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ABSTRACT 

Title of Dissertation Corrected Score Estimators in Multivariate Regression 

Models with Heteroscedastic Measurement Errors 

Author Miss Wannaporn Junthopas 

Degree Doctor of Philosophy (Statistics) 

Year 2016 

 

 

 In this study, the knowledge of parameter estimation theory based on the 

corrected score (CS) approach is extended in a linear multivariate multiple regression 

model with heteroscedastic measurement errors (HME) and an unknown HME 

variance. The heteroscedasticity of the HME variance is assumed to be capable of 

being grouped into similar patterns where the sample of observations are assembled 

into several sub-samples with the property that the variances of the measurement error 

(ME) are homoscedastic within a group but heteroscedastic between groups. In each 

group, the variance of the ME of the surrogate variable is estimated by the pooled 

variance of the variable with HMEs observed in repeated measurements. 

The statistical properties of the proposed CS estimator are analytically 

investigated based on the specific model in which there are two independent variables 

of which one is measured with HME. To evaluate the performance of the proposed 

CS estimator via a simulation study, datasets are generated based on two forms of 

heteroscedasticity: the step-up function form and the step-down function form. From 

the simulation results, the ordinary least squares (OLS) estimation of the parameters 

of the precisely observed variable is unaffected by HME, but the parameter estimators 

of the variable measured with HME are underestimated. The CS method outperforms 

the OLS method since the absolute bias and mean square error of the CS estimator are 

less than those of the OLS estimator when either the number of repeated 

measurements or the sample size increases, and the bias of the CS estimator 
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approaches zero when the sample size increases. The results of the simulation study 

show conformance to the theoretical proof.  
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CHAPTER 1 

 

INTRODUCTION 

1.1 Background 

 

  In statistical analysis, the process of gathering and measuring data on 

variables is very important and researchers require that variables are measured 

without errors. However, in practice, it is almost always impossible for a variable to 

be observed precisely. Imprecise measurements violate the ordinary least squares 

(OLS) assumption that the independent variables and random errors are independent, 

with the OLS assumption no longer being true. Consequently, this problem causes 

estimators to no longer be of value and leads to the wrong conclusions in statistical 

inference. The study of affecting and correcting of measurement error must be 

importance. The ME problem can occur in either dependent variables (Y) or 

independent variables (Z); the coefficients and variances of OLS estimators based on 

the ME in Y are still unbiased whereas those based on the ME in Z are biased and are 

also inconsistent. Consequently, the ME Problems in Z are more complicated than in 

Y (Gujarati, 2006: 346).  

The heteroscedastic measurement error (HME) model is a statistical model 

whose variables have been measured with errors, and the variances of the MEs change 

across observations. The focus of a model with HME is on the process of gathering 

and measuring data in variables because, In some environments, the precise 

measurement of a specific variable is impracticable or very expensive in terms of time 

and effort and, furthermore, the error variances of this variable across observations 

may not be static. HME models have been widely applied in epidemiology, analytical 

chemistry, and botany, as can be seen in several studies (Kulathinal, Kuulasmaa and 

Gasbarra, 2002; Cheng and Riu, 2006; De Castro, Augustin, Döring, and Rummel, 
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2008; Galea and Bolfarine, 2008; Veenendaal, Mantlana, Pammenter, Weber, 

Huntsman-Mapila and Lloyd, 2008; Patriota, Bolfarine and De Castro, 2009).  

As mentioned above, the ME in Z is a more serious problem than the ME in Y. 

The presence of HMEs also causes biased and inconsistent parameter estimates and 

leads to wrong conclusions in statistical inference. For this study, the HME model in 

Z is of interest. In the case of either measurement error (ME) or HME models, the 

methods used to correct the bias of the estimators can be grouped into either 

functional modeling or structural modeling. Several methods based on functional 

modeling can be applied, such as regression calibration, simulation-extrapolation, 

conditional score, corrected score (CS), and instrumental variables. In linear 

functional modelling, estimators from these methods have been shown to be 

asymptotically consistent (Buzas, Stefanski, and Tosteson, 2005). 

One of the methods providing an efficient estimator is the corrected score (CS) 

approach, which was introduced by Nakamura (1990). This method deals with 

parameter estimation in the presence of ME in an independent variable based on 

estimation equations by looking for the biased correction term to correct the biased 

score estimation function, i.e. by finding  * , ,U X Y  such that

    * , , , ,E U X Y U Z Y  , where  * , ,U X Y  is the observable score function of 

the independent variables and  , ,U Z Y  is the unobservable score function of the 

independent variables. By using the CS approach, Nakamura (1990) proposed a CS 

function for four models: the generalized linear model, the normal regression model, 

the Poisson regression model, and the gamma regression model. After that, the CS 

approach became the focus of attention in the literature. The proof of an asymptotic 

distribution of the CS estimators was presented and its application described by 

Giménez and Bolfarine (1997) in a simple linear regression and a comparative 

calibration model. In a comparison of the four approaches for consistent estimators, a 

number of methods have been used: sufficiency and conditional scores, maximum 

likelihood estimation, CS functions, and moment estimators. The results showed that, 

for small to moderate sample sizes, there is no one estimator more efficient than  the 

others (Giménez and Bolfarine, 2000). Additionally, a CS estimator in a comparative 

calibration model with unknown variance of ME (Giménez and Patat, 2005), a CS 
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estimator in one of several simple linear regression models with HME (De Castro, 

Bolfarine and Castilho, 2006), and a CS estimator in a heteroscedastic       

comparative calibration model (Giménez and Galea, 2013; Giménez and Patat, 2014) 

have been reported. However, most of the literature assumes that the ME variance 

and/or HME variance is known, except in the paper by Giménez and Patat  (2005), in 

which a simple method for estimating the unknown ME variance was presented. The 

model is assumed that the providing of repeated measurements can be used to adapt in 

parameter estimation. Subsequently, the unknown ME variance could be estimated by 

using pooled variance. The assumption of known ME variance or HME variance is 

commonly applied in studies of parameter estimation in a model with only one 

independent variable (de Castro, Bolfarine and Castilho, 2006; Giménez and Galea, 

2013; Chen, Hanfelt and Huang, 2015). However, Giménez and Patat (2005, 2014) 

proposed a method for estimating the parameter in a comparative calibration model 

under unknown ME variance condition. 

HME could occur in several types of model, such as a linear regression model 

or a comparative calibration model. Likewise, a linear multivariate regression model 

could be in danger from HME. Therefore, this study is aimed at measuring HME 

errors in the latter type of model by using the CS approach. 

There are three types of data susceptible to MEs: validation data, replication 

data, and instrumental data (Carroll, Ruppert, Stefanski and Crainiceanu, 2006: 33). 

The first type refers to data if variable Z is observable directly but subject to MEs and 

is referred to as an imprecise measurements variable. The second type, based on the 

assumption that the mean of replicated measurements can be reduced the variation 

from single measurement of Z. The last type refers to data of the second measurement 

variable being observed instead of data of the imprecise measurements variable. 

In this study, an estimation approach based on the CS in a linear multivariate 

regression model with HME is proposed. An imprecise independent variable in the 

HME model and using replicated data is of interest. The assumption is that the HME 

variance is unknown and can be estimated based on grouped heteroscedasticity when 

replicated data are provided. This process is not complicated and can be obtained 

from the necessary information used to estimate the variance of the HMEs when it is 

assumed to be unknown. 
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1.2 Objectives of the Study 

 

 1) To derive the CS estimators of parameters in linear multivariate multiple 

regression models with HMEs. 

 2) To investigate the properties of the proposed estimators.  

 

1.3 Scope of the Study 

 

 The proposed estimators are derived based on a linear multivariate multiple 

regression model with HMEs under the following scope: 

 1) The data are assumed to be multivariate normally distributed.       

 2)   There are s  independent variables in the model of which 1s s  have been 

measured with errors in the form of additive HME. 

 3)  The variance-covariance matrix of the random error is assumed to be 

known and the variance of the heterogeneous random MEs is assumed to be unknown. 

 4)  The random errors and the heterogeneous random MEs in 3) are assumed 

to be mutually independent. 

 

1.4 Definitions 

 

1.4.1 HME Models 

An HME model is a statistical model whose variables have been measured 

with errors and the variances of the MEs change across observations (the covariance 

matrix of the MEs has non-constant variances). An example of an HME model using 

simple linear regression is shown as follows: 

 0 1y z     , 
 

  (1.1) 

 

 x z u  , 

 

  (1.2) 
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 Under the assumptions  20,N    ,  20, uju N  , and that Z  , X , and U  

are uncorrelated, the independent variable Z  is imprecisely observed. Assume that 

the observable variable X  is measured by Z  with error U . When U  is normally 

distributed with mean zero and the error structure of U
  
has a non-constant variance 

2
uj , this denotes an HME model, and U is called a random HME. The covariance 

matrix of U can be expressed as: 
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(1.3) 

 

1.4.2 Additive Structure of HME  

Random HME, when added to an imprecise independent variable, is referred 

to as an additive structure of HME. For example, equation (1.2) has a surrogate 

observable variable X   instead of Z U , which gives an additive structure of HME. 

 

1.4.3 Grouped Heteroscedasticity 

The variance of MEs for observations is the same within groups of the data 

points but differs across the groups. Assume that there are g  groups of data points 

where 1,2,...g h . The first group  1g  consists of 1n  observations, the second 

group  2g  consists of 2n  observations, until the last group  g h  consists of hn  

observations. The variance of group 1,2,...g h  are 
2 2 2
1 2, ,...,u u uh   , respectively. 

For example, when the covariance matrix of U is grouped heteroscedastic, equation 

(1.3) becomes 
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1.4.1 The CS Approach 

The CS approach is a method for estimating the parameters in an ME or HME 

model. This technique deals with the parameter estimation in the absence of ME or 

HME in an independent variable based on estimation equations. The basic idea is 

based on extracting the bias correction term to correct the biased score estimation 

function to evaluate  , ,cU X Y  in 

     , , , ,cE U X Y U Z Y   , (1.5) 

   

where  , ,cU X Y  is the observable corrected score function of independent 

variables instead of the imprecisely observable Z  and  , ,U Z Y  is the imprecisely 

observable score function of independent variables. 

 

1.4.1 The Bias of the Estimator 

The bias of an estimator is the difference between the expectation of the 

estimator and the true value of the parameter being estimated. In an ideal scenario, an 

estimator with a small bias is more appropriate than one with a large bias. If the bias 

is zero, the estimator is referred to as unbiased.  

Let β̂  be the vector of estimators for the vector of parameters β  in the model, 

The bias of the vector of the estimators β̂  is given by 
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  ˆ ˆBiasof E β β β  . (1.6) 

 

1.4.1 The Mean Square Error of the Estimator 

The mean square error (MSE) of an estimator is equal to the sum of 

the variance and the squared bias. It is a well-known performance measure for an 

estimator where a small MSE is more appropriate than a large one. If the bias of an 

estimator is zero, the MSE of the estimator is equal to its variance.    

The MSE of the vector of the estimators β̂  is given by 

 

 
     ˆ ˆ ˆMSE E

 
   

 
β β β β β  , 

                                          

                     ˆ ˆ ˆvartr E E
      

   
β β β β β . 

 

 

 

 

(1.7) 
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https://en.wikipedia.org/wiki/Bias_of_an_estimator


 

CHAPTER 2 

 

LITERATURE REVIEW 

This chapter is organized as follows. ME and HME models are reviewed in 

Section 2.1, and the effects of and methods to correct ME and HME problems are 

outlined in Section 2.2. Finally, details of linear multivariate multiple regression 

models are introduced in Section 2.3.    

 

2.1 MEs and HMEs 

 

The problems of ME have been concentrated upon for a long time and MEs 

occur whenever a variable in the model of the study cannot be accurately observed. 

Incidences of this problem happen for many reasons and can cause a specific variable 

to become impracticable or very expensive in terms of time and effort to elucidate, 

such as recorder, instrument, or sampling error (Buonaccorsi, 2010: 1).  

Researchers require that the variables of the data are measured without error, 

but, in practice, every measurement is usually carried out with errors. Furthermore, in 

many situations, the variance of the error may not be static, such as when data of a 

variable are observed in different areas, temperature, or environment, or data are 

recorded during a distinct period. These situations bring about the HME problem. If 

the model of a study is fitted with a variable with ME or HME without adjustment, 

then it leads to bias in parameter estimation. Statistical models and methods for 

analyzing and correcting the problem are called ME or HME models. In linear 

models, both ME and HME could occur if the dependent variables, independent 

variables, or both are measured with errors.   

Effects of ME or HME on a dependent variable are shown as follows: 

 1)  The OLS estimators are unbiased. 

 2)  The variances of OLS estimators are also unbiased. 
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 3)  The estimated variances of the estimators in cases with    

ME or HME are larger than those without.  

Effects of ME or HME on the independent variable are shown as follows: 

 1)  The OLS estimators are biased. 

 2)  The OLS estimators are also inconsistent. 

In the case of ME or HME in a dependent variable, the error in the variable is 

included in the common error term of the model. This makes the estimated variances 

of the estimators larger than usual. However, the OLS estimators and their variances 

are still unbiased. Meanwhile, the OLS estimators are bias and inconsistent in case of 

ME or HME in an independent variable and constitute a serious problem (Gujarati, 

2006: 346).  

When considering the area of ME or HME models, there are important terms 

that need to be distinguished between: non-differential versus differential ME, and 

functional versus structural modeling. 

When differentiating between non-differential and differential ME, the 

measurement error U , which is the error in X , acting as a surrogate of unobserved 

variable Z , is non-differential if X  is associated with the dependent Y  variable 

whenever Z  is available. It can be expressed in technical terms as the distribution of  

Y  given  ,Z X  dependent only on Z , | , |y z x y zf f , i.e. X  has no information about 

Y  whenever information on Z  is available. Otherwise, the differential is expressed as

| , |y z x y zf f . 

Non-differential ME is assumed in many studies because it is superior to 

differential ME in cases where the parameters in models for responses given true 

covariates can be estimated even when the true covariates are not observable. 

Examples of non-differential ME are explained in the Framingham study: long-term 

systolic blood pressure  Z  is the objective in the study but single day blood pressure 

 X  can be observed instead of the true long-term blood pressure. It can be seen that 

X  is a surrogate of the true Z , i.e. X  has no information about Z  (Carroll, 2005).  

To differentiate between functional and structural modeling, methods to 

correct the bias of the estimators can be grouped into either functional or structural 

models. Functional modeling is superior to structural modeling in cases where there is 
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no need to make assumptions on Z as opposed to those requiring the specification of 

the distribution of Z (Carroll, Ruppert, Stefanski and Crainiceanu, 2006: 25; Fuller, 

1987: 2). Several methods based on functional modeling: regression calibration, 

simulation-extrapolation (SIMEX), conditional score, CS, and instrumental variables 

need to be applied. Moreover, these methods obtain asymptotically consistent 

estimators in a linear functional model (Buzas, Stefanski and Tosteson, 2005). On the 

other hand, the method based on structural modeling is the likelihood method.  

As mentioned above, the problems of ME or HME in Z are more complicated 

than in Y. The next topics review the concepts of ME and HME models. The major 

effects caused by ME and HME are described and illustrated based on linear models 

with ME and HME in their independent variables. 

 

2.1.1 ME Models 

ME models are characterized by circumstances where independent variable Z  

cannot be measured precisely, and so surrogate variable X  is observed instead. The 

true model of the study involves the corresponding relationship between Z  and 

dependent variable Y  but the data that can be observed consist of observations of the 

variables X  and Y . In this case, the statistical model infers that surrogate variable X  

can be expressed as the independent variable Z  measured with errors U : X Z U  . 

The additive structure of ME is assumed where U  refers to random ME with zero 

mean and homogeneous variance. An example of a classical ME model in a simple 

linear regression is as follows: 

                         0 1j j jy z     ,  (2.1) 

                         j j jx z u  , (2.2) 

Denote       jy  as the response at the thj  observation,  

      jz   as the imprecisely observed value of independent variable the thj    

            observation, 

      jx   as the value which could be observed in independent variable   with  

                        the measurement error u  at the thj  observation, 
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      j  as the random error at the thj  observation, 

             ju  as the random measurement error at the thj  observation,  

                     1,2, ,j n , and 

                  n  as the sample size. 

Equations (2.1) and (2.2) are called “the equation-error-model” where the variables   

and U  are independent. The random error is distributed as normal with mean zero and 

constant variance 
2
 , and the random ME is distributed as normal with mean zero 

and constant variance 
2
u , which can be expressed as 

                                 20,j N   , 

                  20,j uu N  . 

Real-life Examples of the Occurrence of ME are described as follow: 

In epidemiology, the result of the diagnosis of some diseases such as AIDS, 

cancer etc. is accessed by an indirect procedure. For example, blood pressure, blood 

test or x-ray diagram is used to access for disease may get the false conclusion. 

In analytical chemistry, the measurements of chemical substances density or 

chemical level can be expressed a mistake from some sources such as the instruments, 

laboratories setting and/or self-reporting by researcher. Additionally, when measuring 

dietary intake, it is measured through the questionnaire; food frequency, exercise 

frequency, physical body. 

 MEs can be occurred in many design experiments, such as measuring water or 

fertilizer in agricultural industry, temperature or light setting in laboratories, 

measuring nutrient or calories level in dietary intake. 

 

2.1.2 HME Models 

When discussing the ME model above, the model is assumed that the variance 

of measurement random error is homogeneity. However, the variances of the errors 

can change across observations, which lead to the occurrence of HMEs.  

Following the model from equations (2.1) and (2.2), the assumptions are that 

variables   and U  are independent, the random error is distributed as normal with 
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mean zero and constant variance 
2
 , and the measurement random error is distributed 

as normal with mean zero. However, if it is assumed that the variance of the error ju

changes across the j  observations, ju  has an HME variance 2
uj , i.e. 

                                  20,j N   , 

                    20,j uju N  . 

HME models have been widely applied in epidemiology, analytical chemistry 

and botany to avoid the violations of bias in parameter estimation. 

Consider one of the OLS assumptions where the independent variables and 

errors are independent. If the HMEs are taken into consideration, this assumption is no 

longer true. OLS estimators based on HME have the following effects: 

 1)  The estimation leads to inconsistent estimates. 

 2)  The parameter estimate is a biased estimate of the true coefficient.   

Consider a simple linear regression model with HMEs: 

 0 1j j jy z     , (2.3) 

                                    j j jx z u  , (2.4) 

where jx  is the observed value of jz , 1,2,...,j n  and assumed that   

2

2 2

00
,

0 0

j e

j uj

N
u

     
              

 


, 

with  jz , j and ju  are independent. 

Substituting j j jz x u  into equation (2.3) gives 

 0 1j j j jy x u       

      0 1 1j j jx u        

Let 1j j jv u    , then 

                                      0 1j j jy x v    , (2.5) 

Here, 1j j jv u   is a compound equation and measurement error, and 
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    1 0j j jE v E u    , (2.6) 

        cov ,j j j j j jx v E x E x v E v   
 

 

           1j j j j j jE z u E z u u     
 

   

         1j j jE u u  
 

   

                                           2
1 uj   . (2.7) 

It can be seen that  cov , 0j jx v  , which violates the OLS assumption that 

the independent variables and errors are uncorrelated.  

Moreover, considering equation (2.5) and by OLS estimation yields 

 

 

1
1 2

1

ˆ

n

j j
j

n

j
j

x x y

x x











  

     

 

 

1
1 2

1

n

j j
j

n

j
j

x x v

x x







 



  

  
 

 

1
1 1 2

1

ˆ

n

j j
j

n

j
j

x x v

E

x x







 



  . (2.8) 

It can be seen that the OLS estimator 1̂  is a biased estimator of 1 . 

The probability limit of 1̂  is  

 

 

1
1 1 2

1

ˆlim lim lim

n

j j
j

n

j
j

x x v

p p p

x x

 




 
 

  
 

 
 

 

 

 

1

1
2

1

1
lim

1
lim

n

j j
j

n

j
j

p x x v
n

p x x
n





 
 

  
 

 
 

  
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 
 

1 1

cov ,
ˆlim

var

j j

j

x v
p

x
    

             

 
 

1

1

cov ,

var

j j j

j j

x u

z u

 



 


. 

Substituting   2
1cov ,j j ujx v     and using the independence property of jz  and ju

yields  

           

 

2
1

1 1 12 2 2 2

1ˆlim
1j j

uj

z u u z

p
 

  
   

 
    

    

. (2.9) 

It can be seen that the term 

 2 2

1

1
ju z  

 in (2.9) is always less than one. 

Consequently, the OLS estimator 1̂ is an inconsistent estimator of 1 . 

 

2.2 Methods to Correct the ME/HME Problem 

  

Several methods to correct the ME or HME problem have been put forward. 

Methods based on functional modeling can be divided into approximately consistent 

methods (remove most of the bias) and fully consistent methods (remove the bias to 

achieve asymptotic consistency) (Buzas, Stefanski and Tosteson, 2005). The first 

group of methods uses either regression calibration or the SIMEX method. The second 

group consists of conditional score method, corrected score (CS) approach, and 

method of using some instrumental variables. The concept for each method is 

described below.  

 

2.2.1 Regression Calibration 

The concept of this method is based on regression analysis by predicting the 

unobservable Z  from a surrogate X , then using the prediction of X  as the 

independent variable of the model and regress Y onto the prediction of X . Pierce and 

Kellerer (2004: 863) noted that, “It is very convenient that essentially the same 
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methods for ongoing analyses can be employed as if the variable Z  were observed”. 

Regression calibration was first developed by Prentice (1982) in his studies on the 

proportional hazard model. After that, this approach was modified for use in 

epidemiology by Clayton (1992) and extended to logistic regression by Rosner, 

Willett and Spiegelman (1989) and Carroll and Stefanski (1990). The details of the 

concept are explained by Carroll, Ruppert, Stefanski and Crainiceanu (2006: 65-95). 

For the step of modeling a surrogate X  on the unobservable Z , additional 

data such as using instrumental variables or replicated observations are required. The 

steps for parameter estimation by using regression calibration are: 

i) Regress X  on Z , then the prediction of X  is obtained. 

ii) Estimate the parameters in the model by regressing the prediction of 

X  onto Y . 

Regression calibration is fully consistent in linear models, which also applies 

to a generalized linear model. However, it is approximately consistent (ineffective in 

reducing bias) in non-linear models.  

 

2.2.2 SIMEX 

SIMEX is a technique first developed by Cook and Stefanski (1995) consisting 

of a combination of extrapolation and simulation. The extrapolation method is a 

mathematical procedure designed to enable one to estimate the unknown values of a 

parameter from known values. The parameter estimation is obtained by using a 

simulation to obtain values for the surrogate variable X  and compute the 

corresponding regression. Details and examples of this method are available in 

Carroll, Ruppert, Stefanski and Crainiceanu (2006: 97-126). 

   SIMEX is fully consistent in linear models but approximately consistent in 

non-linear ones.   

 

2.2.3 Conditional Score 

The basic theory behind conditional scoring is based on solving the parameter 

estimation by using estimating equations under the condition that an estimating score 

is unbiased if it has an expectation of zero. This method was first proposed by Gleser 

(1981) based on the derivation of the estimators in linear regression by maximizing 
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the joint density of the observed data with respect to all of the unknown parameters, 

including the unobservable Z . Next, the conditional score was developed in the 

parameter estimation in logistic regression (Carroll and Stefanski, 1990). It can be 

seen that this method is difficult to compute in complex models such as logistic 

regression and it requires the distribution of the measurement error U  has normal 

distributed. 

 

2.2.4 CS 

The CS method was developed by Stefanski and Carroll (1987) and Nakamura 

(1990). The basic concept is the same as the conditional score method, and is based on 

the using of an estimation equation to solve the parameters in the model. This method 

can correct inconsistent estimators and also does well in models with no assumptions 

concerning the distribution of the unobserved variable (functional modeling). The 

details of this method are as follows. 

To consider the estimation of parameter , let z be the column vector of 

independent variables and y be a random variable whose distribution depends on z; the 

z's are termed covariates and the y' s dependent variables.  Let Z and Y  denote the set 

of independent variables z's and dependent variables y's, respectively, and denote 

 , ,L Z Y as the likelihood function of   given Z and Y , 

 , ,l Z Y   as the log-likelihood function of   given Z and Y , and 

 , ,U Z Y as the score function of   given Z and Y . 

If Z  can be observed without errors, then by maximum likelihood estimator 

(MLE), the estimator of    is obtained from the satisfying of   , , 0E U Z Y  . 

Otherwise, if Z  is imprecisely observed and is measured with errors which can be 

expressed as X , the log-likelihood function  , ,l Z Y  is replaced with  , ,l X Y , 

then   , ,E U X Y  is bounded away from zero although the sample sizes approaches 

infinity. Consequently, the MLE which satisfies   
 , ,

, , 0
l X Y

U X Y






 


 is no 

longer consistency (Augustin, 2004). 
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Because of the above mentioned, the model which is observed the variables Y

and X , instead of Y and Z  provides the in efficiency estimators. The ME is corrected 

by constructing unbiased estimating functions based on the observable Y and X . The 

concept is to correct the bias term by finding the observable CS function  , ,cU X Y  

such that  

               , , , ,cE U X Y U Z Y  . (2.10) 

For simplicity, the log-likelihood is used for finding a function  , ,cl X Y , then the 

function  , ,cl X Y  is satisfied 

               , , , ,cE l X Y l Z Y  . (2.11) 

Then, by the regularity condition, 

            
 , ,

, ,
c

c

l Z Y
U X Y










.  (2.12) 

 , ,cU X Y  is called the CS function and  , ,cl X Y  denotes a corrected log-

likelihood function. 

It follows from the property for unbiasedness,   , , 0E U Z Y   and 

    , , , ,cE U X Y U Z Y  , that  , ,cU X Y  is also conditionally unbiased 

provided   , , 0cE U X Y  . Thus, by applying the general theory of M-estimation, 

the estimating equation written as 

 
1

, , 0
n

c j j
j

U X Y


 ,                                                        (2.13) 

possesses a consistent, asymptotically normally sequence of solutions (Nakamura, 

1990). 

Nakamura (1990) proposed the CS function for correcting the inconsistent 

estimators in MEs in models with independent variables. The idea is indicated that   

“the conditional distribution of the corrected estimate given the true independent 

variables and the dependent variables is centered around the maximum likelihood 

estimate, which in turn is centered around the true parameter value”. This is to find the 

function of corrected log-likelihood of the x' s and y' s,  , ,cl X Y , such that 
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    , , , ,cE l X Y l Z Y  , where  denotes the parameters of the model, and Z , X , 

and Y  represents the set of imprecisely observed independent variables z' s , observed 

independent variables z' s, and dependent variables y' s, respectively. Moreover, 

Nakamura derived a CS function for four different models as shown here.  

 1)  Generalized Linear Model  

2)  Normal Regression Model 

3)  Poisson Regression Model 

4)  Gamma Regression Model  

After that, Huang and Wang (2001) proposed the CS in logistic regression and 

then, Chen, Hanfelt and Huang (2015) extened the studied in this model.  

Giménez and Bolfarine (2000) considered comparisons between four 

approaches of consistent estimators in functional comparative calibration models      (a 

special case of linear multivariate ME models). The model is assumed that there are 

 1, 1p p   disposal measuring instruments of   subjects. Let jiy  be the observed 

value at the thi  disposal measuring instruments at the thj  subject, 1,2,...,j n by

1,2,...,i p , and jx  be the observed measures of the unobserved jz .To consider the 

linear model 

 0 1j j jz   y β β ε ,         (2.14) 

                                        j j jx z u  ,         (2.15) 

where   1 2, ,...,j j j jpy y y
 y ,  0 01 02 0, ,..., p


β     is the 1p  vector associated 

with the additive bias of the p  measuring devices,  1 11 12 1, ,..., p


β     is the 1p  

vector associated with the multiplicative bias of the p  measuring devices, 

 1 2, ,...,j j j jp


ε     is the 1p  vector of  errors with the errors within the subject 

j that are not independent,  0,j N ε ,  2 2 2
1 2, , ..., pdiag     ,  20,j uu N   

and jε  and ju  are mutually independent. 

The approaches for the four consistent estimators are: 1) sufficiency and 

conditional scores, 2) maximum likelihood estimation 3), the CS function, and 4) 
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moment estimators. The asymptotic distributions associated with the different 

estimators were studied and they showed that the conditional score function is 

equivalent to the maximum likelihood estimator. Note that the asymptotic relative 

efficiency was a criterion for this study. The results showed that, for small and 

moderate sample sizes, there is no one estimator more efficient than the others. 

However, the sufficiency score estimator given the poor performance when comparing 

with the naive estimator (the OLS estimator without ME adjustment).  

Giménez and Patat (2005) focused on CS estimation in a comparative 

calibration model (a special case of linear multivariate models) with balanced repeated 

measurements and constant variances of MEs. Assumes the model in (2.14) and 

(2.15), for the instrument , 1,2,...,i i p , the k repeated measurement at the thj  

observation, for 1,2,...,k r  are observed in Y and 1,2,...,k m , are observed in X , 

then the model can be expressed as 

 0 1ijk i i j ijky z     ,        (2.16) 

                                 ,jk j jkx z u  ,        (2.17) 

where 1,2,...,j n , ijk  and jku  are independent and identically distributed with 

 20, iN   and  20, uN  , respectively. 

The CS function of this model is given by 

 

 

 

1

1*

2
1

1

, 0

, 1
q

r

jk j
k

j r
u

jk j j
k

x q

U

x x q
m

 







 




  


 
    


Σ y α β

Σ y α β β

, 

repeated measurement of the imprecisely observed variable Z obtained the necessary 

information for estimating the variances of MEs which can be evaluated by 

 

 

2

1 12ˆ
1

n m

jk j
j k

u

x x

n m


 

 




 , 

The proposed consistent and asymptotically normal distributed estimator can be 

expressed as 
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0 .. 1 ..
ˆ ˆ

i i i iy x   , 1 2
ˆ

ˆ

ix y
i

x x u

S

S m






, 1,2,...,i p , 

with  
2

1

1 n

x x j
j

S x x
n

 


  , 
1

1 n

j
j

x x
n

 


  ,  

       
  

1

1
i

n

x y j ij i
j

S x x y y
n

   


   ,  

         1 1 1

1 1n r n

i ijk ij
j k j

y y y
nr n

 
  

    . 

The performance of the estimators in simulation study showed that for m  is fixed, the 

bias and the standard deviation (SD) decreased when r  increased. 

Additionally, the CS estimator in a comparative calibration model with 

unbalanced repeated measurements is derived by Giménez and Patat (2014). Based on 

the model in (2.16) and (2.17), setting 1i  , the unbalanced repeated measurements 

model becomes 

 0 1jk j jky z     , 1,2,..., jk r ,       (2.18) 

                      ,jh j jhx z u   1,2,..., jh m , 1,2,...,j n   ,       (2.19) 

The estimators in the model can be expressed as 

0 .. 1 ..
ˆ ˆy x   , 1 2

ˆ
ˆ

xy

xx u

S

S b






, 

 
2

1 12ˆ

jmn

jh j
j k

u

x x

M n


 

 




 , 

with   
1

n

xy j j j
j

S x x y y   


    ,  
2

1

n

xx j j
j

S x x 


   ,  

         1

n

j j
j

y y 


   , 
1

n

j j
j

x x 


   , and 

          
1

n j

j j

b
m

 


 where , 1,2,...,
j

j

r
j n

R
  , 

 

 

         1

n

j
j

R r


  , 
1

n

j
j

m m


  . 
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DeCastro, Bolfarine and Castilho (2006) considered consistent estimation 

based on the CS approach in simple linear regression under MEs with known different 

variances in various situations. For one regression line, assumed variable jz  was 

measured with bias. Consider the simple linear regression model in (2.3) and (2.4),  

assume that j  and ju  are independent with 2
ej  and 2

uj  known. The corrected 

likelihood estimator is derived as 

 
 

2 2 2
0 1 1*

2
1

1
, ,

2

n j j uj

j ej

y z
l Z Y constant



  
  

   



, 

and the CS estimators 0̂  and  1̂  are given by 

 
2 2

1
1

0
2

1

ˆ

ˆ

1

n

j j ej
j

n

uj
j

y x










 





, 

       

       

1

2 2 2 2

1 1 1 1

1 2 1

2 2 2 2 2 2 2

1 1 1 1

1

ˆ

1

n n n n

j j ej j ej j ej ej
j j j j

n n n n

j ej j ej ej uj ej
j j j j

x y y x

x x



   



   

 
    

 
   

       
   

   



    

. 

 

Patriota, Lemonte and Bolfarine (2010) derived a bias-adjustment scheme to 

eliminate the second-order biases of the maximum-likelihood estimates in a 

heteroskedastic multivariate MEs regression model using the general matrix formulae 

for the second-order bias derived by Patriota and Lemonte (2009). Via a simulation 

study, the bias correction derived in this paper was very effective, even when the 

sample size was large. The bias correction yields the HME become nearly unbiased 

estimator. 

Giménez and Galae (2013) derived a CS estimator for a multivariate model 

containing HMEs with known variances. By assuming that the model for their study 

followed the model of Giménez and Bolfarine (2000), they focused on one 

independent variable and assumed that the errors within unit j were independent and 

that       (    
 ). In addition, this CS estimator was considered for assessing the 
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local influence of the effects of minor perturbations. A perturbation vector was 

introduced to the CS function (which is independent of the incidental parameters) and 

a methodology to find the density of the corresponding perturbed model (including 

structural and incidental parameters) was proposed.  

A comparison of conditional score and CS showed that both methods are fully 

consistent in the linear model. In Poisson regression, the parameter estimation by 

conditional score has more efficient than CS in some cases, but, for other models, if 

the CS function exists, CS estimators are more easy to derive than conditional score 

estimators.  

 

2.2.5 Instrumental Variables 

In this method, parameter estimation is derived from additional data 

(information about the unobservable Z ) when repeated measurements or validation 

data cannot be used. The additional data comes from instrumental variables for which 

the following conditions must hold true: 

1) They must be non-differential ME. 

2) They must be correlated with the unobservable Z . 

3) They must be independent of X Z . 

The disadvantage of this method is that it uses a second parameter, i.e. 

the parameter estimation comes from the instrumental variables which are not directly 

analyzed on the surrogate  X  and, based on the requirements mentioned above, the 

use of instrumental variable makes the assumption weaker than the initial model. 

 

2.3 The Multivariate Multiple Regression Model 

 

A multivariate multiple regression model is an extension of multiple 

regression models where the effects on a set of dependent variables are modeled 

simultaneously, and the focus is on the problem of modeling the relationship between 

  dependent variables 1 2, ,..., py y y  and a single set of independent variables 

1 2, ,..., sz z z : 
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1 01 11 1 1 1... s sz z    y ε    

2 02 12 1 2 2... s sz z    y ε    

 

0 1 1 ...p p p sp s pz z    y ε   , 

The matrix form of this model can be written as 

11 12 1 01 02 0 11 12 111 1, 1 1

21 22 2 11 12 1 21 22 221 2, 1 2

1 , 11 2 1 2 1 2

1

1

1

p p ps s

p p ps s

n n s nsn n np s s sp n n np

y y y z z z

y y y z z z

z z zy y y

     

     

     







     
     
           
               









 

or 

                                            ,                                             (2.20) 

 

where   Y  is the n p matrix of dependent variable ,  

    Z  is the  1n s   matrix of independent variables including a constant          

                  unit vector, 

              B  is the   1s p  matrix of parameters including a constant term, 

              E  is the n p  matrix of random errors, 

   n   is the number of observations in the model, 

              p  is the number of dependent variables in the model, and 

              r  is the number of independent variables in the model. 

Denote 1,2,...,j n  by 1,2,...,i p , then 

 1 2, ,..., n  
Y y y y  represents the thj  row of Y  where  1 2, ,...,j j j jpy y y


y , 

 1 2, ,..., n  
Z z z z  represents the thj  row of Z  where  11, ,...,j j jsz z


z , 

 1 2, ,..., p  


B β β β  represents the 
thi  row of B  where  1, ,...,i oi i si

β    , and 

 1 2, ,..., p  


E ε ε ε  represents the 
thi  row of E  where  1 2, ,...,i i i si

ε    . 
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Assumptions: 

1)   0iE  ε , 

2)  cov , , , 1,2,...,i l il i l p   ε ε I . 

The p  observations on the thj  sample unit have covariance matrix  il   , but 

observations from different trials are uncorrelated. 

The representation in the thi  component has the form 

     1 2 1 2 1 2, ,..., , ,..., , ,...,p p p         y y y Z β β β ε ε ε . 

The implicit multiple regression model for the 
thi  component can be written as 

i i i   y Zβ ε  .                       (2.21) 

For maximum likelihood estimation, let the multivariate multiple regression model in 

equation (2.14) hold with full rank    1, 1s n s p    Z , and let the errors E be 

normally distributed,  1 2, ,...,j j j jpy y y


y  be the  -dimension of dependent 

variables, and  11, ,...,j j jsz z


z  be the vector of independent variables. Then, the 

likelihood function can be written as 

 
 

   1

11 22

1 1
, exp

2
2

n

j j j jp
j

L 



         
 



B y B z y B z



.                            

                                                                                                         (2.22) 

Following this, the log-likelihood function becomes 

       1

1

1
, log 2

2 2

n

j j j j
j

p
l 



       B y B z y B z ,                      (2.23)               

and the derivative of  ,l B  yields the score function  

 

 

 
1

,

,
,

l

U
l



  
 

  
  
 

 

B

B
B


 

The maximum likelihood estimator of   can be expressed as 

 
1ˆ 

 B Z Z Z Y , 
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and the implicit form with the     component can be written as 

           
1ˆ

i i


  β ZZ Z y .                                        (2.24) 

 

2.3.1 HME in a Multivariate Multiple Regression Model 

 When considering a linear multivariate regression model with HME, assumed 

that, in the model in equation (2.14), there are p  components of dependent variables 

21, , ..., pY Y Y corresponding to s  independent variables, where 
1 1,..., sZ Z 

 refers to the 

precise measurement of independent variables, and Z U
s s s

X    refers to an 

independent variable observed instead of sZ  with additive HME. The HME model is 

specified as follows: 

 Y ZB E , 

s s s x z u ,            (2.25) 

The additive HME equation in implicit form with the thj  observation  1,2,...,j n

can be specified as 

js js jsx z u              (2.26) 

For the random errors matrix  1 2 ... n


E =    , the rows are independent with jε  

distributed as  0,p jN  , where 

                                                       

2

11 1

2

1

p

j

p pp
j

 

 



 
 
 
 
 

  ,                                   (2.27)                       

jsu  are distributed as  2
0, ujN  , 1 1,..., sz z  , 

ji  and 
jsu  are mutually independent,

 

2 0
ii
 , and 

2 0uj  , 1,2,..., ,i p 1,2,...,j n . 

Substituting the additive HME equation (2.26) : js js jsz x u    into equation 

(2.20), the matrix form of equation (2.20) becomes 
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11 12 1 01 02 011 1, 1 1 1

21 22 2 11 12 121 2, 1 2 2

1 , 11 2 1 2

1

1

1

p ps s s

p ps s s

n n s ns nsn n np s s sp

y y y z z x u

y y y z z x u

z z x uy y y







    
    

        
            

  

  

  

          

                                          

11 12 1

21 22 2

1 2

p

p

n n np

 
 
 

 
 
 
 

  

  

  

                                              (2.28) 

The implicit form with the thj  observation  1,2,...,j n  can be written as 

1i   :     1 01 11 1 1,1 , 1 1 11...j j s j s s js jsy z z x u            , 

2i   :     2 02 12 1 1,2 , 1 2 12...j j s j s s js jsy z z x u            , 

 

i p  :     0 1 1 1, , 1 1...jp p p j s p j s sp js js py z z x u            , 

and we can rewrite the implicit form with the thj  observation  1,2,...,j n  as:   

1i   :    1 01 11 1 1,1 , 1 1 1...j j s j s s js jy z z x            

2i   :    2 02 12 1 1,2 , 1 2 2...j j s j s s js jy z z x            

 

i p  :    0 1 1 1, , 1...  jp p p j s p j s sp js jpy z z x            

where ji ji si jsu     , 1,2,..., , 1,2,..., .i p j n   

Consequently, the matrix from of a linear multivariate multiple regression model with 

HME can be specified as 

11 12 1 01 02 0 11 12 111 1, 1 1

21 22 2 11 12 1 21 22 221 2, 1 2

1 , 11 2 1 2 1 2

1

1

1

p p ps s

p p ps s

n n s nsn n np s s sp n n np

y y y z z x

y y y z z x

z z xy y y

     

     

     







     
     
           
               









 

or 

 Y XB V  .                                              (2.29) 
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The OLS estimator of B is 

 
1ˆ 

 B X X X Y .                         (2.30) 

The implicit form with the     component can be written as 

 
1

i i


  β XX Xy  .           (2.31) 

In this case, iβ  is a biased estimator of iβ  where the bias term is  
1

iE



  
 

X X Xυ , 

and its estimated variance is   
12 2 2

i si uj


 X X   . 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

CHAPTER 3 

 

METHODOLOGY 

In this study, the aim is to propose an estimation approach based on the CS in a 

linear multivariate multiple regression model with HME. The situation of an HME 

model with imprecisely observed independent variables and repeated measurements is 

of interest. The CS approach consists of four stages: first, construct a corrected log-

likelihood function; second, evaluate the CS functions of the parameters; third, estimate 

the variances of the HMEs; and fourth, evaluate the CS estimators of the parameters. 

This section also covers the derivation of the bias and MSE of the CS estimator. 

 

3.1 The Study Model 

 

Consider a linear multivariate measurement error regression model in which the

p  correlated dependent variables 1 2, ,..., pY Y Y  explained by s  independent variables, 

where the first 1s  independent variables 
11 2, ,..., sZ Z Z  are precisely observed and the last 

 1s s  independent variables 
1 11 2, ,...,s s sZ Z Z   are imprecisely observed via their 

corresponding variables 
1 11 2, ,...,s s sX X X   with additive HME. Let jr be the number of 

repeated measurements of jY , 1,2,...,j n , where n is the number of observations, and 

qX , 1 11, 2, , ,q s s s  
 jiky  and jqkx  be the 

thk  repeated measurement of the thj  

observation of iY  and qX , 1,2,...,i p , 1,2,...,j n , 1 1,q s  , 1 2,..., ,s s  

1,2,..., jk r . Subsequently, the linear multivariate measurement error regression model 

can be expressed in matrix form as: 
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                         Y ZB E , (3.1) 

                       q q q x z u  , 1 11, 2,...,q s s s   . (3.2) 

Denote Y   as the n p  matrix of the average measurements of dependent variables    

                     with the thj  observation and the  thi  component, 

Z   as the  1n s   matrix of precise measurements of independent   

      variables including a constant unit vector, 

B   as the  1s p   matrix of parameters including a constant term, 

E   as the n p  matrix of random errors with the thj  observation and and the 

thi  component, 

   qx  as the 1n  vector of the averages of  measurements of qX  with the       

       thj  observation,  

   qz  as the 1n  vector of imprecise measurements of the thq  independent   

         variables,  and 

   qu
 
as the 1n  vector of the averages of the heterogeneous random ME   

         with the thj  observation. 

 

Let jiy  , 1,2,...,i p , 1,2,...,j n  be the average of the observed values of the 

dependent variable for the thj  observation and the 
thi  component, corresponding to the 

independent variable jqz , 1,2,...,q s  where 
11,...,j jsz z  can be observed precisely 

whereas  1 1 ,..., jsj sz z  cannot. Then, 

1

jr

jik
k

ji
j

y

y
r






 , 1,2,...,j n , 1,2,...,i p . 

 

Assuming that jq jq jqx z u    is observed instead of jqz , 1 11, 2,...,q s s s    

in the 
thk  repeated measurement of dependent variable iY  at the thj  observation. Then,  
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 1

jr

jqk
k

jq
j

x

x
r






 , 1,2,...,j n , 1 11, 2,...,q s s s   , 

1

jr

jqk
k

jq
j

u

u
r






 , 1,2,...,j n , 1 11, 2,...,q s s s   , and 

1

jr

jik
k

ji
jr



 




 , 1,2,...,j n , 1,2,...,i p , 

 

where jik  is the mutually independent random error in the thk  repeated measurement 

of dependent variable iY  at the thj  observation.  

The random measurement error of the thk  measurements of 
qX  at the thj  

observation, 
jqku  are independent variables across the measurements of the 

observation, and distributed as  20, ujqN  , the variance 
2
ujq  is assumed to be 

associated with HME but unknown. 

 

The matrix notation can be written in the form 

 

11 12 1 1

21 22 2 2

1 2

p

p

nn n np

y y y

y y y

y y y

  

  

  

   
          
   

    

y

y
Y

y

. 

 

Denote the 
thj  row of  Y  where 

 

 1 2j j j jpy y y  
   y , 1,2,...,j n , (3.3) 
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 

 

 

1 1

1 1

1 1

10 11 12 1 11 1
1

20 21 22 2 22 1 2

0 1 2 1

s ss

s ss

nn n n ns nsn s

z z z z z z

z z z z z z

z z z z z z







   
 

  
   
 

 
 

   
 

z

z
Z

z

. 

 

Denote the 
thj  row of Z  where 

 

 
 1 10 1 1j j j js jsj sz z z z z

 
 

z , 1,2,...,j n , (3.4) 

 

 

01 02 0

11 12 1
0 1

1 2

p

p
s

s s sp

  

  

  

 
 
    
 
  

B β β β . 

 

Denote the 
thi  column of B  where 

 

         1 2q q q qp   
β , 0,1,2,...,q s ,               (3.5) 

 

11 12 1 1

21 22 2 2

1 2

p

p

nn n np

  

  

  

  

  

  

   
          
   

    

ε

ε
E

ε

. 

 

Denote the 
thj  row of  E  where 

 

 1 2j j j jp    
   ε , 1,2,...,j n , 
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Elements of the random error vector 
jε  are independent and identically distributed as

 0,p jN Σ . The p p  variance-covariance matrix of 
jε  is assumed to be known and 

represented as 

11 1

1

j pj

j

p j ppj

 

 

 
 

  
 
 

Σ , 1,2,...,j n  ,           (3.6) 

where ii j ii jk jr   , , 1,2, ,i i p  , 1,2, , jk r  . 

Let X  be a surrogate for independent variables Z  with the last  1s s  variables 

imprecisely observed in model (3.1), and be expressed in vector notation as 

  1 2 n
X x x x , (3.7) 

 
   1 1 10 1 1 2j j j js jsj s j sz z z x x x 

 
 

x ,           (3.8) 

Table 3.1 Data Layout of the Study 

j  k  1j ky  2j ky   jpky  1jz  2jz   1jsz   1 1j s kx    jskx  

1 1 111y  121y   1 1py  
11z  12z   11sz   11 1 1sx    1 1sx  

 2 112y  122y   1 2py       11 1 2sx    1 2sx  

             

 1r  
111ry  

112ry   11pry       1 11 1s rx    11srx  

2 1 211y  221y   2 1py  
21z  22z   12sz   12 1 1sx    2 1sx  

 2 212y  222y   2 2py       12 1 2sx    2 2sx  

             

 2r  
121ry  

222ry   22 pry       1 22 1s rx    22srx  

             
n 1 11ny  21ny   1npy  

1nz  2nz   1nsz   1 1 1n sx    1nsx  

 2 12ny  22ny   2npy       1 1 2n sx    2nsx  

             

 nr  1 nn ry  2 nn ry   nnpry       1 1 nn s rx    nnsrx  
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3.2 Estimating Parameters by the CS Approach 

 

Denote  , , B Z Y  to be a function of B given Z and Y with independent variables 

Z  observed precisely, and  , , B X Y  to be a function of B given Z and Y with X as a 

surrogate for independent variables Z , which cannot be observed precisely, with 

repeated measurements. Then, the notations are specified as 

   , ,L B Z Y as the likelihood function of B given Z  and Y , 

   , ,l B Z Y as the log-likelihood function of B given Z  and Y , and 

   , ,U B Z Y as the score function of B given Z  and Y . 

Because Z cannot be observed precisely, X is the observable value of Z with 

errors, and  , ,U B X Y becomes the score function instead of  , ,U B Z Y . The main idea 

of the CS approach is to construct unbiased estimating functions on the observable 

variables Y  and X  by looking for the biased correction term to correct the biased score 

estimation function. The procedure of the CS approach consists of four stages: 

Stage 1: Construct a Corrected Log-Likelihood Function 

An unbiased estimating function in the absence of imprecisely measured 

variables is constructed by looking for a function  , ,
c

U B X Y  which satisfies the 

property that 

     , , , ,
c

E U UB X Y B Z Y .   (3.9) 

In an indirect way, we use the log-likelihood and look for function  , ,
c

l B X Y ,  

 

     , , , ,
c

E l lB X Y B Z Y .    (3.10) 

A function  , ,
c

l B X Y  is called a corrected log-likelihood function. 

Stage 2: Evaluate the Corrected Score Functions of B   

Under regularity conditions, a corrected score function is given by  

  
 , ,

, , : c

c
U

l




B X Y
B X Y

B
.    (3.11) 

Stage 3: Estimate the variances of HME based on grouped heteroscedasticity 
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Under the assumption of grouped heteroscedasticity, 
2
ujq  is homogeneous 

within g  subsets of observations but heterogeneous across the subsets (Judge, Griffiths, 

Hill, Lütkepohl and Lee, 1985: 428). The observations can be separated into g  groups 

of size hn , 1,2,...,h g , with homogeneous variance within the groups and 

heteroscedastic variances among them.  

Stage 4: Evaluate the Corrected Score Estimators of B  

By following the unbiased property   , , 0E U B Z Y
 

and 

    , , , ,
c

E U UB X Y B Z Y , so that  , ,
c

U B X Y  is also conditionally unbiased, and

  , , 0
c

E U B X Y . Thus, by applying the general theory of M-estimation, the 

estimating equations  , , 0
1 c

n
U X Yj j

j



B  possess a consistent, asymptotically normal 

sequence of solutions (Nakamura, 1990).  

Based on the model of the study described in (3.1) and (3.2), and following the 

4 stages for estimating parameters by CS approach is given by 

Stage 1: The corrected log-likelihood function is satisfied the following 

condition,  

          , , , ,c j j c j jE l l  
 

B x y B z y .   (3.12) 

The likelihood function  ,L Β Z Y  of the study model is defined as 

 

 
        

 
    1 1 1

, exp
1 21

1

222

n
L j jp j

j

j j
j





   


 


Β Z Y y B z y

Σ

B zΣ . 
(3.13) 

By substituting Z and B  using the vector notations in (3.3) and (3.4) into the 

likelihood function in (3.13), the log likelihood function   , ,jl jB yz  becomes 

      1

1 2

1

2
, , j jjj jjl j c c     y B z y BΣ zB yz .   (3.14) 

where  1 log 2
2

p
c     and   2

1
log

2
jc   Σ . 
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 Substituting jz  in (3.12) into (3.14) and taking the expectation by using the 

relationship  jq jqE x z  , 1 11, 2,...,q s s s    yields 

        1 1 2

1

1

1 2
2

, ,
j j j jj

s

q q uj jj q

q s f

j c cE l j r

  


     

        
 B y y B z zΣ y B β βΣx .  

           (3.15) 

Stage 2: The CS functions of B  under regularity conditions, which yields a CS 

function given by  

         
 , ,

, ,
j q

j j

c j j
q

c
U

l


β

B x y
B x y

β
, 0,1,...,q s .                (3.16) 

Under equation (3.16), the corrected log-likelihood function of the study model 

can be written as 

       
1

1 2

1

11

1 2
2

,
j j jj j j

s

q q ujq j

q s

j jc c c rl 







     
    
  

 B y B x y B xΣ βΣβx y .  (3.17) 

Stage 3: Let the number of groups be g ; the size of the 
thh  group be hn , 

1,2,...,h g ; 
2
uqh  be the 

thh  heteroscedastic variance of the ME of qX  in the 
thh  

group; and hr  be the number of repeated measurements of each observation in the 
thh  

group, then the sample variance of qX  in the 
thh  group is given by 

 
                      

 
2

1 12

h h

h h
h

n r

qj k qj
j k

uqh
h h

x x

S
n r


 

 

    
   (3.18) 

Stage 4:  The CS estimators of B  are determined by  

         ˆ
1

ˆ , , 0
j q

n

c j j
j

U



β

B x y , 0,1,...,q s ,    (3.19) 
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where 0 1
ˆ ˆ ˆˆ ... s

 
 

B β β β  is a matrix of the CS estimators of B  and 

1 2
ˆ ˆ ˆ ˆ

q q q qp  
 

 
β , 0,1,2,...,q s , with a consistent, asymptotically normal 

sequence of solutions.  

 It can be deduced from (3.11) and (3.19) that the CS score function can be 

expressed as 

 

 
 

   

   
ˆ

1

1 2
1 1

, 0,1,..., ,
ˆ , ,

/ , 1, 2,..., .
j q

j j j jq

c j j

j j j jq q ujq j

z q s f

U
x r q s s s






    
 

 
     
 

β

Σ y B x

B x y
Σ y B x β

 

 (3.20) 

From (3.12), the  1p s   estimating equations can be written as 

  1 1

1 1

ˆ
j j jj

n n

j j

 
 

 
Σ yΣB x  

 

 

  1
1 1

1

1 1

ˆ
j j jj jj

n
z z

n

j j

 
 
 

  yΣ ΣB x  
 

 

 

 

 1

1

1

1
1 1

ˆ
j jjs jjj

n
z z

n

s
j j

 
 

 
 yΣ ΣB x  

           111 1

1

1

2
1 1 1

1

1 1

ˆˆ
jjj sj jj s j uj s s

n n

j
x

j
x r 

  


  
 

  Σ yB x βΣ   

 

 

 

      11 2

1 1

ˆˆ
jj s jjs j ujs j sj

n n

j j
xx r 




 
 

  yΣB x βΣ  . (3.21) 

Solving the  1p s   linear equations in (3.21) yields 

          
1

1 1ˆ
cs p p pvec vec


           

  
B X I V X I C X I V Y , 

 

(3.22) 

 

which can be expressed as 

      /1
ˆ ˆ

cs ols hmep svec vec
 
  

 B I Ψ B , 
 

(3.23) 
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where          
1

1 1
1 1

1p p p pp s


 

 


     
              

Ψ X I V X I C I X I V X I C ,  

1
V  is a block-diagonal matrix of size np ,  1 1 1

1 2 ndiag   
Σ Σ Σ , C  is a block-

diagonal matrix of  size  1p s   where the first  1 1s   diagonal square submatrices of 

size p are zero and the last  1s s  diagonal square submatrices of size p are the 

estimates of      
1

1 212

1
1 1

,...,
n n

j ujs juj s
j j

j jr r 


 

   Σ Σ , respectively, and 

          
1

1 1
/

ˆ
p p pols hme vecvec


        

 
X I V X I X I V YB . 

 

(3.24) 

 

 

Consider the special case where the covariance matrix of the random error is 

invariant, i.e. , 1,2,...,j j n  Σ Σ . In this case, the term   1
p


X I V  in (3.22) can 

be reduced to 

 
     

1 1 1

1 1 1

11 21 1

1 1
1 2

1 1 2 1 1

1 2

1 1 1

n

s s nsp

s s n s

s s ns

z z z

z z z

x x x

x x x

 

     

  

 
 
 
 
 

   
 
 
 
 
  

X I V Σ . 

 

  (3.25) 

 

which leads to expressing the term    1
p p


  X I V X I C  as 
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   1

p p


  X I V X I C  

 

 

 

   

1 1

1 1

1 1 1 1 11

1 1

1 1

1 1 1 1

2

1 1 1 1 11

1 1 1 1 1

2

1 1

1 1 1 1 1

11 1

1 1

n n n n

j js jsj s

j j j j

n n n n n

j j j js j j jsj s

j j j j j

n n n n n

js js j js js js jsj s

j j j j j

n n

jj s j s j s

j j

n z z x x

z z z z z x z x

z z z z z x z x

x x z x

 

   

 

    

 

    

   

 



   

    

    

          

   

11 1 1 1

1 1

1

2 2

1 1 1 1

1 1 1 1

2 2

1 1

1 1 1 1 1 1

.

n n n n

js j jsj s uj s j s

j j j j

n n n n n n

js js j js js js js ujs jj s

j j j j j j

z x S r x x

x x z x z x x x S r



      

   

     

     







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

   

     

Σ

 

 

 

 

 

  1
u

  X X C Σ ,                              (3.26) 

where uC  is a diagonal matrix of size  1s   where the first  1 1s   diagonal elements 

are zero and the last  1s s  elements are the estimates of 

       
1 1

2 2 2

1 2
1 1 1

, , ,
n n n

j j ujs juj s uj s
j j j

r r r  
 

  

     . 

    From (3.26), the inverse of    1
p p


  X I V X I C  can be expressed as 

     
1

11
p p u


        

 
X I V X I C X X C Σ . 

 

   (3.27) 

 

For simplicity of notation, let      1
pvec vec  F X I V Y . Substituting in (3.25) 

into the right hand side of the definition of  vec F  yields 

   1 1

1
0 1 1

1 1 1 1 1

n n n n n

j j j j js j j js jj s
j j j j j

vec vec z z z x x


    

  
       

   

F Σ y y y y y . 
 

 

                                                (3.28) 

Substituting (3.27) and (3.28) into (3.22) gives 
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    1ˆ
ucs vecvec


  ΣF XX CB  

   
1 1

1

0 1 1
1 1 1 1 1

n n n n n

j j j j js j j js j uj s
j j j j j

vec z z z x x



    

     
  

   
  

y y y y y X X C , 
 

 

          (3.29) 

where the 
thi  CS estimator, _

ˆ
i csβ , 1,2, ,i p  can be expressed as 

  
1

_
ˆ

i cs u i


  β XX C Xy .             (3.30) 

which can be reduced the same results given by Giménez and Patat (2005) when the 

MEs are homogeneous. In this study, the heterogeneous variance of the MEs is 

unknown and estimated by the pooled sample variance. In the case of grouped 

heteroscedasticity, the observations are grouped into several subsets such that the 

variance of MEs is homogeneous within a group but heterogeneous across the groups 

(Judge, Griffiths, Hill, Lütkepohl and Lee, 1985). Therefore, the estimates of the 
th

q  

diagonal element of uC ,  2

1

n

ujq j

j

r


  , can be written as 
2

1

/
g

h uqh h

h

n S r


 , 

1 11, 2, ,q s s s    where 
2

uqhS  is evaluated from (3.18). 

The estimator directly obtained by the OLS method without score correcting is the 

case in (3.30) where uC  is a zero matrix. Following this, the _ /
ˆ

i ols hmeβ  estimator can be 

expressed as 

  
1

_ /
ˆ

i ols hme i


 β XX Xy , (3.31)  

which is the OLS estimator obtained by substituting qX  for unobservable qZ ,

1 11, 2, ,q s s s    without correcting the HMEs.   

Consider the specific case where 1 1s  , 2s  , i.e. the independent variable 2Z  

is imprecisely measured by 2X  with HME and the covariance matrix of the random 

error is invariant, , 1,2,...,j j n     .  From (3.21), the CS estimators of 0 , ,1 2β β β can 

be expressed as 
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 0 1 1 2 2
1 1 1 1

1 1 1 1
j j j

n n n n

j
z x

j j j


   
   
  

 


Σ Σ Σ yΣb b b  
 

 

 
1 1 2

11 0
1

1 1 2 2
1 1 1

jj j jz z
n n n

j
z x

j j

  
   

  
Σ Σ Σb b b

1
1

1
j j

n
z

j


 


yΣ   

 

2
22

2 0 1 2 1 2 2
1 1 1

1 1

ˆ

1

uj
j j j j

j

x z x
n n n

j j j
x

r



 



 

    
  

 
 
 
 

Σ Σb b bΣ 2
1

1
j j

n
x

j






yΣ . (3.32) 

Solving the 3p  linear equations in (3.32) yields 

         
1

0 1 2
1 1 1

ˆˆ
n n n

j j j j j j u
j j j

cs vec z z xvec



  

  
      

  

 y y y X X ΣB . 

 

 (3.33) 

 

The 
thi  vector in ˆ( )csvec B

 
in (2.34) can be written as 

  
1

_
ˆ

i cs u i


  β XX C Xy ,           (3.34)  

where _ 0 1 2
ˆ ˆ ˆ ˆ

i cs i i i
 
 


β    , 1 2i i i niy y y    

y , 1,2,...,i p , 

 

11 12

21 22

1 2

1

1

1 n n

z x

z x

z x







 
 
 
 
 
 

X  , ,

0 0 0

0 0 0

0 0

u

A

 
 
 
  





C and 

2
2

1

h u h

h

g n S

r
h

A


  .   

 

3.3 The Bias of the CS Estimator 

 

The bias and variance of the CS estimator with p  correlations of dependent 

variables 1 2, ,..., pY Y Y  corresponding to s  independent variables, where the first 1s  

independent variables 
11 2, ,..., sZ Z Z  are precisely observed and the last  1s s  

independent variables, 
1 11 2, ,...,s s sZ Z Z   are imprecisely observed, are derived here. 

 Equation (3.22) can be expressed as 
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 

           
1 1

1 1 1

ˆ
cs

p p p p p

vec

vec

 
  

                 
     

B

X I V X I Ψ X I V X I X I V Y
 

      ˆ ˆ ˆ
cs ols olsvec vec vec B B Ψ B . 

 

(3.35) 

 

The bias and variance of the CS estimators are given by 

        / /
ˆ ˆ ˆ

cs ols hme ols hmeBias vec Bias vec E vec      
     

B B Ψ B , 

 

(3.36) 

 

       /1
ˆ ˆ

cs ols hmep sVar vec Var vec
    
    

B I Ψ B , 
 

(3.37) 

 

 

Lemma 1 In a grouped heteroscedasticity, the n  observations can be grouped into h  

groups such that the variance of the measurement errors, 2

2u h , is homogeneous within 

the 
thh  group but heterogeneous across the groups. Let 

jr  be the number of repeated 

measurements of the thj  observation and 
2j ku  be the random measurement error of the 

thj  observation of 
2jx  in the thk  repeated measurement independently distributed as 

2
2(0, )ujN  . Then, as n , 

 2

2
2 2 2 2
2 2

1 1

gn
h u h

j u
j h h

n
u n S u

r


 

   


. 

 

Proof. The proof of Lemma 1 is shown in Appendix A. 

 

Assumptions:    (A1) 1 2, ,z z jik , and 2j ku  are independent, 

      (A2) 
2 2

2 2
u z  , and 

2

2 2
2 zu  . 
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Theorem 1 In the linear multivariate measurement error regression model described in 

(3.1) and (3.2) where 1 1s   and 2s  ,  
2 2

2 2
u z   and 

2

2 2
2 zu  , 1 _

ˆ
i cs  is an 

unbiased estimator but 0 _
ˆ

i cs  and 2 _
ˆ

i cs  are asymptotically unbiased estimators, 

1,2, ,i p . 

 

Proof.  

The bias of the _
ˆ

i csβ  can be written from (3.34) as 

 u

1

_
ˆ ˆ

i iBias of i cs E




 
 
  

  β XX Σ Xy β  

 
       

1
1 1 1 1

u u
ˆ ˆ

i i iE


   
 

  
    

        X X X y X X Σ I XX Σ XX Xy β

 

   

 

(3.38) 

The bias of the _ /
ˆ

i ols hmeβ  estimator from (3.31) can be written as  

_ /
ˆ

i ols hmeBias of β   
1

i iE
  

  
 X y βX X  

                            
1

i i iE
   

  
 X Xβ v βX X  

                
1

iE
 

  
 XX X v ,      (3.39) 

where 2 2i i i v ε u . Then the bias of the _
ˆ

i csβ  estimator can be expressed in terms 

of _ /
ˆ

i ols hmeβ  and its associated bias as  

   
1

1 1
_ u u_ / _ /

ˆ ˆ ˆ
i cs i ols hme i ols hmeBias of Bias of E


   

    

   β β XX C I XX C β .                             

          (3.40) 

From the definition of X  in (3.30) and by using the independent property of 1z  and 

2x  , the inverse of X X  can be expressed in terms of the statistics of the observations as  



43 

 

   

 

1

1 2 2 1 2 2

1 1

2 2 2 2

2 2 2
1 2 2 2 21

2 2 2 2 2 2

1 1
2 2

2 2

2 2 2 2

1 1
0

1
0

z

z z u z z u

z z

z u z u

S z z u z uz

S S S S S S

z

n S S

z u

S S S S



   
   
  
 
 

   
 
 
 
  
 

X X , 

which is denoted by 

             

1311 12

2321 22

31 32 33

1

q q q

q q q

q q q



 
 

  
 
 
 

X X .         (3.41) 

From (3.39) and the definition of iv , the term i
X v can be obviously expressed as 

 

 

 

2 2
1

1 2 2
1

2 2 2
1

n

ji i j
j

n

i j ji i j
j

n

j ji i j
j

u

z u

x u

 


 


  


 
 

 
 

   
 
 
 
  

X v

 

 

 

, 

which is denoted by  

               

1

2

3

i

d

d

d

 
  
 
  

X v .          (3.42) 

By substituting (3.41) and (3.42) into (3.39), the bias of the _ /
ˆ

i ols hmeβ estimator 

becomes 

 

  

1311 12

2321 22

31 32 33

0 _ / 1 2 3

1 _ / 1 2 3

1 2 32 _ /

ˆ

ˆ

ˆ

i ols hme

i ols hme

i ols hme

Bias of q d q d q d

Bias of E q d q d q d

q d q d q dBias of

    
   
     
   

    
  







.    (3.43) 
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From (3.41), it can be easily seen that the term  

13

1 23

33

0 0

0 0

0 0

u

Aq

Aq

Aq



 
 

   
  

X X C  which 

leads to the expression of the last term    
1

1 1

u uE


    
   

X X C I X X C  as 

      

13

23

33

2 _ /
1

1 1
2 _ /33

2 _ /

ˆ

1

1

i ols hme

u u i ols hme

i ols hme

Aq

E E Aq b
Aq

Aq b


 

 
                 
 
 

X X C I X X C



.          (3.44) 

 

 

Substituting the bias of _ /
ˆ

i ols hmeβ  in (3.43) and the RHS in (3.44) into (3.40) yields   

131311 12

23 2321 22

31 32 33 33

2 _ /0 _ 1 2 3

1 _ 1 2 3 2 _ /33

1 2 32 _ 2 _ /

ˆˆ

1ˆ ˆ

1
ˆ ˆ

i ols hmei cs

i cs i ols hme

i cs i ols hme

AqBias of q d q d q d

Bias of E q d q d q d E Aq
Aq

q d q d q dBias of Aq

      
                         
      

     



 

 








.  

                                (3.45) 

From the definitions of 
ijq  and id  in (3.41) and (3.42) respectively, the bias of 

_ /
ˆ

i ols hmeβ  in (3.43) can be expressed in terms of statistical properties of the variables as 

 
0 _ /

2 2
2 2

2 2

2 2
22 2 2 2 2

2 22 2
1

2 2
2 2

ˆ

1 1

i ols hme

n j
i i

ju u
z z

z z

Bias of
uz u u z u

E E
nS S

S S
S S





   
   
   
   

      
      
      
      

 
   

 

   .  

(3.46) 

By Lemma 1, the bias of 0 _ /
ˆ

i ols hme  in (3.33) can be written after the first order 

approximation under the assumption: 
2 2

2 2
u zS S   as 

2

2 2 2

2 2 22 2 2
0 _ / 2 2 22 2 2 2

1 1

3 22 2 2ˆ 1 1 1
n n

i
i ols hme u j k

j k jz z z

z z
Bias of z E u u

n n nS nS n S
 

  

       
            

        


  .  

                      (3.47) 
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As n , the bias of 0 _ /
ˆ

i ols hme  in (3.47) approaches  

2

2

2
2 2

0 _ / 2
ˆ i u

i ols hme

z

z
Bias of

S

 
  .   (3.48) 

Now consider the bias of 0 _
ˆ

i cs which is given in (3.45) as 

     
13

33

2 _ /
0 _ 0 _ /

ˆ ˆ
ˆ

1

i ols hme
i cs i ols hme

Aq
Bias of Bias of E

Aq

 
 
 
 

 


 


.  (3.49)  

Substituting the bias of 2 _ /
ˆ

i ols hme   from (3.43) into the last term of (3.45) yields 

     
 13 31 32 3313

33 33

2 1 2 32 _ /
ˆ

1 1

ii ols hme
Aq q d q d q dAq

E E
Aq Aq

     
   
       


. (3.50)  

From the definitions of 
ijq and id  in (3.41) and (3.42) respectively, the last term of 

(3.45) can be expressed in terms of statistical properties of the variables as 

13

33

2 _ /
ˆ

1

i ols hmeAq
E

Aq

 
 
  


               

     

 

 

  

 

    

 

22 2

2

2 2
2

2
2 22

2
2 2

22 22 2 2
2 2 2 22 2 2 2 2 2 2 2 22

2 2 2 2 2
2 1

2 2 3
2 22

2 2 2 2 22 2 22 2

2 2 2
2 21

1

nu iu i u i j j

u i
jz z

z

z
nu u iu ij j

j z
z z

z u S uz u S u z u S z u
z S

nS SS

E
S

z u S z u Sz u Sz u

n SS S

 












 
    

 
  

 
  
  
  

 
 

  
   

  

      

 

It can be shown that under the condition 
2

2 2(0, )j k uju N   

2 2 2 2

2 2 2 2 3 2 2 2 4 2
2 2 2 2( ) 0; ( ) (1/ ); ( ) (1/ ); ( ) (1/ );u u u uE u S E u S O n E u S O n E u S O n  

2 2 2 2

6 3 4 2 2 4 2
2 2.

1

( ) (1/ ); ( ) 3 / (1/ ); (u ) 0; ( ) 0;
n

u u u u j

j

E S O n E S n O n E S E S u


     

2 2

2 2 2 2
2 2. 2 2.

1 1

( ) 0; ( ) (1/ ).
n n

u j u j

j j

E S u u E S u u O n
 

   

 

(3.51) 
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As n , the last term of (3.49) approaches 

     2

2

213
2 2

233

2 _ /
ˆ

1

i u

z

i ols hme z

S

Aq
E

Aq

 
 
  
 




 
.    (3.52)  

Therefore, from (3.48) and (3.52), it can be concluded that the bias of 0 _
ˆ

i cs

approaches zero as n . 

 Similarly, by following the same approach, and the bias of 1 _
ˆ

i cs  in (3.45) can 

be written as 

     
23

2321 22

33

2 _ /
1 _ 1 2 3
ˆ

ˆ

1

i ols hme
i cs

Aq
Bias of E q d q d q d E

Aq

 
 
 
 

   





.      (3.53)  

Under the assumption that 1jz  and 2j kx  are independent, 23 0q   and  1 2, ,z z jik , and 

2j ku are independent. Then, equation (3.53) becomes 

 

 21 22
1 _ 1 2
ˆ

i csBias of E q Q q Q 

   
1 1

1
2 2 1 2 22 2

1 1

1n n

ji i j j ji i j
j jz z

z
E u z u

nS nS
      

 

    
 
 
  

       

 
1 1

1 1 21
2 2 22 2

1 1

1 n nj ji j j

i i i
j jz z

z z uz
E u

n nS S


  

 


 

    
  
   
   

0 .                                             

Thus, 1 _
ˆ

i cs  is an unbiased estimator.                 

Next, Consider the bias of  2 _
ˆ

i cs  in (3.45) given by 

     
33

31 32 33

33

2 _
2 _ 1 2 3

ˆ
ˆ

1

i ols
i cs

Aq
Bias of E q d q d q d E

Aq

 
 
 
 

   





. (3.54)  

The term  31 32 33
1 2 3E q d q d q d   in (3.54) can be expressed as 2 _ /

ˆ
i ols hmeBias of   

as follows 
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2 _ /
ˆ

i ols hmeBias of   

    

 
2 2

2 2

2 2
2 22 2

2
2 2 2 2 2

2 22 2
1 1 1 1

1

i i

z u

n n n nj ji j ji j j j
i i

j j j jz u

z u
u

S S

E
z u z u u

n n n nS S



    

   

 
  


 

  
 

             

 

 
 

. (3.55)  

Under the assumptions that 1 2, ,z z jik ,and 2j ku are independent,
2 2

2 2
u zS S ,

2

2 2
2 zu S , 

  0jqkE u   ,   0jE ε , and using Lemma 1, equation (3.55) yields 

2 _ /
ˆ

i ols hmeBias of   

    

 
2

2
2

2
2 2 22

2 22 2 2
2 1 1

1 1 3 2
1 1

n ni u i
j k

j k jz
z

E u u
n n nS nS

 
  

      
           

      

  
. (3.56)  

As n , equation (3.56) approaches 

2

2

2
2

2 _ / 2
ˆ i u

i ols hme

z

Bias of
S

 
 

 . (3.57)  

        Consider that the term  
33

33

2 _ /
ˆ

1

i ols hmeAq
E

Aq

 
 
  


 in (3.54), can be expressed as 

 33 31 32 3333

33 33

2 1 2 32 _ /
ˆ

1 1

ii ols hme
Aq q d q d q dAq

E E
Aq Aq

     
   
       


 

 2

2 22

2 2

2

2 2

2

2 2
2 2 22 22

2 2
2 2 2 2 2

2 22 2
1 1 1

1

1
1

u
i i i

z zu

n n nz u j ji j ji j j
i i u

j j jz z

Sz u
u

S SS
E

S S z u z u
S

n n nS S

  

 
 



   

  

        
   

     
    
          
       
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33

33

2 _ /
ˆ

1

i ols hmeAq
E

Aq

 
 
  

 

    
 

   

 
 

 
 

 
 

2 2 2

2
2

2 2

2 2
2

2 2

2 2

2
2 2 2

2 2 2 2 2 22 2
2

2
2 22

2 2 2 22 2 2
21 1

2 3
2 2

2 2
2 2

1 1

1 1

1 1

u u u

z
z

n n
i

u j j u j j
j jz z

z

u u

z z

E S E z u u S E z u u S
S S

E S z u E S z u
S nS n S

E S E S

S S


 

 

 
        

 
 

    
      

    
 
    
     

    
 

. (3.58)  

 

As n , equation (3.58) approaches 

33
2

33
2

2
22 _ /

2

ˆ

1

i ui ols hme

z

Aq
E

SAq

 
 
  

 
. (3.59)  

Thus, from (3.57) and (3.59), it can be concluded that the bias of 2 _
ˆ

i cs approaches zero 

as n .                

                                                                                                          □                                                                                                               

In summary, the biases of the CS and OLS estimators of the slope parameter of the 

precisely observed variable, 1
ˆ ,i  are both zero. The biases of 0 _ /

ˆ
i ols hme  and 

2 _ /
ˆ

i ols hme asymptotically approach to 2

2

2
2 2

2

i u

z

z

S

 
, and 2

2

2
2

2

i u

zS

 
 respectively. In the case 

that 2 0i  , 0 _ /
ˆ

i ols hme  may be either an overestimated or underestimated parameter 

depending on the signs of 0i  and 2z  whereas 2 _ /
ˆ

i ols hme  is definitely an 

underestimated parameter. On the other hand, 0 _
ˆ

i cs  and 2 _
ˆ

i cs  are asymptotically 

unbiased estimators. 
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Define model and conditions 

The algorithm of the CS approach in a linear multivariate regression model with 

HME is shown in Figure 1. 

 

  
 

 
Stage 1: Construct the corrected log-likelihood function 
                  i.e. finding  , ,lc B X Y  which satisfies  

    , , , ,E l lc B X Y B Z Y  
 

 
 
 

                      Stage 2:  Evaluate the CS functions of B ; 

                         

 
 

  , ,
, ,

c j q
U

q

lc
β

B X Y
B X Y

β
 

     

 

 
 

 
 

Stage 3:  Estimate the variances of HME ; 2
uqhS ; 

                          

 
2

1 12

h h

h h
h

n r

qj k qj
j k

uqh
h h

x x

S
n r


 

 



 
 

 
          

Stage 4: Evaluate the CS estimators of B ; 

                           
 , , 0

1

n
U X Yj jc

j



B ,  

 

Figure 3.1 Algorithm of the CS Approach for the Study Model



 

CHAPTER 4 

 

SIMULATION STUDY 

In this chapter, an evaluation of the performance of the proposed CS estimator 

compared to the OLS estimator is described. The reduced form of the model in (3.1)-

(3.2) is considered when there are two independent variables of which one is 

measured with HME based on grouped heteroscedasticity whereas the other is not, 

and the random errors have a constant variance-covariance matrix defined by 1 1s  , 

2s  , and , 1,2,...,j j n     . The CS estimator used follows equation (3.34). In 

section 4.1, details of the simulation settings are provided. Next, section 4.2 contains 

the simulation procedure, and the results of simulation study are shown in Section 4.3. 

     

4.1 Simulation Settings 

 

The objective of the simulation study is to empirically analyze the parameter 

estimations by the OLS and CS methods when varying the sample size n  and the 

number of repeated measurements at the thj  observation, jr . The proposed CS 

estimator is compared to the OLS estimator by considering bias and mean square 

error (MSE). Data sets are generated from the model defined in (3.1) and (3.2) with 

two dependent variables  2p   and two independent variables  2s  . One of the 

independent variables,
 1Z , is precisely observable and is generated with the            

uniform distribution  1,1U   whereas the other, 2Z , cannot be precisely observed 

and is generated with the standard normal distribution  0,1N . The parameters in the 

model are set as follows: 0 0i  , 1 2 1i i   , 1,2i  , and the variance-covariance 

matrix was set as 
0.8 0.5

, 1,2,...,
0.5 1.0

j j n
 

  
 

Σ . The surrogate variable 2X  instead 
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of 2Z  is observed with the same r  repeated measurements at each observation. The 

observations for each sample size are grouped into five sub-samples such that the 

variance of the random measurement error is homogeneous within a group but 

heterogeneous between groups.  

The HME variance in the simulation is set in two forms: the step-up function 

form  1F  and the step-down function form  2F , as specified in Table 4.2, and are 

referred to as HME forms from now on. Each HME form is grouped into five        

sub-samples of equal size  1,2,3,4,5h  . The random measurement error 2u  in the 

thh   group is distributed as  2
20, u hN  . In the simulation, three sample sizes, n , are 

specified: 50, 100 , and 500 , and the number of repeated measurements, :5, 10, 20,r  

and 40 . One hundred replications are simulated for a particular combination of        

n  and r . The data layout of the simulation study for one case is shown in Table 4.1. 

 

Table 4.1 Data Layout of the Study When 1 1s  , 2s   , and 2p   

j  k  1j ky  2j ky  1jz  2jz  2j kx   
1 1 111y  121y  11z  12z  

     121x   

 2 112y  122y         122x  12x      
                        

 r  11ry  12ry         12rx   
2 1 211y  221y  21z  22z  

     221x   

 2 212y  222y         222x  22x   
               

 r  21ry  22ry         22rx   
        
n 1 11ny  21ny  1nz  2nz  

     21nx   

 2 12ny  22ny        22nx  2nx   
               

 r  1n ry  2n ry        2n rx   
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4.2 Simulation Procedure 

 

 Step 1. Generate normal independent random variables with zero mean and 

unit variance,  0,1a N , consisting of 4,000,000 observations, using the CALL 

STREAMINIT with RAND(„NORMAL‟) routine in SAS version 9.3. The seed 

number to generate a  was 5837259. 

 Step 2. Separate the datasets in Step 1 into four sets: 

 Set 1: Dataset for preparing the random errors of the 1
st
 component 

             consisting of 1,000,000 observations, called _ 1a e .  

 Set 2: Dataset for preparing the random errors of the 2
nd

 component 

            consisting of 1,000,000 observations, called _ 2a e .  

 Set 3: Dataset of the independent variable 2Z  consisting of 1,000,000 

            observations, called 2z .  

 Set 4: Dataset for preparing the HME random error consisting of    

                      1,000,000 observations, called _a u . 

Step 3. Check the independence of all four sets in Step 2 using the SAS 

statement PROC CORR. If they are independent, then go to Step 4. If not, go to Step 

1. 

 Step 4. Transform the normal independent random variables in Set 1 and Set 2 

to be multivariate random errors with correlation coefficient 0.5   and the 

variances of  1j  and 2j  to be 0.8 and 1.0, respectively. The variance-covariance 

matrix was set as 

0.8 0.5
, , 1,2,...,

0.5 1.0
j j j n

 
   
 

Σ . 

Transform the normal independent random variable in Set 4 to be 

heterogeneous random measurement error 2u  distributed as  2
20, u hN  . The HME 

variance was set in two forms: the step-up function form  1F  and the step-down 

function form  2F , as specified in Table 4.2. 
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Table 4.2 HME Variances for HME Forms 1F  and 2F  

HME 

Form 

HME Variance 

2
21u  

2
22u  

2
23u  

2
24u  

2
25u  

1F  0.1 0.2 0.4 0.6 0.8 

2F  0.8 0.6 0.4 0.2 0.1 

 

 Step 5. Generate independent random variables 1Z  distributed as  1,1U  , 

 1 1,1z U  , consisting of 1,000,000 observations, using the SAS routine CALL 

STREAMINIT with RAND(„UNIFORM‟). 

 Step 6. Construct the multivariate model where 0oi   and 1 2 1i i   , 

1,2i  , and uses the random variable 2z  in Step 2, random errors 1j  and 2j , and 

the random heteroscedastic measurement error 2u  in Step 4, then the model in (3.1) to 

(3.2) can be expressed as 

       0 1 1 2 2 ,i i i i iy z z         

                                            1 2 ,iz z     for 1,2i  , and 

     2 2 2.x z u   

Next, check that the assumptions and properties of the model, i.e. 1z , 2z ,
 i  for 

1,2i  , and 2u  are independent using the SAS statement PROC CORR. If the 

assumptions are appropriate, use the dataset in this step for the population and go to 

Step 7. If not, go to Step 1 and change the seed number before regenerating the 

normal independent random variables. 

 Step 7. Test the sample for the model without repeated measurements from 

the population in Step 6 using SAS statement PROC SURVEY. For each HME form, 

there were combinations of datasets for n = 50, 100, and 150, and r = 5, 10, 20, and 

40, with 100 simulated replications. Next, for each case, test the rest of the repeated 

measurement samples and construct the repeated measurements model.  
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 Step 8. Check the assumptions and properties of the model, i.e. 1z , 2z ,
 i  for 

1,2i   , and 2u  are independent for each case using the PROC CORR statement. If 

the assumptions are appropriate, the dataset in this step is used as the population and 

go to Step 9. If not, go to Step 7 and the change seed number in PROC SURVEY 

statement. 

 Step 9. For each case, evaluate the study model corresponding to model (3.1) 

to (3.2) where 12, 2, 1p s s   : 

0 1 1 2 2 ,i i i i iy z z        1,2i  , 

     2 2 2.x z u   

 Step 10. Estimate the parameters of the model in Step 9 using the OLS 

method; regress iy  on 1 2,z x  using SAS statement PROC GLM.  

 Step 11. Estimate the parameters of the model in Step 9 by the CS method 

where the CS estimator satisfies (3.34).  

 Step 12. Evaluate the simulated sample mean; the SE of the sample mean; the 

p-value of the t-test for the sample means: 0 : 1, 1,2, 1,2qiH q i    , at significance 

level 0.05; the bias, and the MSE of the CS estimator compared to the OLS estimator: 

 The simulated sample mean of  
 

100

1

ˆ

ˆ ˆ , 1,2, 1,2
100

qi s
s

qi qi q i


  



  . 

The Hypothesis for testing the parameters is given by  

      0 : 1qiH     vs. 1 : 1qiH    for 1,2, 1,2q i  , 

The t-statistic is 

 
ˆ 1

ˆ

qi

qi

t
SE







, 1,2, 1,2q i  . The p-value =  0.025,1P t t . 

Bias of 
  

100

1

ˆ

ˆ , 1,2, 1,2
100

qiqi s
s

qi q i



  

 

 . 

MSE of 
  

2100

1

ˆ

ˆ , 1,2, 1,2
100

qiqi s
s

qi q i



  

 

 . 

The details of population data are shown in Appendix C. 
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4.3 Results of the Simulation Study 

 

4.3.1 HME Variance Estimation 

The simulation results in Tables 4.3 and 4.4 provide the simulated sample 

means of the HME sample variance, 
2
2u hS , and the standard error ( SE ) under the 

model based on grouped heteroscedasticity for HME forms 1F  and 2F , respectively. 

The results reveal that, for all situations, the number of repeated measurements does 

not seem to affect the magnitude of the bias of 
2
2u hS , whereas 

2
2u hS  is close to the 

population parameter 
2
2u h  when the sample size increases, and the SE decreases 

when either the number of repeated measurements or the sample size increases. On 

the other hand, for the same number of repeated measurements, the SE increases 

when the variance of grouped heteroscedasticity is large. The SE is smallest when 

500, 40, 1n r h    ( 0.0024)SE   and 500, 40, 5n r h  
 

( 0.0024)SE 
 

for 

HME forms 1F  and 2F , respectively. 

 

4.3.2 CS Estimation 

So as to gauge the performance of the estimation parameters, Tables 4.5 to 4.8 

provide the simulated sample means, and SE of the CS estimator is compared to the 

OLS estimator. Tables 4.3 and 4.4 show data on the performance of the estimator 1ib , 

1,2i   (the observations 1z  were precisely observed) for HME forms 1F  and 2F , 

respectively. The results show that all simulation conditions corresponding p-values  

> 0.05, and so the tests fails to reject the null hypothesis 0 1: 1, 1,2iH i   for both 

the OLS and CS methods. The SE decreases when either the number of repeated 

measurements or sample size increases for both methods, whereas the SE for the CS 

method is slightly higher than that of the OLS method for all situations.  

 Tables 4.5 and 4.6 provide the results of the performance of estimator 2ib , 

1,2i   (the observations 2x  are observed with HME). The result for the OLS method 

reveal that all situations has corresponding p-values > 0.05, which lead to rejection of 



56 

the null hypothesis 0 2: 1, 1,2iH i  , and the bias is negative; thus, the sample 

means of 2ib , 1,2i  , are underestimated. Meanwhile, the t-test for the sample means 

of 2ib , 1,2i   for the CS method is no different from the true value 2i , 1,2i  ,

 0.05p  . The SE for the CS method is slightly higher than that for the OLS method 

when the number of repeated measurements is small
 
 5,10,20r   and is close to the 

same value when the number is large  40r  . 

In Table 4.7, the bias and MSE of the CS estimator compared with the OLS 

estimator for estimator 1ib , 1,2i   show that the magnitude of bias of the two 

estimators seem no different from each other and is close to zero when the repeated 

measurements and the sample size are large  40, 500r n   for both HME forms. 

In addition, Table 4.8 provides the bias and MSE of estimator 2ib , 1,2i  ; the 

magnitude of bias and the MSE of the CS estimator are lower than those of the OLS 

estimator for all cases, and the magnitude of bias is close to zero when the number of 

repeated measurements and the sample size is large. 



 

Table 4.3  The Simulated Sample Mean and SE of 2
2u hS  for HME Form 1F   

HME  
n r 

Sample Mean and SE * of HME Variance 

Form h=1 h=2 h=3 h=4 h=5 

1F  

50 5 0.1061 (0.0260) 0.2124 (0.0475) 0.4263 (0.1016) 0.5895 (0.1296) 0.8100 (0.1869) 

 
10 0.1045 (0.0163) 0.2032 (0.0333) 0.4046 (0.0601) 0.5876 (0.0883) 0.7782 (0.1199) 

 
20 0.1008 (0.0113) 0.2073 (0.0246) 0.3990 (0.0449) 0.5960 (0.0655) 0.7931 (0.0834) 

  40 0.1009 (0.0080) 0.2026 (0.0177) 0.4093 (0.0318) 0.5960 (0.0432) 0.7964 (0.0522) 

100 5 0.1021 (0.0175) 0.2070 (0.0346) 0.3875 (0.0664) 0.6170 (0.0990) 0.8086 (0.1268) 

 
10 0.1026 (0.0111) 0.2065 (0.0252) 0.3996 (0.0464) 0.5958 (0.0725) 0.7789 (0.0829) 

 
20 0.0999 (0.0073) 0.2004 (0.0172) 0.3986 (0.0328) 0.5932 (0.0458) 0.7840 (0.0569) 

  40 0.1006 (0.0052) 0.2006 (0.0099) 0.4018 (0.0216) 0.6038 (0.0309) 0.7972 (0.0366) 

500 5 0.1015 (0.0072) 0.2019 (0.0168) 0.4004 (0.0292) 0.5961 (0.0424) 0.8000 (0.0597) 

 
10 0.1004 (0.0047) 0.2001 (0.0113) 0.3966 (0.0201) 0.5965 (0.0330) 0.7916 (0.0393) 

 
20 0.1009 (0.0038) 0.2010 (0.0078) 0.3998 (0.0144) 0.5957 (0.0231) 0.7973 (0.0263) 

  40 0.1000 (0.0024) 0.2004 (0.0053) 0.3991 (0.0104) 0.5990 (0.0126) 0.7930 (0.0172) 

* the SE  is presented in parentheses 

5
7
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Table 4.4 The Simulated Sample Mean and SD of 2
2u hS  for HME Form 2F   

HME  
n r 

Sample Mean and SE * of HME Variance 

Form h=1 h=2 h=3 h=4 h=5 

2F  

50 5 0.7913 (0.1791) 0.6003 (0.1303) 0.4101 (0.1090) 0.2037 (0.0453) 0.1068 (0.0224) 

 
10 0.7995 (0.1179) 0.6031 (0.1035) 0.4042 (0.0669) 0.2085 (0.0377) 0.1042 (0.0165) 

 
20 0.7944 (0.0832) 0.6016 (0.0626) 0.4020 (0.0394) 0.2056 (0.0244) 0.1019 (0.0102) 

  40 0.7979 (0.0669) 0.6008 (0.0446) 0.4013 (0.0282) 0.1999 (0.0160) 0.1013 (0.0080) 

100 5 0.7928 (0.1268) 0.6019 (0.0949) 0.4072 (0.0689) 0.2057 (0.0367) 0.1071 (0.0187) 

 
10 0.7896 (0.0817) 0.6098 (0.0717) 0.3970 (0.0438) 0.2013 (0.0230) 0.1023 (0.0112) 

 
20 0.7955 (0.0559) 0.6073 (0.0456) 0.4054 (0.0340) 0.2031 (0.0168) 0.1028 (0.0081) 

  40 0.7872 (0.0361) 0.5997 (0.0307) 0.3970 (0.0241) 0.1994 (0.0098) 0.1022 (0.0059) 

500 5 0.7971 (0.0531) 0.5949 (0.0414) 0.4010 (0.0323) 0.2000 (0.0182) 0.1020 (0.0077) 

 
10 0.7921 (0.0360) 0.6029 (0.0287) 0.4025 (0.0191) 0.2005 (0.0116) 0.1022 (0.0051) 

 
20 0.7961 (0.0278) 0.6054 (0.0209) 0.4003 (0.0141) 0.2001 (0.0070) 0.1012 (0.0031) 

  40 0.7964 (0.0170) 0.6025 (0.0136) 0.4019 (0.0093) 0.2005 (0.0047) 0.1005 (0.0024) 

* the SE  is presented in parentheses 

5
8
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Table 4.5 Statistics and MSEs for 11̂ , 12̂  under HME Form 1F  

n r Parameter 
Sample Mean SE p-value 

OLS CS OLS CS OLS CS 

50 5 
11  0.9984 0.9986 0.01022 0.01025 0.8764 0.8905 

12  0.9945 0.9946 0.01153 0.01166 0.6323 0.6462 

10 
11  1.0067 1.0066 0.00699 0.00701 0.3401 0.3487 

12  0.9997 0.9996 0.00769 0.00774 0.9648 0.9538 

20 
11  1.0023 1.0023 0.00515 0.00517 0.6611 0.6635 

12  1.0007 1.0007 0.00537 0.00539 0.1690 0.1710 

40 
11  0.9979 0.9978 0.00322 0.00322 0.5081 0.5048 

12  0.9970 0.9970 0.00394 0.00394 0.4507 0.4487 

100 5 
11  0.9959 0.9962 0.00668 0.00666 0.5452 0.5726 

12  0.9988 0.9990 0.00768 0.0078 0.8731 0.9017 

10 
11  1.0014 1.0013 0.00523 0.00524 0.7849 0.8037 

12  1.0024 1.0022 0.00589 0.00591 0.6900 0.7066 

20 
11  0.9984 0.9983 0.00373 0.00374 0.6771 0.6619 

12  0.9972 0.9972 0.00417 0.00418 0.5111 0.5051 

40 
11  0.9963 0.9962 0.00265 0.00265 0.1612 0.1591 

12  1.0006 1.0006 0.00290 0.00291 0.8348 0.8402 

500 5 
11  1.0005 1.0006 0.00298 0.00300 0.8766 0.8416 

12  1.0013 1.0015 0.00337 0.00342 0.6946 0.6695 

10 
11  1.0020 1.0020 0.00240 0.00241 0.4094 0.4149 

12  1.0012 1.0012 0.00275 0.00276 0.6706 0.6754 

20 
11  1.0006 1.0006 0.00161 0.00161 0.7290 0.7292 

12  0.9986 0.9986 0.00175 0.00175 0.4185 0.4192 

40 
11  1.0005 1.0006 0.00123 0.00123 0.6551 0.6538 

12  1.0000 1.0000 0.00123 0.00123 0.9776 0.9757 
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Table 4.6 Statistics and MSEs for 11̂ , 12̂  under HME Form 2F  

n r Parameter 
Sample Mean SE p-value 

OLS CS OLS CS OLS CS 

50 5 
11  0.9926 0.9924 0.00998 0.01006 0.4615 0.4490 

12  0.9947 0.9945 0.01148 0.01158 0.6465 0.6329 

10 
11  1.0018 1.0010 0.00761 0.00766 0.1572 0.1537 

12  1.0004 1.0006 0.00757 0.00763 0.9593 0.9426 

20 
11  1.0035 1.0035 0.00622 0.00623 0.5804 0.5735 

12  1.0003 1.0004 0.00600 0.00601 0.9583 0.9493 

40 
11  0.9975 0.9975 0.00371 0.00371 0.5002 0.5023 

12  0.9981 0.9981 0.00438 0.00438 0.6640 0.6659 

100 5 
11  1.0048 1.0048 0.00715 0.00719 0.5041 0.5019 

12  1.0005 1.0006 0.00735 0.00743 0.9413 0.9367 

10 
11  1.0001 0.9998 0.00596 0.00599 0.9904 0.9774 

12  1.0042 1.0040 0.00569 0.00570 0.4620 0.4888 

20 
11  1.0014 1.0013 0.00403 0.00403 0.7381 0.7494 

12  1.0029 1.0028 0.00407 0.00408 0.4855 0.4949 

40 
11  0.9985 0.9984 0.00281 0.00281 0.5831 0.5804 

12  1.0006 1.0006 0.00291 0.00291 0.8436 0.8471 

500 5 
11  0.9985 0.9985 0.00354 0.00358 0.6674 0.6712 

12  0.9977 0.9977 0.00373 0.00378 0.5454 0.5510 

10 
11  0.9980 0.9979 0.00218 0.00219 0.3676 0.3504 

12  1.0012 1.0011 0.00233 0.00234 0.5993 0.6252 

20 
11  1.0004 1.0004 0.00168 0.00169 0.7960 0.7990 

12  0.9987 0.9987 0.00178 0.00178 0.4547 0.4528 

40 
11  0.9991 0.9991 0.00110 0.00110 0.4328 0.4332 

12  0.9988 0.9988 0.00125 0.00125 0.3530 0.3537 
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Table 4.7 Statistics and MSEs for 21̂ , 22̂  under HME Form 1F  

n r Parameter 
Sample Mean SE p-value 

OLS CS OLS CS OLS CS 

50 5 
21  0.9782 1.0016 0.00261 0.00265 <.0001 0.5470 

22  0.9800 1.0034 0.00301 0.00307 <.0001 0.2652 

10 
21  0.9908 1.0019 0.00196 0.00195 <.0001 0.3200 

22  0.9904 1.0015 0.00207 0.00207 <.0001 0.4601 

20 
21  0.9962 1.0018 0.00143 0.00143 .0095 0.2065 

22  0.9956 1.0012 0.00166 0.00162 .0090 0.4776 

40 
21  0.9949 0.9977 0.00112 0.00112 <.0001 0.0565 

22  0.9955 0.9983 0.00125 0.00124 .0005 0.1750 

100 5 
21  0.9781 0.9993 0.00223 0.00227 <.0001 0.7563 

22  0.9762 0.9975 0.00216 0.00218 <.0001 0.2448 

10 
21  0.9882 0.9988 0.00143 0.00148 <.0001 0.4112 

22  0.9882 0.9988 0.00145 0.00147 <.0001 0.4000 

20 
21  0.9964 1.0017 0.00107 0.00109 .0009 0.1196 

22  0.9960 1.0013 0.00125 0.00127 .0017 0.3060 

40 
21  0.9979 1.0006 0.00069 0.00069 .0031 0.4149 

22  0.9977 1.0004 0.00078 0.00078 .0050 0.6000 

500 5 
21  0.9797 1.0003 0.00099 0.00102 <.0001 0.7962 

22  0.9797 1.0003 0.00115 0.00116 <.0001 0.6695 

10 
21  0.9892 0.9996 0.00063 0.00064 <.0001 0.5398 

22  0.9893 0.9997 0.00076 0.00077 <.0001 0.6737 

20 
21  0.9950 1.0003 0.00047 0.00048 <.0001 0.4867 

22  0.9948 1.0001 0.00053 0.00054 <.0001 0.8814 

40 
21  0.9977 1.0003 0.00035 0.00036 <.0001 0.3959 

22  0.9972 0.9998 0.00040 0.00040 <.0001 0.6853 
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Table 4.8 Statistics and MSEs for 21̂ , 22̂  under HME Form 2F  

n r Parameter 
Sample Mean SE p-value 

OLS CS OLS CS OLS CS 

50 5 
21  0.9815 1.0037 0.00303 0.00315 <.0001 0.2467 

22  0.9828 1.0050 0.00318 0.00330 <.0001 0.1337 

10 
21  0.9910 1.0022 0.00199 0.00203 <.0001 0.2817 

22  0.9914 1.0026 0.00217 0.00224 .0001 0.2416 

20 
21  0.9965 1.0023 0.00149 0.00150 .0224 0.1307 

22  0.9961 1.0018 0.00159 0.00159 .0156 0.2483 

40 
21  0.9959 0.9987 0.00106 0.00107 .0002 0.2281 

22  0.9950 0.9978 0.00124 0.00125 <.0001 0.0786 

100 5 
21  0.9784 0.9990 0.00203 0.00217 <.0001 0.9573 

22  0.9809 1.0024 0.00188 0.00191 <.0001 0.2151 

10 
21  0.9892 0.9998 0.00161 0.00165 <.0001 0.8952 

22  0.9901 1.0006 0.00164 0.00170 <.0001 0.7070 

20 
21  0.9967 1.0020 0.00115 0.00114 .0046 0.0754 

22  0.9962 1.0016 0.00109 0.00109 .0008 0.1485 

40 
21  0.9979 1.0005 0.00077 0.00077 .0069 0.4927 

22  0.9979 1.0005 0.00074 0.00074 .0047 0.4666 

500 5 
21  0.9792 1.0001 0.00086 0.00083 <.0001 0.8813 

22  0.9792 1.0002 0.00092 0.00093 <.0001 0.8546 

10 
21  0.9893 0.9998 0.00070 0.00070 <.0001 0.7986 

22  0.9898 1.0004 0.00072 0.00073 <.0001 0.5999 

20 
21  0.9954 1.0007 0.00046 0.00046 <.0001 0.1590 

22  0.9952 1.0004 0.00054 0.00053 <.0001 0.4561 

40 
21  0.9977 1.0003 0.00040 0.00040 <.0001 0.4563 

22  0.9978 1.0005 0.00039 0.00039 <.0001 0.2228 

 

 

 



 

Table 4.9 The Bias and MSE for 11̂ , 12̂  with HME Forms 1F  and 2F  

n r 
Para-

meter 

F1 F2 

Bias MSE Bias MSE 

OLS CS OLS CS OLS CS OLS CS 
50 5 

11  -0.00160 -0.00140 0.01034 0.01041 -0.00740 -0.00760 0.00991 0.01008 

12  -0.00550 -0.00540 0.01320 0.01349 -0.00530 -0.00550 0.01308 0.01331 

10 
11  0.00670 0.00660 0.00489 0.00491 0.00180 0.00100 0.00585 0.00593 

12  -0.00030 -0.00040 0.00585 0.00593 0.00040 0.00060 0.00568 0.00576 

20 
11  0.00230 0.00230 0.00263 0.00265 0.00350 0.00350 0.00384 0.00386 

12  0.00070 0.00070 0.00292 0.00294 0.00030 0.00040 0.00356 0.00358 

40 
11  -0.00210 -0.00220 0.00103 0.00103 -0.00250 -0.00250 0.00137 0.00137 

12  -0.00300 -0.00300 0.00155 0.00155 -0.00190 -0.00190 0.00190 0.00190 

100 5 
11  -0.00410 -0.00380 0.00443 0.00441 0.00480 0.00480 0.00508 0.00514 

12  -0.00120 -0.00100 0.00584 0.00587 0.00050 0.00060 0.00535 0.00547 

10 
11  0.00140 0.00130 0.00271 0.00272 0.00010 -0.00020 0.00352 0.00355 

12  0.00240 0.00220 0.00344 0.00346 0.00420 0.00400 0.00322 0.00323 

20 
11  -0.00160 -0.00170 0.00138 0.00139 0.00140 0.00130 0.00160 0.00160 

12  -0.00280 -0.00280 0.00173 0.00174 0.00290 0.00280 0.00170 0.00170 

 

40 
11  -0.00370 -0.00380 0.00071 0.00071 -0.00150 -0.00160 0.00078 0.00078 

12  0.00061 0.00060 0.00083 0.00084 0.00060 0.00060 0.00084 0.00084 
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Table 4.9  (Continued) 

 

n r 
Para-

meter 

F1 F2 

Bias MSE Bias MSE 

OLS CS OLS CS OLS CS OLS CS 
500 5 

11  0.00050 0.00060 0.00088 0.00089 -0.00150 -0.00150 0.00125 0.00127 

12  0.00130 0.00150 0.00011 0.00116 -0.00230 -0.00230 0.00138 0.00142 

10 
11  0.00200 0.00200 0.00057 0.00058 -0.00200 -0.00210 0.00047 0.00048 

12  0.00120 0.00120 0.00075 0.00075 0.00120 0.00110 0.00054 0.00055 

20 
11  0.00060 0.00060 0.00026 0.00026 0.00040 0.00040 0.00028 0.00028 

12  -0.00140 -0.00140 0.00030 0.00030 -0.00130 -0.00130 0.00032 0.00032 

40 
11  0.00050 0.00060 0.00015 0.00015 -0.00090 -0.00090 0.00020 0.00019 

12  0.00000 0.00000 0.00015 0.00015 -0.00120 -0.00120 0.00016 0.00016 
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Table 4.10  The Bias and MSE for 21̂ , 22̂  with HME Forms 1F  and 2F  

n r 
Para- 

meter 

F1 F2 

Bias MSE Bias MSE 

OLS CS OLS CS OLS CS OLS CS 
50 5 

21  -0.02180 0.00160 0.001148 0.000770 -0.01850 0.00370 0.001250 0.000997 

22  -0.02000 0.00340 0.001298 0.000945 -0.01720 0.00500 0.001290 0.001104 

10 
21  -0.00920 0.00190 0.000464 0.000380 -0.00900 0.00220 0.000475 0.000413 

22  -0.00960 0.00150 0.000514 0.000426 -0.00860 0.00260 0.000539 0.000503 

20 
21  -0.00380 0.00180 0.000216 0.000206 -0.00350 0.00230 0.000233 0.000228 

22  -0.00440 0.00120 0.000291 0.000275 -0.00390 0.00180 0.000265 0.000255 

40 
21  -0.00510 -0.00230 0.000149 0.000130 -0.00410 -0.00130 0.000130 0.000120 

22  -0.00450 -0.00170 0.000174 0.000155 -0.00500 -0.00220 0.000180 0.000160 

100 5 
21  -0.02190 -0.00070 0.000974 0.000509 -0.02160 0.00100 0.000877 0.000424 

22  -0.02380 -0.00250 0.001027 0.000478 -0.02910 0.00240 0.000718 0.000368 

10 
21  -0.01180 -0.00120 0.000341 0.000217 -0.01080 -0.00020 0.000374 0.000270 

22  -0.01180 -0.00120 0.000347 0.000215 -0.00990 0.00060 0.000364 0.000287 

20 
21  -0.00360 0.00170 0.000126 0.000120 -0.00330 0.00200 0.000141 0.000132 

22  -0.00400 0.00130 0.000171 0.000162 -0.00380 0.00160 0.000131 0.000121 

40 
21  -0.00210 0.00060 0.000052 0.000047 -0.00210 0.00050 0.000064 0.000060 

22  -0.00230 0.00040 0.000066 0.000061 -0.00210 0.00050 0.000058 0.000054 
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Table 4.10  (Continued)  

 

n r 
Para- 

meter 

F1 F2 

Bias MSE Bias MSE 

OLS CS OLS CS OLS CS OLS CS 
500 5 

21  -0.02030 0.00030 0.000510 0.000103 -0.02080 0.00010 0.000503 0.000072 

22  -0.02030 0.00030 0.000543 0.000134 -0.02080 0.00020 0.000518 0.000087 

10 
21  -0.01080 -0.00060 0.000156 0.000040 -0.02070 -0.00080 0.000163 0.000049 

22  -0.01070 -0.00070 0.000171 0.000058 -0.02020 0.00040 0.000154 0.000052 

20 
21  -0.00500 0.00030 0.000046 0.000023 -0.00460 0.00070 0.000042 0.000022 

22  -0.00520 0.00010 0.000055 0.000029 -0.00480 0.00040 0.000052 0.000028 

40 
21  -0.00230 0.00030 0.000018 0.000013 -0.00230 0.00030 0.000021 0.000016 

22     -0.00280 
 

-0.00020 0.000024 0.000016 -0.00220 0.00050 0.000020 0.000015 
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4.4  The Proposed CS Estimator with Real-life Data 

 

Data from an oximetry study is used to demonstrate the performance of 

parameter estimation by the proposed CS estimator and comes as a part of the 

MethComp package for the R program (Carstensen, Gurrin, and Ekstrom, 2015), the 

data is shown in Appendix D. The study examines the percentage of oxygen in the 

blood of sick children at the Royal Children‟s hospital in Melbourne. The CO 

oximetry method (CO) is compared to the pulse oximetry method (PULSE). 61 

children are measured where 53 had 3 replicates in each method, 4 children had 2 

replicates and another one had 1. Based on a functional comparative calibration 

model, the CS estimators of the intercept parameter ( 0̂ ) and the slope parameter       

( 1̂ ) are 0
ˆ 0.0126  and 1

ˆ 0.8622 , respectively (Giménez and Patat, 2014).  

When regressing the PULSE variable onto the CO variable using the OLS 

method without adjustment for HME, the results show that 0_ /
ˆ 0.0343ols hme   and 

1_ /
ˆ 0.8092ols hme  , respectively. It can be seen that 1_ /

ˆ
ols hme  is underestimated when 

compares with 1
ˆ 0.8622  (as a reference estimator) and the scatterplot of residual 

against CO as Figure 4.1 shows that heteroscedasticity has occurred. Thus, the 

proposed CS estimator is used to correct the HME for this data.  

Assuming the HMEs are in the form of grouped heteroscedasticity, the data is 

separated into 2 groups. The CO data are put into descending order and the PULSE 

data order in tandem with the CO data. Following this, the data are separated into 2 

groups: the first group has 30 observations and the second group has 31 observations. 

The proposed CS estimators are evaluated where 0_
ˆ 0.0031cs   and 1_

ˆ 0.8680cs  . 

The results show that the bias of the proposed CS estimator is smaller than the bias of 

the OLS estimator. Moreover, in Figure 4.2, the CS method shows that the residuals 

are not heteroscedastic. Thus, it can be concluded that the CS estimator outperforms 

the OLS estimator and the parameter estimation by the proposed CS estimator shows 

conformance to the parameter estimation by Giménez and Patat (2014). 
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Figure 4.1 Scatter Plot of Residuals Against CO for the OLS Method 

 

 

Figure 4.2 Scatter Plot of Residuals Against CO for the CS Method   



 

CHAPTER 5 

 

CONCLUSIONS 

5.1 Conclusions 

 

 This study extends the estimation theory based on the CS to cover a linear 

multivariate multiple regression model consisting of 1s  precisely observed 

independent variables and   1s s  independent variables with HMEs. The random 

error at the thj  observation is distributed independently across observations as 

 0, jN Σ . The assumption in this model is that the HME variance is unknown and is 

estimated based on grouped heteroscedasticity; each group can be evaluated from 

pooled variances by a variable with HME observed in repeated measurements. HME 

violates the OLS assumption of dependency in the independent variables and random 

errors; the OLS estimator based on HMEs in X have attenuated bias and are also 

inconsistent. The CS approach in this study is identified as a method for correcting 

attenuated bias because it is one of the methods based on functional modeling to 

correct the HME and provides a fully consistent (asymptotically removes all bias) 

method for a linear model.  

 The proposed estimating parameter procedure is developed in four stages: 

Stage 1: Construct a corrected log-likelihood function. 

Stage 2: Evaluate the CS functions of B . 

Stage 3: Estimate the variances of HME based on grouped heteroscedasticity. 

Stage 4: Evaluate the CS estimators of B . 

Based on the model in equations (3.1) to (3.2), the estimation of HME 

variance is evaluated from the pooled variance by a variable with HME observed in 

repeated measurements is given by  
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n r


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 

 . 
 (5.1) 

The proposed CS estimator is given by 

          
1

1 1ˆ
cs p p pvec vec


           

  
B X I V X I C X I V Y , 

 

(5.2) 

 

where          
1

1 1
1 1

1p p p pp s


 

 


     
              

Ψ X I V X I C I X I V X I C ,  

1
V  is a block-diagonal matrix of size np ,  1 1 1

1 2 ndiag   
Σ Σ Σ , C  is a 

block-diagonal matrix of size  1p s   where the first  1 1s   diagonal squar 

submatrices of size p are zero and the last  1s s  diagonal square submatrices of size 

p are the estimates of  
    

1

1 212

1
1 1

,...,
n n

j ujs juj s
j j

j jr r 


 

   Σ Σ , respectively, and 

         
1

1 1
/

ˆ
p p pols hme vecvec


        

 
X I V X I X I V YB . 

By setting the covariance matrix of the random error as invariant, 

, 1,2,...,j j n     , the proposed CS estimator yields 

 ˆ
csvec B  

   
1 1

1

0 1 1
1 1 1 1 1

n n n n n

j j j j js j j js j uj s
j j j j j

vec z z z x x



    

     
  

   
  

y y y y y X X C  

       (5.3) 

The 
thi vector in ˆ( )csvec B  can be written as 

 

  
1

_
ˆ

i cs u i


  β XX C Xy ,        (5.4) 
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where the estimates of the 
thq  diagonal element of  uC ,  2

1

n

ujq j

j

r


  , can be 

written as 2

1

/
g

h uqh h

h

n S r


 , 1 11, 2, ,q s s s   . 

In the case of independently and identically distributed random errors and 

homogeneous measurement error, the analytical results agree with the findings of 

Gimenez and Patat (2005). The theoretical proof for the bias of CS estimators is 

shown based on the specific case, under assumptions (A1) and (A2). In the specific 

case where the multivariate regression model consists of p  dependent variables, one 

precisely observed independent variable and one independent variable with HME, it is 

shown that the estimates of 0 _ /i ols hme  and 2 _ /i ols hme  are biased but the estimates 

of 0 _i cs  and 2 _i cs  are asymptotically unbiased, and that the estimates of 

1 _ /i ols hme  and 1 _i cs  are both unbiased for 1,2, ,i p .  

The results of the simulation study show that the OLS estimation of the 

parameter of the variable not measured with HME is not affected by HME. 

Meanwhile the estimation of the parameter of the variable measured with HME 

reveals an underestimated estimator. The CS method outperforms the OLS method 

since the magnitude of bias and the MSE of the CS estimator are far lower than the 

OLS estimator when either the number of repeated measurements or sample size 

increases, and are close to zero when the sample size is large. These results assert that 

the simulation study conforms to the theoretical proof.  

 

5.2 Discussion 

 

The MEs of the surrogate variables are assumed to be independently 

distributed with heteroscedastic variances. However, the heteroscedasticity in this 

study is restricted to the form where the sample of observations can be grouped into 

several sub-samples with the property that the variance of the measurement error is 

homogeneous within a group but heterogeneous between groups. In each group, the 

variance of the measurement error of the surrogate variable is estimated by the pooled 

variance of the variable with HMEs observed in the repeated measurements. 
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5.3 Future Research 

 

 In future research, the effect of the number of groups and varying the number 

of repeated measurements in each group of grouped heteroscedasticity could be 

considered. Some other approaches to solving the problem of HME variance 

estimation should be investigated intensively to support other types of HME. 
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Appendix A 

 

Proof of Lemma 1  

Lemma 1.  In a grouped heteroscedasticity, the n observations can be grouped into h 

groups such that the variance of the measurement errors, 2

2u h , is homogeneous 

within the h
th

 group but heterogeneous across the groups. Let 
jr be the number of 

repeated measurements of the j
th

 observation and 
2j ku be the random measurement 

error of the j
th

 observation of 
2jx in the k

th
 repeated measurement independently 

distributed as 
2

2(0, )ujN  . Then, as n , 

 2

2
2 2 2 2
2 2

1 1

gn
h u h

j u
j h h

n
u n S u

r


 

   


. 

Proof.   

The sample variance of the average of the random measurement errors can be 

written as 

  
2

2
2

2. 2

1

1 n

u j

j

S u u
n 

  , 
 

(A.1) 

 

which can be estimated by the pooled variance as 

 
2

2
2 2

1

1 g

h u h
u

h h

n S
S

n r

  , 

 

(A.2) 

 

where 2

2u hS  is the sample variance of the measurement error in the thh group of hn

observations, hr is the number of repeated measurements of the observation in the thh

group.  

From (A.1), the sum of squares of the average of random measurement errors 

of the 
thj   observation can be expressed as 

  
2

2 2 2

2. 2

1

n

j u

j

u n S u


  .  

(A.3) 
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Substituting (A.2) into (A.3) yields 

 

2
2 22
2. 2

1 1

gn
h u h

j

j h h

n S
u nu

r 

   . 
 

(A.4) 

 

As n , (A.4) becomes 
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Appendix B 

 

Population Data 

Table B.1  Pearson Correlation for Generator Variables of HME Form 1F  and 2F  

 

Variable  _ 1a e  _ 2a e  2_a z  _a u  

_ 1a e  Pearson Correlation 

Sig. (2-tailed) 

1.0000 

- 

0.0015 

0.1290 

0.0003 

0.7850 

0.0001 

0.3409 

_ 2a e  Pearson Correlation 

Sig. (2-tailed) 

0.0015 

0.1290 

1.0000 

- 

0.0005 

0.6291 

0.0018 

0.0754 

2_a z  Pearson Correlation 

Sig. (2-tailed) 

0.0003 

0.7850 

0.0005 

0.6291 

1.0000 

- 

0.0016 

0.1216 

_a u  Pearson Correlation 

Sig. (2-tailed) 

0.0010 

0.3409 

0.0018 

0.0754 

0.0016 

0.1216 

1.0000 

- 

 

 

Table B.2  Covariance Estimated for Population Data of HME Form 1F  and 2F  

 

Variable e1 e2 

e1 0.79996 0.4485 

e2 0.4485 1.0018 

 

Table B.3  HME Variances Estimated for Grouped Heteroscedasticity of 1F   

 

2
21ˆu  

2
22ˆu  

2
23ˆu  

2
24ˆu  

2
25ˆu  

0.099616 0.19966 0.39945 0.59882 0.79522 



 

Table B.4 Pearson Correlation for Variables in the Model of HME Form 1F  

Variable  y1_true y2_true e1 e2 z1 z2 x2 u 

y1_true Pearson Correlation 

Sig. (2-tailed) 

1 

- 

0.9138 

< .0001* 

0.3951 

< .0001* 

0.1974 

< .0001* 

0.2561 

< .0001* 

0.88278 

< .0001* 

0.8401 

< .0001* 

0.0015 

0.1250 

y2_true Pearson Correlation 

Sig. (2-tailed) 

0.9138 

< .0001* 

1 

- 

0.2175 

< .0001* 

0.4330 

< .0001* 

0.2509 

< .0001* 

0.8659 

< .0001* 

0.8239 

< .0001* 

0.0008 

0.4102 

e1 Pearson Correlation 

Sig. (2-tailed) 

0.3951 

< .0001* 

0.2175 

< .0001* 

1 

- 

0.5009 

< .0001* 

0.0014 

0.1768 

0.0003 

0.7850 

0.0005 

0.6043 

0.0008 

0.4003 

e2 Pearson Correlation 

Sig. (2-tailed) 

0.1974 

< .0001* 

0.4330 

< .0001* 

0.5009 

< .0001 

1 

- 

0.0004 

0.6835 

0.0003 

0.6835 

0.0005 

0.6023 

0.0008 

0.4107 

z1 Pearson Correlation 

Sig. (2-tailed) 

0.2561 

< .0001* 

0.2509 

< .0001* 

0.0014 

0.1768 

0.0004 

0.6835 

1 

- 

0.0010 

0.3013 

0.0011 

0.2725 

0.0004 

0.7106 

z2 Pearson Correlation 

Sig. (2-tailed) 

0.88277 

< .0001* 

0.8659 

< .0001* 

0.0003 

0.7850 

0.0003 

0.6835 

0.0010 

0.3013 

1 

- 

0.9515 

< .0001* 

0.0013 

0.2092 

x2 Pearson Correlation 

Sig. (2-tailed) 

0.8401 

< .0001* 

0.8239 

< .0001* 

0.00052 

0.6043 

0.0005 

0.6023 

0.0011 

0.2725 

0.9515 

< .0001* 

1 

- 

0.3088 

< .0001* 

u Pearson Correlation 

Sig. (2-tailed) 

0.0015 

0.1250 

0.0008 

0.4102 

0.0008 

0.4003 

0.0008 

0.4107 

0.0004 

0.7106 

0.0013 

0.2092 

0.3088 

< .0001* 

1 

- 

     * significance at level 0.0001 



 

Table B.5  Characteristics of the OLS Estimators for Population HME Form 1F   

 

Parameter Estimate SE t p-value 

01  0.0002 0.0009 0.24 0.8075 

11  1.0021 0.0015 646.73 <.0001* 

21  1.0001 0.0004 2237.04 <.0001* 

02  0.0000 0.0010 0.00 0.9999 

12  1.0007 0.0017 577.12 <.0001* 

22  0.9999 0.0005 1998.48 <.0001* 

  * significance at level 0.0001 

 

Table B.6  Characteristics of the OLS Estimators without adjustment for Population  

                   HME Form 1F   

 

Parameter Estimate SE t p-value 

01_ /ols hme  0.0015 0.0011 1.38 0.1668 

11_ /ols hme  1.0021 0.0019 532.97 <.0001* 

21_ /ols hme  0.9052 0.0005 1754.44 <.0001* 

02_ /ols hme  0.0013 0.0012 1.09 0.2753 

12_ /ols hme  1.0007 0.0020 491.47 <.0001* 

22_ /ols hme  0.9048 0.0006 1619.22 <.0001* 

  * significance at level 0.0001 
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Table B.7  Pearson Correlation for Variables in the Model of HME Form 2F  

Variable  y1_true y2_true e1 e2 z1 z2 x2 u 

y1_true Pearson Correlation 

Sig. (2-tailed) 

1 

- 

0.9135 

< .0001* 

0.3962 

< .0001* 

0.1970 

< .0001* 

0.2558 

< .0001* 

0.8824 

< .0001* 

0.8395 

< .0001* 

0.0019 

0.0589 

y2_true Pearson Correlation 

Sig. (2-tailed) 

0.9135 

< .0001* 

1 

- 

0.2185 

< .0001* 

0.4331 

< .0001* 

0.2507 

< .0001* 

0.8654 

< .0001* 

0.8233 

< .0001* 

0.0016 

0.1181 

e1 Pearson Correlation 

Sig. (2-tailed) 

0.3962 

< .0001* 

0.2185 

< .0001* 

1 

- 

0.5009 

< .0001* 

0.0014 

0.1768 

0.0010 

0.3409 

0.0010 

0.3322 

0.0002 

0.8346 

e2 Pearson Correlation 

Sig. (2-tailed) 

0.1970 

< .0001* 

0.4331 

< .0001* 

0.5009 

< .0001 

1 

- 

0.0004 

0.6835 

0.0011 

0.2876 

0.0012 

0.2458 

0.0005 

0.6276 

z1 Pearson Correlation 

Sig. (2-tailed) 

0.2558 

< .0001* 

0.2507 

< .0001* 

0.0014 

0.1768 

0.0004 

0.6835 

1 

- 

0.0003 

0.7407 

0.0007 

0.5034 

0.0012 

0.2506 

z2 Pearson Correlation 

Sig. (2-tailed) 

0.8824 

< .0001* 

0.8654 

< .0001* 

0.0010 

0.3409 

0.0011 

0.2876 

0.0003 

0.7407 

1 

- 

0.9515 

< .0001* 

0.0013 

0.0861 

x2 Pearson Correlation 

Sig. (2-tailed) 

0.8395 

< .0001* 

0.8233 

< .0001* 

0.0010 

0.3322 

0.0012 

0.2458 

0.0007 

0.5034 

0.9512 

< .0001* 

1 

- 

0.3101 

< .0001* 

u Pearson Correlation 

Sig. (2-tailed) 

0.0019 

0.0589 

0.0016 

0.1181 

0.0002 

0.8346 

0.0005 

0.6276 

0.0012 

0.2506 

0.0017 

0.0861 

0.3101 

< .0001* 

1 

- 

     * significance at level 0.0001 



 

Table B.8  HME Variances Estimated for Grouped Heteroscedasticity of 2F  

 

2
21ˆu  

2
22ˆu  

2
23ˆu  

2
24ˆu  

2
25ˆu  

0.7967 0.6017 0.4018 0.1999 0.1005 

 

 

Table B.9  Characteristics of the OLS Estimators for Population HME Form 2F   

 

Parameter Estimate SE t p-value 

01  0.0002 0.0009 0.25 0.8059 

11  1.0021 0.0015 646.74 <.0001* 

21  1.0004 0.0004 2233.77 <.0001* 

02  0.0000 0.0010 0 0.9981 

12  1.0007 0.0017 577.12 <.0001* 

22  0.9995 0.0005 1994.18 <.0001* 

  * significance at level 0.0001 
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Table B.10  Characteristics of the OLS Estimators without adjustment for Population   

                     HME Form 2F   

 

Parameter Estimate SE t p-value 

01_ /ols hme  0.0008 0.0011 0.70 0.4816 

11_ /ols hme  1.0010 0.0019 532.03 <.0001* 

21_ /ols hme  0.9047 0.0005 1749.86 <.0001* 

02_ /ols hme  0.0010 0.0012 0.84 0.4016 

12_ /ols hme  0.9997 0.0020 490.94 <.0001* 

22_ /ols hme  0.9038 0.0006 1615.21 <.0001* 

  * significance at level 0.0001 



 

Appendix C 

 

Oximetry Data 

The Oximetry Data for examining the percentage oxygen of the blood of sick 

children at the Royal Children‟s hospital in Melbourne is shown as follows: 

 

No. obs rep CO PULSE 

1 1 1 0.5497 0.3889 

2 1 2 0.5102 0.4102 

3 1 3 0.5297 0.4320 

4 2 1 0.3414 0.3274 

5 2 2 0.3194 0.3076 

6 2 3 0.3334 0.3274 

7 3 1 0.6856 0.6585 

8 3 2 0.6048 0.5248 

9 3 3 0.6213 0.5248 

10 4 1 0.2181 -0.1224 

11 4 2 0.2842 0.3475 

12 4 3 0.3174 0.5248 

13 5 1 0.4959 0.5006 

14 5 2 0.4475 0.4102 

15 5 3 0.5078 0.3274 

16 6 1 0.5497 0.5754 

17 6 2 0.5702 0.5497 

18 6 3 0.5322 0.5497 

19 7 1 0.7993 0.7202 

20 7 2 0.7299 0.6585 

21 7 3 0.8653 0.6585 

22 8 1 0.5807 0.4543 

23 8 2 0.5754 0.4543 

24 8 3 0.7636 0.5248 

25 9 1 0.3889 0.3680 

26 9 2 0.3763 0.3680 

27 9 3 0.4123 0.3889 

28 10 1 0.0872      0.2311 

29 10 2 0.0539 0.4102 
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No. obs rep CO PULSE 

32 11 2 0.9542 0.7533 

33 11 3 1.0911 0.8653 

34 12 1 -0.5446 -0.5006 

35 12 2 -0.4748 -0.4102 

36 12 3 -0.3254 -0.2499 

37 13 1 0.5886 0.3680 

38 13 2 0.6764 0.3889 

39 13 3 0.8179 0.4771 

40 14 1 0.3973 0.6021 

41 14 2 0.4320 0.6021 

42 14 3 0.2997 0.5006 

43 15 1 0.7137 0.6021 

44 15 2 0.7234 0.5497 

45 15 3 0.6674 0.5248 

46 16 1 0.5054 0.2499 

47 16 2 0.5497 0.2881 

48 16 3 0.6795 0.4771 

49 17 1 0.8179 0.7884 

50 17 2 1.1301 0.9080 

52 18 1 0.5650 0.4102 

53 18 2 0.5573 0.4543 

54 18 3 0.5754 0.4771 

55 19 1 0.4059 0.3889 

56 19 2 0.4588 0.4771 

57 19 3 0.4543 0.3889 

58 20 1 0.4498 0.3274 

59 20 2 0.5396 0.4771 

61 21 1 0.4320 0.4771 

62 21 2 0.5754 0.6021 

63 21 3 1.1508 0.8653 

64 22 1 0.5396 0.2688 

65 22 2 0.6795 0.7884 

66 22 3 0.3475 0.2688 

67 23 1 0.5624 0.5754 

68 23 2 0.5967 0.6585 

69 23 3 0.5886 0.5754 

70 24 1 0.6645 0.6021 

71 24 2 0.7848 0.7202 

72 24 3 0.7884 0.6021 

73 25 1 0.7776 0.5497 

74 25 2 0.3995 0.4102 

76 26 1 0.5650 0.5006 
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No. obs rep CO PULSE 

77 26 2 0.5676 0.5248 

78 26 3 0.5807 0.5006 

79 27 1 0.2574 0.0696 

80 27 2 0.3700 0.0872 

81 27 3 0.4276 0.3076 

82 28 1 0.1761 0.1224 

83 28 2 0.2126 0.3680 

84 28 3 0.2978 0.3889 

85 29 1 0.5522 0.4771 

86 29 2 0.5297 0.4771 

87 29 3 0.5174 0.3889 

88 30 1 0.5860 0.4102 

89 30 2 0.6382 0.4102 

90 30 3 0.6948 0.4543 

91 31 1 -0.0087 -0.4102 

92 31 2 -0.0959 -0.0696 

93 31 3 -0.0889 0.1943 

94 32 1 0.7602 0.5006 

95 32 2 0.6917 0.5754 

96 32 3 0.6498 0.5006 

97 33 1 0.6382 0.7533 

98 33 2 0.6645 0.6021 

99 33 3 0.6326 0.6585 

100 34 1 0.8217 0.6585 

101 34 2 0.8030 0.5754 

102 34 3 0.7671 0.6021 

103 35 1 0.6440 0.5754 

104 35 2 0.4342 0.3076 

105 35 3 0.6326 0.3889 

106 36 1 0.7234 0.5006 

107 36 2 0.3995 0.4771 

108 36 3 0.8736 0.3680 

109 37 1 0.8372 0.6021 

110 37 2 0.5913 0.6021 

111 37 3 0.4771 0.3274 

112 38 1 0.7365 0.6297 

113 38 2 0.6825 0.7202 

114 38 3 0.6213 0.6585 
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No. obs rep CO PULSE 

115 39 1 0.5322 0.5754 

118 40 1 0.3095 0.2126 

119 40 2 0.3354 0.2311 

120 40 3 0.3910 0.2499 

121 41 1 0.5676 0.3889 

122 41 2 0.5272 0.3680 

123 41 3 0.5548 0.3889 

124 42 1 0.2688 0.4320 

125 42 2 0.4771 0.4543 

126 42 3 0.3174 0.3889 

127 43 1 0.0400 0.1581 

128 43 2 0.0139 0.1224 

129 43 3 0.0365 0.1224 

130 44 1 0.1224 0.1761 

131 44 2 0.1206 0.1761 

132 44 3 0.1509 0.1943 

133 45 1 0.4959 0.4543 

134 45 2 0.5886 0.4771 

135 45 3 0.6297 0.4771 

136 46 1 0.7499 0.5248 

137 46 2 0.5650 0.5248 

138 46 3 0.6382 0.5006 

139 47 1 0.6048 0.5006 

140 47 2 0.5728 0.5497 

141 47 3 0.5860 0.5248 

142 48 1 0.3475 0.3076 

143 48 2 0.3597 0.4320 

144 48 3 0.4276 0.6585 

145 49 1 0.9640 0.7202 

146 49 2 0.8612 0.6886 

147 49 3 0.8411 0.5248 

148 50 1 0.0452 -0.0872 

149 50 2 0.0139 0.0174 

151 51 1 0.1153 -0.1047 

152 51 2 0.1743 0.0348 

153 51 3 0.1671 -0.0348 

154 52 1 0.4145 0.3076 

155 52 2 0.5754 0.4320 

156 52 3 0.5833 0.4771 

157 53 1 0.3414 0.3889 

158 53 2 0.4959 0.5006 
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No. obs rep CO PULSE 

159 53 3 0.3174 0.3680 

160 54 1 1.0320 1.0607 

161 54 2 0.1384 0.2688 

162 54 3 0.5102 0.5248 

163 55 1 0.9640 1.0607 

164 55 2 0.8067 0.7533 

165 55 3 0.7776 0.8653 

166 56 1 0.7398 0.7202 

167 56 2 0.7741 0.6585 

168 56 3 0.8411 0.7202 

169 57 1 1.1579 1.0607 

170 57 2 1.0320 0.9542 

171 57 3 0.6241 0.6585 

172 58 1 0.8778 0.7202 

173 58 2 0.9494 0.8256 

174 58 3 1.0210 0.9080 

175 59 1 0.9260 1.1950 

176 59 2 0.9306 0.9080 

177 59 3 1.0376 1.0048 

178 60 1 0.8333 0.5754 

179 60 2 0.7042 0.5248 

180 60 3 0.7432 0.6021 

181 61 1 0.4982 0.4102 

182 61 2 0.5174 0.3680 

183 61 3 0.4611 0.3274 
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Dependent Variable: PULSE  
 

Number of Observations Read 61 

Number of Observations Used 61 

 

Analysis of Variance 

Source DF 
Sum of 

Squares 

Mean 

Square 
F Value Pr > F 

Model 1 2.90633 2.90633 279.96 <.0001 

Error 59 0.61249 0.01038 
  

Corrected 

Total 
60 3.51881 

   

 

Root MSE 0.10189 R-Square 0.8259 

Dependent Mean 0.46595 Adj R-Sq 0.8230 

Coeff Var 21.86648 
  

 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 

Standard 

Error 
t Value Pr > |t| 

Intercept 1 0.03427 0.02891 1.19 0.2407 

CO 1 0.80922 0.04836 16.73 <.0001 

 

 

FIGURE C.1  SAS Output of the Oximetry Data 
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FIGURE C.2  Residual Plot of the Oximetry Data 
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