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In this dissertation, two studies that are beneficial for actuaries and the 

insurance business are proposed. In the first study, an exponentiated Weibull 

distribution using gamma-generated distribution is modified to obtain an alternative 

gamma-exponentiated Weibull (AGEW) distribution; its sub-models include both 

gamma and Weibull distributions, both of which are popular in claims modeling by 

insurance companies. Its basic structural properties such as distribution function, 

density function, and moments were investigated. Moreover, the maximum likelihood 

method to estimate the AGEW distribution’s parameters was utilized, then the 

distribution was applied to a real-life dataset to show its superiority over gamma and 

Weibull distributions by comparing fitness between them.  

In the second study, a new approximation method to obtain the ruin 

probability referring to the risk of insolvency of an insurance company is proposed by 

modifying the Pollaczek-Khinchin approximation. The proposed approximation is 

simpler and requires fewer assumptions than other methods mentioned in the 

literature. The results from a simulation study show that, in some cases, the proposed 

method gave better approximated ruin probability values in terms of the overall 

deviation from the exact values. Insurance companies are interested in calculating the 



iv 

initial capital using ruin probability, and so with this in mind, the proposed method 

was applied to estimate the minimum initial capital that needs to be reserved to ensure 

that the ruin probability does not exceed an acceptable quantity. To illustrate the 

performance of the approximation, the ruin probability and the minimum initial 

capital modeled by the AGEW distribution were estimated with a real-life dataset. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Background 

 

 Since the foundation of modern risk theory was suggested by Filip Lundberg 

in 1903, actuaries have attracted much attention in the insurance business. Actuarial 

science became a formal discipline involving mathematical and statistical methods to 

analyze insurance claims data. In this study, we concern about the important tasks of 

the actuary such as the claims modeling and, the approximation of ruin probability 

and minimum initial capital.  

 The claims modeling is an important procedure that leads to the pricing of 

premium and risk analysis for an insurance company. Sasithorn Anantasopon, Pairote 

Sattayatham and Tosaporn Talangtam (2015) suggested that the distribution of claim 

amounts should be modeled as a mixed distribution of non-negative continuous 

random variables and proposed the infinite mixture distribution that can be applied to 

non-life insurance claims data. Thus, attempts have been made to modify the 

exponentiated Weibull (EW) distribution, which is a non-negative continuous and 

flexible distribution. Several authors have constructed alternative distributions using 

the EW distribution as a baseline. Mahmoudi and Sepahdar (2013) introduced an 

exponentiated Weibull Poisson distribution, Pinho, Cordeiro and Nobre (2012) use a 

gamma-generated distribution to develop a gamma-exponentiated Weibull 

distribution, and a beta-exponentiated Weibull distribution was proposed by 

Percontini, Blas and Cordeiro (2013). The first purpose of this study is to construct the 

new mixed distribution using EW as a baseline to achieve a better fit with real-life 
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claims data than classic distributions usually used to model the claim amounts 

distribution.    

 The ruin probability refers to the risk that the monetary surplus of an insurance 

company becomes less than zero, which leads to insolvency. Recent studies have 

presented many methods to obtain the ruin probability. Cizek, Härdle and Weron 

(2005) concluded that simple analytic results for the ruin probability using the classical 

model exist when the claim amounts distribution is exponential or close to it, but for 

other claim amounts distributions, they are not easy to obtain. Several authors have 

proposed the approximation method for ruin probability. De Vylder (1978) suggested 

the approximation of ruin probability based on the idea of replacing the surplus 

process with an exponential claim amounts distribution such that the first three 

moments coincide; in this case, the approximation gives the exact result. However, for 

other claim amounts distributions, this approximation has the condition that the first 

three moments of the claim amounts distribution must exist. Using Monte Carlo 

simulation, Asmussen and Binswanger (1997) proposed computer approximations that 

are independent of the first three moments and can be chosen as the reference method 

for calculating the ruin probability in infinite time. For some claim amounts 

distributions, simulation of the algorithm for computing the approximate ruin 

probability by this method is complicated, and so in this study, an algorithm simpler 

than computing the approximate ruin probability is proposed. 

 Generally, an insurance company must reserve the initial capital for managing 

the ruin probability to an acceptable level, i.e. the insurance company is unlikely to 

become insolvent. Thus, the proposed approximate ruin probability was also applied 

to estimate the minimum of initial capital that an insurance company should hold in 

reserve. To demonstrate the proposed approximation, it was applied to a real-life 

sample of motor insurance claims data from one company.     
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1.2 Objectives of the Study 

 

 The objectives of this study are as follows: 

1) To introduce a new claim amounts distribution as a combination of several 

non-negative continuous distributions.  

2) To propose an approximation method to obtain the probability that the 

cash surplus of an insurance company is less than zero for a given initial capital, and 

to find minimum initial capital for an insurance company that makes it unlikely to 

face insolvency. 

3) To demonstrate the proposed approximation using real-life data modeled 

by the proposed new mixed distribution. 

 

1.3 Scope of the Study 

 

 The individual claim amounts, the ruin probability, and the initial capital of 

insurance company are considered under the following conditions: 

1) The effect of interest and reinsurance are not considered.  

2) The claim amounts that response difference policy are independent. 

3) The study is within the framework of the classic continuous-time surplus 

model. 

4) The insurance company has to reserve the initial capital for managing the 

ruin probability in infinite time not greater than the given quantity. 

 

1.4 Usefulness of the Study 

 

 The benefits of this study are as follows: 

1) The new mixed distribution will achieve a better fit with claims data than 

some classic distributions. 
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2) The proposed approximation method can help insurance companies to 

estimate the ruin probability that they face, and that the reserve of initial capital for 

managing the ruin probability is not greater than the given quantity. 



 

CHAPTER 2 

 

LITERATURE REVIEW 

 In this chapter, a review of the literature on the following topics is presented. 

Detail of claims modeling and distributions that are often used for modeling claim 

amounts distributions are discussed in Section 2.1. The mixed distributions that are 

applied in this study to model the claim amounts distribution are introduced in Section 

2.2. The probability of ruin (the risk of insolvency) of the insurance company and its 

approximation are discussed in Sections 2.3 and 2.4. Finally, the minimum initial 

capital that an insurance company must reserve for managing the ruin probability that 

is not greater than an acceptable quantity is introduced in Section 2.5. 

 

2.1 Claims Modeling and Claim Amounts Distribution 

 

 In actuarial science, the modeling of claims is important work that leads to 

claims estimation, premium pricing, and risk analysis. Furthermore, the modeling of 

claims is separated into claim frequency and claim severity. In this study, the claim 

frequency is assume to be a Poisson process with intensity 0  , and so the  focus 

here is on claim severity in reference to the amount of an insurance claim. Generally, 

this monetary loss is not less than zero, so it should be modeled with non-negative 

continuous distributions, and some well-known ones often used for modeling claim 

amounts distributions are discussed in this section. 

 

2.1.1 The Exponential Distribution 

 The exponential distribution is a simple distribution usually used in risk theory 

studies. For an exponential claim amounts distribution with rate  , the probability 
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density function (pdf) and the cumulative distribution function (cdf) of a claim amounts 

variable  X Expo   are given by 

  ,xf x e    

and 

  1 ,xF x e    

respectively, where , 0x   . The expected value and the variance of   X Expo   

are derived as follows 

  1/E X   , 

and 

  21/Var X  , 

respectively. 

 

2.1.2 The Gamma Distribution 

 The gamma distribution has often been used in claims modeling for 

automobile insurance. For the gamma claim amounts distribution with shape   and 

rate   or  ,Gamma   , the pdf of the claim amounts variable is given by 

 
 

1 ,xf x x e


 



 


 , , 0,x     

where   1

0

a ta t e dt



     is the gamma function. The cdf that correspond to the above 

pdf is derived as  

 
 

 
1

, ,F x x  





  , , 0,x     

where   1

0

,

x

a ta x t e dt     is the lower incomplete gamma function. The expected 

value and the variance of   ,X Gamma    are derived as 

  /E X    , 

and 
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  2/Var X   , 

respectively. 

 

2.1.3 The Weibull Distribution 

 The Weibull distribution is usually used in engineering problems such as 

survival analysis, reliability analysis, and failure analysis, but in actuality, this 

distribution has been used for claims modeling of reinsurance claims. The pdf and the 

cdf of the claim amounts variable with the Weibull distribution with two parameters 

  and   or  ,Weibull     are as follows 

   1 ,
x

f x x e


 
   

and 

   
1 ,

x
F x e




   

where , , 0x     , respectively. The expected value and the variance of  

 ,X Weibull    are derived as 

   1 1/ /E X      , 

and 

      
2 21 2 / 1 1/ /Var X         

 
, 

respectively. 

 

2.2 The Mixed Distribution 

 

 It is reasonable to model a claim amounts distribution with a mixed 

distribution that includes the well-known non-negative continuous distributions in the 

previous section as sub-models. Thus, some mixed distributions are discussed in this 

section as: 
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2.2.1 The Exponentiated Weibull Distribution 

 Mudholkar and Srivastava (1993) proposed an exponentiated Weibull (EW) 

distribution that is an extension of the Weibull family; it is obtained by adding a 

second shape parameter to the Weibull distribution. If W  is a random variable of an 

EW distribution, then the pdf and the cdf of  , ,W EW     are given by 

    
11; , , 1 ,g w w v v

    
  0w  , , , 0    , (2.1) 

   

where  w
v e




 , and  

    1G w v


  , (2.2) 

   

respectively. Choudhury (2005) derived the 
thk  moment of  , ,W EW     when 

 is a positive integer as 

 
 

 

1

1
0

1 1
1

1

j

k

kk
j

k
E W

j
j







 






   
     

    
 . (2.3) 

  

Therefore, we can derived the expected value and the variance of W  when  is a 

positive integer as 

 
 

 

1

1
1

0

1 11
1

1

j

j

E W
j

j







 






   
     

    
  , 

and 

 
 

 

 

 

2

1 1

2 12
1 1

0 0

1 11 12 1
1 1

1 1

j j

j j

Var W
j j

j j

 

 

  

   

 

 
 

 
                              

  , 

respectively. 
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2.2.2 The Gamma-Generated Distribution  

Zografos and Balakrishnan (2009) proposed a technique to develop new 

flexible probability distributions that extend well-known distributions by inserting a 

well-known cdf  G x  into a new cdf as follows: 

  
 

 log

1

0

1
G x

tF x t e dt





 
  , 0x  , 0  , (2.4) 

   

where    1G x G x  , and the correspond pdf is defined as 

  
 

   
11

logf x G x g x






   
. (2.5) 

   

In the same way, Ristić and Balakrishnan (2011) proposed an alternative 

gamma-generated distribution with the cdf and pdf as 

  
 

 log

1

0

1
1

G x

tH x t e dt





  
  , 0x  , 0   (2.6) 

   

and  

  
 

   
11

logh x G x g x






   
, (2.7) 

respectively.   

 

2.2.3 The Gamma-Exponentiated Weibull Distribution 

Pinho et al. (2012) proposed a gamma-exponentiated Weibull (GEW) 

distribution by inserting (2.2) into the cdf of the gamma-generated distribution in (2.6). 

The correspond pdf as (2.7) is derived as 

 
 

   
111; , , , 1 log 1h x x v v v

 
 

   


     
, 

where  x
v e




 . 
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In their study, the gamma-exponentiated Weibull distribution included, as 

special cases several models such as the exponential, Weibull and exponentiated 

Weibull distributions.  

The work in this study is based on the gamma-generated distribution proposed 

by Zografos and Balakrishnan (2009). In an alternative to the gamma-exponentiated 

Weibull distribution, a gamma distribution is included in the sub-models.  

The application of the proposed distribution is considered with the important 

tasks of the actuary in mind: claims modeling, the approximation of ruin probability, 

and the estimation of the minimum initial capital. In the insurance business, the 

modeling of claims is important work leading to claims estimation, insurance 

premium pricing, and risk analysis. There are two kinds of claims modeling: claims 

frequency and claims severity. In this study, it is assumed that the claims frequency in 

the proposed distribution is a Poisson process with intensity 0  , and the focus is 

on the modeling of claims severity, which refers to the monetary loss of an insurance 

claim by the insurer. The proposed distribution includes both gamma and Weibull 

distributions in its sub-models, and it should be useful for modeling the claim amounts 

distribution for an insurance company. 

 

2.3 Ruin Probability 

 

 In this section, the probability of ruin or the probability that the cash surplus of 

an insurance company becomes less than zero for a given initial capital is discussed. 

The concern in this study is with the probability of ruin in a classical compound 

Poisson continuous time surplus process. The surplus process at time t  is defined as  

    U t u ct S t   , (2.8) 

   

where u  is the initial capital; c  is the rate of premium income per unit of time; and 

the aggregate claims process    1 2 ...
N t

S t X X X    , where  N t  is the number 



11 

of claims at time t . The number of claims process   ; 0N t t   is assumed to be a 

Poisson process with intensity 0  . The sequence of claim sizes 

 ; 1,2, , ( )iX i N t  is assumed to be a sequence of positive independent and 

identically distributed (i.i.d.) random variables with distribution function XF  and a 

finite mean   1iE X  , and are independent of ( )N t . The premium rate c  is 

calculated using the expected value premium principle, i.e. 

   11 ,c     (2.9) 

   

where 0   is the relative security loading. The risk of insolvency of any insurance 

company happens when its monetary surplus falls to less than zero, and with a given 

initial capital u  or the probability of ruin over infinite time, is defined as 

       0, 0 0u Pr U t for some t U u     . (2.10) 

   

Bowers, Gerber, Hickmann, Jones and Nesbitt (1997) showed that the ruin 

probability when the surplus process is based upon a compound Poisson aggregate 

claims process with the claim amounts distribution being  Expo   is in the form  

  
1

exp
1 1

u
u




 

 
  

  
, (2.11) 

   

for all initial capital 0u  . The derivative of (2.11) is a basic example of the risk theory 

study. For the claim amounts distributed as  2,Gamma  , the ruin probability in 

Yuanjian, Xucheng and Zhang (2003) is derived as follows: 

  
 

 

 

 
1 2

2 2

2 1 1 2

2 2

1 2 2 1

u uu e e      


     

  
   

   

, (2.12) 

   

where    2

1 2 4 / 2c c c         and    2

2 2 4 / 2c c c        . 
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However, for other claim amounts distributions, the ruin probability is not 

easy to obtain, thus approximations of the ruin probability are of interest. Some 

approximation methods are discussed in the next section. 

 

2.4 Approximation of the Ruin Probability 

 

 There are many approximation methods to obtain the ruin probability, but only 

three methods are discussed in this section: the De Vylder approximation in De Vylder 

(1978), the Bowers approximation in Bowers, Gerber, Hickmann, Jones and Nesbitt 

(1997), and the Pollaczek-Khinchin approximation in Asmussen and Binswanger 

(1997). 

 

2.4.1 The De Vylder Approximation 

This approximation is based on the idea of replacing the surplus process  U t  

in (2.8) with a surplus process 

   U t u ct S t   , 

where the aggregate claims process    1 2 ...
N t

S t X X X    , in which the number 

of claims process   ; 0N t t   is assumed to be a Poisson process with intensity 

0  . The sequence of claim sizes  ; 1,2, , ( )iX i N t  is assumed to be a sequence 

of i.i.d. random variables with distribution  Expo   and a finite mean 
1

iE X      , 

and are independent of ( )N t . The premium rate c  is define as   11c     , so that 

the ruin probability with  U t  is defined as in (2.11). The De Vylder Approximation is 

derived by setting  ,  , and   in  U t  in such a way that 

   
k k

E U t E U t   
   

,  for 1,2,3k   and 0t  . 

De Vylder (1978) defined the characteristic function  U t  as follows: 
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      2 3

1 2 3

1 1
exp

2 6

isU t

U t
s E e uis tis ts tis      

          
, 

where 
j

j iE X     , for 1,2,3j  . A similar expansion is valid for the characteristic 

function of  U t . By the property      
0

k
k k

U tk

s

E U t i s
s




         
 and the condition 

that    
k k

E U t E U t   
   

,  for 1,2,3k   and 0t  , the following equation can be 

derived: 

1

1    , 2

2 2    , 3

3 6    . 

From above result it is expressed 
 

3

1 3 2 2

2 2

2 3 3

2 3 9
, ,

3 2

     
  

  
   . 

Subsequently, the De Vylder approximation for the ruin probability with  U t  is 

define as 

  
1

exp
1 1

DV

u
u




 

 
  

  
, (2.13) 

   

where    2

1 3 2 2 32 / 3 , 3 /         , and 
j

j iE X     , for 1,2,3j  . If the 

claim amounts variables  iX Expo  , then ,     , and  DV u  is equal to 

 u . It should be noted here that the De Vylder approximation requires the existence 

of the first three moments of the claim amounts distribution. 

 

2.4.2 The Bowers Approximation 

The well-known Lundberg upper bound of ruin probability is defined from the 

right hand side of the inequality below: 

   Ruu e  , (2.14) 
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for any initial capital 0u  , and the adjustment coefficient R  is defined as the 

smallest positive root of 

       
    1

r S t ct rct

S t ct S t
M r E e e M r

 


   
 

. (2.15) 

   

The ruin probability  u  is a non-increasing function in u , so that its lower 

bound, defined on p. 415 in Bowers, Gerber, Hickmann, Jones and Nesbitt (1997), is 

  
1

0
1

.





 (2.16) 

   

The Bowers approximation uses the fact that    
1

1 Rueu
   , giving 

the approximated ruin probability as 

  
1

.
1

Ku

B u e





 (2.17) 

   

To obtain a reasonable constant K , the process of aggregate claims over 

premiums received   S t ct  or 
 

1

N t

i

i

X ct


  
 

  
  is considered. The number of claims 

process  N t  is a Poisson process and the sequence of claim amounts  ; 1iX i   

consists of non-negative i.i.d. random variables, let  ; 1iT i   be the sequence of the 

timing of the claims corresponding to claim amounts  ; 1iX i  . Thus, the process 

  S t ct  increments by height 
iX  for it T ; 1,2,3,i   and decreases by slope c  

otherwise. The process   S t ct  contains the values of insurance company loss at 

time t . If the value of the process   S t ct   is very large, then the company is 

insolvent and the process   S t ct   has ended. Thus, under the assumption that the 

insolvency or ruin can occur, the process   S t ct  is bound. Let M  be the number 

of claims where the process   S t ct  becomes a maximum at time MT  and let 1Y  be 
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the value of the process   S t ct  that reaches above zero for the first time. Next, let 

2Y  be the value of excess that reaches above the value of 1Y  for the first time. 

Variables 3 4, ,Y Y  are sequentially defined in the same way. The number of iterations 

of the process   S t ct  carried out in this sequence N  is called the number of new 

record highs and the values kY , for 1,2, ,k N  are referred to as new record highs. 

The last new record high NY  occurs at time MT  so that   S t ct  is a maximum for 

all time intervals 0t  . Generally, for each claim 
1 2, , , MX X X  that makes the 

process   S t ct  increment, the new record highs 
1 2, , , NY Y Y  may or may not 

occur, so N M . Hence, the maximum of the process   S t ct  or the maximal 

aggregate loss L  is illustrated as  

    1 2
0

max N
t

L S t ct Y Y Y


      . (2.18) 

   

Figure 2.1 shows a graph of L  for 5M   and 3N  . 

 

 

Figure 2.1 Maximal aggregate loss for the number of new record highs 3N  . 
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Since a stationary and independent increment of process  S t  is assumed, 

 kY  is a sequence of i.i.d. variables with the density 

     1/Y Xf y F y  , (2.19) 

   

where    1X XF y F y   and 1  is the expected value of the claim amounts. The 

number of new record highs N  is geometric distributed with parameter  1 0 , and 

its probability mass function is 

      
1

0r
1

P
1

1 0

n
n

N n   




 
       


  

  , (2.20) 

   

where 0,1,2,...n   The ruin probability with an infinite horizon time in (2.10) can be 

represented in the form of a distribution function of L  derived as follows: 

        
0

max Pr( ) 1 L
t

S tu Pr L u F uct u


      , (2.21) 

   

where LF  is a distribution function of the maximal aggregate loss L . Using the 

property of the expected values, it can be written 

     
0 0

1 LE L F u du u du
 

      . 

The maximal aggregate loss L  can be expressed in terms of a geometric process with 

the expected value  

     

 

,

1
.

k

k

E L E Y E N

E Y





 

From the density function in (2.19), the moment generating function of the new record 

highs 
1 2, , , NY Y Y  can be denoted as 
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   

 

   

 

0

1 0

1 00

1

,

1
1 ,

1 1
1 ,

1
1 .

ty

Y Y

ty

X

ty
ty

X x

x

M t e f y dy

e F y dy

e
F y e f y dy

t t

M t
t











 



   

  
     

  

   







 

By substituting 
 

2 3

1 2 31
2 6

X

t t
M t t      

in the above equation, it can be 

expressed as 

 
 

2 3

32 4

1 1 1

1
2 6 24

Y

t t t
M t

 

  
    

. 

 

From the above moment generating function, the expected value of the new record 

highs can be calculated as 
  2

12
kE Y






, and so 
  2

12
E L






. The constant K  in (2.17) 

is chosen such that the approximated value conforms to 

       2

0 0
1

1
2

LE L F u du u du





 

       . (2.22) 

   

Thus, 

 2

0 0
1

1

2 1

Ku

B u du e du



 

 
 

  , 

so a reasonable K  is 

 
 

1

2

2

1
K



 



, (2.23) 

   

and the Bowers approximation in (2.17) becomes 

 
1

2

2

11
( )

1

u

B u e



 










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(Bowers, Gerber, Hickmann, Jones and Nesbitt, 1997: 418-423). One advantage of the 

Bowers approximation over the De Vylder approximation is that it requires only the 

first two moments of the claim amounts distribution. 

 

2.4.3 The Pollaczek-Khinchin Approximation 

This algorithm only requires the first moment of the claim amounts 

distribution, and the method is based on a Monte Carlo simulation using (2.21). To 

obtain  1 LF u  in (2.21), the density Yf  is first defined as in (2.19) and the number of 

new record highs N  is generated with a density as in (2.20). Next, a sequence of new 

record highs  1 2, , , NY Y Y  with Yf  is generated. Let 1 2 NL Y Y Y     and define 

indicator Z  as 

 
0 ; ,

1 ; ,

L u
Z

L u


 


 (2.24) 

   

where    E Z u . Repeat this process n times, so we have 1 2, , , nZ Z Z  and 

1

/
n

i

i

Z Z n


  converges to  u  as n  becomes large. The algorithm for computing 

the approximation of the ruin probability can be presented as follows: 

1) Assume XF  is known, then obtain the density Yf  from 

    11 /Y Xf y F y     . 

2) Set the number of iterations n  to be some large number, e.g. 10,000 or 

50,000. Generate , 1,2, ,iN i n  from  Geometric q , where  / 1q    , and set 

it to be the number of new record highs. 

3) Generate 
i

jY , for 1,2, ,i n , 1,2, , ij N , from the density Yf  in step 

1 and obtain 1 ...
i

i i

i NL Y Y   . 

4) For each i , if iL u , then 1iZ  , otherwise 0iZ  . 
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5) Calculate 
1

/
n

i

i

Z Z n


 . 

6) Increase the number of iterations n  by 5,000 or 10,000 and repeat steps 1 

to 5 until Z  remains constant. 

The above algorithm describes the steps for the Pollaczek-Khinchin 

approximation denoted by  PK u Z  . One difficulty with this method is at the step 

of simulating  1 2, , ,
i

i i i

NY Y Y  with density Yf . For example, when the claim amounts 

distribution is  ,Gamma    with shape parameter   as an integer, the density Yf  

can be derived as the density of a mixture of   gamma distributions with equal 

weights 1/ , scale parameter  , and shape parameters  1,2, , . However, when 

shape parameter   is non-integer, to simulate the amount of each new record high 

 1 2, , ,
i

i i i

NY Y Y  with Yf  is complicated.  

In this study, a simple algorithm to approximate  u  based on the amount of 

each new record high  1 2, , ,
i

i i i

NY Y Y  is proposed (see Chapter 4). 

 

2.5 The Minimum Initial Capital 

 

The minimum initial capital is defined in Pairote Sattayatham, Kiat Sangaroon 

and Watcharin Klongdee (2013) as follows. 

Definition 1 Let   , 0U t t   be a surplus process driven by the compound 

Poisson claims process   , 0S t t   and 0c   be the premium rate. For any  0,1

, let 0u   be the initial capital. If  u  , then u  is referred to as an acceptable 

initial capital level corresponding to    , , , 0c S t t  . In particular, if 

   *

0
min :
u

u u u  


    

exists, 
*u  is called the minimum initial capital corresponding to    , , , 0c S t t  . 
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 In this study, an approximation method for computing the minimum initial 

capital *u  is proposed (see Chapter 4). 

 



 

CHAPTER 3 

 

THE ALTERNATIVE GAMMA-EXPONENTIATED  

WEIBULL DISTRIBUTION 

In this chapter, the new distribution, namely the alternative gamma-

exponentiated Weibull (AGEW) distribution, is obtained by mixing the exponentiated 

Weibull and gamma distributions. Moreover, its basic structural properties such as 

distribution function, density function, moments, sub-models, and parameter 

estimation with the maximum likelihood estimator (MLE) method are presented. 

 

3.1 The Distribution Function and the Probability Density Function 

 

Theorem 3.1 Let X  be a random variable of the AGEW distribution with parameters 

, ,   , and  . The cdf of X is defined by 

  
  

 

, log 1 1 v
F x


 



   
 




, (3.1) 

   

where  x
v e




 , 0x  , parameters , , , 0     , and  ,  is the lower incomplete 

gamma function. 

Proof 

We can obtain the cdf of X  by inserting  G x  from equation (2.2) into 

equation (2.5). Hence, the cdf of the AGEW distribution can be written as 
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 
 

 

  
 

log 1 1

1

0

1
,

, log 1 1
.

v

tF x t e dt

v









 



     
 



   
 





 

Theorem 3.2 Let X  be a random variable of the AGEW distribution with parameters 

, ,   , and  . The pdf of X is given by 

  
 

    
1

11 1 log 1 1f x x v v v
 

 




      
 

, (3.2) 

   

where  x
v e




  , 0x  , and parameters , , , 0     . 

Proof 

We can obtain the pdf of X  by inserting  g x  from equation (2.1) into 

equation (2.6), and so, the pdf of the AGEW distribution becomes  

 
 

    

 
    

1
11

1
11

1
log 1 1 1 ,

1 log 1 1 .

f x v x v v

x v v v


  

 
 














     
 

     
 

 

Since 0x   and parameters , , , 0     , then  x
v e




  is between 0 and 1, 

 
1

0 1 1v


   , 

  log 1 1 0v


    . 

Thus,   0f x   . If we let   log 1 1z v


    , then we can write 

 
 

    

 

1
11

0 0

1

0

1 log 1 1

1
,

1.

z

f x dx x v v v dx

z e dz

 
 









  




 

     
 






 

  

By the above properties, equation (3.2) is the pdf of the AGEW distribution. 
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Theorem 3.3 Let  
1

2sa s


  , 
0, 0

m

mb a , and  , ,

10

1
1

m

s m k s k m

k

b m k s a b
sa





      for 

positive integers s  and m . Let X  be a random variable of the AGEW distribution 

with positive parameters , ,   , and  . When   is a positive integer, the pdf of X  

can be defined as the linear combination of EW density functions as 

   
1

, ,

0 0

( ) ; , ,s m

m s

f x c g x s m


    
 

 

   , (3.3) 

   

where 
   

,

, ,

1 s m

s m

b
c

m s m




 

 
  

   
 and  g   is the pdf of EW, as defined in 

equation (2.1). 

Proof 

Let  1w v


  , then the pdf in equation (3.2) can be rewritten as 

 
   

111( ) 1 log 1f x x v v w






     
. 

By using the power series  
1

0

log 1 ,
1

i

i

w
w

i





  


  we can obtain  

 
 

 
 

 
 

1
1

11

0

1
1

11

1

1
2

11

0

( ) 1 ,
1

1 ,
1

1 .
2

i

i

i

i

s

s

w
f x x v v

i

w
x v v w

i

w
x v v w

s































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By applying the binomial theorem, when   is a positive integer, we can write  
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  , and consider the result on a power series raised to a positive 

integer (Gradshteyn and Ryzhik, 2000: 17)  
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 and  g   is the pdf of EW, as defined in 

equation (2.1).  

To show the various of shapes of this distribution, some specified parameters 

of the AGEW distribution and their density functions are provided in Figure 3.1: (a) 

fixed parameters 4, 0.5, 1.5      and varied parameter  ; and (b) fixed 
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parameter 4   and varied parameters ,    and  . Hence, we can see that the 

AGEW distribution is suitable for fitting to various shapes of data. 

 

  (a)  (b)

 

Figure 3.1 The density function of the AGEW distribution. 

 

3.2 Moments for the AGEW distribution 
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Proof  

Let  * * *, ,Y EW     be a random variable with a density function as in 

equation (2.1). We let  * * * *, ,k     be the 
thk  moment of Y  that corresponds to 

 * * *, ,   . When   is a positive integer, we can apply the definition of the moment 

to the linear combination of the EW density function in Theorem 3.3 such that 
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Choudhury (2005) derived  * * * *, ,k     when 
* is a positive integer as 
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Therefore, we can obtain the moment of AGEW distribution as  
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where   and   are positive integers. The proof of Theorem 3.4 is complete. 

 

From Theorem 3.4, we can derive the expected value and the variance of the 

AGEW distribution as 
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where   and   are positive integers. 

 

3.3 The Sub-models 

 

If we let parameter   in equation (3.1) be 1, then the cdf of the AGEW 

distribution defined as in equation (2.2) can be written as 
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In the same fashion, we can obtain some of the sub-models of the AGEW 

distribution, as shown in Table 3.1. 

 

Table 3.1 The sub-models table for the AGEW distribution. 

Distribution 
parameters 
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The AGEW distribution includes Weibull and gamma distributions in its sub-

models, both of which are popular in claims modeling. Hence, it is of interest to use 

this model to fit claim amounts data from insurance companies. 

 

3.4 Parameter Estimation 

 

In this subsection, we presume that the data with sample size n  are drawn 

from an AGEW distributed population, and that  , , ,
T

      is the parameter 

vector of the distribution. Subsequently, the likelihood function of AGEW distribution 

is given by
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 is a digamma function. The maximum likelihood 

estimator  ˆ ˆˆ ˆ ˆ, , ,
T

      is the solution to the above score equations which they are 

not in closed form, but they can be calculated using different Barzilai-Borwein (BB) 

steplengths from the BB package included in the R statistical software, as discussed 

by Varadhan and Gilbert (2009). 

 

3.5 Application of the Proposed Distribution 

 

 To measure the superiority of the AGEW distribution over its sub-models, the 

AGEW model and its sub-models were fitted to 363 real-life claim datasets of motor 

insurance collected from five car dealers. The fitness of the AGEW model was 

compared with its sub-models: gamma, Weibull, and EW using a graphical approach. 

The comparison of the estimated pdfs with real-life data as a histogram is presented in 

Figure 3.2.  However, we can see that it is not easy to detect any differences in these 

graphs, so the discrepancy distribution of each estimated model was compared with 

real-life data using the Kolmogorov-Smirnov (K-S) method and also by considering the 

mean squared errors (MSEs) of the distributions as 

   
2

1

ˆ
n

i i

i

F x F x

MSE
n



 
 




 , 



30 

with n  sample size data, and where 1 2, , , nx x x  are observed, ( )F x  is the value of 

the  theoretical cdf, and the empirical cdf ˆ ( )F x  is the fraction of observations less 

than or equal to x . The maximum likelihood estimates of the parameters, K-S 

statistics, and corresponding p-values for the fitted models and the MSEs are shown in 

Table 3.2. The K-S test showed that only the EW and AGEW distributions were 

accepted as the model at the 0.05 significance level. The MSE verified that the AGEW 

distribution with the lowest MSE was superior to the gamma and Weibull sub-

distributions. Both AGEW and EW gave similar MSE values, but the AGEW 

distribution was chosen since it had a slightly lower MSE than EW when modeling the 

claim amounts distribution. 

 

Figure 3.2 The pdfs of the distributions with real-life claim amounts data. 
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Table 3.2 Maximum likelihood estimates, K-S statistics with corresponding p-values, 

and MSEs for the claim amounts data. 

Fitted Distribution         K-S p-value MSE 

Gamma 0.9169 - - 0.0467 0.1184 0.0001 0.004378 

Weibull - - 0.8721 0.0557 0.0927 0.0039 0.003167 

EW - 22.6383 0.3014 6.2811 0.0300 0.8998 0.000175 

AGEW 0.6242 33.4948 0.2966 5.5117 0.0293 0.9140 0.000170 

 

 



 

CHAPTER 4 

 

THE PROPOSED APPROXIMATION 

In this chapter, the Pollaczek-Khinchin approximation is modified in 

Subsection 2.4.3 and a new algorithm is presented without using density Yf  for 

approximating the ruin probability. From the idea of the proposed approximation of 

the ruin probability, a new algorithm to compute the approximation of the minimum 

initial capital 
*u  is also proposed and discussed in Section 2.5.  

 

4.1 The Proposed Modified Ruin Probability Approximation 

 

From Subsection 2.4.3, the Pollaczek-Khinchin approximation is based on the 

idea of generating the number of new record highs N  from  Geometric q  where 

 / 1q     and 0   is the relative security loading. Next, the sequence of new 

record highs  1 2, , , NY Y Y  is generated using density yf  as in (2.19), and the maximal 

aggregate loss 1 2 NL Y Y Y     is computed. The approximation of the ruin 

probability    Pru L u   , where u  is the initial capital, is computed by repeating 

this process. However, simulating the amount of each new record highs  1 2, , , NY Y Y  

with yf   is complicated. Thus, a new simpler algorithm to approximate  u  without 

using density yf  is presented. 

We represent the timing of claims in the form of 1 ... ,n nT W W    

1,2,3, ,n   and nW  is the time difference between consecutive claims nT  and 1nT  . 

For the Poisson claims number process with intensity 0  , the sequence of time 
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difference between consecutive claims  1, 1,2,3,n n nW T T n    is a sequence of 

i.i.d. random variables with  Expo   using the Poisson distribution property. 

To simulate the amount of the first new record high 1Y  in (2.17), we generate 

the time difference between consecutive claims  1 2, ,W W  and the claim amount 

random variables  1 2, ,X X . We compute the timing of claims 1 ...j jT W W    and 

the value of process   S t ct , for 
1 2, ,t T T , until the process   S t ct  reaches 

above the zero level for the first time.  

However, it is possible that the process   ,S t ct  which computes forms 

 1 2, ,W W  and  1 2, , ,X X  does not reach above the zero level at any time t . To 

mitigate this, we set a large positive integer D  to be the limit on the number of 

simulated claims; the constant D  also refers to the number of elements to truncate. 

Let DT  be the timing of the claim that corresponds to D . When the process 

  ;0 DS t ct t T    reaches above the zero level at least once, then let 1,DY  be the 

value of the process   ;0 DS t ct t T    that reaches above zero for the first time. 

 

Theorem 4.1 If the number of truncated elements D  is large, then 1,DY  converges in 

distribution to the first order of new record highs 1Y . 

Proof 

 Let 
1,DYF  and 

1YF  be distribution functions of 1,DY  and 1Y , respectively, then  

        
1, 1,Pr Pr 0 0, 0

DY D DF y Y y S t ct y S t ct for some t T          , 

for some 0y  .  When the number of truncated elements D , it is also obvious 

that the time at which the thD  claim occurred 
DT  . Thus, 
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      

    

    
 

1,

1

lim lim Pr 0 0, 0 ,

Pr 0 0, 0 ,

Pr 0 0, 0 ,

.

DY D
D D

Y

F y S t ct y S t ct for some t T

S t ct y S t ct for some t

S t ct y S t ct for some t

F y

 
       

        

      



 

From Theorem 4.1, we can approximate 1Y  by 1,DY . The sequence of new 

record highs  1 2, , , NY Y Y  is an i.i.d. sequence of random variables, and so ,i DY  

converges in distribution to iY , for 2,3,...,i N , when D  is large. To simulate the 

amount of each new record high  1 2, , ,
i

i i i

NY Y Y  for the thi  loop, generate the time 

difference between consecutive claims  1 2, , , DW W W  from i.i.d.  Exp   and the 

claim amount random variables  1 2, , , DX X X  with XF . We compute the timings of 

the claims  1 2, , , DT T T  from 1 ...j jT W W    and let 1,

i

DY  be the value of the 

process   ;0 DS t ct t T    that reaches above zero for the first time. If the process 

  S t ct  does not reach above zero for all 0 Dt T  , then repeatedly generate the 

timings of the claims and the claim amount random variables until 1,

i

DY  occurs. We 

approximate 1

iY  by 1,

i

DY  and repeat this process until the values  2, 3, ,, , ,
i

i i i

D D N DY Y Y  

that approximate  2 3, , ,
i

i i i

NY Y Y  are obtained. In a real-life situation where the claim 

amounts distribution XF  is unknown, XF  can be approximated based on the real-life 

claim amounts data. The proposed algorithm to obtain an approximation of the ruin 

probability is as follows: 

1) Approximate XF  based on real-life data. 

2) Set the number of iterations n  and number of truncated elements D  to be 

some large number, e.g. 10,000 or 50,000. Generate , 1,2, ,iN i n  from 

 Geometric q , where  / 1q    , and set them to be the number of new record 

highs. 



35 

3) Generate sequence  1 2, , , DW W W  from i.i.d.  Exp   and 

 1 2, , , DX X X  with XF . Let 1 ...j jT W W    and 1 ...j jS X X    be the timings 

of the claims and the values of the claims process, respectively. Compute the value of 

the process   ;0 DS t ct t T    using j j jV S cT   , for 1,2, ,j D . 

4) If 0jV   for some 1,2, ,j D , then let 1,

i

DY  be the first jV  above zero, 

else repeat step 3. 

5) Obtain the amount of 2, 3, ,{ , ,..., }
i

i i i

D D N DY Y Y  by repeating steps 2 to 4 and let 

, 1, ,...
i

i i

i D D N DL Y Y   . 

6) For each i , if ,i DL u , then 1iZ  , otherwise 0iZ  . 

7) Calculate 
1

/
n

i

i

Z Z n


 . 

8) Increase n  and D  of 5,000 or 10,000, and repeat steps 1 to 5 until Z  

remains constant. 

In this study, the approximation  M u Z   is proposed to approximate 

 iE Z   ,i DPr L u . From Theorem 4.1 and the fact that  1 2, , ,
i

i i i

NY Y Y  is a 

sequence of i.i.d. random variables,  1, 2, ,, , ,
i

i i i

D D N DY Y Y  converges in distribution to 

 1 2, , ,
i

i i i

NY Y Y when D  is large, so that    , 1, ,...
i

i i

i D D N DL u Y YPr Pr u      

converges to    1 ...
i

i i

NY YPr uu    . Thus,  M u  converges to  u  when n  

and D  are large. 

 

4.2 The Proposed Minimum Initial Capital Approximation 

 

In this subsection, the algorithm to compute the minimum initial capital 

  *

0
min :
u

u u u  


   for any acceptable levels 0 1   is proposed. From (2.21), 

the ruin probability is monotone non-increasing with initial capital u  and 
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   * *Pru L u     , where L  is the maximal aggregate loss. For discussing the 

proposed minimum initial capital approximation, we state Lemma 4.1 and Theorem 

4.2 are stated as follows. 

 

Lemma 4.1 Let non-ruin probability    1u u   , then the transformation 

through function  g z  is defined for any probability 0 1z   by    1g z z . We 

obtain the first derivative of g  as 

   
  

1

1

1d
g z z

dz z


 




  


. 

Proof 

Let  1y z  iff  y z  , then  y dy dz   and 

    1

1 1dy

dz y z   
 

 
. 

 

Theorem 4.2 Let  1 2, ,L L  be a sequence of maximal aggregate loss with each 

, 1,2, ,jL j m  being independent random variables and distributed according to 

non-ruin probability    1u u   . Let 
 1m

L
  

 be the  1
th

m   order statistic 

based on  1 2, , , mL L L  and  / 1    , where 0   is the relative security 

loading. Therefore, 

    

 
*

21
*

1
0,

d

m
m L u W N

u




 


  

 
  

   
  

. 

Proof 

Suppose the sequence of maximal aggregate loss 
1 2, , , mL L L consists of i.i.d. 

continuous random variables from a distribution with non-ruin probability  . Let 

 mZ u  be a random variable defined for positive initial capital u  by 
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   
1

1 m

m i

i

Z u Z u
m 

  , 

 

where 

 
1 ; ,

0 ; .

i

i

i

L u
Z u

L u


 


, 

Subsequently,  iZ u  has the expectation      Pri iE Z u L u u      and 

the variance      2 1u u u      , then by the central limit theorem, 

         0, 1
d

mm Z u u W N u u       . 

By Lemma 4.1, using the Delta method, 

     
   

   
1 1

1

1
0,

d

m

u u
m Z u u W N

u

 
  

  

 



         
 

, 

and, by replacing u  with the minimum initial capital 
*u , we obtain 

  
 

 
1 * *

*

1
0,

d

mm Z u u W N
u

 



 





 

    
   

 

. 

Now   1

mZ u
 is a random variable that lies between the order  100 1 1

st

     

and  100 1
th

  sample quantile that can be written using order statistic notation as 

 [ 1 ]m
L


. In fact, 

    
. .

1

1
0

a s

mm
L Z u




  
  . 

Hence, it follows that  

    

 
*

21
*

1
0,

d

m
m L u W N

u




 


  

 
  

   
  

, 

and the proof of Theorem 4.2 is complete. 
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Our proposed approximation of the minimum initial capital *u  is based on the 

idea of generating the number of new record highs N  from  Geometric q , where 

 / 1q    . Next, the sequence  1, 2, ,, , ,D D N DY Y Y  is generated with the algorithm 

as in Subsection 4.1 when the number of truncated element D   is large and the 

sequence  1, 2, ,, , ,D D N DY Y Y  converges to the sequence of new record highs

 1 2, , , NY Y Y  . We compute the maximal aggregate loss 1, 2, ,D D N DL Y Y Y    , 

and by repeating this process m  times, we obtain the sequence of maximal aggregate 

loss  1 2, , , mL L L . From Theorem 4.2, the  1
th

m   order statistic based on 

 1 2, , , mL L L  defined by 
 1m

L
  

 converges to *u  when m  is large. For accuracy, 

we repeat the above process n  times to obtain 
      1 ,1 1 ,2 1 ,

, , ,
m m m n

L L L
              

. 

Thus, the estimator 
 1 ,

1

/
n

m i
i

u L n   


   converges to *u  when n  and m  are large. 

The algorithm is as follows: 

1) Approximate XF  based on real-life data. 

2) Set the numbers of iterations ,n m , and the number of truncated elements 

D  to be some large numbers e.g. 5,000 or 10,000. Generate , 1,2, ,iN i n  from 

 Geometric q , where  / 1q    , and set them to be the number of new record 

highs. 

3) Generate sequence  1 2, , , DW W W  from i.i.d.  Exp   and 

 1 2, , , DX X X  with XF . Let 1 ...j jT W W    and 1 ...j jS X X    be the timing of 

claims and values of the claims process, respectively. Compute the value of the 

process   ;0 DS t ct t T    using j j jV S cT   , for 1,2, , .j D  

4) If 0jV   for some 1,2, ,j D , then let 1,

i

DY  be the first jV  above zero, 

else repeat step 3. 
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5) Obtain the amount of 2, 3, ,{ , ,..., }
i

i i i

D D N DY Y Y  by repeating steps 2 to 4 and let 

, 1, ,...
i

i i

i D D N DL Y Y   . 

6) Repeat steps 2 to 6 m  times.  

7) Let ju  be the  1
th

m     smallest observation in 
1 2, , ,, ,...,

mN D N D N DL L L . 

8) Repeat steps 2 to 7 n  times.  

9) Estimate *u  by 
1

/
n

j

j

u u n 



  . 

10) Increase ,n m , and D  by 500 or 1,000, and repeat steps 2 to 9 until u  

remains constant. 

From previous section,  1, 2, ,, , ,
i

i i i

D D N DY Y Y  in step 5 converges in distribution 

to the sequence of new record highs  1 2, , ,
i

i i i

NY Y Y  for the thi  loop and when D  is 

large, so that their quantiles coincide. Moreover, Theorem 4.2 shows that 
ju  

converges in distribution to 
*u   when m  is large. Thus, the proposed approximated  

1

/
n

j

j

u u n 



   converges to 
*u  as ,n m , and D  become large.  

 



 

CHAPTER 5 

 

SIMULATION STUDY AND APPLICATION WITH REAL DATA 

 In this chapter, a report on the performance of the algorithm proposed in the 

previous chapter tested using a simulation study is presented. The proposed 

approximation was also applied to real-life data from an insurance company, a record 

of which is included after the simulation study. 

 

5.1 Simulation Study for the Proposed Ruin Probability Approximation 

 

 To measure the performance of the proposed algorithm in Section 4.1, a 

numerical evaluation was used. From Section 2.3, the surplus process is based on the 

Poisson claims number process with intensity 0  , the initial capital 0u  , and the 

security loading 0   can be used to compute the exact ruin probability in the form  

 
1

exp
1 1

u
u




 

 
  

  
 

when the claim amounts distribution is  Expo   . Moreover, it can be derived as 

 
 

 

 

 
1 2

2 2

2 1 1 2

2 2

1 2 2 1

u uu e e      


     

  
   

   

, 

where    2

1 2 4 / 2c c c        ,    2

2 2 4 / 2c c c        , and 

the premium rate  1 2 /c      when the claim amounts distribution is

 2,Gamma  . Thus, the claim amounts distributions  Expo   and  2,Gamma  , 

whose exact ruin probabilities are obtained when 1,2  , were considered. Besides 

the proposed approximation  M u
 in Section 4.1, three other approximations were 
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computed: the De Vylder approximation  DV u , the Bowers approximation  B u , 

and the Pollaczek-Khinchin approximation  PK u . Approximated values from the 

proposed method were compared with the previously considered methods using their 

maximum absolute errors defined as    ˆmax u u   for exact ruin probability 

 u and all considered approximations  ˆ u . Moreover, all approximated values 

were also compared with the Lundberg upper bound of ruin probability in (2.14) as  

  Ruu e  , 

for any initial capital 0u  , and where the adjustment coefficient R  is defined as in 

(2.15), whereby all approximated values should be lower than the Lundberg upper 

bound. 

The intensity of the number of claims process was set to 1  . The exact ruin 

probability  u  is zero when both the security loading   and the initial capital u  

are large, so only the results with 0.1,0.3,0.5   and 0,5,10, ,30u  were 

considered. In the simulation, the Pollaczek-Khinchin approximated  PK u  was 

computed with the number of iterations set at 500,000n  , and the proposed 

approximation  M u  was computed with the number of iterations set at 500,000n   

and the number of truncated elements set at 100D  . The exact and all approximated 

ruin probability are shown in Tables 5.1-5.2. 
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Table 5.1 The exact ruin probability  u , the Lundberg upper bound 
Rue , the 

Pollaczek-Khinchin approximated ruin probability  PK u , and the 

proposed approximated ruin probability  M u  for claim amounts 

distribution  Expo  . 

     R  u  u  Rue   PK u   M u  

1 0.1 0.0909 0 0.9091 1.0000 0.9092 0.9092 

5 0.5770 0.6347 0.5774 0.5782 

10 0.3663 0.4029 0.3670 0.3659 

15 0.2325 0.2557 0.2326 0.2333 

20 0.1476 0.1623 0.1485 0.1472 

25 0.0937 0.1030 0.0936 0.0939 

30 0.0595 0.0654 0.0597 0.0594 

 0.3 0.2308 0 0.7692 1.0000 0.7691 0.7697 

5 0.2426 0.3154 0.2424 0.2423 

10 0.0765 0.0995 0.0764 0.0771 

15 0.0241 0.0314 0.0243 0.0239 

20 0.0076 0.0099 0.0075 0.0078 

25 0.0024 0.0031 0.0024 0.0024 

30 0.0000 0.0000 0.0000 0.0000 

0.5 

 

0.3333 

 

0 0.6667 1.0000 0.6656 0.6677 

5 0.1259
 

0.1889 0.1262
 

0.1250
 

10 0.0238
 

0.0357 0.0239
 

0.0240
 

15 0.0045
 

0.0067 0.0045
 

0.0045
 

20 0.0008
 

0.0013 0.0008
 

0.0009
 

25 0.0002
 

0.0002 0.0002
 

0.0002
 

30 0.0000 0.0000 0.0000 0.0000 
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Table 5.1  (Continued)      

        

     R  u  u  Rue   PK u   M u  

2 0.1 0.1818 0 0.9091 1.0000 0.9092 0.9095 

5 0.3663 0.4029 0.3672 0.3653 

10 0.1476 0.1623 0.1482 0.1478 

15 0.0595 0.0654 0.0592 0.0594 

20 0.0240 0.0263 0.0238 0.0239 

25 0.0097 0.0106 0.0097 0.0095 

30 0.0039 0.0043 0.0040 0.0040 

0.3 0.4615 0 0.7692 1.0000 0.7691 0.7696 

5 0.0765 0.0995 0.0760 0.0764 

10 0.0076 0.0099 0.0076 0.0076 

15 0.0008 0.0010 0.0008 0.0008 

20 0.0001 0.0001 0.0001 0.0001 

25 0.0000 0.0000 0.0000 0.0000 

30 0.0000 0.0000 0.0000 0.0000 

 0.5 0.6667 0 0.6667 1.0000 0.6671 0.6665 

5 0.0238 0.0357 0.0236 0.0237 

10 0.0008 0.0013 0.0009 0.0008 

15 0.0000 0.0000 0.0000 0.0000 

20 0.0000 0.0000 0.0000 0.0000 

25 0.0000 0.0000 0.0000 0.0000 

30 0.0000 0.0000 0.0000 0.0000 

Maximum Absolute Error 0.0011 0.0013 
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Note: For the exponential, claim amounts distribution,  DV u  and  B u  are 

equal to the exact ruin probability  u . Hence, the value of  DV u  and  B u   are 

not shown in Tables 5.1.   

The results shown in Table 5.1 show that  PK u  and  M u  were close to 

the exact ruin probability  u  and none of them were higher than Rue , which 

means that both of them gave reasonable values. 

 

Table 5.2 The exact ruin probability  u , the Lundberg upper bound 
Rue , the De 

Vylder approximated ruin probability  DV u , the Bowers approximated 

ruin probability  B u , the Pollaczek-Khinchin approximated ruin 

probability  PK u , and the proposed approximated ruin probability 

 M u  for claim amounts distribution  2,Gamma  . 

     R  u  u  Rue   DV u
 

 B u
 

 PK u   M u  

1 0.1 0.0613
 

0 0.9091 1.0000 0.9184 0.9091 0.9090 0.9091 

5 0.6767 0.7360 0.6762 0.6714 0.6237 0.6773 

   10 0.4982 0.5417 0.4979 0.4959 0.4391 0.4991 

15 0.3668 0.3987 0.3666 0.3663 0.3224 0.3679 

20 0.2700 0.2935 0.2699 0.2705 0.2420 0.2703 

25 0.1988 0.2160 0.1987 0.1998 0.1849 0.1995 

30 0.1463 0.1590 0.1463 0.1476 0.1433 0.1467 

0.3 0.1584
 

0 0.7692 1.0000 0.7895 0.7692 0.7702 0.7692 

5 0.3600 0.4529 0.3585 0.3564 0.3204 0.3600 

10 0.1631 0.2052 0.1628 0.1652 0.1511 0.1626 

15 0.0739 0.0929 0.0739 0.0765 0.0793 0.0736 

20 0.0335 0.0421 0.0336 0.0355 0.0448* 0.0332 

25 0.0152 0.0191 0.0152 0.0164 0.0258* 0.0154 

30 0.0069 0.0086 0.0069 0.0076 0.0159* 0.0069 
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Table 5.2  (Continued) 

 

     R  u  u  Rue   DV u
 

 B u
 

 PK u   M u  

 

0.5 0.2324 0 0.6667 1.0000 0.6923 0.6667 0.6680 0.6667 

5 0.2199 0.3129 0.2184 0.2195 0.1971 0.2191 

10 0.0688 0.0979 0.0689 0.0722 0.0710 0.0692 

15 0.0215 0.0306 0.0217 0.0238 0.0301 0.0213 

20 0.0067 0.0096 0.0069 0.0078 0.0142* 0.0067 

25 0.0021 0.0030 0.0022 0.0026 0.0070* 0.0020 

30 0.0007 0.0009 0.0007 0.0008 0.0038* 0.0006 

2 0.1 0.1225
 

0 0.9091 1.0000 0.9184 0.9091 0.9077 0.9091 

5 0.4982 0.5420 0.4979 0.4959 0.4408 0.4986 

10 0.2700 0.2938 0.2699 0.2705 0.2408 0.2710 

15 0.1463 0.1592 0.1463 0.1476 0.1424 0.1472 

20 0.0793 0.0863 0.0793 0.0805 0.0889* 0.0800 

25 0.0430 0.0468 0.0430 0.0439 0.0574* 0.0432 

30 0.0233 0.0253 0.0233 0.0240 0.0381* 0.0236 

 0.3 0.3168
 

0 0.7692 1.0000 0.7895 0.7692 0.7687 0.7684 

5 0.1631 0.2052 0.1628 0.1652 0.1506 0.1638 

10 0.0335 0.0421 0.0336 0.0355 0.0444 0.0334 

15 0.0069 0.0086 0.0069 0.0076 0.0161* 0.0066 

20 0.0014 0.0018 0.0014 0.0016 0.0064* 0.0014 

25 0.0003 0.0004 0.0003 0.0004 0.0028* 0.0003 

30 0.0001 0.0001 0.0001 0.0001 0.0014* 0.0001 

0.5 0.4648 0 0.6667 1.0000 0.6923 0.6667 0.6662 0.6663 

5 0.0688 0.0979 0.0689 0.0722 0.0713 0.0689 

10 0.0067 0.0096 0.0069 0.0078 0.0143* 0.0068 

   15 0.0007 0.0009 0.0007 0.0008 0.0037* 0.0006 

20 0.0001 0.0001 0.0001 0.0001 0.0012* 0.0001 

25 0.0000 0.0000 0.0000 0.0000 0.0004* 0.0000 

30 0.0000 0.0000 0.0000 0.0000 0.0001* 0.0000 

Maximum Absolute Error 0.0256 0.0053 0.0591 0.0011 

Note:  *the approximation exceeds the Lundberg upper bound 
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The maximum absolute error results in Table 5.2 show that when the claim 

amounts distribution was  2,Gamma  ,  M u  performed the best in terms of 

overall deviation from the exact value with the maximum absolute error 0.0011.   

Moreover, all of the values of  M u  were less than Rue , whereas most values of 

 PK u  were higher than Rue  when the security loading   was large. The value of 

 DV u  produced a high maximum absolute error because there were more 

derivations between   0  and  0DV . Overall, both  M u  and  DV u  gave 

similar results. However, in the case where the first three moments of claim amounts 

distribution did not exist,  DV u  was undefined. 

 

5.2 Simulation Study for the Proposed Minimum Initial Capital 

Approximation 

 

To evaluate the performance for the approximation of the minimum initial 

capital, u  proposed in Section 4.2, a numerical study was carried out. The claim 

amounts distributions  1Expo ,  2Expo ,  2,1Gamma , and  2,2Gamma , where 

the  minimum initial capital 
*u  was obtained by setting (2.11) and (2.12) equal to the 

acceptable level  , were used. The Lundberg upper bound (2.14) and the fact that the 

ruin probability is a non-increasing function in u  means that the upper bound of the 

minimum initial capital can derived as follows: 

 

 
*

*

* ln
,

,
Ru

eu

u
R







 




 


 (5.1) 

   

where the adjustment coefficient R  is defined as in (2.15). If the simulation results 

show that the proposed estimate was greater than the upper bound for any cases, then 

the proposed estimator was considered not reasonable. The intensity of the number of 
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claims processes was set as 1  . The exact minimum initial capital *u   is close to 

zero when both of the security loading   and the acceptable level   are large, so only 

the results with 0.1,0.3,0.5   and 0.05,0.1,0.2  were considered. The 

approximation u  in Section 4.2 was computed after the numbers of iterations 

5,000, 1,000m n   and the number of truncated elements 100D   were completed. 

The exact minimum initial capital *u , the proposed estimator u , and the upper bound 

of the minimum initial capital ln / R  are shown in Table 5.3. 

 

Table 5.3  The minimum initial capital *u , the proposed estimator u , and the upper 

bound of the minimum initial capital ln / R  with the claim amounts 

distributions  1Expo ,  2Expo ,  2,1Gamma , and  2,2Gamma . 


 

 F x    
*u  u  ln / R  

0.1  1Expo  

0.0909R   

0.05 

0.10 

0.20 

31.9046 31.5599 32.9531 

24.2800 24.6094 25.3284 

16.6554 16.0938 17.7038 

 2Expo  

0.1818R   

0.05 

0.10 

0.20 

15.9523 15.9683 16.4765 

12.1400 12.3779 12.6642 

8.3277 8.4085 8.8519 

 2,1Gamma  

0.0613R   

0.05 47.5332 47.7969 48.9090 

0.10 36.2167 36.5589 37.5926 

0.20 24.9003 24.3273 26.2761 

 2,2Gamma  

0.1225R   

0.05 23.7666 23.5672 24.4545 

0.10 18.1084 18.0899 18.7963 

0.20 12.4501 12.7812 13.1380 

0.3  1Expo  

0.2308R   

0.05 11.8446 11.8493 12.9815 

0.10 8.8410 8.8602 9.9779 

0.20 5.8373 5.8541 6.9742 

 2Expo  

0.4615R   

0.05 5.9223 5.8299 6.4908 

0.10 4.4205 4.3561 4.9889 

0.20 2.9187 2.9367 3.4871 
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Table 5.3  (Continued) 

 


 

 F x    
*u  u  

 2,1Gamma  

0.1584R   

0.05 17.4632 17.5061 18.9140 

0.10 13.0869 13.0808 14.5377 

0.20 8.7106 8.9683 10.1614 

 2,2Gamma  

0.3168R   

0.05 8.7316 8.6122 9.4570 

0.10 6.5435 6.6101 7.2689 

0.20 4.3553 4.4709 5.0807 

 1Expo  

0.3333R   

0.05 7.7708 7.9780 8.9881 

0.10 5.6914 5.5932 6.9084 

0.20 3.6119 3.5740 4.8288 

 2Expo  

0.6667R   

0.05 3.8854 3.9890 4.4934 

0.10 2.8457 2.7966 3.4537 

0.20 1.8060 1.7870 2.4140 

 2,1Gamma  

0.2324R   

0.05 

0.10 

0.20 

11.3745 

8.3920 

5.4092 

11.5783 12.8904 

8.1980 9.9079 

5.2827 6.9253 

 2,2Gamma  

0.4648R   

0.05 5.6872 5.7891 6.4452 

0.10 4.1960 4.0990 4.9539 

0.20 2.7046 2.6413 3.4626 

 

 From Table 5.3, we can see that the proposed estimator u  was close to the 

exact minimum initial capital 
*u  for all exponential and gamma claim amounts 

distributions considered. Moreover, all of the values u  were within the upper bound 

of the minimum initial capital. Thus, the proposed approximation u  is reasonable for 

computing the minimum initial capital. 

 

5.3 Application of the Proposed Approximation to Real-life Data 

 

In this section, the proposed approximation was applied to claims data from a 

motor insurance company. From a survey in 2013, the insurance company under 

consideration had an average of 13.1275 claims per day. As mentioned previously, it is 
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presumed that the number of claims follow a Poisson distribution with estimated 

parameter ˆ=13.1275 . From Section 3.5, the claim amounts distribution was fitted as 

AGEW with estimated parameters ˆ 0.6242,  ˆ 33.4948,  ˆ 0.2966  , and 

ˆ 5.5117  .  

 

5.3.1 The Ruin Probability Approximation 

Under the AGEW claim amounts distribution, the first three moments of the 

claim amounts distribution are complicated to define, and the De Vylder 

approximation and the Bowers approximation cannot be applied to this claim amounts 

data. However, it was possible to use the proposed ruin probability approximation 

method since it does not require the second and third moments of the claim amounts 

distribution. For premium rate c , as in equation (2.9), which depends on the expected 

value 
1   of the claim amounts distribution, the sample mean of the claim amounts 

data was use to estimate it. From equations (2.8) to (2.10), the ruin probability is 

monotone non-increasing with security loading   and initial capital u . Thus, the 

security loading 0.1,0.3,0.8   and the initial capital 0,10,20,30u   were set so that 

they gave an overview of the exact ruin probability. For an approximation based on 

simulation, the number of iterations were set at 500,000n   and the number of 

truncated elements at 100D  . The approximated ruin probability for this company is 

shown in Table 5.4. 

 It can be seen that the approximated ruin probabilities in Table 5.4 decrease when 

the security loading   and the initial capital u  increase, which is concordant with the 

theoretical ruin probability. Therefore, the approximated ruin probability for the claim 

amounts distribution under the AGEW model is reasonable.   
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Table 5.4 The approximate ruin probability with real-life data. 

  u (1,000 Baht)  M u  

0.1 0 0.9088 

10 0.8665 

20 0.8317 

30 0.8025 

0.3 0 0.7697 

10 0.6820 

20 0.6162 

30 0.5654 

0.8 0 0.5561 

10 0.4419 

20 0.3662 

30 0.3107 

 

5.3.2 The Minimum Initial Capital Approximation 

As well as setting the security loading 0.1,0.3,0.8   and the acceptable level 

0.0,0.10,  and 0.30  for the minimum initial capital approximation based on 

simulation, we set the number of iterations to 1,000n  ,  5,000m   and the number 

of truncated elements to 100D  . The approximated minimum initial capital for this 

company is shown in Table 5.5, from which we can see that when the security loading  

  and the acceptable level   are small, the minimum initial capital is large. These 

results are reasonable because if the premium and the acceptable risk are low, then the 

insurance company must reserve more initial capital to decrease the ruin probability.     
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Table 5.5 The approximate minimum initial capital with real-life data 

    u  (1,000 Baht) 

0.1 0.05 1,118.3910 

0.10 847.6619 

0.30 390.6305 

0.3 0.05 451.4544 

0.10 307.8866 

0.30 117.9063 

0.8 0.05 201.2936 

0.10 123.1191 

0.30 32.8554 

 

 

 



 

CHAPTER 6 

 

CONCLUSIONS 

6.1 Conclusions 

 

 We proposed a new distribution, the AGEW distribution, for modeling the 

claim amounts distribution of insurance companies. It was obtained by mixing gamma 

and EW distributions, and contains sub-models that are well-known: gamma and 

Weibull, and its basic mathematical properties such as distribution function, density 

function, and moments were determined. Moreover, the MLE method was applied to 

estimate its parameters and the fitness of the AGEW distribution was tested with a 

real-life dataset from an insurance company. We compared the AGEW distribution 

with its sub-models: gamma, Weibull, and EW, and the K-S statistic and MSE results 

in Table 3.1 show that the AGEW distribution provided a better fit than the gamma 

and Weibull distributions. Both AGEW and EW gave similar results, but the AGEW 

distribution was chosen since it had a slightly lower MSE than EW when modeling the 

claim amounts distribution. 

When the claim amounts distribution is exponential or closely related to it, the 

ruin probability over infinite time with a classical continuous time surplus process 

exists. However, for other claim amounts distributions, the approximate ruin 

probability is used. In this study, a new simple approximate ruin probability for use 

with any claim amounts distribution was proposed. The numerical studies showed that 

almost all of the approximated ruin probabilities by the proposed approximation were 

reasonable and close to the exact ruin probability. In some situations, the proposed 

method gave better approximated values than other previously reported 

approximation methods.  
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By application of the proposed ruin probability approximation, a method to 

find the approximate minimum initial capital for any claim amounts distribution was 

proposed. The numerical study showed that the proposed approximation was close to 

the exact minimum initial capital. Therefore, the proposed approximation is reasonable 

and useful for reserving the initial capital for managing the ruin probability of 

companies over infinite time since it was no larger than the given quantity. The results 

from Tables 5.6 and 5.7 also support these findings and show that the approximate 

ruin probabilities and minimum initial capital under for the claim amounts 

distributions with the AGEW model is more preferable.   

In summary, for applying the proposed procedure to real-life situations, the 

recommended procedure is as follows: 

1) Choose candidate distributions where the shape of the density function is 

fitted using a histogram of the real-life data. 

2) Estimate the parameters of each candidate distribution (the MLE method 

was used in this study). 

3) Test the candidate distributions with a goodness-of-fit test (such as the K-S 

test). If none of them are accepted, then other candidate distributions should be chosen 

and tested. 

4) If a number of candidate distributions are accepted, then they should be 

compared with a criterion such mean squared error (MSE) to determine which one has 

the best fit. 

5) Approximate the ruin probability and the minimum initial capital by using 

the proposed algorithm. 

 

6.2 Recommendations for Future Research 

 

A possible extension of this study could be to improve the AGEW distribution 

by replacing the EW distribution with the exponentiated Weibull Poisson distribution 

described by Percontini, Blas and Cordeiro (2013). Furthermore, it could be interesting 
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to extend the proposed approximation for the ruin probability and the minimum initial 

capital to situations where the surplus process is controlled by reinsurance or 

investment in a financial market.  
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Appendix 

 

R SYNTAX 

R Syntax for Calculate the Approximate Ruin Probability 

 

ap_ruin2_gamma=function (n,u,zeta,alpha,beta,lamda)  

{ 

 #This program aproximate ruin probability based on classic continuous 

 #surplus process which gamma(alpha,beta) claim amount 

 #u is initial surplus 

 #zeta is security loading 

 #n is number of simulation 

 

 q=zeta/(1+zeta) 

 N=rgeom(n,q) 

 L=rep(0,n)  

 Z=rep(0,n) 

 c=(1+zeta)*lamda*alpha/beta  

 

 for(i in 1:n){ 

 m=0 

 pre_Lmmc=0 

 while(m<N[i]){ 

  S=0 

  T=0 

  out=0 

  limit=0 

   while((out<=0)&(limit<=100)){ 

    S=S+rgamma(1,alpha,beta) 

    T=T+rexp(1,lamda) 

    limit=limit+1 

    out=S-c*T 

   } 

  pre_Lmmc=c(pre_Lmmc,out) 

  Lmmc=pre_Lmmc[pre_Lmmc>0] 

  m=length(Lmmc) 

 } 

 

  if(N[i]>0)(L[i]=sum(Lmmc)) 

  if(L[i]>u)(Z[i]=1) 

 } 
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 ruin=mean(Z) 

 return(ruin) 

} 

  

 

ap_ruin2_gamma(n=5000,u=0,zeta=0.1,alpha=1,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=5,zeta=0.1,alpha=1,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=10,zeta=0.1,alpha=1,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=15,zeta=0.1,alpha=1,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=20,zeta=0.1,alpha=1,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=25,zeta=0.1,alpha=1,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=30,zeta=0.1,alpha=1,beta=1,lamda=1) 

 

ap_ruin2_gamma(n=500000,u=0,zeta=0.1,alpha=1,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=5,zeta=0.1,alpha=1,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=10,zeta=0.1,alpha=1,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=15,zeta=0.1,alpha=1,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=20,zeta=0.1,alpha=1,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=25,zeta=0.1,alpha=1,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=30,zeta=0.1,alpha=1,beta=2,lamda=1) 

 

ap_ruin2_gamma(n=500000,u=0,zeta=0.1,alpha=2,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=5,zeta=0.1,alpha=2,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=10,zeta=0.1,alpha=2,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=15,zeta=0.1,alpha=2,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=20,zeta=0.1,alpha=2,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=25,zeta=0.1,alpha=2,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=30,zeta=0.1,alpha=2,beta=1,lamda=1) 

 

ap_ruin2_gamma(n=500000,u=0,zeta=0.1,alpha=2,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=5,zeta=0.1,alpha=2,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=10,zeta=0.1,alpha=2,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=15,zeta=0.1,alpha=2,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=20,zeta=0.1,alpha=2,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=25,zeta=0.1,alpha=2,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=30,zeta=0.1,alpha=2,beta=2,lamda=1) 

 

ap_ruin2_gamma(n=500000,u=0,zeta=0.3,alpha=1,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=5,zeta=0.3,alpha=1,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=10,zeta=0.3,alpha=1,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=15,zeta=0.3,alpha=1,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=20,zeta=0.3,alpha=1,beta=1,lamda=1) 
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ap_ruin2_gamma(n=500000,u=25,zeta=0.3,alpha=1,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=30,zeta=0.3,alpha=1,beta=1,lamda=1) 

 

ap_ruin2_gamma(n=500000,u=0,zeta=0.3,alpha=1,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=5,zeta=0.3,alpha=1,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=10,zeta=0.3,alpha=1,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=15,zeta=0.3,alpha=1,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=20,zeta=0.3,alpha=1,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=25,zeta=0.3,alpha=1,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=30,zeta=0.3,alpha=1,beta=2,lamda=1) 

 

ap_ruin2_gamma(n=500000,u=0,zeta=0.3,alpha=2,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=5,zeta=0.3,alpha=2,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=10,zeta=0.3,alpha=2,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=15,zeta=0.3,alpha=2,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=20,zeta=0.3,alpha=2,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=25,zeta=0.3,alpha=2,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=30,zeta=0.3,alpha=2,beta=1,lamda=1) 

 

ap_ruin2_gamma(n=500000,u=0,zeta=0.3,alpha=2,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=5,zeta=0.3,alpha=2,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=10,zeta=0.3,alpha=2,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=15,zeta=0.3,alpha=2,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=20,zeta=0.3,alpha=2,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=25,zeta=0.3,alpha=2,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=30,zeta=0.3,alpha=2,beta=2,lamda=1) 

 

ap_ruin2_gamma(n=500000,u=0,zeta=0.5,alpha=1,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=5,zeta=0.5,alpha=1,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=10,zeta=0.5,alpha=1,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=15,zeta=0.5,alpha=1,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=20,zeta=0.5,alpha=1,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=25,zeta=0.5,alpha=1,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=30,zeta=0.5,alpha=1,beta=1,lamda=1) 

 

ap_ruin2_gamma(n=500000,u=0,zeta=0.5,alpha=1,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=5,zeta=0.5,alpha=1,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=10,zeta=0.5,alpha=1,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=15,zeta=0.5,alpha=1,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=20,zeta=0.5,alpha=1,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=25,zeta=0.5,alpha=1,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=30,zeta=0.5,alpha=1,beta=2,lamda=1) 
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ap_ruin2_gamma(n=500000,u=0,zeta=0.5,alpha=2,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=5,zeta=0.5,alpha=2,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=10,zeta=0.5,alpha=2,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=15,zeta=0.5,alpha=2,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=20,zeta=0.5,alpha=2,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=25,zeta=0.5,alpha=2,beta=1,lamda=1) 

ap_ruin2_gamma(n=500000,u=30,zeta=0.5,alpha=2,beta=1,lamda=1) 

 

ap_ruin2_gamma(n=500000,u=0,zeta=0.5,alpha=2,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=5,zeta=0.5,alpha=2,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=10,zeta=0.5,alpha=2,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=15,zeta=0.5,alpha=2,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=20,zeta=0.5,alpha=2,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=25,zeta=0.5,alpha=2,beta=2,lamda=1) 

ap_ruin2_gamma(n=500000,u=30,zeta=0.5,alpha=2,beta=2,lamda=1) 

 

rgew=function (n,delta=1,alpha=1,beta=1,zeta=1)  

{ 

#Return random sample size n with Gamma Exponentiated Weibull distribution  

  x=rgamma(n,delta) 

  v=(log(1/(1-(1-exp(-x))^(1/alpha)))^(1/beta))/zeta 

  return(v)   

} 

 

 

delta=0.6242355 

alpha=33.4948214 

beta=0.2966394 

theta=5.5116698 

lamda=13.1275 

mean= 19.62752 

 

ap_ruin2_gew=function (n,u,zeta,delta,alpha,beta,theta,mean,lamda)  

{ 

 #This program aproximate ruin probability based on classic continuous 

 #surplus process which AGEW(delta,alpha,beta,theta) claim amount 

 #u is initial surplus 

 #zeta is security loading 

 #n is number of simulation 

 

 q=zeta/(1+zeta) 

 N=rgeom(n,q) 

 L=rep(0,n)  

 Z=rep(0,n) 
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 c=(1+zeta)*lamda*mean 

 

 for(i in 1:n){ 

 m=0 

 pre_Lmmc=0 

 while(m<N[i]){ 

  S=0 

  T=0 

  out=0 

  limit=0 

   while((out<=0)&(limit<=100)){ 

    S=S+rgew(1, delta,alpha,beta,theta) 

    T=T+rexp(1,lamda) 

    limit=limit+1 

    out=S-c*T 

   } 

  pre_Lmmc=c(pre_Lmmc,out) 

  Lmmc=pre_Lmmc[pre_Lmmc>0] 

  m=length(Lmmc) 

 } 

 

  if(N[i]>0)(L[i]=sum(Lmmc)) 

  if(L[i]>u)(Z[i]=1) 

 } 

 

 ruin=mean(Z) 

 return(ruin) 

} 

 

ap_ruin2_gew(n=500000,u=0,zeta=0.1,delta,alpha,beta,theta,mean=mean,lamda=lamda) 

ap_ruin2_gew(n=500000,u=10,zeta=0.1,delta,alpha,beta,theta,mean=mean,lamda=lamda) 

ap_ruin2_gew(n=500000,u=20,zeta=0.1,delta,alpha,beta,theta,mean=mean,lamda=lamda) 

ap_ruin2_gew(n=500000,u=30,zeta=0.1,delta,alpha,beta,theta,mean=mean,lamda=lamda) 

 

ap_ruin2_gew(n=500000,u=0,zeta=0.3,delta,alpha,beta,theta,mean=mean,lamda=lamda) 

ap_ruin2_gew(n=500000,u=10,zeta=0.3,delta,alpha,beta,theta,mean=mean,lamda=lamda) 

ap_ruin2_gew(n=500000,u=20,zeta=0.3,delta,alpha,beta,theta,mean=mean,lamda=lamda) 

ap_ruin2_gew(n=500000,u=30,zeta=0.3,delta,alpha,beta,theta,mean=mean,lamda=lamda) 

 

 

ap_ruin2_gew(n=500000,u=0,zeta=0.8,delta,alpha,beta,theta,mean=mean,lamda=lamda) 

ap_ruin2_gew(n=500000,u=10,zeta=0.8,delta,alpha,beta,theta,mean=mean,lamda=lamda) 

ap_ruin2_gew(n=500000,u=20,zeta=0.8,delta,alpha,beta,theta,mean=mean,lamda=lamda) 

ap_ruin2_gew(n=500000,u=30,zeta=0.8,delta,alpha,beta,theta,mean=mean,lamda=lamda)  
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R Syntax for Calculate the Approximate Initial Capital 

 

map_mic_gamma=function (m,n,a,zeta,lamda,eta,beta)  

{ 

 #Writed by Pawat Paksarnuwat 08/07/57 

 #This program aproximate mic based on classic continuous 

 #surplus process which gamma(eta,beta) claim amount 

 #u is initial surplus 

 #zeta is security loading 

 #m and n is number of simulation 

 

 u=rep(0,n) 

 q=zeta/(1+zeta) 

 N=rgeom(m,q) 

 L=rep(0,m)  

 Z=rep(0,m) 

 c=(1+zeta)*lamda*eta/beta  

 

 for(j in 1:n){ 

 for(i in 1:m){ 

 k=0 

 pre_Lmmc=0 

 while(k<N[i]){ 

  S=0 

  T=0 

  out=0 

  limit=0 

   while((out<=0)&(limit<=100)){ 

    S=S+rgamma(1,eta,beta) 

    T=T+rexp(1,lamda) 

    limit=limit+1 

    out=S-c*T 

   } 

  pre_Lmmc=c(pre_Lmmc,out) 

  Lmmc=pre_Lmmc[pre_Lmmc>0] 

  k=length(Lmmc) 

 } 

 if(N[i]>0)(L[i]=sum(Lmmc)) 

 } 

 u[j]=quantile(L,(1-a)) 

 } 

 

 mic=mean(u) 
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 return(mic) 

} 

 

map_mic_gamma(m=5000,n=1000,a=0.05,zeta=0.1,lamda=1,eta=1,beta=1)  

map_mic_gamma(m=5000,n=1000,a=0.1,zeta=0.1,lamda=1,eta=1,beta=1)  

map_mic_gamma(m=5000,n=1000,a=0.2,zeta=0.1,lamda=1,eta=1,beta=1)  

map_mic_gamma(m=5000,n=1000,a=0.05,zeta=0.1,lamda=1,eta=1,beta=2)  

map_mic_gamma(m=5000,n=1000,a=0.1,zeta=0.1,lamda=1,eta=1,beta=2)  

map_mic_gamma(m=5000,n=1000,a=0.2,zeta=0.1,lamda=1,eta=1,beta=2)  

map_mic_gamma(m=5000,n=1000,a=0.05,zeta=0.1,lamda=1,eta=2,beta=1)  

map_mic_gamma(m=5000,n=1000,a=0.1,zeta=0.1,lamda=1,eta=2,beta=1)  

map_mic_gamma(m=5000,n=1000,a=0.2,zeta=0.1,lamda=1,eta=2,beta=1)  

map_mic_gamma(m=5000,n=1000,a=0.05,zeta=0.1,lamda=1,eta=2,beta=2)  

map_mic_gamma(m=5000,n=1000,a=0.1,zeta=0.1,lamda=1,eta=2,beta=2)  

map_mic_gamma(m=5000,n=1000,a=0.2,zeta=0.1,lamda=1,eta=2,beta=2)  

 

map_mic_gamma(m=5000,n=1000,a=0.05,zeta=0.3,lamda=1,eta=1,beta=1)  

map_mic_gamma(m=5000,n=1000,a=0.1,zeta=0.3,lamda=1,eta=1,beta=1)  

map_mic_gamma(m=5000,n=1000,a=0.2,zeta=0.3,lamda=1,eta=1,beta=1)  

map_mic_gamma(m=5000,n=1000,a=0.05,zeta=0.3,lamda=1,eta=1,beta=2)  

map_mic_gamma(m=5000,n=1000,a=0.1,zeta=0.3,lamda=1,eta=1,beta=2)  

map_mic_gamma(m=5000,n=1000,a=0.2,zeta=0.3,lamda=1,eta=1,beta=2)  

map_mic_gamma(m=5000,n=1000,a=0.05,zeta=0.3,lamda=1,eta=2,beta=1)  

map_mic_gamma(m=5000,n=1000,a=0.1,zeta=0.3,lamda=1,eta=2,beta=1)  

map_mic_gamma(m=5000,n=1000,a=0.2,zeta=0.3,lamda=1,eta=2,beta=1)  

map_mic_gamma(m=5000,n=1000,a=0.05,zeta=0.3,lamda=1,eta=2,beta=2)  

map_mic_gamma(m=5000,n=1000,a=0.1,zeta=0.3,lamda=1,eta=2,beta=2)  

map_mic_gamma(m=5000,n=1000,a=0.2,zeta=0.3,lamda=1,eta=2,beta=2)  

 

map_mic_gamma(m=5000,n=1000,a=0.05,zeta=0.5,lamda=1,eta=1,beta=1)  

map_mic_gamma(m=5000,n=1000,a=0.1,zeta=0.5,lamda=1,eta=1,beta=1)  

map_mic_gamma(m=5000,n=1000,a=0.2,zeta=0.5,lamda=1,eta=1,beta=1)  

map_mic_gamma(m=5000,n=1000,a=0.05,zeta=0.5,lamda=1,eta=1,beta=2)  

map_mic_gamma(m=5000,n=1000,a=0.1,zeta=0.5,lamda=1,eta=1,beta=2)  

map_mic_gamma(m=5000,n=1000,a=0.2,zeta=0.5,lamda=1,eta=1,beta=2)  

map_mic_gamma(m=5000,n=1000,a=0.05,zeta=0.5,lamda=1,eta=2,beta=1)  

map_mic_gamma(m=5000,n=1000,a=0.1,zeta=0.5,lamda=1,eta=2,beta=1)  

map_mic_gamma(m=5000,n=1000,a=0.2,zeta=0.5,lamda=1,eta=2,beta=1)  

map_mic_gamma(m=5000,n=1000,a=0.05,zeta=0.5,lamda=1,eta=2,beta=2)  

map_mic_gamma(m=5000,n=1000,a=0.1,zeta=0.5,lamda=1,eta=2,beta=2)  

map_mic_gamma(m=5000,n=1000,a=0.2,zeta=0.5,lamda=1,eta=2,beta=2) 

 

map_mic_gew=function (m,n,a,zeta,lamda,delta,alpha,beta,theta,mean)  
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{ 

 #This program aproximate mic based on classic continuous 

 #surplus process which AGEW(delta,alpha,beta,theta) claim amount 

 #u is initial surplus 

 #zeta is security loading 

 #m and n is number of simulation 

 

 u=rep(0,n) 

 q=zeta/(1+zeta) 

 N=rgeom(m,q) 

 L=rep(0,m)  

 Z=rep(0,m) 

 c=(1+zeta)*lamda*mean 

 

 for(j in 1:n){ 

 for(i in 1:m){ 

 k=0 

 pre_Lmmc=0 

 while(k<N[i]){ 

  S=0 

  T=0 

  out=0 

  limit=0 

   while((out<=0)&(limit<=100)){ 

    S=S+ rgew(1, delta,alpha,beta,theta) 

    T=T+rexp(1,lamda) 

    limit=limit+1 

    out=S-c*T 

   } 

  pre_Lmmc=c(pre_Lmmc,out) 

  Lmmc=pre_Lmmc[pre_Lmmc>0] 

  k=length(Lmmc) 

 } 

 if(N[i]>0)(L[i]=sum(Lmmc)) 

 } 

 u[j]=quantile(L,(1-a)) 

 } 

 

 mic=mean(u) 

 return(mic) 

}  

map_mic_gew(m=5000,n=1000,a=0.05,zeta=0.1,lamda=lamda,delta,alpha,beta,theta,mean=mean)  

map_mic_gew(m=5000,n=1000,a=0.1,zeta=0.1,lamda=lamda,delta,alpha,beta,theta,mean=mean)  

map_mic_gew(m=5000,n=1000,a=0.3,zeta=0.1,lamda=lamda,delta,alpha,beta,theta,mean=mean)  
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map_mic_gew(m=5000,n=1000,a=0.05,zeta=0.3,lamda=lamda,delta,alpha,beta,theta,mean=mean)  

map_mic_gew(m=5000,n=1000,a=0.1,zeta=0.3,lamda=lamda,delta,alpha,beta,theta,mean=mean)  

map_mic_gew(m=5000,n=1000,a=0.3,zeta=0.3,lamda=lamda,delta,alpha,beta,theta,mean=mean)  

 

map_mic_gew(m=5000,n=1000,a=0.05,zeta=0.8,lamda=lamda,delta,alpha,beta,theta,mean=mean)  

map_mic_gew(m=5000,n=1000,a=0.1,zeta=0.8,lamda=lamda,delta,alpha,beta,theta,mean=mean)  

map_mic_gew(m=5000,n=1000,a=0.3,zeta=0.8,lamda=lamda,delta,alpha,beta,theta,mean=mean)  
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