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There are two test statistics proposed in this study in order to test whether data 

come from a gamma distribution. Both of the proposed test statistics are developed 

from a modified Kendall coefficient based on the independence property of a gamma 

distribution. The first one is asymptotically distributed as standard normal and the 

limit distribution function of the second one was improved using an Edgeworth 

expansion and the Jackknife method. They are invariant to scale parameters and 

perform substantially better than existing tests in terms of Type I error rate and test 

power, especially in cases with samples of moderate size. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1  Statement of the Problem 
 

In data analysis, it is generally known that statistical methods are applied with 

careful consideration in order to reach reliable conclusions. When testing for 

significance, parametric tests are often chosen because, in many situations, they can 

provide a higher power than nonparametric ones. However, one of the assumptions of 

parametric tests is the distribution of the random variable involved. If the distribution 

is ignored, or not determined, before conducting the analysis, high error rates may 

occur and lead to the wrong conclusion.   

A gamma distribution, a general type of statistical distribution, is one of the 

most well-known shape-scale distributions for nonnegative variables. This 

distribution is commonly found in a wide variety of fields; for example, marketing, 

insurance, investment, hydrology, medicine, sociology, and demography, since data 

from these sources usually contain variables with nonnegative values. Furthermore, it 

is commonly used in models for analyzing life-time data (Raja and Mir, 2011: 393-

400), which refers to, for instance, the human lifespan, the lifespan of a mechanism 

before it fails, or the survival time of a patient after diagnosis of death. A number of 

studies have used data that have come from a gamma population, such as ecology 

studies (Ellis, Mahlooji, Lascano and Matis, 2005: 1602-1615), the quantity of daily 

rainfall (Husak, Michaelsen and Funk, 2007: 935-944; Sharma and Singh, 2010: 40-

49), the ascension curve of the hydrograph model in hydrological analysis (Volkova, 

Longobardi and Krasnogorskaya, 2014: 88-95), inventory control and queuing 

problems (Krever, Wunderink, Dekker and Schorr, 2005: 342-358), and reliability 

(Amari, 2012: 1-6). A gamma distribution with nonnegative values is usually skewed, 
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as has been found in various fields of study. Nevertheless, there is a need to determine 

whether data come from a gamma distribution or not. 

There are many different ways to test for whether a distribution is the same as 

the hypothesized distribution and they are categorized into two major approaches: one 

is based on the distance between the empirical distribution function (EDF) and the 

hypothesized distribution, and the other is based on certain characteristics of gamma 

distributions. 

In the first approach, three popular tests: the Cramér-von Mises (CM), the 

Kolmogorov-Smirnov (KS), and the Anderson-Darling (AD) tests (Stephens, 1974: 

730-737) can be used to test whether the sample has been drawn from a population 

with a specified distribution function ( )F x . In this study, the specified distribution 

function ( )F x  is a gamma distribution. All of these tests require an underlying 

continuous distribution with known parameters, so the parameters need to be 

estimated first before the distribution of the tests can be obtained. Consequently, the 

accuracy of the results depends on the accuracy of the parameter estimation. Thus, 

many studies have focused on the estimation step by modifying the three tests. 

Examples of modified tests can be found in Woodruff, Viviano, Moore and Dunne 

(1984: 241-245); Shawky and Bakoban (2009: 1-17). 

The second approach is a process based on considering the properties of 

certain characteristics of the distribution being tested, which is gamma in our case, 

and there have been a number of studies in this area, e.g., Wilding and Mudholkar, 

(2008: 3813-3821); Villaseñor and González-Estrada (2015: 281-286); Baringhaus 

and Gaigall (2015: 193-208). In recent years, there has been increasing interest in 

testing for gamma distribution by means of this approach. For instance, by employing 

the gamma characteristic of Hwang and Hu (1999: 749-753), Wilding and Mudholkar 

(2008: 3813-3821) proposed a test based on modifying Pearson’s correlation 

coefficient between the sample mean and the sample CV of n Jackknife sub-samples. 

In addition, the Baringhaus and Gaigall test (2015: 193-208) was achieved by 

applying a consistent nonparametric independence test to the gamma distribution 

property proposed by Lukacs (1955: 1-5). However, there are many other 

characteristics of a gamma distribution that have been used in this approach, such as 
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the test proposed by Villaseñor and González-Estrada (2015: 281-286); Henze, 

Meintanis and Ebner (2012: 1543-1556). 

It is noticeable that, if the true distribution is similar to a gamma distribution, 

that is, the distances between these distributions are close together, then using a test 

based on the first approach is hardly able to distinguish them. In other words, the null 

hypothesis is more likely to be accepted. The proposed tests in this study were chosen 

to be developed under the second approach. The focus of this study is on ascertaining 

goodness-of-fit tests for a gamma distribution based on its characteristics. The 

hypothesis for a gamma distribution can be written as: 

 

H0 : A random sample is drawn from a gamma distribution 

H1 : A random sample is not drawn from a gamma distribution (1.1) 

 

1.2  Objectives of the Study 
 

 The objectives of the study are as follows:  

 1) To propose tests using the independence characteristic approach for a 

gamma distribution 

 2) To investigate some underlying properties of the proposed tests 

 3) To compare the proposed tests with some previously reported ones 

 

1.3  Scope of the Study 

 

 1) The proposed tests were developed based on the characteristic of a gamma 

distribution, proposed by Lee and Lim (2009: 1-5), that 
1
k

k

m
X  and 

2
1

m
i j kkX X X  

are independent. 

 2) The properties of the proposed tests to be investigated are: 

  (1) The asymptotic distribution of the proposed test statistics under the null 

hypothesis 

  (2) Empirical Type I error rates under nominal conditions 
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  (3) Empirical power of the proposed tests under various alternative 

distributions with various parameters 

 3) The competitive tests used for comparison were the Cramér-von Mises 

(CM), the Kolmogorov-Smirnov (KS), the Anderson-Darling (AD) tests, the tests 

proposed by Wilding and Mudholkar (2008: 3813-3821); Villaseñor and González-

Estrada (2015: 281-286), denoted by WM and VGE, respectively. 

 

1.4  Advantages of the Study 
 

The outcomes of this study are conducive to a possible alternative goodness-

of-fit test that can be used to determine the optimal initially implemented gamma 

model for the analysis of data. The advantages of the study are as follows: 

1) Testing is not required to estimate the parameters. 

2) It can be used as a guide to create tests for other distributions. 

 



 

 

CHAPTER 2 
 

LITERATURE REVIEW 
 

2.1  The Gamma Distribution 
 

A gamma distribution, as proposed by Karl Pearson during the late 19th 

century (quoted in Shakil, Kibria and Singh, 2010: 259-278), is created from the sum 

of independent exponentially distributed random variables. It is a continuous 

distribution function with two positive parameters, the shape and scale parameter 

denoted by  and , respectively. This distribution is widely used in many 

applications involving life-time data: in biology, engineering, monthly rainfall data in 

meteorology, and insurance claims and loan defaults in business. These data are 

nonnegative and their distributions are usually skewed. Frequently, a gamma 

distribution is one that fits well with data from these sources.  

A random variable X that is gamma-distributed with shape parameter  and 

scale parameter  is denoted by 

 

    ~  Γ ,   Gamma , X . 
 

The probability density function of random variable X can be written in the form 

 1  ; ,   
Γ

xf x x e , for 0 x , ,  0 , (2.1) 

where Γ  c  is defined by using an integral formula as 1

0
Γ    t e  dt  c tc , for 

 0c , Γ 1  Γc c c , and Γ 1 =  !c c  for integer c . 
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 2.1.1  Basic Characteristics of a Gamma Distribution 

 The basic characteristics of a gamma ,  distribution are as follows:  

 

Mean  = /  , 

Mode  = 1 /  if  1  , 

Variance  = 2/  , 

Coefficient of variation  =  , 

Skewness  = 2 /  , and 

Excess kurtosis = 6 /  . 

 

 Proof of the above gamma distribution properties can be found in many 

statistics text books, such as in “Statistical Distributions” (Forbes, Evans, Hastings 

and Peacock, 2011: 109-113). There are many types of gamma-related distribution 

and some examples of those are exhibited in Table 2.1 below. 

 

Table 2.1 Examples of Gamma-Related Distribution 

 

Gamma 

Distribution 

Shape 

Parameter 

Scale 

Parameter 

Related  

Distribution 

Gamma 1, c  1 c  Exponential: exp(c) 

Gamma 22 ,  n  2
n  2 Chi-Square: 2

( )n  

Gamma ,  n  n   Erlang: Erl ,  n  

  
 
Note: c  and  are positive real numbers and n  is a positive integer. 
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 2.1.2  The Independence Property of a Gamma Distribution 

 Some independence properties of gamma distribution are reviewed here 

because they play an important role in this study. Suppose 1 2, ,..., mX X X  are positive 

i.i.d. random variables with a common absolutely continuous distribution function 

( )F x  and 2( )E X , we find that all of the following pairs of statistics are 

independent if and only if 1 2, ,..., mX X X  are distributed as gamma. Note that  X  and 

S  are respectively the sample mean and standard deviation. 

  1) Lukacs (1955: 319-324) 

 i jX X  and ii jX X X  , for i, j = 1, 2,…, m and i j . 

  2) Hwang and Hu (1999: 749-753) 

 X  and /CV S X , for m ≥ 3.   

  3) Hwang and Hu (2000: 427-437) 

   (1)  X  and ( )
1

m
i i

i
a X X ,  

where 1 2 ... ma a a  are not all equal, 
1

0
m

i
i

a , and
 

(1) (2) ( ) mX X X . 

 (2)  X and 
, 1

1
1 i j

i

m

j
X X

m m X
. 

 (3)  X and ( ) 1  mX X X ,  

where ( ) 1 mX X
 
is the sample range.  

  4) Lee and Lim (2007: 411 – 418) 

1

m
k

k
X  and 1 2 *

1 2

 
 

m

m

X X X
X X X

,  for 1 *m m . 

  5) Lee and Lim (2009: 1-5) 

1

m
k

k
X  and 

2

1
( )

m
i j k

k
XX X , for 1 i j m . 
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2.2  Kendall’s Tau, a Measure of Association 
 

The measure of association between two random variables can be obtained 

by both parametric and nonparametric methods. The two most commonly used 

nonparametric measures for association are Kendall’s tau (1938: 81-89); Spearman’s 

rho (1904: 72-101), while the most commonly used parametric measure for 

association is Pearson’s correlation (1895: 240-242). In this study we emphasized on 

Kendall’s correlation coefficient, denoted by , developed by Maurice Kendall in 

1938. Suppose a random sample of *n  pairs, (X1, Y1), (X2, Y2), (X3, Y3), …,(Xn*, Yn*), 

comes from a bivariate  population. Then the Kendall’s tau ( ) can be defined as 

(Kendall, 1938: 81-89) 

 

c dτ = p   p ,  

 

where cp j i j i=  P X Y X Y  > 0  and dp j i j i= P X Y X Y  < 0 . 

The Kendall’s  can be estimated by K , called Kendall’s coefficient, and is defined 

as 

 
* 1 *

1 *

2   ,
*( * 1)

n n
ij

i j n
K A

n n
 (2.2) 

 

where ijA  = sgn j iX X sgn j iY Y  , and the values of ijA  are as follows: 

 

1    if  these pairs are concordant,
  = 1    if  these pairs are discordant,

0    if  these pairs are neither concordant nor discordant .
ijA

 
 

Note that Kendall also proved that K  is an unbiased estimate of . If two random 

variables X and Y are independent, then  is zero. Although it is not true in general 

that 0  implies independence, it can be shown by using general limit theorems as
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*n , so the inverse is obtained. Hence, Kendall’s coefficient is one of the 

nonparametric statistics for testing whether random variables X and Y are 

independent or not (Gibbons and Chakraborti, 2011: 385-429). That is, for *n , 

hypothesis (1.1) is equivalent to hypothesis (2.3).  

 

H0 : Random variables X and Y are independent 

H1 : Random variables X and Y are not independent. (2.3) 

 

Kendall’s  is equal to zero when two variables are independent. Two assumptions 

must be held throughout this study: 

 

   (A1) X and Y have continuous marginal probability distributions 

  and (A2) X and Y are independent. 

 

The expectation and variance of the K  statistic under the null hypothesis, as given by 

Kendall, are 

 

    0E '  0|   K H  and 0
2(2 *  5( | )V '  
9 *( )

)
* 1

nK H
n n

, respectively. 

 

Consequently, the standardized form of the 'K  statistic is 

 

 

2(2 *  5)
9 *( * 1)

'
n

n

Z

n

K , (2.4) 

 

which is suitable for use as a statistic for testing that hypothesis (2.3) is equivalent to 

hypothesis (1.1), as previously mentioned. In addition, the asymptotic distribution of 

Z is standard normal. 
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2.3  Tests for a Gamma Distribution 
 

 Tests for a gamma distribution are used to determine whether sample data are 

drawn from a population having a gamma distribution and have been developed along 

two approaches. The first is Based on  the EDF where tests have been constructed 

from various measures to examine the distance between the EDF and the gamma 

distribution function with known shape parameter 1  and scale parameter 2  in (2.1). 

For the second approach, many tests of gamma distribution function have been 

developed from its characteristics, such as the independence property attribute. 

 

2.3.1  Tests Based on  the EDF 

The EDF is an important estimator function in statistics. It is constructed from 

the observations and used to estimate the unknown probability distribution function. 

Suppose 1 2, ,..., mX X X  are i.i.d. random variables with distribution function ( )F x  

and (1) (2) ( ), ,..., mX X X  are order statistics according to these variables, then we can 

easily show that the maximum likelihood estimator of the distribution function F x

(quoted in Feller, 1948:177) is 

 

1

1

0,      , 

,      ,1 1,

1,       ,

m k k

m

x X

kF x X x X k m
m

x X
 

 

where ( )mF x  is a step function that increases by 1
m

 at each point. That is, the EDF of 

1 2, , , mX X X  is obtained by multiplying the probability 1
m

 at each value of kx .  

 

 The hypotheses for goodness-of-fit tests are:  
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H0: 0( ) ( )F x F x   against  H1: 0( ) ( )F x F x  , (2.5) 

 

where ( )F x  denotes the cumulative distribution function (CDF) of the true 

population distribution that generated the sample, and 0( )F x  denotes the theoretical 

CDF of the distribution being tested. 

 In addition, from the Cantelli-Glivenko Lemma, Glivenko (1933, quoted in 

Darling, 1957: 824) asserted that “If ( )mF x   is the EDF for a random sample of size 

m  taken from a population with distribution function ( )F x  then the EDF converges, 

with probability 1 and uniformly in x , to the distribution function ( )F x ”. Therefore, 

in (2.5), the distance between the EDF, ( )mF x , and the hypothetical CDF, 0( )F x , is 

the initial idea in developing a goodness-of-fit test Based on  the EDF.  

 There are a number of methods employed in the test for a gamma distribution 

constructed from various distance measures and, in each method, the criterion for 

measuring the distance is defined in a different way. However, testing whether EDF is 

close to the hypothetical CDF is generally based on the criterion of minimum 

distance. The three well-known traditional tests in this class are the Cramér–von 

Mises (CM), Kolmogorov–Smirnov (KS), and Anderson–Darling (AD) tests; these 

are said to be valid when there are no unknown parameters in the hypothesized 

distribution.  

 The tests previously mentioned and the theorems involved are described 

below. 

  2.3.1.1 The Cramér-von Mises Test  

  The Cramér-von Mises (CM) test was first developed by Cramér in 

1928 (Darling, 1957: 825-827) Based on the squared distance 2  between the EDF 

and the hypothetical CDF, namely 2( ( ) ( ))mF x F x  as 

 

2 2( ( ) ( )) ( )mF x F x dW x , (2.6) 
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where ( )W x  is a proper non-decreasing weight function. The hypothesis in (2.5) is 

rejected if 2  is too large. In 1931, Von Mises proposed some properties of the 

statistic 2 . Later, in 1936, Smirnov (1936, quoted in Birnbaum, 1953: 1-2) proposed 

the CM statistic modified from the statistic 2  in (2.6) as follows: 

 

2CM ( ( ) ( )) ( )] ( )[mm F x F x F x dF x  , (2.7) 

 

where ( )t   is a weight function. The CM statistic may also be written as 

 

 2

1

1 2 1CM  ,  
12 2i

m

i

iF x
m m

.  

 

  2.3.1.2  The Kolmogorov-Smirnov Test  

  The Kolmogorov-Smirnov (KS) test was first developed Based on  the 

Cantelli-Glivenko Lemma in 1933 (Kolmogorov, 1933 quoted in Birnbaum, 1953:   

3-4). The test statistic, KS, is the largest distance from all points of observations, 

which can be written as 

 

KS    m
x

sup F x F x , 

 

where mF x  is the EDF, m  is the sample size, and F x  is the theoretical 

distribution function. A large value of KS indicates that the difference between the 

EDF and the hypothetical CDF at any point x is large, or it can be said that the EDF 

does not correspond to the hypothetical CDF. Consequently, if KS is too large, the 

hypothesized distribution would be rejected. Moreover, Smirnov (1948: 279-281) 

proposed a table for estimating the goodness-of-fit of the EDF. The KS statistic may 

also be written as 
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KS max( , ) m mD D , 

where m  is the sample size, 
1
max ,i

i
m

m m
iD F x , mD

1

1max ,i
i m

iF x
m

and 1 2, ,..., mx x x  are sample values in increasing order. 

 

2.3.1.3  The Anderson–Darling Test  

One weakness of the Kolmogorov-Smirnov and Cramér-von Mises tests 

is the difference between the EDF and the hypothetical CDF tends towards zero when 

x  or x . Another test proposed by Anderson and Darling ( 1952: 193-

212, 1954: 765-769) is a test weighing the tail of the distribution more than the 

center. The weight function ( )t  used in (2.7) is 
1

1F x F x
. The weight tends 

to ∞ as x  tends towards either  or  and is smaller around the median of the 

distribution. The Anderson–Darling test statistic is in the form 

 
2( ) ( )

AD (
1

)
( ) ( )
mF x F x

m dF x
F x F x

.  

 

The AD statistic may also be written as 

 

1
1

1 2 1 ln , ln 1A , .D i
i

m
m im i F x F x

m
 

 

 2.3.2  Tests Based on the Independence Property 

 Tests for a gamma distribution based on a characteristic are equivalent to 

independence tests between statistics based on a specified characteristic of a gamma 

distribution. The idea behind this type of testing is very useful because it is not 

necessary to know the parameters of the unknown distribution, and so estimated 

values of unknown parameters are not needed. If a pair of statistics follows a gamma 

characteristic of independent, then it implies that a random sample came from a 

gamma population. 
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 The independence property between the sample mean and coefficient of 

variation (CV) has been applied to construct test WM for determining goodness-of-fit 

test of a gamma distribution (Wilding and Mudholkar, 2008: 3813-3821). Suppose 

that 1 2, , , mX X X  are positive i.i.d. random variables with a common absolutely 

continuous distribution function ( )F x  and 2( )E X . For a random sample of size 

m , where 3m , create m new random samples, each of which is obtained by 

removing the ith observation from the original sample data. The sample mean and CV 

are then computed for each new random sample. Suppose that  ix  and  , ic

1, 2, 3, ,i m  are the ith sample mean and the ith sample CV, respectively, of the new 

sample data from which the ith observation has been removed. Thus, there are m  pairs 

of sample mean and CV,   , ,i ix c 1,2,...,i m . For testing whether the sample 

mean and CV are independent, the test statistic WM is given by 

 

WM ,
2

,

 ~ 0,1m

m

Z G
N    ,  

 

where Z G 1 1 ( ) log
2 1 ( )

r G
r G

,    ( )r G 1

2 2

1 1

( )( )
 

( ) ( )

m
i i

i
m m

i i
i i

x x c c

x x c c
 ,

 
  

x  
1

1  ,
m

i
i

x
m 1

1 m
i

i
c c

m
 , 

 
,m  0.75 0.63 0.84

5 7
m m

 , 

  

2
,m  1.25 0.1 1.2 1.5 0.07 1.3

1 10 1 1.5 25 1 0.1 213
m m m
 , 

 

and 0,1N  is a standard normal distribution. 
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 2.3.3  Tests Based on  the Ratio of Two Variance Estimators 
 
 The VGE test developed by Villaseñor and González-Estrada (2015: 281-286) 

is based on the ratio of two variance estimators of the random variable X that is 

gamma-distributed with shape parameter  and scale parameter . The probability 

density function of random variable X can be written in the form 

 

1  /; ,   
Γ

1 xf x x e , for 0 x , ,  0 . 

 

 Suppose that 1 2, , , mX X X  is a positive random sample of size m  with a 

common absolutely continuous distribution function and 2( )E X . The sample 

mean and the unbiased sample variance are 
1

1 
m

i
i

X X
m

 and 2 2

1

1 ( )
1

m
i

i
S X X

m

respectively. Let  log( )i iZ X , 1, 2, 3, ,i m . Compute 
1

1 
m

i
i

Z Z
m

, the sample 

mean of Z , and 
1

1 ( )( )
m

XZ i i
i

S X X Z Z
m

, the sample covariance of X  and Z . 

For testing whether the population distribution is gamma with shape parameter , 

Villaseñor and González-Estrada (2015: 281-286) proposed a test based on the 

statistic VGE as  

 

VGE
ˆ

1  ~ 0,1
2

m V N ,  

 

where ˆ  
XZ

X
S

, 
2

2 
ˆ
SV  and 2ˆ  XZXS . For instance, the shape parameter and 

variance of the gamma distribution are estimated, respectively, by ˆ  and 2ˆ . 

 In this study, goodness-of-fit tests for a gamma distribution along the lines of 

the second approach were proposed. The independence property proposed by Lee and 

Lim (2009: 1-5) was used as the basis for constructing the test, and Kendall’s Tau 
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was modified to elucidate the independence of the selected property (Kendall, 1938: 

81-89). The efficiency of the proposed tests were compared with previously reported 

goodness-of-fit tests based on the distance between the empirical distribution function 

(EDF) and the hypothesized distribution, and tests Based on certain characteristics of 

gamma distributions. The proposed tests were compared with the KS, CM, and AD 

tests from the first approach and the WM and VGE tests from the second approach. 
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CHAPTER 3 
 

THE PROPOSED TESTS 

 

 As aforementioned, testing for a gamma distribution can be classified into two 

approaches: the empirical distribution function (EDF) and a characteristic of a gamma 

distribution. In this study, the second approach was applied by using an independence 

property associated to a gamma distribution. One of the main reasons for not using the 

EDF approach is that, often, it cannot differentiate between a near-gamma 

distribution, such as Weibull, and a gamma distribution and, consequently, this makes 

it difficult to reject the null hypothesis for a gamma distribution. 

 

3.1  Conceptual Framework 

 

Let 1 2, , , mX X X  be positive random variables with a common absolute 

continuous distribution function and 2E X  exists. Lee and Lim (2009: 1-5) showed 

that 2

1

( )
m

i j

k
k

X X

X

 and 
1

m
k

k
X , for all 1  i j m  and 1m , are independent if and 

only if the population is gamma distributed.  (3.1) 

When 2m , the statistics in (3.1) become 2
2

2

1

1

X X
U

X X
 and 

1 2V X X , respectively. In order to test whether the bivariate random variables 

,U V  are independent, one of the most well-known nonparametric tests is the 

Kendall test (Kendall, 1970). Recall that testing whether U and V are independent by 

using Kendall’s K  statistic (or ZK  test statistic) is equivalent to testing hypothesis 

(1.1) for a large sample size. 
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3.2  Kendall Tests 
 

 3.2.1  Kendall’s Coefficient  

 To apply Kendall’s coefficient for testing whether a random sample comes 

from a gamma distribution based on its independence characteristic, see (3.1), it is 

necessary to construct n  bivariate random statistics. Suppose that 1 2, , , mX X X  is a 

random sample of size m  and m cn , then the original sample can be partitioned 

into n  subsamples, each of size c . Therefore, the desired bivariate random statistics,

1 1 2 2( , ), ( , ), , ( , )n nU V U V U V , are obtained, where   

 

11 k k

cc c
j j j

kk
U X X  and 

1
,

k

c
j

k
jV X 1,2, ,j n . (3.2) 

 

 Here, a sample of even number (i.e. 2m n ) is assumed and, hence, 2c  is 

selected so that the number of subsamples n  is maximized. Therefore, the newly 

constructed sample 1 1 2 2( , ), ( , ), , ( , )n nU V U V U V  has as large a sample size n  as 

possible. Therefore, ( , )j jU V  in equation (3.2) becomes 
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1 2

2
jj

jj

j

X X
U

X X
 and 

1 2j jjV X X , (3.3) 

 

where 1,2,...,j n  ; 1, 2,...,kj m ; 1,2k ; and 1 2j j . The modified Kendall’s 

coefficient in (2.2) is obtained as 

 

1

2
( 1)

n n
ij

i j n
K A

n n
, (3.4) 

 

where ijA  = sgn j iU U sgn j iV V , for 1,2, ,i n  and 1,2, ,j n .  

The following section concerns some properties of the K  statistic.  
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 3.2.2  Some Properties of Kendall’s Coefficient 

 1)  Mean and Variance 

 

Theorem 3.1 

Let 1 1 2 2( ), (, ,(, ), , )n nV VU U VU  be a bivariate random sample of size n . 

Under the null hypothesis 0H : 0 , the expectation and variance of Kendall’s 

coefficient statistic K  in (3.4) are 0E( | ) 0K H  and 0
2(2 5)V( | ) ,
9 ( 1)

nK H
n n

respectively. 

 

Proof . See Kendall (1970: 69-71). 

 

  2)  Distribution of Kendall’s Coefficient 

  The exact distribution of Kendall’s coefficient in (3.4) is obtained from 

the function of n  and all possible value of 
1

n n
ij

i j n
A  in the aggregate of !n . Let S  

be 
1

n n
ij

i j n
A . For n  bivariate random variables, the number of all possible different 

values of K  and S  is 
1

1
2

n n
. Let ( , )qu n S  be the number of values of qS  in the 

aggregate of !n  and ( )qf K  be the probability distribution of qK  proposed by 

Kendall (1970: 67-69). We can compute that 

 

( , )
( )

!
q

q
u n S

f K
n

, 
1

1, 2,..., 1
2

n n
q ,   (3.5) 

 

where ( 1, ) ( , ) ( , 2) ... ( , 2) ( , )q q q q qu n S u n S n u n S n u n S n u n S n ; 

1
2 2

2q
n n

S q , for 
1

1, 2,..., 1
2

n n
q ; and 2n . 
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For 2n , there are two values of S , either -1 or 1, and 1( 2, 1) 1u n S  and 

1( 2, 1) 1u n S . In the case of 10n , the probability distributions of K  in (3.5) 

are shown in Tables 3.1-3.8.  
 

Table 3.1  The Probability Distribution of K  for n = 2 
 

qS  ( , )qu n S  
2
( -1)

q
q n n

S
K  

( , )
( )

!
q

q
u n S

f K
n

 

-1 1 -1 0.5 

1 1 1 0.5 

Total 1.0 

 

Table 3.2  The Probability Distribution of K  for n = 3 
 

qS  ( , )qu n S  
2
( -1)

q
q n n

S
K  

( , )
( )

!
q

q
u n S

f K
n

 

-3 1 -0.50000 0.16667 

-1 2 -0.16667 0.33333 

1 2 0.16667 0.33333 

3 1 0.50000 0.16667 

Total 1.00000 

 

Table 3.3  The Probability Distribution of K  for n = 4 
 

qS  ( , )qu n S  
2
( -1)

q
q n n

S
K  

( , )
( )

!
q

q
u n S

f K
n

 

-6 1 -1.00000 0.04167 

-4 3 -0.66667 0.12500 

-2 5 -0.33333 0.20833 

0 6 0.00000 0.25000 

2 5 0.33333 0.20833 

4 3 0.66667 0.12500 

6 1 1.00000 0.04167 

Total 1.00000 
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Table 3.4  The Probability Distribution of K  for n = 5 

 

qS  ( , )qu n S  
2
( -1)

q
q n n

S
K  

( , )
( )

!
q

q
u n S

f K
n

 

-10 1 -1.00000 0.00833 

-8 4 -0.80000 0.03333 

-6 9 -0.60000 0.07500 

-4 15 -0.40000 0.12500 

-2 20 -0.20000 0.16667 

0 22 0.00000 0.18333 

2 20 0.20000 0.16667 

4 15 0.40000 0.12500 

6 9 0.60000 0.07500 

8 4 0.80000 0.03333 

10 1 1.00000 0.00833 

Total 1.00000 
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Table 3.5  The Probability Distribution of K  for n = 6 

 

qS  ( , )qu n S  
2
( -1)

q
q n n

S
K  

( , )
( )

!
q

q
u n S

f K
n

 

-15 1 -1.00000 0.00139 

-13 5 -0.86667 0.00694 

-11 14 -0.73333 0.01944 

-9 29 -0.60000 0.04028 

-7 49 -0.46667 0.06806 

-5 71 -0.33333 0.09861 

-3 90 -0.20000 0.12500 

-1 101 -0.06667 0.14028 

1 101 0.06667 0.14028 

3 90 0.20000 0.12500 

5 71 0.33333 0.09861 

7 49 0.46667 0.06806 

9 29 0.60000 0.04028 

11 14 0.73333 0.01944 

13 5 0.86667 0.00694 

15 1 1.00000 0.00139 

Total 1.00000 
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Table 3.6  The Probability Distribution of K  for n = 7 

 

qS  ( , )qu n S  
2
( -1)

q
q n n

S
K  

( , )
( )

!
q

q
u n S

f K
n

 

-21 1 -1.00000 0.00020 

-19 6 -0.90476 0.00119 

-17 20 -0.80952 0.00397 

-15 49 -0.71429 0.00972 

-13 98 -0.61905 0.01944 

-11 169 -0.52381 0.03353 

-9 259 -0.42857 0.05139 

-7 359 -0.33333 0.07123 

-5 455 -0.23810 0.09028 

-3 531 -0.14286 0.10536 

-1 573 -0.04762 0.11369 

1 573 0.04762 0.11369 

3 531 0.14286 0.10536 

5 455 0.23810 0.09028 

7 359 0.33333 0.07123 

9 259 0.42857 0.05139 

11 169 0.52381 0.03353 

13 98 0.61905 0.01944 

15 49 0.71429 0.00972 

17 20 0.80952 0.00397 

19 6 0.90476 0.00119 

21 1 1.00000 0.00020 

Total 1.00000 
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Table 3.7  The Probability Distribution of K  for n = 8 
 

qS  ( , )qu n S  
2
( -1)

q
q n n

S
K  

( , )
( )

!
q

q
u n S

f K
n

 

-28 1 -1.00000 0.00002 

-26 7 -0.92857 0.00017 

-24 27 -0.85714 0.00067 

-22 76 -0.78571 0.00188 

-20 174 -0.71429 0.00432 

-18 343 -0.64286 0.00851 

-16 602 -0.57143 0.01493 

-14 961 -0.50000 0.02383 

-12 1415 -0.42857 0.03509 

-10 1940 -0.35714 0.04812 

-8 2493 -0.28571 0.06183 

-6 3017 -0.21429 0.07483 

-4 3450 -0.14286 0.08557 

-2 3736 -0.07143 0.09266 

0 3836 0.00000 0.09514 

2 3736 0.07143 0.09266 

4 3450 0.14286 0.08557 

6 3017 0.21429 0.07483 

8 2493 0.28571 0.06183 

10 1940 0.35714 0.04812 

12 1415 0.42857 0.03509 

14 961 0.50000 0.02383 

16 602 0.57143 0.01493 

18 343 0.64286 0.00851 

20 174 0.71429 0.00432 

22 76 0.78571 0.00188 

24 27 0.85714 0.00067 

26 7 0.92857 0.00017 

28 1 1.00000 0.00002 

Total 1.00000 
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Table 3.8  The Probability Distribution of K  for n = 9 

 

qS  ( , )qu n S  
2
( -1)

q
q n n

S
K  

( , )
( )

!
q

q
u n S

f K
n

 

-36 1 -1.00000 0.00000 

-34 8 -0.94444 0.00002 

-32 35 -0.88889 0.00010 

-30 111 -0.83333 0.00031 

-28 285 -0.77778 0.00079 

-26 628 -0.72222 0.00173 

-24 1230 -0.66667 0.00339 

-22 2191 -0.61111 0.00604 

-20 3606 -0.55556 0.00994 

-18 5545 -0.50000 0.01528 

-16 8031 -0.44444 0.02213 

-14 11021 -0.38889 0.03037 

-12 14395 -0.33333 0.03967 

-10 17957 -0.27778 0.04948 

-8 21450 -0.22222 0.05911 

-6 24584 -0.16667 0.06775 

-4 27073 -0.11111 0.07461 

-2 28675 -0.05556 0.07902 

0 29228 0.00000 0.08054 

2 28675 0.05556 0.07902 

4 27073 0.11111 0.07461 

6 24584 0.16667 0.06775 

8 21450 0.22222 0.05911 

10 17957 0.27778 0.04948 

12 14395 0.33333 0.03967 

14 11021 0.38889 0.03037 

16 8031 0.44444 0.02213 

18 5545 0.50000 0.01528 

20 3606 0.55556 0.00994 

22 2191 0.61111 0.00604 

24 1230 0.66667 0.00339 

26 628 0.72222 0.00173 

28 285 0.77778 0.00079 
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Table 3.8  (Continued) 

 

qS  ( , )qu n S  
2
( -1)

q
q n n

S
K  

( , )
( )

!
q

q
u n S

f K
n

 

30 111 0.83333 0.00031 

32 35 0.88889 0.00010 

34 8 0.94444 0.00002 

36 1 1.00000 0.00000 

Total 1.00000 
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Figure 3.1  The Probability Distribution of K  for n = 9 
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3.3  The Proposed Tests 
 

 3.3.1  The Proposed Test Statistic  

 In order to test hypothesis 0H : 0  using Kendall’s coefficient, a sample 

size of at least 5 or 6 for, respectively, 0.05 and 0.01 significance levels should be 

used because these sample sizes can be applied to determine the critical regions 

corresponding to the specified significance levels. However, Kendall’s Tau is not 

appropriate for a large sample size because the calculation is complicated (albeit using 

a computer).  

 For n  large, the distribution of 
1

n n
ij

i j n
A  in (3.4) tends towards standard 

normal under the null hypothesis (Kendall, 1970: 69-71). Therefore, the sample 

Kendall’s coefficient K  in (3.4) is approximately normally distributed and so, in this 

study, the test statistic for testing the hypothesis in (1.1) is defined as 

 

ZK   = 1/22(2 5)
9 ( 1)

K

n
n n

. (3.6) 

 

 3.3.2  Asymptotic Distribution of the Proposed Test Statistic 

 1) The Normal Approximation 

 

Theorem 3.2 

 Let 1 2, ,..., mX X X  be a positive continuous random sample of size 

2m n  drawn from a gamma population (H0) and K  is defined as in (3.4), then the 

test statistic defined as (3.6) has an asymptotic distribution approaching standard 

normal as n . 
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 Proof. From theorem 3.1, it is easy to show that 0E( | H ) 0K  and 

0
2(2 5)V( | H )
9 ( 1)

nK
n n

, and so the expectation and variance of Kendall’s coefficient 

statistic ZK  under the null hypothesis are given by 

 

0 01/2E(Z | H ) E H
2(2 5)
9 ( 1)

K
K

n
n n

01/2
1 E H

2(2 5)
9 ( 1)

K
n

n n

0 , and 

0 01/2V(Z | H ) V H
2(2 5)
9 ( 1)

K
K

n
n n

0
9 ( 1) V H
2(2 5)

n n K
n

1, respectively.
 

 

 Thus, by standardization of the K  statistic under 0H , ZK  follows a 

standard normal distribution. The proof is complete. 

 2)  The Edgeworth Approximation 

 When applying the proposed test ZK  in (3.6), which is asymptotically 

normal, to test a sample that is not sufficiently large, a high error in testing may occur. 

Since the distribution of the ZK  test statistic may not be close to a normal 

distribution, some researchers have proposed the use of the third and fourth moments 

to improve on attaining a normal distribution (Wallace, 1958: 635-654; Field and 

Ronchetti, 1990: 1-140; Bentkus, Götze and van Zwet, 1997: 851-896), and an 

Edgeworth expansion is one of these methods; it is used to approximate a distribution, 

especially in the case of a small sample size, since it can be approximately close to the 

exact distribution (Ghosh and Jammalamadaka, 1998: 245-261). Therefore, the 

probability distribution of the proposed test statistic ZK  can be revised by applying 

the Edgeworth expansion method to produce test statistic TK  as follows: 
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TK = 1/22(2 5)
9 ( 1)

K

n
n n

.  (3.7) 

 

 The asymptotic distribution of TK  can be obtained through an 

Edgeworth expansion so that the density and the limit distribution function can be 

written as 

 

3 4 23 4
T

2
6 4 23

( 3)1ˆ (t ) (t ) (t ) t 3t t 6 t 3246

+ t 15 t 15 t 1572

K K K K K K K K

K K K

f nn

  (3.8) 

 

2 33 4
T

2
5 33

( 3)1F̂ (t ) (t ) (t ) t 1 t 3t246

+ t 10 t 15 t72

K K K K K K K

K K K

nn
,

 (3.9) 

 

where  and  are, respectively, the CDF and probability density function of a 

standard normal distribution, and p  is the thp  central moment of the test statistic 

TK . For instance, under 0H  in (2.3), 3 = 0 because of the symmetrical distribution 

of TK  (Kendall, 1970: 72-73). Therefore, equations (3.8) and (3.9) can be rewritten as 

 

4 24
T

( 3)ˆ (t ) (t ) (t ) t 6 t 3
24K K K K K Kf

n
, (3.10) 

 

34
T

( 3)
F̂ (t ) (t ) (t ) t 3 t24K K K K K Kn .

 

(3.11) 

 

 



30 

 

Theorem 3.3 

 Let 1 2, ,..., mX X X  be a positive continuous random sample of size 

2m n  drawn from a gamma population, TK  be defined as in (3.7), and 4ˆ  be the 

estimator of the fourth central moment of the test statistic TK , then the Edgeworth 

density (3.10) and distribution function (3.11) of TK as n  can be written as   

 

* 4 24
T

ˆ( 3)ˆ (t ) (t ) (t ) t 6 t 3
24K K K K K Kf

n
, (3.12) 

 

* 34
T

ˆ( 3)
F̂ (t ) (t ) (t ) t 3 t24K K K K K Kn . (3.13) 

 

 Next, an estimator of 4 , the 4th central moment of the test statistic TK  

needs to be found. The jackknife technique was first developed by Quenouille (1949: 

355-375) to estimate the bias of an estimator. In 1998, John W. Tukey applied a 

technique to estimate variance and named this technique jackknife sampling (Tukey, 

1998, quoted in Abdi and Williams, 2010: 656-661). It is very useful for estimating 

the variance and bias of an estimator.  
 For this study, the jackknife estimator of the 4th central moment of TK  

is obtained and 4  is estimated by 4ˆ  using the jackknife method. The thh , 

 1,  2,  3,  ,h n  pseudo sample is constructed by deleting the thh  sample pair value 

( , )h hU V . The statistic hK  is the thh  pseudo sample Kendall’s coefficient computed 

by deleting the thh  sample pair value and *K  is the mean of the jackknife Kendall’s 

rank coefficient, as shown below: 

 

hK ij

,

1

1

2

A1
n 1

n

j n
h

n

i
i h j

 , (3.14) 
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* 1K

n
h

h
K

n  , (3.15) 

 
4

1

*2

4

K2(2 5)ˆ
9 ( 1)

n

h

hKn
n n n

. (3.16) 

 

Theorem 3.4 

 

 Let 1 2, ,..., mX X X  be a positive continuous random sample of size 

2m n  drawn from a gamma population, K  be defined as in (3.4) and hK  as in 

(3.14), and 1,  2,  3, ,h n  be the thh  pseudo sample K  statistic computed by 

deleting the thh  pseudo sample out of ( , )j jU V ; j = 1, 2 , …, n in (3.3). 

Consequently, *E(K )  and 4ˆ  is the jackknife estimator of 4 , where *K  and 

4ˆ are defined in (3.15) and (3.16), respectively. 

 

 Proof.  Let *K  be the mean of the jackknife Kendall’s coefficient 

*K
1

1 n
h

h
K

n
 

1
,

1

1

1
1

2

n
i

n

in

h

j
j n

i h j h

nn

A

 

1
,

1

1

1
1

2

n
i

n

in

h

j
j n

i h j h

nn

A
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1

1

2( 2)
( 1)( 2)

n
ij

j n

n

in
An

n n
 

1

1

2
( 1)

n

ni
ij

j

n
A

n n
 

K ,
 

 *(K ) ( )E E K .
 

 Thus, *K  is an unbiased estimator of    using the jackknife method. 

 

 The jackknife estimator 4ˆ  is a good estimator of 4  to approximate 

the probability distribution function TK , as shown in Appendix B. 

 

3.4  Some Properties of the Proposed Tests 

 

 3.4.1  The Invariance Property of the Proposed Tests 

 

Lemma 3.1.  

ijA  is invariant under a group of scalar transformations X Xc , where c  is 

positive real and  

  ij j i j iA sgn U U sgn V V , ,  , 1,2,...,i j i j n ,  

 
2 1 2

2
2 1 2(  )

j j
j

j j

X X
U

X X
, 2 1 2  j j jV X X  , 1,2,...,j n . 

 
  

 Proof.  To show that ijA  is invariant under a group of scalar transformations 

X Xc , where c is positive real, and define iiY cX , where c  is positive real, then 

   

 j
yU 2 1 2

2
2 1 2(  )

j j

j j

Y Y

Y Y
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2 1 2
2

2 1 2(  )
j j

j j

cX cX

cX cX
jU , 

 
j
yV 2 1 2 j jY Y  

2 1 2 j jcX cX jcV , and 
 

 

 y y y yy
i j ij ji sgn U UA sgn V V   , ,  , 1,2,...,i j i j n . 

 j i j isgn U U sgn cV cV  

 j i j isgn U U sgn c V V  

 j i j isgn U U sgn V V  

 ijA . 

 

Theorem 3.5  

 

 Let 1 2, , , mX X X  be random variables having a continuous density function 

( )f x . Hence, K , ZK , and TK  are invariant under a group of scalar transformations 

X Xc , where c is positive real and K , ZK and TK  are defined as in (3.4), (3.6) 

and (3.7), respectively. 

 

 Proof. K , ZK , and TK  are functions of ijA , which, from Lemma 3.1, is a 

function of scale invariance transformation, and so they provide the same property. 

 

 3.4.2  The Size of the Proposed Tests 

 The size of a test, often called the significance level, is the probability of 

meeting a Type I error, which occurs if the null hypothesis is rejected when true, and 

is denoted by . 

  3.4.2.1  The Asymptotic Size of the Test for ZK  
  The asymptotic size of the test for ZK can be approximated by ˆ (Z ).K  
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0 0ˆ(Z ) P Reject H |H is trueK

 

2

0P Z Z | ( )K K F x  

2 2

K KP Z P Z
( ) ( )K KV K V K

 

2 2

1 (Z ) ( Z )K K .
 

 

  3.4.2.2  The Asymptotic Size of the Test for TK  

  The asymptotic size of the test for TK  can be approximated by ˆ (T )K . 

 

0 0ˆ (T ) P Reject H |H is trueK

 

2

0P T T | ( )K K F x  

2 2

K KP T P T
( ) ( )K KV K V K

 

34

34

ˆ( 3)1 (t ) (t ) t 3 t
24

ˆ( 3)( t ) ( t ) t 3 t
24

K K K K

K K K K

n

n

. 

 

 3.4.3  The Power of the Proposed Test 

 The power of a statistical test is the probability that it will correctly lead to the 

rejection of a false null hypothesis. The probability distribution of K  is 

asymptotically normal for sample pairs from any bivariate population. Since E(K) =  

for any distribution, and using the consistent estimator 4ˆ  for 4 , the asymptotic 

distribution of ZK  remains standard normal and the asymptotic distribution of TK  is

*
TF̂ (t )

K K .  
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  3.4.3.1  The Power of the Test for ZK  

  The power of the test for ZK can be approximated by ˆ1 (Z )K . 

 

ˆ1 (Z )K 0 1P Reject H |H is true  

2

0
ˆ1 (Z ) P Z Z | ( )K K K F x  

2

2

0

1 1

0

1 1

Z | )

P
| ) | )
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  3.4.3.2  The Power of the Test for TK  

  The power of the test for TK  can be approximated by ˆ1 (T )K . 
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CHAPTER 4 
 

SIMULATION STUDY 
 

Tests for a gamma distribution are nonparametric and can be classified into 

two approaches: one is based on the empirical distribution function (EDF) and the 

other is based on certain characteristics of a gamma distribution. The first approach 

measures the distance between the EDF and the gamma distribution and the second 

utilizes the independence property of a gamma distribution. In this study, the two 

proposed tests are based on the second approach of using the independence property 

shown in equation (3.1). These are called ZK  and TK , and are modifications of 

Kendall’s correlation coefficient. The difference between these test statistics is their 

distribution: ZK  is asymptotically distributed as standard normal whereas the 

distribution of TK  is obtained using an Edgeworth expansion and the jackknife 

method. 

 

4.1  Simulation Entities 

 

 The performances of the two proposed tests Z K  and TK  were compared to 

five selected previously reported tests, namely Kolmogorov-Smirnov (KS), Cramér–

von Mises (CM), Anderson–Darling (AD), Wilding and Mudholkar (WM), and 

Villaseñor and González-Estrada (VGE), using a Monte Carlo simulation study with 

the entities shown in Table 4.1 
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Table 4.1  The Entities in the Simulation Study 

 

Entity Under Null Hypothesis Under Alternative Hypothesis

   

Distribution Gamma ( , 1) Weibull ( , 1) 

Fréchet ( , 1) 

Lognormal (50, ) 

   

 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1, 

2, 3, 4, 5, 6, 7, 8, 9, 10 

0.5, 1, 2, 3, 5, 7, 9, 10 

   

 - 0.5, 1, 2, 3, 5, 7, 9, 10 

   

Sample size (m ) 20, 30, 40, 50, 70, 100 20, 30, 40, 50, 70, 100 

   

Replication 10,000 10,000 

   

Significance level ( ) 0.01, 0.05 0.01, 0.05 

   

 

Remark that since the four competitive tests, KZ , TK , WM, and VGE, 

possess invariance under a scale transformation, the simulations were conducted under 

the condition of only varying the shape parameter. That is, the shape parameter for the 

gamma, Weibull, and Fréchet distributions was fixed at one and, in a similar fashion, 

the location parameter of the lognormal distribution was fixed at 50. 

 

4.2  Empirical Type I Error Rate and Power of the Test 

 

 The efficacy of the tests were considered based on empirical Type I error rates 

and powers of the tests, which are defined as follows: 
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Empirical Type I error rate of test J  is  

 

number of  rejectionsˆ
number of  replicationsJ . (4.1) 

 

Empirical power of test J  is  

 

number of  rejectionsˆ  
number of  replicationsJ , (4.2) 

 

where J  = 1, 2, 3, 4, 5, 6, and 7 for KS, AD, CM, WM, VGE, KZ , and TK , 

respectively. To confirm whether the empirical Type I error rates of the tests fell 

within the given 0.05 nominal significance level, the well-known two-proportion test 

was applied to all cases at the nominal significance level. However, the empirical 

powers were only evaluated for the tests which were close to the nominal significance 

level. 

 

4.3  Simulation Procedure 
 

Denote that 

hK , h=1,2,…,n, is CDF of KT under an Edgeworth expansion, 

TF̂ ( )
K
t  is CDF of KT under an Edgeworth expansion, and 

4ˆ  is an estimate of the th4  central moment for the test statistic TK . 

 The procedure in Figure 4.1 shows the simulation process in order to obtain 

the empirical Type I error rates for all seven tests corresponding to hypothesis (1.1). 

Under the alternative hypothesis, steps in finding the empirical power are similar 

except that the population distribution in the first step is varied according to the 

particular distribution (see Table 4.1) and, instead of ˆJ , ˆ
J ’s are computed for all 

J ’s. 
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Figure 4.1  Simulation Procedure for the ZK and TK  Tests 
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4.4  Results 

 

 4.4.1  Empirical Type I Error Rates 

 The empirical Type I error rates of all selected tests are shown in Tables    

A.1-A.2 in Appendix A and Figures 4.2- 4.7. It was found that the empirical Type I 

error rates of the tests KS, AD, and CM, as can be seen in Tables A.1 - A.2 in 

Appendix A, were all far lower than both nominal significance levels,  = 0.01 and 

0.05, and tended towards zero in all situations.  

 The empirical Type I error rates of the VGE test for most shape parameters 

were substantially lower than the nominal significance 0.01, especially when the 

sample size was less than 60, the empirical Type I error rates were lower than the 

nominal significance values 0.01 for all shape of parameters, as can be seen in the 

bottom left graph in Figure 4.2. For significance level 0.05, the empirical Type I error 

rates of the VGE test for all shape parameters were lower than the nominal 

significance 0.05 for all sample sizes, as can be seen in the bottom left graph in Figure 

4.3. However, the empirical Type I error rates tended to converge to the given 

nominal significance values when the sample size increased.  

 Conversely, the Type I error rates of the WM test were substantially higher 

than the nominal significance values 0.01 and 0.05 for all shape parameters. 

Additionally, when the shape parameter and the sample size increase, the empirical 

Type I error rate of WM are closer to the nominal significance levels, as can be seen 

in the bottom right graphs in Figures 4.2 and 4.3. The shape parameter had a 

significant impact on the WM test.  

 The empirical Type I error rates of the ZK  test were found to be lower than 

the nominal level values 0.01 and 0.05 when the sample size was less than 50 and 40, 

respectively, as can be seen in the top left graph of Figures 4.2 and 4.3, respectively. It 

tended to converge to the given nominal significance values for all shapes considered 

as the sample size increased.  

 Empirical Type I error rates for the proposed test statistic TK  attained the 

nominal significance level values 0.01 for all shape parameters, as can be seen in the 

top right graph in Figure 4.2. For the nominal significance level 0.05, results were 
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lower than it when the sample size was less than 40, as can be seen in the top right 

graph in Figure 4.3.  

 Findings from the two-proportion test indicated that the Type I error rates of 

the five previously reported tests (KS, AD, CM, WM, and VGE) were significantly 

different from the nominal significance level for all cases, even when the sample size 

was less than 100, as can be seen in Tables A.1-A.2 in Appendix A and Figures 4.4- 

4.7. Consequently, their empirical powers were not investigated. The empirical Type I 

error rates of the proposed test statistics KZ and TK were close to the nominal 

significance level for all shape parameters considered and, by observation, tended 

towards the nominal significance level when the sample size increased. To be more 

precise, TK  performed better than ZK  for all shape parameters at the 0.01 

significance level, as can be seen in Figures 4.4-4.5.  
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Figure 4.2  Empirical Type I Error Rates at the 0.01 Significance Level  
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Figure 4.3  Empirical Type I Error Rates at the 0.05 Significance Level  
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Figure 4.4  Empirical Type I Error Rates at  = 0.01 When Scale = 1 and Shape = 0.1,          

   0.2, 0.3, 0.4, 0.5, and 0.7 
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Figure 4.5  Empirical Type I Error Rates at  = 0.01 When Scale = 1 and  

 Shape = 1, 3, 5, 7, 9, and 10 
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Figure 4.6  Empirical Type I Error Rates at  = 0.05 When Scale = 1 and  

 Shape = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.7 
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Figure 4.7  Empirical Type I Error Rates at  = 0.05 When Scale = 1 and  

 Shape = 1, 3, 5, 7, 9, and 10 
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 4.4.2  Empirical Powers of the Tests 

 Naturally, the empirical power of the KZ  and TK  tests increased as the 

sample size increased for all three alternative distributions: lognormal, Weibull, and 

Fréchet. The empirical powers of the tests for a Weibull distribution, as can be seen in 

Figures 4.8 - 4.9, were very low when the shape parameter equaled one for all sample 

sizes. The reason is that the magnitude of the empirical power depends on setting the 

distribution to the alternative hypothesis. A Weibull distribution with both shape and 

scale parameters set to one is a gamma distribution, which results in the null 

hypothesis with, as expected, the empirical power being very low and tending towards 

the nominal significance level when the sample size is large. When the sample size 

was less than 50, the empirical powers for all shape parameters were found to be quite 

low. The empirical powers of the proposed tests KZ  and TK tended towards one 

when the sample size increased, and rapidly inclined towards one when the shape 

parameter was large. 

 Under a lognormal distribution, the empirical powers of the proposed tests 

increased when the sample size and the scale parameter increased, and rapidly tended 

towards one as the scale parameter increased, similar to the Weibull distribution, as 

can be seen in Figures 4.10-4.11, whereas, under a Fréchet distribution, the empirical 

powers of the proposed tests varied inversely with the shape parameter of this 

distribution, i.e. the lower the shape parameter, the higher the empirical power. It was 

quite high and close to one when the sample size was larger than 100, as can be seen 

in Figures 4.12-4.13.  

 Using the TK test at the 0.01 significance level for a sample size of less than 

50 generated higher empirical powers than the KZ test, but this relationship was not 

obvious at the 0.05 significance level, as can be seen in Tables A.3 - A.4 in Appendix 

A. 
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Figure 4.8  Empirical Power of the ZK Test under a Weibull Distribution  

 

 

  

Figure 4.9  Empirical Power of the TK Test under a Weibull Distribution 

  

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Shape

at
 th

e 
0.

01
 S

ig
ni

fic
an

ce
 L

ev
el

n=20
n=30
n=40
n=50
n=70
n=100

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Shape

at
 th

e 
0.

05
 S

ig
ni

fic
an

ce
 L

ev
el

n=20
n=30
n=40
n=50
n=70
n=100

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Shape

at
 th

e 
0.

01
 S

ig
ni

fic
an

ce
 L

ev
el

n=20
n=30
n=40
n=50
n=70
n=100

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Shape

at
 th

e 
0.

05
 S

ig
ni

fic
an

ce
 L

ev
el

n=20
n=30
n=40
n=50
n=70
n=100



51 

 

Figure 4.10  Empirical Power of the ZK Test under a Lognormal Distribution 

 

 

 

Figure 4.11  Empirical Power of the TK Test under a Lognormal Distribution 
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Figure 4.12  Empirical Power of the ZK Test under a Fréchet Distribution 

 

 

Figure 4.13  Empirical Power of the TK Test under a Fréchet Distribution 
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4.5  Illustration of the Proposed Tests on a Real-life Dataset 
 

 4.5.1   Honey Bee Transit Time Data 

 The spread of Africanized honey bees (AHBs) has become problematic since 

the cross breeding between them and European honey bees (EHBs) first occurred in 

Brazil in 1956 and has become prominent in this century. They have had a major 

impact on humans and pets because they are very aggressive. Data from the East-

West trap line of the AHB front in Northern Guatemala and in the Atlantic and Pacific 

coastal areas of Mexico were made available in 1989. These traps consisted of bait 

hives, each hive being a 25 liter cardboard box baited with a chemical attractant. To 

determine whether an AHB swarm had been captured, the hives were checked at least 

once a month (Matis, Rubink and Makela, 1992: 436-440). 

 The data on the distances (unit: 100 km) and time intervals (unit: months) 

between 45 consecutive first capture dates along these trap lines were collected. The 

speeds (distance/time) and transit times were calculated in order to make predictions 

of future movements. The transit time data are shown in Table 4.2 below: 

 

Table 4.2  Honey Bee Transit Time Data    

                                                                 

Transit Time Data (months / 100 km) 

 

5.3 1.8 4.2 5.7 3.8 0.8 1.4 3.5 17.5 

4.6 0.8 6.3 2.9 0.6 1.9 2.0 6.7 5.5 

2.5 2.2 6.7 5.7 10.0 3.3 3.5 20.0 1.6 

8.3 4.8 20.0 3.6 8.2 1.3 4.0 5.0 1.7 

2.0 2.9 19.2 1.1 1.4 1.5 3.2 8.6 2.2 

 

 Note that it has been assumed that these data were drawn from a gamma 

population (Matis, Rubink and Makela, 1992: 436-440). In this study, the proposed 

test was applied not only to confirm the results above, i.e. that the population is 
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gamma, but also to demonstrate that the test does not depend on selecting pairs of 

1 1 2 2 3 3
, ), , ), , ),..., , )( ( ( (

n ni j i j i j i jX X X X X X X X . Note that the test was carried out at 

the 0.05 significance level. 

 

 4.5.2  Results of Honey Bee Transit Time Data 

 Obviously, the distribution of transit time data was not normal, as can be seen 

in Figure 4.14, and so, according to (Matis, Rubink and Makela, 1992: 436-440), the 

use of a gamma distribution model is better suited. Because of a limitation of the 

statistic, which requires an even-numbered sample size, a modification in the testing 

method had to be introduced whereby 44 units were randomly selected for analysis. In 

order to confirm the validity of the test results, 45 possible outcomes were presented 

(i represents the unit that was omitted from analysis, i = 1, 2, 3, …, 45) The test 

results showing all possible outcomes yielding a p-value > 0.05 are presented in Table 

A.5 in Appendix A, which shows that all 45 cases of different pair matching resulted 

in the same conclusion, that the observations were drawn from a population with a 

gamma distribution, i.e., the null hypothesis was not rejected though the values of KZ

were different. 

 

 

Figure 4.14  Histogram of Honey Bee Transit Time Data with the Fitted                 
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CHAPTER 5 
 

CONCLUSIONS AND DISCUSSION 
 

 In this study, test statistics for examining the distribution of data to determine 

whether they come from a gamma distribution, i.e. the null hypothesis is that the 

random variable is distributed as gamma, are presented. The proposed asymptotic 

tests for a gamma distribution are based on a key characteristic, the independence 

property, using a nonparametric approach. 

 

5.1  Conclusions 
 

 The proposed tests KZ  and TK  were constructed based on a key 

characteristic of a gamma distribution, the independence property. The development 

of the proposed test KZ  is a modification of Kendall’s coefficient, and TK  was 

developed from Kendall’s tau. An Edgeworth expansion and the jackknife method 

were used to estimate the probability distribution of the TK  statistic. Both KZ  and 

TK  had the same assumption that the random variables 1 2, , , mX X X  are i.i.d. of 

size m  drawn from a population having a continuous density function f(x) on , the 

second moment about the origin exists, and 2( )E X . The sample size m is an 

even number equal to or exceeding 8, i.e. the sample size satisfies m = 2n, n = 4, 5, 

6,…. 

 Lee and Lim (2009: 1-5) proved that 2

1

( )
m

i j

k
k

X X

X

, 1  i j m  and 
1

m
k

k
X ,  

 

1m  are independent if and only if the population is gamma distributed under the 

condition that 1 2, , , mX X X  are positive random variables with a common absolute 



56 
 

continuous distribution function and 2E X  exists. In the case where 2m , the 

proof of Lee and Lim (2009: 1-5) is the reverse proof of the independence property of 

a gamma distribution, as mentioned previously. Therefore, if it can be determined that 

data are concordant with the characteristics of a gamma distribution, it can be said 

that these data follow a gamma distribution. Here, two asymptotic tests are presented: 

ZK  = 1/22(2 5)
9 ( 1)

K

n
n n

 with a standard normal distribution, and TK using an 

Edgeworth expansion to improve the limit distribution function of ZK  by taking the 

3rd  and 4th central moments to approximate a limit distribution function. The 3rd 

central moment equals zero because of the symmetry of TK  whereas the 4th central 

moment was estimated by the jackknife method. The limit distribution function of 

TK  is 

 

* 34
T

ˆ( 3)
F̂ (t ) (t ) (t ) t 3 t24K K K K K Kn . 

 

 The proposed test statistics have the favorable property of invariance under a 

scalar transformation. Importantly, they performed well even though they are not 

dependent on the shape and scale parameters of the gamma distribution. One of the 

main advantages of the new tests is that it is not necessary to estimate the parameter 

of the gamma distribution, which ensures that the proposed tests do not depend on this 

when testing for it. In addition, obtaining the proposed test values is much simpler 

than for other reported methods for testing such data. Because the sample size 

affected the performance of the tests, both under the null and alternative hypotheses, 

in practice, it is recommended that the sample size of the data to be tested by ZK and 

TK should be as large as possible, or at least 60 and 40, respectively.  
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5.2  Discussion 
 

 The simulation results showed that the existing KS, AD, and CM tests are 

more conservative than the proposed tests; they make it more difficult to reject the 

null hypothesis, which is similar to the findings from previous studies that tested 

whether a random sample came from a normal population when the parameters were 

unknown (Linnet, 1988: 180-186). 
 The proposed test statistics are not only easy to calculate but also one of their 

noteworthy characteristics is that it is not necessary to estimate the parameter when 

constructing the test. Consequently, the Type I error rate does not depend on the shape 

and scale parameters. For most of the tests reviewed (Wilding and Mudholkar, 2008: 

3813-3821; Villaseñor and González-Estrada, 2015: 281-286; Baringhaus and 

Gaigall, 2015: 193-208), their test statistics depend on either the shape or scale 

parameter, or both. Therefore, the method of parameter estimation can cause 

considerable problems and have a significant effect on the test statistic. Moreover, 

there are some issues when selecting the new samples 
1 1 2 2

( (, ), , ),i j i jX X X X

3 3
, ),..( (., , )

n ni j i jX X X X  in order to construct a set of ordered pairs 1 1( , ),(U V

2 2 3 3, ), , ),...( ( (, , ))n nU V U V U V . Randomly selected ( , )i jX X  are suggested from 

which many values of KZ can be obtained. However, this is not disadvantageous for 

the KZ test since the results of testing with honey dee transit time data (as seen in 

Table A.5 in Appendix A) were found to be the same.  

 In addition, the proposed tests could be adapted to use other independent 

properties of a gamma distribution. When using the independence property between 

the sample mean and CV (Hwang and Hu 1999: 749-753) to construct a set of ordered 

pairs ( , ),j jU V  we get the same KZ  and TK , as shown in Appendix C.  
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APPENDIX A 
 

TABLES A.1-A.4 
 
 

Table A.1 Empirical Type I Error Rates under the Null Hypothesis at Nominal 

Significance Level 0.01 

 

Shape  Sample Comparative Test Proposed Test 

Parameter Size (m) KS AD CM    WM  VGE ZK  TK  

0.1 20 0.0002* 0.0000* 0.0000* 0.1747* 0.0000* 0.0059 0.0112 
30 0.0001* 0.0000* 0.0000* 0.2030* 0.0001* 0.0067 0.0094 
40 0.0001* 0.0000* 0.0000* 0.2064* 0.0002* 0.0067 0.0086 
50 0.0001* 0.0000* 0.0000* 0.1969* 0.0008* 0.0078 0.0092 
70 0.0005* 0.0000* 0.0000* 0.1678* 0.0031* 0.0084 0.0089 

100 0.0001* 0.0000* 0.0000* 0.1390* 0.0038* 0.0092 0.0096 
0.2 20 0.0000* 0.0000* 0.0000* 0.0834* 0.0000* 0.0063* 0.0112 

30 0.0000* 0.0000* 0.0000* 0.0972* 0.0006* 0.0084 0.0123 
40 0.0000* 0.0000* 0.0000* 0.0953* 0.0022* 0.0102 0.0112 
50 0.0001* 0.0000* 0.0000* 0.0984* 0.0035* 0.0091 0.0106 
70 0.0000* 0.0000* 0.0000* 0.0892* 0.0056* 0.0077 0.0081 

100 0.0001* 0.0000* 0.0000* 0.0837* 0.0106 0.0087 0.0093 
0.3 20 0.0000* 0.0000* 0.0000* 0.0649* 0.0005* 0.0054* 0.0100  

30 0.0001* 0.0000* 0.0000* 0.0736* 0.0033* 0.0081 0.0111  
40 0.0001* 0.0000* 0.0000* 0.0748* 0.0050* 0.0097 0.0119  
50 0.0001* 0.0000* 0.0000* 0.0737* 0.0052* 0.0073* 0.0084  
70 0.0002* 0.0000* 0.0000* 0.0670* 0.0082 0.0093 0.0099  

100 0.0001* 0.0000* 0.0000* 0.0628* 0.0092 0.0098 0.0104  

0.4 20 0.0000* 0.0000* 0.0000* 0.0506* 0.0009* 0.0057* 0.0094  
30 0.0000* 0.0000* 0.0000* 0.0573* 0.0036* 0.0073* 0.0104  
40 0.0000* 0.0000* 0.0000* 0.0563* 0.0054* 0.0091  0.0111  
50 0.0000* 0.0000* 0.0000* 0.0558* 0.0067* 0.0073* 0.0090  
70 0.0001* 0.0000* 0.0000* 0.0565* 0.0075* 0.0097  0.0103  

100 0.0001* 0.0000* 0.0000* 0.0491* 0.0080* 0.0105  0.0114  
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Table A.1  (Continued) 
 

Shape  Sample Comparative Test Proposed Test 

Parameter Size (m) KS AD CM    WM  VGE ZK  TK  

0.5 20 0.0000* 0.0000* 0.0000* 0.0475* 0.0016* 0.0071* 0.0116  
 30 0.0000* 0.0000* 0.0000* 0.0535* 0.0040* 0.0093  0.0119  
 40 0.0001* 0.0000* 0.0000* 0.0563* 0.0051* 0.0070* 0.0091  
 50 0.0000* 0.0000* 0.0000* 0.0505* 0.0073* 0.0098  0.0112  
 70 0.0000* 0.0000* 0.0000* 0.0522* 0.0094 0.0082  0.0089  
 100 0.0000* 0.0000* 0.0000* 0.0484* 0.0099 0.0104  0.0107  

0.7 20 0.0000* 0.0000* 0.0000* 0.0369* 0.0022* 0.0067* 0.0116  
30 0.0000* 0.0000* 0.0000* 0.0410* 0.0042* 0.0087  0.0120  
40 0.0000* 0.0000* 0.0000* 0.0410* 0.0055* 0.0092  0.0115  
50 0.0001* 0.0000* 0.0000* 0.0412* 0.0059* 0.0078*  0.0093  
70 0.0000* 0.0000* 0.0000* 0.0401* 0.0075* 0.0091  0.0098  

100 0.0000* 0.0000* 0.0000* 0.0397* 0.0097 0.0103  0.0106  

1 20 0.0000* 0.0000* 0.0000* 0.0284* 0.0025* 0.0061* 0.0112  
30 0.0000* 0.0000* 0.0000* 0.0292* 0.0055* 0.0067* 0.0101  
40 0.0000* 0.0000* 0.0000* 0.0321* 0.0061* 0.0082  0.0099  
50 0.0000* 0.0000* 0.0000* 0.0316* 0.0052* 0.0086  0.0099  
70 0.0000* 0.0000* 0.0000* 0.0354* 0.0054* 0.0074* 0.0087  

100 0.0000* 0.0000* 0.0000* 0.0327* 0.0082 0.0102  0.0105  

2 20 0.0000* 0.0000* 0.0000* 0.0220* 0.0055* 0.0057* 0.0095  
30 0.0000* 0.0000* 0.0000* 0.0226* 0.0062* 0.0082  0.0120  
40 0.0000* 0.0000* 0.0000* 0.0222* 0.0072* 0.0102  0.0119 
50 0.0000* 0.0000* 0.0000* 0.0240* 0.0069* 0.0089  0.0097  
70 0.0000* 0.0000* 0.0000* 0.0238* 0.0077* 0.0102  0.0111  

100 0.0000* 0.0000* 0.0000* 0.0214* 0.0064* 0.0096  0.0102  

3 20 0.0002* 0.0000* 0.0000* 0.0214* 0.0047* 0.0055* 0.0083  
30 0.0002* 0.0000* 0.0000* 0.0208* 0.0057* 0.0078*  0.0107  
40 0.0001* 0.0000* 0.0000* 0.0214* 0.0065* 0.0098  0.0119 
50 0.0001* 0.0000* 0.0000* 0.0235* 0.0060* 0.0078*  0.0089  
70 0.0005* 0.0000* 0.0000* 0.0217* 0.0055* 0.0103  0.0114  

100 0.0003* 0.0000* 0.0000* 0.0219* 0.0059* 0.0090  0.0091  

4 20 0.0001* 0.0000* 0.0000* 0.0148* 0.0057* 0.0063* 0.0099  
30 0.0005* 0.0000* 0.0000* 0.0163* 0.0053* 0.0091  0.0110  
40 0.0005* 0.0000* 0.0000* 0.0195* 0.0060* 0.0086  0.0112  
50 0.0003* 0.0000* 0.0000* 0.0190* 0.0051* 0.0084  0.0097  
70 0.0001* 0.0000* 0.0000* 0.0193* 0.0060* 0.0085  0.0092  

100 0.0000* 0.0000* 0.0000* 0.0160* 0.0054* 0.0094  0.0098  
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Table A.1  (Continued)  
 

Shape  Sample Comparative Test Proposed Test 

Parameter Size (m) KS AD CM    WM  VGE ZK  TK  
5 20 0.0001* 0.0001* 0.0001* 0.0135* 0.0059* 0.0054* 0.0100  
 30 0.0001* 0.0000* 0.0000* 0.0160* 0.0056* 0.0088  0.0110  
 40 0.0000* 0.0000* 0.0000* 0.0155* 0.0071* 0.0070* 0.0088  
 50 0.0002* 0.0000* 0.0000* 0.0173* 0.0062* 0.0075*  0.0087  
 70 0.0003* 0.0000* 0.0000* 0.0151* 0.0075* 0.0094  0.0102  
 100 0.0001* 0.0000* 0.0000* 0.0200* 0.0078* 0.0107  0.0112  

6 20 0.0001* 0.0000* 0.0000* 0.0134* 0.0067* 0.0047* 0.0095  
30 0.0003* 0.0000* 0.0000* 0.0139* 0.0068* 0.0064* 0.0090  
40 0.0000* 0.0000* 0.0000* 0.0152* 0.0066* 0.0076*  0.0100  
50 0.0001* 0.0000* 0.0000* 0.0154* 0.0066* 0.0091  0.0100  
70 0.0001* 0.0000* 0.0000* 0.0166* 0.0077* 0.0095  0.0100  

100 0.0003* 0.0000* 0.0000* 0.0195* 0.0072* 0.0090  0.0096  

7 20 0.0001* 0.0000* 0.0000* 0.0116  0.0076* 0.0054* 0.0093  
30 0.0002* 0.0000* 0.0000* 0.0126* 0.0067* 0.0079*  0.0109  
40 0.0000* 0.0000* 0.0000* 0.0138* 0.0084* 0.0102  0.0120  
50 0.0002* 0.0000* 0.0000* 0.0140* 0.0063* 0.0095  0.0114  
70 0.0002* 0.0001* 0.0001* 0.0133* 0.0071* 0.0108  0.0115  

100 0.0003* 0.0000* 0.0000* 0.0151* 0.0060* 0.0101  0.0108  

8 20 0.0001* 0.0000* 0.0000* 0.0117  0.0068* 0.0043* 0.0081  
30 0.0002* 0.0000* 0.0000* 0.0152* 0.0077* 0.0086  0.0117  
40 0.0001* 0.0000* 0.0000* 0.0128* 0.0077* 0.0081  0.0097  
50 0.0000* 0.0000* 0.0000* 0.0127* 0.0080* 0.0078*  0.0095  
70 0.0004* 0.0000* 0.0000* 0.0142* 0.0063* 0.0103  0.0108  

100 0.0001* 0.0000* 0.0000* 0.0148* 0.0084 0.0098  0.0102  

9 20 0.0002* 0.0000* 0.0000* 0.0119  0.0076* 0.0076*  0.0117  
30 0.0003* 0.0000* 0.0000* 0.0126* 0.0084* 0.0077*  0.0110  
40 0.0003* 0.0000* 0.0000* 0.0144* 0.0068* 0.0082  0.0106  
50 0.0001* 0.0000* 0.0000* 0.0137* 0.0101* 0.0091  0.0102  
70 0.0001* 0.0000* 0.0000* 0.0141* 0.0081 0.0098  0.0103  

100 0.0001* 0.0000* 0.0000* 0.0131* 0.0068* 0.0113  0.0117  

10 20 0.0005* 0.0000* 0.0000* 0.0098  0.0092* 0.0057* 0.0098  
30 0.0002* 0.0000* 0.0000* 0.0125*  0.0075* 0.0079*  0.0111  
40 0.0002* 0.0000* 0.0000* 0.0114  0.0075* 0.0080  0.0104  
50 0.0000* 0.0000* 0.0000* 0.0134* 0.0073* 0.0076*  0.0089  
70 0.0000* 0.0000* 0.0000* 0.0133* 0.0067* 0.0087  0.0094  

100 0.0001* 0.0000* 0.0000* 0.0135* 0.0075* 0.0101  0.0108  

Note:  *  means significantly different from H0: =0.01 at significance level 0.05 
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Table A.2 Empirical Type I Error Rates under the Null Hypothesis at Nominal  
Significance Level 0.05 

 
Shape  Sample Comparative Test Proposed Test 

Parameter Size (m) KS AD CM    WM  VGE ZK  TK  

0.1 20 0.0026* 0.0004* 0.0006* 0.3265* 0.0000* 0.0427* 0.0427* 
30 0.0035* 0.0004* 0.0005* 0.3769* 0.0001* 0.0443* 0.0443* 
40 0.0028* 0.0002* 0.0003* 0.3807* 0.0019* 0.0455* 0.0455* 
50 0.0026* 0.0003* 0.0004* 0.3740* 0.0038* 0.0520 0.0520 
70 0.0033* 0.0006* 0.0008* 0.3430* 0.0071* 0.0477  0.0477  

100 0.0019* 0.0004* 0.0006* 0.3059* 0.0114* 0.0504  0.0504  
0.2 20 0.0011* 0.0001* 0.0003* 0.2437* 0.0006* 0.0457 0.0457 

30 0.0011* 0.0000* 0.0001* 0.2702* 0.0036* 0.0453* 0.0453* 
40 0.0017* 0.0000* 0.0004* 0.2632* 0.0070* 0.0514  0.0514  
50 0.0020* 0.0002* 0.0005* 0.2608* 0.0094* 0.0524  0.0524  
70 0.0010* 0.0002* 0.0002* 0.2496* 0.0147* 0.0462  0.0462  

100 0.0012* 0.0001* 0.0002* 0.2328* 0.0215* 0.0471  0.0471  
0.3 20 0.0008* 0.0001* 0.0001* 0.2243* 0.0031* 0.0417* 0.0417* 

30 0.0014* 0.0002* 0.0002* 0.2294* 0.0088* 0.0468  0.0468  
40 0.0017* 0.0001* 0.0002* 0.2286* 0.0132* 0.0506  0.0506  
50 0.0013* 0.0002* 0.0001* 0.2219* 0.0152* 0.0504  0.0504  
70 0.0018* 0.0002* 0.0002* 0.2090* 0.0181* 0.0495  0.0495  

100 0.0013* 0.0002* 0.0002* 0.2012* 0.0219* 0.0509  0.0509  
0.4 20 0.0007* 0.0000* 0.0000* 0.1938* 0.0051* 0.0479  0.0479  

30 0.0010* 0.0000* 0.0000* 0.1993* 0.0113* 0.0456* 0.0456* 
40 0.0009* 0.0000* 0.0000* 0.1989* 0.0134* 0.0483  0.0483  
50 0.0008* 0.0000* 0.0000* 0.1933* 0.0171* 0.0511  0.0511  
70 0.0005* 0.0000* 0.0000* 0.1783* 0.0193* 0.0498  0.0498  

100 0.0005* 0.0000* 0.0001* 0.1682* 0.0217* 0.0487  0.0487  
0.5 20 0.0005* 0.0000* 0.0001* 0.1924* 0.0069* 0.0435* 0.0435* 

30 0.0005* 0.0000* 0.0000* 0.1963* 0.0111* 0.0493  0.0493  
40 0.0008* 0.0000* 0.0001* 0.1869* 0.0141* 0.0464  0.0464  
50 0.0007* 0.0000* 0.0000* 0.1845* 0.0180* 0.0532  0.0532  
70 0.0008* 0.0001* 0.0001* 0.171* 0.0212* 0.0495  0.0495  

100 0.0004* 0.0001* 0.0002* 0.1613* 0.0238* 0.0514  0.0514  
0.7 20 0.0003* 0.0000* 0.0000* 0.1666* 0.0085* 0.0454* 0.0454* 

30 0.0008* 0.0000* 0.0001* 0.1689* 0.0120* 0.0463  0.0463  
40 0.0005* 0.0000* 0.0001* 0.1630* 0.0154* 0.0435* 0.0435* 
50 0.0005* 0.0000* 0.0001* 0.1508* 0.0183* 0.0519  0.0519  
70 0.0005* 0.0000* 0.0000* 0.1495* 0.0213* 0.0477  0.0477  

100 0.0004* 0.0000* 0.0000* 0.1399* 0.0233* 0.0517  0.0517  
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Table A.2  (Continued) 

Shape  Sample Comparative Test Proposed Test 

Parameter Size (m) KS AD CM    WM  VGE ZK  TK  

1 20 0.0002* 0.0000* 0.0000* 0.1431* 0.0106* 0.0461  0.0461  
30 0.0001* 0.0000* 0.0000* 0.1460* 0.0138* 0.0467  0.0467  
40 0.0003* 0.0000* 0.0000* 0.1402* 0.0159* 0.0506  0.0506  
50 0.0002* 0.0000* 0.0000* 0.1368* 0.0164* 0.0542  0.0542  
70 0.0003* 0.0000* 0.0000* 0.1292* 0.0183* 0.0513  0.0513  

100 0.0005* 0.0000* 0.0000* 0.1259* 0.0213* 0.0468  0.0468  
2 20 0.0001* 0.0000* 0.0000* 0.1156* 0.0175* 0.0475  0.0475  

30 0.0001* 0.0000* 0.0000* 0.1097* 0.0214* 0.0471  0.0471  
40 0.0001* 0.0000* 0.0000* 0.1045* 0.0213* 0.0441* 0.0441* 
50 0.0001* 0.0000* 0.0000* 0.1046* 0.0220* 0.0508  0.0508  
70 0.0003* 0.0000* 0.0000* 0.0981* 0.0242* 0.0487  0.0487  

100 0.0003* 0.0000* 0.0000* 0.0944* 0.0236* 0.0498  0.0498  
3 20 0.0002* 0.0000* 0.0000* 0.0987* 0.0214* 0.0465  0.0465  

30 0.0002* 0.0000* 0.0000* 0.0958* 0.0217* 0.0454* 0.0454* 
40 0.0001* 0.0000* 0.0000* 0.1016* 0.0241* 0.0497  0.0497  
50 0.0001* 0.0000* 0.0000* 0.0951* 0.0250* 0.0515  0.0515  
70 0.0005* 0.0000* 0.0000* 0.0902* 0.0266* 0.0503  0.0503  

100 0.0003* 0.0000* 0.0000* 0.089* 0.0261* 0.0506  0.0506  
4 20 0.0001* 0.0000* 0.0000* 0.0888* 0.0200* 0.0460 0.0460 

30 0.0005* 0.0000* 0.0000* 0.0861* 0.0199* 0.0450* 0.0450* 
40 0.0005* 0.0000* 0.0000* 0.0880* 0.0235* 0.0460  0.0460  
50 0.0003* 0.0000* 0.0000* 0.0876* 0.0216* 0.0500 0.0500 
70 0.0001* 0.0000* 0.0000* 0.0830* 0.0235* 0.0502  0.0502  

100 0.0000* 0.0000* 0.0000* 0.0839* 0.0235* 0.0521  0.0521  
5 20 0.0001* 0.0001* 0.0001* 0.0840* 0.0253* 0.0439* 0.0439* 

30 0.0001* 0.0000* 0.0000* 0.0820* 0.0254* 0.0464  0.0464  
40 0.0000* 0.0000* 0.0000* 0.078* 0.0268* 0.0446* 0.0446* 
50 0.0002* 0.0000* 0.0000* 0.0811* 0.0254* 0.0492  0.0492  
70 0.0003* 0.0000* 0.0000* 0.0734* 0.0287* 0.0515  0.0515  

100 0.0001* 0.0000* 0.0000* 0.0822* 0.0289* 0.0533  0.0533  
6 20 0.0001* 0.0000* 0.0000* 0.0820* 0.0254* 0.0456* 0.0456* 

30 0.0003* 0.0000* 0.0000* 0.0774* 0.0275* 0.0474  0.0474  
40 0.0000* 0.0000* 0.0000* 0.0756* 0.0270* 0.0461  0.0461  
50 0.0001* 0.0000* 0.0000* 0.0786* 0.0269* 0.0535  0.0535  
70 0.0001* 0.0000* 0.0000* 0.0753* 0.0290* 0.0499  0.0499  

100 0.0003* 0.0000* 0.0000* 0.0747* 0.0283* 0.0514  0.0514  
 



69 

 

Table A.2  (Continued)  
 

Shape  Sample Comparative Test Proposed Test 

Parameter Size (m) KS AD CM    WM  VGE ZK  TK  

7 20 0.0001* 0.0000* 0.0000* 0.0742* 0.0315* 0.0477 0.0477 
30 0.0002* 0.0000* 0.0000* 0.0710* 0.0289* 0.0486 0.0486 
40 0.0000* 0.0000* 0.0000* 0.0755* 0.0308* 0.0492 0.0492 
50 0.0002* 0.0000* 0.0000* 0.0720* 0.0289* 0.0525 0.0525 
70 0.0002* 0.0001* 0.0001* 0.0714* 0.0291* 0.0516 0.0516 

100 0.0003* 0.0000* 0.0000* 0.0689* 0.0297* 0.0513 0.0513 
8 20 0.0001* 0.0000* 0.0000* 0.0700* 0.0346* 0.0471 0.0471 

30 0.0002* 0.0000* 0.0000* 0.0694* 0.0297* 0.0445* 0.0445* 
40 0.0001* 0.0000* 0.0000* 0.0695* 0.0318* 0.0474 0.0474 
50 0.0000* 0.0000* 0.0000* 0.0678* 0.0285* 0.0506 0.0506 
70 0.0004* 0.0000* 0.0000* 0.0663* 0.0289* 0.0503 0.0503 

100 0.0001* 0.0000* 0.0000* 0.0678* 0.0294* 0.0536 0.0536 
9 20 0.0002* 0.0000* 0.0000* 0.0717* 0.0370* 0.0520 0.0520 

30 0.0003* 0.0000* 0.0000* 0.0732* 0.0318* 0.0490 0.0490 
40 0.0003* 0.0000* 0.0000* 0.0708* 0.0315* 0.0496 0.0496 
50 0.0001* 0.0000* 0.0000* 0.0701* 0.0332* 0.0521 0.0521 
70 0.0001* 0.0000* 0.0000* 0.0689* 0.0311* 0.0494 0.0494 

100 0.0001* 0.0000* 0.0000* 0.0651* 0.0311* 0.0529 0.0529 
10 20 0.0005* 0.0000* 0.0000* 0.0681* 0.0366* 0.0481 0.0481 

30 0.0002* 0.0000* 0.0000* 0.0656* 0.0316* 0.0461 0.0461 
40 0.0002* 0.0000* 0.0000* 0.0690* 0.0301* 0.0462 0.0462 
50 0.0000* 0.0000* 0.0000* 0.0698* 0.0307* 0.0483 0.0483 
70 0.0000* 0.0000* 0.0000* 0.0668* 0.0281* 0.0478 0.0478 

100 0.0001* 0.0000* 0.0000* 0.0673* 0.0296* 0.0524 0.0524 
 

Note:  *  means significantly different from H0: =0.05 at significance level 0.05 
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Table A.3  Empirical Powers at Nominal Significance Level 0.01 

 

Shape Sample Fréchet Weibull  Scale Sample Lognormal 

Parameter Size (m) ZK  TK  ZK  TK   Parameter Size (m) ZK  TK  

0.5 20 0.2284 0.2284 0.0111 0.0111  0.5 20 0.0166 0.0166 
 30 0.4183** 0.4653** 0.0148* 0.0188*   30 0.0206** 0.0273** 
 40 0.6299** 0.6558** 0.0201 0.0237   40 0.0305* 0.0364* 
 50 0.7637* 0.7788* 0.0244 0.0278   50 0.0328 0.0378 
 70 0.9273 0.9313 0.0343 0.0367   70 0.0487 0.0514 
 100 0.9897 0.9899 0.0488 0.0494   100 0.0811 0.0842 

1 20 0.1695 0.1695 0.0061 0.0061  1 20 0.0303 0.0303 
 30 0.3106** 0.3552** 0.0089 0.0115   30 0.0482** 0.0609** 
 40 0.4923** 0.5169** 0.0090* 0.0126*   40 0.0736** 0.0839** 
 50 0.6157** 0.6363** 0.0087 0.0105   50 0.0947 0.1019 
 70 0.8256 0.8339 0.0099 0.0103   70 0.1576 0.1657 
 100 0.9552 0.9570 0.0085 0.0087   100 0.2692 0.2746 

2 20 0.1171 0.1171 0.0114 0.011  2 20 0.0521 0.0521 
 30 0.2106** 0.2447** 0.0166** 0.0235**   30 0.0993** 0.1211** 
 40 0.3372** 0.3654** 0.0208* 0.0258*   40 0.1643** 0.1835** 
 50 0.4521** 0.4715** 0.0276 0.0313   50 0.2141** 0.2307** 
 70 0.6702 0.6816 0.0414 0.0445   70 0.3519 0.3647 
 100 0.8602 0.8646 0.0596 0.0612   100 0.5500 0.5577 

3 20 0.0950 0.0950 0.0181 0.0181  3 20 0.0655 0.0655 
 30 0.1686** 0.2003** 0.0298** 0.0391**   30 0.1274** 0.1543** 
 40 0.2753** 0.3008** 0.0427** 0.0513**   40 0.2164** 0.2399** 
 50 0.3772* 0.3939* 0.0584 0.0641   50 0.2880** 0.3079** 
 70 0.5741 0.5854 0.0907 0.0951   70 0.4600 0.4735 
 100 0.7851 0.7915 0.1487 0.1518   100 0.6819 0.6874 

5 20 0.0763 0.0763 0.0281 0.0281  5 20 0.0762 0.0762 
 30 0.1370** 0.1626** 0.0469** 0.0598**   30 0.1525** 0.1844** 
 40 0.2217** 0.2433** 0.0740** 0.0849**   40 0.2601** 0.2870** 
 50 0.3012** 0.3207** 0.1031* 0.1121*   50 0.3545** 0.3749** 
 70 0.4813 0.4935 0.1617 0.1698   70 0.5473* 0.5612* 
 100 0.6961 0.7019 0.2716 0.2776   100 0.7677 0.7726 

7 20 0.0687 0.0687 0.0328 0.0328  7 20 0.0798 0.0798 
 30 0.1228** 0.1473** 0.0554** 0.0726**   30 0.1640** 0.1969** 
 40 0.1961** 0.2171** 0.0913** 0.1048**   40 0.2784** 0.3061** 
 50 0.2658** 0.2854** 0.1263* 0.1381*   50 0.3773** 0.3989** 
 70 0.4374 0.4486 0.2013 0.2095   70 0.5795 0.5918 
 100 0.6457 0.6517 0.3374 0.3434   100 0.7952 0.8013 
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Table A.3  (Continued)  

 

Shape Sample Fréchet Weibull  Scale Sample Lognormal 

Parameter Size (m) ZK  TK  ZK  TK   Parameter Size (m) ZK  TK  

9 20 0.0648 0.0648 0.0359 0.0359  9 20 0.0817 0.0817 
 30 0.1150** 0.1381** 0.0618** 0.0791**   30 0.1688** 0.2032** 
 40 0.1827** 0.2020** 0.1024** 0.1168**   40 0.2876** 0.3164** 
 50 0.2496** 0.2673** 0.1406** 0.1543**   50 0.3906** 0.4119** 
 70 0.4119 0.4234 0.2263 0.2352   70 0.5937 0.6059 
 100 0.6159 0.6227 0.3766 0.3826   100 0.8090 0.8144 

10 20 0.0631 0.0631 0.0370 0.0370  10 20 0.0822 0.0822 
 30 0.1122** 0.1360** 0.0641** 0.0822**   30 0.1710** 0.2057** 
 40 0.1789** 0.1972** 0.1061** 0.1211**   40 0.2904** 0.3196** 
 50 0.2440** 0.2602** 0.1460** 0.1606**   50 0.3936** 0.4152** 
 70 0.4026 0.4143 0.2368 0.2451   70 0.5989 0.6097 
 100 0.6055 0.6118 0.3894 0.3950   100 0.8132 0.8179 

 

 

Note:   *   means significantly different from H0: 6 7= at significance level 0.05 

**  means significantly different from H0: 6 7=  at significance level 0.01 
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Table A.4  Empirical Powers at Nominal Significance Level 0.05 

 

Shape Sample Fréchet Weibull  Scale Sample Lognormal 

Parameter Size (m) ZK  TK  ZK  TK   Parameter Size (m) ZK  TK  

0.5 20 0.4707 0.4707 0.0571 0.0571  0.5 20 0.0712 0.0712 
 30 0.6857 0.6857 0.0713 0.0713   30 0.0898 0.0898 
 40 0.8310 0.8310 0.0834 0.0834   40 0.1036 0.1036 
 50 0.9197 0.9197 0.1021 0.1021   50 0.1303 0.1303 
 70 0.9805 0.9805 0.1221 0.1221   70 0.1627 0.1627 
 100 0.9984 0.9984 0.1564 0.1564   100 0.2248 0.2248 

1 20 0.3815 0.3815 0.0430 0.0430  1 20 0.1094 0.1094 
 30 0.5740 0.5740 0.0472 0.0472   30 0.1630 0.1630 
 40 0.7317 0.7317 0.0470 0.0470   40 0.2113 0.2113 
 50 0.8411 0.8411 0.0536 0.0536   50 0.2768 0.2768 
 70 0.9456 0.9456 0.0527 0.0527   70 0.3609 0.3609 
 100 0.9905 0.9905 0.0482 0.0482   100 0.4988 0.4988 

2 20 0.2952 0.2952 0.0614 0.0614  2 20 0.1739 0.1739 
 30 0.4494 0.4494 0.0772 0.0772   30 0.2727 0.2727 
 40 0.5971 0.5971 0.0928 0.0928   40 0.3672 0.3672 
 50 0.7137 0.7137 0.1210 0.1210   50 0.4779 0.4779 
 70 0.8586 0.8586 0.1430 0.1430   70 0.6171 0.6171 
 100 0.9570 0.9570 0.1806 0.1806   100 0.783 0.783 

3 20 0.2561 0.2561 0.0839 0.0839  3 20 0.2043 0.2043 
 30 0.3909 0.3909 0.1146 0.1146   30 0.3243 0.3243 
 40 0.5209 0.5209 0.1464 0.1464   40 0.4464 0.4464 
 50 0.6442 0.6442 0.1951 0.1951   50 0.5676 0.5676 
 70 0.7969 0.7969 0.2478 0.2478   70 0.7149 0.7149 
 100 0.9191 0.9191 0.3488 0.3488   100 0.8692 0.8692 

5 20 0.2220 0.2220 0.1132 0.1132  5 20 0.2338 0.2338 
 30 0.3356 0.3356 0.1630 0.1630   30 0.3687 0.3687 
 40 0.4521 0.4521 0.2161 0.2161   40 0.5075 0.5075 
 50 0.5707 0.5707 0.2822 0.2822   50 0.6384 0.6384 
 70 0.7287 0.7287 0.3736 0.3736   70 0.779 0.779 
 100 0.8718 0.8718 0.5183 0.5183   100 0.9177 0.9177 

7 20 0.2070 0.2070 0.1254 0.1254  7 20 0.2469 0.2469 
 30 0.3104 0.3104 0.1874 0.1874   30 0.385 0.385 
 40 0.4201 0.4201 0.2487 0.2487   40 0.5301 0.5301 
 50 0.5315 0.5315 0.3302 0.3302   50 0.6573 0.6573 
 70 0.6886 0.6886 0.4285 0.4285   70 0.8019 0.8019 
 100 0.8431 0.8431 0.5865 0.5865   100 0.9319 0.9319 
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Table A.4  (Continued) 

 

Shape Sample Fréchet Weibull  Scale Sample Lognormal 

Parameter Size (m) ZK  TK  ZK  TK   Parameter Size (m) ZK  TK  

9 20 0.1993 0.1993 0.1322 0.1322  9 20 0.2515 0.2515 
 30 0.2948 0.2948 0.2030 0.2030   30 0.3911 0.3911 
 40 0.4019 0.4019 0.2680 0.2680   40 0.5396 0.5396 
 50 0.5086 0.5086 0.3584 0.3584   50 0.6678 0.6678 
 70 0.6665 0.6665 0.4622 0.4622   70 0.812 0.812 
 100 0.8236 0.8236 0.6260 0.6260   100 0.9374 0.9374 

10 20 0.1966 0.1966 0.1355 0.1355  10 20 0.2535 0.2535 
 30 0.2903 0.2903 0.2078 0.2078   30 0.3934 0.3934 
 40 0.3936 0.3936 0.2749 0.2749   40 0.5434 0.5434 
 50 0.5002 0.5002 0.3666 0.3666   50 0.6706 0.6706 
 70 0.6579 0.6579 0.4739 0.4739   70 0.8145 0.8145 
 100 0.8166 0.8166 0.6383 0.6383   100 0.9389 0.9389 

 

Note:   *   means significantly different from H0: 6 7= at significance level 0.05 

**  means significantly different from H0: 6 7=  at significance level 0.01 
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Table A.5 Test Statistic and P-Value for Honey Bee Transit Time Data under the 

Null Hypothesis.  

 
Sample i ZK  p-value  Sample i ZK  P-value  Sample i ZK  p-value 

1 -1.216 0.224  16 0.646 0.518  31 -1.254 0.210 

2 -0.912 0.362  17 0.228 0.820  32 -1.292 0.197 

3 -1.216 0.224  18 0.380 0.704  33 -1.368 0.171 

4 -1.595 0.111  19 0.912 0.362  34 -1.557 0.119 

5 -1.292 0.197  20 0.912 0.362  35 -1.785 0.074 

6 -1.557 0.119  21 0.760 0.447  36 -1.557 0.119 

7 -0.722 0.470  22 0.684 0.494  37 -1.481 0.138 

8 -0.798 0.425  23 0.076 0.939  38 -1.785 0.074 

9 -0.114 0.909  24 -0.266 0.790  39 -1.406 0.160 

10 0.152 0.879  25 -0.190 0.849  40 -1.937 0.053 

11 0.722 0.470  26 -1.481 0.138  41 -1.633 0.102 

12 1.026 0.305  27 -1.064 0.287  42 -1.671 0.095 

13 1.026 0.305  28 -1.140 0.254  43 -1.785 0.074 

14 0.570 0.569  29 -1.444 0.149  44 -2.013 0.044 

15 0.646 0.518  30 -0.798 0.425  45 -1.102 0.271 
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APPENDIX B 

 
COMPARISON OF THE ACCURACY OF DETERMINING  
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APPENDIX B 
 

COMPARISON OF THE ACCURACY OF DETERMINING 

THE ASYMPTOTIC DISTRIBUTION BY NORMAL  

AND EDGEWORTH APPROXIMATION 

 

 The accuracy of an appropriate estimator for the fourth central moment of TK  

through of an Edgeworth approximation is considered here. The fourth central 

moment of TK , estimated by using the jackknife method, is used in an Edgeworth 

approximation to improve the proposed test statistic ZK  to be asymptotic normal 

when the sample size is insufficiently large. Therefore, the efficiency of ZK  and TK  

to approximate an exact distribution K are considered through a comparison of 

relative error (RE): 
ˆ( ) ( )

,
min 1 ( ) , ( )

F x F x
RE

F x F x
 and absolute error (AE): 

ˆ( ) ( )AE F x F x ; RE and AE are used to measure the discrepancy between the exact 

distribution of K and the approximated distributions of Z K  and TK . 

 The accuracy of approximating a distribution for the proposed tests was 

measured by mean relative error (MRE) and mean absolute error (MAE) in a 

simulation study. The discrepancy between the exact distribution and the distributions 

of Z K  and TK were compared by their MRE and MAE with the number of iterations 

set at 10,000.  
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Table B.1  The MRE of Z K under the Null Hypothesis 

 

 

Shape 
Parameter 

Sample Size 

10 20 30 40 50 70 80 90 

0.5 0.24724 0.12137 0.07298 0.04840 0.03573 0.02299 0.01898 0.01614 

1 0.24727 0.12110 0.07230 0.04827 0.03613 0.02289 0.01896 0.01632 

2 0.24656 0.12234 0.07348 0.04804 0.03647 0.02301 0.01913 0.01641 

3 0.24683 0.12246 0.07185 0.04909 0.03653 0.02299 0.01914 0.01628 

5 0.24867 0.12114 0.07218 0.04816 0.03587 0.02265 0.01897 0.01626 

7 0.24871 0.12158 0.07188 0.04856 0.03574 0.02304 0.01904 0.01638 

9 0.24702 0.12231 0.07193 0.04780 0.03580 0.02309 0.01900 0.01617 

10 0.24625 0.12236 0.07153 0.04868 0.03577 0.02279 0.01894 0.01638 
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Table B.2  The MRE of TK under the Null Hypothesis 

 

Shape 
Parameter 

Sample Size 

10 20 30 40 50 70 80 90 

0.5 0.23597 0.11150 0.06507 0.04194 0.03054 0.01904 0.01545 0.01289 

1 0.23579 0.11152 0.06478 0.04195 0.03128 0.01890 0.01544 0.01298 

2 0.23410 0.11170 0.06604 0.04188 0.03126 0.01897 0.01536 0.01302 

3 0.23600 0.11255 0.06428 0.04281 0.03099 0.01892 0.01553 0.01291 

5 0.23770 0.11079 0.06432 0.04154 0.03051 0.01877 0.01539 0.01293 

7 0.23621 0.11139 0.06391 0.04241 0.03076 0.01903 0.01533 0.01303 

9 0.23501 0.11258 0.06438 0.04171 0.03046 0.01893 0.01547 0.01291 

10 0.23428 0.11257 0.06411 0.04250 0.03060 0.01896 0.01533 0.01299 

 

Table B.3  The MAE of Z K under the Null Hypothesis 

 

Shape 
Parameter 

Sample Size 

10 20 30 40 50 70 80 90 

0.5 0.05899 0.02840 0.01598 0.01031 0.00758 0.00483 0.00396 0.00337 

1 0.06011 0.02837 0.01590 0.01031 0.00757 0.00483 0.00396 0.00338 

2 0.05937 0.02843 0.01594 0.01027 0.00753 0.00483 0.00398 0.00340 

3 0.05941 0.02835 0.01592 0.01022 0.00753 0.00484 0.00396 0.00338 

5 0.05963 0.02840 0.01602 0.01034 0.00758 0.00487 0.00398 0.00336 

7 0.05948 0.02838 0.01596 0.01027 0.00755 0.00483 0.00400 0.00338 

9 0.05962 0.02842 0.01595 0.01029 0.00763 0.00485 0.00397 0.00337 

10 0.05925 0.02833 0.01590 0.01028 0.00765 0.00484 0.00397 0.00337 
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Table B.4  The MAE of TK under the Null Hypothesis 

 

Shape 
Parameter 

Sample Size 

10 20 30 40 50 70 80 90 

0.5 0.05320 0.02450 0.01335 0.00832 0.00599 0.00369 0.00296 0.00249 

1 0.05418 0.02451 0.01327 0.00831 0.00598 0.00369 0.00297 0.00249 

2 0.05353 0.02451 0.01332 0.00829 0.00595 0.00369 0.00297 0.00250 

3 0.05354 0.02446 0.01331 0.00823 0.00593 0.00370 0.00296 0.00249 

5 0.05375 0.02450 0.01336 0.00835 0.00598 0.00373 0.00298 0.00248 

7 0.05366 0.02447 0.01331 0.00830 0.00597 0.00369 0.00299 0.00248 

9 0.05376 0.02451 0.01331 0.00832 0.00603 0.00370 0.00296 0.00249 

10 0.05340 0.02445 0.01328 0.00829 0.00605 0.00371 0.00297 0.00248 

 

Table B.5   The Difference between the MRE of Z K and TK under the Null Hypothesis: 

Z TK KMREDiff MRE MRE
 

 

Shape 
Parameter 

Sample Size 

10 20 30 40 50 70 80 90 

0.5 0.01127 0.00987 0.00791 0.00646 0.00519 0.00396 0.00353 0.00325 

1 0.01148 0.00958 0.00753 0.00632 0.00485 0.00399 0.00352 0.00334 

2 0.01247 0.01065 0.00744 0.00617 0.00521 0.00404 0.00377 0.00339 

3 0.01083 0.00991 0.00757 0.00628 0.00554 0.00407 0.00361 0.00337 

5 0.01097 0.01036 0.00786 0.00662 0.00536 0.00387 0.00358 0.00333 

7 0.01249 0.01019 0.00797 0.00615 0.00498 0.00401 0.00371 0.00335 

9 0.01200 0.00973 0.00755 0.00609 0.00534 0.00416 0.00353 0.00327 

10 0.01196 0.00979 0.00742 0.00617 0.00517 0.00384 0.00361 0.00339 
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Table B.6   The Difference between the MAE of Z K and TK under the Null Hypothesis: 

Z TK KMAEDiff MAE MAE  
 

Shape 
Parameter 

Sample Size 

10 20 30 40 50 70 80 90 

0.5 0.00579 0.00390 0.00263 0.00199 0.00159 0.00114 0.00100 0.00088 
1 0.00593 0.00385 0.00263 0.00200 0.00159 0.00114 0.00100 0.00089 

2 0.00584 0.00392 0.00262 0.00198 0.00158 0.00114 0.00100 0.00090 

3 0.00587 0.00389 0.00262 0.00199 0.00160 0.00115 0.00100 0.00089 

5 0.00588 0.00390 0.00266 0.00199 0.00160 0.00114 0.00100 0.00089 

7 0.00582 0.00391 0.00264 0.00197 0.00159 0.00114 0.00101 0.00090 

9 0.00585 0.00391 0.00264 0.00197 0.00160 0.00115 0.00100 0.00088 

10 0.00585 0.00388 0.00262 0.00199 0.00160 0.00113 0.00100 0.00089 

 

From the simulation results in Tables B.1 to B.6, it can be seen that, in the 

case of a small sample size, the distribution function of TK  was closer to the exact 

distribution K than Z K , and so we can say that 4ˆ  is a good estimator. As a result, 

the Edgeworth approximation was shown to improve the asymptotic normal 

distribution of Z K . 
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APPENDIX C 

 

FOR TESTING THE NULL HYPOTHESIS 
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APPENDIX C 

 

FOR TESTING THE NULL HYPOTHESIS 
 

H0 : A random variable is distributed as a gamma distribution  

against H1 : A random variable is not distributed as a gamma distribution, 

the proposed tests and modifications of the independence characteristic of a gamma 

distribution, such as those presented by Lee and Lim (2009) or Hwang and Hu (1999), 

are based on the same conclusion. 

 

Lee and Lim theorem (2009) 

 

If 1 2, , , mX X X  is positively i.i.d. with a common absolutely continuous 

distribution function ( )F x  and 2( )E X , then 
1

m
k

k
X  and

2

1
( )

m
i j k

k
XX X , for 

1 i j m  ,  m ≥ 1 if and only if 1 2, , , mX X X  are distributed as gamma. 

 

Hwang and Hu theorem (1999) 

 

If 1 2, , , mX X X  is positively i.i.d. with a common absolutely continuous 

distribution function ( )F x  and 2( )E X , then the independence of mean  X  and 

coefficient of variation  CV is assured if and only if 1 2, , , mX X X  are distributed as 

gamma. 

When the sample size of each random samples equals 2, (m=2) for the jth 

sample, 1,2,...,j n ,
1 2
, 0j jX X , 

let    1 2j jjV X X ,  
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1 2

2j
j jX X

W ,   

21 2jj j jV X X W ,
 

j jV W .
 

(C.1)
 

Let    21

1 2

2
jj

jj
j

X X
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X X
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(C.2)
 

Let 
1

2
( 1)

n n
ij

i j n
K A

n n
,
 

(C.3)
 

where ijA  = sgn j iU U sgn j iV V , for 1,2, ,i n  and 1,2, ,j n . 

Let     
1

2
( 1)

n n
b ij

i j n
K B

n n
,
 

(C.4)
 

where ijB  = sgn j iD D sgn j iW W , for 1,2, ,i n  and 1,2, ,j n . 

From (C.1) and (C.2) , bK K .
 

Test statistics ZK  and TK  are functions of K  modified by the gamma 

independence characteristic (Lee and Lim, 2009). By using bK  instead of K  in the 

1

2
1 2 1 22 2

1 2 1 2
2

22
2

j j j j
j

j j j

j
j

j
j

j

X X X XSD
D X X

X X X X X
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test statistics ZK  and TK , bK  is modified by the independence characteristic of a 

gamma distribution (Hwang and Hu, 1999), and so Z Z
bK K and T T

bK K .  

However, the p-value for testing the null hypothesis are equal because the distribution 

of  ZK  and TK  are symmetrical about zero. 
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