Supplycos p_size
- Or_name="ASIA’ e 0_qrderdate<*1995-01-01' ps_avaialy
51 [25] [10000] [6000000] %
customer region nation supplier lineitem orders partsupp part

Figure A.12 The Fifth MVPP, Query in the List: {Q6, Q1, Q5, Q4, Q7, Q3 and Q2}

Table A.5 The Query Processing Cost of the Fifth MVPP

Query f, Access from the nodes Cost of Nodes Query Processing
Cost
Q1 2 Tmp7, Tmp8, Tmp9, 5, 1, 25, 25, 10000, 50000, 323,207,240,592
Tmpl10, Tmp5, Tmpl1, 800000, 200000, 160000000000,
Tmpl, Tmp2, Tmp3, 1602400000 and 160240
Tmpl2 and resultl
Q2 6 Tmp7, Tmp8, Tmp9, 5, 1, 25, 25, 6000000, 1500000, 9,013,034,785,980

Tmpl6, Tmpl7, Tmpl8, 227597, 1365582000000,
Tmp19, Tmpl4, Tmp20, 150000, 136577850000,

Tmp22 and result2 4552595 and 184082
Q3 7 Tmp7, Tmp8, Tmp9, 5, 1, 25, 25, 10000, 50000, 9,571,896,175,751
Tmp10, Tmp5, Tmpll, 6000000, 1500000, 227597,

Tmp21, Tmpl6, Tmpl7, 1365582000000, 1823769557
Tmpl8, Tmp1l9, result3 and 182183

Q4 2 Tmp7, Tmp8, Tmp9, 5,1, 25, 25, 10000, 50000, 53,213,858,672
Tmpl0, Tmp5, Tmpll, 800000, 1602400000, 150000,
Tmpl, Tmpl3, Tmpl4, 24036000000, and 967519280
Tmp15 and result4

Q5 5 Tmpl, Tmp2, Tmp3, Tmp4 800000, 200000, 160000000000, 800,009,181,380
results 800000 and 36276

Q6 9 Tmpl, Tmp2, Tmp3, 800000, 200000, 160000000000, 1,443,281,456,484
Tmp4, Tmp5, Tmp6 and 800000, 10000, 362760000 and
resulté 36276

Q7 3 Tmpl6, Tmpl7, Tmpls, 6000000, 1500000, 227597, 4,506,505,914,348
Tmp19, Tmpl4, Tmp20, 1365582000000, 150000,
result7 136577850000 and 910519

The total query processing cost of the fifth MVPP 25,711,148,613,207

6 3 7
2@ U@ [kl)
It7 (1 1051 CE
Vesmi (184082] resu [910519] result3()[182183]
’Y 'Ycimk&segmem y am

n_name
count(l_orderkye) sum(l_discount)

Tmp20
[182183]

Tmp21
[184082]

Tmp13

ionke
TU c_nationkey Tmpl gﬂ:rﬁreglun &
Ry Qs
C

mktsegment
9 Or_name="ASIA”

12090
=

T nensnksy
n_name
[25]

nation

[150000] [5]

customer region supplier

n_name
sum(l_guantity)

[6000000](_) [6000000]

[10000]

194

9

2 2
27"} U@

s_name
sum(ps_supplycost)

'\/nvna

me
min(ps_suppltcost)

[24036000000]

Tmpl7

rzrsor) Opzzrsen

TC ps_suppkey

|“orderkey
I“quantity O

I-quantity orderdate>="1994-01-01'

orderdate<’1995-01-01

[6000000]
lineitem

[1500000]

orders partsupp

[800000]
Sty
o_totalprice
Tmp16 s anEe
[227597)([1500000] be-Eipplyeost

ps:avalq{y

[800000]

o) s

Q5
resultd | [967519280]
result1 ()[160240] results () [36276]

resul!si [36276]

's_name
sum(ps_supp|ycost)

[200000] () [200000]

T p_partkey

[200000]
part

Figure A.13 The Sixth MVVPP, Query in the List: {Q1, Q5, Q4, Q7, Q3, Q2, and Q6}

Table A.6 The Query Processing Cost of the Sixth MVPP

Query fq Access from the nodes Cost of Nodes Query Processing
Cost
Q1 2 Tmpl, Tmp2, Tmp3, Tmp4, 5, 1, 25, 25, 10000, 50000, 67,303,240,592
Tmp5, Tmp6, Tmp7, Tmp8, 800000, 1602400000, 200000,
Tmp9, Tmp10 and resultl 32048000000 and 160240
Q2 6 Tmpl, Tmp2, Tmp3, Tmp4, 5,1, 25, 25, 6000000, 1500000, 9,013,034,785,980
Tmpl5, Tmpl6, Tmpl7, 227597, 1365582000000,
Tmpl8, Tmpl3, Tmpl9, 150000, 136577850000,
Tmpl1 and result2 4552595 and 184082
Q3 7 Tmpl, Tmp2, Tmp3, Tmp4, 5, 1, 25, 25, 10000, 50000, 9,571,896,175,751
Tmp5, Tmp6, Tmpl5, 6000000, 1500000, 227597,
Tmpl6, Tmpl7, Tmpl8, 1365582000000, 1823769557
Tmp20 and result3 and 182183
Q4 2 Tmpl, Tmp2, Tmp3, Tmp4, 5, 1, 25, 25, 10000, 50000, 53,213,858,672
Tmp5, Tmp6, Tmp7, Tmp8, 800000, 1602400000, 150000,
Tmpl3, Tmpl, Tmp2, Tmp3, 24036000000, and 967519280
Tmp4, Tmp5, Tmp6, Tmp7,
Tmp8, Tmp14 and result4
Q5 5 Tmp7, Tmp9, Tmpll, 800000, 200000, 200000, 36,282,181,380
Tmpl12 result5 7255200000 and 36276
Q6 9 Tmp7, Tmp9, Tmpll, 800000, 200000, 200000, 68,572,856,484
Tmpl2 , Tmp5, Tmp22 7255200000, 10000,
resulté 362760000 and 36276
Q7 3 Tmpl5, Tmpl6, Tmpl7, 6000000, 1500000, 227597, 4,506,505,914,348
Tmpl18, Tmpl3, Tmpl9 and 1365582000000, 150000,
result? 136577850000 and 910519
The total query processing cost of the sixth MVPP 23,316,809,013,207

7
3
6 U@ Q3.
Q2@

’Ycﬁmktsegmenl
sum(l_discount)

i

[4552595]

n_name
count(l_orderkye)

[150000]

TUr_regionkey
TU c_nationkey Tm[pﬁ 51
Exkly m

U n realoq(ke
- - > n natlonke;
c_mktsegment Gr_name="ASIA’ _name y

[5]

customer region nation

g [182183]
:L result? CL [o10519) U1
resulz() [184082] v

n_name
sum(l_quantity)

[10000}4.[10000]
T s e
s_name

[25] [10000]
supplier

195

2

2
*@ o
resulmg[gmsmzsm
result1()[160240]

s_name
sum(ps_supplycost)

_name
min(ps_suppltcost)

Tmp22
[1602400000]

Tmpl6
(2275971227597

$-qkey
o_totalprice
Tmpl5
[227597)()[1500000]

Q@

result6 g [36276]

Tmpl
[800000]

}

results X [36276]

s
sum(ps_supplycogt)

i

‘count
(ps_suppkey)

Tmp4

Gp_brand<>'BRAND#45’
not p_type like ‘%BRASS%’
p_size in (9,19,49)

[200000] % [200000]

[800000]

TC 1_suppkey TU p_partkey
| orderkey 4+ W gs—s‘;rplﬂl;;y p_brand
gty Go_prderdate>="1994-01-01' Bi-Eipplos Boype
- 0_qrderdate<'1995-01-01' ps_avelq

[6000000] %
lineitem orders partsupp part

Figure A.14 The Seventh MVPP, Query in the List: {Q5, Q4, Q7, Q3, Q2, Q6, and

Q1}

Table A.7 The Query Processing Cost of the Seventh MVPP

Query fg Access from the nodes Cost of Nodes Query Processing
Cost

Q1 2 Tmp5, Tmp6, Tmp?7, 5, 1, 25, 25, 10000, 50000, 323,207,240,592
Tmp8, Tmp9, Tmp10, 800000, 200000,
Tmpl, Tmp2, Tmp3, 160000000000, 1602400000
Tmp22 and resultl and 160240

Q2 6 Tmp5, Tmp6, Tmp7, 5, 1, 25, 25, 6000000, 1500000, 9,013,034,785,980
Tmp8, Tmpl14, Tmpls, 227597, 1365582000000,
Tmpl16, Tmpl7, Tmpl2, 150000, 136577850000,
Tmpl8, Tmp20 and result2 4552595 and 184082

Q3 7 Tmp5, Tmp6, Tmp?7, 5, 1, 25, 25, 10000, 50000, 9,571,896,175,751
Tmp8, Tmp9, Tmp10, 6000000, 1500000, 227597,
Tmpl4, Tmpl5, Tmpl6, 1365582000000, 1823769557
Tmpl7, Tmpl9 and result3 and 182183

Q4 2 Tmp5, Tmp6, Tmp?7, 5, 1, 25, 25, 10000, 50000, 53,213,858,672
Tmp8, Tmp9, Tmp10, 800000, 1602400000, 150000,
Tmpl, Tmpll, Tmpl2, 24036000000, and 967519280
Tmp13 and result4

Q5 5 Tmpl, Tmp2, Tmp3, Tmp4 800000, 200000, 800,009,181,380
and results 160000000000, 800000 and

36276

Q6 9 Tmpl, Tmp2, Tmp3, 800000, 200000, 1,443,281,456,484
Tmp4, Tmp9, Tmp21 and 160000000000, 800000, 10000,
resulté 362760000 and 36276

Q7 3 Tmpl4, Tmpls, Tmpl6, 6000000, 1500000, 227597, 4,506,505,914,348

Tmpl7, Tmpl2, Tmpl8
and result7

1365582000000, 150000,
136577850000 and 910519

The total query processing cost of the seventh MVPP

25,711,148,613,207

3 7

6
(o1} oy] Q3@

result7 g 910519 CE
’esum£ [184082] [1 result3()[182183]

Y_mtsegment

Yn_name
count(l_orderkye) sum(l_discount)

TmplS Tmpil
184082
[] [276048000000] 1, o5

o 1o10519) () [136577850000]

&

Tmpl4
[46008] () [6869560251]

X
“
B0k () 75000

}'/
Tmp12

150000 () [150000]

Tmp4

D@

X

Tmps

Tmp2
mOwm

Yn_name
sim(l_quantity)
1067515280) C (o4036000000]
1182183 () [273369715461] N

<]
X ‘ [120111'"35]8 000
\ Q

) I
]
120031 () (500001 V
Tmpl10
120000) O [10000

196

2
U@ A@

@
result4 | [967519280]
O result1 ()[160240] results () [36276]
result5 [36276]

Ys_name
sum(ps_supplycost) ,Y
n

ame
Tmp23 min(ps_suppltcost)

Tmp19

Tmp17
11602401 () [1602400000]

4G

910519] EE!E! 82000000
>

rersor) Opazrson)

k
Sy Tmp16
[6000000]()[6000000] ototalprice
Tmp7 Tmpo
[227597)

2 9

Q@

27
[160240] [32048000000] (36 5]
X X

1800000] () [800000]

5

s name
Sum(ps_supplyfcost)

Yeount
(ps_suppkey)

Tmp22
[362760000]

Tmp21
s6276) (D [7255200000]
X

Tmp20
190691 [200000]
Gp_brind<>"BRAND#45°

not fp_type like ‘%BRASS%"
p_skze in (9,19,49)

2000001 () [200000]

p3 T ps_supﬁkey
12510 [25] ps_partkey mp18
N 1500000] ps_supplycost
s K L
n S{‘SéiEley Tmp1 r_regionkey g Ss}nuagllﬁ(nel;ey T Il_g:‘;epriee); s_aval qu ™ g:é)[aarrl‘gey
g:rarz‘:ﬁ‘seay ent mQrE T n _r‘eﬁiurll(e)y s-name {quantity G| orderdate>="1994-01-01' R
- Gr_name="ASIA npationke - o orderdate<’1995-01-01'
[250000] [[25] [10000] []t6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

Figure A.15 The Cheapest MVPP after

Table A.8 The Query Processing Cost of the Re-Optimized MVPP

Re-Optimized.

Query fq Access from the nodes Cost of Nodes Query Processing
Cost
Q1 2 Tmpl, Tmp2, Tmp3, Tmp4, 5, 1, 25, 25, 10000, 50000, 67,303,240,592
Tmp5, Tmp6, Tmp16, 800000, 1602400000, 200000,
Tmpl7, Tmpl8, Tmpl9and 32048000000 and 160240
resultl
Q2 6 Tmpl, Tmp2, Tmp3, Tmp4, 5, 1, 25, 25, 150000, 750000, 1,697,558,231,916

Tmpl2, Tmpl3, Tmp9,
Tmpl0, Tmpl14, Tmpl5 and
result2

Tmpl, Tmp2, Tmp3, Tmp4,
Tmp5, Tmp6, Tmp7, Tmp8,
Tmp9, Tmp10, Tmpll and
result3

Tmpl, Tmp2, Tmp3, Tmp4,
Tmp5, Tmp6, Tmp16,
Tmpl7, Tmpl2, Tmp23 and
result4

Tmpl6, Tmpl8, Tmp20,
Tmp21 and results

Q4 2

Q5 5

1500000, 227597,
6869560251, 6000000,
276048000000 and 184082
5,1, 25, 25, 10000, 50000,
6000000, 12018000000,
1500000, 227597 ,
273369715461 and 182183

5, 1, 25, 25, 10000, 50000,
800000, 1602400000, 150000,
24036000000, and 967519280

800000, 200000, 200000,
7255200000 and 36276

1,997,769,797,079

53,213,858,672

36,282,181,380

Q6 9 Tmpl6, Tmpl8, Tmp20, 800000, 200000, 200000, 68,572,856,484
Tmp21, Tmp5, Tmp22 and 7255200000, 10000,
resulté 362760000 and 36276
Q7 3 Tmp7, Tmp9, Tmp10, 6000000, 1500000, 227597, 4,506,505,914,348
Tmp24, Tmpl2, Tmp25and 1365582000000, 150000,
result7 136577850000 and 910519
The total query processing cost of the re-optimized MVPP 8,427,206,080,471

Figure A.15 is the cheapest MVPP after applying our MVPP re-optimization

algorithm. Table A.8 shows the query processing cost of re-optimized MVPP.

APPENDIX B

Result of Using Common Subexpression

This appendix provides the analysis result for using sharable subexpression of
new querieswhen they are merged into existing MVPP. Example A shows the details
of merging new query in which the subgraph of existing MVPP is the subtree of new
query. This situation is mentioned in section 4.6 that is the existing query can use
sharable subexpression with new query. Therefore, the existing query is rewritten to
use sharable subexpression with new query rather than creating the new node to

support only new query.
B.1 Example A

Suppose that the queries for the static phase are Q19, Q22 and Q31, the initial
requirements, and the new requirement added in dynamic phase is Q1. The individual
optimal plan of Q1, Q19, Q22 and Q31 are shown in Figure B.1

3
Q@

5
Q1 . resulté[zzﬁs]

Ve_nati
result [910519]

. nationkey

count(l_quantity)

[86275350000]
’Yo_order priority.
min(l_discount)

[150000]

[1365582000000]
orderkey
[6000000] 12275971 () 227507] e custey
Tmp3 3793206 c_nationkey
Tmpt [227507] L 1 TUs_suppkey
TU o_orderkey Tmp4 Tmp2 | 701 orderkey s_nationkey
o_orderpriority ITC o_orderkey [“suppkey
U |_orderkey Rty
1_discount -
= [22_7|_5r37% [1500000] 12275971 O[1500000] [3793296] () [6000000]
P X) Tmp3 4 Go_orderdate Tmpl
Go_orderdate >="1994-01-01' >="1994-01-01' G |_commitdate
o_orderdate <’1995-01-01' o_orderdate < |_receiptdate
<'1995-01-01'
[6000000] [1500000] [1500000] [6000000] [10000] [r250000)
lineitem orders orders lineitem supplier customer
(a) Query Q1 (b) Query Q19

Figure B.1 Relational Algebra Query Tree of Query Q1, Q19, Q22 and Q31

198

5
Q31

3
Q2@ result |_[115372)

resultg [575169] y

'vabra

min(l.

n_name
sum(l_quantity)

[115372]

Tmpl [17285403978]

nd
extendedprice)

[759474] [7597971888] 297597 297597
Tmp9, [m {1 3 [1
suppkey p:
[460135200000] 200000] [200000]
Dpartkey L 1 L g [50000]
Tmps [3793296]
TCo_orderkey
[575169] [800000] Tmp4 o
TU p_partkey 5] 10000 ortirkey
p_brand [J 1_quantity
137932961()13793296] (2275971) 7507 ‘
T2 T oy T TC ps. suppkey [T nationkey 1227597 J[1500000]
| partkey ITC o_orderkey Pe_partiey Tmp: - Tmp10
I’gifgnfeydpnce o-orderpriority TUr_regionkey
- 12275971 Ofts00000] - [3793206]() [6000000]
[3793296](_) [6000000] Go_orderdate
Tmp3 4 Go_orderdate mQE Tmp? _ 00)
Tt £ 5| it -)) G | commitdate | >='1994-01-01
|_commitdate >="1994-01-01' P Or_name Ten_regionkey i o_orderdate
<|_receiptdate o_orderdate — ASIA® n_nationkey <I_receiptdate <"1995-01-01'
<1995-01-01'
[6000000] [1500000] 800000] [] 12000001 [5] [25] [10000] [6000000] [Jrasoo000y
lineitem orders partsupp part region nation supplier lineitem order

(c) Query Q22 (d) Query Q31
Figure B.1 (Continued)

Suppose that the re-optimized existing MVPP of initial requirements, Q19,
Q22 and Q31, is shown in Figure B.2. The optimal dynamic MVPP after Q1 is added
into existing MVPP is shown in Figure B.3.

Figure B.4 is the re-optimized MVPP generated by rerunning the static
approach for all queries, Q1, Q19, Q22 and Q31.

3 5 3
Q19 B @ 2@

result19 ()[22778] result3l | [115372] result22 (™) [575169]
c_nationke! 'Yniname i brand
'Yco*unt(liquaxxtity) sum(l_guantity) 'Yrng(Lextendedprice)

[115372] () [1152063507]
[22778] [362753500001 Tmp16 #575;89] [115033800000]
mp

Tmp19

[575169] ()[460135200000] [200000]

Tmp7 Tmps
[849686969712] 18000007 (") [800000]
TU p_partkey
Tmp6 brand
O 110000 P
[3793296] () [6000000] [227597] O[227597]
[150000] 2510 125] TTs_nationkey 1 MP2 |_commitdate TMP4 n gssfs:ﬁ l;;\y
Tmp12 S_suppkey < |_receiptdate ITC o_orderkey -
Tmp18 - o_orderpriority
16000000 () [6000000] [szmg;; [1500000]
Tlc_cust EK [11 Tmpl |_orderkey Cit‘)iorderdatel
¢_natignkey Tmp10 TCn_regionkey | “partkey >="1994-01-01
n_nationkey riﬂ?é’nké"eyu rice o_orderdate
- 2 <1995-01-01'
[150000] [Jes) [10000] [6000000] [1500000] [ts00000) (] 1200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node

Figure B.2 The Re-Optimized Existing MVPP in Static Phase for Q19, Q22 and Q31

199

3 5 5 3
Q@ L@ Il @
resultlQé[zzna] result3l | [115372] result22 (" [575169] result22 (™) [575169]
Py
c_nationkey 'Yn_name brand
count(l_quantity) sum(l_quantity) : yﬁ‘Tﬁ(ﬁi"EﬂXtendedp,ice) 'Yr%Tn(Lextendedprice)
1115372] () [1152063507] I
farre) (ypmezrsssoono Tmp6 | [575169] () [115033800000]
Tm | Tmp9
p19 !

|
[910519] @) [863342789712] [57515]

200000
AX Tmp20 Tmp7 Trmps ‘[]
[575169] AN
Tmpl7
[50000]
1800000] () [800000]
K TU p_partkey
. Tmp6 p_brand
[10000] A
2 [2215971 [227597] TC ps_suppkey
TUs_nationke, mp i m =
1500001 () T [zi]2 (251 g_suppkeyy </31 I]commltdate T o_orderkey ps_partkey
Tmp18 Tmpll mp. k < |_receiptdate o_orderpriority
TCr_regionke:
reoniey 160000007 [6000000] [22;5&2 [1500000]
Tle_custl ey @] Tmp1 AT |I_ordf<rkey Go_orderdate
c_natignkey Tmp10 TCn_regionkey |_partkey >="1994-01-01'
(jrﬁnamye n:naglonkey I:ggggrk(?gdprice o_orderdate
= ASIA <*1995-01-01'
[150000] [s] [251 [10000] [] t6000000] [1500000] (] rs00000] (] t200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node

Figure B.3 The Optimal MVPP of Dynamic Phase by Adding New Query Q1

3 5 5 3
@ W@ Qo 2@
result19 é[22778] result31 | [115372] result22 [575169] result22 (g [575169]
c_nationkey 'Yniname : brand
count(l_quantity) é sum(l_quantity) ’YI"EWTr?(rIajeilendedprice) yr?\Tn(Lexlendedprlce)
[115372] [1152063507]

[575169] () [115033800000]

22778 86275350000 Tmp16
[] O [] Tmpo

Tmp19

[575169] (")[460135200000] [200000]

Tm|
° Tmp8 4
5751691 ()
Tmp5
O |_commitdate [800000]
i TU p_partkey
< |_receiptdate o
O [20000] Tmp4 p_bran
2275971 (pa27507]
TTs_nationkey Tmp4 Y pS_Sup! key
[250000] 5_suppkey TC o_orderkey ps_partkey
Tmp18 Tmp11 o_orderpriority
TCr_regionkey
16000000]) [6000000] mﬁm [1500000]
Tle_cust eﬁ Il Tmpl Ilforrdtirkey Go_orderdate
c_nationkey Tmpl0 TCn_regionkey |_partkey >="1994-01-01'
Qr_nam? ”:”330”‘@)’ |:§l>‘<§’£#de3&price o_orderdate
TASIA <’1995-01-01'
[150000] [5] [25] [10000] [6000000] [1500000] D [800000] D [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node

Figure B.4 The Re-Optimized Cheapest MVPP by the Static Approach for Q19,
Q22, Q31 and Q1

200

Table B.1 shows the query processing cost of all queries for the static
approach and the dynamic approach after the materialized view are selected. Table
B.2 shows the comparison of the result from the static approach and the dynamic

approach.

Table B.1 The Query Processing Cost

Query Static Approach Dynamic Approach
Query number 1 (Q1) 9,105,190 9,105,190
Query number 19 (Q19) 276,083,393,841 276,083,393,841
Query number 22 (Q22) 1,725,517,188,621 1,725,513,451,014
Query number 31 (Q31) 5,770,009,600 5,763,780,255

Total 2,007,379,697,252 2,007,369,730,300

Table B.2 The Total Query Processing Cost, Maintenance Cost and Total Cost

Approach Cost of Cost Total Cost
Query Processing of Maintenance
Static 2,007,379,697,252 1,365,589,907,765 3,372,969,605,017
Dynamic 2,007,369,730,300 1,726,723,846,934 3,734,093,577,234

In conclusion, from the existing MVPP shown in Figure B.2, the node Tmp5 is
the subgraph of existing MVPP. Tmp5 is the subsumption of new query Q1 node
Tmp4 in Figure B.1 (a). Because the selection condition of Tmp5 in Figure B.2 same
as Tmp4 in Figure B.1 (a), which is LINEITEM and ORDERS with selection

(Co_orderdate >= *1994-01-01' and o _orderdate<1995-01-01°), Plus the additional selection
(O1_commitdate < |_receiptdate) that is node Tmp2 in Figure B.2.

In Figure B.2 the materialized views are Tmp5 and Tmp15. After the optimal
MVPP generated by dynamic approach, Figure B.3, Tmp20 is the new materialized
view selected to support new query Q1. Comparing the dynamic approach result with
static approach, Figure B.4, the number of materialized views of dynamic approach is

201

more than that of static approach. In Figure B.4, the result of MVPP by rerunning
static approach, Tmp4 is the sharable conjunctive joined operation among the queries.
All three queries can be derived from Tmp4 whilst Tmp5 in Figure B.3 are used for
Q19 and Q22 only. So, Tmp4 in Figure B.4 is simple common subexpression than
Tmp5 in Figure B.3. Therefore, the materialized view maintenance cost of dynamic
materialized view approach is higher than that of the static approach.

The result of Table B.2 shows that after selecting view to be materialized, the
total cost of static approach, 3,372,969,605,017, is less than dynamic approach,
3,734,093,577,234. Although the total query processing cost of dynamic approach is
less than that of static approach, the query processing cost is not less than enough to
make the total cost less than static approach. Therefore, the existing query should be
rewritten to sharable subexpression with new query that the saving of the materialized

view maintenance cost.

B.2 Example B

Normally there possibly to have more than one alternative plans when new
query is merged into search space. This example shows the experiment how to choose
the query processing plan for new query when new query is merged into the existing
MVPP if new query has many query processing plan. We use the experiment in
section 4.6.3 to explain this situation. According to Figure 4.43 (e) and (f), there are
two possible plan of Q13 when Q13 is merged into MVPP that Q12 already in the
MVPP.

Plan 1: {(REGION x NATION x SUPPLIER x PARTSUPP x PART)} join with
{(LINEITEM) x ORDERS x CUSTOMER)}. The first subgraph is Tmp19 and the
second subgraph is Tmp25. Plan 1 provides query processing cost of Q13 =
869,818,249,255. Figure B.5 shows the MVVPP when merge Q13 into the existing
MVPP that Q12 already merged in the MVPP. Figure B.6 shows the optimized MVPP
by all select, project and aggregation function are pushed down as deep as possible

202

Q13
) Q12
| ou 1
6 3 7 | 2 Q10 T | 2 9
Q9 Q@ orf) Q3 | “@ 4 | | Q1 Q6 s 8
! ' Lo o 4
\ | resultd oorstps0) | | |
17 () [910519] 16 () [36276)
\ result2(_) [184082] fesult L 1 results([162183] K v, e | | result ()[160240] result [36276] |
\ ¢ mitsegment Yn_name ~ sﬁm(rs,supplycn?)) Vo rae results™ [36276] |
\ Ygﬁaf\wﬁorderkye) suml_discount /swrr(l quanmy) 2403 o060 X n_n(ame " sir‘n)(s_supplycost) |
min(ps_suppltcost
\ /11 [967519280] ‘ QL . 7\ Yeaunt |
\ Tmp15 P A X3 AT~ \ Tmp22 (s suppiey) |
| [184082) [z7so4sooooo$3“p25 Pid lieaoe] B BSSEOTISts ’ /N Thpad 36276] () [362760000]
X
\ X to10519) () [136577850000] » 60240, O —
\ % \ -
\ < -7 /
Tmpl4 -
[46008] . [6869560251] Tmos
- Tmp21 I
136276] @ (72552000001
Tmp24 Do 6% ko
910519]
[30133] [750000] [‘ < 190691 [I!l;uooo]
0 Tmpto G p_brarki<>’BRAND#45°

[150000] ‘ [150000] Tmpe (510 (25]

Tmp2 o
wOmw Tmp3
2510 [26]
TUr_regionkey
Tmpl
WO

TU c_nationkey
CTustkey

T Ry
n_name

cdcctbal Or_name="ASIA"
c_mktsegment
[150000] 5] [25]
customer region nation

s

120000 O) [20000] 7'"”7/

_ -~ Tearsor Orzrson)

not|p ftype like ‘%BRASS%"
800000] () [800000] P_sjge in (9,19,49)
TC o_ordriey

price Tmp18
60000001 () [6000000] oorderpriority 12000001) [200000]
Tmp9 us bs_sup) ;ey
T s natigniey 1227597)([1500000] be-Slippiyeost
SSuppkey TU |_suppkey Go_orderdate ps_avaliqty T ppartiey
Loty >="1994-01-01" Bvpe
Rkt o_orderdate pstze
<'1995-01-01'
[10000] [6000000] [1500000] [] rs00000] [200000]
supplier lineitem orders partsupp part

@ represents materialized view node selected by static approach for Q1-Q7

Figure B.5 Planl: The Dynamic MVPP after Q13 is Merged into the Existing Re-

Optimized MVPP

5
Q13 . 2
3 2 12
7 4 @ 5
6 oy] @ Py Q@ 2 9 s
[ex"] vesnllle[zlS] Q1 5)
@@ Ty branc resuaz(Yts2s2e) 5 Y]
resulta, L[967516280] Yo _brand, result10 [910519] QU@ Y
result?() [o10519] |avg (I_extendedprice) O Py oS]
resulta(JI182183] ™ N Y 276l resulty
resu . 7567
4 result2() [184082] [3733997148] 'Imam xtendedprice) Yol orderpriority e | s75160) [rss746]
®@ Yo.name Vs pame m»l f resuts () [36276]
X Ve migsegment sum(Lquanity) | SIm(es_supplycost) 5 | hn(_discount) Y. name 1
i Tmp2s [[24036000600) AN 12211378483 Yon Simiesyupelycosy count R
resutg]_(26008) Yngrame ek tse7s1280] () Tmp4 N [152424% i o pptcast S Scedprice) Ve
(@) Tmp11 [575169] $ Jo10519) Q_mﬂ S T;gﬂll [460135200000] !
A [152133].[2733697]545 = [6492] 1 N st 1575169] () /
- - m
[— = "G Icommitdie Gps_availgry<2p Q:\: so210) /Kﬁ e2761() [362760000] |
< |_receiptdate
n_nam R
T avg(o_t luL\lkﬂw) 184082] [2760A8000000] —~ / / ~ 4 | A
| ledoe] - / / RAS Tmp1g, ~ | Tm
\ Tmp - ; tisozio] 2y Welosisstice)
04800000
\ [910519] [136577350000] / /' tmp17 32) y
%
\ X h (150340 () [1602400000) | |
\ / 7 X Tmp29 ,I |
Tmpta Tmpel 57516 _ |
46008] () (6859560251
QL ! 2011130112“15“[’”[’”01 ‘ / // P | ® (7255200000] |
—
X X Tmp2a f X ol
Tmp2
1051 200000
| terosiol 14005510[1
/O e
ot - —~ - like *HBRASS%
20183 @ [750000] o ~ Tmp20
% [2003] [50000] 1o0691() [20000e]
X /
Gp_brpind<>"BRAND#45"
ot f_typo/like ‘%BRASSY'
Tmpa ()[25) Tmp10 p,s\em/(g,w‘aa)
SRS, I_commitdate [22rs07] [227597) /
7 receiptdate T o orderk
O 10000y e /
10000
1250000 () [150000] Tmp2 i 8000001 (00000
Tmps 6000000]() [6000000) SCordepriory 1
Tmp12 wOu e v L Tmp17 15000000] - Topts 12000001 [200000)
251 [25) mp18
T s_nationkey T 1 su pkey [227597)(_)[1500000] p:
gy | TEr-tegionkey SSippey” orderke Go_orderdate TC pe.supphey T p_partkey
T ¢_pationkey 1 iy @ pbrand
e 0O g ity b > 19040107 B phan
= ASIAY =i
c’mktsegmsm Or_name="ASIA hohaonke K eXlemdﬂ,ce ©0_orderdate
- - <1995-01-01
RS
150000] 51 1251 [10000] [6000000] [1500000] 1800000] 200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected by static approach for Q1-Q7
@ represents new materialized view node selected by dynamic approach

Figure B.6 Plan 1: The Dynamic Cheapest MVPP of Q8-Q13 after Optimized

203

Plan 2: {(REGION x NATION » SUPPLIER » PARTSUPP X PART) X
LINEITEM} x ORDERS i CUSTOMER.

{(REGION » NATION » SUPPLIER X PARTSUPP x PART) i LINEITEM} is the
intermediate result of Q12

) Q12
Q13
Q4 Q0 o1 4
6 3 t o7 4 I 9
Q9 2@ o I @ | RA J o 5 8
A resultd, |
[s675l9280] | | o]] t
\ g{' Y | | |
resur () [o10s = —— | 1u(peoza0) resuis () [36276]
\ resate() [184062) O [/ 539 resuia(ra62163] - | | resuit ()[160240] O |
s nam It
\ , Yn_name Ysﬁm(p supply{:os&)l e resu e276] |
\ sum(l.quantity) | X) Yn_name Yiﬂua("ﬂ: supplycist) |
Ye_mkisegment Tmp23 | 20380000000 | min(ps_suppltcost -
\ sum(1_discount) (967519280] pO00000N A Yeount |
\ Tmp15 Tmpll | \ x / N Tmp22 (s suppley) |
| s 1182183 @ (27336971546 /(« Toed () 1362760000]
\ _- T
e
Tmpl4 \ / TmpL7 \ - /
1a6008] () [6869560251] /us02a0] () (1602406008 1
/ KR /
[7255200000)/
Tmp13 T mp20
[30183] [759)‘{“] _ O g°°°°]
% N G p_bpanfi<>’ BRAND#45*
P notjp_fype like ‘%BRASS%’
Tmp12 & Tmp4 (5] () [25) - Qearsan 8000001 () [800000] P_sfze in (9.19.49)
11500001) [150000] T o_orderkey
Tmp2 - price Tmpl8
f o orderpriority 1200000 () [200000]
wOwm Tmps i
5 227597 1! 5_¢ I it
T ey T |5 e, QU B i 1 . ey
U c_nationkey P S_name | orderkey o-orderdate p brand
LRI el U n_regionke [Fquantity >='1994-01-01! B
cZmkisegment Or_name="ASIA® n-feflonkes’ [Cdiscount o_orderdate -
- nn <’1995-01-01'
[150000] g [10000] [] teoo0000] 1500000] 800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected by static approach for Q1-Q7

Figure B.7 Plan 2: The Dynamic MVPP after Q13 is merged into the Existing Re-
Optimized MVPP

5
@ 2
3
fer7) 7 2 4 W@ 5 ,
Q1o 2
6 oI] U@ stz () 215] t ? a@ s) 5.
2 g o (yis 8
q S S S wo . o
() [o10s19) resulg L[967515280] | ve(l_extendedprice) f Y 4
5 esura Q82183 O | o [160240] s results, - gl
resu2() (1o4082) 1215 o Fopencedpics) Yoforerriony s7si60] rsarae
"Ye_mktsegment 'n_name Vs name ~ "7 sa0seasa47) 1 results () [36276]
Som(t_discount) | 4sim(t quantity) sum(ps,supmyc/nsi' D_ Tmes | min(_discourt) ¥ f"{ -
e — B s nape max(p_brand
152424] / /o.ordersy Sampe supiycosd) I
Yoo el Tmp2s |[24036000000) X orsty |tz | Yo rame s ecpric) ®hoey
tsrsise01 1y e il i® ~ orame | oty
Tmpit s v QEZZ]JNWHSZJ L — |
o @ErTIS e \ VR~ L EELTS) - |
T
X
_— S ’ \ / f192) Q?[f”““ Gt s2761() [362760000] |

\ =7 Tmp2
/ / [36276) @ [7255200000]
X

151002 70000 / (AR Ay N s % b
I Tmp2s / [ke WBRASSR® | Tmptg, | corte @ oo
[160240] [rse46) () [151951851168)
\ 910519 (), [136577850000] \ — Oipzoaa000000] o
\ : % | _ st
y gt Oueozaooonn) - |
5 / 7 PN Tmniaq " - |
v 575169) s |
% X G e I |

Tmps |
2000
1005 QD 0
/0 b e
like ‘BRASSY%
Tmp20
1906910 f200006]
/
Op_brpnd<>"BRAND#45"

not p_typgflike ‘%BRASSH
p_sipe in49.10.49)

e Tmp10
5]

R | g \;:omwyﬂ;\d"“” [227597) © 1227597 /
s pa T o aricy ;
[10000] [10000] fce.
1250000] () [150000] Tmp2 b 1800000] ()g00000]
\Tmps 16000000] 16000000] ‘o orderpriority)|
Tmpz wOm i pg P (Tmp]7[) o0 gt 1200000} [200000]
251 () 1251
TUr_regionkey T s_nationkey U 1_suppkey 1227597/ (O[1500000] x y mp1
TmpL - s suppkey |orderkey Go_orderdate ps_suppkey T p_partiey
ey WO - N e >=1094.01-01 BLipniibost pprand
: o regionke FiRcount i 2
£ G rame=asin e Pl o orderdas Rl i
& midsegment x e <1995.01.01
ret et
[150000] 51 1251 [10000] [5900000] [1500000] 800000] [200000]
customer region nation supplier lingitem orders partsupp part

@ represents materialized view node selected by static approach for Q1-Q7
@ represents new materialized view node selected by dynamic approach

Figure B.8 Plan 2: The Re-Optimized Cheapest Dynamic MVPP of Q8-Q13

204

The first subgraph, {(REGION X NATION x SUPPLIER x PARTSUPP X
PART) i LINEITEMY}, is the intermediate result of Q12. Next, the result is joined
with ORDERS and later joined with CUSTOMER, respectively. Figure Plan 2 in
Figure B.7 shows the MVPP when merge Q13 into the existing MVPP that Q12
already merged in MVPP. Plan 2 provides the query processing cost of Q13 is
817,447,115,675. Figure B.8 shows the optimize MVPP by all select, project and
aggregation function are pushed down as deep as possible.

As we match the optimal individual plan of query from leaf node to the root
node with the MVPP and merge to subgraph of MVPP which provides the number of
base relations that are joined conjunctively as much as possible. Therefore, the second
plan is chosen because the first subgraph of second plan is constructed on 6 base
relations more than others subgraphs. Also the second plan provides the query
processing cost less than the first plan. The query processing cost of Q13 for Plan 1
and Plan 2 are calculated and shown in Table B.3.

Table B.3 The Query Processing Cost of Q13

Plan Accessed from the nodes Cost of node Query
processing cost
1 Tmp6(materialized view), 2003, 800000, 1602400000, 869,827,064,180

Tmpl6, Tmpl7, Tmpl8, 200000, 32048000000,
Tmpl9, Tmp3l, Tmp33, 160240, 32192, 910519,
Tmp24(materialized view), 150000, 136577850000,

Tmpl2, Tmp25, Tmp34, 910519, 3733997148, 215
Tmp35 and result13
2 Tmp6(materialized view), 2003, 800000, 1602400000, 817,446,813,290

Tmpl6, Tmpl7, Tmpl8, 200000, 32048000000,
Tmpl9, Tmp3l, 160240,

Tmp7, Tmp27, Tmp32, 6000000,6000000,122113784
Tmp33, Tmp9, Tmpl0, 832,152424, 1500000,
Tmp34, Tmpl2, Tmp35 and 227597, 6998835347,

resultl3 150000, 711150000, 215

APPENDIX C

Result of Merging Queries to Construct Dynamic MVPPs

In this appendix, the details to merge new queries, Q8 to Q13, into the existing
re-optimized MVPP are presented. The existing re-optimized MVPP is generated in

the static phase for initial requirements, Q1 to Q7, shown in Figure 4.23.

C.1 The First Dynamic MVVPP

The first order list of the first dynamic MVPPs of this query set is {Q10, Q8,
Q11, Q12, Q9, and Q13}. The details of constructing the first dynamic MVPP already
have been described as Figure 4.41 in section 4.6.2. We represent the first dynamic
MVPP again in Figure C.1.

Q12
Q13

2 Q10 f
4 Q11
6 3 o7 @ 4 4o 2 9
Q9 x@ U@ | @ , | P L@ o 5 Q8
resul
A i wersiozs0] | | o1} 4
\ == — | |
\ resuliz() [184082] result7 O [9105)9{' result3()[182183] — — — - : | result1 (")[160240] result6 @) :
/ s_namd It
\ Y Yn_name Ysﬂm(p supplyl:osl)l [| < name e [s6276] |
\ Yn_name sum(l_quantity) | k 'Yn_name sum(ps_supplycdst) |
count(l_orderkye) yc_mklsegmem Tmp23 | min(ps_suppltcost -
\ - /| 1 sam(L_discount) o (y2403p000000]\ X, -
X [967519280] () f ‘count |
\ Tmp TmpLL \ \ Tmp22 (ps_suppkey)
[182183] X/ i’ - |
| [184082] A Tmpd [362760000]
/ \' 7 “\uso240] ﬂ‘
\ _ ~ f
i
i
!
[7255200000]/
!
& Tmp20
01831 _ (90691 [750000]
TmpL0 O pt afo‘sm.\[)my
O notfp_frype like ‘%BRASS%
227597 ’
Tmp12 - ; ! 1800000] () [800000] 7 in (9,19.49)
150000 U o_orderkey
pseeodt - LR Tmpis
Tmp2 6000000] () [6000000] a-orderpriorit
i [orderpriority 1200000]) [200000]
[Tmpo us ps_sup‘Ekey
ps_partkey
U s_natignkey [227597](_)[1500000] psTsupplycost
Tmpt | TH-regionkey £ty TC |_suppkey Go_orderdate ReoaRiaty T p_partkey
0 c_nationkey P $_narme | orderkey p-brand
gausthey 1B T 0 regionke I:gyanlit >="1994-01-01' E—§¥f§
c“mktsegment Or_name="ASIA’ Anatiorkey Idiscount 0_orderdate -
! nname <1995-01-01'
[150000] 5] [25) [10000] [6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.1 The First Dynamic MVPP after All New Queries are Merged

206

We push down select, project and aggregate function for the first dynamic
MVPP as deep as possible to optimize MVPP. The first dynamic MVPP is shown in
Figure C.2. The query processing cost of each query after the first dynamic MVPP is

optimized shown in Table C.1.

5
Q3@ 2
3
. t 4 :
a7 10 2 9
4@ resua () 215 i e u@ o)
Q8

[758746]

O e-

6 ® Q3
2@ e sz sz 5
) Yp_brand Y resultl0 4 [910519] QU@ 5
910519) resultq 1[967519280] avg(1_extendedprice) 5,
sl Tmp3s | [160240] 4 results =@
resulti [36276)

7
é resultT
el) s N f s
resui2() [184082] s QUM% Yn_name . result1l
34 max(l_extendedprice) Yol orderpr 575169]
Tmp max(_ey iprice) Yof orderpriority 1 results () [36276]

e

9 'c_mkisegment 'n_name s_name 6998835347
Q ysum(l,msmum) sum(l_quantity) Ysum(ps,supp\yc}svf' (6908835 T'mp | hn(l_discount) ¥
a7 — . s naihe
24035000000} Y [307519\“’“2‘” | / Yo_ordersitus sim(ps_supplyeost) ycount
Tmp32 / Yr_na sum(I_extendedprice) Gssupkey)

/

>@-

Tmp23 me
Pps_spippltcost)

/ Ops %
967519280) ps_availgty<200 ~ min
! @) / . [1221137§4832] (Tmp30] (.,
\ 1524241 lvmulo[hmzsznwco]
lorsseonisietyba. \ M~ ot
/! {2102) Q) [160240) ~ QT

e |

n_name
resuitg](as008] Ycﬁunm,oruerkye)
Tmpi1
Tmp22 /
162163
t ! 15 Y \ 62761 [362760000] |
4 \ / JACTY

)

Jmp2g
[758746) () [151951851168]

Yo_name) Tmp1s,
avg(o. totl \Hce)[w 1082) S 276048000000] / / . |
Tmp2s like ‘%BRASS® __| Tmpi
\ . 910519) (), [136577850000] {160240] 0 >
(O 1 \ ! tmprr [22048000000] _
2} \ X
\\ 4 V/ 1160340 (D 11602400000] P - |
/ 7 X Tmpz/sg |
Tmp4 575169]
910528 |
146008] () [6869560251] Q 12018000000] / \\ / X G e ate & (r2ss200000] |
P ’ / / - %
T~ Y T |
mp26
e 200000)
/[910519] \ [1365582000000 [Anosu]o[)|
/O ppe
_- like ‘%BRASSY
Tmp20
190691() [zuum}fﬂ

Gp_brpnd<>'BRAND#45"
not p_type/like ‘%6BRASS%"
p_sipe in/9,19,49)

N
7
\ /
<\
Tmp13 Tmp6 \
1301831 () [750000]
2 120031 @ (s0000)
D

Tmpa ()(25) Tmp10
& re2rsom Q) [227597) /
T o_orderkey /
120000) O [10000] 8 u%‘?‘ew
1250000] () [150000] Tmp2 ordery 1800000 (tao0000]
Tmp5 [6000000] 6000000] orderpriority
ootz wOm Tmp2 I 10 [) o Tmpts 2000001 [200000]
1Ol 0 5 nationke TP | apokey 227511 Opaso0000] mpLs
s nationkey s
mpy | THregtonkey sTsuppkey orderiey Go_orderdate T po-suepey T p partiey
1151 >=1994-01-01" s_supplycost Tt
e pationkey L T n_regionke = N piav e
PRt Or_name="ASIA" TGN Lg‘;lggggg,g,m o_orderdate PRl psize
C-mktsegrment n_name [~commitdate <'1995-01-01"
Ireceiptdate
[150000] 51 1251 [10000] (6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders. partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.2 The First Dynamic MVPP after Optimized

Y max(p_brand)

Table C.1 The Query Processing Cost of the First to the Fourth Dynamic MVPP

Query fq List of Accessed Nodes Cost of Nodes Query Processing

Q1 2 Tmp6(materialized view), Tmp16, Tmpl7, Tmpl8, 2003, 800000, 1602400000, 200000, 32048000000 67,?(;)35,t124,486
Tmpl19 and resultl and 160240

Q2 6 Tmpl5(materialized view) and result2 184082 and 184082 2,208,984

Q3 7 Tmpll(materialized view) and result3 182183 and 182183 2,550,562

Q4 2 Tmp6(materialized view), Tmp16, Tmpl7,Tmpl2, 2003, 800000, 1602400000, 150000, 24036000000, 53,213,742 566
Tmp23 and result4 and 967519280

Q5 5 Tmp2l(materialized view) and result5 36276 and 36276 362,760

Q6 9 Tmp2l(materialized view), Tmp5, Tmp22, and resulté 36276, 10000, 362760000 and 36276 3,265,582,968

Q7 3 Tmp24(materialized view), Tmp12, Tmp25 and result7 910519, 150000, 136577850000 and 910519 409,739,463,114

Q8 6 Tmp7, Tmp27, Tmpl8, Tmp26, Tmp28 and result8 6000000, 6000000, 200000, 200000, 911,790,059,484

151951851168 and 758746

Q9 4 Tmpl, Tmp2, Tmp3, Tmp4, Tmpl2, Tmpl3, Tmp9, 5, 1, 25, 25, 150000, 750000, 1500000, 227597, 27,488,935,648
Tmp10, Tmp14 and result 9 6869560251 and 46008

Q10 5 Tmp24(materialized view) and result10 910519, 910519 9,105,190

Q11 5 Tmp24(materialized view), Tmp29, Tmp16, Tmp30 and 910519, 575169, 800000, 460135200000 and 2,300,691,981,035

resultll

575169

L0¢

Table C.1 (Continued)

Quer f List of Accessed Nodes Cost of Nodes Query
y Processing Cost
Q12 2 Tmp6(materialized view), Tmpl6, Tmpl7, 2003, 800000, 1602400000, 200000, 32048000000, 311,554,998,998
Tmpl8, Tmpl9, Tmp3l, Tmp7, Tmp27, Tmp32 160240, 6000000, 6000000, 122113784832 and
and result12 152424
Q13 5 Tmp6(materialized view), Tmpl6, Tmpl7, 2003, 800000, 1602400000, 200000, 32048000000, 817,446,813,290
Tmp18, Tmpl19, Tmp7, Tmp27, Tmp31, Tmp32, 160240, 6000000, 6000000, 122113784832, 152424,
Tmp33, Tmp9, Tmpl0, Tmp34, Tmpl2, Tmp35 1500000, 227597, 6998835347, 150000, 711150000
and result13 and 215
4,902,508,929,08

The total query processing cost of the first MVPP

5

80¢

209

C.2 The Second Dynamic MVPP

After the first dynamic MVPP is generated, the first element of the list is
moved to the end of the list. So Q10 is moved to the end of list, the list becomes {Q8,
Q11, Q12, Q9, Q13 and Q10}.

We start the second dynamic MVPP with Q8, as there is no conjunctively join
available in existing MVPP for PART and LINEITEM. Then, a new intermediate
node is introduced. The second dynamic MVPP when Q8 is merged is shown as
Figure C.3 (a). Next, when Q11 is merged, the existing join conjunctively
intermediate node is available for subtree of Q11 that is Tmp24. There is remaining
base relation, PARTSUPP, then the new node is introduced as a join operation
between Tmp24 and PARTSUPP, {Tmp24 x PARTSUPP}. The second dynamic
MVPP when Q11 is merged, is shown as Figure C.3 (b).

6 3 7 2 2 9
2@ oy) e@ *@ 1@ *@ 5 8
S))
result4 | [967519280] |
result? [910519] result3(_)[182183] result1(")[160240] result6 [36276]
result2(_) [184082] |
's_name result [36276]
Yn name ! |
'n_name gm(1_quantit sum(ps_supplycost)
’Ycﬁum(liurderkye) 'Yc_mkltssgment sum_guantity > 'Yn-nam 'Ys name |
sum(1_discount) 95751;2'2823 J 24036000000] min(ps| suppltcost) Sam(ps_supplycd |
Tmp1s Tmpll f ! & o Soppkey) |
(184082) @ [276048000000] [182183] [27336971546;
R [36276] | Tmp22
D [362760000]
[32048000000]
X -)’
-~
~ - /
Tmpl4
[46008] - /
Tmp21 /

7255200000/
% /

Tmp24
[910519

01831) 2%

b and</>’BRAND#45’
el _type like ‘%BRASS%’
Tmpl2 - 427597][227597] p_s|zefin (9,19,49)

800000]
1150000) () [150000]

[800000]

~ [O
TC o_orderkey /
> STy Tmp1s
Tmp2 o—totalprice
i 6000000} () [6000000] o orderpriority 12000001 () [200000]
™o " e
y 227597](_)[1500000] ps_supplycost
TUr_regionkey TU s_nationkey L X U p_partke
e ey "™ g o glonkey s Suppkey T suppkey Go_orderdate psavalqty gf{")'ﬂ;‘d Y
c_natjonke! = . = 01.01"
O LRECEE Fen g bl
c_mktsegment Gr_name="ASIA n-name IZdiscount <1995.01.01"
[150000] [s] [es [10000] [6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.3 (a) The Second Dynamic MVPP after Merging Q8 into the Existing Re-
Optimized MVPP

210

6 3 7 2 Qi 2 9
Q2 Q7 «@ “@ T L@ e) s
[e QTS
resultd | [967519280]
result? 910519 I | resultl 160240] resulté [36276]
resultz() [184082) 1910519] - resul3(Jp162183] Ve e | Ousoz40] |
’Yn name sum(ps_supplycost) | result [36276] |
n_name ‘c_mktsegment sum(l_quantity) n_jname |
’Ycoum(liorderkye) sum(l_discount) Tmp23 | 124036000000] ‘ le (ps_suppltcost) 'Ygﬂ'r'n"‘('gg supplychst |
Tpi 967519280] () . Ycoum
Tmp15) Tmp22 (ps_suppkey) |
1184082] @) [276048000000] [182183] [27336971546; w2610 [362760000]
Tmp25 S,
>

|
[910519] [136577850000] X
-1

-7 |

Tmp21 /
[725520000;1’]

Tmple
[46008] () [6869560251]
X

Tmp13 Tnfp20
[30183] [750000] [90691() yzgoooo]
X P Jaes s
N Tmpto ral (d<>"BRAND#45
like ‘%BRASS%’
- 3ars97f Jp22507] . sp*'lyr"’(cg'lg 49") SS%
Tmp12 Tmpa (51 251 g7 7 1800000] () [800000] e in (3,19,
[150000] () [250000] ® 120000 () [10000] > TU o_ordorkey Trpts
ofotafprice .
Tmlpz . [6000000] 5[6000000] o_orderpriority [200000] () [200000]
mOn p3 3 Tmpo W ps,supﬁkey
1251Q) 1251 ps pattkey
) 227597]()[1500000] ps Supplycost
ke TU s_nationkey [X
e ey TR LT e G arate e "

1015 |“orderk - . type
o e T segionke [guantity >="1994-01-01 B

_mkisegment Gt name="ASIA nnationkey’ - o_orderdate

- n_name <1995-01-01'
[150000] [5] [25] [10000] [Jreoooo00] [1500000] [] t800000] [200000]

customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.3 (b) The Second Dynamic MVPP after Merging Q11 into the EXisting Re-
Optimized MVPP

Q12
o 1
6 3 7 2 2 9
4o
1
Q2 Q7 @@ U@ | | Q@ ®@ s
| | Q5
resultd | [967519280] | |
result? [910519] result3()[182183] result1(")[160240] result [36276]
result2(_) [184082] s reme | sy ez
‘c_mktsegment Yn_name sum(ps_supplycosf) ()
’Yn_nar{\gle sorye) sum(1_discount) sum(l_quantity) f name 'Yga"m(
count(l_orderkye
- [96751;2'25123 24036000000] | /A min(ps_suppltcost)
count
Tmp1s Tmpil / \ Tmp22 y(ps,supnkew
[184082] [182183]

[362760000]

\

Yo ——emg

Tmpl4
[46008] ()

Tmp12 800000] % in (9,19,49)
[150000] To ord'Frkey
&0 Sl N Tmp18
o orderpriori 1200000] () [200000
[1] TImp3 Tmp9 TC ps_suppkey ' L !
25 S_partke
T regionkey 1251) (251 12275971(){2500000] Es:gupplyycosl P
Tmpr L T I'_grudueqtg Go_orderdate ps_avaiqly Srand
T ¢ nationkey [0 ionk [-quantity >=1994-01-0' prtype
= Grnmeasin | RIS Ediiout o ocrtae e
¢-mktsegment - n_name <'1995-01-01'
[Jreso000] 151 [25] [] 16000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.3 (c) The Second Dynamic MVPP after Merging Q12 into the Existing Re-
Optimized MVPP

211

Q12
ou t
6 3 7 2 T | 2 9
Q9 Q@ @ xQ “@ L @ W@ s 8
f\ | @ t
resultd | [067519280]
result7 () [910519] result3(_)[182183] [' | l result1(C)[160240] results () [36276] I
\ resue) [184082] Ve rae ;! |
\ 'c_mkisegment Yoname sum(ps_supplycogf) () <o resu() 136276] |
\ ’YEEG?\T(‘Fmdeykye) sum(l_discount) sum(l_quantity) | f\ o name am(bs._supplycost) |
\ - [%751;;82]23 O 24036000000] @/ \ min(ps_suppltcost) |
count
\ o et [w;:;pagl (2r3aeo71sassy ™/ N Tmp22 Y(ps‘wppkew |
276048000000]
| [184082) @ T}np% x N Tmptd [36276] [362760000]
\ o on05191C) [136577850000] /1 ol @, [32048000006])
\ X \ -1
\ < -7
Tmpl4 -
146008] () [6869560251] Tmp8 o /
X [1201113] () [120180080Q / _- Tmp21 /
% ¥ “ 36276] @ [7255200000]
‘ Tmp24 e o
Tmp13 '\‘ < [ngo)mg 65583000000 20
(301837 ()[750000] Tmp6 S 190691 700000
[50000] v K -
M G p_bfarki<>’BRAND#45’

notp ftype like ‘%BRASS%"

_ GarsorOpearsen
Tmps \ {ﬂ o 800000] () [800000] P-sffe in (9.19.49)
120000] () [20000] e T o-nsie Tmp1s
T

Tmp12
1150000] () [150000]

Tmp4 (5] () [25]
X

Tmp2 [6000000] () [6000000] o_orderpriority
nOw Tps O e e oo sumpey [200000] () [200000]
S_partke
T reqionke IO R T s patonkey 1227597 (1500000] gs:gupply%osl —_—
Tmpy 1ot Shae T Lsuppkey Go_orderdate psavalaty L nd
i @ - [~quanti >="1994-01-01' p_type
T g{ljaslégg?ey = ASIA® T R-resinksy kit o_orderdate psize
c-dcctbal Or_name="ASIA' -,)
c_mktsegment n_name <’1995-01-01'
[150000] [5] [25] [10000] [6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.3 (d) The Second Dynamic MVPP after Merging Q9 into the Existing Re-
Optimized MVPP

Next, when Q12 is merged the existing join conjunctively node is available for
subtree of Q12 that is Tmp19. The remaining base relation is LINEITEM, then the
new node is introduced as a join operation between Tmpl9 and LINEITEM. The
second dynamic MVPP, when Q12 is merged, is shown as Figure C.3 (c). Later, when
Q9 is merged, the existing join conjunctively intermediate node is available for Q9
that is Tmpl4. There is no new node created as Q9 is subsumption of the existing
MVPP. The dynamic MVPP, when Q9 is merged, is shown as Figure C.3 (d). The
next query in the list is Q13, we merge Q13 at the intermediate result of Q12, then
join with ORDERS, and CUSTOMER shown in Figure C.3 (e). The last query in the
list is Q10. Q10 has conjunctively join (ORDERS X LINEITEM) that is already
available in the existing MVPP, Tmp24. However, Tmp24 includes the select

Operation (Go_orderdate>:’1994-01-01’ and o_orderdate <’1995-01-01° ORDER) Then, this select

operation of Q10 is push down. So, Q10 is merged into the existing MVPP at Tmp4

and no new intermediate node created for Q10 as shown in Figure C.3 (f).

212

12
Q13 2 Q T
o s + *“@ Q11 |) .
Q9 Q2 Q7 I @ t ;@ [) o } 5 08
resultd |
«\ [967519280] | | Q5 4
| I
l I I 36276]

\ resuteQ) peaoszy " - — | | resuin(rasozu0) resutd L) (362761 |
\ Yo rame Vsgnams opiycosy @ | - results) [36276] |

\ 'n_name ,Y " sum(l_quantity) | . X |

count(l_orderkye) ¢_mktsegment 24036000000] B
\\ Tmp15 / 7| msc?’l‘r‘"?“ (o67519280])]\\ b4 ~ \ (Ps. sluppkey) !
[184062) @) [276048000008] [182183] (\ / |
\ 7 Tmp25 AR Tmp1d
\ [136577850000] / \' 7 \uso240] Q
\ y ~
-~
Tmpl4 \ Tmpl7 \ - - /
/ja60240f () (1602408003 /
/ () /

[7255200000]/
/
ngzo
(30183] [750 @) [7 0000]
G p_tanfi<>’BRAND#45
not/p_ftype like ‘%BRASS%
s o oty 101
o:kﬂsé: e " Tmp18
o orderpriori 1200000] () [200000]
JTmp3 Tmpo TC ps_s supEkey ' L]
2510) 251 ps_par
[227597](_)[1500000] ps _suppl: cosl
Tmpl Tlr_regionkey TU |_suppkey Go_orderdate padlaly T p-partkey
T ¢ patipnkey I “orderke pbrand
mOisl) i ="1994-01-01' ptype
ETiske T n_regionke [guantity > e
c-dcctoal . s Aok yy iscount derdat P
c_mktsegment O'r_name="ASIA nnationke: 0_orderdate
- n_name <1995-01-01'
5] [25] [] rs000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.3 (e) The Second Dynamic MVPP after Merging Q13 into the Existing Re-
Optimized MVPP

) Q12
Q13
4 04 Q1 on 4
6 7 f 1 | 2 9
Q9 *@ Q7. | Q3 | ;@ *@ 5 Q8
resultd |
Q‘ [o67510280] | | (el } t
result7 () [91099{ result3! [152183] == l | I result1()[160240] result6 [36276] I
result2(_) [184082] , ¥ - | | |
s_namd It
'Yniname sum(pg supplykost)l = | resu . [36276] |
/ 1 Guantit - Vs _name
sum(l_quantity) |) Yn_name sum(ps_supplycdst) |
cDunlI orderkye) Yc_mkisegment Tmp23 | 124035000000] | min(ps_suppltcost =
sum(l_¢ dlscow:t) 1967519280] () F \ (] ~ Y eount |
o [1sz1ap3] 27336971546 | \(‘\ /N Tmpz2 (osuppker)
)4
184082] @ (2760 3“°°°‘”$mp25 Ay Tmed e276]() [362760000] ‘
7 1o10519) () [136577850000] ;7\ ‘{130240] Q 3204800060
\ % - 4
\ / Tmpl \ -7 /
[46008] ©® [6859560251] /o240 () (1602490009 /
X /) Tmp21 /
/ [7255200000]/
(ngzo
[30183] Q0] (90691 (300000]
% / tranfi<>’BRAND#45°
not|p_ftype like ‘%BRASS%"
/ _ (2150 [227597] oS 1 (9.19.49)
Tmp12 Tmpa 51 (251 - 1800000] () [800000] i
(150000 () [150000] ® 120000 () [10000] Jme? T o_orderkey Tmpts
T o-totalprice
'E\f] [1] S [6000000] 5[6000000] o_orderpriority [200000] [200000]
p 4 Tmpa U ps_suppkey
12510) [251 ps_partkey
_ T s_natignkey 12275971 [2500000] ps-supplycost
. Tmpy, | T-regionkey 53"99‘1 TC 1_suppkey Go_orderdate RoaRlaty T p‘ﬁfar;key
T c nationkey "Bt ()5 orcerkey
cTus| Ee [T . uantity >="1994-01-01' P_tvp
&deetbal n reﬁlorﬂ(e\){ glscnum posize
c_mktsegment Gr_name="ASIA’ nnationke! 0_orderdate
nname <1995-01-01'
[150000] 5] [25] [10000] [] te000000] [1500000] [] ts00000] [200000]
customer region nation supplier lineitem orders

partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.3 (f) The Second Dynamic MVPP after All New Queries are Merged

213

Next step of the merging new queries into the existing MVPP process, we
push down select, project and aggregate function for the second dynamic MVPP as
deep as possible to optimize MVPP. The second dynamic MVPP after optimized is
shown in Figure C.4. The query processing cost of each query after the second
dynamic MVPP is optimized same as the query processing cost of the first dynamic
MVPP shown in Table C.1.

5
@ 2
3
7) ! 2 + @ 9
6 [ox]") o2 m.u\ll}O [215] t k@ 6
2@ Y etz (Yaszezs) 5 @
result?(") [910510] result4 L[967519280] | dprice + s s@ 4
resurgQ1162183) T Lo - el
. 4 resulte() [184082) I [215) ks G R——
_mkisegment s_name . 183353 Y
Q ? E A O i S S Le
iR — Q 21
sl scosy | Ve Tirgzs [[ass00000 Borsil e ' e
"““‘O“"“LL] couni(l_orderkye) ts67s19280] () 4 Ops_availgty<200 ~a P2/ ’YmTr\(ps) ppltcost)
'(Tmpil 7 \ QEZZIITWHSZJ
2733697154631}, (152424 -
\ (152183 4 A~ ~Tmpal
X »)
Vo_name Tmp1s, // {21921 O) [160240)
dVg\Iu,Md\éﬂc&'][184052] [276048000000] /ot .
\ % Tmp25 / / ke ‘%BRASSIR | Tmp1
\ 910519 (), [136577850000] /! Tmp17

\
\ |

Tmp1a |
[46008] () [6869560251] [7255200000] |
]

Tmp26

|
200000
[mm];)\ 00000]
/0 pope
like “UBRASSY’
mp13
130183] O [750000] Tmp20
190691 [200000f
X [
Op_brhnd<>BRAND#45"
2 ot _typofike ‘%BRASS%'
// Tmps ()[25] p._sipe inf9,19.49)
5]
P /
1250000]) [150000] Tmp2 taoccoy () pocoo 1800000] () !
mp [800000]
Tmp5
Tmpiz wQOwm Jmp3 P [6000000](_) [6000000] Trp1 1200000() [200000]
510 1251 Tme? 12275971 O11500000 mpL8
Tor_regionkey U s nationkey [1500000] x y
Tmpy L0 S Suppkey Go_orderdate pssuppkey T p_partkey
OB = 1984.01.01 partiey X
Tcpationkey | T 0 regionkey 1994-01-01 bs-Sipplycor brype
=t O_name="ASIA Aneflarke o_orderdate Sl psiee
c_mktsegment. - n_name, <'1995-01-01'
[150000] 8] 5] [10000) [1500000] 800000] 200000
customer region nation supplier orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.4 The Second Dynamic MVPP after Optimized

C.3 The Third Dynamic MVPP

After the second dynamic MVPP is generated, the first element of the list is
moved to the end of the list. So, Q8 is moved to the end of list, the list becomes {Q11,
Q12, Q9, Q13, Q10 and Q8}.

We start the third dynamic MVPP with Q11, the existing join conjunctively
intermediate node is available for subtree of Q11 that is Tmp24. The remaining base
relation is PARTSUPP, then the new node is introduced as a join operation between
Tmp24 and PARTSUPP, {Tmp24 x PARTSUPP}. The third dynamic MVPP, when
Q11 is merged, is shown as Figure C.5 (a). Next, when Q12 is merged, the existing

214

conjunctively joined node is available that is Tmp19. The remaining base relation is
LINEITEM, then the new node is introduced as a join operation between Tmp19 and
LINEITEM. The third dynamic MVPP when Q12 is merged shown as Figure C.5 (b).
Later, when Q9 is merged, the existing conjunctively joined node is available for Q9
that is Tmpl4. As Q9 is subsumption of existing MVPP then no new node is
introduced. The third dynamic MVVPP when Q9 is merged shown as Figure C.5 (c).
Thereafter, we merge Q13 at the intermediate result of Q12, then join with ORDERS,
and CUSTOMER shown in Figure C.5 (d). The next query in the list is Q10. Q10 has
conjunctively joined (ORDERS i LINEITEM) that is already available in the existing
MVPP, Tmp24. The select operation (G, orderdate>="1994-01-01° and o_orderdate <*1995-01-01°
ORDER) of Q10 is pushed down as Tmp24 has this operation. New intermediate node
are not created for Q10 as Q10 is subsumption of existing MVVPP. Figure C.5(e) show
dynamic MVPP when Q10 is merged into the existing MVPP. The last query in the
list is Q8, when Q8 is merged, Q8 is classified as nothing in common with existing
MVPP then the sharable expression is not available for Q8. So, the new intermediate
node is introduced to join PART and LINEITEM. The dynamic MVPP when Q8 is
merged shown as Figure C.5 (f).

=

Q11

6 3 7 2 1 2 9
1
@@ Q7 €@ U@ | @ Q6 5
| *@
result4 | [967519280]
result2() [184082] resul? O [910519] resura [182183] : resultL(T)[160240] results [36276]
S_name
Yn_name ’Ysam(ps,supmycos() | result [36276]
'n_name ¢_mktsegment sum(l_quantity) n_jname
Ycuun((l_ordsrkys) sum(l_discount) Tm"2324036000000] ‘ yrm (ps_suppltcost) ‘Yssﬁ”‘:(mpg supplychst
[967519280] - ;})mum
Tops 8:’“;311 % f X Tmp22 (ps_suppkey)
[184082] [276048000001q}w (162189) /N tmp1o [36276] [362760000]
to10519) () [136577850000]
"
T
Tmp21

mpg
. [1201113]

[7255200000]

X
Tmp20
[9069](_) [200000]

O p_brand<>"BRAND#45"
notfp_type like ‘%BRASS%’
p_sjze in (9,19,49)

[227597_/[227597]

mp12 [800000]) [800000]
1150000] () [250000] Te O'Eﬁ('ek v/
Tmp2 r}olla er(;e B Tmp18
e 16000000] () [6000000] oorderpriority 12000001 () [200000]
[11 Tmpo TC ps_suppkey
1227597)([1500000] ha-Bipitost
tionk =
I T (R LI o | 7 p e
- |_orderkey >‘_ . o
E:EEE%ESY el T n-regionkey [guanity >="1994-01-01' btype
c_mktsegment Gr_name="ASIA’ ﬂ——"": Onke) A Digégega:i
X <1995-01-01'
[150000] 5] [10000] [6000000] [1500000] [800000] [] 1200000]

customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.5 (a) The Third Dynamic MVPP after Merging Q11 into the Existing Re-
Optimized MVPP

215

Q12

IN)
©

Q@ B@

5

result4 | [967519280]

- 4

Q2 Q7 [ok!) oZf) |
|

|

result7? [910519] result3 [182183]

result2! [184082]

|

[

| Q5
|

| vesultl[160240] result6 [36276]

result! [36276]

c_mktsegment

Yn_nam

e
'n_name sum(I_discount sum(l_quanti Vs nare
’Ycﬁunt(limderkye) (-) (1_quantity) | n_name sum(ps_
Tmp23 | 124036000000] \ min(ps_suppltcost)
Tmpit [967519280] Yeount
Tmp1s P \ (ps_suppkey)
[184082] @) [276048000000] [182183]

Tmp25
[o10519)C) [136577850000]

' '
mp8

Tmp12 oo _sjze in (9,19,49)
[150000] o_orderkey
g}ou% Slee N Tmp18
o orderpriori 1200000] () [200000]
(s 1 e sl g
T regionkey 2510 1251 12275971()2500000] Es:gupplyycosl P
Tmp1 LT i Il_g::;gprtg Go_orderdate ps_avaiqly Srand
T nationkey (1118 T 1 regionke [guanity >="1994-01-01' gfgygg
g Gr_name="ASIA’ Aalonkey Idiscount o_orderdate -
¢_mktsegment - n_name <'1995-01-01'
[Jrtso000] 151 [25] [] rs000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.5 (b) The Third Dynamic MVPP after Merging Q12 into the Existing Re-
Optimized MVPP

Q12
ou 1
6 3 7 2 T | 2 9
@ 2@ @ :@ *@ Lo ®@ 5
1 | Q5
\ 17 () [910519] e | I It it () [36276]
resu resul
\ resueQ) [184082] resuli3(J162183] Vs rare | resute(Jiae0240]
\ 'c_mktsegment ’Yn name sﬁm(ps,supplycosf) . result [36276]
\ Yn_name stim(l_discount) stm(l_ quantity) s nal
count(l_orderkye) - | ~ n_name
\ min(ps_suppltcost)
[967519280] Yeount
\ Tmp15 Tmp22 (ps_suppkey)
| [184082) [276048000000] [362760000]
\
\
\
Tmpl4

[46008]

O p_brand<>'BRAND#45’
not|p_type like ‘%BRASS%’

Tmpt2 % p_sze in (9,19,49)
150000
L ! o-totalprce Tmp18
Tmp2 a ce
T o-orderpriority 1200000] () [200000]
wOm Tmpo et)
[227597](_)[1500000] ps_supplycost
— gﬂ:ueglonkey ¥ |'*§F'§§i2§ Oo_orderdate ps_avalqty T Hf;ﬁ'éey
T nationkey (1118 T 1 regionke I:gyan[i[y >="1994-01-01' g,ggg
&5 ESY Or_name="ASIA’ n-matonke [discount o_orderdate s
¢_mktsegment n_name <'1995-01-01'
[]tzs0000] [5] [] t6000000] [1500000] [800000] [] 200000
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.5 (c) The Third Dynamic MVPP after Merging Q9 into the Existing Re-
Optimized MVPP

Q12
Q13 2 A
4 11
6 3 to7 @ QT | 2 9
1
Q; Q2 Q7 I @ Lo QL@ QB @ 5
[967519280] | | Q5
! |
\ result2! [184082] result? — : |V95u|t1[160240] result6 [36276]
\ , ' ysim(p supplycosl)l | - results) [36276]
! Yﬁaﬂﬁ%i orderkye) Y mktsegment 24036000000 | . ’Y,’,“T,:‘(agisuppmst sum(ps_supplycdst)
\ /| ! sum(1_discount) 1\ ® ~ Your
\ Tmp15 T / [18;'1‘;"31]1 (ps_suppkey)
\\ [164082] / Tmp2s AR Tmp1§

/ 1910519]C) [136577850000]

' '
mp8

—
— T
< Pl
~

s

Tmpl7\ 4 \
/o240 () [1602406608]
/

[30183] [759’{“]

G p_bfand<>'BRAND#45’

not|p_type like ‘%BRASS%’
p_sjze in (9,19,49)

Tmp12
1250000] ()

T o_orderkey
Tmp2 0}&31 p%e ity P8
o orderpriori 1200000] () [200000]
BI@]] Tmp3 Tmpo U ps_suppkey (Q tzo000
25 S_partke
T regionkey 2510 1251 12275971()2500000] Es:gupplyycosl P
— T 1 supoley Go_orderdate pavalaly ppartecy
TU c_nationkey o] 151 |Zorderkey . . btype
c:cus} & 7T n_regionkes I_gyanmy >="1994-01-01' size
&5 o gokey I=discount derdat P
c_mkisegment Or_name="ASIA nmationke: 0_orderdate
- n_name <'1995-01-01"
[Jiz50000] [5] [25] [_] 6000000 [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.5 (d) The Third Dynamic MVPP after Merging Q13 into the Existing Re-
Optimized MVPP

oo) Q12
10
6 3 +o7 “® Qf Q¢u T 2 ’
1
Q9 Q2 Q7 | w@ | . 1@ 5
A 19675192801 | |
\ —l=— | |
\ 100 pssogy "0 () ol resul3([182183] — — — L __
| result2() [184082] , Yo rand ~ l | I [36276]
\ ’YsrL e S supplykost) X e
- | e
Y mktsegment 24036000000] |
\ SU’"('J'SC%‘&I [EETSNG M @ 7AN Yeount
\ Tmp15 | Tmp22 (ps_suppkey)
\ [362760000]
\
\
\
Tmp14
[46008] ()

[7255200000]
Tmp20
[30183] [200000]
rand<>'BRAND#45"
Ip_type like ‘%BRASS%"
[1;0'88312 _sjze in (9,19,49)
S-totarprce . Tmp18
; - o-orderpriority 1200000] () [200000]
1 [11 Tmpo T 555’;:?(l;;y ¢
i [227597](_)[1500000] ps_Supplycost
Tmpl Tlr_regionkey SubpRey T I_suppkey Go_orderdate ps_avalaly n p-partkey
T "a‘lgnkey LBl |-orderkey =1994-01-01' Btvpe
SRR T regionke ey s orderdate posize
c—mkisegment Or_name="ASIA’ n_nanonke: - Ofgogge(rﬂaloi
L <1695.01.01"
[150000] [5] [] t6000000] [1500000] [800000] [] 200000
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.5 (e) The Third Dynamic MVPP after Merging Q10 into the Existing Re-

Optimized MVPP

217

Q12
Q13
10
4 Q ou 1t
6 3 ? 7 Q . Y12 9
Q9 @@ Q7 @ . | Lo @ ®@ 5 Q8
resul
g [o67519280) | | o]] b
| |
resulr/ v -— | ot resuts O [36276]
etz aoez) I)- resuta(Oris21637 | | resue60240] . |
resul 36276]
sum(p supplybosx)._ o | '+ name [36276] |
sum(l quanllly) . Yn_name sum(ps_supplycdst) |
cmml(l orderye) , ’Yc mktsegment mp23 | o403 000000] | miin(ps_suppltcost -
sum(l_ dlscﬂunl) 1967519280] F . AN Yoot |
Po—— | \ X / Tmp22 (ps_suppkey) |
[134052] [2760Am)000u$]mp - [182183] 336971546 ¥ 1§ 1362761 ' [362760000]
D
/ [9105191 [135577350000] \ 7 soza01 () (320480000061 /v‘
\ \ -1
- !
-~
raooee] . [5359550251] Tmps !
X / [- Tmp21 /
1362761 @ 72552000001/
X H Tmp20
‘ [910519] my
[30183] [759)06 Tm"a [9069K) [7 0000]
[2003] [50000]
O p_h ar‘k)‘BRAND#‘SE'
Tmes - (32507 [227597] notp ""“;'i‘; :;"BRASS%
Tmpa (51 () [25] mp7 te00000] () (200000] P G129
[150000] . [150000] @ 120000)) 10000] i b= TCg quggev Trpts
Tmp2 60000001 [6000000] aordetpriority 1200000} () [200000)
mQOmw p3 Tmpo T ps sy ey
2510 281 227597 biLip
o1 | Tregionkey T s-atignkey TU I_suppkey !][ggo:ioe]mm b SUWW’“ TC p_partkey
T c_nationkey ') narme | Cordarkey -« brand
E mOE T " I"quanti >="1994-01-01' prtype
= = ASIA® fngtonkey Idiscourit o_orderdate pstze
Cmkisegment Gr_name="ASIA 1T 7
n_name <’1995-01-01
[Jzso000] Bl [25] [Jtzoo00) [] ts000o00] [] ras00000) 800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.5 (f) The Third Dynamic MVPP after All New Queries are Merged

Next step of merging is to push down select, project and aggregate function
for first dynamic MVPP as deep as possible to optimize MVPP. The third dynamic
MVPP after optimized is shown in Figure C.6. The query processing cost of each
query after the third dynamic MVPP is optimized same as the query processing cost
of the first dynamic MVPP shown in Table C.1.

5
3@ 2
ws C e g
Q10 2 9
6 foxT") “@ resua () (215] t ? @ s *@ ﬁ.
2 o res 5 8
e Hro e, o2 (Y224 | i Qu@ s ? X
vesum pioss] sty L[967519280) | avg(1_extendedprice) Q5
resaaOl162183] Tmpas , [160240] 4 results et
4 resue() [184082) 1y (Y7LL50000] Yn_nam esult resuliL1 [z6276] [756746]
Tmp3s oaiorendeprice) Yol orderprionty 575160]
oY migsegment | Yn_name s name ~ " e 1 results () [36276]
Yentissemey s quantity) | Samps_supplycost™ 33 inl_discount) 1
4 el R — [) | / Yonape) | Y maxo_brany
24036000000} 4241 | Yo orderstatus stm(ps_supplycost) fycount
| Tmp23 |l [3075; P sum(l_etendedprice) (ps_suppkey)
& “‘KQOHMEI w""'(' orderkye) 19675192801 () Gps availgry<as ~a ™2/ ’YVH(T; ppltcost) of /
Tmpit 122113734832) Tm030]_{40135200000] /
f [zmsausas Ba (15242¢] fod~ [575169] () |
e g 4 \ ar 362760000]
P 7 \ / {: ~ [36276]! & | |
Vs o0 umku L)“mw [275048000000} \ / PP e | > I
Tmp2s / | like %BRASSR® | Tmpig | sssras1 O o 161168
(1602407 rrss746) (O 1 81
910519] (), [136577850000] \ ! 1o (132048000000] P
\ o NS 11602401 () [1602400000] > ! - |
\ Y Toezs <~ ! |
mp:
Tmp1s |, / . / srsw-sq]/g | P |
[46008] () [6869560251] N / e S | [7255200000] I
b L impae’ _ —~ i
A Tmp2
/[smsw] \ (1365582006000 4005 8]0 [200000]
\
/0 b
- ke 5%’
- _ like ‘%BRASS%
130183) () 750000 Tmp20
/ 120031 @ [s0000] e0691() [2uuot}rﬁ

Tmpa (28]
Q)
3

Tmp10

Gp_brjnd<>"BRAND#45"
ot §_typlike “HBRASSH'
p_sipein/9,19.49)

9 Lot e pyreen () [221597) /
| receiptdate T o orterkey
/
1o000)) [10000] | vig,y:e
1250000]) [150000] Tmp2 o 1800000] (yg00000]
s orderpriority (800000
o2 mOm " mp [eoooToool [6000000] et 1200000]() [200000]
251 1251 ™ 18
227597] mp]
TUr_regionkey TU s _nationkey. U |suppiey E 1 lisooo0o] TC ps_sy kE ks tke
Tmpl s_suppkey X SLai\'W Go_orderdate P u ‘/ n{a" ey
1Ol & >='1994-01-01 s-Bipoiybost
T ¢_natipnkey [T n_regionke tax v Lo Bie
et i G name=ASIA Rtk e oo B0k b
Cmkisegment e [~commitd. <'1995-01-01"
I vece\ptdnle
(150000] 51 125 [20000) [Jts000000 [1500000] [800000] 1200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.6 The Third Dynamic M

VPP after Optimized

218

We repeat these steps of merging algorithm to construct the fourth to sixth
dynamic MVPP based on following order list of query

The fourth dynamic MVPP : {Q12, Q9, Q13, Q10, Q8 and Q11}
The fifth dynamic MVPP : {Q9, Q13, Q10, Q8, Q11 and Q12}
The sixth dynamic MVPP : {Q13, Q10, Q8, Q11, Q12 and Q9}

The pictorial views of merging each query into MVPP show in section C.7 to
C.12 the fourth to the sixth dynamic MVPP respectively.

C.4 The Fourth Dynamic MVPP

The fourth dynamic MVPP : {Q12, Q9, Q13, Q10, Q8 and Q11}

Q12
6 3 7 2 | 2 9
*@ @ Q3 “@ R 4 @ 5
| &
. resultd | [967519280] | .
result? 910519] result1(")[160240] results () [36276]
resuieQ) [184082) [] result3()[182183] e | []
X It
c_mktsegment Yn_name sum(ps_supplycost) @) e ezl
Yn_name sum(l_discount) sum(l_quantity)
count(I_orderkye) X
Tmp23 1 124036000000] \
- [967519280] () / Ycount
Tmp15 P (ps_suppkey)
(184082] [182183] [27336971546;

[910519] [136577850000]

X
' Tmps 0o
11201113] () [1201800800 Tmp21
[7255200000]

Tmpld
[46008] ()

notjp_type like ‘%BRASS%’
/ [227597_J[227597] p_s|ze in (9,19,49)
Tmp12 e O X .19,
[250000] () [150000] 9_orderkey
8}0“@ perYge . Tmp18
) [6000000]() [6000000] o orderpriority 1200000] () 200000]
Tmp3 Tmpo TC ps_suppkey
1251 [25] " ps_partkey
[25] T s "a(,%nkey [2275971(_)[1500000] PSiSUDD'{wa TU p_partke
_— SSlppkey T Il_os;lé)eprtg‘,)l/ Go_orderdate ps_avaialy S
n i “orderk 11004 D1.01" p_type
T &-potpsey s ey ettt e prsice
E-acithal Or_name="ASIA' | altionke: o_orderdate
c_mktsegment - n_name <'1995-01-01'
[150000] 151 [25] [10000] [6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.7 (a) The Third Dynamic MVPP after Merging Q12 into the Existing Re-
Optimized MVPP

219

Q12
4
6 3 7 2 | 2 9
7 1 6
Yy ¢ &) 9 | @ ° :
| Q5
\ resullzté[emswzso] |
\ resuieQ) iaaogzy T 1O10S19] resuiia()1g2183) | resuiaOpsoza0) resurs () [e62re]
s_name
\ cﬁmkl'ssgmem Y"—"alme Ysum(psﬁsupplycost) . ,YS ke result [36276]
m 0 i g
\ VI ey | ooy fsom gty) X e T o
(ye) !
\ - min(ps_suppltcost) ’Y
count
\ et iy Tmp22 (ps_suppkey)
| [184062] [zvsoaaooooog] 2 [182183] 627610 aareoooo]
mp:
\ s 10105191 () [136577850000]
\ X

Tmp14
[46008]

@
X

Tmps
r201113] ()

Tmp13
130183 ([750000]

O 1200000]
X 9
G p_brand<>'BRAND#45
O not prp;: like ‘“/;BRASS%'
s|ze in (9,19,49;
1 Tmpa (51C) [25] ! Q >
[150000] 120000] C) [0000]

Tmp12
1250000] ()

Tmp18
Alprce
[6000000]() [6000000] o orderpriority 1200000] () [200000
mQ - TmpZS y rnpg n g}s:ﬁ :ey O 1
o egionkey 1251 [25] T s patignkey 12275971 [1500000] ps:supplﬁ:os(T o partke
Tmpl - e T |_supkey Go_orderdate ps_avalaly S
T natinkey (O :guanmy >='1994-01-01' oo
ot E§ Or_name="ASIA’ [Zdiscount o_orderdate =
¢Zmktsegment <1995-01-01'
[Jras0000] [s] [Jrzo000) [ts0o0000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.7 (b) The Third Dynamic MVPP after Merging Q9 into the Existing Re-
Optimized MVPP

Q12
Q13 2 T
6 3 to7 Q4 L 0
Q9 Q2 U@ I Q3 | 1@ ®@ .
« resultd
[967519280] | Q5
\ —|— _ |
\ resul2(C) [184082) result? [9105}9{ resulsQpis2ted] ~ — — | _ _ | result1()[260240] results () [36276]
\ / U 1. cos) @ | results") [36276]
/ Y LI . Py supply _— . name
\ 'Yn name sum(l_quantity) \ 'Yn name amips supplyct)
count(]_orderkye) YC_mktsegmen[Tmp23 | 124036000000] ming ps. suppltcost s
\ 7| ! sam(_discount) [967519260) \ ~ Yoo
! o ’ [1s;1ms';1]1 \ / (ps_suppkey)
| [184082] [27604800(?@“25 v md
\

7 o1051910)

TmpL7\ 4
[160240{ (), 11602408000

G p_trand<>'BRAND#45’

not|p_type like ‘%BRASS%"
p_sjze in (9,19,49)

o~total ce
60000001 () [6000000] o

Tmp18
o orderpriority

1200000] () [200000]

Tmp9 TC ps_suppkey
TT s_natignkey [227597](_)[1500000] Eg’gg;')‘pleycost
TUr_regionkey Sippkey T 1 suppke Rvaiy TC p_partkey
U c_nationkey TPt S_name I_orr?eake))l/ Go_orderdate p_brand
1] 5] . I i = -01-01')_type
%@E;}, @)t T 0 reionke gy >='1994-01-01 bbvpe
¢“mktsegment Or_name="ASIA’ n-nationke! = o_orderdate
- n_name <1995-01-01'
[]i50000] [5] [Jtzo000) [6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

T

igure C.7 (c) The Third Dynamic MVPP after Merging Q13 into the Existing Re-
Optimized MVPP

220

12
Q13 2 Q10 QT
4
6 3 to7 @ 4 |2 9
1
Q9 2@ Q7 I ©@ s | | @ *@ 5
X d‘ O 1e67519280] | @
\ —l=— | |
\ resutiz) [184082] result? [9105}9{ resud(pus2183] — — — | _ — | resultt()[160240] results () [36276]
\ 4 n_name ’Yssinma(mp supply{:os()l | result ' [36276]
/ -_—
\ Yn_name sum(l_quantity) | k ‘. Yn_name Yiﬁ?r?('sg supplycdst)
count(l_orderkye) Ycimklsegmenl Tmp23 | 1240350000001 min(ps_suppltcost -
\ /| " sum(l_discount) | 1967519280] () 700000 ~ Yeount
\ Tmp15 / P R | \ 7\ Tmp22 (ps_suppkey)
| lede2) [27604800%)&?’“;)25 [182183] @ (27336971546 v red e2re1 () [262760000]
\\ PN/ 1105191 () [136577850000] \y/ s02e0 0 3204800060
X

/

Tmpl4 Tmpl
[46008] () [6869560251]

160240 () [1602496600]

190691 [200000]

v Tmp10 O p_brand<>'BRAND#45’
(227597 [227597] not| p_type like ‘%BRASS%’
Tmp12 Tmpa (510 (25 o7 1800000] () [800000] P_sjzein (9,19,49)
1250000] () [150000] 120000] () [10000] 7 TC o_orderkey
X

X , Tmp21
, 0 [7255200000]
Tmp13 7 Tmp20
[30183] [759’{“]
<Y

Tmp2 o-totalprice Tmpl8
mp: 60000001 () [6000000] o orderpriority 200000] () [200000]
mQm Tmp3 Tmpo TC ps_suppkey
25] s_partke
U regionke [] 23] TC s, na(iq(nkey [2275971(_)[1500000] Es:gupplgcnst n
_regionkey s_suppkey TC |_suppkey Oo orderdate ps_avaiq p_partkey
TU ¢_nationkey T’“ff] 5] §_name | orderkey -« pRrand
= ='1994-01-01" e
%E%ESY TTn reﬁm%e&/ I—g:ﬁ"‘)‘b% >='1994-01-01 B:snzpe
c-mktsegment Or_name="ASIA’ n_nationke! - o_orderdate
- n_name <'1995-01-01'
[Jrasoo00] [5] []es [Juzo000] [] ts000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.7 (d) The Third Dynamic MVPP after Merging Q10 into the Existing Re-
Optimized MVPP

13 2 Q12
¢ ug t
6 3 t 7 4 | 2 9
1
% b ¢ b ¢ | o resultd | | N *® 5 Q8
" [967519280] | T
\ result? ' [9105)9{ '95“"3\ \[15;53T == ! I result1(")[160240] results [36276] |
\ resultz() [184082) , Vo - | |
\ 'Yniname sum(p: supplykost)l — | () [36276] |
\ ’Y"—"a;r(‘f derkye) 4 Y'c_mkisegment sl guanty | X = y"'"(a T suppltcost |
count(l_orderkye; 1 Tmp23 min(ps_suppltcost
\\ , / sum(l_duscwgn (e675192801 ZAoafsoooooo]\\ ~ Vo |
o | 7N Ossupkey) |
27604800001 [182183]
|\ [184082) [: /a‘?mp% \) >
\ \ /o0 ()
_ -~
Tmpl4 Tmp17N - /
11602401 () [1602400600] /
XN /
[7255200000]/
|

Tmp20

' O goooo}
1301831) 7

800000] () [800000] P_sj7 in (9,19.49)
T Uo ordg rekey

o-totalprce
o_orderpriority

el e o
. ignki 227597 1500000] lycost
Tm TCr_regionkey TE ss}r:?é;ﬁ(neyey TC 1_suppkey L][Go orde]rdate Es suquK/cus TC p_partkey
" p: S_name =)¢ p_brand
TU c_nationkey i) 151 o |“orderkey s . type
c‘cus{EeY T ionk [~quantity >=1994-01-01 p_typ
&dectbal n_tegionkey [panuiy posize
¢_mktsegment Or_name="ASIA’ n_natlonke; - 0_orderdate
- n_name <'1995-01-01'
[150000] [5] [25] [10000] [] 6000000 [1500000] [] 800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.7 (e) The Third Dynamic MVPP after Merging Q8 into the Existing Re-
Optimized MVPP

221

Q12
Q13 2 ?
4 Q11
6 3 t o7 @ +o 2 9
Q9 Q2 U@ | Q3 Mé Lo Q1 o) 5 Q8
resul
X Q‘ [967519260] | | [o5T) t
\ —l-— |
\ sz scez] result7 O [9105)9{' resuaQpuszted] ~ — — | _ : | s (Oa6024g) results O e276] :
/7 s_namq It
\ / Yn_name ysum(p supplycosl)l - | vYS name resu [s6276] |
\ n_name sum(l_quantity) k 7 Yﬂ name sum(ps. supplyc:“st) |
count(]_orderkye) Ycﬁmktsegmem Tmp23 | 124036000000] | min(ps_suppltcost -
\ sum(l_discount) \ fK
\ Tmp1s TmpLL [967519280] N 'Y(coum - |
mp: Tmp22 ps_suppkey,
| [184082] [27604800(?(»%')25 [182183] / 136276] () [362760000] |
\ 7 1910519) () [136577850000] ‘
\ 8 -t
Tmp14 \ / / TmpL7\ 4 \ e /
146008] () [6869560251] mp8 /asozae] () [1602400008) K /
it / Tmp21 /
[7255200000]/

X,
/
Tmp13 7
mp:
01831) [759&]

//
Tmpl2

/ > TMp10 O p_y anfi<>"BRAND#45’
_ [2/27597 [227597] not pll‘ype like ‘%BRASS%"
/ . 18000007 () [800000] P_S|2e in (9,19.49)
1150000] C) [150000] Jme? T o_orderkey

—totarprce Tmpl8
o_orderpriority

 Tmp9
[227597](_)[1500000]

TC |_suppkey TC p_partkey
TU ¢_natipnkey Tmpll O Lorgevkey Goﬁorderda&el p:[gragd
badieiy Ol T o regionk ooy >2'1994-01-01 D_yp
caccial D, ’eﬂ")’ke))' I=dhscount p_size
¢—mktsegment Or_name="ASIA" n_nationke! - o_orderdate
n_name <1995-01-01'
[150000] 5] [25] [] 16000000] [1500000] [] ts00000] []1200000)
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7
Figure C.7 (f) The Fourth Dynamic MVPP after All New Queries are Merged
The fourth dynamic MVPP after optimized is shown in Figure C.8. The query

processing cost of each query after the fourth dynamic MVPP is optimized same as

the query processing cost of the first dynamic MVPP shown in Table C.1.

5
s 3@ 2
2 12
7 4 = J 5
s U@ Y J 4 QU@ 2 9 6
[ex!] umuxO[m] Q1 6
4 5 o]] o
2@ T"’P brand, v5>ull]z©\15242rl\ 5 Q8
esultg L[967519280] Yot resulti0 . [010515] u@ 1
g result?(") [910519] @) | avg(l_extendedprice) + 7 - el Qs
resulta (182183 Tmp3s | o ramd result
s Yn_nam resultl sultll [36276) 758746)
® ‘ resulz() [184082) Yo name Yorme igQ LT "l priendedprice) el rderprorty e 63«5159] euts ¢ ool [regr46)
Y migsegment sum(l_quantity) | sum(ps_supplycost) m | mfn(l_discount) Vs rame N
t sam(1_aiscount) Tmpz3 |[24036000000] N Tmpa2 STnetpe dupplycost) | Y mxo_bran)
N . O[,zzmruml} Yo_nai Yo_orderstatus count
rssuhs’(l)[%EDB] y’c‘ﬁzﬁ[“(ﬁ orderkye) 9675192801 () Tmp34 N 7 e suppltcost) Sl Sftendedprice) 5wy
X . mp
Tmpid 075169 L Jo10519) Qizzmz] ~/ Tmp30]_ (460135200000) i
X @ersasorisic = [6492] —— 1L ~ ~ (5751691) B
[182183] - —— > gmeat mp]
\ 159 — =~ G |_commitdal Ops_availgty<2go o ﬁ 136276] () [362760000]
avmn,m!a\ém)mmu [276048000000] _ -~ / % pid | W
\ M - !/ [like %BRASS | Tmpig - dwm‘
Tmp2s | — [160240] [7s6746] () [151951851168]
\ 910519] () [136577850000] / / tmpar (D132048000000] _
/ X -
\\ I / (160 4o (O [2602400000] || - |
-
oy - IR (o I = s |
146008] () [6869560251] b / — o1 | - [7255200000]
2011135 [12018000000] = X TG Leshmitcate _- 126276 S [N
> i ! mpes | -~ Creceitdate - ®
- Tmzs |
/ [910519] (1365582008000 [4DESHJO[LLCDGJ]
\ /
G p_type
~ - / ke RS
Tmp13 Tmps _-
20183) () [750000] y ~ Tmp20
"> [2003) [50000] 190691 r200006]
X /
Gp_brpnd<>"BRAND#45’
o2 (' teoogomy ot p_typefike “UBRASSH"
Timpa C)125) 1379329 Tmp10 p_sie inf9.19.49)
5] | O/ |_commitdate r22rsor O (2275971 /
| receipidate 1T 0 orderke
500001 () 110000] () [10000] | ek te0oooon () /
150000] () (150000 Tmp2 2 800000)
. [150000] S s Tmps 50000001 [6000000] oorderpriority . 800000] 2000001C) 2000001
1O 125 Tmp?- mp18
TC s_nationkey TC 1_suppkey [227597)(_)[1500000]
gy | ok Sippiey Lodtney Go_oterdate T g sppiey T p gy
e natonkey (1 O1s) H >=1004-01.01" Be-BinpivEost bbran
= - Ot name=ASIA" T ok [dscout o ordercate Be-aklaly postze
cmidsegmen - n-name I%S&‘(S.‘é"ﬁ? <'1995.01-01"
[150000] 51 1251 [10000] [6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.8 The Fourth Dynamic MVPP after Optimized

222

C.5 The Fifth Dynamic MVPP

The fifth dynamic MVPP : { Q9, Q13, Q10, Q8, Q11 and Q12}

7

2 2 9
€@ 27 @ ol

5
o J
\ resultd | [967519280]
\ resuleQ) [184082] result7 () (910510] resuispaseass) resultt (1602407 results () 136276
\

3
Q9 2@ off]
«

] \é
s name
o I
'c_mktsegment Yn_name ‘YSW(PS,SUPPWCOS‘) Yo rarge resul [36276]

\ ’Ygagif{(‘ﬁ orerkye) sam(1_discount) sum(l_quantity . :ﬂ s o o e plycost)
\ min(ps._supplicost)

[967519280] Yeou

Tmp11
Tmp1s

‘\ [184082] [182183]

nt
(ps_suppkey)

[136577850000]

G p_tyand<>"BRAND#45"
Tmp12
1150000]) [150000]

[Tmp7

U o_orderkey

8FoSHce Tmp18
16000000](_) [6000000] orderpriority 12000001 () f200000]
0525 Tmp9 us p:_sslg :ey
. y Qs T s natgniey 1227597 (Of1500000] Bs:spuppl'v‘igosl
Tmpy | TUr-regionkey subpkey T suppkey Go_orderdate pe_avald T H?a’ékey
X “orderkey - 1
T c_natipnkey LI " I"quantity >='1994-01-01' prtype
£l Grmamensi | RSN ekt o orderdate e
c_mktsegment - n_name <'1995-01-01'
[150000] 5] [25] [10000] D [6000000] [1500000] [800000] - [200000]
customer region nation supplier lineitem orders

partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.9 (a) The Fifth Dynamic MVPP after Merging Q9 into the EXisting Re-
Optimized MVPP

Q13
|
6 3 7 | 2 2 9
Q’: 2@ ol L Y | u@ "@ 5
| =@
\ g é | result4 | [967519280]
it7 O [910519] 16 O 136276
\ esuiz() 1840821 resul [] result3()[182183] .‘\ Ve e result1(C)[160240] resul &]
\ ¢ mitseqment '\{n_nal,,e 7~ " sim(ps_supplycost) Vo rae resulty [36276]
\ Vol o | T | Sy) T W J—
\ _ 7
[967519280] t
\ o o Pt i
\ _ “ 182183 @ (27336071546
-
\
\
\

Tmpl4
[46008] () [6869560251]

O p_brand<>"BRAND#45
notp_type like ‘%BRASS%"
Tmp12 £ p_sjze in (9,19,49)
1150000] () [150000]

[800000]
Tmp? T o ordorkey

Sfoiice Tmp18
i [6000000] o orderpriority 12000001 () [200000]
25] 25] e " e pan le(;y
T regionkey 1251 1251 T s pationkey 12275971 [1500000] Eg:meDS[—
Tmpr LTV Sippkey T I|,§;feprﬁ¥ Go_orderdate -avalaty S
tionk mQs . [~quanti >="1994-01-01' p_type
T - patpokey s | Rstioney ot o orderdate
w1 O'_name="ASIA' 7 X
¢_mktsegment - nZname <1995-01-01"
[150000] 151 [25] [10000] [te000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders

partsupp

part
@ represents materialized view node selected in static phase for Q1-Q7

T

igure C.9 (b) The Fifth Dynamic MVPP after Merging Q13 into the Existing Re-
Optimized MVPP

223

Q13
4
|
° 3 7 I 2 o 2 9
Q9 2@ U@ Q3 | o4 s L@ ®@ ;
A | e
|
\ | result4 | [967519280]
\ resulz() [184082] resut? () [010519] - resuta Opaeanssy Q\ Y :f results()160240] results () [36276]
s narhe
\ c,mkllsggmem Y"Jaw) ~ sTJM(Ps,supplycost) result! [36276]
\ Vil gy | S| iy) —
\ - 2403600080Q]_
[967519280] .
\ rowen i 2 (-
| seos2] @ 276048000000] _ ~ns2183
Tmp25
\ [910519] [136577850000]
\ X
\
Tmpl4
[46008] N

Tmp12 800000] () [800000] P_sjze in (9,19,49)

T o_orderkey
8 By Srce Tmp18
[6000000] () [6000000] oZorderpriority O r200000]
5] Tmp9 |Ee
) TC s_natignkey 1227597)([1500000] psSupplycost
ke
gy | Ty LR ongae | B gt
[. - ["quantit >="1994-01-01' p_type
= i RN A e o_orderat psie
c-dcétbal Or_name="ASIA’ L])
¢Zmkisegment n_name <'1995-01-01'
[150000] [5] [25] [10000] [6000000] [1500000] []8o0000] [200000]
customer region nation supplier lineitem orders

partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.9 (c) The Fifth Dynamic MVPP after Merging Q10 into the Existing Re-
Optimized MVPP

Q13
4
|
6 3 7 | 2 o 2 9
1
Q;) Q2 o7 *2@ | u® oi %@ 5 Qs
| Q5 4
|
\ | resulta [96751?280] 26276 |
\ resuiz() [184082] result? [910519] result3()[182183] ® | resultL(_)[160240] result [] |
~ s_narhe
\ 'c_mkisegment Yn_name TS ysﬁm(rs,supplycost) Y: eI 6276] |
, |l . s_nane
\ ’Yrc‘amr(r(‘ﬁ oderkye) sum(]_discount) /sum(liquantlly) ~ n_name sum(ps._supplycost) |
\ - Tmp23 | 12403 ggm(l min(ps_suppltcost)
g wersiozs0] () | - Yeount |
\ Tmp15 _ 3 | ~ - Tmp22 (ps_suppkey) |
| [eas2) [27604800000To]m e [182183] [27336971546 Fopao 62761 [362760000]
s o
X X
\ 1910519 () [136577850000] 1602401 () 32048000865
\ p; -t
- /
Tmpla -
[46008] () [6869560251] !
X Tmp21 /
[7255200000]
Tmp13 Tmp20
30183 ()[750000]

190691 [Z00000]

o)) N Tmp1o G p_brad<>'BRAND#45"
Tmps _ TarsorfOpearsen) "°;p1'frf;‘f; ;SBRASS%
Tmp12 P [800000] () [800000] Pz in O.19
P Tmpa 5] () [25] Tmp7_~
1150000 () [150000] ® 110000] () [10000] - T o_ordgrkey Tmp1s
o—total ce
Tmp2 [6000000](_) [6000000] u:crde'r)prinrily 12000001 () [200000]
mQOwm Jmp3 Tmpo T ps_suppkey
25 s partke
T regioney 12510 [25] T s pationkey 12275971 f2500000] 'p’s:gupplyycom P—
Tmp ! Shibpxey i Il_os:J{?eprt:))// Go_orderdate ps_avalqly Srand
T ¢ nationkey 1[5 T 1 regionke I"quantity >=1994-01-0 prtype
= posize
ke O name="Asin’ Rorsionlsy o o ordarde
¢_mktsegment n_name <1995-01-01'
[Jizso000] 151 [25] [Jizo000) [6000000] [1500000] []1so0000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.9 (d) The Fifth Dynamic MVPP after Merging Q8 into the Existing Re-
Optimized MVPP

224

Q13
| Q11
6 3 i I 2 Qo 4 2 ’
SO 7@ o g T @ @ ; o
I o 4
| |
resultd | [967519280]
\\ resul7) [910519] results [182183] I f IF ! | result1(_)[160240] results [36276] |
resuliz() [184082] b | |
\ /s _narhe result [36276]
‘c_mktsegment 'Yniname i ~ SUM(PS,SUDD'YCDSP |
\ sum(l_discount) /sum(l_quanmy) ~ | |
e Tmp23 1 12403600000
\ ot [967519280] | L) Yeount |
\ Tmp15 _ f\\ - (ps_suppkey)
| [84082) 7 182183] {
\ ®
\ -1
\ -7
Tmpl4 ~
[46008] () /
/
[7255200000]
T Izo
Tmpi3 -
130183) ()[750000] 19063 [Z00000]

Tmp12 ~ 800000] () [800000] P_sjge in (9.19,49)
1250000] () [150000] e TC o_orderkey Tots
B RoiSHce mp:
160000001 () [6000000] o-ordetpriority [200000]
Tmp9 ‘Ee
; TC s natignkey 12275971 [1500000] ps-Supplycost
Tmpy | Tregonkey ey T L supptey Gordertate ol T p_partey
[- |orderkeey ="1094-01-01' B’t\;gg
T ¢ patpriey o ey iy >=1584.011 i
Cdc Or_name="ASIA’ n_nationke, S o_orderdate
mktsegment - n_name <1995-01-01'
[150000] 51 [25] [10000] [6000000] [1500000] [] ts00000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.9 (e) The Fifth Dynamic MVPP after Merging Q11 into the Existing Re-
Optimized MVPP

Q13
) Q12
| Q11 t
6 3 7 | 2 010 T | 2 9
Q9 @@ @ Q3 | “® L@ o J 5 Q8
X | | ;| o)
\ | resulta [oo7s1p260] | | |
\ 12C) pasoszy O [920519] resuis(yas2183] | | resutrOpasozday resuts () 1362761 |
resu
's_narhe It
\ ‘c_mkisegment Yn_nawe = ~ ’YSUM(Ps,supplycosf)) s ke resulty”) [36276] |
\ sum(l_discount) /smrr(lfquantlly) ~ | _nam sum(ps_supplycost) |
\ - o 9T2"‘8523 2403600080Q] ;A\ min(ps_suppltcost) |
\ Tmp15 Ampll [967519280] [XY \ 'Y(cposlighppkey)
\ _ 7 1182183] FAVAS |
\)?
\ -
\ -
Tmpl4 _ /
[46008] () /
/
[7255200000]
Tmp13 o Jmp20
130183] ()[750000] [Z00000]
; <) barld<>"BRAND#45"
- o0
/ - TersorfOizersen) (s00000] o %‘,yr{’ f; e A;")BRASS/"
Tmp12 K 19,
[150000] Jmer— T o_orderkey ots
—totalprice mp:
TTf]Z o orderpriority 1200000] () [200000]
e " s K
; [227597)(_J[1500000] ps-Supplycost
Tmp1 gnr_reglonkey TC |'*§?'é’e“rﬁy Go_orderdate ps*ava'qtvy T ;?"l?rae;r‘\léey
T cnationkey [I:guanmyf >="1994-01-01' B"sszee
E:EE%!EEY GOr_name="ASIA’ discoun 0_orderdate -
mktsegment <1995-01-01'
[150000] 5] [10000] [6000000] [1500000] [800000] [] r200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.9 (f) The Fifth Dynamic MVPP after All New Queries are Merged

225

The fifth dynamic MVPP after optimized is shown in Figure C.10. The query

processing cost of each query after the fifth dynamic MVPP is optimized shown in

Table C.2.

7
6 Q
2@

Q13

result13

5
[]
$
O [215]

f“/n brand,

2
Q2@
%

N S22 euing

9

S)

5
Q@ o ‘

5
Qu@

Q8

6
resulta [967519280]) [910519] S X
result?(") [o10510] avg(1_extendedprice) o5]
resuiaO1182183] s | I ezl resulte - - 6
n Yn_nam resu sult11 - 75874
QQ‘ result2() [184082] Yo rame Ysmme (s BRTIE [{etendedprice) Yol orderpriority e 6575459] results g 136276] fresreel
Y misseqment sa_quaniy) | sum(s_supplycos) 2 mfin(l_discount) Ys.nae f
4 Sam(l_discount) g2 U Tmpa2! . 4 . Friicg — . | Y mato_brane
N 5242 12211378483 'n_namg *Yo_orderstatus ’ ‘coun
resulta) [46008] 'Yzaﬂg"‘v(\lew derkye) [967519280] Tmp34 N Tmzz[hwﬂ% / ’me,, suppltcost) il endedprice) (ps_suppkey)
(‘) Tmp1l s [svalsqLC)[gmm] o [s2192) ~J/ [57;'250' [460135200000] |
[182183] =" fos92] —=L__rny mpal]
\ 1 _ G |_commitdate Gps_availgty<2¢b oo 160240] 62761 [362760000] /
Yo_name) Tmp1s i ; 7 (Q (160240 e | 4 /
avg(o_total \”““)[134052] [276048000000] - / / ke 'nBRA\ssW Tmpi Ve | Tmp28
N Tmp2s | — [758746] 151951851168]
\ 91;‘:19] [136577850000] ! ! Tmp17 HEZAL dicsoo0000 ~ K
/ 1S ~
\\ o] ‘ / [160: {o (O [1602400000] . II |
/ 7 W Tmp2g | - |
Tmp14 (575169 § - Tmp21
{91058 |
[46008] () [6869560251] / N G s I _- - 136276) D [7255200000] |
X — [|~ 2 |
Tmp2s
e 200000
| o10s15i@Q) [1aesse00eto [mm]o{)
\ /
G p_type
<< _- / ke wurASSw
Tmp13 Tmps, ~
20183] () [750000] < - Tmp20
v 12003) @ [s0000] 190691 200000f
% /
Gp_brpnd<>"BRAND#45"
[600600 0t p_typeflike ‘%BRASSH"
Tt Cizs) Tmp10 p_sie inf0,19.49)
[BRA; Leommitite pyregn () (227567) /
5 7\ receiptaate T o orderkey /
120000)) 10000]
12500001) [150000] Tmp2 Soren 1800000] (}800000)
erterarity]
Tmp12 wQm p3 TmeS 160000001(_) [6000000] I Topts 12000001 [200000]
510125 Tmp?- mp18
T egionkey T s nationkey T Lsuppley 12275971)[1500000] T o sk e
TmpL s_suppkey Corderkey Go_orderdate bs_suppkey _partkey
Tenationkey (1 (5] ey >=1994-01-01" pa-Elpoiybost B-type
S Ry 3 iseoror = i
e ment r_name="ASIA nnaonke o-oterdate N -
= X <"1995-01-01'
Ireceipdate
[Jrx500001 51 Oes [ra00007 (6000000] [1500000] (800000] [200000]
customer region nation supplier lineitem orders partsupp

part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.10 The Fifth Dynamic MVPP after Optimized

Table C.2 The Query Processing Cost of the Fifth and the Sixth Dynamic MVPP

Query fq List of Accessed Nodes Cost of Nodes Query Processing
Q1 2 Tmp6(materialized view), Tmp16, Tmpl7, Tmpl8, 2003, 800000, 1602400000, 200000, 32048000000 67,3%%%124,486
Tmpl19 and resultl and 160240
Q2 6 Tmpl5(materialized view) and result2 184082 and 184082 2,208,984
Q3 7 Tmpll(materialized view) and result3 182183 and 182183 2,550,562
Q4 2 Tmp6(materialized view), Tmp16, Tmpl7,Tmpl2, 2003, 800000, 1602400000, 150000, 24036000000, 53,213 742 566
Tmp23 and result4 and 967519280
Q5 5 Tmp21l(materialized view) and result5 36276 and 36276 362,760
Q6 9 Tmp2l(materialized view), Tmp5, Tmp22, and 36276, 10000, 362760000 and 36276
esults 3,265,582,968
Q7 3 Tmp24(materialized view), Tmp12, Tmp25 and 910519, 150000, 136577850000 and 910519
esult? 409,739,463,114
Q8 6 Tmp7, Tmp27, Tmpl8, Tmp26, Tmp28 and result8 6000000, 6000000, 200000, 200000, 151951851168 911,790,059,484
and 758746
Q9 4 Tmpl, Tmp2, Tmp3, Tmp4, Tmpl2, Tmpl3, 5, 1, 25, 25, 150000, 750000, 1500000, 227597, 27,488,935,648
Tmp9, Tmp10, Tmpl14 and result 9 6869560251 and 46008
Q10 5 Tmp24(materialized view) and result10 910519, 910519 9,105,190
Q11 5 Tmp24(materialized view), Tmp29, Tmp16, 910519, 575169, 800000, 460135200000 and 575169 2,300,691,981,035

Tmp30 and result1l

9¢¢

Table C.2 (Continued)

Query fy List of Accessed Nodes Cost of Nodes Query Processing
Cost
Q12 2 Tmp6(materialized view), Tmp16, Tmpl7, Tmpl8, 2003, 800000, 1602400000, 200000, 32048000000, 311,554,998,998
Tmpl9, Tmp3l, Tmp7, Tmp27, Tmp32 and 160240, 6000000, 6000000, 122113784832 and
result12 152424
Q13 5 Tmp6(materialized view), Tmp16, Tmpl7, Tmpl8, 2003, 800000, 1602400000, 200000, 32048000000, 869,827,064,180

Tmpl9, Tmp3l, Tmp33, Tmp24(materialized 160240, 32192, 910519, 150000, 136577850000,
view), Tmpl2, Tmp25, Tmp34, Tmp35 and 910519, 3733997148 and 215
result13

The total query processing cost of the first MVPP 4,954,889,179.975

Lec

228
C.6 The Sixth Dynamic MVVPP

The sixth dynamic MVPP : {Q13, Q10, Q8, Q11, Q12 and Q9}

Q13
1
I
6 3 7 |
2@ Q7 o] I 5
I
|

@
result? 910519] I
resule i 1 [1 result3()[182183]

resultd | [967519280]
)s\ . resultl()[160240] result6 [36276]
results
‘c_mkisegment v ~ [36276]

Yn_name -

count(l_orderkye)
Tmpls
1184082) @) [276048000000]

Tmp25

1 'n_name
sam(1_discount) sur(l_quantity)
X

Ys_nane
_na Sam(ps_supplycost)
min(ps_suppltcost)

- Tmp23
1967519280] ()

-
Atp1L
e
_ 7182183

Yeau

int
Tmp22 (ps_suppkey)

[362760000]

[36276]

Tmpl4
[46008] ()

SR Tmp18
o orderpriority 1200000]C) [200000]
v [25] {mes ps_partkey
T s natignkey 12275971 11500000] bs-Supplycost
Tmpt gnusgmnkey a\;?"p‘i(ey T Il’g:‘geprt?{/ o orderdate faty Tp j:raar’:laey
T nationkey (113 [-quantity >=1994-01-01' type
EEREE Grmme=asic | AN e o orderdate e
mktsegment - n_na <1995-01-01"
[150000] 8] [10000] [6000000] [1500000] []00000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.11 (a) The Sixth Dynamic MVPP after Merging Q13 into the Existing Re-
Optimized MVPP

Q13
|
6 3 7 | 2 o 2 9
2@ U@ Q3 | *@ " U@) .
I | o]]
O | resultd [95751Fzso]
It7 [910519] It6 [36276]
resuie() 1saosz "o 1910589 resuis(ps1e) e e resultt(O)ft60240] resutts () [36276)
'c_mktsegment Yn name - ~ sﬁm(]us,supplymsn Y resultt [36276]
U A S
y’c‘BHﬁ'&'i arderkye) sum(l_discount) /smrr(l,quanmy-r ry“ s S pplycost)

rd
i1t

Tmp15
~
_ " [182183)

-

[184082]

=

‘cour

nt
(ps_suppkey)
[276048000000]

. p_sfze in (9,19,49)
1250000] () 1200007 O) [10000] T o ordorkey Tmp18
oA
160000001 () [6000000] oZorderpriority 12000001 () [200000]
Tm?S] Tmpo 0 ps_suppicy Qr !
25 : ps_partkey
TU s_natignkey 12275971 () [1500000] ps-supplycost
K X
- gnuegncn ey g%)}ey T |"é;‘§eprt§¥/ Go_orderdate Rkl T S’gfa'rl\léey
. 1] 5] - | ¢ ='1994-01-01" Tt
T f-c”uas“gskw e T ’eﬁ“”l(“y [quantity >="1994-01-01' g,gg:
Eaectoa Or_name="ASIA’ nnafionke L o_orderdate -
c_mkisegment - n_name <'1995-01-01"
[150000] [s] [25] [10000] [6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.11 (b) The Sixth Dynamic MVPP after Merging Q10 into the Existing Re-
Optimized MVPP

229

Q13
T
|
|
|
|
|

2 2 9
Q10
Q4 f Q1 @ 5

o)

|
result4 [95751Fzso]

result7 () [910519; 1t3()[1821 result1()[160240] resulté [36276]
resuliz() [184082) L 1 resul3([162183] Ve e []
‘c_mktsegment 'Yn name ~ sTJM(Ps,supplycost) result! [36276]
Yn_name sum(1_discount) sum(l_quantity) -
count(l_orderkye) ’d - ps_supplycost)
e [96751;2';}5]23 2403600080Q]
~ count
Tmpis Ampil ! y(ps,suppkey)

[276048000000] _ 7 1182183]
Tmp25

-
[910519] ' [136577850000]

' '
T
Tmp13

{30183 ()1750000] 19069 [Z00000]

\

Yo g

Tmpl4
[46008] ()

O ph ral‘ld<>'BRA.\'D#45'
notp Jtype like ‘%BRASS%’

Tmp12 ~ 800000] () [800000] P_sjge in (9.19,49)
1250000] () [150000] e TC o_orderkey
SRBHCe Tmp18
[6000000] () [6000000] o-orderpriority 1200000} () 200000]
25) e ot
; TC s natignkey 12275971 [1500000] ps-Supplycost
Tmpy | Tregonkey ey T L supptey Gordertate ol T p_partey
[- |orderkeey ="1094-01-01' B’t\;gg
T ¢ patpriey o ey iy >=1584.011 i
Cdc Or_name="ASIA’ n_nationke, S o_orderdate
mktsegment - n_name <1995-01-01'
[150000] 51 [25] [10000] [6000000] [1500000] [] ts00000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.11 (c) The Sixth Dynamic MVPP after Merging Q8 into the Existing Re-
Optimized MVPP

Q13
| Q11
7
6 3 | 2 o0 4 o ‘ 9
Q2 Q7 B@ | 4 | (o]) 5 08
|
| resulta [95751%280] I ® T
|
It7) [910519 | It1 its () [36276]
esatz() [184082] resul [] result3(C)[182183] /.K v, e resultL(_)[160240] resu |
o I
o midsegment yn_nalm T~] samips supptycosp Vo rate results ™) [36276] |
’Yrc‘EE:rt'(‘Euvderk\/e) sum(l discount _ /sum‘(,quanmyT:sza 2:)3 50050 | r:ﬁr“(ame Ims\)irln)(sisupplycosl) |
in(ps_suppltcost
oL tos7st0280] (J° L Yeount |
Tmp15 //T P * R~ Tmp22 (s suppkey) |
[184082] [z7eoAsoooonTo] | [182183] @ [27336971546 | S o () Bearsooo
mp: ‘ 6
X 1910519 () [136577850000] 60240 () —— A
NN
-
- - !
Tmpl4 Tmp17 \ ~
146008] () [6869560251] /1160240] () [1602490008) |
Tmp21 /
X
[7255200000]

Tmp20

Tmp13
130183) ()[750000] 190691 [200000]

/) N< Tmpto O p_tarki<>'BRAND#45°
not|p Jtype like ‘%BRASS%"
Tmps, _- BarsorfOpzrser) (5000001 3 (s00000] p_sffe i (919.49
Tmp12 Tmpa 5] () [25] Tmp7_~
1150000 () [150000] ® 110000] () [10000] - T o_ordgrkey Tmp1s
o—total ce
Tmlpz [6000000](_) [6000000] u:crde'r)priurily 12000001 () [200000]
mOnm Jmp3 Tmpo T ps_suppkey
25 25] s partkey
TUr_regionkey :][! T ss{\uau%key [227597] 11500000] Egjgegylyycosl TU p_partkey
T o [5], Shapoiey T Il_os:J{?eprt:))// Go_orderdate ps_avalqly P—}g’a"“
TC ¢_nationkey T regionke I"quantity >='1994-01-01' -
E{EE@!EEY Gr_name="ASIA’ nnétonkey =Bl 0_orderdate -
¢_mkisegment n_name <'1995-01-01'
[]t2s0000] [5] [25] []rzo000) [6000000] [1500000] []1so0000) [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.11 (d) The Sixth Dynamic MVPP after Merging Q11 into the Existing Re-
Optimized MVPP

230

Q13

4 Q12
| 11

| e 2 9
|
|
|

ol ®@ 5
s@

[36276]
resultt [36276]
e

Q4 +

2 Q10 4
|
|
|

|
resultd [95751Fzso]

result7 () [920519] resuita([182183] result1()[160240] result6

resul2(C) [184082)

|

|

|

|

[
Yorabe |
sum(ps_supplycosf)

s suppyeos) @)

'c_mktsegment 'Yniname : ~
sum(l_discount) /sum(l_quanmy) | f ps_supplycost)
e Tmp23 1 12403600080Q]_ \
o [967519280] | / Y eount
Tmp1s A PSR (ps_suppkey)

_ 7 1182183]

\

Yo g

Tmpld -
[46008] ()
[7255200000]
[}
Tmp13 8 Tmp20
(30183 ()I750000) 190691) Z00000]

Tmp12 1800000] () [800000] P_sjge in (9.19,49)
1250000] () [150000] TC o_orderkey
- QRRHSYe Tmp18
[6000000] () [6000000] o-orderpriority [200000]
Tmp9
TC s natignkey 12275971 [1500000] B ost
Tmpy | Tregonkey ey T L supptey Gordertate ol T p_partey
[- |orderkeey ="1094-01-01' B’t\;gg
T ¢ patpriey o ey iy >=1584.011 i
Cdc Or_name="ASIA’ n_nationke, S o_orderdate
mktsegment - n_name <1995-01-01'
[150000] 51 [25] [10000] [6000000] [1500000] [] ts00000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.11 (e) The Sixth Dynamic MVPP after Merging Q12 into the Existing Re-
Optimized MVPP

Q13
1 Q12
| Q11 t
6 3 7 | 2 Q10 4| 2 ’
Q9 @@ @ 03 | “@ 4 P oy o J 5 Q8
X | | P >0 t
\ | resultd worsipzs0] | |
\ result2 ' (184082] result7 ' [910519] result3(()[182183] i | resultl(")[160240] resulté [36276] |
s_narhe
\ ‘c_mktsegment 'Yniname X ~ ’Ysim(rsisupplycosf) . s_nane eI et |
\ sum(I_discount) /smrr(lfquantlly) | 'n_nam sum(ps_supplycost) |
\ - Tmp23 1 12403600080Q]_ \ min(ps_suppltcost)
AL [967519280] | / Yeount |
\\ Tmp15 _ oo f\\/ < \ (ps_suppkey) |
| 4
\ _-
\ - i
Tmpl4 -
[46008] () /
/
[7255200000]

|
Tmp13 Jmp20
130183] ()[750000] [Z00000]
; <) barld<>"BRAND#45"
- o0
- Toarsorfpez7s07] e pl'iyr{’ f; e A;")BRASS/"
Tmp12 / ; [800000] Pz in (.19
[150000] Jmer— T o_orderkey
Tmp18
—totalprice
Tmp2 o_orderpriority [200000]) [200000]
[1 Tmpo TC ps_suppkey ¢
ps_partkey
; [227597)(_J[1500000] ps-Supplycost
TmpL gnuegmkey T) suppkey Go_orderdate PRty T p_partiey
T cnationkey [I:guanmyf >="1994-01-01' B"sszee
E:EE%!EEY GOr_name="ASIA’ discoun 0_orderdate -
mktsegment <1995-01-01'
[150000] 5] [10000] [6000000] [1500000] [800000] [] r200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure C.11 (f) The Sixth Dynamic MVPP after All New Queries are Merged

231

The sixth dynamic MVPP after optimized is shown in Figure C.12. The query

processing cost of each query after the sixth dynamic MVPP is optimized same as the

fifth dynamic MVPP as shown in Table C.2.

5
3@

2
) t
ez () 21s]

3 7
Q7
[] P

2
@ 5
t e

2 9
L@ 5 x@

6
e®
#

/ t
2 o .
@ P e I @ :
result?() [o10519] | avo(l_extendedprice) + O o])
enpOl2163] | [160240] 4 o s s
4 resutz() [184082) R (R Yonamd L resultl resultil [36276] [756746)
oname (215 [3733997148] sl pencecprice) Yol rcerprony 575169]
®@ Yn_name Vs 1 results () [36276] £
e misegment sum(l_quantity) | sum(ps_supplycost) mfn(1_discount) Vs name By
t <ami(l_discount) Tmpas [124035000000] N mmpal 4 . TG dupptyeosy | Y maxto_brang
I Yn_vame {967515280] — N 240 (QU21TE4EE) Yoorame ocosty! St Sfmcedprce) B Suppkey)
'95“"90[""’9“] count(_orderkye) Q N Tmp3s / min(pg suppltcost) SUm(l g - i
Tmp11 1575169 S ponos19) Q_z,gd ~o/ Tm030] (460135200000) i
A [27336971546; = [6492] 4= — 75169 () Tmp22 !
ns2183] — & 1 commde s availgy<zp .~ o3t b ezr60000
Vo R - - s availty<2o {21921) [160240) s 1z6276] () [) /
mp1s <1_receiptdate / P
[184082) (yI276048000000] - / AN - - —_—
N L[e Wbeuion
4
{o10519) (), [136577850000] ; // Tmpt7 I]
X
116024010 [1602400000]
! s
/ 7 ol vapQ/UQ
Tmp14 Tmpgl 575169]
46008] () (6869560251 910515
) s o s — S —
M > ! tmps |~ receiptite % !
Tmp26
/ [910519) (1365582000000 [AUusulollrmom
/ G p_type
~ - like ‘9%BRASSY
Tmpi3 Tmpé v -
301831 () [750000] 2003 o) - Tmp20
50000] 9069]
\; 190691 20000c]
/
Gp_brpnde> YRANDHS'
Tmp2 0t §typofike ‘YBRASSH
Tmpa ()[25] 7 Tmp10 p_si eln/(9.19,49)
P ezrson)) 1227597) /
/

120000) [10000]

T o_orderkey
e

1800000] ()yg00000]

0ordetpriority

[200000]() [200000]

1150000 () [150000) Tmp2
\TmpS5 (6000000] [6000000]
Tmp12 wQm - m;[,zaa] I o 1 I) oo ot
18
U s_nationkey TU |_suppkey [227597)(_)[1500000] ‘mp]
LT i pettiitog |Forderkey Go_orderdate TC ps_suppley T p_partey
Toge OO e >=1994-01-01' ps-Sippiyeost B-pran
% Ot mame="ASIA" T Rk Eikcoun, o orderdats Bt B
= T extondedorice X
cmkisegment & fohame IFeommitdite <1995.01-01
I”receiptdate
[250000] 51 1251 [10000] [6000000] [1500000] [lisoooony 200000]
customer region nation supplier lineitem orders partsupp part

Figure C.12 The Sixth Dynamic MVPP after Optimized

@ represents materialized view node selected in static phase for Q1-Q7

APPENDIX D

Result of Affected Node Identification Algorithm

In this appendix, we are presenting the result of directly and indirectly affected
node that are identified by an affected node identification algorithm. The affected
node identification algorithm is shown in Figure D.1

begin
1. Initial list Mgirect and Mingirect =¢
Mairect 1S the set of directly affected node
Mingirect IS the set of indirectly affected node
2. For each new query
2.1 Depth first search from the root to base relations to determine
the existing intermediate nodes, v;, used to construct the new query.
2.2 Calculate weight w(v) of each node v;.
v; , that are conjunctively joined with positive weight or project
operation that is not the ancestor of base relation or select
operation, are inserted into the list Mgirect.
3 For each node vj in list Myirect Search its ancestor node u;j U & Mairect,
up to the query node
3.1 calculate weight of node u;,
3.2 if (weight v; > weight u;) and u; is existing materialized view
then put u; into list Mingirect
3.3 if (weight v; < weight u;j) then
traverse in bottom-up way to find the node that return
maximum weight u; of each branch.
put u; into list Mingirect

end;

Figure D.1 The Affected Node Identification Algorithm

w) = Y1, @*(C) S m (e m)

qe0, rel,
w(v) denotes weight of node

O, denotes the queries which use view v.

233

Cg‘ denotes the accessing cost a for query q using view v. The cost of
answering query g is the number of rows presented in the relation used to construct g.
fq denotes the frequency of executing a query.

| denotes the base relations which are used to produce view v.

\

C,, denotes the maintenance cost m for materialized view v based on base

relation r, which is occasionally updated.

fy denotes the frequency of updating base relation

D.1 The Affected Node of The Subsumption Data Set

6 3 7 2 5 2 9
Q10 1
2@ oy ST Qs ? @ *@® 5
4 | @
Q9 resultd | [967519280]
® result7 () [910519] resuita [182183] | result1(T)[160240] results O Be2rs)
4 result2() [184082] result10()[910519]
| 7 resulty ™ [36276]
resultb [46008] Yon Ye_mitsegment sum(l qua tity) s m(5 _supplycost) Yn_tame
X Sount(: orderkye) sum(_discount) [95751;2'30123 24036000000] / mi (ps,suppnmzt)name y
/\ " it !) ‘count
\ Topts Tmp11 . /o or \Ez?w]:\”c%ru‘nyl) sum(ps_jupplycost) (ps. suppkey)
[184082) [275045000000] [182183] [27336971546
DAEY yerice) Ty \ / Tmp19 [36276] | Tmp22
avg(0. ttalprice 362760000
\ [9105191 [136577850000] » [160240] 32048000000] Qr)}
> >

\

/ Tmpl
/ 11602401 () 11602400000]
/

<]

Tmps
11201113 () [120180080Q Tmp21

[36276] [7255200000]

[45005] . [6869560251]
,*« = ",
Topt0 G p_band<>"BRAND#45"

[30133] . [750000] »
50000]
not|p_type like ‘%BRASS%’

1227597(QD227507]
Tmp4 [5](O) 251 e [800000] () [800000] p_s|zein (9.19,49)
120000] () [10000] Tmp7 To om{?key
ot
[227597]

BlHCe Tmp18

[150000] . [150000]
X
Tmp2
[6000000](_) [6000000] Gorderpriority 12000001 () [200000]
mQm \ Tmpg T ps_suppkey Q teoon
[251() [25] ps_partke
T s pationke 11500000] B Eipnitos

Trpy | TH-regionkey SHppkey T R Go_orderdate psZavalg n Dpankey

T o nationkey 11 (I T n_regionke [Fauantity >=1994-01-01' g,glrzpe

E Gr_name="ASIA ”:haaunq@yy I dlsmum o_orderdate =
c_mktsegment - n_name <’1995-01-01'
[150000] 151 [251 [10000] [] ts000000] [1500000] [] 800000 [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7
@ represents new materialized view node selected in dynamic phase
Figure D.2 The Existing Re-Optimized MVPP with Q9 and Q10 by Dynamic
Approach

Considering Figure D.2, The existing nodes used to construct Q9 are {Tmp14,
Tmpl10, Tmp9, Tmpl3, Tmp4, Tmp3, Tmp2, Tmpl and Tmpl2} and Q10 are
{Tmp24, Tmpl10, Tmp9 and Tmp7}. According to Table 4.14 showing the weight of
the existing node used to construct Q9 and Q10, the details of weight calculation are
shown in Table D.1. The details of weight calculation of each node according to Table

4.15, the weight of ancestor node of directly affected node, are shown in Table D.2.

Table D.1 The Weight of the Existing Node to Construct Q9 and Q10

Existing Query Derived Node Number of Weight (w(v))
Node Base
Relations
Tmpl Q1,02,Q3,04,Q9 Tmpl 1 (2+6+7+2+4)(5) — (1)(5) 100
Tmp2 Q1,02,Q3,Q4,Q9 Tmpl, 2 1 (2+6+7+2+4)(1) — (1)(5+1) 15
Tmp3 Q1,02,Q3,Q4,Q9 Tmpl,2,3 1 (2+6+7+2+4)(25) — (1)(25) 500
Tmp4d Q1,02,Q3,Q4,Q9 Tmpl,2, 3, 4 2 (2+6+7+2+4)(25) — (2)(5+1+25+25) 413
Tmp7 Q2,Q3,Q7,Q10 Tmp7 1 (6+7+3+5) (6000000) — (1)(6000000) 120,000,000
Tmp9 Q2,Q3,Q07,Q9,Q10 Tmp9 1 (6+7+3+5+4) (1500000) — (1) (1500000) 36,000,000
Tmpl0 Q2,Q3,Q7,Q9,Q10 Tmp9, 10 1 (6+7+3+5+4)(227597) — (1)(1500000+227597) 3,962,328
Tmpl2 Q4,Q7,Q2,Q9 Tmpl12 1 (2+3+6+4)(150000) — (1)(150000) 2,100,000
Tmpl3 Q2,Q9 Tmpl, 2,3, 4,12, 13 3 (6+4)(750000) — (3)(5+1+25+25+150000+750000) 4,799,832
Tmpl4d Q2,Q9 Tmpl, 2, 3, 4,12, 13,9, 10, 14 4 (6+4)(6869560251) - 41,206,850,894
(4)(5+1+25+25+150000+750000+
+1500000+227597+6869560251)
Tmp24 Q7,Q10 Tmp7, 9, 10, 24 2 (3+5)(1365582000000) 8,193,476,544,806

(2)(6000000+1500000+227597+1365582000000)

1444

Table D.2 The Weight of Ancestor Node of Directly Affected Node of Q9, Q10

Directly Ancestor Query Derived Node Number of Weight of Ancestor Node
Affected Node Base
Node Relations
Tmp4 Tmp6 Q1,03,Q4 Tmpl, 2,3,4,5,6 3 (2+7+2) (50000) - (3)*(5+1+25+25+10000 369,832
+50000)
Tmp8 Q7 Tmpl,2,3,4,5,6,7,8 4 (7)(12018000000) — (4)(5+1+25+25 +10000 36,029,759,776
+50000 +6000000+12018000000)
Tmpll Q7 Tmpl,2,3,4,5,6,7,8,9,10 5 (7)(273369715461) — (5) (5+1+25 +25 + 486,610,492,657
10000+ 50000 +6000000 +12018000000+
1500000 +227597+273369715461)
Tmpl7 Q1,04 Tmpl, 2, 3,4,5, 6, 16, 17 4 (2+2)(1602400000) - (4)(5+1+25+25 -3,440,224
+10000+50000+800000+1602400000)
Tmp19 Q1 Tmpl, 2,3, 4,5, 6, 16, 17, 19 5 (2)(32048000000) - (5)(5+1+25+25 -104,160,300,280
+10000+50000+800000+1602400000
+200000+32048000000)
Tmp23 Q4 Tmpl, 2, 3, 4, 5, 6, 16, 17, 5 (2)(24036000000) — (5)(5+1+25+25 +10000 -80,125,050,280

12, 23

+50000+800000+1602400000
+150000+24036000000)

Gee

Table D.2 (Continued)

Directly Ancestor Query Derived Node Number Weight of Ancestor Node
Affected Node of Base
Node Relations
Tmpld Tmpl5s Q2 Tmpl, 2, 3, 4, 12, 13, 5 (6)(276048000000) — (5)(5+1+25+25+ 241,657,060,480
9,10,14,7,15 150000+750000+ 1500000 +227597 +

6869560251+6000000 +276048000000)

Tmp24 Tmp25 Q7 Tmp?7, 9, 10, 24 3 (3)(136577850000) - -
(3)(6000000+1500000+227597 4,096,769,632,791

+1365582000000+150000+136577850000

Therefore, the affected nodes are:
Directly affected nodes: Tmpl14, Tmpl3, Tmpl0, Tmp9, Tmp4, Tmp2, Tmpl and Tmp24
Indirectly affected nodes: Tmpll, Tmpl5

9€¢

237

D.2 The Affected Node of The Partially Overlapping Data Set Data Set

2
i " ! e ¢ 2 ° Qﬁ.g
2
2@ @ we *@ + ve e
rcsunlzo[mzm] ? ;
results () [36276]
resultd | [967519280] Yn. naJe resultadl 575169] s@
result2) (184082 resyii7 ()[010519] resuita({82183 T endedprics
Tmpzol resultL(()[160240] ¢ Ys_na

Ve miisegment
sam(l_discount)

b’ v

e
sum{ps_supplycost)
Vs_name [152424] 0[122113784832J |
sum(ps_supplycost) 1& e results()[36276]

"Yo_orderstatus
’YQTH”(% supplicost) ! oS eoride)
- T

n_name
sam(l_quantity)
Tmp23

'n_name
count(l_orderkye)

| \Tmp29

D S B— 1967519280] () [24036000000] [32}92](23507401 (575169) @460125200000]

[184082) @ I 1 [182183] G PR ~ B6276] | Tmp22 Yeount
[(O [362760000] (ps_suppkey)

like ‘%BRASS® ~.
[136577850000] Tmp19

Tmpl4
[7255200000]

/
!
Tmp8 [525469]
D -commitddte < |_receiptdate
8260960, Tmp20
Tmp13
[30{383] O [750000 [9069] [200000]

Gp_brjnd<>'BRAND#45
not p_type like ‘%BRASSY%’
Vol p_sike in (9,19,49)
1250000] () [150000] d G |_commitdate

Tmp12 < I_receiptdate A
6000000] o_orderstatus [200000](_) [200000
O Imps [1O f6000000] Tmpe| O 10 ps.sumkey Or]
[25] 25] ps_partkey mp18
T regiorkey ' o |7 sptey (1597 Qsooooo B T ey
Tmpl - s_suppkey I’muerkey Go_orderdate -avaldly p_brand
1O I"quanti —1094-01-01' e
T Huasuggkey mOBl T p regionke [-gantity >='1994-01-01 povpe
Cdcetbal Gr_name="ASIA" g:‘;gm%n ey I,ggcrg{gtltlg?ée 0_orderdate -
¢_mkisegment 7 RS <*1995-01-01
[r1s0000] [5] [25] [] r20000] [6000000] [1500000] [800000] 200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7
@ represents new materialized view node selected in dynamic phase

Figure D.3 The Existing Re-Optimized MVPP with Q11 and Q12 by Dynamic
Approach

Considering Figure D.3, the existing nodes used to construct Q11 are {Tmp16,
Tmp24, Tmpl10, Tmp9 and Tmp7} and Q12 are {Tmpl9, Tmpl8, Tmpl7, Tmpl6,
Tmp6, Tmp5, Tmp4, Tmp3, Tmp2, Tmpl and Tmp7}. According to Table 4.17
showing the weight of the existing node used to construct Q11 and Q12, the details of
weight calculation are shown in Table D.3. The details of weight calculation of each

node according to Table 4.18, the weight of ancestor node of directly affected node,
are shown in Table D.4.

Table D.3 The Weight of the Existing Node to Construct Q11 and Q12

Existing Query Derived Node Number of Weight (w(v))
Node Base
Relations
Tmpl Q1,02,Q3,04,Q012 Tmpl 1 (2+6+7+2+2)(5) — (1)(5) 90
Tmp2 Q1,Q2,Q03,Q4,Q12 Tmpl,2 1 (2+6+7+2+2)(1) — (1)(5+1) 13
Tmp3 Q1,Q2,Q03,Q4,Q12 Tmp3 1 (2+6+7+2+2)(25) — (1)(25) 450
Tmp4 Q1,Q02,Q3,Q4,Q12 Tmpl, 2,3, 4 2 (2+6+7+2+2)(25) — (2)(5+1+25+25) 363
Tmp5 Q1,03,04,06,Q12 Tmp5 1 (2+7+2+9+2)(10000) — (1)(10000) 210,000
Tmp6 Q1,03,Q4,Q12 Tmpl, 2,3,4,5,6 3 (2+7+2+2)(50000) — (3) (5+1+25+25 +10000 + 50000) 469,832
Tmp7 Q2,03,Q7,011 Tmp7 1 (6+7+3+5)(6000000) — (1)(6000000) 120,000,000
Tmp9 Q2,03,Q7,011 Tmp9 1 (6+7+3+5)(1500000) — (1) (1500000) 30,000,000
Tmpl0 Q2,Q3,Q7,Q11 Tmp9, 10 1 (6+7+3+5)(227597) — (1) (1500000+227597) 3,051,940
Tmpl6 Q1,04,Q5,Q6, Q12 Tmpl6 1 (2+2+5+9+2)(800000) - (1)(800000) 15,200,000
Tmpl7 Q1,04,Q12 Tmpl,2,3, 4,5, 6, 16, 17 4 (2+2+2)(1602400000) - 4 (5+1+25+25+ 3,201,359,776
+10000+50000+800000+1602400000)
Tmpl8 Q1,05,06,Q12 Tmpl8 1 (2+5+9+2)(200000) — (1) (200000) 3,400,000
Tmpl9 Q1,012 Tmpl,2,3,4,5,6,16,17,18, 5 (2+2)(32048000000) — (5) (5+1+25+25+10000 +50000 -40,065,300,280
19 +800000+1602400000 +200000 +32048000000)
Tmp24 Q7,Q11 Tmp7, 9, 10, 24 2 (3+5)(1365582000000) - (2)(6000000 8,193,476,544,806

+1500000+227597+1365582000000)

8€¢

Table D.4 The Weight of Ancestor Node of Directly Affected Node of Q11, Q12

Directly Ancestor Query Derived Node Number Weight of Ancestor Node
Affected Node of Base
Node Relations
Tmp4 Tmpl3 Q2 Tmpl, 2, 3,4,12,13 3 (6)(750000) — (3)(5+1+25+25+150000+ 750000) 1,799,832
Tmpl4 Q2 Tmpl,2,3, 4, 12, 9, 10, 13, 4 (6)(6869560251) — (4)(5+1+25+25+150000 13,728,609,890
14 +750000 + 1500000 +227597+6869560251)
Tmpl5 Q2 Tmpl,2,3,4,7,12,9,10,13,14, 5 (6)(276048000000) — (5)(5+1+25+25+ 150000 + 241,657,060,480
15 750000 + 1500000 +227597 +6869560251
+6000000 +276048000000)
Tmp6 Tmp8 Q3 Tmpl,2,3,4,5,6,7,8 4 (7)(12018000000) — (4) (5+1+25+25+ 10000 36,029,759,776
+50000+6000000+12018000000)
Tmpll Q3 Tmpl,2,3,4,5,6,7,8,9,10,11 5 (7)(273369715461) — (5) (5+1+25+25 +10000 486,610,492,657

+50000+6000000+12018000000+ 1500000
+227597+273369715461)

Tmp17 Tmpl9 Q1,Q12 Tmpl,2,3,45,6,16,17,18,19 5 (2+2)(32048000000) — (5) (5+1+25+25+10000 -40,065,300,280
+50000+800000+1602400000 +200000
+32048000000)
Tmp23 Q4 Tmp1,2,3,4,5,6, 12,16,17, 23 5 (2)(24036000000) — (5) (5+1+25+25 +10000 -80,125,050,280

+50000 +800000+1602400000 +150000 +
24036000000)

6€¢C

Table D.4 (Continued)

Directly Ancestor Query Derived Node Number Weight of Ancestor Node
Affected Node of Base
Node Relations
Tmp24 Tmp25 Q7 Tmp7, 9,10, 12,24,25, 3 (3)(136577850000) — (3)(6000000+1500000 -4,096,769,632,791
+227597+150000+ 1365582000000+
136577850000)

Therefore, the affected nodes are:

ove

Directly affected nodes: Tmpl, Tmp2, Tmp4, Tmp6, Tmp9, Tmpl10, Tmpl7 and Tmp24
Indirectly affected nodes: Tmpll, Tmpl5

241

D.3 The Affected Node of Deleting the Query

6 3 7 2 2 9
@@ Q7 o) u@ L@ el s
X
i I o }
sult3 36276]
resultz() [184082) result? R [910519] - result3([160240] results () [36276]

results () [36276]

Y/n_name
Ye_mitsegment 14 Sim (1 quantity 's_name
(I_discount) sum(ps_pupplycost)
I Tmp23 Y _name
| min(ps_suppltcost)
Tmpl 1967519280] Yeount
Tmp15 (ps_suppkey)

[184082]

Tmp22
[362760000]

36276
32048000000] [! ‘

Tmpl4
146008] ()

Tmp13
1301831 () (75009 [200000]
N ind<>'BRAND#45’
not p_type like ‘%BRASS%"
rerson) Opezrsen o slgiyr:)(Q 19.49)
Tmp12 [800000] () [800000] - 19,
pseeeo Sy s
o_totalprice [200000] () [200000]
i inps
>_| mp:
227597
T egionkey T < naionkey t2rsenQsooooo) Be-soEpos T p_partey
Tmpl s_suppkey T ILsuéapl;sy = p_brand
1] 5] orderkey)_type
s g{j‘"ggkey w Bl T n_rze%iorlbey I:quami(yy 049 orderdate>="1994-01-01' E;?(z"e
Cinitssgment Ot_name="ASIA fname tax | orderdate<’1995-01-01'
[150000] [5] [25] [10000] [6000000] [1500000] [800000] [] 1200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure D.4 The Re-Optimized MVPP with Deleting Q3 by Dynamic and Static
Approach

Considering Figure D.4, The existing nodes used to construct Q3 are {Tmp11,
Tmpl0, Tmp9, Tmp8, Tmp7, Tmp6, Tmp5, Tmp4, Tmp3, Tmp2, Tmpl}. After Q3
deleted, the nodes used to construct only Q3 are deleted that are Tmpll and Tmp8,
the nodes used to construct Q3 and the other queries are remained and might be
identified as the directly affected node. According to Table 4.20 showing the weight
of the existing node for Q3, the details of weight calculation are shown in Table D.5.
The details of weight calculation of each node according to Table 4.21, the weight of

ancestor node of directly affected node, are shown in Table D.6.

Table D.5 The Weight of the Existing Node of Q3

Existing Query Derived Node Number Weight (w(v))
Node of Base
Relations
Tmpl Q1,02,04 Tmpl 1 (2+6+7+2)(5) — (1)(5) 45
Tmp2 Q1,02,04 Tmpl,2 1 (2+6+7+2)(1) — (1)(5+1) 4
Tmp3 0Q1,Q2,Q4 Tmp3 1 (2+6+7+2)(25) — (1)(25) 225
Tmp4 Q1,Q02,Q4 Tmpl,2,3,4 2 (2+6+7+2)(25) — (2)(5+1+25+25) 138
Tmp5 Q1,Q4,Q6 Tmp5 1 (2+2+9)(10000) — (1)(10000) 120,000
Tmp6 Q1,04 Tmpl,2,3,4,5,6 3 (2+2)(50000) — (3)(5+1+25+25+10000+50000) 19,832
Tmp7 Q2,Q7 Tmp7 1 (6+3)(6000000) — (1)(6000000) 48,000,000
Tmp9 Q2,Q7 Tmp9 1 (6+3)(1500000) — (1)(1500000) 12,000,000
Tmpl0 Q2,Q7 Tmp9,10 1 (6+3)(227597) — (1)(1500000+227597) 320,776

cve

Table D.6 The Weight of Ancestor Node of Directly Affected Node of Q3

Directly Ancestor Query Derived Node Number Weight of Ancestor Node
Affected Node of Base
Node Relations
Tmp4 Tmpl3 Q2 Tmpl, 2, 3,4,12,13 3 (6)(750000) — (3)(5+1+25+25+150000+ 1,799,832
750000)
Tmpl4 Q2 Tmpl,2,3, 4, 12,9, 10, 13, 14 4 (6)(6869560251) — (4)(5+1+25+25+150000 13,728,609,890
+750000 + 1500000 +227597+6869560251)
Tmpl15 Q2 Tmpl,2,3,4,7,12,9,10,13,14, 15 5 (6)(276048000000) — (5)(5+1+25+25+ 150000 241,657,060,480

+ 750000 + 1500000 +227597
+6869560251+6000000 +276048000000)
Tmp6 Tmpl7 Q1,04 Tmpl,2,3,4,6,16,17 4 (2+2)(1602400000) — (4) (5+1+25+25+ -3,440,224
+10000+50000+800000+1602400000)
Tmpl9 Q4 Tmpl,2,3,4,6,16,17,18,19 5 (2)(32048000000) — (5) (5+1+25+25+ -104,160,300,280
+10000+50000+800000+1602400000
+200000+32048000000)
Tmp23 Q4 Tmpl,2,3,4,6,12,16,17,23 5 (2)(24036000000) — (5) (5+1+25+25+ -80,125,050,280
+10000+50000+800000+1602400000 +150000
+ 24036000000)
Tmp10 Tmp24 Q7 Tmp7, 9,10, 24 2 (3)(1365582000000) — (2)(6000000 1,365,566,544,806
+1500000+227597+1365582000000)

eve

Table D.6 (Continued)

Directly Ancestor Query Derived Node Number Weight of Ancestor Node
Affected Node of Base
Node Relations
Tmp10 Tmp25 Q7 Tmp7, 9,10, 12,24,25, 3 (3)(136577850000) — (3)(6000000+1500000 -4,096,769,632,791
+227597+150000+ 1365582000000+
136577850000)

Therefore, the affected nodes are:
Directly affected nodes: Tmpl0, Tmp9, Tmp6, Tmp4, Tmp2 and Tmpl
Indirectly affected nodes: Tmpl5 and Tmp24

vve

245

D.4 The Affected Node of Adding Query Constructed on All Base

Relations

: . T S
ve “@ i
3 2
rrrrr mo [215] u@
6 3 resultq L[967519280] ?
901 xtendedprice)
2 Q7 Tmp28
2@ . suitg (J[182183] [215] [3 733997148] [160240] 9
g (bs._supplyco result1 °
6
Vg anity Tmp23 Q
[24036000000] Tmp27, /
result2() [184082] It7 [910519] 1967519280] NTmp26
[57 159 LQ‘USWJ (5402 [160240] Yn_ngme
min(ps_suppltcost) o 16
Tmp1l a ~ [36276] 5
O p_type™
name (182183 @[273360715461] like “HBRASSHS ~_ G@

Gouni(orderkye)

eceiptdate
ps_availgty<200 19 [32043000000] g
Tmp1s, sum(l dlscuum) [1505401 results [36276]
[184082] [275045000000] _ - X
Tozs |~ ’ L] -

ro105197 (), [136577850000]

‘count
X NG ¥ s appke)
Tmp22
Tmpl4 (1602401C) [1602400000) 1362761() [362760000]
146008] () [6869560251] Al >
X
Tmp24 Tmp2t
255200000]
[910519) @) [1365582000000 [z6276] 8 17 d
24

Tmp13
[30183] () 750000]

Tmp20
[9069%) 200000]

X
T""’m Gp_brand<>"BRAND#45*
Tmps (")(25] pzrsar) O [227507) N0t p_type like ‘%BRASS%’
5
J§ S o md%key p_size in (9,19,49)
Tmp2 Slotlpice
wOw Tmp3 120000) () [10000) [6‘7"”0“01 n[ﬁ‘{’f“”fg 12000001 00001 1200000]C) 200000]
1250000)) [150000] 10 25) Tmp5 Tmp?. é:p Y 225 Osoooon) ot Tmp1s
Tmp12 _— TUr_regionkey ty Tmp mp16 T st key T p_partkey
. . Pl
T ooy O T o resiorke T snuaspaknei;ey 'f“e"““‘"e'ce Go_orderdate>="1994-01-01 gvgglx/cast [ad lype
e Gr_name="ASIA" nationkey’ [receiptdate o_orderdate<"1995-01-01"
c_mktsegment - | nChame
[150000] 5] 125) [10000] [6000000] [1500000] [800000] [200000]
customer region nation supplier lingitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7
@ represents materialized view node selected in dynamic phase

Figure D.5 The Existing Re-Optimized MVPP with Q13 by Dynamic Approach

Considering Figure D.5, the existing nodes used to construct Q3 are {Tmp19,
Tmpl8, Tmpl7, Tmpl6, Tmp6, Tmp5, Tmp4, Tmp3, Tmp2, Tmpl, Tmp25, Tmp24,
Tmpl0, Tmp9, Tmp7, and Tmpl2}. According to Table 4.23 showing the weight of
the existing node used to construct Q13, the details of weight calculation are shown in
Table D.7. The details of weight calculation of each node according to Table 4.24, the

weight of ancestor node of directly affected node, are shown in Table D.8.

Table D.7 The Weight of the Existing Node to Construct Q13

Existing Query Derived Node Number Weight (w(v))
Node of Base
Relations
Tmpl Q1,02,Q3,04,013 Tmpl 1 (2+6+7+2+5)(5) — (1)(5) 105
Tmp2 Q1,Q2,Q3,Q4,Q13 Tmpl,2 1 (2+6+7+2+5)(1) — (1)(5+1) 16
Tmp3 Q1,Q2,Q3,04,Q13 Tmp3 1 (2+6+7+2+5)(25) — (1)(25) 525
Tmpd Q1,Q2,Q3,Q4,Q13 Tmpl,2,3,4 2 (2+6+7+2+5)(25) — (2)(5+1+25+25) 438
Tmp5 Q1,03,04,Q6,Q13 Tmp5 1 (2+7+2+9+5)(10000) — (1)(10000) 240,000
Tmp6 Q1,03,Q4,Q13 Tmpl1,2,3,4,5,6 3 (2+7+2+5)(50000) — (3)(5+1+25+25+10000+50000) 619,832
Tmp7 Q2,03,07,Q13 Tmp7 1 (6+7+3+5)(6000000) — (1)(6000000) 120,000,000
Tmp9 Q2,03,07,Q13 Tmp9 1 (6+7+3+5)(1500000) — (1)(1500000) 30,000,000
Tmpl0 Q2,Q3,Q7,Q13 Tmp9,10 1 (6+7+3+5)(227597) — (1)(1500000+227597) 3,051,940
Tmpl2 Q2,Q4,Q7,Q13 Tmpl2 1 (6+2+3+5)(150000) — (1)(150000) 2,250,000
Tnple Q1,Q04,Q05,Q 6, Q13 Tmpl6 1 (2+2+5+9+5)(800000) — (1)(800000) 17,600,000
Tmpl7 Q1,04,Q13 Tmpl,2,3,4,5,6,16,17 4 (2+2+5)(1602400000) — (4)(5+1+25+25+10000 8,008,559,776
+50000+800000+1602400000)
Tmpl8 Q1,Q5,Q6,Q13 Tmpl8 1 (2+5+9+5)(200000) — (1)(200000) 4,000,000
Tmpl9 Q1,Q13 Tmpl,2,3,4,5,6,16,17,18,19 5 (2+5)(32048000000) - (5)(5+1+25+25+10000 56,078,699,720

+50000+800000+1602400000+200000+32048000000)

ave

Table D.7 (Continued)

Existing Query Derived Node Number Weight (w(v))
Node of Base
Relations
Tmp24 Q7,Q13 Tmp7,9,10,24 2 (3+5)(1365582000000) —(2)(6000000+ 1500000+ 8,193,476,544,806

227597+ 1365582000000)

Tmp25 Q7,Q13 Tmp7,9,10,12,24,25 3 (3+5)(136577850000) —(3)(6000000+ 1500000+ -3,413,880,382,791
227597+ 150000+1365582000000+136577850000)
Table D.8 The Weight of Ancestor Node of Directly Affected Node of Q13
Directly ~ Ancestor Query Derived Node Number Weight of Ancestor Node
Affected Node of Base
Node Relations
Tmp4 Tmpld Q2 Tmpl, 2, 3, 4,12, 13 3 (6)(750000) — (3)(5+1+25+25+150000+ 1,799,832
750000)
Tmpld Q2 Tmp1,2,3, 4,12, 9, 10, 13, 14 4 (6)(6869560251) — (4)(5+1+25+25+150000 13,728,609,890
+750000 + 1500000 +227597+6869560251)
Tmpl5 Q2 Tmpl,2,3,4, 7,12,9,10,13,14, 5 (6)(276048000000) — (5)(5+1+25+25+ 150000 241,657,060,480

15

+ 750000 + 1500000 +227597
+6869560251+6000000 +276048000000)

Lve

Table D.8 (Continued)

Directly Ancestor Query Derived Node Number Weight of Ancestor Node
Affected Node of Base
Node Relations
Tmp6 Tmp8 Q3 Tmpl,2,3,4,5,6,7,8 4 (7)(12018000000) — (4) (5+1+25+25+ 36,029,759,776
+10000+50000+6000000+12018000000)
Tmpll Q3 Tmp1,2,3,4,5,6,7,8,9,10,11 5 (7)(273369715461) — (5) (5+1+25+25+ 486,610,492,657
+10000+50000+6000000+12018000000+
1500000 +227597+273369715461)
Tmp24 Tmp25 Q7,Q13 Tmp7,9,10,12,24,25 3 (3+5)(136577850000) —(3)(6000000+ -3,413,880,382,791

1500000+ 227597+
150000+1365582000000+136577850000)

Therefore, the affected nodes are:
Directly affected nodes:

Indirectly affected nodes: Tmpll and Tmpl5

Tmpl9, Tmpl7, Tmp6, Tmp4, Tmp2, Tmpl, Tmp24, Tmp10 and Tmp9

8¢

249

D.5 The Affected Node for Adding All Queries of the First Experiment

5
LY 2
Q7 2 7 2 4 Q2@ 5
10 2
6 Y *@ ‘e;...momr, e ? w@ s
2@ w, resu It]zOlSZdZd o h 5 x®
“7 [910519] resulta L(967519280] \ extendedprice) O -) 4
resulia(1162183 TS) praas 50000 [36276 i
4 resuzQ) [184082)) Qs Vi name 7 i) 758746]
e miszgment Y
QQ? Smigseqmen ng(ams i) ‘/SW(DS supmycowﬁ nﬁmszsﬂ s i results () [36276) f .
\ame Tmpz3 [masnnnnnn]/ el [3:]_Q\” 52424] ‘ Yo_ m(ps_supplycost) fycou | ¥ mee-brend)
\\\\\ m(') [46008] (1 orderkye) szl 7 S) Tmpa2 / ame e Sy
‘ Tmpi1 / \ Q[\zzxmq 832] B]
(2733697154631 ns2e2a f5~ < 575169 i
[182183] ¥ s \ ~ T3t % o) Tegrsoooo !
al 4 \ / (52192) Q‘EWM] _ /
4 \ / I opth P % /
|

[46008] () [6869560251]
/

! 1mp2a y

/[910519] \ [1365582008000

¢
\

134
Tmp2(

400 F]O [200000]

)
w30 10 !aknce][mmgz] [276048000000] % Koy T s Jmp28
/ [ik WBRASSR® | Tmp1g [rsea6) () stos1851168)
910519] . [136577850000] \ ! tmpr (160240] (" 3a628000000) ~ F
\/ M | -~
\ y Loz (O 126024000001 P | |
. / 7 Tmni\g | |
Ty]4 i) [575169] -
o / \ o L onos | - |
g G L esmitda [7255200000] |
{ receiptiate

/ G p_type
3 — - like ‘%BRASS%’
130183]) [750000] Tmp20
> 1906910 [20000m'
Gp brind<>’ ;JR AND#45
0000 p_typeflike ‘%BRASSY
v Tmpa (28] [3 mg Tmp10 p sifeinf.19.49)
/7 5 ‘ o/!_commitdate r2rsen Q) [227507) /
o \ | 1_receiptate T o orderkey ;
[10000] [10000] lee.
1150000] () [150000] Tmp2 o-ordery 800000} (ygo0000]
Tmp5, [6000000] 6000000} _orderpriority
Tmp12 uOu mps 160000001 [6000000) -, Tmpts 12000001(") (200000]
251() 125) Tmp7: mp18
O regionkey U s_nationkey T supkey 12275971 [1500000] P
Tmpl s_suppkey ;,3“5"‘\;@/ Go_orderdate T B SUDEKEY T v{aﬂkw
1] 1) I 1994-01-01" 5 su | msx
T cpationkey U U n_regionke IFtax P Lo Brovee
iy O name=Asia AiSHns) Pt o_ordercite size
¢-mkisegment o I~commitdate <'1995-01-01
I~receiptdate
150000) 5] 25 10000] [5300000] [1500000) [800000] [200000]
customer region nation supplier lineitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7

Figure D.6 The First Dynamic MVPP after Optimized, Queries in the List:{ Q10,
Q8, Q11, Q12, Q9 and Q13}

The initial requirements for the first experiment are Q1 to Q7. The new
requirements are Q8 to Q13 that are merged into the existing re-optimized MVPP.
The existing MVPP is generated from Q1 to Q7 in the static phase by static
materialized view selection approach.

According to Table 4.29 showing the weight of the existing node used to
construct all new queries, the details of weight calculation are shown in Table D.9.
The details of weight calculation of each node according to Table 4.30, the weight of

ancestor node of directly affected node, are shown in Table D.10

Table D.9 The Weight of the Existing Node of All Queries of the First Experiment

Existing Query Derived Node Number Weight (w(v))
Node of Base
Relations
Tmpl Q1,02,03,Q04,Q9,Q12,Q13 Tmpl 1 (2+6+7+2+4+2+5)(5) — (1)(5) 135
Tmp2 Q1,Q2,03,04,Q9,012,Q13 Tmpl,2 1 (2+6+7+2+4+2+5)(1) — (1)(5+1) 22
Tmp3 Q1,Q2,03,04,Q9,012,Q13 Tmp3 1 (2+6+7+2+4+2+5)(25) — (1)(25) 675
Tmpd Q1,Q2,03,04,Q9,012,Q13 Tmpl,2,3,4 2 (2+6+7+2+4+2+5)(25) — (2)(5+1+25+25) 588
Tmp5 Q1,03, Q4,012,Q13 Tmp5 1 (2+7+2+9+2+5)(10000) — (1)(10000) 260,000
Tmp6 Q1,03,Q04,Q12,Q13 Tmpl,2,3,4,5,6 3 (2+7+2+2+5)(50000) — 719,832
(3)(5+1+25+25+10000+50000)
Tmp7 Q2,03,Q07,Q08,Q10,011,Q12,Q13 Tmp7 1 (6+7+3+6+5+5+2+5)(6000000) — 228,000,000
(1)(6000000)
Tmp9 Q2,Q3,07,Q9,010,Q11,Q13 Tmp9 1 (6+7+3+4+5+5+5)(1500000) — (1)(1500000) 51,000,000
Tmpl0 Q2,Q3,Q07,09,Q10,011,Q13 Tmp9,10 1 (6+7+3+4+5+5+5)(227597) — 6,238,298
(1)(1500000+227597)
Tmpl2 Q2, Q4,Q07,Q9,013 Tmpl2 1 (6+2+3+4+5)(150000) — (1)(150000) 2,850,000
Tmpl3d Q2,Q9 Tmpl, 2, 3,4,12,13 3 (6+4)(750000) - (3) (5+1+25+25 + 4,799,832

150000 + 750000)

0S¢

Table D.9 (Continued)

Existing Query Derived Node Number Weight (w(v))
Node of Base
Relations
Tmpl4 Q2,Q9 Tmpl, 2, 3, 4, 12, 13, 9, 10, 4 (6+4)(6869560251) — 41,206,850,894
14 (4)(5+1+25+25+150000+750000+

+1500000+227597+6869560251)

Tmple Q1,04,Q5,Q6,Q11,Q12,Q13 Tmpl6 (2+2+5+9+5+2+5)(800000) — (1)(800000) 23,200,000

Tmpl7 Q1,04,Q012,Q13 Tmpl,2,3,4,5,6,16,17 4 (2+2+2+5)(1602400000) — (4) (5+1+25+25+ 11,213,359,776
+10000+50000+800000+1602400000)

Tmpl8 Q1,05,06,08,012,Q13 Tmp18 1 (2+5+9+6+2+5)(200000) — (1) (200000) 5,600,000

Tmpl9 Q1,Q012,Q13 Tmpl,2,3,4,5,6,16,17,18,19 5 (2+2+5)(32048000000) — (5)(5+1+25+25 120,174,699,720
+10000+50000+800000+1602400000
+200000+32048000000)

Tmp24 Q7,010,011 Tmp7,9,10,24 2 (3+5+5)(1365582000000) — (2)(6000000+ 15,021,386,544,806

1500000+ 227597+ 1365582000000)

16¢

Table D.10 The Weight of Ancestor Node of Directly Affected Node of All Queries of the First Experiment

Directly Ancestor Query Derived Node Number of Weight of Ancestor Node
Affected Node Base
Node Relations
Tmp6 Tmp8 Q3 Tmpl,2,3,4,5,6,7,8 4 (7)(12018000000) — (4) (5+1+25+25+ 36,029,759,776
+10000+50000+6000000+12018000000)
Tmpll Q3 Tmp1,2,3,4,5,6,7,8,9,10,11 5 (7)(273369715461) — (5) (5+1+25+25+ 486,610,492,657

+10000+50000+6000000+12018000000+
1500000 +227597+273369715461)

Tmp14 Tmp15 Q2 Tmp1,2,3,4, 7,12,9,10,13,14, 5 (6)(276048000000) — (5)(5+1+25+25+ 241,657,060,480
15 150000 + 750000 + 1500000 +227597
+6869560251+6000000 +276048000000)
Tmp17 Tmp23 Q4 Tmp1l, 2, 3, 4,5, 6, 16, 17, 12, 5 (2)(24036000000) — (5)(5+1+25+25+10000 - 80,125,050,280
23 +50000+800000+1602400000 +150000
+24036000000)
Tmp24 Tmp25 Q7 Tmp7, 9, 10, 24 3 (3)(136577850000) — (3)(6000000+1500000 -4,096,769,632,791
+227597 +1365582000000 +150000
+136577850000

Therefore, the affected nodes are:
Directly affected nodes: Tmpl, Tmp2, Tmp4, Tmp6, Tmp9, Tmpl10, Tmpl3, Tmpl4, Tmpl7, Tmpl9, and Tmp24
Indirectly affected nodes: Tmpll, Tmpl5

4514

253

D.6 The Affected Node for Adding All Queries of the Second Experiment

4 5
5
3 QZB.
4 Qe 5 - 6. =@ 047.

X
501
@ * 0@ i resullao 3793296] 7 vesullzso [B2172), rkwﬂonmmaw. . szs.
7
result33

A Qs 6 Q43
esult52(_) [215] Q15
Ao Ysumu i) Ysﬂdwws s *0 e
(75904741 dev(extended
1 resuaaQ 122778) | stddev(l_extendedprice) s 6 A esuz2() [575169]
1

resullBDO [184082]
me
ysum(\ nuamuy) Yp_bran

X _ =

Ym’aX(stcoum) avg(l_ef tendedpnce) 1 h [160232] ‘ [3793296]

| Yn_nape | Yoorand | resus I resultol P results () [160232]

| | TmpZ countfps_supplycost) | Sﬁjml 4 | o brard

| [215] I | fin(l Jextendedprice)
! f ! brapd n_name | retufnflag Y Pt

} i {11150000) | ! R -~ ! Vit b Ve suppuymgﬁﬂam(n _avaidty)

1

|
| Tmp24 ! Tmp2

! Tmp33 [4741][373 097148] #

| [115372] 0[1152063 47 \ [22778] 86275350000] -

| -

|

Tmp32 |
11840821 Q. 2(6048000000]
\
[60783 640] ‘ !

|
|
A r j i
/ ~
’ N ’/ !
, ,
. I
4;0’3531 5 6869560251 g | A
[46008] Sz[\] 172) @I160240] T8 1
X T [160232] 0
/ = T |
P~ |Tmp27
< \ \[160240] . 1602400000] mung\ T,h P (320454000h0]
[37932" O[37937seooom\ 5751 9] [460135200000] 0 A
Tmp26
\ plB [3793296]@) [3034636800000]
Tmpé v
12003] (O)[50000] \ A

[8633427897 12]
~ (% "\
Tmp4 15] () [25] ,
Tmp
[37932%] 22 O teooooco]
Tmp3
m
2510 (251

Tmp30 [/
1301831 (750000]

Tmp1l
140058] @) [200000]

|
Tmp2z 4
[150000] ./ [150000] [227597] [227597] Op_type likf ‘YBRASS%’

mp2 S
1 [10000] ‘ [10000] G |_commitdate Tmp17 e Tmno
Tpr AL Lreceptcae T o-Qudgtkey 800000 " [300000] P o
TUr_regionk lotalprice 200000} () 200000
Temtionkey Treglonkey 6000000] ﬁ?”?fﬂey Tmp16 P T s aum key n[1
c_custiey ™LA 70 n_name TU s_suppkey I partkey 12275971 O1500000] BB feost e
Bl@jC) n nationkey s ationkey [orderkey psavaid
. ot [returmitly p_type
Gr_name="ASIA’ n_nationkey I=q . .
& extemeup,.ce Go_orderdate>="1994-01-01
oot ete 0_orderdate<"1995-01-01'
I receiptdate
[] 500007 5] 28] [10000] [6000000] [1500000] 800000] [] 200000y
customer region nation supplier lingitem orders partsupp part

@ represents materialized view node selected in static phase for Q1-Q7
Figure D.9 The Dynamic MVPP after Merged All New Queries and Optimized

The initial requirements for the second experiment are {Q4, Q15, Q22, Q33,
Q40, Q43 and Q50} shown in section 4.9.1. The new requirements {Q3, Q6, Q28,
Q30, Q31 and Q47} shown in section 4.9.2 are merged into the existing re-optimized
MVPP. The existing MVPP is generated from {Q4, Q15, Q22, Q33, Q40, Q43 and
Q50} in the static phase by static materialized view selection approach.

Table D.11 shows the details of weight calculation of the existing node used to
construct all new queries, {Q3, Q6, Q28, Q30, Q31 and Q47}. The details of weight
calculation of ancestor node of directly affected node, are shown in Table D.12.

Table D.11 The Weight of the Existing Node of the Second Experiment of the Second Experiment

Existing Query Derived Node Number of Weight (w(v))
Node Base
Relations
Tmpl Q33,Q40,Q50,Q28,Q030,Q31,Q47 Tmpl 1 (6+4+5+5+4+5+5)(5) — (1)(5) 165
Tmp2 Q33,Q40,Q50,028,Q30,Q31,Q47 Tmpl, 2 1 (6+4+5+5+4+5+5) (1) — (1)(5+1) 28
Tmp3 Q33,Q40,050,028,Q30,Q31,Q47 Tmp3 1 (6+4+5+5+4+5+5) (25) — (1)(25) 825
Tmpd Q33,Q40,Q50,028,Q30,Q31,Q47 Tmpl, 2, 3,4 2 (6+4+5+5+4+5+5) (25) — (2)(5+1+25+25) 738
Tmp5 Q15 Q33,Q40,043,Q050,Q28,Q31, Tmp5 1 (5+6+4+7+5+5+5+5)(10000) — (1)(10000) 450,000
Q47
Tmp6 Q28,033,Q40, Q31,Q47 Tmpl, 2,3,4,5,6 3 (5+6+4+5+5)(50000) — 1,069,832
(3)(5+1+25+25+10000+50000)
Tmp7 Q4,Q15,Q022,Q33,Q40,Q43,Q50, Tmp7 1 (6+5+3+6+4+7+5+4+7+5+4+5)(800000) 44,800,000
Q6, Q28,030,047 —(1)(800000)
Tmp8 Q28,Q33,Q40, Q47 Tmpl, 2,3,4,5,6,7,8 4 (5+6+4+5)(1602400000) — 25,634,959,776
(4)(5+1+25+25+10000+50000+ 800000 +
1602400000)
Tmp9 Q28,Q40, Q50 Tmpl, 2,3,4,5,6,7,8,9 4 (5+4+5)(160240) — -6,411,437,824
(4)(5+1+25+25+10000+50000+ 800000 +
1602400000 + 160240)
Tmpl0 Q6,Q15,022,Q40,Q43,Q50 Tmp10 1 (7+5+3+4+7+5)(200000) — (1)(200000) 6,000,000
Tmpll Q6, Q15, Q40 Tmp10, 11 1 (7+5+4)(200000) — (1)(200000+200000) 2,800,000

1414

Table D.11 (Continued)

Existing Query Derived Node Number of Weight (w(v))
Node Base
Relations
Tmpl3 Q4,Q022,Q33,Q043,Q50,Q30,Q3, Tmpl13 1 (6+3+6+7+5+4+4+5+5)(6000000) — 264,000,000
Q31,047 (1)(6000000)
Tmpld Q4,022,Q33,Q043,Q050,Q3,Q31, Tmpl3, 14 1 (6+3+6+7+5+4+5+5) (6000000) — 234,000,000
Q47 (1)(6000000+6000000)
Tmpl5 Q33,047 Tmpl, 2,3,4,5,6,7,8,13, 5 (6+5)(607837751040) — (5)(5+1+25+ 25 3,638,950,205,960
14,15 +10000+50000+ 800000 + 1602400000
+ 6000000 + 6000000 + 607837751040)
Tmplé Q22,Q43,Q50,Q31,Q47 Tmpl6 1 (3+7+5+5+5)(1500000) — (1)(1500000) 36,000,000
Tmpl7 Q22,Q43,Q50,Q31,Q47 Tmpl6, 17 1 (3+7+5+5+5)(227597) — 3,962,328
(1)(1500000+227597)
Tmpl8 Q22,Q43,Q50,Q31 Tmpl3, 14, 16, 17, 18 2 (3+7+5+5)(863342789712) — 15,540,142,759,622
(2)(6000000 + 6000000+
1500000+227597 + 863342789712)
Tmp22 Q43,Q050,Q30 Tmp22 1 (7+5+4)(150000) — (1)(150000) 2,250,000
Tmp27 Q6, Q15 Tmp7, 10, 11, 27 2 (7+5)(32046400000) — (2)(800000+ 320,461,600,000

200000 +200000 + 32046400000)

GG¢

Table D.12 The Weight of Ancestor Node of Directly Affected Node of the Second Experiment

Directly Ancestor Query Derived Node Number Weight of Ancestor Node
Affected Node of Base
Node Relations
Tmpll Tmpl2 Q40,Q50 Tmpl, 2,3,4,5,6,7,8,9, 10, 5 (4+5)(1288745976) — (5)(5+1+25+25 -2,864,117,576
11,12 +10000 +50000+ 800000 + 1602400000 +
160240+ 200000+ 200000+ 1288745976)
Tmp24 Q50 Tmpl, 2,3,4,5,6,7,8,9, 10, 7 (5)(13733997148) - (7)(5+1+25+25 +10000 -6,071,211,579,363
11,12, 13, 14, 16, 17, 18, 24 +50000+ 800000 + 1602400000 + 160240+
200000+ 200000+ 1288745976 + 6000000 +
6000000+ 1500000+227597 +
863342789712 +3733997148)
Tmp25 Q50 Tmpl, 2,3,4,5,6,7,8,9, 10, 8 (5)(711150000) - (8)(5+1+25+25 +10000 -6,961,999,295,832
11, 12, 13, 14, 16, 17, 18, 22, +50000+ 800000 + 1602400000 + 160240+
24,25 200000+ 200000+ 1288745976 + 6000000 +
6000000+ 1500000+227597 +
863342789712 +3733997148 + 150000+
711150000)
Tmpl4 Tmp26 Q4 Tmp7, 13, 14, 26 2 (6)(3034636800000) - (2) (6000000 + 12,138,521,600,000
6000000 +800000 + 3034636800000)
Tmp1l8 Tmpl9 Q22,043 Tmp7, 13, 14, 16, 17, 18, 19 3 (3+7)(460135200000) — (3)(6000000 + 630,852,848,073

6000000 + 1500000+227597 +
863342789712 + 8000000+ 460135200000)

94¢

Table D.12 (Continued

Directly Ancestor Query Derived Node Number of Weight of Ancestor Node
Affected Node Base
Node Relations
Tmp18 Tmp20 Q22,Q43 Tmp7, 13, 14, 16, 17, 18, 19, 4 (3+7)(115033800000) — (4)(6000000 + -4,603,796,869,236
10, 20 6000000+ 1500000+227597 + 863342789712
+ 8000000+ 460135200000 + 200000 +
115033800000)
Tmp2l Q43 Tmp7, 13, 14, 16, 17, 18, 19, 5 (7)(5751690000) — (5)(6000000 + 6000000+ -7,181,165,256,545
10, 20, 5, 21 1500000+227597 + 863342789712 +

8000000 + 460135200000 + 200000 +
115033800000 + 10000 + 5751690000)
Tmp23 Q43 Tmp7, 13, 14, 16, 17, 18, 19, 6 (7)(86275350000) — (6)(6000000 + 6000000+ -8,579,438,053,854
10, 20, 5, 21, 22, 23 1500000 + 227597 + 863342789712 +
8000000 + 460135200000 + 200000 +
115033800000 + 10000 + 5751690000 +
150000 + 86275350000)
Tmp27 Tmp28 Q15 Tmps, 7, 10, 11, 27, 28 3 (5)(1602320000) — (3)(800000+ 200000 -92,938,190,000
+200000 + 32046400000 + 10000 +
1602320000)

AT

258

From Table D.12, as weight of Tmpl2, Tmp20, Tmp21l, Tmp23, Tmp24,
Tmp25 and Tmp28 are negative then they are not the indirectly affected node.
Tmp26 is the indirectly affected node as its weight is greater than that of Tmp14. For
Tmp19, although its weight is less than that of Tmpl8, Tmpl9 is the existing
materialized view then Tmp19 is identified as the indirectly affected node (align with

the condition in line 3.2 of affected node identification algorithm in Figure D.1).

Therefore, the affected nodes are:
Directly affected nodes: Tmpl, Tmp2, Tmp4, Tmp6, Tmp8, Tmp9,
Tmpll, Tmpl4, Tmpl5, Tmpl6, Tmpl7,
Tmpl8, Tmp27
Indirectly affected nodes: Tmpl19, Tmp26

APPENDIX E

Result of Selection Algorithm

E.1 Two-Phase Optimization Algorithm

The Two-Phase Optimization (2PO) is the combination of Interactive
Improvement (1) and Simulated Annealing (SA) (loannidis and Kang, 1990:313).
The algorithm is presented in Figure E.1

begin

1. Input the MVPP represented by a DAG

2. Use depth first search from root nodes to base relations to

search through all of the nodes in the DAG.
Produce the sequence of nodes into a binary string.
Call Iterative Improvement
Call Simulated Annealing algorithm
Present set of views to materialized with minimum cost

o s wW

end;

Figure E.1 The Materialized View Selection with 2PO

The Interactive Improvement algorithm is shown in Figure E.2. In our

experiment, the stop criterion is set to 10 local minimum.

begin
Smin = S«; {initial solution}
while not (stopping condition) do {
S=random state
while local minimum not reached do {
S’ = random state in neighbor(S)
if cost(S’) < cost(S) then S= S’

}

if cost(S) < cost(Smin) then Spmin =S
}
return(Smin)

end;

Figure E.2 The Iterative Improvement (I1) Algorithm

260

The Simulated Annealing algorithm is shown in Figure E.3.

begin
S =Sy ; {initial state}
T = Ty ; {initial value of time limit}
Smin = S;
while not(time limit) do {
while not(local minimum(S)) do {
S' = random state in neighbor(S)
AC = cost(S') - cost(S)
if AC< 0)thenS=¢S
if (AC > 0) then S = S' with probability e¢'T
if cost(S) < cost(Smin) then Smin =S
}
T = reduce(T)
}
Return{Smin}
end;

Figure E.3 The Simulated Annealing (SA) Algorithm

For our experiment, the value of each parameter includes time limit which is

set to 90 at the starting point, decrement factor is set to 0.7.

The Result of the Re-Optimized MVPP

6 3 7 2 2 9
(or]] off] €@ U@ U@ k@ .
g i ol }
result4 | [967519280]
resultzC) [184082] result? () [910519] result3(()[182183] resultL ()[160240] results () [36276]

results () [36276]

Y

's_name
sum(ps_supplycost)

Ve mseament | VT
sum(l_discount) - Tmp23

Tmp11 o67519280] ()
[182183] () [273369715461]

v Yo_n

ame
min(ps_suppltcost)

i

'n_name s name
count(l_orderkye) sum(ps_supplyjcost)

Tmpls [24036000000]

[184082] Q [276048000000] 17005

>

< . P
4* O (72552000001
PH X
1 () [1201800800

L

rzrsor) Olazrson)

800000] () [800000]
Sy Tmp16
o totalprice
-
[227597](

2000001 () [200000]

mp9 TC ps_suppkey

[1500000] gg’gg;r)‘plzmst mp18
TCr_regionkey TC s_natignkey - TU p_partkey
™ e ™ G |
Gttt) Ly ey - Ii%gg{:g G orderdate>='1994-01-01' bt
- Gr_name="ASIA fhame - orderdate<"1995-01-01'
[150000] 151 [25] [10000] [6000000] [1500000] [Jts00000] [200000]
customer region nation supplier lineitem order partsupp part

Figure E.4 The Cheapest MVPP after Re-Optimized

We map DAG in Figure E.4 to binary string as [Tmp19,0], [Tmp18,0], [Tmp17,0], [Tmp16,0], [Tmp6,0], [Tmp5,0], [Tmp4,0],

[Tmp3,0], [Tmp2,0], [Tmp1,0], [Tmp15,0], [Tmp7,0], [Tmp14,0], [Tmp10,0], [Tmp9,0], [Tmp13,0], [Tmp12,0], [Tmp11,0], [Tmp8,0],
[Tmp23,0], [Tmp21,0], [Tmp20,0], [Tmp22,0], [Tmp25,0], [Tmp24,0] that is £0,0}, indicates

that all nodes are virtual views. The result generated by Il is shown in Table E.1

Table E.1 The Result of 1l of 2PO for the Re-Optimized MVPP

Total Cost of Initial

State

Initial State

Total cost of Local
Minimum State

Local Minimum State

© 00 N oo o B~ W N -

[y
o

8,427,206,080,471
8,144,566,532,161
8,136,058,882,811
8,359,334,708,009
6,708,459,311,979
7,935,408,327,177
7,820,946,154,678
7,688,298,740,389
7,499,403,494,665
6,768,696,656,658

10,0}
{0,1,1,1,0,1,1,0,1,0,1,0,0,0,0,0,1,0,1,1,0,0,1,1,0}
{0,0,0,1,0,0,0,0,1,0,1,1,0,1,0,0,1,0,0,1,1,0,0,1,0}
{0,1,0,0,1,0,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,0,1,0,0}
{0,0,0,0,0,1,0,1,0,0,1,0,0,0,1,1,0,0,1,1,0,1,1,0, 1}
{1,1,0,0,0,0,0,0,0,1,0,0,1,0,1,1,0,1,0,1, 1,0,0,0,0}
{1,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,1,0,0, 1,0,0,1,0}
{0,0,0,0, 1,0,1,1,0,0,0,0,1,1,1,0,0,1,0,0,1,0,0,1,0}
{0,1,0,0,0,1,1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,1,0,1, 0}
{0,0,1,0,0,1,1,0,0,0,0,1,0,0,0,1,0,0,1, 1,1,0,1,1,0}

6,732,979,232,178
7,188,391,010,923
7,585,650,363,648
7,116,835,738,107
6,657,098,483,266
6,624,915,356,922
6,978,758,638,497
6,775,762,552,571
7,106,331,542,563
6,768,699,388,215

{0,1,0,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,1,0,1}
{1,1,1,1,0,1,0,0,0,0,0,1,1,0,0,1,0,0,0,1,0,0,1,0,1}
{0,0,1,0,0,1,1,1,0,0,0,1,1,1,0,0,1,1,0,0,0,1,0,0,1}
{1,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1}
{0,1,0,0,1,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,0,1,1,0,1}
{0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,1,0,0,1,0,1}
{0,0,1,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,0,1,1,0,0,0,1}
{0,0,0,0,0,1,0,1,0,0,1,0,0,0,1,1,0,0,1,1,0,1,1,0,0}
{1,1,1,1,0,1,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,1,0,1}
{0,0,1,0,0,1,1,0,0,0,0,1,0,0,0,1,0,0,1,1,1,1,0,1,0}

For 10 local minimum, the minimum cost is 6,624,915,356,922 that is the initial state for SA. The state is {0,0,0,0,0,
0,0,0,0,1,0,0,0,1,0, 0,0,1,0,1,0,0,1,0,1} represent the nodes as [Tmp19,0],

[Tmp18,0], [Tmpl7,0], [Tmpl6,0], [Tmp6,0], [Tmp5,0],
[Tmp4,0], [Tmp3,0], [Tmp2,0], [Tmpl,1], [Tmp15,0], [Tmp7,0], [Tmp14,0], [Tmp10,1], [Tmp9,0], [Tmp13,0] [Tmpl2,0], [Tmpll,1],
[Tmp8,0], [Tmp23,1], [Tmp21,0], [Tmp20,0], [Tmp22,1], [Tmp25,0], [Tmp24,1].

T9¢

The value of arguments:

So = 6,624,915,356,922; the summation of query processing cost and materialized view maintenance cost

To =90, T = reduce(T); decrement factor is set to 0.7

of initial state. The binary string of initial state is {0,0,0,0,0, 0,0,0,0,1,0,0,0,1,0, 0,0,1,0,1,0,0,1,0,1}
Table E.2 The Result of SA of 2PO for the Re-Optimized MVPP

T s’ Cost(S) — Cost(S") probability S The State of §'
(Ti1-0.7) AC e*cm
6,624,915,356,922
90.0 6,624,915,356,947 25 0.7574 6,624,915,356,947 {0,0,1,0,1,0,1,0,0,0,1,1,0,0,1,0,0,1,1,0,0,1,0,0,1}
89.3 6,624,915,356,752 -170 - 6,624,915,356,752 {0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,1,0,1}
88.6 6,624,915,356,747 -5 - 6,624,915,356,747 {0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,1,0,1}
87.9 6,624,915,536,915 180,168 0.0000 6,624,915,356,747 {1,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,1,0,1}
87.2 6,259,209,787,966 -365,705,568,781 - 6,259,209,787,966 {0,0,1,0,0,1,1,0,0,0,0,1,0,0,1,0,0,1,1,0,0,1,0,0,1}
86.5 6,259,209,842,028 54,062 0.0000 6,259,209,787,966 {0,0,1,0,1,0,1,0,0,0,1,1,0,0,1,0,0,1,1,0,0,1,0,0,1}
85.8 6,172,139,022,926 -87,070,765,040 - 6,172,139,022,926 {0,0,0,0,1,0,1,0,0,0,1,1,0,0,1,0,0,1,1,0,1,1,0,0,1}
85.1 6,124,035,032,590 -48,103,990,336 - 6,124,035,032,590 {0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,1}
84.4 6,120,827,925,892 -3,207,106,698 - 6,120,827,925,892 {0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,1}
83.7 6,168,924,166,116 48,096,240,224 0.0000 6,120,827,925,892 {0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,1}
: : : 6,120,827,925,892 :
25 6,120,829,653,489 1,727,597 0.0000 6,120,827,925,892 {0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,1,0,0,0,1}
1.8 6,120,827,925,897 5 0.0000 6,120,827,925,892 {0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,1,0,0,0,1}
1.1 6,120,828,075,892 150,000 0.0000 6,120,827,925,892 {0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,1,0,0,0,1}
0.4 6,120,827,926,004 112 0.0000 6,120,827,925,892 {0,0,0,0,1,0,1,0,0,1,1,0,0,0,0,0,0,1,0,0,1,0,0,0,1}

So the output generated by SA is {0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,1}. The total cost of this state is 6,120,827,925,892

¢9¢

[Tmp19,0], [Tmp18,0], [Tmpl7,0], [Tmpl6,0], [Tmp6,1], [Tmp5,0], [Tmp4,0], [Tmp3,0], [Tmp2,0], [Tmpl,0], [Tmpl5,1], [Tmp7,0],
[Tmp14,0], [Tmp10,0], [Tmp9,0], [Tmpl3,0] [Tmpl2,0], [Tmpll,1], [Tmp8,0], [Tmp23,0], [Tmp21,1], [Tmp20,0], [Tmp22,0],
[Tmp25,0], [Tmp24,1]

263

E.2 Deterministic Algorithm

We further implement another selection algorithm, Deterministic Algorithm,
aiming to validate our methodologies. We use 2PO and Deterministic Algorithm
because 2PO has provided the minimal total cost whereas Deterministic has provided
the maximal total cost (Phuboon-ob and Auepanwiriyakul, 2007:171; 2009:103). The
Deterministic algorithm is proposed by Yang et al. This algorithm is to find a set of
materialized views that provide the minimal sum of query processing cost and view

maintenance cost. The Deterministic algorithm is described in Figure E.5.

begin
1.M=o;
2. Calculate w(v)
w(v) = X f, (@ *CIV) - 3 F,(0*Cr(v)
qe0, rel,
3. create list LV for all the nodes (with positive value of weights) based on the
descending order of their weights w(v);
4. pick up the first one v from LV;
5. generate Qv, lv, and Sv
6. calculate Cs of v
C, =D {f(M*CI ()~ D CIW}I-2 f.(N*CLv)
qe0, ueS,~M rel,
7.if Cs >0, then
insert v into M;
remove v from LV,
else
remove v and all the nodes listed after v from LV who are in the subtree
rooted at v;
8. repeat step 3until LV=0¢;
9. foreachv € M, if D(v) C M, then remove v from M;
end,

Figure E.5 Deterministic Algorithm for Materialized View Selection

Source: Yangetal., 1997: 141.

fq denotes the frequency of executing a query

fu denotes the frequency of updating on base relation.

264

w(v) denotes the weight of a node The first part of this formula indicates the
benefit if node v is materialized, the second part indicates the cost for
materialized view maintenance.

LV is the list of nodes based on descending order of w(v).

Sy is the set of leaf nodes and intermediate nodes which are used to
produce v.

M is the set of materialized views.

Dy is the set of ancestors of v.

Cs is the cost of a node. The first part of this formula is the saving in
access cost if v is to be materialized. The second part is the additional

view maintenance cost for v.

We provide simple explanation for executing the Deterministic Algorithm to

the cheapest MVPP described in section 4.3 shown again in Figure E.2 as follows:

7 2 2
3 ® Q4 @ 9 5
° e @ e
@@ *@
result4 | [967519280]
[182183] result1(_)[160240]
CAL result7 O [o10519] "B resutts O 1362761
’ 165 136276]
resultz() [184082] Ynname Yin resu
sum(l_quantity avg
'Ystddev - Y 'Y(c,acctbal) (pe-supplcosd variance
’Ymax) (I_tax) Tmp23 (ps_availqty) 'chum
Tprs | (0-toarice Tmp11 [967519280] ’ [24036000000] _— o key)
X
11840821 () [276048000000] Tmp25 [182183]_ [273369715461] 1160240, () [1602400000] -~
to10s19] () [136577850000] X [36276] (™) [362760000]

X

mp22
[160240] () [1602400000]

X <
Tmpl4 <
as008] () [6869560251] Tmps X
M 122011131 () 006Q "‘
' Tmp24
[910519

Q
N

<X 35000000
Tmpé / NS
N 12003] () [50000] V‘
> Tmp10
27597 [227597]
Tmp12 Tmpa [5] () [25]
mps O S-Qudikey

150000
[150000] Ot] &

Tmp19
O [800000]

O'b_brand<>"BRAND#45’
not p_type like ‘%BRASS%’
p_size in (9,19,49)
Tmp13
1301831 C [750000

Tmpl8
18000001 () [160000000000]

T
[10000]4~[10000] o_totalprice

Tmp2 Tmp7 Tmp17
Tmp16
mOmw Tmp3 [6000000[6000000] oo P 2000001 [200000]
[251()[25] (227597 P [800000] A& [800000]
TC s_nationkey [1500000]
Tmpr | TEegoney s suppkey TC Lsuppkey I T ps suppkey T p patkey
T o atonkes WOEl TTn_regionke ICauantity Go_brderdate>="1994-01-01' P oppivhost b-ype
cTusikey . R n‘naaonle)y I“quantity " AT P
E-eetsa Or_name="ASIA 1 natlon 0_qrderdate<"1995-01-01' ps_avaiqly
[5] [Jr2s1 [10000] [Jre000000] %]

customer region nation supplier lineitem order partsupp part

Figure E.6 The Third MVPP (the Cheapest MVPP), Query in the List: {Q3, Q2, Q6,
Q1, Q5, Q4, and Q7}

265

Initially LV = {Tmp18, Tmp24, Tmpll, Tmpl5, Tmp8, Tmpld, Tmp7, Tmp9,
Tmpl6, Tmpl7, Tmpl0, Tmpl3, Tmpl2, Tmp6, Tmp5, Tmp3, Tmp4,
and Tmp1}

M= ¢

Starting with Tmp18;

Ompis ={Q1, Q5, Q6},
ltmpis = {PART, PARTSUPP},
Sy ={Tmpl6, Tmpl7}
Cs ((2+9+5) * (160000000000) - (1000000)) - 320,002,000,000
2,239,997,000,000 > 0, so Tmp18 is inserted into M.
For Tmp24, Tmpl11 and Tmpl5, their costs of are greater than zero, so those

views are inserted into M too.

For Tmp8, although its cost is greater than zero, its parent Tmpl1 is already in
M, then Tmp8 is ignored. By the same reason, Tmp7, Tmp6, Tmp5, Tmp4 and Tmpl
are ignored accordingly. For Tmp14, its parent Tmp15 is already in M then Tmp14 is
ignored. By the same reason, Tmpl3, Tmpl2, Tmp9, and TmplO are ignored
accordingly. Tmp16 and Tmp7 also are ignored as its parent Tmp18 already in M. As
a result of this algorithm, the selected views are Tmp11, Tmpl15, Tmpl8 and Tmp24.

Considering query Q1 in the cheapest MVPP in Figure E.2, its query access
frequency is 2, before materializing the intermediate node, this query accesses the
nodes named Tmpl, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmpl6, Tmpl7, Tmpl8
Tmp21 and resultl. The cost of each node is 5, 1, 25, 25, 10000, 50000, 800000,
200000, 160000000000, 1602400000 and 160240 respectively. So, the query
processing cost of query Q1 is

2*(5+1+25+ 25+ 10000 + 50000 + 800000 + 200000 + 160000000000 +
1602400000 + 160240) = 323,207,240,592.

After Tmpl8 is materialized, the query processing cost for Query Q1 is
2*1,603,420,296 that is 3,206,840,592. It would be beneficial to materialize them,
reducing the processing cost from 323,207,240,592 to 3,206,840,592. However, these

views have maintenance cost whenever an update of an involved base relation occurs.

266

The view maintenance cost is 2 * (800000 + 200000 + 160000000000) that is
320,002,000,000.

Using these four materialized view selected by Deterministic algorithm, we
achieve 469,452,759,788 as query processing cost, and 5,892,777,930,284 as
materialized view maintenance cost. It would be beneficial to materialize them,
reducing the total cost from 9,353,211,451,044 to 6,362,230,690,072. Table E.1 and
Table E.2 show the maintenance cost of each materialized node and the query
processing cost of each query of cheapest MVVPP respectively.

Table E.3 The Maintenance Cost of the Cheapest MVVPP

Materialized View Maintenance Cost
Tmpll 1,426,977,515,570
Tmpl5 1,414,630,939,520
Tmpl8 320,002,000,000
Tmp24 2,731,167,475,194

Total 5,892,777,930,284

Table E.4 The Query Processing of the Cheapest MVPP

Query Query Processing Cost
Query number 1 (Q1) 3,206,840,592
Query number 2 (Q2) 2,208,984
Query number 3 (Q3) 2,550,562
Query number 4 (Q4) 53,213,858,672
Query number 5 (Q5) 8,181,380
Query number 6 (Q6) 3,279,656,484
Query number 7 (Q7) 409,739,463,114

Total 469,452,759,788

The Deterministic algorithm is used to select the set of views to be
materialized views for the data set in Appendix F. The comparison of the result of
Deterministic and 2PO are also provided in Appendix F.

APPENDIX F

Result of Testbed

In this appendix, we provide the experiments to evaluate our approach that are
running with 50 queries (Phuboon-ob, 2009: 133) on TPC-H schema. The details of

queries and experiment results are described as follows.

F.1 Query Set of Testbed

Query Q1 with the query frequency of 5 produces the minimum discount of
items for each type of order’s priority that are ordered in 1994. Its relational algebra

tree is shown in Figure F.1.

Query Q1

SELECT O_ORDERPRIORITY, MIN(L_DISCOUNT)
FROM ORDERS, LINEITEM

WHERE O_ORDERKEY = L_ORDERKEY

AND O_ORDERDATE >='1994-01-01'
AND O_ORDERDATE < '1995-01-01'
GROUP BY O_ORDERPRIORITY;

5

L@

result (g[910519]

'Yoﬁorder priority
min(l_discount)

[6000000]
Tmpl
TU o_orderke:
o_orderpriority
TU |_orderkey
I_discount [227597] (_)[1500000]

Tmp2
Oo_orderdate >="1994-01-01'
o_orderdate <’1995-01-01"

[6000000] [1500000]
lineitem orders

Figure F.1 Relational Algebra Query Tree of Query Q1

268

Query Q2 with the query frequency of 6 produces the maximum tax for each
brand with specific part type and the committed date is before receipt date. Its

relational algebra tree is shown in Figure F.2.

Query Q2

SELECT P_BRAND, MAX(L_TAX)
FROM PART, LINEITEM

WHERE P_PARTKEY = L_PARTKEY

AND P_TYPE LIKE '%BRASS%'
AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY P_BRAND;

result [758746]

Yp_brand
max(l_tax)

[151951851168]

[3793296] [3793296] [40058] () [40058]
Tmp2 Tmp4
TC |_partkey TU p_partkey
| tax p_brand
[3793296] [6000000] [40058] [200000]
Tmpl Tmp3
O I_commitdate O p_type like
< |_receiptdate ‘%BRASS%’
[6000000] [200000]
lineitem part

Figure F.2 Relational Algebra Query Tree of Query Q2

269

Query Q3 with the query frequency of 4 produces the summation of quantity
of item for each supplier with the committed date is before receipt date. Its relational

algebra tree is shown in Figure F.3.

Query Q3

SELECT S_NAME, SUM(L_QUANTITY)
FROM SUPPLIER, LINEITEM
WHERE S_SUPPKEY = L_SUPPKEY

AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY S_NAME;

4
okY)

result £[3793296]

s_nhame
sum(l_quantity)

[37932960000]

[3793296] [3793296] [10000]
Tmp2 Tmp3 1
TC |_partkey TU s_suppkey
I_quantity S_name
[3793296] [6000000]

Tmpl
O |_commitdate
< |_receiptdate

[6000000] [] 120000]
lineitem supplier

Figure F.3 Relational Algebra Query Tree of Query Q3

270

Query Q4 with the query frequency of 6 produces the average cost of supply
for type of returned item with the committed date is before receipt date. Its relational

algebra tree is shown in Figure F.4.

Query Q4

SELECT L_RETURNFLAG, AVG(PS_SUPPLYCOST)
FROM PARTSUPP, LINEITEM

WHERE PS PARTKEY = L_PARTKEY

AND PS_SUPPKEY = L_SUPPKEY
AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY L_RETURNFLAG;

6

U@

result é[3793296]

I_returnflag
avg(ps_supplycost)

[3034636800000]

X partkey

[3793296] [800000]

Tmp2

[3793296] [800000]
Tmp3 1

TU I_suppkey

ety
“returnflag TC ps_suppkey

[3793296] [6000000] ps_partkey
ps_supplycost

LU Ne) |_commitdate
< |_receiptdate
[6000000] [Jrs00000]
lineitem partsupp

Figure F.4 Relational Algebra Query Tree of Query Q4

271

Query Q5 with the query frequency of 9 produces the summation of total price
of orders for each market segment of customer that are ordered in 1994. Its relational

algebra tree is shown in Figure F.5.

Query Q5

SELECT C_MKTSEGMENT, COUNT(O_TOTALPRICE)
FROM CUSTOMER, ORDERS

WHERE C_CUSTKEY = O_CUSTKEY

AND O_ORDERDATE >='1994-01-01'
AND O_ORDERDATE < '1995-01-01'
GROUP BY C_MKTSEGMENT;

B @

result [227597]

c_mktsegment
count(o_totalprice)

[227597] [34139550000]

Tmp4

[227597] ()[227597] [150000]
Tmp2 Tmp3“
TU o_custkey TC c_custkey
o_totalprice ¢_mktsegment
[227597] {_)[1500000]
Tmpl
Oo_orderdate >="1994-01-01'
o_orderdate <’1995-01-01'
[1500000] [] r150000]
orders customer

Figure F.5 Relational Algebra Query Tree of Query Q5

272

Query Q6 with the query frequency of 7 produces the variance of available
quantity for each part type with specific part. Its relational algebra tree is shown in

Figure F.6.

Query Q6

SELECT P_TYPE, VARIANCE(PS_AVAILQTY)
FROM PART, PARTSUPP

WHERE P_PARTKEY = PS_PARTKEY

AND P_TYPE LIKE '%BRASS%'
GROUP BY P_TYPE;

.
ol

result [160232]

p_type .

variance(ps_availqty)
[160232]
Tmp:

[32046400000]
X partkey

[800000] [800000] [40058] () [40058]

Tmpl4 Tmp3
TU ps_partkey U p_partkey
ps_availqty p_type

[40058] [200000]

Tmp2
O p_type like ‘%BRASS%’
|:| [8000000] [200000]
partsupp part

Figure F.6 Relational Algebra Query Tree of Query Q6

273

Query Q7 with the query frequency of 5 produces the standard deviation of
cost of supply for each supplier and available quantity for supply part more than 2000.

Its relational algebra tree is shown in Figure F.7.

Query Q7

SELECT S_NAME, STDDEV(PS_SUPPLYCOST)
FROM SUPPLIER, PARTSUPP

WHERE S_SUPPKEY =PS_SUPPKEY

AND PS_AVAILQTY < 2000
GROUP BY S_NAME;

5

U@

result g [159750]

S_name
stddev(ps_supplycost)

[1597500000]

suppkey

[10000] [159750]

Tmp14 Tmp3
TU s_suppkey TU ps_suppkey
S_name ps_supplycost

[159750] [800000]

Tmp2
O ps_availgty <2000
|:|[10000] [800000]
supplier partsupp

Figure F.7 Relational Algebra Query Tree of Query Q7

274

Query Q8 with the query frequency of 3 produces the standard deviation of
discount for each priority type of orders that are ordered in 1994 for customer market

segment BUILDING. Its relational algebra tree is shown in Figure F.8.

Query Q8
SELECT
FROM
WHERE

O_ORDERPRIORITY, STDDEV(L_DISCOUNT)
CUSTOMER, ORDERS, LINEITEM
C_CUSTKEY = O_CUSTKEY

AND C_MKTSEGMENT ="'BUILDING'

AND O_ORDERKEY = L_ORDERKEY

AND O_ORDERDATE >='1994-01-01'

AND O_ORDERDATE < '1995-01-01'

GROUP BY O_ORDERPRIORITY;

3

8@

result £[183273]

'Yo_orderf)riority
stddev(l_discount)

[275298000000]
X orderkey

[183273]
Tm

[45883] () [6860228774] [6000000]

X custkey

Tmps 4

TU |_orderkey
1_discount

T
O-SHerkdy
o_orderpriority

[30142]
Tmpl

[150000] [227597]

Tmp3

[1500000]
Oo_orderdate

Oc_mktsegment
="BUILDING’

[150000]
customer

Figure F.8 Relational Algebra Query Tree of Query Q8

>="1994-01-01'
o0_orderdate
<’1995-01-01'

[1500000]

orders

[] 1s000000]
lineitem

275

Query Q9 with the query frequency of 6 produces the variance of item
quantity for each nation of suppliers and items are ordered in 1994. Its relational

algebra tree is shown in Figure F.9.

Query Q9

SELECT S_NATIONKEY, VARIANCE(L_QUANTITY)
FROM SUPPLIER, ORDERS, LINEITEM

WHERE S_SUPPKEY = L_SUPPKEY

AND O_ORDERKEY = L_ORDERKEY

AND O_ORDERDATE >='1994-01-01'

AND O_ORDERDATE < '1995-01-01'
GROUP BY S_NATIONKEY;

® @

result [910519]

'Ys_n_ation key
variance(l_quantity)

[910519]

[9105190000]
Tmp6

X suppkey

[_?105:9] [1365582000000] [10000]
mp X orderkey Tmp5 1
[227597] [227597] [6000000]() [6000000] TC s_suppkey
Tmp2 TmpS“ s_nationkey
TU o_orderkey
o_orderpriority T I_orderkey
[227597] (_)[1500000] |_suppkey
Tmpl I"quantity
Oo_orderdate >="1994-01-01'
0_orderdate <’1995-01-01'
[1500000] [] 16000000] [] 120000]
orders lineitem supplier

Figure F.9 Relational Algebra Query Tree of Query Q9

276

Query Q10 with the query frequency of 7 produces number of items for each
part brand with specific part type and the committed date is before receipt date. Its

relational algebra tree is shown in Figure F.10.

Query Q10

SELECT P_BRAND, COUNT(L_TAX)
FROM PART, LINEITEM, PARTSUPP
WHERE P_PARTKEY = L_PARTKEY

AND PS_PARTKEY = L_PARTKEY

AND PS_SUPPKEY = L_SUPPKEY

AND P_TYPE LIKE '%BRASS%'

AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY P_BRAND;

7
Q10@

result [758746]

_brand
count(l_tax)

758746]

7 [606996800000]

DX partkey
suppkey

[758746] [151951851168] [800000]

Tmp Npartkey Tmp6 4
[3793296] () [3793296] [40058] () [40058]
Tmp2 Tmp4
TC |_partkey TU p_partkey
| tax p_brand
TU ps_suppkey
[3793296] [6000000] [40058] [200000] ps_partkey
Tmpl Tmp3
O |_commitdate O p_type like
< |_receiptdate ‘%BRASS%’
[6000000] [200000] [Jis00000]
lineitem part partsupp

Figure F.10 Relational Algebra Query Tree of Query Q10

277

Query Q11 with the query frequency of 9 produces the average of cost of
supply for each nation of supplier with specific the committed date is before receipt

date. Its relational algebra tree is shown in Figure F.11.

Query Q11

SELECT S_NATIONKEY, AVG(PS_SUPPLYCOST)
FROM SUPPLIER, PARTSUPP, LINEITEM
WHERE S_SUPPKEY =PS_SUPPKEY

AND PS_PARTKEY = L_PARTKEY

AND PS_SUPPKEY = L_SUPPKEY

AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY S_NATIONKEY;

9
Q11@

result [3793296]

'Ys_nationkey
avg(ps_supplycost)

[37932960000]

[3034636800000] [10000] [10000]

X partkey Tmp5 A
TU s_suppkey
s_nationkey
[3793296] [3793296] [800000]
A
Tmp2 TC |_suppkey Tmp3
I_Fart ey TU ps_suppkey
I"tax ps_partkey
[3793296] [6000000]
Tmpll 5 |_commitdate
< |_receiptdate
[6000000] [] r8ooooo] [] roooo]
lineitem partsupp supplier

Figure F.11 Relational Algebra Query Tree of Query Q11

278

Query Q12 with the query frequency of 5 produces the summation of extended
price for each type of order status ordered in 1994 and the committed date is before

receipt date. Its relational algebra tree is shown in Figure F.12.

Query Q12

SELECT O_ORDERSTATUS, SUM(L_EXTENDEDPRICE)
FROM ORDERS, PARTSUPP, LINEITEM

WHERE O_ORDERKEY = L_ORDERKEY

AND PS_PARTKEY = L_PARTKEY

AND PS_SUPPKEY = L_SUPPKEY

AND O_ORDERDATE >='1994-01-01'

AND O_ORDERDATE < '1995-01-01'

AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY O_ORDERSTATUS;

5
Q12

result [575169]

'Yo_orderstatus .
sum(l_extendedprice)

[460135200000]

[575169]

[800000]
Tmp5

Tmp64

TU ps_suppkey

[3793296] [227597] ps_partkey

[3793296] [227597]

Tmp2 Tmp4
T II_orde{(key 7C o_orderkey
I_?J%[r) keey 0_orderstatus
I:extendstprice
[3793296] [6000000] [227597] [1500000]
Tmpl Tmp3 4Go_orderdate
O |_commitdate >="1994-01-01'
< |_receiptdate o_orderdate
<’1995-01-01'
[6000000] [1500000] [] s00000]
lineitem orders partsupp

Figure F.12 Relational Algebra Query Tree of Query Q12

279

Query Q13 with the query frequency of 7 produces the standard deviation of
tax for each types of order’s priority that customer ordered in 1994. Its relational

algebra tree is shown in Figure F.13.

Query Q13

SELECT O_ORDERPRIORITY, STDDEV (L_TAX)
FROM CUSTOMER, ORDERS, LINEITEM
WHERE C_CUSTKEY = O_CUSTKEY

AND O_ORDERKEY = L_ORDERKEY

AND O_ORDERDATE >='1994-01-01'

AND O_ORDERDATE < '1995-01-01'
GROUP BY O_ORDERPRIORITY;

7
Q13

result [910519]

'Yo_order riority
stddev(l_tax)

Tmp6

[910519]) [910519]

Tmp4
[910519] A/ [1365582000000] [150000](_) [150000]
A
Norderkey Tmp5
Tmp2
TCs_custkey
[227597] [227597] [6000000] [6000000]
o aitel Ting3
Tmpl TCI_orderkey
[227597] () [1500000] T_tax
Oo_orderdate>="1994-0101'
0_orderdate<’1995-01-01'
[1500000] [6000000] [] r50000]
orders lineitem customer

Figure F.13 Relational Algebra Query Tree of Query Q13

280

Query Q14 with the query frequency of 7 produces the minimum total price of
order for each nation of customer that customer have same nation of supplier and

customer ordered in 1994. Its relational algebra tree is shown in Figure F.14.

Query Q14

SELECT C_NATIONKEY, MIN(O_TOTALPRICE)
FROM SUPPLIER, CUSTOMER, ORDERS
WHERE C_NATIONKEY =S_NATIONKEY

AND C_CUSTKEY = O_CUSTKEY

AND O_ORDERDATE >='1994-01-01'

AND O_ORDERDATE < '1995-01-01'
GROUP BY C_NATIONKEY;

7
Q14 .

result [91038610]

cﬁnationkei/)
min(o_totalprice)

[91038610] [2275970000]

Tmp6
P X nationkey

[227597] () [34139550000] [100000] [100000]
Tmpd X custkey Tmps4
11500001 (*) [150000] (2275971 (r227597]
Tmpl X Tmp3
TC o_custkey 7U s_nationkey
0_totalprice
TUc_custkey
c_nationkey [227597] [1500000]
TmpZ 4 Go_orderdate
>=1994-01-01'
0_orderdate
<*1995-01-01'
[] r150000] [1500000] [] r200000]
customer orders supplier

Figure F.14 Relational Algebra Query Tree of Query Q14

281

Query Q15 with the query frequency of 5 produces the minimum of available
quantity for each type brand for specific part type. Its relational algebra tree is shown

in Figure F.15.

Query Q15
SELECT P_BRAND, MIN(PS_AVAILQTY)
FROM SUPPLIER,PART, PARTSUPP
WHERE S_SUPPKEY =PS_SUPPKEY
AND P_PARTKEY =PS_PARTKEY
AND P_TYPE LIKE '%BRASS%'
GROUP BY P_BRAND;

Q15

[160232]

'Yp_brand

min(ps_availqty)

result

[160232]

[1602320000]
Tmp6

[160232] [32046400000] [200000] () [100000]
e Plpartkey Tmp54
[40058] (_) [40058] [800000] [800000]
Tmp2 Tmp34
TU p_partkey TC ps_partkey TC s_suppkey
p_brand ps_suppkey
ps_availgty
[40058] [200000]
Tmpl
O p_type like
‘%BRASS%’
12000001 (] ts000000] [1 12000007
part partsupp supplier

Figure F.15 Relational Algebra Query Tree of Query Q15

282

Query Q16 with the query frequency of 8 produces the maximum of supply
cost for each brand with specific part type and available quantity more than 2000. Its

relational algebra tree is shown in Figure F.16.

Query Q16
SELECT P_BRAND, MAX(PS_SUPPLYCOST)
FROM SUPPLIER, PARTSUPP, PART
WHERE S_SUPPKEY =PS_SUPPKEY
AND PS_PARTKEY =P_PARTKEY
AND PS_AVAILQTY < 2000
AND P_TYPE LIKE ‘“%BRASS%’
GROUP BY N_NAME;

8
Q6@

result $[160232]

'Yp_brand
max(ps_supplycost)

[6399265500]
partkey

[31864]
Tmp7

[1597500000]

X suppkey

TU p_partkey
P

[10000] _brand

Tmpl‘

[10000] [159750] (")[159750]

K Tmp3

TU ps_suppkey
ps_supplycost

40058] () [200000]

[159750] [800000]

TCs_suppkey Tmp54
s_nationkey Tmp2 P G lik
. p_type like
Ops_availgty<2000 ‘%BRASSY’
[Jrr0000] [800000] [Jr200000]
supplier partsupp part

Figure F.16 Relational Algebra Query Tree of Query Q16

283

Query Q17 with the query frequency of 8 produces the summation of discount
for each nation of customer specific market segment BUIILDING and ordered in

1994. Its relational algebra tree is shown in Figure F.17.

Query Q17

SELECT N_NAME, SUM(L_DISCOUNT)

FROM NATION, CUSTOMER, ORDERS, LINEITEM
WHERE C_CUSTKEY = O_CUSTKEY

AND C_NATIONKEY = N_NATIONKEY

AND O_ORDERKEY = L_ORDERKEY

AND O_ORDERDATE >='1994-01-01'

AND O_ORDERDATE < '1995-01-01'

AND C_MKTSEGMENT ="'BUILDING'
GROUP BY N_NAME;

8
Q17.

result g[183273]

n_name
sum(l_discount)

[183273] [275298000000]

X orderkey

- r47075] [6000000]() [6000000]
Nnationke
Yy
Tmps T
TU |_orderkey
[25] 1_discount
20142 TU n_nationkey
[] [227597] n_name
Tmp2
7T o_orderkey
0_custkey
(301421 (")[150000] 12275971 ()[1500000]
Tmpl Tmp3 X G orderdate
Oc_mktsegment >="1994-01-01'
=BUILDING’ o_orderdate
<’1995-01-01"
[150000] [1500000] [] t6000000] [] 6000000
customer orders lineitem lineitem

Figure F.17 Relational Algebra Query Tree of Query Q17

284

Query Q18 with the query frequency of 4 produces the average of item
quantity for each nation of supplier that supplier were ordered in 1994 and the
committed date is before receipt date. Its relational algebra tree is shown in Figure
F.18.

Query Q18

SELECT N_NAME, AVG(L_QUANTITY)

FROM NATION, SUPPLIER, ORDERS, LINEITEM
WHERE S_SUPPKEY = L_SUPPKEY

AND S_NATIONKEY = N_NATIONKEY

AND O_ORDERKEY = L_ORDERKEY

AND O_ORDERDATE >='1994-01-01'

AND O_ORDERDATE < '1995-01-01'

AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY N_NAME;

4
Q18

result [575169]

s_name
avg(l_quantity)

[14379225]

[5751690000]
X suppkey

[575169] () 1363342789712] (200001 () [10000]
Tmp5 4
0 X orderkey Tmpé
[227597] [227597] [3793296] [3793296] T s_suppkey
Tmp2 Tmp4 s_nationkey T n_name
TU |_orderkey - n_nationkey
TU o_orderkey | Suppkey
o_orderpriority I—quantity
[3793296] [6000000]
[227597] (_)[1500000] Tmp3
Tmpl O |_commitdate
Go_orderdate >="1994-01-01' | < |_receiptdate
0_orderdate <’1995-01-01'
[1500000] [6000000] [] r20000) [Jres)
orders lineitem supplier nation

Figure F.18 Relational Algebra Query Tree of Query Q18

285

Query Q19 with the query frequency of 3 produces the number of item for
each customer nation for customers who have nation same as supplier and ordered in
1994 and the committed date is before receipt date. Its relational algebra tree is shown
in Figure F.109.

Query Q19

SELECT C_NATIONKEY, COUNT(L_QUANTITY)
FROM SUPPLIER, CUSTOMER, ORDERS, LINEITEM
WHERE C_CUSTKEY = O_CUSTKEY

AND O_ORDERKEY = L_ORDERKEY

AND S_SUPPKEY = L_SUPPKEY

AND C_NATIONKEY =S_NATIONKEY

AND O_ORDERDATE >='1994-01-01'

AND O_ORDERDATE < '1995-01-01'

AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY C_NATIONKEY;

3
QL@

resultg[zzws]

c_nationkey
count(l_quantity)

[86275350000]

[22778]

[150000] 7™ [150000]

[5751690000]
suppkey

[10000]
TEc_custkeK
c_nationkey
[3793296] [3793296] -
[227597] Tos_suppkey
Tmp4 Tmp2 | 17 orderkey s_nationkey
TU o_orderkey I:suppkey
|“par ke%/
I"quantity
[227597] [1500000] [3793296] [6000000]
Tmp3 A Go_orderdate Tmpl
>="1994-01-01' O |_commitdate
0_orderdate <|_receiptdate
<’1995-01-01'
[1500000] [6000000] [] r20000] (] r150000]
orders lineitem supplier customer

Figure F.19 Relational Algebra Query Tree of Query Q19

286

Query Q20 with the query frequency of 7 produces the variance of supply cost
for each nation of supplier and the item have the committed date is before receipt

date. Its relational algebra tree is shown in Figure F.20.

Query Q20

SELECT N_NAME, VARIANCE(PS_SUPPLYCOST)
FROM NATION, SUPPLIER, PARTSUPP, LINEITEM
WHERE S_SUPPKEY =PS_SUPPKEY

AND S_NATIONKEY = N_NATIONKEY

AND PS_PARTKEY = L_PARTKEY

AND PS_SUPPKEY = L_SUPPKEY

AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY N_NAME;

7

Q20@

resulté [3793296]

n_name
variance(ps_supplycost)

[3034636800000] 120000] () [10000]
DX partkey Tmps 4
uppkey TU s_suppkey
s_nationkey
[3793296] [3793296] [800000]
Tmp2 Tmp3 1 TC n_name
TU 1_suppke! ;
1 arF; eyy TC ps_suppkey n_nationkey
I:Fax ps_partkey
[3793296] [6000000]
TmplT o |_commitdate
< |_receiptdate
[6000000] [] 1800000] [] rooooy [Jres)
lineitem partsupp supplier nation

Figure F.20 Relational Algebra Query Tree of Query Q20

287

Query Q21 with the query frequency of 6 produces the standard deviation of
extended price for each supplier nation for items that have the committed date is
before receipt date and specific part type. Its relational algebra tree is shown in Figure
F.21.

Query Q21

SELECT S_NATIONKEY, STDDEV(L_EXTENDEDPRICE)
FROM SUPPLIER, PARTSUPP, PART, LINEITEM
WHERE S_SUPPKEY =PS_SUPPKEY

AND PS_PARTKEY = L_PARTKEY

AND PS_SUPPKEY = L_SUPPKEY

AND PS_PARTKEY =P_PARTKEY

AND P_TYPE LIKE '%BRASS%'

AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY S_NATIONKEY;

[758746]

'YS nationkey
stddev(l_extendedprice)

L7r58746] [7587460000]
mp9

M suppkey

[75T8743] [607807404672] [200000] () [100000]
m
P M partkey Tmps}
Tmp4 uppkey
[160232] [32046400000]
[3793296] [3793296]
Tmp6
[40058] [40058] [800000] () [800000] P 1 partky
A Su| (5)
Tmp2 Tmp3 TC ps._ suppkey IZex epndeydprice TC s_suppkey
TU p_partkey ps_partkey s_nationkey
Tmp5
[40058] [200000] [3793206)% (60000001
Tmpl .
. O |_commitdate
G p_type like < |_receiptdate
“%BRASS%’ —ecelp
[200000] [] 100000 [6000000] [] 2000007
part partsupp lineitem supplier

Figure F.21 Relational Algebra Query Tree of Query Q21

288

Query Q22 with the query frequency of 3 produces the minimum of extended
price for each part brand for items that were ordered in 1994 with the committed date

is before receipt date. Its relational algebra tree is shown in Figure F.22.

Query Q22

SELECT P_BRAND, MIN(L_EXTENDEDPRICE)
FROM PART, ORDERS, PARTSUPP, LINEITEM
WHERE P_PARTKEY = PS_PARTKEY

AND PS_PARTKEY = L_PARTKEY

AND PS_SUPPKEY = L_SUPPKEY

AND O_ORDERKEY = L_ORDERKEY

AND O_ORDERDATE >='1994-01-01'

AND O_ORDERDATE < '1995-01-01'

AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY P_BRAND;

3
Q2@

result [575169]

e

min(l_extendedprice)

[575169] [200000]
Tmp?7
[3793296] [3034636800000]
™ DX(partkey [227597] TU p_partkey
suppkey Tmp6 & [227597] p_brand
800000
[3793296] [3793296] [[800000]
Tmp2 |_orderkey Tmp3 X TU o_orderkey
|_partkey o_orderpriority
I:su?pkey .
"extendédprice o ey [227507] C)
ps_suppkey [1500000]
[3793296] () [6000000] pDatkey Tmp5 K G ordordate
Tmpl . -
O |_commitdate >=71994-01-01"
< |_receiptdate o_orderdate
<’1995-01-01'
[6000000] [] rs00000] [] 11500000] [] r200000]
lineitem partsupp orders part

Figure F.22 Relational Algebra Query Tree of Query Q22

289

Query Q23 with the query frequency of 3 produces the maximum of extended
price for each nation of customer that ordered in 1994 with the committed date is

before receipt date. Its relational algebra tree is shown in Figure F.23.

Query Q23

SELECT C_NATIONKEY, MAX(L_EXTENDEDPRICE)
FROM CUSTOMER, ORDERS, PARTSUPP, LINEITEM
WHERE C_CUSTKEY = O_CUSTKEY

AND O_ORDERKEY = L_ORDERKEY

AND PS_PARTKEY = L_PARTKEY

AND PS_SUPPKEY = L_SUPPKEY

AND O_ORDERDATE >='1994-01-01'

AND O_ORDERDATE < '1995-01-01'

AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY C_NATIONKEY;

3
Q23 @

resulté [575169]

'Yc_nationkey .
max(I_extendedprice)

[86275350000]

[150000]
[575169] 800000
[] TU c_custkey
¢_nationkey
[379_?_296]2 [3793296] [22_7|_597A]1 [227597] T0 ps. suppkey
m mp —
P Il_g;ﬂekg(;ey T o orderkey ps_partkey
[~Suppkdy o tustkey
I"extendédprice
[a7932061() [6000000] (2275971 & [1500000]
Tmpl mp Go_orderdate
O |_commitdate >=71994-01-01'
< |_receiptdate o_orderdate
<’1995-01-01'
[6000000] [1500000] [] ts00000] [] 1150000]
lineitem orders partsupp customer

Figure F.23 Relational Algebra Query Tree of Query Q23

290

Query Q24 with the query frequency of 5 produces the summation of extended
price for each nation of supplier that was ordered in 1994 with the committed date is

before receipt date. Its relational algebra tree is shown in Figure F.24.

Query Q24

SELECT S_NATIONKEY, SUM(L_EXTENDEDPRICE)
FROM SUPPLIER, ORDERS, PARTSUPP, LINEITEM
WHERE S_SUPPKEY =PS_SUPPKEY

AND PS_PARTKEY = L_PARTKEY

AND PS_SUPPKEY = L_SUPPKEY

AND O_ORDERKEY = L_ORDERKEY

AND O_ORDERDATE >='1994-01-01'

AND O_ORDERDATE < '1995-01-01'

AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY S_NATIONKEY;

5
Q24@

resulté [575169]

s_nationkey .
sum(l_extendedprice)

[5751690000]

[575169] r20000] ()[10000]
Tmp7 partkey y
uppkey Tmp8
800000
i] TU s_suppkey
s_nationkey
(3793296 (")[3793296] [221597[]1 [227597] T0 s suppkey
mp _
Tme2 Il_gz:?t?(rekyey 0 ord?(rkey ps_partkey
[~SUppkay otustkey
I"extendédprice
[3793296](") [6000000] [22597] [1500000]
Tmpl mp3 4 Go_orderdate
G |_commitdate >:,3)?3:r-c§)alt-e01'
< |_receiptdate <1995-01-01'
[6000000] [1500000] [] 1800000] (] raooo0]
lineitem orders partsupp supplier

Figure F.24 Relational Algebra Query Tree of Query Q24

291

Query Q25 with the query frequency of 4 produces the average of total price
of order for each nation of customer in specific region, ASIA and ordered in 1994. Its

relational algebra tree is shown in Figure F.25.

Query Q25

SELECT N_NAME, AVG(O_TOTALPRICE)

FROM REGION, NATION, CUSTOMER, ORDERS
WHERE C_NATIONKEY = N_NATIONKEY

AND N_REGIONKEY = R_REGIONKEY
AND C_CUSTKEY = O_CUSTKEY
AND O_ORDERDATE >='1994-01-01'
AND O_ORDERDATE < '1995-01-01'
AND R_NAME ="ASIA'

GROUP BY N_NAME;

4
Q2@

result

[46008]

Vn_name

avg(o_totalprice)
Tmp9

[46008] [6869560251]

Tmp6 Tmp8
[30183] [750000] [227597)() [227597]
DY i
Tmpa nationkey Tlo_custkery
o_orderkey
(] [150000] o_totalprice
kTmp5
[227597() 11500000]
QO [25](_)[25] Tmpgp
Tmp2 Tmp3 .
TCr_regionkey Tlc_nationkey Oo_orderdate
N ¢ custkey >="1994-01-01"
1 . = -01-
[1] [5] TCH:F%%ISH S 0_orderdate
Tmpl 4 Or_name n_name <’1995-01-01'
=’ASIA’
[5] [25] []ra50000] [] 12500000]
region nation customer orders

Figure F.25 Relational Algebra Query Tree of Query Q25

292

Query Q26 with the query frequency of 6 produces the number of orders for
each nation of customer and supplier who have the same nation and order was made
in 1994 with the committed date is before receipt date. Its relational algebra tree is

shown in Figure F.26.

Query Q26

SELECT N_NAME, COUNT(O_TOTALPRICE)

FROM NATION, SUPPLIER, CUSTOMER, ORDERS
WHERE C_NATIONKEY =S_NATIONKEY

AND S_NATIONKEY = N_NATIONKEY

AND C_CUSTKEY = O_CUSTKEY

AND O_ORDERDATE >='1994-01-01'

AND O_ORDERDATE < '1995-01-01'
GROUP BY N_NAME;

6
Q26

result [91038610]

n_name _
count(o_totalprice)

[91038610]
Tmp8

[2275965250]

> nationkey

[91038610]

[2275970000]

Tmp6 nationkey Tmp7
[227597] () [34139550000] [100000] [100000]
Tmp4 Tmps 4
[150000] [150000] [227597]
Tmpl X Tmp3 TC n_name
TC o_custkey TU s_nationkey n_nationkey
o_totalprice -
Tlc_custkey
c_nationkey [227597] [1500000]
TmpZ 4 Go_orderdate
>="1994-01-01"
0_orderdate
<’1995-01-01'
[] r250000] [1500000] [] r200000] [Jies1
customer orders supplier nation

Figure F.26 Relational Algebra Query Tree of Query Q26

293

Query Q27 with the query frequency of 9 produces the variance of available
quantity of supply part for each nation of supplier for specific part type and available

quantity more than 2000. Its relational algebra tree is shown in Figure F.27.

Query Q27

SELECT N_NAME, VARIANCE(PS_AVAILQTY)
FROM NATION, SUPPLIER, PART, PARTSUPP
WHERE S_SUPPKEY =PS_SUPPKEY

AND S_NATIONKEY = N_NATIONKEY
AND P_PARTKEY = PS_PARTKEY
AND P_TYPE LIKE '%BRASS%'
AND PS_AVAILQTY < 2000

GROUP BY N_NAME;

9
Q27@

result [31864]

'Yn_name
variance(ps_availgty)

[31864]

[1602320000]
Tmp6

[31864] (")[318640000] [25]
Tmp7 Tmp8“
[31864] [6399265500] [100000] [100000]
Tmp5 X X
partkey Tmp6
[40058] [40058] [159750] [159750]
Tmp4 .
Tmp TU s_suppke: TC n_nationke
TC p_partkey TU ps_partkey PPy w y
b brand 5 Suppkey s_nationkey n_name
ps_availqgty
[40058](") [200000]
[159750] () [800000]
Tmpl Tmp3
O p_type like
‘%BRASS%’
[200000] [8000000] [][200000] []resi
part partsupp supplier nation

Figure F.27 Relational Algebra Query Tree of Query Q27

294

Query Q28 with the query frequency of 5 produces the standard deviation of
supply cost for each nation of supplier in specific region, ASIA and available quantity

of supply part more than 2000. Its relational algebra tree is shown in Figure F.28.

Query Q28

SELECT N_NAME, STDDEV(PS_SUPPLYCOST)
FROM REGION, NATION, SUPPLIER, PARTSUPP
WHERE S_SUPPKEY =PS_SUPPKEY

AND S_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY
AND PS_AVAILQTY < 2000
AND R_NAME ="ASIA'

GROUP BY N_NAME;

[32172]

n_name
stddev(ps_suppltcost)

[319979250]

[2003]
Tmp6

TUps_suppkey
ps_supplycost

[25][><1 [20000] () [10000]
regionkey Tmps 4
[1] [251() [25] 2597501 () [800000]
Tmp Tmp3 Tmp74
TUr_regionkey nn_region&egj TUs_nationkey)
R-Rgr]'%” € s_suppkey G ps_availgty
[I5] - <2000
Tmpl Or_name=
"ASIA’
[5] [25] [Jt20000] [] tso0000]
region nation supplier partsupp

Figure F.28 Relational Algebra Query Tree of Query Q28

295

Query Q29 with the query frequency of 7 produces the summation of item
quantity for each nation of supplier in specific region, ASIA with ordered date in
1994 and the committed date is before receipt date. Its relational algebra tree is shown
in Figure F.29.

Query Q29

SELECT N_NAME, SUM(L_QUANTITY)

FROM REGION, NATION, SUPPLIER, LINEITEM
WHERE S_SUPPKEY = L_SUPPKEY

AND S_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY
AND O_ORDERKEY = L_ORDERKEY
AND O_ORDERDATE >='1994-01-01'
AND O_ORDERDATE < '1995-01-01'
AND L_COMMITDATE < L_RECEIPTDATE
AND R_NAME ="ASIA'

GROUP BY N_NAME;

;
Q9@

resultg [759474]

Yn_name

sum(l_quantity)

[759474]
Tmp9

[7597971888]

suppkey

12003]) [50000] [3793296] (L) [3793296]
Tmp8A
Nnationkey TU 1_suppkey
|_quantity
[10000]
regionkey Tmp5 4
1 [25]
T[m]p Tmp3 137932961 [6000000]
TUr_regionkey Tmp7 4
_ T i
H:l;w% ISHESQ/’ O |_commitdate
n_name .
APIE) - TUs_nationkey < |_receiptdate
Tmpl S
mp Or_name s_suppkey
=’ASIA’
[5] [25] [Jt20000] [] te000000]
region nation supplier lineitem

Figure F.29 Relational Algebra Query Tree of Query Q29

296

Query Q30 with the query frequency of 4 produces the maximum of discount
for each nation of customer in specific region, ASIA with ordered date in 1994. Its

relational algebra tree is shown in Figure F.30.

Query Q30

SELECT N_NAME, MAX(L_DISCOUNT)

FROM REGION, NATION, CUSTOMER, ORDERS, LINEITEM
WHERE C_CUSTKEY = O_CUSTKEY

AND C_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY
AND O_ORDERKEY = L_ORDERKEY
AND O_ORDERDATE >='1994-01-01'
AND O_ORDERDATE < '1995-01-01'
AND R_NAME ="ASIA'

GROUP BY N_NAME;

4
Q@

result
[184082]

’Yn name

max(l_discount)

184082]

[[276048000000]
L

[6000000]
TEo_cusékelzy
0_orderkey TC_orderkey
[150000] T_discount
[227597(_) 11500000]
[1 Tmp?
Tmp2 .
TCr_regionkey Tlc_nationkey Go_orderdate
@I TUn_regionke coustiey >="1994-01-0T"
n:na%mnhey o0_orderdate
Tmpl 1 Or_name n_name <1995-01-01"
=’ASIA’
5] [25] [Jras0000] [1500000] [_] 16000000]
region nation customer orders lineitem

Figure F.30 Relational Algebra Query Tree of Query Q30

297

Query Q31 with the query frequency of 5 produces the summation of item
quantity for each nation of supplier in specific region, ASIA with ordered date in
1994 and the committed date is before receipt date. Its relational algebra tree is shown
in Figure F.31.

Query Q31

SELECT N_NAME, SUM(L_QUANTITY)

FROM REGION, NATION, SUPPLIER, ORDERS, LINEITEM
WHERE S_SUPPKEY = L_SUPPKEY

AND S_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY
AND O_ORDERKEY = L_ORDERKEY
AND O_ORDERDATE >='1994-01-01'
AND O_ORDERDATE < '1995-01-01'
AND L_COMMITDATE < L_RECEIPTDATE
AND R_NAME ="ASIA'

GROUP BY N_NAME;

5
Q31 ‘
result 1 [115372]

'Yn_name

sum(l_quantity)

[115372]

TmpL [17285403978]

[759474]

ot [7597971888] [227597]

Nsuppkey Tmpll 4

[50000]
[3793296]

K TCo_orderkey

T[I_suppkey

[10000] :7orderl.<ey

|_quantity
1] TUs_nationkey 227597 1500000
s_suppkey C Tmpl]OCAP[]

TCr_regionkey

1Bl
Tmpl

[3793296] () [6000000]

Tmp7 X Oo_orderdate

O I_commitdate | >='1994-01-01'

O'r_name Tln_regionkey) o_orderdate

= ASIA® n_nationkey < |_receiptdate <1995-01-01"

[5] [25] [] 1200001 [_] 16000000] [Jrz500000]
region nation supplier lineitem orders

Figure F.31 Relational Algebra Query Tree of Query Q31

298

Query Q32 with the query frequency of 8 produces the average of item
quantity for each nation of supplier that have nation same as nation of customer with
ordered date in 1994 and the committed date is before receipt date. Its relational

algebra tree is shown in Figure F.32.

Query Q32

SELECT N_NAME, AVG(L_QUANTITY)

FROM NATION, SUPPLIER, CUSTOMER, ORDERS, LINEITEM
WHERE C_CUSTKEY = O_CUSTKEY

AND O_ORDERKEY = L_ORDERKEY

AND S_SUPPKEY = L_SUPPKEY

AND C_NATIONKEY =S_NATIONKEY

AND S_NATIONKEY = N_NATIONKEY

AND O_ORDERDATE >='1994-01-01'

AND O_ORDERDATE < '1995-01-01'

AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY N_NAME;

8
Q2 @

result $[22778]

'Yn name

avg(l_quantity)

[5751690000]
suppkey Tmpg|
partkey

[10000] (™ [10000]

[863342789712)

Tmp64
orderkey P TCc_cus_tkeK TC n_nationkey
c_natlon ey n_name
[227597] [3793296] [3793296]
Tmpa Tmp2 ns‘sunpkiy
m i
T o_orderkey P Rll_gﬂgerﬁee)}/ s-natlonkey
e
I
[2275971 (_)[1500000] -
TmpS % Go_orderdate [3793206] () [6000000]
>=1994-01-01' Tmpl{ G I_commitdate
o_orderdate < iptdat
<'1995-01-01" fecelptoate
[1500000] [6000000] [] r10000] (] 1250000 [
orders lineitem supplier customer nation

Figure F.32 Relational Algebra Query Tree of Query Q32

299

Query Q33 with the query frequency of 6 produces the number of supply part
for each nation of supplier in specific region, ASIA, with the committed date is before

receipt date. Its relational algebra tree is shown in Figure F.33.

Query Q33

SELECT N_NAME, COUNT(PS_SUPPLYCOST)

FROM REGION, NATION, SUPPLIER, PARTSUPP, LINEITEM
WHERE S_SUPPKEY =PS_SUPPKEY

AND S_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY
AND PS_PARTKEY = L_PARTKEY
AND PS_SUPPKEY = L_SUPPKEY
AND L_COMMITDATE < L_RECEIPTDATE
AND R_NAME ="ASIA'

GROUP BY N_NAME;

6
Q3@

result g [759474]

n_name
count(ps_suppltcost)

[607837751040]

[3793296]
Tmp6
[50000] [800000]() [800000]
Plrationkey ™ Tmp7 T ety
[10000] [10000] TUps_suppkey
Tmp5 X ps_partkey
ps_supplycost
[1
Tmp2 Tmp3 TUs_nationkey [3793296] C)[GOOOOOO]
T L T Tmps
n_name O |_commitdate
r%]p [5] < |_receiptdate
O'r_name=
*ASIA’
[5] [25] [Jrz0000] []ooooo; [][6000000]
region nation supplier partsupp lineitem

Figure F.33 Relational Algebra Query Tree of Query Q33

300

Query Q34 with the query frequency of 4 produces the summation of quantity
of lineitem for each nation of supplier that are ordered in 1994 for specific region,

ASIA. Its relational algebra tree is shown in Figure F.34

Query Q34

SELECT N_NAME, SUM(L_QUANTITY)

FROM ORDERS, LINEITEM, SUPPLIER, NATION, REGION
WHERE O_ORDERKEY = L_ORDERKEY

AND L_SUPPKEY =S_SUPPKEY

AND S_NATIONKEY = N_NATIONKEY

AND N_REGIONKEY = R_REGIONKEY

AND R_NAME = ‘ASIA’

AND O_ORDERDATE >= ‘1994-01-01°

AND O_ORDERDATE < 1995-01-01°
GROUP BY N_NAME;

4
Q4@

result | [182183]

n_name .
sum(l_quantity)

[182183]

e [273369715461]

[1201113]

[12018000000]
Tmp8 [227597]

l><]sup|0key Tmpio 4

[50000]

[6000000] [6000000]
Tmp? A TCo_orderkey
[10000] TCI_suppkey
[_orderkey
I"quantity Tmp9

[227597]<> [1500000]
A

Tmp3
P TUs_nationkey

TUr_regionkey S_suppkey

O'o_orderdate
1Bl by

Tl) >="1994-01-01'
MPLT Or_name nnn_rggg'o%nk‘éey o_orderdate
=" ASIA’ - y <1995-01-01'
[5] [25] [] r20000] []reo00000] [Jj1500000]
region nation supplier lineitem orders

Figure F.34 Relational Algebra Query Tree of Query Q34

301

Query Q35 with the query frequency of 6 produces standard deviation of
extended price for each brand’s part that customer ordered in 1994, and the committed

date is before receipt date. Its relational algebra tree is shown in Figure F.35.

Query Q35

SELECT P_BRAND, STDDEV(L_EXTENDEDPRICE)

FROM CUSTOMER, PART, ORDERS, PARTSUPP, LINEITEM
WHERE C_CUSTKEY = O_CUSTKEY

AND O_ORDERKEY = L_ORDERKEY

AND PS_PARTKEY = L_PARTKEY

AND PS_SUPPKEY = L_SUPPKEY

AND P_PARTKEY = PS_PARTKEY

AND P_TYPE LIKE '%BRASS%'

AND O_ORDERDATE >='1994-01-01'

AND O_ORDERDATE < '1995-01-01'

AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY P_BRAND;

6
Q35

result [575169]

'Yp brand
stddev(I_extendedprice)

[86275350000]

g partkey

[575169]
Tmpl2

[575169] Tmpll

[172688313362]

Tmpl0
M custiey [150000] X [150000]
Tmp9
[227507] \ [227597]
Tmp4
TCo_custkery
[160232] [32046400000] o_orderkey
[3793296] [3793296] TCc_nationkey
Tmp6 C_custkey
[227597] [1500000]
[40058] [40058] [800000] X
Tmp2 Tmp3 4 TU |_partkey Tmp8
TC ps_suppkey I_su?pkey .
TC p_partkey ps_partkey’ IZextendédprice | Go_orderdate
Tmp5 >="1994-01-01"
derdate
[40058] [200000] 3703006 [6000000] o_or .
Tmpt [] <1995-01-01
O p_type like O I_commitdate
‘%BRASS%’ < I_receiptdate
[200000] [800000] [6000000] [1500000] [Jrs0000]
part partsupp lineitem orders customer

Figure F.35 Relational Algebra Query Tree of Query Q35

302

Query Q36 with the query frequency of 8 produces the minimum cost supply
for each brand ordered in 1994 and the committed date is before receipt date. Its

relational algebra tree is shown in Figure F.36.

Query Q36

SELECT P_BRAND, MIN(PS_SUPPLYCOST)

FROM SUPPLIER, PART, ORDERS, PARTSUPP, LINEITEM
WHERE S_SUPPKEY =PS_SUPPKEY

AND O_ORDERKEY = L_ORDERKEY

AND P_PARTKEY = PS_PARTKEY

AND PS_PARTKEY = L_PARTKEY

AND PS_SUPPKEY = L_SUPPKEY

AND O_ORDERDATE >='1994-01-01'

AND O_ORDERDATE < '1995-01-01'

AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY P_BRAND;

8
Q6@

resultg [575169]

y brand

mm(ps supplycost)

[460135200000]
partkey
[800000]
TUp_partkey
p_brand
[3793296] T ps S;‘,’{ﬁkey
Tmp2 MT |_orderkey K ps supplycost TU s_supplykey
|_partkey n g‘gurgt?{ 24 s_nationkey
I"suppkey
[227597] (_)[1500000]
[3793296]() [6000000] o
Tmpl mp Go_orderdate
O |_commitdate >=71994-01-01"
< |_receiptdate o_orderdate
<’1995-01-01'
[6000000] [1500000] [] rso0000] [] rz0000] [Jr200000]
lineitem orders partsupp supplier part

Figure F.36 Relational Algebra Query Tree of Query Q36

303

Query Q37 with the query frequency of 3 produces the maximum of extended
price for each nation of customer that ordered in 1994 and the committed date is

before receipt date. Its relational algebra tree is shown in Figure F.37.

Query Q37

SELECT C_NATIONKEY, MAX(L_EXTENDEDPRICE)

FROM SUPPLIER, CUSTOMER, ORDERS, PARTSUPP, LINEITEM
WHERE C_CUSTKEY = O_CUSTKEY

AND C_NATIONKEY =S_NATIONKEY

AND O_ORDERKEY = L_ORDERKEY

AND S_SUPPKEY = PS_SUPPKEY

AND PS_PARTKEY = L_PARTKEY

AND PS_SUPPKEY = L_SUPPKEY

AND O_ORDERDATE >='1994-01-01'

AND O_ORDERDATE < '1995-01-01'

AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY C_NATIONKEY;

Q37

result [22778]

c_nationkey
max(l_extenedprice)

[86275350000]
Tmpl custkey
nationkey
[150000]
Tmp TCc_custkey
c_nationkey
[3793296] [227597] n gss_;grpt E;Y
Tmp2 I_orderkey Tmp4 T derk ps_supplycost |TC S_supplykey
|_partkey S_orefixey s_nationkey
I_su?pkey . . Yy
I“extendédprice
[227597] (_)[1500000]
[3793296]() [6000000] T3
Tmpl mp Oo_orderdate
O |_commitdate >=’1994-01-01'
< |_receiptdate o_orderdate
<’1995-01-01'
[6000000] [1500000] [] 1800000 [] r20000] []r250000]
lineitem orders partsupp supplier customer

Figure F.37 Relational Algebra Query Tree of Query Q37

304

Query Q38 with the query frequency of 5 produces the minimum of cost of
supply for nation of suppliers in specific region, ASIA. Its relational algebra tree is

shown in Figure F.38.

Query Q38

SELECT N_NAME, MIN (PS_SUPPLYCOST)

FROM PART, PARTSUPP, SUPPLIER, NATION, REGION
WHERE P_PARTKEY = PS_PARTKEY

AND S_SUPPKEY = PS_SUPPKEY
AND S_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY
AND R_NAME ="ASIA'

GROUP BY N_NAME;

5
033 @

result () [160240]

'Yn_name

min(ps_supplycost)

[32048000000]

Tmp8
[160240] [1602400000] [200000] [200000]
Tmpo 4
Tmp6
[50008]4) [800000]
nationkey Tmp7 7 TCp_partkey
[10000] [10000] TUps_suppkey
Tmp5 & ps_partkey
ps_supplycost
[l [25](C)[25]
Tmp2 Tmp3 TTs_nationkey
TUr_regionkey TCn_regEion e s_suppkey
- n_nationke
n_name

11¢)8l
mp

Or_name=

’ASIA’

[5] [25] | |[20000] [Jrsooooo] [|[200000]

region nation supplier partsupp part

Figure F.38 Relational Algebra Query Tree of Query Q38

305

Query Q39 with the query frequency of 7 produces the average of total priced
for each nation of customer in specific region, ASIA, that ordered in 1994. Its

relational algebra tree is shown in Figure F.39.

Query Q39

SELECT N_NAME, AVG(O_TOTALPRICE)

FROM REGION, NATION, SUPPLIER, CUSTOMER, ORDERS
WHERE C_NATIONKEY =S_NATIONKEY

AND S_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY
AND C_CUSTKEY = O_CUSTKEY
AND O_ORDERDATE >='1994-01-01'
AND O_ORDERDATE < '1995-01-01'
AND R_NAME ="ASIA'

GROUP BY N_NAME;

Q39

result 1 [18435748]

n_name .
avg(o_totalprice)
[18435748]

Tmpl [2752556069627]

[12093991] () [30450000] 2275971 O[227597]
Tmpg M nationkey Tmpl0 4
[50000]
[150000] () [150000]
X TCo_orderkey
Tmp7 0_totalprice
[10000] [10000] TUc_nationkey
Tmp5 K
[1] [25] TUs_nationkey 12275971)[1500000]
Tmp2 s_suppkey Tmpd X
TTr_regionkey
Oo_orderdate
TETl1]1 o TUn_regionke: >="1994-01-01
P O'r_name n _‘nagonri(e)y o_orderdate
=" ASIA’ n_name <’1995-01-01'
5] [25] [] 120000] [_] 150000] [Jrz500000]
region nation supplier customer orders

Figure F.39 Relational Algebra Query Tree of Query Q39

306

Query Q40 with the query frequency of 4 produces the maximum of available

quantity of part for each supplier’s nation in specific region, ASIA, specific part type

and available quantity is more than 2000. Its relational algebra tree is shown in Figure

F.40.
Query Q40
SELECT N_NAME, COUNT(PS_AVAILQTY)
FROM REGION, NATION, SUPPLIER, PART, PARTSUPP
WHERE S SUPPKEY =PS_SUPPKEY
AND S_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY
AND P_PARTKEY =PS_PARTKEY
AND P_TYPE LIKE '%BRASS%'
AND PS_AVAILQTY <2000
AND R_NAME ="'ASIA'
GROUP BY N_NAME;
4
Q40@
result g [6492]
’Ync_ont?rw(%s_availqty)
[6492]
Tmp12 () [1288745976]
I><Ipartkey
ﬁﬁ;gzl [319979250] [40058] Dtaoosey
Nsuppkey Tmpll
[s00001 [1597501) [150750]
nationkey Tmp8 TUp_partkey
TUps_suppkey
ps_partkey
[10000] ps_availgty
[40058] | [200000]
1] [15Tg;15§7] [800000] 7p1d
Tmp2 Tmp3) TUs_nationkey
Tlr_regionkey nﬂ—{ﬁﬂlgmﬁgy s_suppkey O ps_availqgty G p_type like
el n_name <2000 ‘%BRASS%’
mp
Or_name=
&[5’]A SIA [29] [|120000] [800000] ﬁ[zoooom
region nation supplier partsupp part

Figure F.40 Relational Algebra Query Tree of Query Q40

307

Query Q41 with the query frequency of 3 produces the minimum of item
quantity for each nation of customers that their nation same nation of supplier in
specific region, ASIA, and customer’s orders occurred in 1994 and the committed

date is before receipt date. Its relational algebra tree is shown in Figure F.41.

Query Q41

SELECT N_NAME, MIN(L_QUANTITY)

FROM REGION, NATION, SUPPLIER, CUSTOMER, ORDERS, LINEITEM
WHERE C_CUSTKEY = O_CUSTKEY

AND O_ORDERKEY = L_ORDERKEY
AND S_SUPPKEY = L_SUPPKEY
AND C_NATIONKEY =S_NATIONKEY
AND S_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY
AND O_ORDERDATE >='1994-01-01'
AND O_ORDERDATE < '1995-01-01'
AND L_COMMITDATE < L_RECEIPTDATE
AND R_NAME ="ASIA'

GROUP BY N_NAME;

n_name
min(l_availqgty)
[17305800000]

[X| nationkey

[227597]
Tmpll 4

Tmp9 TUc_nationkey

[3793296] [3793296]

Y TCo_ordeirk_ey
o_totalprice
T sumehey,
[10000] I"quantity
TCs_nationkey
1] 25] s_suppkey [227597]<>[1500000]
Tmpl0O4A
Tmp Tmp7 Go_orderdate
TUr_regionkey 13793296] () [6000000] >2'1994-01-01'
A o_orderdate
16l O |_commitdate | <’1995-01-01'
Tmplt & r_name n,{‘{gﬁ'o%’i(keey < |_receiptdate
= ASIA’ n_name
[5] [25] [rz0000] [_]te000000] [25000001 []ias0000]
region nation supplier lineitem orders customer

Figure F.41 Relational Algebra Query Tree of Query Q41

308

Query Q42 with the query frequency of 2 produces the maximum of extended
price for each nation of suppliers in specific region, ASIA, specific part type and
committed date is before receipt date. Its relational algebra tree is shown in Figure
F.42.

Query Q42

SELECT N_NAME, MAX(L_EXTENDEDPRICE)

FROM REGION, NATION, SUPPLIER, PARTSUPP, PART, LINEITEM
WHERE S_SUPPKEY =PS_SUPPKEY

AND S_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY
AND PS_PARTKEY = L_PARTKEY
AND PS_SUPPKEY = L_SUPPKEY
AND PS_PARTKEY = P_PARTKEY
AND P_TYPE LIKE '%BRASS%'
AND L_COMMITDATE < L_RECEIPTDATE
AND R_NAME ="ASIA'

GROUP BY N_NAME;

2
@

'95“"$ [152424]

'Yn name

max(I_extendedprice)
[30423009492]
X partkey

[759474] ~<T[607837751040]

X partkey
suppley

[40058]
Tmp13 4

[40058]

A

Tmp8

[160240] [3793296] TUp_partkey

(e ticY

n_name
< |_receiptdate

3 Tops_suppk [40058] () [200000]
10000 ps_suppkey
Tmpgl Tmp5 X [] ps_partkey Tmpl2
ps_supplycost G p_type
M [25] like ‘“%BRASS%’
Tmp2 T redionk Tmp3 — Tfsgnsal}:)%?(léeily [3793296] (_)[6000000]
r_regionkey n_regionke _ Tmp9

R |on|§e¥ O |_commitdate
11()[5]
mp

O'r_name=
[Q]ASIA’ [25] D [10000] D [800000] D [6000000] D [200000]

region nation supplier partsupp lineitem part

Figure F.42 Relational Algebra Query Tree of Query Q42

309

Query Q43 with the query frequency of 7 produces the summation of extended
price of each brand of part that are ordered in 1994 which committed date is before
receipt date, and the nation of customers same that of suppliers. Its relational algebra

tree is shown in Figure F.43.

Query Q43

SELECT P_BRAND, SUM(L_EXTENDEDPRICE)

FROM SUPPLIER, CUSTOMER, PART, ORDERS, PARTSUPP, LINEITEM
WHERE C_CUSTKEY = O_CUSTKEY

AND C_NATIONKEY =S_NATIONKEY

AND O_ORDERKEY = L_ORDERKEY

AND S_SUPPKEY = PS_SUPPKEY

AND P_PARTKEY = PS_PARTKEY

AND PS_PARTKEY = L_PARTKEY

AND PS_SUPPKEY = L_SUPPKEY

AND O_ORDERDATE >='1994-01-01'

AND O_ORDERDATE < '1995-01-01'

AND L_COMMITDATE < L_RECEIPTDATE
GROUP BY P_BRAND;

7
Q3@

result (") [22778]

p_brand .
sum(l_extendedprice)
[86275350000]
nationkey
suppkey

Tlc custkeE(/
ey

[863342789712] 18000007) [800000] c_nation

orderkey Tmp6

[TCs_nationkey

[3793296] [227597] T gssfggﬁﬁgy s_suupkey
Tmp2 |_orderkey Tmp4 T derk pssupplycost |7C p_partkey
| “partkey S orarey p_brand
“suppkey, Custkey
I"extendedprice
[227597] (_)[1500000]
[3793296] [6000000] Tmo3
Tmpl mp Oo_orderdate
O |_commitdate >="1994-01-01"
< |_receiptdate o_orderdate
<’1995-01-01'
[6000000] lsoooo0] [Jreooooo] [(2000001 [Jrasoooo] []rzoooo]
lineitem orders partsupp part supplier customer

Figure F.43 Relational Algebra Query Tree of Query Q43

310

Query Q44 with the query frequency of 3 produces the average of account
balance for each nation of supplier that same as nation of customer in specific region,

ASIA. Its relational algebra tree is shown in Figure F.44

Query Q44

SELECT N_NAME, AVG(C_ACCBAL)

FROM PARTSUPP, SUPPLIER, CUSTOMER, NATION, REGION
WHERE PS _SUPPKEY =S_SUPPKEY

AND C_NATIONKEY = N_NATIONKEY
AND S_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY
AND R_NAME = ‘ASIA’

GROUP BY N_NAME;

3
Q44 @

resultg[967519280]

n_name
avg(c_acctbal)

[24036000000]
nationkey

ST

160240]

mp8 [1602;20000] [150000]() [150000]
/ suppkey Tmp9j
[2003] [50000] [800000] [800000]
mp nationke: A
Y Tmp7
[10000] (_) [10000]
regionkey ATmp5
TCps_suppkey
[1] [25]
Tmp2) TUs_nationkey TCc_nationkey
TCr_regionkey Tmp3 S_suppkey c_acctbal
1 5
[1] [5] n_re ion&e
Tmpl T Ot name n_nation e¥
- n_name
=’ASIA’
[5] [25] [Jrwooooy [Jrsooooo) []fas0000]
region nation supplier partsupp customer

Figure F.44 Relational Algebra Query Tree of Query Q44

311

Query Q45 with the query frequency of 8 produces variance of extended price
for each nation of supplier which ordered in 1994 for specific part type, brand and the
committed date is before receipt date. Its relational algebra tree is shown in Figure
F.45

Query Q45

SELECT S_NATIONKEY, VARIANCE (L_EXTENDEDPRICE)
FROM SUPPLIER, PARTSUPP, PART, LINEITEM, ORDERS
WHERE SUPPKEY = PS_SUPPKEY

AND PS_PARTKEY = L_PARTKEY

AND PS_SUPPKEY = L_SUPPKEY

AND O_ORDERKEY = L_ORDERKEY

AND PS_PARTKEY =P_PARTKEY

AND P_BRAND <> 'BRAND#45'

AND P_TYPE LIKE '%BRASS%'

AND L_COMMITDATE < L_RECEIPTDATE

AND O_ORDERDATE >='1994-01-01'

AND O_ORDERDATE < '1995-01-01'
GROUP BY S_NATIONKEY;

8
Qs @

result
[110845]

s_nationkey .
variance(I_extendedprice)
Tmpl2

[110845] () [1108450000]

Nsuppkey

Tmp10
[110845] () [166075027333] [10000] [10000]
M orderkey Tmp11 t
Tmp7 Tmp9
[729689] () [584167584000] [227597)() [227597]
[X partkey 4
suppke
i TC o_orderkey
[3793296] TUs_suppkey
s_nationkey

Tmp8

Tmp2 [227597)) [1500000]

[38500] () [38500] [800000] TO| partke
-3hBrkey
Tmp3 —order .
éﬂjr_regionkey "extendedprice
Tmpl TmpS Go_orderdate>="1994-01-01'
3793296]()[6000000 -

[38500] () [200000] L KL] o_orderdate<'1995-01-01"

ps_partkey o itdat
Op_|brand<>"BRAND#45' ps_suppkey < I__rce%rgimlda?ee

p_type like ‘%BRASS%’

[200000] [800000] [6000000] [] 12500000] [] 120000]
part partsupp lineitem orders supplier

Figure F.45 Relational Algebra Query Tree of Query Q45

312

Query Q46 with the query frequency of 9 produces the maximum of total price
for each nation of customers in specific region, ASIA, ordered in 1994. Its relational

algebra tree is shown in Figure F.46.

Query Q46

SELECT N_NAME, MAX (O_TOTALPRICE)

FROM CUSTOMER, ORDERS, LINEITEM, NATION, REGION
WHERE C_CUSTKEY = O_CUSTKEY

AND O_ORDERKEY = L_ORDERKEY

AND C_NATIONKEY = N_NATIONKEY

AND N_REGIONKEY = R_REGIONKEY

AND R_NAME ="ASIA'

AND O_ORDERDATE >='1994-01-01'

AND O_ORDERDATE < '1995-01-01'
GROUP BY N_NAME;

9
Q46 @

result | [184082]

Yn_name)
Tmpll meax(o_totalprice)
[184082] [276048000000]

Tmp9
[46008] () [6869560251] [60000000]
X custkey 4 Tmp10
Tmp6 Tmps
[227597]
TCI_orderkey
Tmp4
P TCo_custkery
[5] [150000] o_orderk_ey
Tmp2 £ s o_totalprice
mp
[1] [227597] | Tmp7
[25] [25]
TCr_regionkey TCc_nationkey g [1500000]
Tmpl - c_custkey
[11C)] Go_orderdate>="1994-01-01"
Gr_name TCn_regionkkey o_orderdate<’1995-01-01
= ASIA’ n_nationkey
[5] [25] [|r2s0000] [][1500000] [] 160000000]
region nation customer orders lineitem

Figure F.46 Relational Algebra Query Tree of Query Q46 (Q2 of 2nd set)

313

Query Q47 with the query frequency of 5 produces standard deviation of
extended price for each nation of supplier in specific region, ASIA, and orders are
occurred in 1994 that committed date is before receipt date. Its relational algebra tree

is shown in Figure F.47.

Query Q47

SELECT N_NAME, STDDEV(L_EXTENDEDPRICE)

FROM REGION, NATION, SUPPLIER, ORDERS, PARTSUPP, LINEITEM
WHERE S_SUPPKEY =PS_SUPPKEY

AND S_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY
AND PS_PARTKEY = L_PARTKEY
AND PS_SUPPKEY = L_SUPPKEY
AND O_ORDERKEY = L_ORDERKEY
AND O_ORDERDATE >='1994-01-01'
AND O_ORDERDATE < '1995-01-01'
AND L_COMMITDATE < L_RECEIPTDATE
AND R_NAME ="ASIA'

GROUP BY N_NAME;

5
U@

'eS“'t(g [152424]

i

[30423009492]

n_name .
max(l_extendedprice)

[227597]

[227597]

Tmpl3 A
[3793296] TCo_orderkey
[2008] TUI_partkey
Tmp6 |_suppke:
_Suppkey
"orderkey
|_extendedprice
[10000] TUps_suppkey [227597] ()[1500000]
ps_partkey Tmpl2 X
” Oo_orderdate
1 0
>=71994-01-01
Tmp2 ns_natiorllkey [3793206] ({)[6000000] o orderdate
TUr_regionkey TCn_regjonke: S_suppkey Tmpo & <*1995-01-01"
H‘qur;]%nﬁey G |_commitdate
%qlp [5] < |_receiptdate
Or_name=
"ASIA’
[5] [25] [10000] [800000] []te0caaoo] []t2s00000]
region nation supplier partsupp lineitem orders

Figure F.47 Relational Algebra Query Tree of Query Q47

314

Query Q48 with the query frequency of 6 produces the maximum of extended
price for each nation of customers in specific region, ASIA, that ordered in 1994 for
specific part type and committed date is before receipt date. Its relational algebra tree

is shown in Figure F.48.

Query Q48

SELECT N_NAME, MAX(L_EXTENDEDPRICE)
FROM REGION, NATION, CUSTOMER, ORDERS, LINEITEM,
PARTSUPP, PART

WHERE C_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY
AND PS_PARTKEY = L_PARTKEY
AND PS_SUPPKEY = L_SUPPKEY
AND PS_PARTKEY =P_PARTKEY
AND O_ORDERKEY = L_ORDERKEY
AND O_ORDERDATE >= '1994-01-01'
AND O_ORDERDATE < '1995-01-01'
AND L_COMMITDATE < L_RECEIPTDATE
AND P_TYPE LIKE ‘%BRASS%’
AND R_NAME = 'ASIA'

GROUP BY N_NAME;

6
Qs @

result

[184082]

<

n_name .
max(l_extendedprice)

[116101]

e [4650773858]

TUp_partkey

TCI_orderkey
T_extendedprice
TCo_cusct'keliy
0_orderkey 40058 5 200000
[150000] [3793206)() [6000000] [TmpI]SC} [1
Tmp10 O p_type
[227597() [1500000] like ‘%BRASS%’
[1] Tmp73
Tmp2 .
TCr_regionkey TCc,nanct)knkey Go_orderdate
C_custkey . .
1ol TEnfreqionEe >="1994-01-01
n_nation e¥ o_orderdate
Tmpl 4 Or_name n_name <1995-01-01'
=°ASIA®
5] [25] [150000] [s00000] [t000000] [[] t800000] [] r200000]
region nation customer orders lineitem partsupp part

Figure F.48 Relational Algebra Query Tree of Query Q48

315

Query Q49 with the query frequency of 4 produces the minimum of cost of
supply for each nation of suppliers in specific region, ASIA, that orders occurred in
1994 with committed date is before receipt date. Its relational algebra tree is shown in
Figure F.409.

Query Q49

SELECT N_NAME, MIN(PS_SUPPLYCOST)
FROM REGION, NATION, SUPPLIER, PART, ORDERS, PARTSUPP,
LINEITEM

WHERE S_SUPPKEY =PS_SUPPKEY

AND S_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY
AND O_ORDERKEY = L_ORDERKEY
AND P_PARTKEY = PS_PARTKEY
AND PS_PARTKEY = L_PARTKEY
AND PS_SUPPKEY = L_SUPPKEY
AND O_ORDERDATE >='1994-01-01'
AND O_ORDERDATE < '1995-01-01'
AND L_COMMITDATE < L_RECEIPTDATE
AND R_NAME ="ASIA'

GROUP BY N_NAME;

[227597]
Tmpl3 A

[227597]

[3793296] Tlo_orderkey

ﬂ‘_gartlﬁi
—SrhErkey
[10000] Tlps_suppkey [227597] ()[1500000]
ps_partkey Tmpl2 X
ps_supplycost
i Oo_orderdate
1 5 .
>="1994-01-01'
Tmp2 TUs_nationkey [3793296] ((_{6000000] o_orderdate
TUr_regionkey 7'Cr'H1ea ign S¥ s_suppkey Tmp9 <’1995-01-01'
n_name O I_commitdate
%]]p [5] < |_receiptdate
O'r_name=
ASIA’
5] [25] [Jrzo000] [__] so0000] [6000000] [Jras00000] [_] r200000]
region nation supplier partsupp lineitem orders part

Figure F.49 Relational Algebra Query Tree of Query Q49

Query Q50 with the query frequency of 5 produces the average of extended
price for each brand for customer in region, ASIA, nation of customer and supplier
are same and customer ordered in 1994 with specific part type that available quantity
is more than 200, and the committed date is before receipt date. Its relational algebra

316

tree is shown in Figure F.50

Query Q50
SELECT

WHERE

GROUP BY

P_BRAND, AVG(L_EXTENDEDPRICE)

FROM REGION, NATION, SUPPLIER, CUSTOMER, PART, ORDERS,

PARTSUPP, LINEITEM
C_CUSTKEY = O_CUSTKEY

AND C_NATIONKEY =S_NATIONKEY
AND S_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY
AND O_ORDERKEY = L_ORDERKEY

AND S_SUPPKEY = PS_SUPPKEY

AND P_PARTKEY =PS_PARTKEY

AND PS_PARTKEY = L_PARTKEY

AND PS_SUPPKEY = L_SUPPKEY

AND O_ORDERDATE >= '1994-01-01'

AND O_ORDERDATE < '1995-01-01'

AND L_COMMITDATE < L_RECEIPTDATE
AND P_TYPE LIKE '%BRASS%'

AND PS_AVAILQTY < 2000

AND R_NAME = 'ASIA'

P_BRAND;

317

[159750]

TUps_suppkey

(10000] ps_partkey
[40058]
[159750] [800000]
1] Tmp7() et
Tmp2 TEs_natioEkey
s_suppke i
TEP]:I'HE Igﬂlﬁgy _Suppkey G ps_availgty

<2000

[1800000]

supplier partsupp

nation

region

5
Q0@

result g} [215]

[4741]
1]
[24626077632] [227597] () [227597]
X suppkey
[3793296] TCo_orderkey
o_custkey
TCIrpankEy
suppke
[40058] I:ort’i)grke)g/
|_extendedprice
Tlp_partkey
pBRand" [227597] Ousooooy
Tmp16 Oo_orderdate
>="1994-01-01"
o_orderdate
[200000] <'1995-01-01"
[3793296] d)[6000000]
X
Tmp131 G |_commitdate
O p_type like < |_receiptdate
‘%BRASS%’
|'_‘, [200000] D[eoooooo] D[lsooooo]
lineitem orders

part

Figure F.50 Relational Algebra Query Tree of Query Q50

'Yp_brand
avg(l_extendedprice)
[4612650000]

D<custkey
ationkey

Tchcustke{
c_nationkey

[Jas00001

customer

318

The following sections are the result of query testbed provided in section F.1.
We first represent the symbol of the nodes in MVPP as follows.

@ represents a materialized view node selected by 2PO algorithm in static
phase

@ represents a materialized view node selected by Deterministic algorithm in
static phase

@ represents a new materialized view node selected by 2PO algorithm in

dynamic phase

F.2 The First Query Set

As our experiment includes two phases, static phase and dynamic phase then
the queries are separated into two set for of each experiment. The first set, the initial
requirement, is for static phase. The second set, new requirements, is for dynamic
phase.

The queries for the first query set as follows:

Queries for static phase: {Q7, Q10, Q21, Q27, Q33, Q38 and Q42}
Queries for dynamic phase: {Q6, Q8, Q16, Q30, Q35 and Q50}

F.2.1 Static Phase with the MVPP Re-Optimization Algorithm

The order of queries according to their frequency of executing the query
multiplied with the query cost is shown in Table F.1. Then, the order of queries of the
first MVPP is {Q10, Q33, Q21, Q38, Q7, Q42 and Q27}, and the last order list is
{Q27, Q10, Q33, Q21, Q38, Q7 and Q42}. The query processing costs of all MVPPs
for query set {Q7, Q10, Q21, Q27, Q33, Q38, and Q42} are shown in Table F.2. The
cheapest MVPP is the sixth and seventh MVPP as shown in Figure F.51.

The query processing cost of query of the cheapest MVPP are compared with
other MVPPs. The result shows that query processing cost of Q27 of the first to the
fifth MVPP is less than that of the cheapest MVVPP. Then, Q27 in the cheapest MVPP
is possible to be rewritten. The re-optimized MVPP, after Q27 in the cheapest MVPP

is rewritten, is shown in Figure F.52.

319

Table F.1 The Query Access Frequency, Query Cost, and Query Access Frequency
Multiplied by Query Cost

Query Query Access Query Cost fq* Query Cost
Frequency(f,)
Q7 5 159,750 798,750
Q10 7 758,746 5,311,222
Q21 6 758,746 4,552,476
Q27 9 31,864 286,776
Q33 6 759,474 4,556,844
Q38 5 160240 801,200
Q42 5 152424 762,120

Table F.2 The Query Processing Cost of the MVPPs for the First Query Set

Query 1st 2nd 3rd 4th 5th 6th MVPP 7th MVPP
MVPP MVPP MVPP MVPP MVPP (cheapest) (cheapest)

Q7 7,996,348 7,996,348, 7,996,348, 7,996,348, 40,008,848 7,996,348, 7,996,348,
,750 750 750 750 ,750 750 750

Q0 5312722 5312722, 5312722, 5312722, 5312722, 4,479,058, 4,479,058,
822,470 822,470 822,470 822,470 822,470 896,998 896,998

Q21 4599282 4599282, 4599282, 4599282, 4,599,282, 3,884,718, 3,884,718,
,686,784 686,784 686,784 686,784 686,784 160,284 160,284

Q27 71,996,43 71996435 71,996,435 71996435 12961893 291,303,52 291,303,52
5,901* ,901* ,901* ,901* 5,901* 4,277 4,277

Q33 3,657,033 3,657,033, 3,657,033, 3,657,033 3695118 3,656,709, 3,656,709,
,383,196 383,196 383,196 383,196 683,196 383,196 383,196

Q33 1682581 168,258,10 168,258,10 168,258,10 840,109,85 168,258,10 168,258,10
01,480 1,480 1,480 1,480 1,355 1,480 1,480

Q42 3116587 311,658,70 311,658,70 311,658,70 1,279,748, 311,550,70 311,550,70
01,696 1,696 1,696 1,696 732,616 1,696 1,696

Total 1412894 14,128,948 14,128,948 14,128,948 15,896,610 12,799,595 12,799,595
8,480,277 ,480,277 ,480,277 ,480,277 ,561,072 ,116,681 ,116,681

Note: * query processing cost of nth MVPP less than the cheapest MVPP

320

2 5
6
5 Q42
9 e Q3@ Q@ 6
Q@ Q21 .
resulta2 () [152424]
33 QU75%4741 result3s () [160240] QL@
resu
result?' [159750] s_nationkey . result21 [758746]
result27 [31864] stddgv(l_extendedprice) A
n_nal name
s_name + in(ps_supplycost) result10 [758746]
variance(pf_availqty) s name
stddevi(ps_supplycost) Ationke: i
Ys_nationkky stflev(l_extendedprice)
Tmp21 Tmp22 stddev(l_gxtendedprice)
31864] () [796150] [759474]
Tmp18

[758746]

[607807404672]

Tmp16
[32046400000]

Tmpl5

[40058] -~ [200000]

Gp_type like ‘%BRASS%"

G |_commitdate
[10000] < |_receiptdate Tmp7 O

[800000] [800000] [200000] 1 [200000]
TUr_regionkey Tmp13 TC ps_suppke:
Tpd [6000000] * [6000000] e pankey. T p partkey
[1QIE T n_name TU s_suppkey T Lg;’g;t:y Sg:geg%x/ms‘ 333582
O _name="ASIA" n_nationkey s_nationkey Ijquantityy
I_extendedprice
51 [25] [10000] [6000000] [800000] [200000]
region nation supplier lineitem partsupp part

Figure F.51 The Cheapest MVPP of the First Query Set in Static Phase

6 2
5
5 Q@ Q42 - 6 .
9 Q1@
o Q@
027. result33 [759474] result42 [152424]
resultas () [160240]
result? [159750] s_nafjonkey) result21f [758746]
result27(_) [31864] stddav(1_extendedprice) resultio(C) [758746]
4 yS name
S_name p_prand
yvinance"s_avallq(y) stddevfps_supplycost) jonke cgunt(l_tax)

ionkey
gv(I_extendedprice)

020 [7587460000]
[313‘;4] () [ros600]

B

Tmp8
116024015 [1602400008

Tmp4 [5] [25] .
O 16000000] _avd Op_type like “%BRASS%
Tmp2 Tmp3 Tmp5 O |_commitdate
mOn [251() [25] [10000] [10000] < |_receiptdate Tmp7 O P
[800000] [800000] [200000]
Tmpl3
ey fs000000] S [6000000) i T p_partk
Tm[pﬁ o) TC n_name TC s_suppkey T Iisupﬁkey ps:avaic,ty Hﬁ‘a’ndey
n_nationkey s_nationkey I_pacrlt ﬁy psZsupplycost p_type
= > i orderke |
Or_name="ASIA n_regionkey I:extende)éprlce
|_tax
5l 251 [10000] [6000000] [] s00000] [200000]
region nation supplier lineitem partsupp part

Figure F.52 The Re-Optimized MVPP of the First Query Set in Static Phase

321

The total query processing cost of the cheapest MVPP is 12,799,595,116,681.
After Q27 is rewritten, the total query processing cost is reduced to

12,581,422,028,305.

We further evaluate the MVPP re-optimization algorithm by selecting the set
of view to be materialized. Figure F.53 and F.54 show the cheapest MVPP and the re-
optimized MVPP after Deterministic and 2PO are applied, respectively. The query
processing cost, materialized view maintenance cost and total cost of all-virtual-
views, all-materialized-views and selection materialized view by Deterministic and

2P0 of the cheapest MVPP and the re-optimized MVPP are shown in Table F.3 and
Table F.4 respectively.

onk

s_nationkey
v(I_extendedprice)

stddt

2
6 5
42
9 5 Q33 Q2@ Q8@ 6
Q2 7@ g g @ 7

result42

etz (55474 resultzg () [160240] (AL) Q@

result7O) [159750] result21 [758746]
[31864]

A
n_name
in(ps_supplycost) result10 [758746]

result27! 'Yn nafme
'Ys_r]ame(. y coun| (ps_supplycost)T "
variance(ps_availqty) s nanje mp [122113784832]
s_nptionke)
stddev(ps_supplycost) st ev(l,e%(endedprice)

[152424 v 'Ys,na!ionk Y
stddev(I_g¢xtendedprice)

Tmp21 D [607837751040]

[31864]

Tmp18
[758746]

ds06°
Tmp10
[32048000000;

Tmp15
[200000]

Gp_type like ‘%BRASS%’

O |_commitdate
< |_receiptdate Tmp7

[10000]
[800000] [200000] ™y [200000]
Tmpi3,
[6000000] [6000000] T o pan ';f}y T p partkey
TC n_name TC s_suppkey T I'.g?'ﬂl?gt‘éy 52:332&1'{;"5' E;&EQ”
Gr_name="ASIA’ n_nationkey s_nationkey Izquantllyy
|_extendedprice
5] [25] [] nooo0y [6000000] [800000] [200000]
region nation supplier lineitem partsupp part

Figure F.53 (a) The Cheapest MVPP of the First Query Set Selected by Deterministic

322

2
5 6 >
9 e Q3@ Q@ 6
Q@ Q21 .
resultd2 .
33 QU75%4741 result3s () [160240] QL@
resu
result?' [159750] s_nationkey . result21 [758746]
result27 [31864] 2 stddgv(l_extendedprice) A
n_nal name
s_name + in(ps_supplycost) result10 [758746]
variance(pf_availqty) s name
stddevi(ps_supplycost) Ationke: i
Ys_nationkky stflev(l_extendedprice)
Tmp21 Tmp22 stddev(l_gxtendedprice)
31864] () [796150] [759474]
Tmp18

[758746]

[607807404672]

Tmp16
[[32046400000]
Tmpl5

[40058] [200000]

Gp_type like ‘%BRASS%"

G |_commitdate
[10000] < |_receiptdate Tmp7

[800000] [200000] [200000]

" Tmp13
Tmpt ey [GOOOOEO] [6000000] T0 ps_cupphey T p particy
[1QIE T n_name TU s_suppkey TU |_suppkey Sg:geg%x/ms‘ Sj;fﬁgd
O name="ASIA" n_nationkey s_nationkey |:35ien'[‘f§y
|_extendedprice
51 [25] [10000] [6000000] [800000] [200000]
region nation supplier lineitem partsupp part

Figure F.53 (b) The Cheapest MVPP of the First Query Set Selected by 2PO

6 2
5
5 Q@ Q42 - 6 .
9 Q1@
o Q@
027. result33 [759474] result42 [152424]
resultas () [160240]
result? [159750] s_nafjonkey) result21f [758746]
result27(_) [31864] stddav(1_extendedprice) resultio(C) [758746]
4 yS name
S_name p_prand
yvinance"s_avallq(y) stddevfps_supplycost) jonke cgunt(l_tax)

ionkey
gv(I_extendedprice)
Tmp21
[750474] [7587460000]
TmpZOC [796600]
[31864]

B

Tmp8
116024015 [1602400008

Tmp4 [5] [25] .
O 16000000] _avd Op_type like “%BRASS%
Tmp2 Tmp3 Tmp5 O |_commitdate
mOn [251() [25] [10000] [10000] < |_receiptdate Tmp7 O P
[800000] [800000] [200000]
Tmpl3
ey fs000000] S [6000000) i T p_partk
Tm[pﬁ o) TC n_name TC s_suppkey T Iisupﬁkey ps:avaic,ty Hﬁ‘a’ndey
n_nationkey s_nationkey I_pacrlt ﬁy psZsupplycost p_type
= > i orderke |
Or_name="ASIA n_regionkey I:extende)éprlce
|_tax
5l 251 [10000] [6000000] [] s00000] [200000]
region nation supplier lineitem partsupp part

Figure F.54 (a) The Re-Optimized MVPP of the First Query Set by Deterministic

323

6

5
9 Q7.

Q27
result27(_) [31864]

Yo pame R Ap—
> N . stddevps_supplycost
variance(ps_availqty) ps._supplycost)

Tmp21
[759474]

Tmp20
[31864]

[796600] 8

Tmp8
[160240 . (1602400009

Tmp6
[2003

T159750]
[50000] y

Tmp3 Tmp5

D25) [10000] [10000] < |_receiptdate
A [800000]
TUr_regionkey Tmp13
. [6000000] \ [6000000] T i Eiy
LOms U n_name TU s_suppkey TC I_suppkey bs-bvaigty
n_naﬂ_onkey s_nationkey | partﬁey ps_supplycost
Or_name="ASIA" n_regionkey oxienoetprice
I:tax
5] [[]e [10000] [6000000] 800000]
region nation supplier lineitem partsupp

n
counf(ps_supplycost)

Tmp23
[152424] O

Q33
g resultas (7594741 resung [152424]
result7 () [159750] 's_nationkey
A 'Y name ysldd (I_extendedprice)

[607837751040]

[6000000]

O |_commitdate

2
Q2@ 5

Q38
result38 [160240]

¥

[122113784832]

name
in(ps_supplycost)

7

6
QZl. Q10
result10' [758746]

i 'Yp frand
Ys_na lionkey . cqunt(l_tax)
stddgv(l_extendedprice)

resultZlg [758746]

. [32046400000]

T
V ‘ Tmpl5

[40058] O [200000]
Gp_type like ‘%BRASS%’

[200000]

T p_partkey
p_brand

p_type

[] 2000001

part

Figure F.54 (b) The Re-Optimized MVPP of the First Query Set by 2PO

Table F.3 The Query Processing Cost, Maintenance Cost and Total Cost of the

Cheapest MVPP of the First Query Set

Cost of
Query Processing

Cost of

Maintenance

Total Cost

All-virtual view 12,799,595,116,681
16,612,116
292,686,142,972

581,114,524,945

All-materialized view
2PO

Deterministic

0
8,792,272,746,660
5,202,416,789,776
5,138,321,589,776

12,799,595,116,681
8,792,289,358,776
5,495,102,932,748
5,719,436,114,721

324

Table F.4 The Query Processing Cost, Maintenance Cost and Total Cost of the Re-
Optimized MVPP of the First Query Set

Cost of Cost of Total Cost
Query Processing Maintenance
All-virtual view 12,581,422,028,305 0 12,581,422,028,305
All-materialized view 16,612,116 8,694,762,487,060 8,694,779,099,176
2PO 289,800,706,225 5,138,333,589,776 5,428,134,296,001
Deterministic 297,811,870,883 5,135,123,369,776 5,432,935,240,659

Conclusion result of the MVPP re-optimization algorithm:
The result shows the total cost as follows:
All-virtual view: reduced from 12,799,595,116,681 to 12,581,422,028,305
All-materialized view: reduced from 8,792,289,358,776 to 8,694,779,099,176
Selected views to be materialized:
2PO: reduced from 5,495,102,932,748 to 5,428,134,296,001
Deterministic reduced from: 5,719,436,114,721 to 5,432,935,240,659

F.2.2 Dynamic Phase Result

The queries {Q6, Q8, Q16, Q30, Q35 and Q50} are merged into the existing
re-optimized MVPP, Figure F.54. The result of the dynamic MVPP is shown in
Figure F.55.

325

5
o5 @ 3 4 8
* Q8 , 9 Q3@ QL@
27 4 6
result () [160232) '@ 4 ! Q@
L3 results ()[163272) esutiaoC) [184082) resut pasozsz) 6 2
Yo_brand Py Ve nh 5 by Q3@ 5 * °
max(s_supplycost Yo iderrioriy esur O pe6s) i Siscouns Vo_tirand 2@ Qg U Qs QU@
. sttev({ciscauny } Q7@ e aveilay) X 7
9 1
[215] Q.W‘ 1150000] | ’szinzr':‘ce (ps_availqy) | ! [759474] "'Ie?fmd\‘ ded) . *e
© L0000 a7 1 - ! o resus3 resulta2 O (150424 stddev{iextendecdrice) o1 O prseras) QL@ X
] oo I resurQ) 159750] 152424 requigy O ooze0) | !
U eren Queowssn g ! i s naforke
N _Tm | | y 1 s nafionke
| MU o Q - | Y;ﬁ";aev b supply‘m 9 Yo ke Ysmdv(|_extendedprice) | ysTddv(Le)‘{{endedpnce) resultg O [160232]
| Sk [30751] - | 8 f Sountles_supplycost) name I result10 [758746] £
| NG Gps_avaly 200 ===~ ____ | S in(ps_supplycost) | Vo _type
‘\ ; AN | R . Vo_frand ¥ variance(ps_availqty)
N - 3 i
! ! N F N ! o2 |
“ Tmp37! SO N 184022 [27604800000] I Tmp21 //
I [183273] O [275298000000] Sl N | [759474] i
| EoN - | I
| / N /
I , 4 N N _ !
| , N - |
| , . |
I ./ ~ 7 1
| Tmpss TR [607807404672] |
! passasy (Qioscozzerra) pasooe] stw@zm] !
! /&1 T~ /14 RN ! Tmp16
1 s ~~.7 >
4 ~~o
}/ , e ~~ [32046400000]
4 Tmp32 , 7 S~4_
y
Tme3s /| [30183] Q{?sonou}
[30142] %xsdooa] e (N N -7
Vol i No- Tmp1s
. _
O e masigmbne e [200000]
=BUILDIG S -
N /
Tmp2s 27 6
O/, teoooooo] [227507) (D p227597] Gp_iype like ‘UBRASSH'
s 150000 ;
(150000 [1 Tmp2 SO\ | O Lcommitgate T2 T o orieriey
w] (10000] S\ | < Lreceiptdate S Htce
N Gorderpricrity 800000] 3 (800000] 12000001 [200000]
TUr_regionkey Tmp13
T nfgf"kw reatonkey 16000000] (6000000] Tmp24 TU ps_suppkey
o misegment "B n_n: s supkey | ! 1-suppkey 1527507 1500000 BE-Linbikost T ppartiey
segme 1O n_ationkey snationkey [partiey 71 as00000) Pavlaty SJJ;:"
Gr_name="ASIA® n_regionkey Iquantit Go_orderdate>="1994-01-01 -
I-éxiendedprice -
o o_orderdate<’1995-01-0
[150000] 5] [e [20000] [6000000] [1500000] 800000] [200000]
customer region nation supplier lineitem orders partsupp part

Figure F.55 The Optimal Dynamic MVPP of the First Query Set

After the dynamic MVPPs are generated and the optimal one is selected, the
affected node identification algorithm is applied to identify the affected nodes. The
existing nodes used to construct the new queries are shown in Table F.5. Their

weights are shown in Table F.6.

Table F.5 The Existing Nodes Used to Construct New Queries

New Queries Existing Nodes
Q6 Tmp7, 9, 15, 16
Q8 Tmp1l3
Q16 Tmp5, 7,11, 12, 15, 19
Q30 Tmpl, 2, 3, 4,13
Q35 Tmp7, 9, 13, 14, 15, 16, 17
Q50 Tmpl, 2,3,4,5,6,7,8,9, 10, 13, 14, 22, 23

326

Table F.6 The Weight of the Existing Node for Constructing New Queries

Existing Node Weight (w (v))
Tmpl 60
Tmp2 7
Tmp3 525
Tmp4 213
Tmp5 320,000
Tmp6 469,832
Tmp7 31,200,000
Tmp8 14,418,159,776
Tmp9 5,600,000
Tmp10 56,078,699,720
Tmpll 9,600,000
Tmpl2 19,166,780,000
Tmp13 108,000,000
Tmpl4 102,000,000
Tmpl5 4,000,000
Tmpl6 576,832,800,000
Tmpl7 5,981,895,246,720
Tmp19 33,597,063,000
Tmp22 -168,257,781,000
Tmp23 -620,262,645,936

The intermediate nodes, which are the conjunctively joined nodes with
positive weight, project operation that is not the ancestor of base relation and select
operation, are inserted into the list of directly affected node. Therefore, the directly
affected are {Tmpl, Tmp2, Tmp4, Tmp6, Tmp8, Tmpl0, Tmpll, Tmpl2, Tmpl4,
Tmpl5, Tmpl6, Tmpl7 and Tmpl9}.

Next, we identify the indirectly affected nodes. The directly affected nodes
that their ancestors are not the directly affected node are Tmp8 and Tmpl0. The

weights of the ancestor node of those nodes are shown in Table F.7.

327

Table F.7 The Weight of Ancestor Node of Directly Affected Node of New Queries

Weight of Ancestor Node
599,761,450,760
-168,257,781,000
-620,262,645,936

Directly Affected Node Ancestor Node
Tmp8 Tmp21

Tmpl0 Tmp22
Tmp23

Tmp21 is identified as the indirectly affected node as its weight greater than

that of Tmp8. Tmp22 and Tmp23 are not the indirectly affected node as their weight

are negative.

The result of affected nodes show as follows.

Directly affected nodes: ~ Tmpl, Tmp2, Tmp4, Tmp6, Tmp8, TmplO,
Tmpll, Tmpl2, Tmpl4, Tmpl5, Tmpl6, Tmpl7
and Tmp19

Indirectly affected nodes: Tmp21

Therefore, the number of nodes to be the member of set of views to be selected

by 2PO is 28 nodes, 14 existing nodes and 14 new created nodes.

5

Q0@ 3 4 8
* & J 9 Q@ QL@

+ Q@ Py + 6

Q@

4

|
result ()[160232] | |
resuls ()[183272) £ r.=<unau© [184082) result ([160232) 6 2 5 6
5 1 Q334 s
result2? 042‘ QBB. result3s ? [575169] Q21‘

Y
Yo_orand ¥ Y
max(ds_supplycos) Yo ofderpriori 31864 (J‘%‘F s Vo_tra

! 1f Siddev(l drecdunty [31864] Tmax{_giscoun g7 ® 1t ’,Hir(}ldavqumy) 7

Tmp29 i | it N 7

i s nemel p_brand! 6
(215 3s0000) —— L M | | resuas QU J p— psarsey Q0@ @
L oo i resuirQ) [159750] 152424 rosunag O eoa0) | ez T
| [4741) Q"; et Tmp26 I I Y ionk |
__m ! ! by s rafonkey s (N 1
H N 15200 ! Vs na dv(l_extendedprice) | dv(l_extendedprice) results () [160232)
X 5 o lycost) = - o
| <L oy Quszen | ~ ! sedevtps supplyEos) Ynpame | resuitio O [758746] &
I N Gps_availay2000 = === —__ __ _ H Y _sype
| N ! - fand Variance(ps_availqty)
N " !
| 1 Ny gggi? [796600] | Tmp34 !)
! Tmps7! N ane Orreoisooooofy | I
| @) G 1 !
! [;agz-g]ﬂklzvszwmnm] Xy i
P |
I SN N |
/ N |
i |
|
| /
| Tmpss mp
| 145353](2‘[5&5\'\728'741 [4600¢
A T [Tmp1s
602521 © [s2046400000)
Tmpa2
ta0183) @ 750000]
w -
Tmp1s

N
>
- N
prae N
Tmp4 [5] [25]
[6000000] Gp_type like ‘%BRASSY"
Tmp2 Tmp3 Tmps SO\ | O tcommitdate
wOm 2510 251 [10000] [10000] S\ | < Lreceipiaate Tmpo O
<\) [200000] Y [200000]
TUr_regionkey Tmp13)})
- [6000000] 7{50000‘301 T SS’SEEEJV TC p_partkey
nt h 5 TC n_name T s_suppkey h pssupplycost p‘grana
[21@J8] n_nationkey s nationkey |-par pe-avaiaty P_type
Gr_name="ASIA" n_regionkey Cquanay) Go_orderdate>="1994-01-0 -
Th o_orderdate<"1995-01-01
[150000] 5] D [25] [10000] [6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

Figure F.56 The Materialized View Selected by 2PO for the Dynamic MVPP of the
First Query Set

328

After the affected nodes are identified, the selection algorithm, 2P0, is applied
to select the set of views to be materialized. The result is that the existing materialized
view {Tmp10, Tmp12, Tmpl4, Tmpl7, Tmpl9 and Tmp21} are still materialized, the
virtual view {Tmp16} is materialized and the new nodes {Tmp25, Tmp32, Tmp36}
are materialized. Figure F.56 shows the result after the materialized are selected by
2PO.

We rerun static approach for all queries {Q7, Q10, Q21, Q27, Q33, Q38 and
Q42} and {Q6, Q8, Q16, Q30, Q35 and Q50}. The result of the static approach for all
queries is shown in Figure F.57. After our MVPP re-optimization algorithm is applied
to the cheapest MVPP, the MVPP structure of static approach in Figure F.57 provides

same structure as that of dynamic MVPP in Figure F.56.

5
Qs0@ 3 8
i “e L 4
resut Q)[160232) | 9 Ys 24 Y i
est 7 a count)
% utm results (;usxz 2] @@ Owuu) resut Osoesz]) S 5 .
» esultz0() [184082] 4 6
mex(ds_supplycost) Vo, drderpriorit resul By " Q42 Q35 Q21
w T 1 Vo oz L d Y ® ®
Tmp37 | 1 max(ps_supplycost) ! R
result27() [31864] result7() [159750] |
215] -
[215] i result42 () 152424 v]c;uustLS‘mlE@J esuior O [r56746] Q0@ 7
(ps_availqty) nante ! resulza (7594741 result3s () [160240] by
evfos_supplyccs) s nafionkey Yo s by Q@
| sTdodv(l_extendedprice) Stddev(i_extendedprice) ! stddel(I_extendedprice)
| Yn_na Yl name I resuno () [(756746] |
cour in(ps_supplycost) |

Tmp34
318641

i

1

i

1

1

1

|

i

|
mwgz]d[zmoaﬁuouuao] !

/
1607807404672]
/
/
/
/Tmp14
(160232] @) 13046400000]

Tmp13

Tmp30

1zo142) aspooo)

Gr_c_mkisegmet
="BUILDING® [40058] 5 [200000]
[227597] Gp_typesfke ‘UBRASSH®

Tmp2, [: 1
[150000] Tmp18
G |_commitdate mp: To mdivkey
<_receiptdate otistiey’ e} Tmp12)
e (8000001 [800000] 1200000 [200000]
TC ps_suppkey
[6000000] Tmp17 > »
tey L 91 é 5 U n_name T s_suppke TC I_suppkey [227597] ()[1500000] i ‘{ycuﬂ T Eﬁ?{nfy
1O e key . BoNR X
G_name="ASIA Go_orderdate>="1994-01-01' p_type
I o_orderdate<"1995-01-01
I
[t
[150000] 5 [Jes [10000) 6000000 [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

Figure F.57 The Re-Optimized MVPP by Static Approach for All Queries of the
First Query Set

The query processing cost, materialized view maintenance cost and total cost

of the static and dynamic approach on the set of materialized views selected by 2PO

are shown in Table F.8.

329

Table F.8 The Comparison of the Result from the Static Approach and the Dynamic
Approach for the First Query Set

Approach ~ Number Cost of Cost of Total Cost

of Nodes Query Processing Maintenance
Static 37 4,709,318,228,610 5,240,142,056,783 9,949,460,285,393
Dynamic 28 4,709,318,228,610 5,240,142,056,783 9,949,460,285,393

Conclusion result of the dynamic phase:

In Figure F.57, we rerun static approach for all queries; the search space
contains 37 intermediated nodes for static materialized view selection whereas our
dynamic approach for additional queries, the set of intermediated nodes to be selected
is 28 nodes, 14 existing nodes and 14 new nodes. The result in Table F.8 shows that
even though all costs of static are same as costs of dynamic approach; the number of

nodes to be selected of dynamic is less than static approach.

330

F.3 The Second Query Set

Queries for static phase: {Q4, Q12, Q23, Q33, Q36, Q40 and Q41}
Queries for dynamic phase: {Q22, Q15, Q21, Q28, Q31 and Q50}

F.3.1 Static Phase with the MVPP Re-Optimization Algorithm

The order of queries according to their frequency of executing the query
multiplied with the query cost is shown in Table F.9. Then, the order of queries of the
first MVPP is {Q4, Q36, Q33, Q12, Q23, Q40 and Q41} and the last order is {Q41,
Q4, Q36, Q33, Q12, Q23 and Q40}. The query processing costs of all MVPPs for the
query set {Q4, Q12, Q23, Q33, Q36, Q40 and Q41} are shown in Table F.10. The
cheapest MVPP is the second and the third MVPP as shown in Figure F.58.

Table F.9 The Query Access Frequency, Query Cost, and Query Access Frequency
Multiplied by Query Cost

Query Query Access Query Cost fq* Query Cost
Frequency(f,)

Q4 6 3,793,296 22,759,776
Q12 5 575,169 2,875,845
Q23 3 575,169 1,725,507
Q33 6 759,474 4,556,844
Q36 8 575,169 4,601,352
Q40 4 6,492 25,968
Q41 3 4,558 13,674

331

Table F.10 The Query Processing Cost of The MVPPs for the Second Query Set

Query 1st 2nd 3rd MVPP 4th 5th 6th 7th
MVPP MVPP (cheapest) MVPP MVPP MVPP MVPP
(cheapest)

Q4 18,207,907, 18,207,907 18,207,907 18,207,907 18,207,907 18,207,907 18,207,907
119,552 ,119,552 ,119,552 ,119,552 ,119,552 ,119,552 ,119,552

Q12 19,489,962, 6,617,454, 6,617,454, 6,617,454, 6,617,454, 19,489,962 19,489,962
428,870 428,870 428,870 428,870 428,870 ,428,870 ,428,870

Q23 11,952,803, 4,229,299, 4,229,299, 4,229,299, 4,229,299, 11,952,803 11,952,803
957,322 157,322 157,322 157,322 157,322 ,957,322 ,957,322

033 18,253,477, 3,656,709, 3,656,709, 18,253,477 18,253,477 3,656,709, 3,656,709,
108,284 383,196 383,196 ,108,284 ,108,284 383,196 383,196

Q36 32,150,225, 11,554,212 11,554,212 11,554,212 11,554,212 32,150,225 32,150,225
486,192 ,686,192 ,686,192 ,686,192 ,686,192 ,486,192 ,486,192

Q40 6,443,239,2 11,570,291 11,570,291 6,443,239, 6,443,239, 11,570,291 11,570,291
04* ,056 ,056 204 204 ,056 ,056

041 2,645,437,1 2,645,437, 2,645437, 2,645437, 2,645437, 593,308,53 593,308,53
66,178 166,178 166,178 166,178 166,178 4,119* 4,119*

Total 102,706,25 46,922,590 46,922,590 61,514,230 61,514,230 86,062,487 86,062,487
6,505,602 ,232,366 ,232,366 ,905,602 ,905,602 ,200,307 ,200,307

Note: * query processing cost of nth MVPP less than the cheapest MVPP

3

Q41§
result41(_) [4558]

'n_name
min(|_quantity)

Tmp23

3
Q23§
result23!
Honk: n_nane
Yo pationkey - soice LS —

6
Q3@

is75160] resultaa() [759474]

Tmp17
[575169] ()[86275350000]

X

14558] ()[17305800000]

X

Tmp22
[115372] (J[1152063507]
X

8
12400000]

Tmp!
[160240]

Tmpll
17594741 () [607837751040]

(@)

5
Q2@

resul(lzg
y

Yo order

priority

8
Q3@

[575169]

sum(|_extendedprice)

Tmp26
[575169] (J[5751690000]

Tmp
[460135200000]

g result40!
result36(_) [575169] oq 11a() [3793296] ,Y

brand
y?ﬂn(s_supplycosl) Yir

6
[eZ¥

retyrnflag
avg(ps_supplycost)

4
Q0@
g [6492]

'n_name
counf(ps_availqty)

Tmp21

[6492] ()[1288745976]

Tmp20
132172] ()[160240]

G ps_availgty < 2000

[57[115033800000]
Tmp2s

[3034636800000]

%l

Tmp19

Tmp6 P (Oiss3342789712]
12003] ()[50000] (] 40058] S [200000]
Tmp4 .
m
[sp] Oresl , N G p_type
Trnp6 Y like ‘%BRASS%"
150000/C) [250000] Tmp10
L ! Tmp2 0 - Tmps o) [3793296] ezrson; O paz7se7] S e
mOw e [10000)) " [10000] TU |_suppkey TMp13 7T o orderkey e e
2510 1251 N SSstiee 2000001\ [200000]
Rt X e, oy omon'y woen om0 oo
i [“quantity
T cc,::g&:ﬁ:;ey — -) TmPY | “extendedprice Tmpi2| T ﬁf‘ﬁgﬂ l;;y TC p_partkey
X X s_suppke 227597] ~Supplycost
wOe oatonkey Shatonidy foooooco) - TSI Jlasoooce] Bl pbrand
O'r_name="ASIA" n_regionkey = p-byp
< _receiptdate
[150000] 51 [25] [10000] [6000000] [1500000] D [800000] D [200000]
customer region nation supplier lineitem orders partsupp part

Figure F.58 The Cheapest MVPP of the Second Query Set in Static Phase

332

The query processing cost of query of the cheapest MVPP are compared with
other MVPPs. The result shows that Q40 and Q41 of the first MVPP is less than the
cheapest. So both queries are possible to be rewritten.

For Q40, there is only one possible plan in the cheapest MVVPP for Q40 that is
{Tmp8} X PARTSUPP. Tmp8 is sharable conjunctively join with Q33. So Q40 still
use the same plan in the cheapest MVPP.

For Q41, there is only one possible plan for Q41 as sharable subexpression
already constructed in the cheapest MVPP. That are {REGION X NATION K
SUPPLIER}, Tmp6, and {LINEITEM x ORDERS}, Tmpl4. So Q41 still use the
same plan in the cheapest MVPP.

Therefore the cheapest MVPP provides the minimal MVPP.

Next, selection algorithms are applied to the optimal MVPP in Figure F.58 to
select the set of views to be materialized to be the initial search space for dynamic
phase. The result of Deterministic is shown in Figure F.59 (a). The result of 2PO is
that {Tmp6, Tmpl10, Tmpll, Tmpl4, Tmpl5, Tmpl9} are the materialized views as
shown in Figure F.59 (b). We show the query processing cost, materialized view
maintenance cost and total cost of all-virtual-views, all-materialized-views and

selection materialized view by 2PO algorithm of the cheapest MVVPP in Table F.11.

4
8
3 3 6 5 @ 6 Q0@
Q4 02 @ @ o) g
g g 5 resutao Q) [6452]
resultzs () [575169]
resulta1(_) [4556] resultza() [575169] resulz3 () [759474] result12() [575169] resutal_) [3793296] Yn_nae
ounf(ps_availgty)
Yn nane p_brgnd 'YI retgrflag count(ps_avai
i ‘c_natjonkey y"—"a ° (0 foril min(ps_s av
min(j quantity) yﬁax(ekiendedprice) * coun(ps_supplycost) ysim(|_extendadprice) avg(ps._supplycost) Tmp2
16492 ([1288745976]
Tmp17 Tmp26 3
[575169] ()[86275350000] t575169] ()[5751690000]
Tmp23 Tmp20

132172) ()[160240)

G ps_availgty < 2000
[57 [115033800000]
Tmp2s

[4558] (J[17305800000]
™

[3034636800000] Tmpl9

Tmpé
12003] ()[50000] (] < [200000]
Tmp4 e
m
[g] Orzs G p_type
Tmpl6 % like ‘%BRASS%’
150000C) [150000] Tmp10
: ! Tmp2 0 Tmp3 Tmps o [3793295] [3793206] tezrson O ezrsor] =
mOwm mp [10000)) " [10000] T |_suppkey TmpI3T 7T o orderkey P
2510 1251 N St 200000] Y [200000]
Tr_regionkey ? i;g?é‘e%i:éy Gorderpriority (300001K" [800000) 2000001 ¢ [200000]
i ["quantity
b3 Cc,::sxlws:;ey _— n) TmPY | “extendedprice Tmp12 v TU p_partkey
"~ n_name S_suppkey 227597 s_supplycost
@O ke Shatoniy [e7o22001() (eocono0) 227587 Jlisonoce] RsueR: b prnd
Gr_name="ASIA” n_regionkey | receindat ‘Go_orderdate>="1994-01-01' -
< |receiptdate o_orderdate<’1995-01-01'
[150000] Bl @) 110000} 16000000] [1500000] [] tsoooooy [] 2000007
customer region nation supplier lineitem orders partsupp part

Figure F.59 (a) The Optimal MVPP of the Second Query Set by Deterministic

3
Q1@

resulmlg [4558]

i

'n_name
min(l_quantity)

333

6

3
Q3@

stg
resultz3$ [575169] result33() [759474]

tonk 'n_name
Veonker oy Y oo ssovoos)

Tmpl7
[575169] ()[86275350000]

8
5
36
Q2@ Q@
g result36$ [575169]
result12 [575169]

N
'0_orderpriority
Ysum(|_extendedprice)

brand
Fn(hs. supplycost v

Tmp26
(575169] (()[5751690000]

4
6 Qi@
oy)

resuao() [6492]
resultaQ) [379329]

Y nape
I_retymflag couni(ps_availqty)
avg(ps_supplycost)
Tmp21
[6492] ()[1288745976]

ol

Tmp23 Tmp20
X
14s58] ([17305800000] 182172] () 1160240]
™ O ps_availqty < 2000
Tmp11 [57[11503380(}000]
Tmp22 [759474] Tmp25
[115372) (Q[1152063507] 0
A
Tmps
160240) ()[1602400000
o [160240] I [3034636800000] \ Tmp1g
mp [863342789712] 4 2
12003] @[50000] O 4 0058] ¢ [200000]
Tmp4 . ‘
mp
& Qs , ~ Coue
s 4 ® like %6BRASS%
150000 Tmp10
1250000) () [150000] e s o Tmess 3793006 [3793296] rezrsor) QO zrsony -
QO mp; 110000 [10000] TC I_suppkey Tmp13T 7T o orderkey P Tmp18
2510) 251 1 oaep SUsike 12000001 [200000
S b, ety 18000001 [s0oooo ¥ tz0000]
TU c_nationkey reglonkey Tmp9 Tquantity Tmp12) TC ps_suppkey
ccustkey TPl TU 5_suppkey extendedprice 12275971 O[1500000] B Bopivkost TC p_partkey
@] n_nationkey s nationkey [3793296] [g)?ogggm“ date [! PiaValqK/ “3‘"“2“
O_name="ASIA" n_regionkey O e ‘Go_orderdate>=1994-01-01' PP
|_receiptdate o_orderdate<’1995-01-01'
[150000] 5] [25] [10000] [6000000] [1500000] D (800000] D [200000]
customer region nation supplier lineitem orders partsupp part

Figure F.59 (b) The Optimal MVPP of the Second Query Set by 2PO

Table F.11 The Query Processing Cost, Maintenance Cost and Total Cost of the
Static Phase of the Second Query Set

Cost of

Query Processing

Cost of

Maintenance

Total Cost

All-virtual view
All-materialized view
2P0

Deterministic

34,783,985,485,998
21,385,782

1,292,099,197,067
1,292,099,603,438

0
31,252,800,172,180
14,813,755,422,193
14,813,755,242,025

34,783,985,485,998
31,252,821,557,962
16,105,854,619,260
16,105,854,845,463

Conclusion result of the MVPP re-optimization algorithm:

For the second query set, although Q40 and Q41 are possibly to be rewritten,

after the MVPP re-optimization algorithm is applied for those queries they are forced

to use the sharable subexpression that available in the MVPP rather than created new

execution plan equal to the plan in the sixth and the seventh MVPP. Then, query

processing plan of Q40, Q41 are the optimal plan for the cheapest MVPP.

334

F.3.2 Dynamic Phase Result

The queries of the dynamic phase, {Q22, Q15, Q21, Q28, Q31 and Q50}, are
merged into the existing re-optimized MVPP, Figure F.59 (b). The result of the
dynamic MVPP is shown in Figure F.60.

5
5
6 @ wse

4
3 3 5 @ 4 6 Q1z: ° : QU@
e we Tl e L e
@ o esuts2(O 2151 28 2@
X eunsQ sz A g g 4 resuliao) [6492]
O s O sz resurgaQ) trs0u7a) 1 19320 resuiizs (575169
123 [575169]
resul N A esultzsQ) [32172) resuliz2) [5751697Yn_nane
’YnJﬁ(b) ,/ . counf(ps_availqty)
n(l quantity ["Guanti Yp_br
Ve e e
s

_ Tmp21
[1288745976]

86275350000]

!
N 1602320090)
160232) € ~~— 1 __

/ / -

]
/

\
\

\
\ Tmp1o
20058] @)[200000]

/
/
/
75169] @)[460135200000]
/ 1%
/ Tmp2a
Tmp14,
/ [3793296]
/ >w [863342789712] X
Y
/ 3
/ "‘\
/

mts & Y [37932%][50000001 J Gpope
115000010 [150000] 5 S | commitdate fo7son / like ‘%BRASS%
Tmp2, Tmp! <1_receiptdate
[i1] [10000] Tmps Tmpl
rderke [200000]
60000001 < [6000000] T o-gudkey 18000001 [800000] [2000001°F" (2000001
TUr_regionkey o orderpriority
TC c_nationkey ! T n_name Tmp12 K vs,sugﬂkw
c_custkey Tm[Dll] [5] A mationkey U s_suppkey kes 12275971 Of1500000] E?:s"uappl?ém T[popertiey
regionkey s_nationkey Ibrceriey beaveldly p_type
Gr_name="ASIA’ Go_orderdate>="1994-01-01" -
_extendedprice 0_orderdate<"1995-01-01"
[150000] 8] (251 [10000] [6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

Figure F.60 The Optimal Dynamic MVPP of the Second Query Set

After the dynamic MVPPs are generated and the optimal one is selected, the
affected node identification algorithm is applied to identify the affected nodes. The
existing nodes used to construct new queries are shown in Table F.12. Their weights

are shown in Table F.13.

Table F.12 The Existing Nodes Used to Construct New Queries

New Queries Existing Nodes
Q15 Tmp5, 7, 9, 10, 18, 19
Q21 Tmp5, 7, 9, 10, 18, 19
Q22 Tmp7, 9, 10, 12, 13, 14, 15, 18, 25
Q28 Tmpl, 2,3,4,5,6,7,8,20
Q31 Tmpl, 2,3,4,5,6,9, 10, 12, 13, 14, 22
Q50 Tmpl, 2,3,4,5,6,7,8,9,10,12,13,14,16, 18,19,21

335

Table F.13 The Weight of the Existing Node for Constructing All New Queries

Existing Node Weight (w (v))
Tmpl 135
Tmp2 22
Tmp3 675
Tmp4 588
Tmp5 400,000
Tmp6 1,219,832
Tmp7 40,800,000
Tmp8 25,634,959,776
Tmp9 270,000,000
Tmp10 164,698,320
Tmpl2 46,500,000
Tmpl3 5,555,507
Tmpl4 25,900,260,649,574
Tmp15 4,772,097,868,185
Tmpl6 1,500,000
Tmpl8 6,000,000
Tmpl9 3,600,000
Tmp20 -6,412,239,024
Tmp21 -2,864,117,576
Tmp22 -4,313,315,662,784
Tmp25 -4,833,826,082,420

The intermediate nodes, which are the conjunctively joined nodes with
positive weight, project operation that is not the ancestor of base relation and select
operation, are inserted into the list of directly affected node. Therefore, the directly
affected are {Tmpl, Tmp2, Tmp4, Tmp6, Tmp8, Tmpl0, Tmpl2, Tmpl3, Tmpl4,
Tmp15, Tmp19 and Tmp20}.

336

Next, we identify the indirectly affected nodes. The directly affected nodes
that their ancestors are not the directly affected node are Tm6, Tmp8, Tmp10, Tmp15
and Tmp19. The weights of the ancestor node of those nodes are shown in Table F.14.

In table F.14, Tmp11 is the indirectly affected node as its weight greater than
Tmp8. Tmp20 is select operation node. The other nodes are not directly affected node

as they are conjunctively join node with negative weight.

Table F.14 The Weight of Ancestor Node of Directly Affected Node of New Queries

Directly Affected Node Ancestor Node Weight of Ancestor Node

Tmp6 Tmp22 -4,313,315,662,784

Tmp23 -40,375,843,660
Tmp8 Tmpll 599,772,484,280
Tmp10 Tmp24 -21,186,592
Tmp15 Tmp25 -4,833,826,082,420
Tmpl9 Tmp21 -2,864,117,576

The result of affected nodes show as follows.
Directly affected nodes: Tmpl, Tmp2, Tmp4, Tmp6, Tmp8, TmploO,
Tmpl2, Tmpl3, Tmpl4, Tmpl5, Tmpl9 and
Tmp20
Indirectly affected nodes: Tmpll

Therefore, the number of nodes to be the member of set of views to be
materialized is 18 nodes, 13 existing nodes and 5 new created nodes.

After the affected nodes are identified, the selection algorithm, 2PO, is applied
to select the set of views to be materialized. The result is that the existing materialized
views {Tmp6, Tmpll, Tmpl0, Tmpl4, Tmpl5 and Tmpl9} are still materialized, the
existing virtual view {Tmp8} is materialized and the new node {Tmp27} is
materialized. Figure F.61 shows the result after 2PO select the set of views to be
materialized.

We rerun static approach for all queries {Q4, Q12, Q23, Q33, Q36, Q40 and
Q41} and {Q15, Q21, Q22, Q28, Q31 and Q50}. The result of the static approach for

337

all queries is shown in Figure F.62. After our MVPP re-optimization algorithm is
applied to the cheapest MVPP, the MVPP structure of static approach in Figure F.62
provides same structure as that of dynamic MVPP in Figure F.61.

The query processing cost, materialized view maintenance cost and total cost

of the static and dynamic approach are computed as shown in Table F.15.

5
5
6 Q0@ 5 4
3 5 Q5@ 6 6 8
3 4 Q40
1@ e RS) i 4 Ops & o @ U@ 5 Q% 2 b4
e g[v:sun]sz 5 P sQ oz A (AB g Q8@ g sz? mg .
759474) 575169 resul
et QU e mmmo [115372] result33 LY mﬁm ,MHHO [758746 resuu2(J L T e 3ro3208) resuitas Q) [575169)
X X Yo nahe ! TG availay) K o_orderpriority resulzs Q) [32172) resaz2Q) 575169, e
Vn_nae Yn_name oo _suppycost]) adonkey saml_eftendedprice) coun(ps_availaty)
in(l_quantity) Ve raonkey sum(rqumnv) ! ;m%b(\ extendedprice) Vi_retunfiag Vo_brand
Conatonkey e | ’\'/Evm(ant me i | ! avg(ps_supplycost) ‘l Yo_bran min({_extenedprice)
; avg| ,x‘\ price) | | ,Y" nare min(pg_supplycost) |
! R ! sl suplycos)
I 1
5] 2 !
| a5 QQerassreny) | o Tmp30 I
! % | T ——= |
| .) | [4741] Q@megul 81 |
j 4 ! Tmp2o ! L R
| " | P] ' —pme® Tmp21
! . | [7s8746] 0[75574500001 / | [575169) [1288745076]
I /
. -
Tmp17 ! . | - / N
(86275350000 | ’ A / ﬂ
[s75169] () \ L7 TmpiL pes | /
| [607837751040] leozgzgnqo /
L 1160232) o€~~~ 4 _ /
! -
i
[4558] |
|
) - | T
s [160240] 1160233 @132046400400]
I
\
\
\
\
\
\
\
\
M Tmp19
[40055] @)[200000]

Tmp10
G p_type
o) / s Q oo ik -p‘;/(nprRASS%‘
[250000]\/ [150000] - . / G |_commitdate [227597] [227597] e
mp: mp!
wOm ngi 110000/ [10000] Tmps L I receiptdate Tmprs] O
o_orderke 2000001 [200000]
16000000] & 16000000] S-idiikey [800000T% [800000] [Iy]
T _rationkey TUr_regionkey | eSO 10 ps.suppkey
~custk pl T n_name TC I_suppkey e ps_partkey TC p_partkey
©_custkey OB n_nationkey T s_suppkey | partkey [227597] ()[1500000] ps:supp\{ycusx pbrand
n_regionkey s_nationkey [orderkey ps_avaigf Potype
Gr_name="ASIA’ IZquantity Go_orderdate>="1994-01-01' -
I_extendedprice o_orderdate<1995-01-01"
[150000] Bl 1291 [10000] [6000000] [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

Figure F.61 The Materialized Views Selected by 2PO for the Dynamic MVPP of the
Second Query Set

338

5

5
6 6 5 4
3 5 Q5@ Qso@ 5 8
3 Qu@ 1@ 4 @ : @
W@ e L@ %@ QZB’ Q@ 3
4 It15 | (‘5 QZZ‘ itao() [6492]
resul
resulta1 () [4558] ,Esumg [575169] e ussarz) "I o_brand X ool resuas) 575169) A 3
A n_nathe min(ps_availgtyyy '0_orderpfiority K resuit2s() [32172] s75169] | N_name
Vn_nape Yo neTm i Yo (ps._supplycost) W%TJ'@é}vu}xyxsnneam.ce) ! YS““‘(U"E””E""”CE’Yl_vewm ag X P_brond "ES“"ZZO wrsion Yo (ps_availaty)
min(l_quantity) Ve natoney sum(]_quantity) ! Vo brand | wg(os. upplycost) | in(is_supplycgs R
riiax(I_extendedprice) | avg(l_exjendedprice) o e /:)ﬁln(extenedprice)
} Tmp26 sﬂdekps;upplycas‘

[215) (Q[711150000) Tmp2s

1
[dra1] ([3733997148]

Tmp2g
[575169]

X
rand
?

|

|

|

|

|

I
I
I
|
I
| 5751690,000]
|

; Tmp23
Tmp3o, [1288745976]
[759474] @)[607837751040]

0

Tmpg
575160) ()IE6275350000] q

Tmp31

Y
resut1s Q) [160232] (g euis2() 2151 g
759474 o 758746]
[1, g" resulte1 O [758746] T result12(_) [575169] et 7952
s_a
I
I
I
I
|
I
I
|
I
|
I
I
I
I
|
|

b

M

Tmp24
[4558] (QJ17305800000]
3

8746 (J[607807404672)
Tmp14 (£

eo67321C 1602320000)
N =
= ‘
<A L Tmp?
[460135200000]
1% Tmp27 [160232]
[3793296] (@[3034636800000] o
(863342789712 X
X '.
Tmy
[3

[32046400000]

N\

[2003] Tmp11

" ‘ [200000]
Tmp1g 2
793206 @ [6000000]

&) [251
Tmp8 1 G |_commitdate
e c e
Tmp1s, Tmpi3 <I_receiptdate 257 O (227507 o
O P Tmp17 P O Tmp1, T Tmpi0 like ‘06BRASSY
[150000]/ [150000] mQOm 25 [10000] [10000] 160000007 QP [6000000] Tmpd T o orderke O
1251 1251 S-Jidkey (80000015 [800000] [200000] 1 [200000]
Tu ki TC I_suppkey oZorderpriority
T e e ™ %
artke
o ousthey BO® nPationkey j—:gﬁgﬁﬁgy I:SLa?.’t.Fyy 1227597) O1500000] - sigplyoost S
- X extendddprice x -
Gr_name="ASIA" n_regionkey I-Commitdate Go_orderdate>="1994-01-01' p_type
receiptdate 0_orderdate<'1995-01-01"
[150000] Bl [25] [10000] [6000000] 1500000] 800000) 200000]
customer region nation supplier lineitem orders partsupp part

Figure F.62 The Re-Optimized MVPP by Static Approach for All Queries of the
Second Query Set

Table F.15 The Comparison of the Result from the Static Approach and the Dynamic
Approach of the Second Query Set

Approach Number Cost of Cost of Total Cost

of Nodes Query Processing Maintenance

Static 31 5,329,761,453,158 14,884,283,889,969 20,214,045,343,127

Dynamic 18 5,329,761,453,158 14,884,283,889,969 20,214,045,343,127

Conclusion result of the dynamic phase:

In Figure F.62, we rerun static approach for all queries; the search space
contains 31 intermediated nodes for static materialized view selection whereas our
dynamic approach for additional queries, the set of intermediated nodes to be selected
is 17 nodes, 12 existing nodes and 5 new created nodes. The result in Table F.15
shows that even though all costs of dynamic approach are same as cost of static
approach, the number of nodes to be selected of dynamic less than static approach.

339

F.4 The Third Query Set

Queries for static phase: {Q1, Q8, Q9, Q19, Q30, Q31 and Q41}
Queries for dynamic phase: {Q2, Q10, Q25, Q29, Q33 and Q42}

F.4.1 Static Phase with the MVPP Re-Optimization Algorithm

The order of queries according to their frequency of executing the query
multiplied with the query cost is shown in Table F.16. Then, the order of queries of
the first MVPP is {Q9, Q1, Q30, Q31, Q8, Q19 and Q41} and the last order is {Q41,
Q9, Q1, Q30, Q31, Q8, and Q19}. The query processing costs of all MVVPPs of query
set {Q1, Q8, Q9, Q19, Q30, Q31 and Q41} are shown in Table F.17. The cheapest
MVPP is the third MVVPP as shown in Figure F.63

Table F.16 The Query Access Frequency, Query Cost, and Query Access Frequency
Multiplied by Query Cost

Query Query Access Query Cost fq* Query Cost
Frequency(f,)
Q1 5 910,519 4,552,595
Q8 3 183,273 549,819
Q9 6 910,519 5,463,114
Q19 3 22,278 66,834
Q30 4 184,082 736,328
Q31 5 115,372 576,860
Q41 3 4,558 13,674

340

Table F.17 The Query Processing Cost of the Third Query Set

Query 1st 2nd 3rd MVPP 4th 5th 6th 7th
MVPP MVPP (cheapest) MVPP MVPP MVPP MVPP
Q1 6,827,953 6,827,953, 6,827,953, 6,827,953, 6,827,953, 6,827,953, 6,827,953,
,190,580 190,580 190,580 190,580 190,580 190,580 190,580
Q8 4,506,506 4,506,506, 4,199,188, 4,199,191, 4,199,191, 4,506,506, 4,506,506,
,464,167 464,167 832,610 564,167 564,167 464,167 464,167
Q9 8,248,175 8,248,175, 8,248,175, 8,248,175, 8,248,175, 8,248,175, 8,248,175,
,028,696 028,696 028,696 028,696 028,696 028,696 028,696
Q19 4,372,853 4,523,761, 4,216,446, 4,216,446, 4,216,446, 4,382,914, 4,372,853,
,582,682 082,682 182,682 182,682 182,682 082,682 582,682
Q30 5572,292 5572,292, 1,131,705, 6,008,675, 6,008,675 5,572,292, 5,572,292,
,026,848 026,848 487,944 289,016 289,016 026,848 026,848
Q31 6,873,494 6,833,714, 902,329,39 902,329,39 6,873,494, 6,873,494, 902,329,39
,146,945 385,255 4,455 4,455 146,945 146,945 4,455
Q41 4,176,014 4,152,146, 593,315,15 593,315,15 4,216,446, 4,382,914, 593,315,15
,005,725 148,711 4,231 4,231 469,860 369,860 4,231
Total 40,577,28 40,664,548 26,119,113 30,996,085 40,590,381 40,794,249 31,023,424
8,445,643 ,326,939 ,241,198 ,803,827 ,871,946 ,309,778 ,841,659
3 4 3
1@ Q30 Q19 : 6 . 3
g I ? 0 e T e
g e result30() [184082] restasQ 1277l resultar () [115372] g resmtl‘g[gmﬂsl resulig(_) [183273]
i I 1 £ T L O R (T MV iy
s_natiorjkey min(l_giscount) stddey(l_discount)
Tmp2L variance(l_quantity) Tt
[ATSFES]Z 2 17305800000] (22776] G ETo10000) Tmp20 [18327::] [910519]
X [575169] ()[010519] Gr_c_mi:;egmem
[1543022]1 1 [276048000000] [91°T5T§]24 [9105190000] o Tmp18
% (115972] C) [112854003978 N [910519] ()[1365582000000]
Tmp9 Tmpis X Tmp23 4

[1365582002000]

[759474] ([7$97971888]
X a
A\
o= />

'\

146008] (()[6869560251]

Tmpl7

mp6 Tmp13 Xy
136183] () [750000] 12003] (O50000]

X

N
T A Tmp4 [5][25] 27597 O p227507]
150000 150000 .
L 1 Tmp2 Tmp12 rnmltdale Tmp8 TC[()) orgt?'gey
mOmwm Tmp3 [10000] [10000] <[feceiptdate SRCe
[251() [25] oZorderpriority
. T ionk Tmp10
TU c_nationkey Tl Treglonkey [6000000] JIEGOOOOOO] Tmp7
custkey TMEL Ay o) TU n_name TC s_suppkey |-suppkey 12275971 (O[1500000]
n_nationkey s_nationkey I o?der?(Ly
O'r_name="ASIA’ n_regionkey I: }ggﬂ%
I:exlendedprice
[150000] [5] [25] [10000] [] t6000000] [1500000]
customer region nation supplier lineitem orders

Figure F.63 The cheapest MVPP of the Third Query Set of the Static Phase

1227597] ()[34139550000]

Oo_orderdate>="1994-01-01'
o_orderdate<’1995-01-01'

3
Q@
resultzllg [4458]

Xn nanje
in(l_gyantity)

4
Q0@

result3o() [184082]

o

Tmp22
14558] ()[17305800000]
X

Tmpll
11840821 ()[276048000000]
%

>

Tmp9
146008] ()[6869560251]

mp6

Tmp13,
[36183)

nare.
max(l| discount)

12003] ()[50000]

"

341

Q19 Q1@ U@
®@ Q8
resulig Q) [22778]
resulta1O) [1157321] resulti()[910519] [183273]
o_orderpriority 'Y" narfp resultg() [910519 4 N results
stddev(l] discount) ¥ sim(1 Jquantity) A “J’r?e'fr'””ly 0_ordfrpriority
s natiork min(l_giscount) stddey(I_discount)
Tmp21 variancg(l_quantity)
122778] ([5751690000] Tmp19 [910519]
oy Tmp20 [183273]
[575169] ()[010519] O _c_mksegment
X Tmp2d \ ="BUILPING’
1910519] ()[9105190000]
Tmpl6 X et
[115372] 172854003978 [910519] [1365582000000]
> Tmp23
Tmp15
1365582000000
(759474] ()[7$97971888] t !

X

N
Tmp4 (5] () [25]
Tmp5
[150000] [150000] W
mpZ Tmo3 Tmp12
1 1] mp: [10000] [10000]
[251() [25]
ionke Tmp:
TU c_nationkey Tur_regionkey [600000
c_custkey Tmpll 5 TC n_name TU s_suppkey
8] [5] n_nationkey s_nationkey
Or_name="ASIA’ n_regionkey
[150000] 151 []es [10000]
customer region nation supplier

10

O [6000000]
0] JIE |_suppkey
|_partker
I£rder{k}éy

uanti
I:giscou%
I_extendedprice
[6000000]

lineitem

P

Tmpl7
(D[34139550000]

[227597] . [227597]
Tmp8
T o ol>?'é(ey
o—fotalprice .
o_orderpriority
Tmp7
[1500000]
Oo_orderdate>="1994-01-01'
o_orderdate<’1995-01-01'
[1500000]
orders

[227597]

Figure F.64 (a) The optimal MVPP of the Third Query by Deterministic

3

4
Q41

Q30

result41() [4458]

result30

Toy

[184082]
Xn nanje
in(l_qyantity)

5
Q31

3
QL@

resultlQé [22778]

result31 () [115732]]
'Yuiorder riority

Q1

6
®e

resultl,

3

B@

[910519]
A result8 [183273]

name C Yn_narf resulto() [910519 .
max(] | discount) stddev(l| discount) sum(l_|quantity) A c_ur?e'f_momy o_ordprpriority
s_natit min(l_gliscount) stddey(l_discount)
Tmp21 variancg(l_quantity)
Tmp22 122778] (Q[5751690000] Tmp19 [(910519]
14558] (JJ17305800000] & Tmp20 1183273]
X [575149] . 910519] Gr_c_mkisegment
Tmpit M ez — | ="BUILDING’
1184082] ()[276048000000] [910519] (_)[9105190000] Tmp1s
0 Tmpl6 %
X 910519 1365582000000
[115372] @)[17285400397€ L | @1 !
A
Tmp23
46-(2?;) ; (6869560251 o : [T3p65532°°°°]
[46008] 1 17594741 ()[7$97971888] 0
X &
‘ (D[34139550000]
A
mp6 Tmp13 . ol
[36183] @ [750000] 12003] (J[50000] S
)2 ". v
<
s Tmp4 [5](C) [25] re2rso7) O p227507]
150000]\/ [150000] X
L L Tmp2 Tmn3 Tmpl2 Tmp8 77 o ord‘?(rkey
1 1] mp 10000] 10000] o-fotalprice
mOm 2510 [25] [] [1 o:orderppriority
. TUr_regionke; Tmp10
TU c_nationkey Tl -reg 4 [GOOOOOO] 6000000] Tmp7
c_custkey m[pl Bl TC n_name TC s_suppkey ILsurp'Ekey [227597) ()[1500000]
n_nationkey s_nationkey I‘g?der%y R ,
Or_name="ASIA’ n_regionkey quantity Go_orderdate>="1994-01-01'
IZdiscount o_orderdate<’1995-01-01'
|_extendedprice
[150000] [5] [25] [10000] [6000000] [1500000]
customer region nation supplier lineitem orders

Figure F.64 (b) The optimal MVPP of the Third Query by 2PO

342

The query processing cost of query of the cheapest MVPP are compared with
other MVPPs. The result is that query processing of all queries of the cheapest MVPP
is less than other MVPPs. Therefore the cheapest MVPP is the minimal MVPP.

Next, selection algorithm are applied to the optimal MVPP in Figure F.63 to
select the set of views to be materialized to be the initial search space for dynamic
phase. The result of the Deterministic is shown in Figure F.64 (a). The result of 2PO
is that {Tmp6, Tmpl6, Tmp23, Tmpl8} are the materialized views as shown in
Figure F.64 (b). We show the query processing cost, materialized view maintenance
cost and total cost of all-virtual-views, all-materialized-views and selection
materialized view by 2PO algorithm of the cheapest MVVPP in Table F.18.

Table F.18 The Query Processing Cost, Maintenance Cost and Total Cost of the
Static Phase

Cost of Cost of Total Cost
Query Processing Maintenance
All-virtual view 26,119,113,241,198 0 26,119,113,241,198
All-materialized view 11,960,724 16,649,310,570,792 16,649,322,531,516
2PO 306,035,672,471 7,832,700,983,345 8,138,736,655,816
Deterministic 306,035,672,471 7,832,699,255,748 8,138,736,655,816

Conclusion result of the MVPP re-optimization algorithm:

Accordingly to Table F.18, after the MVPP re-optimization algorithm is
applied, the query processing of all queries of the cheapest MVPP is less than that of
other MVPPs, so the cheapest MVPP is the optimal MVPP.

F.4.2 Dynamic Phase Result

The queries of the dynamic phase, {Q2, Q10, Q25, Q29, Q33 and Q42}, are
merged into the existing re-optimized MVPP, Figure F.64. The result of the dynamic
MVPP is shown in Figure F.65.

343

5

2
4 4 QL@ 6 5 42
3 Q2@ 6
i@ Q25 Q0@ ng Q@ e @ 6
X 6 B@ Q33. | 2@ 7
resutar O[4458) ! resutaoQ) [184082) ‘ resuttol,) [22778) wuQ iszaz) QL@
resulizs Q) [46008] | resulis1 () [184082] munsso 759474] A rgsu\[QO[7§H74h] A
'n_nhme YD ordgrpriority resultg (L) [910519] resultg(_) [184082] |
in(l_jquantity) v | stddey(l_discount) Yo n M ndedbrice A result1o | [758746]
Yo e max(ifdiscount) o) [rseara) o resulty () [010519] max(l exuen price) / Yu oo o
_Na Ul
avg(olotalprice) y‘s)modrgv(A?;éuunt) Luu"l p{\uumywst) ‘ / max(tax) 4
Y Ve Ty ! /
Tmp22 's_nationkpy Tmpl 10 !
(ess8] oy ey O oosts | 152420 %{304230;59492] |
| - / /
| - \ /
Gr_c_mkisegment 1530 g ’]/m“m(l tax)
='BUILDING [7591—7A]/Q[607J7GZDDDDD] \v/ /
I B N N ,
Tmp18 \ // N\ Tmp29
\ PN [7537461 snseesxoooom
[1365582000000] / \
/ \ -
Tmpo P \ / PV //
[46008] g O q \ - \\ ,
Tmp17 \ o Tmp27 / - /

(227597) ([34139550000] ‘\[755”“]‘8([15195135““] M
Tmp is unmaterialized

~ ~ /A
_--" SO 2
[750000] - \ AN
\ , AN
\ 7 S Tmp2e
\ 4
\ J/ 40058\ [200000]
12275971 O 227507 \ / x
e O [150000] L ! \ J Op_type like “%BRASS%"
150000] Tmp2 {commitdate T8 17T o orderkey)
[10000] (_receiptdate Q‘P%}ge Twmﬁﬂo Tmy ZSO
aorderpriority (8000001 % (500000] [200000] % [200000]
TU ¢_nationkey Tur_regionkey Tmp? TC ps_suppkey
ccustkey ~ rpp; T e o ps_partkey’ T p pankey
c_mktsegment 111 () 5] _name s-suppkey |patey 12275971 (O[1500000] ps,supp\yycm
n_nationkey s Tationkey Fey . psavaig b5 'ype
Or_name="ASIA" I~disce Oo_orderdate>="1994-01-0:
' ex‘e""e"""ce o_orderdate<1995-01-01'
[150000] [s] [251 [10000] [eooooom [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

Figure F.65 The Optimal Dynamic MVPP of the Third Query Set

After the dynamic MVPPs are generated and the optimal one is selected, the
affected node identification algorithm is applied to identify the affected nodes. The

existing nodes are used to construct the new queries are shown in Table F.19. Their
weights are shown in Table F.20.

Table F.19 The Existing Nodes Used to Construct New Queries

New Queries Existing Nodes

Q2 Tmpl0, 14

Q10 Tmp1l0, 14

Q25 Tmpl, 2,3,4,5,6,7,8,9

Q29 Tmpl, 2, 3,4, 10, 12, 13, 14, 15
Q33 Tmpl, 2, 3,4, 10, 12, 13, 14, 15
Q42 Tmpl, 2, 3, 4, 10, 12, 13, 14, 15

344

Table F.20 The Weight of the Existing Node for Constructing All New Queries

Existing Node Weight (w (v))
Tmpl 95
Tmp2 6
Tmp3 275
Tmp4 188
Tmp5 1,050,000
Tmp6 3,299,832
Tmp7 42,000,000
Tmp8 4,872,716
Tmp9 27,467,730,392
Tmp10 168,000,000
Tmpl2 160,000
Tmpl3 1,269,832
Tmpl4 36,000,000
Tmp15 30,343,647,328

The intermediate nodes, which are the conjunctively joined nodes with
positive weight, project operation that is not the ancestor of base relation and select
operation, are inserted into the list of directly affected node. Therefore, the directly
affected are {Tmpl, Tmp2, Tmp4, Tmp6, TMp8, Tmp9, Tmpl13, Tmpl4 and Tmpl5}.

Next, we identify the indirectly affected nodes. The directly affected nodes that
their ancestors are not the directly affected node are Tmp8, Tmp9 and Tmp15. The
weights of the ancestor node of those nodes are shown in Table F.21.

345

Table F.21 The Weight of Ancestor Node of Directly Affected Node of New Queries

Directly Affected Node Ancestor Node Weight of Ancestor Node
Tmp8 Tmpl7 136,554,444,806
Tmpl8 3,994,303,717,209
Tmpl9 -4,199,188,282,791
Tmp8 Tmp20 -5,598,918,620,907
Tmp21 -5,604,673,082,464
Tmp9 Tmpll -310,408,939,520
Tmpl5 Tmpl6 480,503,214,229
Tmp22 -1,134,712,881,114

Tmpl8 is identified as the indirectly affected node as its weight is the
maximum weight of this branch. Tmp11 is not indirectly affected node as its weight
negative. Tmp16 is indirectly affected node as its weight is greater than Tmp15.

The result of affected nodes show as follows.
Directly affected nodes: Tmpl, Tmp2, Tmp4, Tmp6, Tmp8, Tmp9,
Tmpl3, Tmpl4, Tmpl5
Indirectly affected nodes: Tmpl16, Tmpl8

Therefore, the number of nodes to be the member of set of views to be
selected by 2PO is 17 nodes, 11 existing nodes and 6 new created nodes.

After the affected nodes are identified, the selection algorithm, 2PO, is applied
to select the set of views to be materialized. The result is that the existing materialized
views {Tmp8, Tmpl6, Tmpl8, Tmp23} are still materialized, the existing virtual
views {Tmp9, Tmpl5} are materialized view, the new nodes {Tmp27, Tmp29,
Tmp30} are materialized and the existing materialized view {Tmp6} is un-
materialized.

We rerun static approach for all queries {Q1, Q8, Q9, Q19, Q30, Q31 and
Q41} and {Q2, Q10, Q25, Q29, Q33 and Q42}. The result of the static approach for

346

5 2
3 3
4 4 7 L@ 6 5 42
3 Qi@ 6
1@ 5@ 0@ 9@ Q@ Q9 U@ 6 X
e e 6 B @ Q3@ | Q2 , 7
1 | result19() [22778] QO 1152424 Qi@
4458 result30(_) [184082] resulta2() []
reats QU] O asoos Q ! o oty "G 00 T O R SO IO
’Xl"" Tlquantiy) 4 Yo nere ! el Giecoun, resuts (010519 resulg() [] 4 Yn_name 1 resultio | [758746)
j max(fdiscoun) oo prso47s) nnare resultz() [910519] | sl i) [oy, g
Yn_name sum(l|quantity) Yo_orderpriority /n_namel ! /e
avg(ootalprice) \ — O SR 1 I R ! / - /*
| X |
mp s nationk Tmp1g | |
022 ! \ [e2rrg) () 15751690000] min(lidiscount) - rp; [1522"215]3 e 13042300492
s8] ([17305800000] | yug{‘m . oriance({_quanity) 11832731 () [910519] | 5) f
| sumil_quantity) I -~
> v 1 N brand
\ \ Gr_c_mkfsegment T30, ~ \ ?/f@ma,mx)
| \ P ='BUILDING’ [759474] @)[607579200000] \v/ /
| Tmpil T i ¢ S n ,’
|‘ 1184082] () [276048000000] \ <277 7| Tmpis \ /N Tmp29 /
1 \ \\ ,/ \\ [758746) @)[606996800000]
| \‘ A~ [910519) @)(1365582000000] | / \ N
| - / P
Tmp9 Tmpis m \\ / _
fasoos] Q6869560251] 59474) 4 0 /e
0 v Tmp27 L~ \
Oppersossooon \[156746] ‘33[151951851168] \ (f
- 7/
~ AR
Tmps Tmpo is unmaterialized 013 \ - o 2N
130183] Q) [750000] 12003] ()(50000] N - ! SN
\ S, Tmp26
\ @
< \\ 140058] @ [200000]
Tmgs Tmp4 (51() [25] 1227597) O 227597 \ O type like “HBRASSY'
O 50000] D \ P-type fike ™R
[150000] Tmp2 Tmpi2 Tmpg TC o_orderkey \/ \
wQmn Tmp3 f20000] O [10000] A receiptaate SRelee Tmezs Tmp25
510 1251 Tl oorderpriority (8000001 [00000] 2000001 [200000]
Tl i paonkey tsoo0000) oy e T ps ke
= i th
c_mkisegment "] () s) n_name TU s_suppkey |partkey 1227597) ()[1500000] BE-Sippivtost [i
n_nationkey s_nationkey I uanmyy ps_avaiqly t
Or_name="ASIA" I-discount Go_orderdate>="1994-01-0 p-type
:ff:‘xe"‘”d"”‘e o_orderdate<’1995-01-01'
[] 1zs0000) o} [[10000] [] tooooooy [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part
5
3 3
4 4 7 QL@ 6 5 2 7
3 6
U@ oxg @ g U@ Q) 6 Qi@ QU@
ry ry o) Q@ e 2@ X
resulta1 ([4458) | ! A resulta2 X 115 !
12O [asoog)resultzo () [184082] resyinog (O [759474] result31 () [184082] result1 () [910519] O [152424) ! 1o |
result2s s Q) g 16O posts] resultg () [184082] Qs X | result10 Ovssnis
d resul result:
mﬁ%ﬂ tity) T ”ajye ¥ '}/n,na(r‘né ny i Y 'YnJye(\lmi » ;esu\(zg) 1575160] £
| h _quantity) Yo_orflerpriority njname 'o_orddrpriority . n_nam miax(I_ektendedprice
avg(d totalprice) § "-npme sum(l_quan - orflerprio 1 quant T o orderpriori % f /
,r max|_discount) \ stdd v(ﬂ discount) sym(l_guantity) min(l Jdiscount) Ysmdev(jisé?um) count(pp_supplycosty, > / //
. | 152424] ()[30423009492],
Tmp27 | s_natiofike Tmplg L / Yp_br
[4558] ()[17305800000] | y\fananc(lj/quanlily) 1183273) () [910519] : /. | /’Yf(im'a?d‘ax)
) /Yo bran
| [/ (i J
1
!
[606996800000]
Tmp20
140058] @ 200000)

Tmp13 S teersan Qpzrson Op_type like ‘%BRASSY%’
[150000] \/ [150000] i Tmpi1’
mp2 (_ commitdate PLLITT o orderkey
[10000] H_receiptdate R - Tmo17 (%) Tmp19,
Tl oZorderpriority 15000001 % 800000] [200000] [200000]
TC c_nationkey TUr_regionkey 16000000} 5 160000001 Tmp10 TC ps_suppkey
c_custkey Tmpl n_name T " TC |_suppkey us:panﬁey TC p_partkey
c_mktsegment 17 (D) (5] n_nationkey Soubpkey | partkey (2275971 ()[1500000] psZsupplycost p_brand
n-pationkey s nationkey [orderkey psavaiqty Pype
Gr_name="ASIA’ o Go_orderdate>="1994-01-01 -
IZextendedprice 0_orderdate<’1995-01-01'
[150000] 151 [10000] thdioooy [1500000] [800000] [200000]
customer region nation supplier lineitem orders partsupp part

Figure F.67 The Re-Optimized MVPP by Static Approach for All Queries of the
Third Query Set

347

all queries is shown in Figure F.67. After our MVPP re-optimization algorithm is
applied to the cheapest MVPP, the MVPP structure in Figure F.67 provides same
structure as that of dynamic MVPP in Figure F.66. The query processing cost,
materialized view maintenance cost and total cost of the static and dynamic approach

are computed as shown in Table F.22.

Table F.22 The Comparison of the Result from the Static Approach and the Dynamic
Approach of the Third Query Set

Approach Number Cost of Cost of Total Cost

of Nodes Query Processing Maintenance
Static 31 184,748,883,173 13,766,731,003,390 13,951,479,886,563
Dynamic 17 184,748,883,173 13,766,731,003,390 13,951,479,886,563

Conclusion result of the dynamic phase:

In Figure F.67, we rerun static approach for all queries; the search space
contains 31 intermediated nodes for static materialized view selection whereas our
dynamic approach for additional queries, the set of intermediated nodes to be selected
is 17 nodes, 11 existing nodes and 6 new created nodes. The result in Table F.22
shows that even though all costs of dynamic approach are same as cost of static

approach, the number of nodes to be selected of dynamic less than static approach.

Name

ACADEMIC BACKGROUND

PUBLICATION

BIOGRAPHY

Ms. Boontita Suchyukorn

B. E. (Computer Engineer) from King
Mongkut’s Institute of Technology Thonburi,
Bangkok, Thailand in 1994. M.S. (Electronic
Business) from King Mongkut's University of
Technology Thonburi, Bangkok, Thailand in
2006.

1. Boontita Suchyukorn and Raweewan
Auepanwiriyakul, “Re-Optimization MVPP
using Common Subexpression for Materialized
View Selection”, World Academy of Science
Engineering and Technology, issue 79, July
2013, Pp.1177-1185.

2. Boontita Suchyukorn and Raweewan
Auepanwiriyakul, “Dynamic Materialized View
Selection Using 2PO Based on Re-Optimized
Multiple View Processing Plan”, International
Journal of Advancements in Computing
Technology (IJACT), Vol.5(14), October
2013, Pp. 150-167

	DYNAMIC MATERIALIZED VIEW SELECTION BASED ONTWO-PHASE OPTIMIZATION
	ABSTRACT
	TABLE OF CONTENTS
	CHAPTER 1 INTRODUCTION
	CHAPTER 2 LITERATURE REVIEW
	CHAPTER 3 METHODOLOGY
	CHAPTER 4
DESIGN OF EXPERIMENTS AND ANALYSIS OF RESULTS
	CHAPTER 5 CONCLUSION AND FUTURE WORK
	BIBLIOGRAPHY
	APPENDICES
	BIOGRAPHY

