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ABSTRACT

Title of Dissertation Response Surface Methodology Using an Optimization
Technique

Author Miss Chantha Wongoutong

Degree Doctor of Philosophy (Statistics)

Year 2016

Response surface methodology (RSM) is techniques combine both of
experimental designs and statistical techniques for empirical model building and
optimization. The experimental design is considered by the objective is to optimize
one or more response variables influenced by several independent variables.
However, in real situation, we may not be able to identify the true model and so an
approximated model, usually a central composite design for building a second-order
polynomial model, this design is popular in RSM.

A novel method using the Nelder-Mead algorithm is proposed to be used
instead of the first order model in moving the experiment in the response surface
methodology toward the neighbor of the optimum. A second order model similar to
the second order model in the CCD is constructed to estimate the optimum design
point and the optimum response. From the simulation using five published test
functions and five different normal generators, it can be concluded that the proposed
method outperforms the traditional CCD in terms of the number of experiments, the
MAPEs of the estimated.
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CHAPTER 1

INTRODUCTION

1.1 Background

It is common knowledge that the design of experiments (DOES) is a statistical
technique used to find the optimum performance of a system when the independent
variables (factors) are known. The first step using this technique is to screen the
experimental design used to identify the important factors suspected of affecting the
system's performance (response). When the number of independent variables (factors)
is large, there is a need to reduce this number by screening them using the
experimental design. After that, another designed experiment test plan needs to be
carried out with the objective of optimizing the system's performance. In general, the
initial and final optimized DOEs are called the screening design and the response
surface method (RSM), respectively. Response surface methodology, developed by
Box and Wilson (1951), is usually employed to achieve optimum efficiency in
manufacturing by establishing the best settings for the control process parameters
(factors) to achieve the optimum process response. For a recent review of response
surface methodology, see Myers et al. (2004), and there are also many books devoted
exclusively to various aspects of the process, such as Khuri and Cornell (1996), Box
and Draper (2007), and Myers et al. (2009).

Mayers and Montgomery (2002) introduced three phases for conducting an
RSM: phase 0, the screening of independent variables (input factors) is considered to
identify those which have a significant effect on the response(s); phase 1) the location
of the optimum operating conditions is determined by conducting a sequence of
suitable experiments; and phase 2) the fitting of an appropriate empirical model,
usually a second-order polynomial model, is carried out to examine the nature of the
response surface in the vicinity of the optimum. There are many types of second-order
design with the central composite design (CCD) introduced by Box and Wilson
(1951) being the most popular.



Most of the problems in response surface methodology occur when searching
for the relationship between the response and independent variables, which is usually
solved by using a low order polynomial in some region of the independent variables.
However, for some regions that should be in the optimum region (refer to phase 1
above), the steepest ascent/descent search approach is used to move them to the
optimum region.

The traditional RSM is based on initially conducting steepest ascent or descent
searches until a significant curvature is detected. Box and Wilson (1951) used this
method to maximize the response based on experiments conducted on the direction
defined by the gradient of an estimated main effects model. The observed responses
along the steepest ascent direction are used to locate the neighborhood of the
maximum. This method can theoretically locate the maximum through numerous
iterations as long as it exists. However, if it is used on a badly scaled system, the rate
of convergence may become too slow and the use of the method is impractical.
Normally, the step size is estimated by using the coefficient of regression in the first
order model based on the results from the experiments. In other words, the
effectiveness of the traditional RSM depends on the step size given by the first order
model.

An alternative to solving the step size problem in the traditional RSM is to
only obtain the values experimentally without using the steepest direction when
searching for the optimum of the response surface. The best-known methods in the
direct search class include genetic algorithms (Holland, 1992), simulated annealing
(Brooks and Morgan, 1995), Tabu search (Glover and Laguna, 1997), neural networks
(Sexton et al., 1998) and the Nelder-Mead (NM) algorithm (Nelder and Mead, 1965).
The NM algorithm is quite simple to understand and very easy to use (Gavin, 2013).
These studies have led to its widespread application in many fields of science and
technology, especially in chemistry and medicine.

The NM method is a derivative-free process for searching for the local
optimum of a function. In this optimization process, the initial simplex adapts itself
iteratively to the local surface landscape by varying its size and orientation. The NM
algorithm is especially suitable for exploring “unwieldy” terrains, and has been

widely accepted as the most robust and efficient of the current sequential techniques



for unconstrained optimization (Lagarias et al., 1998). Numerous software packages
include the NM algorithm as an optimization solver, such as Mathematica (2002),
MultiSimplex (2001), PROC IML in SAS (1998), among others. The idea behind the
NM algorithm is to “crawl” to the optimum in the selected direction by moving one
vertex of the simplex during each iteration. The vertices are moved by performing
four basic operations: reflection, expansion, contraction, and multiple contractions
(shrink).

Aimed at having better convergence, several variants of the simplex method
have been proposed (Torczon, 1989; Dennis and Torczon, 1991; Byatt, 2000; Kelley,
2000; Tseng, 2000; Price et al., 2002). The NM algorithm generally performs well for
solving small dimensional real-life problems and continuously remains as one of the
most popular direct search methods (Wright, 1996; Lagarias et al., 1998; Kolda et al.,
2003). However, many researchers have observed that the NM algorithm may become
inefficient for large dimensional problems (Parkinson and Hutchinson, 1972;
Torczon, 1989; Byatt, 2000). Nevertheless, for the majority of problems arising from
response surface methodology practice, the number of influential process factors
included in the final model is rarely larger than six (Olsson and Nelson, 1975; Myers
and Montgomery, 2002). Typically, a “pre-experiment” via a fractional factorial is
carried out in an earlier phase to eliminate irrelevant factors, leaving only a small
number of relevant ones.

The NM algorithm has demonstrated its wide versatility, accuracy, and ease of
use for solving various types of optimization problem in noise-free environments in
the area of applied statistics (Olsson, 1974; Olsson and Nelson, 1975; Khuri and
Cornell, 1987; Copeland and Nelson, 1996). However, the application of the NM
algorithm in response surface optimization in the presence of errors has seldom been
reported in the response surface methodology literature. In this dissertation, the
problem of moving non-stationary to the optimum region is addressed. The NM
algorithm is used for searching for the optimum region instead of the steepest

direction in traditional response surface methodology.



1.2 Objectives of the Study

1) To develop an experiment capable of constructing a second-order model
based on the NM algorithm.

2) To compare the number of experimental points between the classical RSM
(CCD) and the proposed method.

3) To compare the coverage probability and mean absolute percentage error
(MAPE) between the classical RSM (CCD) method and the proposed method.

1.3 Scope of the Study

In this study, the proposed method is developed from the NM algorithm. For
finding the relationship between the response and independent variables, a second-
order model is used. The efficiency of the proposed method is considered by
comparison with the classical RSM (CCD) in terms of the number of experimental

points, MAPE, and coverage probability.



CHAPTER 2

LITERATURE REVIEW

In this chapter, a review of the literature on the following topics is presented.
Sections 2.1-2.6 contain details of response surface methodology, screening factors,
methods of steepest ascent/descent, second-order models, canonical analysis, and the
NM algorithm.

2.1 Response Surface Methodology (RSM)

Response surface methodology is a method consisting of an experimental
design and statistical techniques for empirical model building and optimization. The
theoretical approach to response surface methodology consists of three phases, as
suggested by Mayers and Montgomery (2002): the first phase is the experimental
strategy for exploring the space of the process or independent variables (factors), the
second phase is the use of an empirical statistical model useful in developing an
appropriate approximate relationship between the response and the independent
variables, and the last phase consists of optimization methods useful for finding the
values of the independent variables that produce the desired response variable values.
Box and Wilson (1951) introduced the use of the first-order model, and, for the
second-order models, many scientists and engineers have a working knowledge of
central composite designs (CCDs) and the three-level designs of Box and Behnken
(1960).

An appropriate approximating model is developed by statistical modeling of

the response y and the independent variables (factors) &,&,,...,& . In general, the
relationship between the response y and the independent variables &,¢&,,...,&, can be

expressed as



y=1(& &) te (2.1)

In a real-life situation, the form of the true response function f is unknown and may

be very complicated. The error term (&) represents other sources of variability not

measured in f, usually random error assumed to have a normal distribution with zero

mean and variance o”.
E(y)=n=E[f(& &, . SII+E(e) = T(5, &0 80) (2.2)

where variables &,&,,...,& are usually called natural variables because they are

expressed in natural units of measurement. The natural variables can be transformed

to coded variables x,X,,..., X, , which are usually defined to be dimensionless with

zero mean and the same standard deviation for covariance.

Russell (2009) mentioned that an appropriate coding transformation of the
data is an important aspect in the response surface analysis. In this approach, the
coded data affect the results of canonical and steepest ascent analysis. Using a coding
method that makes all coded variables in the experiment vary over the same range is a
way of giving each predictor an equal share in potentially determining the steepest
ascent path. Thus, coding is an important step in response surface analysis.

Coded variables are usually calculated using the following equation:

X - & —[(max g, +_min &i)12] | 2.3)
! [(max &; —min &)/ 2]

where &, is the i" natural variable for the j™ experimental run,i=1,2,....k and

j=12,...,n.

In terms of the coded variables, the response in equation (2.2) can be written as

=10, %, .X). (2.4)



In general, such a relationship is unknown but can be approximated by a low-order

polynomial model of the form
y=fT (X, %, ... X )B+&, (2.5)

where  f(x,X,,...,X,) is a vector function of p elements consisting of powers and
cross products of powers x,X,,..., X, up to a certain degree denoted by d(= 1), B is a

vector of p unknown constant coefficients referred to as parameters, and € IS a
random experimental error assumed to have a zero mean. This is conditioned on the

understanding that equation (2.5) provides an adequate representation of the response.
In this case, the quantity f(x,X,,...,x,) represents the mean response, that is, the
expected value of y, and is denoted by z(x) .

Two important models are commonly used in response surface methodology.
These are special cases of model (2.5), when (d = 1) the first-degree model is obtained

as

y:ﬂo+zk:ﬂixi+g. (2.6)

If curvature is detected, a higher order polynomial model is required, such as a

quadratic model (d = 2);

T o (TR

i<j

where y~ N(XB,&’l) and €~ N(0,5°I).

Typically, the parameters estimate is carried out using the least squares method. The

layout between response and independent variables are shown in Table 2.1 below.



Table 2.1 Relationship between the Response and Independent Variables

y Xy X, Xy
i X1 X12 e Xk
Y Xo1 X»n e Xk
yn an XnZ e xnk

Equation (2.6) can be rewritten in matrix form as

y=XB+eg,
Y1 1oXy X, o X By &
X X e X
where y = YZ  X=| 2 B= '8:1 ,and  g= 5:2
yn 1 an XnZ Xnk ﬂk 8n

Let L:Zgi2 =g'e=(Y-XB)'(Y-XB) be the least squares estimator L to be

i=1
minimized, then L may be expressed as
L=(y—XB)'(y—XB)
=Yy -BXy-yXp+pXXp
=Yy -2p'Xy+B'XXB

L is minimized by taking derivatives with respect to the model parameters and setting

them to zero, thus

al —2X'y +2X'XB =0
Bl
X'XB = X'y
B=(XX)*Xy

The fitted regression model can be presented as y = Xfi .
Properties of LSE B



1. E(B)=E[XX)"(Xy)]
= (X'X)* X'E(y)
= (X'X)*X'(XB)
= (X'X)(X'X)B
=B

2. V(B)=VIXX)*(Xy)]
= (XX) XV (IXX)*XT
= (X' X)X SI[(X'X) ' XT
= o’ (X'X) ' XT(X'X)*XT
= o (X'X) (X' X)(X'X)
=’ (X'X)™

3. B~ NEB,o2(XX)Y).

2.1.1 The Important Steps in Response Surface Methodology

1) A screening factor is used when there are a lot of possible
independent variables (factors), the main purpose being to eliminate the less important
factors. After that, the experiment should be conducted with the independent variables
varied around the present operating point.

2) Regression methods are usually used in this step for fitting the
equation with experimental data. A linear (first-order) model usually represents the
model sufficiently well.

3) If curvature is not found, it is necessary to move the experimental
point in the direction of steepest ascent (or descent for a minimum).

4) If curvature is found, this indicates that the experiments are near the
optimum.

5) Conduct a five-level factorial experiment around this point.

6) Regression analysis is used to obtain a fitted quadratic model.

7) Based on this quadratic model, determine the optimum by canonical

analysis.
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2.2 Screening Design

In many process development and manufacturing applications, there are a
large number of independent variables (factors). Screening is used to reduce the
number of independent variables by identifying the most important ones or process
conditions that affect product quality. This reduction allows the focus to be on process
improvement efforts on the few really important variables, or the "vital few".
Screening may also suggest the optimal settings for these factors, and indicate
whether or not curvature exists in the responses. The best settings of these factors can
be determined by optimization experiments and defining the nature of the curvature.
In industry, many designs are used to screen for the really important factors such as
two-level full and fractional factorial designs, and Plackett-Burman (1946) designs;
these are useful for fitting first-order models (which detect linear effects), and can be

extended for second-order effects (curvature) when the design includes center points.

2.2.1 Full Factorial Designs

A full factorial design is a screening process which considers every possible
combination of treatment levels for the different factors. In general, when using a full
factorial design, responses for all combinations of design variable levels are
evaluated. Therefore, all possible effects and interactions are included in the process,
which means that for cases with large numbers of design variables and levels, the total
number of runs becomes large. Hence, it is desirable to reduce the size of the runs,
after which full factorial designs on two levels become appropriate. This design
includes all input factors on two levels: ‘high’ and ‘low’, and can be denoted by ‘+1°
and -1, respectively. Generally, when k factors are considered, each at two levels, a
full factorial design has 2 runs. Figure 2.1 shows the 23 full factorial design, where k
=3.
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Factors
A B C
+ — -
- + —
+ + -
- - +
+ - +
- + +
+ + +

Figure 2.1 2®Full Factorial Design

Table 2.2 Number of Runs for 2 Full Factorial Designs

Number of Factors (k) Number of Runs (2¥)
2 22=4
3 2°=8
4 24=16
5 2°=32
6 25=64
7 27=128

From Table 2.2, when the number of factors is greater than five, a 2% full
factorial design requires a large number of runs, and so is not very efficient. In these
cases, other approaches such as a fractional factorial design or a Plackett-Burman

design is a better choice.

2.2.2 Fractional Factorial Designs
Resources for the process are often insufficient when constructing a full
factorial design, and so, for this reason, a fractional factorial design is a reasonable

choice. Fractional factorial designs, especially two-level fractional factorial designs
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(2%°P), are the most commonly used experimental plan. This is a very efficient
screening design provided that the effects of interest can be estimated. Box and
Hunter (1978) described a useful fractional factorial design for reducing the number
of runs to be executed in an experiment by choosing a subset (fraction) of
experimental runs of a full factorial design. This is a special category of two-level
designs where not all factor level combinations are considered, and the experimenter
can choose which combinations are to be excluded. Table 2.3 shows four factors in an

experiment (A, B, C, and D) at each of two levels.

Table 2.3 2* Full Factorial Design

Factors

+ - _ _
_ n _ _
+ + - -
_ _ " _
+ - + -
_ + + _
+ + + -
- - - +
+ - - +
- + - +
+ + - +
- - + +
+ - + +
- + + +
+ + + +

A 2*full factorial design is design with four factors that consist of all 16 level

combinations, but the available resources are only sufficient to conduct eight


http://en.wikipedia.org/wiki/Factorial_design
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experimental runs. Therefore, the requirement is to choose half of them. The chosen

half is called a 2**fractional factorial design, as shown in Table 2.4.

Table 2.4 2% Fractional Factorial Design

I A B C AB AC BC ABC=D
1 -1 -1 -1 1 1 1 -1

1 1 -1 -1 -1 -1 1 1

1 -1 1 -1 -1 1 -1 1

1 1 1 -1 1 -1 -1 -1

1 -1 -1 1 1 -1 -1 1

1 1 -1 1 -1 1 -1 -1

1 -1 1 1 -1 -1 1 -1

1 1 1 1 1 1 1 1

When the number of factors k = 4, the fraction index p = 1 can be used to
construct a 2**design, and so the number of runs (level combinations) N = 24/2! = 8.
In this case, three factors (A, B, and C) are used to form a 23 full factorial

design where factor D is confounded by high order interactions between A, B, and C.

2.3 The Method of Steepest Ascent

Traditionally, RSM are initially used to conduct the steepest ascending or
descending searches until significant curvature is detected (Box and Wilson, 1951).
Steepest ascent is the method which considers the direction defined by the gradient of
an estimated main effects model for used in maximizing the response based on the
experiments being conducted by means of the observed responses along the steepest
ascent to estimate when the experiment reaches the maximum in that direction. Using
the path of steepest ascent improves the region of the optimum and a flow chart of the

response surface is constructed, as illustrated in Figures 2.2 and 2.3, respectively.



14

/7 N\ -
[ N\ N
// - A \ ; / (R - Region of
A | B \ Region R g o
ff v e ) ofthe ’ 5N operability
85 \ S (optimum / \ for the
| [\ A&/ ) p / \ process
\ | / / / N
( N\ 4 / / i
¢ \ b, /
\ ' S L ,.«’/ < \~\ Contours
\ /90 V™ / Pathof / .  of constant
\ / / o, y G N
/85 ‘vy'\improvemont X Fosponse

\ ¥ / /
/ W7 /80 N\ /.

N
/ .

C - i S i |
< .~ Current -1 /65 |
e < operating = : 5
o T o conditions e »71

g 2 P

Figure 2.2 Path of Steepest Ascent Improvement in the Region of the Optimum
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Figure 2.3 Flow Chart showing the Construction of the Response Surface

The method of steepest ascent is a procedure useful for moving sequentially
along the path of steepest ascent. Using this method, the direction of potential
improvement is essentially a "path” to find the region or neighborhood of the
optimum. Consider the fitted first-order response surface model
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~ k ~
§= 5o+ B%, (2.8)
i1

where ¥ is the predicted response, x. represents the i independent factor, ,30 is the

estimated intercept, and the individual ﬂAi ’s are the estimated coefficients for the it

independent variable. The method of steepest ascent attempts to fit the points of a set
independent variables that results in the maximum estimated response over all points
that are a fixed distance r from the center of the design. As a result, the optimization

problem involves the use of a Lagrange multiplier (1) subject to the restraint given by

k
D x? =r?. Take partial derivatives with respect to x;,

i=1

Kk
L= By +BXy+t X — A X = 17), (2.9)
i=1
o - : .
and set them equal to zero, v B; —24x; =0. Next, obtain the coordinate of x;
X .

J

along the path of steepest ascent as x; = j

The expression % is set to be the constant of proportionality p in

X = P %o = PPy X = PP . (2.10)

By considering the step size in one of the variables (selecting the largest
estimated coefficient of the independent variables), the step size of steepest ascent can
be found in other variables using the relationship in (2.9); The positive (negative)
value of pin (2.10) is used when searching for the minimum (maximum) on the
response surface. The origin of independent variables is moved to the point given by
(2.9) which is the point where the largest absolute change of (2.8) occurs on the

hyper-sphere of radius r. The value of x;in (2.9) can be considered as an increment

of X;, Ax;, moving away from the origin. Let|z |:Jr2jas>§|ﬂj |. The increment of x;,

Ax;, in term of the largest absolute increment Ax; can be written as
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A

__ B
AXJ-_,é)i/AXi

j=12ki%]. (2.11)

The incremental Ax;in (2.11) is converted back to the increment of the

corresponding natural variable before running the next experiment. After the
experiment moves toward the neighborhood of the optimum along the steepest
direction, step by step given by (2.11), until a curvature is detected by direct
comparison of the successive responses, the 2 vertices of the current simplex with a
number of center points are performed as in the initial experiment to test the
hypothesis of the existence of a curvature. If the test cannot reject the null hypothesis,
a number of axial points by using the central composite design (CCD) are added in
the experiment to construct the second order model, d = 2, for estimating the
optimum design point. The second order model consists of k first order terms, k

second order terms and k(k—1)/2 interaction terms and can be written as

A, =21 =12,k i=]. (2.12)

which is used to approximate the response surface in the neighborhood of the
optimum. After the parameters of the second order model are estimated, the optimum
design point in terms of the coded variables can be written as (Montgomery 2009)

Xopt = —% B'b, (2.13)

where

oy A

B P 1312/2 Blk/z_
b= B and B = Blz'/z Iézz 132k./2

:Bk _ﬁlk/z BZk/Z :ékk |
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and the predicted response at the optimum design point is given by

. 1,
yopt=ﬂo+5x b, (2.14)

opt

which is to be converted back in terms of the natural variables.

Typically, the steepest ascent is efficient when the initial experiment is far
from the region with optimum conditions (see Figure 2.4). It is in these beginning
regions that the first-order approximations are most reasonable. When the experiment
has nearly reached the optimum, interactions and pure quadratics begin to dominate,
and, in this situation, the steepest ascent method becomes less effective. At this point,
the response surface model requires a fitted second-order method for finding the

optimum conditions in the response variable.

Path of
steepest

ascent
Region of fitted

first-order response
surface

Figure 2.4 First-order Response Surface and Path of Steepest Ascent

2.3.1 Steps in the Steepest Ascent Method
1) Use an orthogonal design to fit a first-order model. Designs with
two levels are appropriate, and center runs are often recommended.
2) Compute the path of steepest ascent /descent so one may expect the

maximum increase or decrease in response. The path is considered to be proportional
to the regression coefficients ( ,B, ).

3) Experimental runs are conducted along the path, the results of which
should show improving response values. At some region along the path, the

improvement will decline and eventually disappear.
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4) At some location where an approximation of the maximum response
is located on the path, choose a base for the second experiment. It is reasonable that
center runs for testing curvature and degrees of freedom for interaction-type lack of fit
are important at this point.

5) Conduct a second experiment with the fitted first-order model. Lack
of fit is tested to find the point where it is no longer significant, at which point a

second path based on the new model is computed.
2.4 Second-order Models

It is well known that response surface methodology is an experimental
technique invented to find the optimal response within specified ranges of factors. If
curvature is detected (lack of fit to the first-order model), then we need to add points
in order to obtain a second-order design near the optimum. The most popular second-
order designs are CCD and the Box-Behnken design, which are used to fit a second-
order prediction equation for the response, and the quadratic terms in these equations
model the curvature of the path on the true response function. If there exists a
maximum or minimum inside the factor region, then response surface methodology
can estimate it reasonably.

The second-order model can be expressed as follows:

k K
S DN ARDWAEDWW RIS

i<j
where y~N(XB,0°l) and ¢~ N(0,5°1).

2.4.1 Central Composite Design (CCD)

Myers et al. (1989) came up with an orthogonal design motivated by Box and
Wilson (1951) in the case of the first-order model. For second-order models, many
subject matter scientists and engineers have a working knowledge of CCD and the

three-level designs of Box and Behnken (1960). In addition, the same researchers
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stated that another important contribution came from Hartley (1959) who made an
effort to create a more economical or compact composite design.

Box and Wilson’s (1951) CCD has become the most popular choice for fit
a second-order model. This design contains a factorial or fractional factorial design
with center points that are augmented with a group of star points (axial points) that
allow estimation of curvature. If the distance from the center of the design space to a
factorial point is +1 unit for each factor, the distance from the center of the design
space to a star point is t« with |« | > 1. The precise value of « depends on certain
properties desired for the design and on the number of factors involved. Figure 2.5
shows the generation of a CCD for two factors.

Assuming k > 2 design variables, the CCD consists of:
1) An f =2 full (p=0) or fractional (p>0) factorial design; each
point is of the form (x,,....,X,) =(£1....,£1).
2) 2k axial or star points of the form
(X X5 X ) = (0, ...,0,£,0,...,0) for 1<i<Kk.

3) n, center points (X,,....,X,)=(0,0,...,0).

(0, =) (0, +a]

(-L,+1) (+1,+1) (1+1) (+1,+1)

) (+2,0)
a0 -2,0) (+2,0)

(0,0 o
-1-1) L (+1-1)

-1-1) +1-1) ’
(0, (0]

Figure 2.5 Generation of a CCD for Two Factors

kK+2
The CCD contains N = f +2k +n,_ points, and the [ . ] parameters are

estimated in the second-order model. Each of the three types of points in a CCD plays
a different role:
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1) Estimation of the first-order and interaction terms is used by the
factorial points.
2) Estimation of the squared terms is used by the axial points.
3) The center points provide an internal estimate of pure error used to
test for lack of fit and also contribute towards the estimation of the squared terms.
The different CCD types are shown in Table 2.5 and Figure 2.6.

Table 2.5 CCD Types

CCD Type Terminology Comments

Circumscribed CCC The original form of CCD is a central composite
circumscribed (CCC) design. The distance o from the
center based on the properties desired for the design results
in a star point for each factor. New extremes for the low
and high settings for each factor are established using star
points These designs require five levels for each factor and
have circular, spherical, or hyper spherical symmetry.
Augmenting the star points can result in an existing

factorial or resolution V fractional factorial design.

Inscribed CCl This design also requires five levels for each factor, but
has specific limits for factor settings which are true limits
in a specific situation. The central composite inscribed
(CCI) design uses the factor settings as the star points and
creates a factorial or fractional factorial design within
those limits (in other words, a CCI design is a scaled down

CCC design with each factor level of the latter divided
by o to generate the CCI design).

Face-centered CCF The central composite face-centered (CCF) design requires
three levels for each factor. The star points o =21 are
produced at the center of each face of the factorial space.
Augmenting an existing factorial or resolution V design

with appropriate star points can also produce this design.
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Figure 2.6 The Three CCD Types with Three Factors

Table 2.6 Structural Comparison of CCC (CClI), CCF, and BBD for Three Factors

CCc (ccl) CCF BBD
Rep X1 X2 X3 Rep X1 X2 X3 Rep X1 X2 X3
1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 0
1 1 -1 -1 1 1 -1 -1 1 1 -1 0
1 -1 1 -1 1 -1 1 -1 1 -1 1 0
1 1 -1 1 1 1 -1 1 1 1 0
1 -1 -1 1 1 -1 -1 1 1 -1 0 -1
1 1 -1 1 1 1 1 1 1 1 0 -1
1 1 1 1 -1 1 1 1 -1 0
1 1 1 1 1 1 1 1 1 0
-1.682 0 0 1 -1 0 0 1 0 -1 -1
1.682 0 0 1 1 0 0 1 0 1 -1
0 0.682 0 1 0 -1 0 1 0 -1 1
0 1.682 0 1 0 1 0 1 0 1
0 0 0.682 1 0 0 3 0 0
0 0 1.682 1 0 0 1
0 0 0 6

Total Runs =20 Total Runs =20 Total Runs = 15

2.5 Experimental Design Properties

Box and Hunter (1957) suggested that a desirable experimental design should
consist of two parts as follows: the first judged partly on the precision of the estimates

of the regression coefficients, and the second partly on the magnitude of the bias of
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those estimates. The researchers list the following qualities as desirable in the
experimental design:

1) The design should estimate the assumed model within the region of

interest.
2) The design should have a built-in check on the assumed model.
3) The design should not have a large number of experimental points.
4) The design should be blockable.
5) The design should be easily expanded.
6) The design should have properties such as orthogonality and
rotatability.

2.5.1 Orthogonality

The important concept in a DOE is orthogonality because it can allude to
independence. At the beginning of creating a DOE, each column corresponds to a
different factor. Therefore, if every single column in the design is orthogonal, we
ensure that each factor is independently estimated with regard to every other factor.

Consider a 23 full factorial with eight runs:

Factors
A B C
n _ _
_ n _
+ + -
— - +
+ — -
- + +
+ + -

First, three factors are multiplied: A-B, A-C, and B-C to ensure that each column

(vector) is orthogonal to every other column:
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A-B=1(-1) +1(~-1) —1(1) +1(1) — (1) +1(-1) ~1(1) +1(1) = 0,
A-C=-1(~D+1(~1) —1(~1)+1(-1) —1(1)+1(1) - A(1)+1(1)=0,
B-C=—1(-1)—1(~1)+1(~1)+1(~1) —1(1) —1(1)+1(1)+1(1)=0.

Therefore, factors A, B and C are estimated independently.

2.5.2 Rotatability

An important property for second-order designs is rotatability. This property
requires that the scaled prediction variance is equal for all points x that are the same
distance from the center of the design. Box and Hunter (1957) found that first-order
orthogonal designs, such as factorial designs, are rotatable. For second-order designs,
two conditions are required for rotatability:

1) All odd moments through order four are zero.
2) The ratio of moments [iiii]/[iijj] =3 (i = j).

Therefore, a rotatable CCD requires that

4

]
The second-order model

77(X) :ﬂo +Zﬂixi +Zﬂiixi2 +ZZIBiniX,-

i<j

may be written in matrix notation as
n(x)=xp,
where
X" = (X, Xpeer X ) s
X, = (L Xy Xy eves Xy X2y X2 ety X2 X Xy ey X1 X, )
S isanrn x 1 column vector,

Y(x) is the predicted response value at a particular point X' = (X, X,,..., X, ) ,
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X'is the N x m matrix of values of the elements of x's taken at the design

points, and

y is the N x1 matrix of observations.
If the prediction variance Var[§(x)]=x, (XX)*x,c”is constant at all points,

then that design matrix is said to be rotatable equidistant from the design center,
which, by proper coding of the control variables, can be chosen to be the point at the

origin of the k-dimensional coordinates system. We can say that if the design is

rotatable, Var[y(x)] is constant at all points that fall on the surface of a hypersphere

centered at the origin. This property is advantageous in that the prediction variance

remains unchanged under any rotation of the coordinate axes. In addition, if
optimization of §(x) is desired on concentric hyperspheres, such as in the application
of ridge analysis, then it is desirable for the design to be rotatable, which can easily be
determined by comparing the values of )7(x)on a given hypersphere since all such

values have the same variance.
2.6 Canonical Analysis

A contour plot and canonical analysis can be useful to study the shape of
response when a process has only two or three process variables, which is easiest to
consider with a contour plot. Canonical analysis is helpful first to transform the model
into a new coordinate system with the origin at the stationary point x and then to
rotate the axes of this system until they are parallel to the principal axes of the fitted
response surface. In addition, canonical analysis is used to investigate the overall
shape of the curvature and determine whether the stationary point is a maximal,
minimal, or saddle point (see Figure 2.9). The eigenvalues and eigenvectors indicate
the shape of the response surface, and the fitted second-order model, in matrix

notation, is written as
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§ =/, +xb+xBX. (2.12)
The intercept, linear, and second-order coefficients are estimated and denoted by 4, ,

b,andB, respectively. For the stationary point, we can differentiate y in equation

(2.12) with respect to x by setting the derivative equal to zero, that is

Y _pioBx=0. (2.13)
OX

The stationary point can be obtained in the form

X :—%Blb, (2.14)

S

where A is a diagonal matrix containing the eigenvalues of B.
In factor analysis, rotation of canonical weights can improve interpretability of
the stationary point solution. If the second-order model is transformed to a new

center, i.e. the stationary point, z = x—x,, and its axis rotated with respect to C, which

is a kxk matrix whose columns are normalized eigenvectors associated with the

eigenvalues w=C'z, then we obtain

Y =L, +(Z+x,) b+ (z+x,) B(z+ X;)
=Y.+ 7'Bz

The rotation is given by

where Y. is the estimated response at the stationary point and A4, 4,,...,4, are the

eigenvalues of B. The eigenvalue decomposition is used to describe the nature of the
stationary point by canonical analysis. The signs of the eigenvalues give the different

types of the response system as follows:
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1) If all eigenvalues are negative, the stationary point yields a
maximum response.

2) If all eigenvalues are positive, the stationary point yields a minimum
response.

3) If the eigenvalues have mixed signs, the stationary point yields a

saddle point.

(a) Maximum (b) Minimum (c) Saddle
Figure 2.7 Types of Response Surface
2.7 The NM Method

Nelder and Mead (1965) introduced the NM method, which is a heuristic
algorithm for multidimensional unconstrained optimization problems. This method is
a very popular derivative-free technique useful for finding the local minimum of a

function. The minimization of a function of n variables by this method is dependent

on a comparison of function values at the (n+1) vertices of a general simplex. The

simplex adapts itself to the local landscape and contracts to the final minimum. For a
two-dimensional problem, a simplex is a triangle, and, with this method, the function

values at the three vertices of the triangle are compared using a pattern search. The

worst vertex, where f (x,y) is largest, is rejected and replaced with a new vertex. A

new triangle is formed and the search for a better outcome is continued. A sequence
of triangles in the process is generated for which the function values at the vertices
get smaller and smaller. The sizes of the triangles are iteratively reduced and the
coordinates of the minimum point found (see Figure 2.8). When the response at a

reflected point is not improved, the algorithm has special rules for cases where an
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additional expanded reflection gives improvement; these special rules cause the
simplex to either shrink or expand. Therefore, it is also referred to as the flexible
simplex algorithm. The simplex algorithm can easily be extended to higher
dimensions (Nelder and Mead, 1965).

Figure 2.8 The Sequence of Triangles {T, } converging to the Point (3,2) for

Minimization of a Function of Two Variables using the NM Method

Box (1966), and Parkinson and Hutchinson (1972), have suggested using the
Nelder-Mead simplex search (NMSS), although they stated that this method is less
effective in optimum seeking as the number of dimensions increases. Myers and
Montgomery (2002), and Olsson and Nelson (1975), mentioned that for the usual
problems arising from response surface methodology practice, the number of
influential process factors included in the final model is rarely larger than six. The
earlier phase eliminates the unimportant factors, so the remaining number of
significant ones is small. By using a “pre-experiment” such as a fractional factorial
design, if properly devised, the NMSS can be expected to work well for stochastic
response surface optimization. This particular case holds when the response surface
has not been fitted because it is too complex to provide an adequate physical model,
so the gradient information is unavailable. The alternative is to use NMSS to

sequentially optimize the “actual” process response.
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Spendley, Hext and Himsworth (1962) propounded the first simplex search
scheme later developed by Nelder and Mead (1965). One of most popular “direct-
search” techniques is the NMSS method for unconstrained optimization that requires
no gradient computation of the function to be minimized. In essence, this procedure is
of the steepest descent kind. First, k +1 vertices of the response function are evaluated
under exploration in a procedure called an initial simplex, which is a polyhedron in
the factor space of k (independent variables). Its purpose is to minimize the function
by using a descent direction to move the search course away from the vertex with the
worst (or highest) function value, yielding a newly reflected, possibly improved point
that is located in the neighborhood. When optimizing the NMSS process, the simplex
adapts itself to the local surface landscape by varying its size and orientation
continuously, so NMSS is especially suitable for exploring “unwieldy” terrains. The
current sequential technique for unconstrained optimization is NMSS, which has been
widely accepted as the most robust and efficient.

The NMSS method is a technique for solving the unconstrained optimization
problem min f (x), where f:R" —>9R is called the objective function with n
dimensions. A simplex is described as a geometric figure with n dimensions that is the
convex hull of n+1 vertices, i.e. a simplex with vertices of x,X,,...,X,,; denoted by A
. The method iteratively generates a sequence of simplexes to approximate an optimal

point of min f (x); the simplexes are ordered according to the objective function
values with f(X,)< f(X,)<..<f(X,,,) for each iteration, with corresponding

vertices {X j}?j. Let X, refer to the best vertex, and X, refer to the worst vertex.

n+l

Four possible operations are determined in the algorithm: reflection,
expansion, contraction, and shrink, each being associated with a scalar parameter: a,
B, v, and o, respectively (see Figure 2.9). The values of these parameters satisfy

a>0,>10<y<1 and 0<5<1. In the standard implementation of the NM

method, the parameters are chosen to be {a, B, v, 8}={1, 2, 1/2, 1/2}. LetX be the

centroid of the n best vertices computed by X = lZXi :

i=1
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2.7.1 An Iteration of the NM Algorithm
1) Sort. Evaluate f at the n+1 vertices of A and sort the vertices so that

f(X) < f(X,)<...<f(X,,,) holds.

2) Reflection. Compute the reflection point with X, by
X, =X+a(X-X,,,). Evaluate f = f(X,).If f,<f < f_, replace X , with X so
that X, = X+ (X —X,,,)-

3) Expansion. If f, < f;, then the expansion point is computed. Let
X, =X+ B(X, —X) and evaluate f, = f(X,) . If f, < f,, replace X, withX,,
otherwise replace X, ., with X, .

4) Outside Contraction. If f < f < f ., complete the outside
contraction point by X . = X+ y(X, —X) and evaluate f,, = f(X,.). If f <f,,

with X ., otherwise go to step 6.

replace X

n+1 oc !’

5) Inside Contraction. If f > f ., the inside contraction expansion
point is computed by X;, = X-»(X, —X) and evaluate f,_ = f(X,). If f_ <f .,
with X,

Ic?

6) Shrink. For2<i<n+1, define X, =X, +5(X; - X,)

replace X otherwise go to step 6.

n+1

7) Stopping Criterion. This is based on a comparison of function

values originally considered with | f (x,,,)— f ()| <&, where £=1x10"°.



30

.
g
3
.
xﬁ
A

Reflection Expansion

X

Outside Contraction  Inside Contraction

X3
/ /\
%3 /
-
T Xy
%
X1

Shrink

Figure 2.9 Possible Operations Performed on a Simplex in R?
2.8 Coverage Probability

A confidence interval (CI) as a region constructed under the assumption
that the model contains the “true” value (the parameter of the model) with a
specified probability. This region is constructed using the particular properties of
an estimator and takes into account both the accuracy and precision of this
estimate. There are two quantities associated with confidence intervals:

Coverage probability: this term can be explained with the probability that a
procedure for constructing random regions produces an interval containing, or

covering, the true value. This quantity is the chance that the parameter of interest is
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covered by the interval constructed. It is independent of the particular sample to
which such a procedure is applied and is a property of the interval producing
procedure.

Confidence level: any particular sample produces the interval with a procedure
with coverage probability p can be said to have a confidence level of p, hence the
term ‘confidence interval’. Both of these definitions, the confidence level and
coverage probability, are equivalent before obtaining a sample. After considering
whether a parameter is either in or not in the interval, the interval containing the
parameter is either 0 or 1, respectively. Thus, if constructed with 95% of 95% CI, this
will cover the parameter under repeated sampling. Of course, for any particular

sample, we do not know if the CI produced contains the true value.
2.9 Mean Absolute Percentage Error (MAPE)

MAPE is a useful statistic to compare fitted values obtained using different
methods. A method with a lower value is usually indicative of a better fitting model

over another;

Z(|yi_yi|/yi)
MAPE= 1= - .



CHAPTER 3

THE PROPOSED METHOD TO FIT A SECOND-ORDER MODEL

In this Chapter, the proposed method for finding the optimum points for a
second-order model in order to obtain a best fit for it is described. There are two steps,

the details of which are covered in Sections 3.1 and 3.2.
3.1 The Seeding Step for the Proposed Method
A 2" factorial design is used to begin the process and, for the case of k=2, a 22

factorial design, is shown in Figure 3.1. Both the CCD classical method and the

proposed method have the same starting points set by using a 2 factorial design.

High b ab
7 i A B
+ _
<o)
- +
- +
Low '(l) )
O ow High
=) (+)
A
a) Design Geometry b) Design Matrix

Figure 3.1 The 22 Factorial Design as a Starting Point

An illustration of all possible combination starting points in four cases for k=2
is shown in Figure 3.2.
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(2) r (2) {4) (4) (2)
(1) (2) (1) (3) (3) (1)

Figure 3.2 Four Possible Starting Points in the First Phase of the Proposed Method

The possible four cases of starting points are as follows: case 1 (points (1), (2),
and (3)), case 2 (points (1), (3), and (4)), case 3 (points (2), (3), and (4)), and case 4
(points (1), (2), and (4)). The initial simplex is set up using the four cases above, and

so possibly consists of the four types.
3.2 The Second Step in the Proposed Method

The steps in the proposed method are shown in Figure 3.1. After using the 2%
factorial design for setting the starting points for random without replacement k+1
points, all possible starting points are noted. The NM algorithm (see Figure 3.3) is

applied to each case in order to move to the optimum region with a stopping criterion
based on a comparison of | f (x,,,)— f ()| <&, where £ =1x10",
After this, the experimental points are obtained and used to fit the second-

order model. After the second-order model has been obtained, the stationary points

are computed.
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CHAPTER 4

SIMULATION STUDY

Five mathematical test functions were used to compare the performance of the

classical RSM (CCD) to the proposed method; they are expressed as follows:

f(X,%,) =2+0.01(x, — x?)* + (L— %)+ 2(2—X,)* + 7sin (%)sin [7)1(10)(2 ]; X, X, €[1,4]
F 00, %) ==(%" + %, =11)° = (% + %" = 1) %, X, €[-2,2]

f(x,%,) = 4% -2.1x* +%x16 +X,%, —4%,° +4%,"; %, €[-1,0.5],x, €[0,1]

f, (%, X,) = X sin(4x,) +1.1x, sin(2x,); X, X, € [1.5,3.5]

f, (%, X,) = 1431 7.81x, —13.3x, +0.0551x + 0.0401x,? — 0.01x,X,; X, € [50,120], X, €[150,200]

Figures 4.1-4.5 illustrate the response surface and contour of each mathematical
test function. Table 4.1 shows the minima and the minimum response of the test

functions.

Figure 4.1 The Response Surface and Contour of f,
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Figure 4.4 The Response Surface and Contour of f,
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Figure 4.5 The Response Surface and Contour of f;

Table 4.1 The Minima and the Minimum Response of the Test Functions.

Minimum Points Minimum
Test function
Xminl Xminz Ymin
f, 3.20 2.10 -6.51
f, -0.27 -0.92 -181.6
fy -0.092 0.713 -1.032
f, 2.77 2.46 -5.41
fy 86.9 176.67 -83.22

4.1 Steps in the Simulation Study

Step 1 Independent variables for each mathematical test function were

generated with a uniform distribution. Values of the independent variables were

randomly selected from the ranges. The functions f to fs have x,x, €[14] ,

X, % €[-2,2],%,%,€[1.5,35] and x,X,e[-2,2], x €[50,120], x, €[150,200]

respectively.
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Step 2 Classical RSM (CCD) was constructed starting with a factorial design.

For functions f; to fs, x,x, are both called factors in the experiment. They were

generated using X, ~U(a,,b);i=12, supported by X, e[ai,bi], mean :%(ai+bi),

and variance :%(bi —a,)%, where a,and b, are the lower and upper bound of x;,

respectively.
Step 3 50 replications were carried out for each.

1) Setup Lije{aij,%(aiﬁb”)} i=12;j=12,...,50.

2) Setup @je[o,bij—%(aij+bij)]; i=12;j=12,...,50.
3) Setup H; e[l +9;1; i=12; j=12,...,50.
4) Setup & ~N(0,06°).

Forf, & ~ N(0,0.01%)

Forf, & ~N(0,1%)

Forf3 & ~N(0,0.01%)

For fs & ~ N(0,0.01%)

Forfs & ~ N(0,1%)

Step 4 From step 3, where i =110 50,50 factorial designs were obtained to
begin with. Five center points were added for each factorial design. The center point
in a 22 factorial design Cy; is given by (L;; + Hij)/2, for i=12,j=12,...,50.
Curvature was tested for and, if found, it was deemed necessary to add an axial point.
However, if it was not found, the steepest ascent was used to move to a new region

until curvature was found.

Where the axial point is computed by & =[number of fatorial run]”* for a
factorial design with k=2, o =[2°]"* =2%* =2"* =1.414.

After that, the second-order procedure was performed and the parameters of

the model estimated by the ordinary least squares (OLS), then the stationary points
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X, %, and y were obtained. Following this, the 95% confidence interval was
constructed for the means of the stationary points x,,x,, andy .

Step 5 From steps 3 and 4, only one 95% confidence interval for the means of

stationary points x,X, and y were selected. Steps 1-4 were iterated 100 times,
producing a 95% confidence interval for each mean of the stationary points x, x, and

y, resulting in one hundred Cls of average the stationary points x,x, and vy

confidence intervals.
Step 6 First, the classical RSM (CCD) was performed to create a 22 factorial
design (see Figure 4.6).

(2) (4)

(1) (3)

Figure 4.6 22 Factorial Design

The performance of the proposed method was tested with the same starting
points as the classical RSM (CCD), and used a k+1 simplex for moving to the
optimum region, where Kk is the number of factors. The functions f1 to fs consist of the
stationary points x,x, i.e. two factors, and so the possible starting point for the
proposed method could be one of four possible cases, as is shown in Figure 4.7. The

resultant algorithms for the four cases are referred to as NM(1), NM(2), NM(3), and
NM(4).
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(2) fdl} (2) (4) (4) (2
(1) (z) (1) (3) (3) (1)

Figure 4.7 Four Possible Starting Points in the First Phase of the Proposed Method

Step 7 The NM algorithm was applied in the proposed method (either NM(1),
NM(2), NM(3), or NM(4)) and utilized to optimize the response of interest instead of
the steepest ascent/descent method. The functions f; to fs were applied using the
proposed method. Following this, each function obtained one hundred Cls with 95%
for the mean of the stationary points x,x, and y were obtained for each function for
each of the four cases dependent on NM(1), NM(2), NM(3) and NM(4), respectively.

Step 8 To compare the efficiency of the classical RSM(CCD) with the
proposed method, the coverage probability was computed as counts of the
identification of the true value of each function contained in the 100 95% confidence

intervals for the mean of the stationary points x,x, and vy .

Step 9 MAPE was computed for both methods and used to compare their

efficiencies:
50 ()A( b= X )
MAPE(Xminl):iz ming ming %100
50 j=1 Xminl
50 ()? =X )
MAPE (%) = = > A2l 12040,
50 j=1 Xmin2
1 &0 (yminj ~ Ymin )
MAPE(Y, .. )=—» —— = x100.
min SOJZ_; ymin

Step 10 The average number of points from 100 replications was computed
for each method.
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4.2 Results of the Simulation Study

Simulation study results were computed from 100 sets of 50 replications. The
efficiencies of the RSM (CCD) and the proposed method forms NM(1), NM(2), NM(3)
and NM(4) were compared in terms of the average number of points, coverage
probability, and MAPE.

Table 4.2 The Average Number of Required Experiments for RSM (CCD) and the
Proposed Method

Average Number of Required Experiments

Test

cunction CCP NM(1) NM(2) NM(3) NM(4)
f, 13.00 12.06(92.77) 11.95(91.92)  10.97(84.38)  10.51(80.85)
f, 19.83 11.04(55.67)  12.02(60.62)  11.12(56.08)  11.51(58.04)
f, 13.89 9.48(68.25)  10.49(75.52)  10.41(74.95)  10.36(74.59)
f, 14.83 9.79(66.01)  10.54(71.07)  9.91(66.82)  10.46(70.53)
f, 13.00  14.19(109.15) 14.61(112.38) 14.23(109.46) 13.89(106.85)

Note: The Numbers in Parentheses are the Percentage Relative to CCD

Average Points
25 -
204 . —
15 -

10 -
5 4 5

0 ; . . .
CCD NM(1) NM(2) NM(3) NM(4)

" Methods

Figure 4.8 Comparison of Average Points for CCD and the Proposed Method

for Functions f; to fs
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In Table 4.2 and Figure 4.8, we can see that the average points for classical
RSM (CCD) are more than the proposed method for almost all of the functions.

Except function fs, both methods are similar in terms of average number of points.

T o =

E 'FEF.EE.!:EF.""‘:. -“ﬁh_ﬁ:::I;::r::-F"_-EFH'-E'-_'"".:E::FE:E:::!F'"

P in ha

'E:F..

Number of runs

1 4 7 1013 15 15 33 33 25 31 34 37 4043 45 45 32 33 3 51l &4 &7 TO T3 TE 79 22 B3 EE 5 54 57 100

(a)
Lening . =370
3.50 - iy =3-20
3.40
3.30 4

320 -
3.10 -
300 -

Number of runs

1 4 7 1013 1515 22 2325 31 34 37 4043 45 4532 33 35 51 &4 57 TO T2 TS TS EX B3 EE 51 54 ST I00

(b)

Xprigg =320

Mumber of runs

(€)

Xprigy =320

Mumber of runs
1 4 7 20332535 27 7925 B 34 E7 40 47 46 45 32 30 35 G154 67 70 73 75 79 EZ EU EE 51 54 57400

(@)

Xy =320

Mumber of runs

1 4 7 1013 1519 37 33 Z5 31 34 37 4043 45 45 32 33 32 61 4 67 TO T3 TE 79 ET B3 EE 51 54 57 100

(e)

Figure 4.9 One Hundred Cls of Average f(minl of f, Using (CCD) and Propose

Method where (a) CCD, (b) NM(L), (c) NM(2), (d) NM(3) and (¢) NM(4)
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e 4.10 One Hundred Cls of Average )A(minz of f, Using (CCD) and Propose

Method where (a) CCD, (b) NM(1), (c) NM(2), (d) NM(3) and (e)
NM(4)
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Figure 4.11 One Hundred Cls of Average Y, of f; Using (CCD) and Propose
Method where (a) CCD, (b) NM(1), (c) NM(2), (d) NM(3) and (e)
NM(4)
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Table 4.3 Comparison of the Coverage Probability of RSM(CCD) to the Proposed
Method (NM(1),NM(2),NM(3),NM(4)) for f1

Test Coverage probability of
function Method X, X, Both x,,x, Response(y)
CCD 0.27 0.01 0.00 0.00
NM(1) 0.96 0.98 0.95 0.93
i NM(2) 0.99 0.99 0.98 0.85
NM(3) 0.98 0.96 0.94 0.84
NM(4) 0.88 0.93 0.87 0.98

A summary of the results of coverage probability for function f1 from Figures
4.9 - 4.11 are contained in Table 4.3. We can see that the proposed method consisting
of forms NM(1), NM(2), NM(3), and NM(4) performed better than the classical
RSM(CCD), especially in the case of both true values (x, x,) being contained in the

95% CI of their means (X, X,). The worst case of coverage probability of 0.87 was

shown by proposed method form NM(4). Even though this was the worst case for the
proposed method, it still outperformed the classical RSM (CCD). Note that the results
of the proposed method forms NM(1), NM(2), NM(3), and NM(4)) are not much
different from each other.
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Figure 4.12 One Hundred Cls of Average 2yin, of f, Using (CCD) and Propose

Method where (a) CCD, (b) NM(1), (c) NM(2), (d) NM(3) and (e)
NM(4)
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Figure 4.14 One Hundred Cls of Average Y, of f, Using (CCD) and Propose
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Table 4.4 Comparison of the Coverage Probability of the Classical RSM(CCD) to
the Proposed Method Forms NM(1), NM(2), NM(3), and NM(4) for
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Function f,
Test Coverage probability of
function Method X, X, Both x,,x, Response(y)

CCD 0.60 0.65 0.28 0.16
NM(1) 0.96 0.91 0.89 0.84

f, NM(2) 0.89 0.86 0.84 0.78
NM(3) 0.98 0.96 0.94 0.80
NM(4) 0.95 0.91 0.89 0.82

The results of coverage probability for function f, from Figures 4.12 - 4.14 are
summarized in Table 4.4. Once again, it is evident that the proposed method forms
NM(1), NM(2), NM(3), and NM(4) showed superior performance to the classical
RSM(CCD), especially when considering the true values (x;,x,) together at the 95%

Cls of their means (X,X,). The worst case of coverage probability (0.84) of the

proposed method was shown by form NM(2). Even though this was the worst case
scenario for the proposed method, it still had far superior performance than shown by

the classical RSM(CCD). Once more, note that there are no major differences among

the results of the proposed method forms NM(1), NM(2), NM(3), and NM(4).
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Figure 4.15 One Hundred Cls of Average 2yin, of f, Using (CCD) and Propose
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Table 4.5 Comparison of the Coverage Probability of the Classical RSM(CCD) with
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the Proposed Method Forms NM(1), NM(2), NM(3), and NM(4) for

Function f,
Test Coverage probability of
function Method X, X, Both x,,x, Response(y)
CCD 0.08 0.08 0.04 0.01
NM(1) 0.94 0.89 0.83 0.89
fy NM(2) 0.97 0.87 0.85 0.88
NM(3) 0.97 0.95 0.95 0.95
NM(4) 0.96 0.94 0.91 0.97

The results in Table 4.5 comprise a summary of the results of coverage
probability from Figures 4.15 - 4.17 for function f3, which is not quadratic. Once
again, we can see that the proposed method forms NM(1), NM(2), NM(3), and NM(4)
performed much better than the classical RSM(CCD), especially in the case of both
true values (x,, x,) being contained in the 95% Cls of their means (X, X, ). The worst
case of coverage probability (0.83) was shown by the proposed method form NM(1).

However, all cases of the proposed method showed performances far superior to the

classical RSM (CCD), although, once again note that the results of the proposed

method forms NM(1), NM(2), NM(3), and NM(4) showed no major differences.
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Table 4.6 Comparison of the Coverage Probability of the Classical RSM(CCD) and
the Proposed Method forms NM(1), NM(2), NM(3), and NM(4) for

Function fs
Test Coverage probability of
function Method % X, Both x,x, Response(y )
CCD 0.88 0.46 0.37 0.04
NM(1) 0.99 0.84 0.83 0.93
fy NM(2) 0.82 0.79 0.73 0.90
NM(3) 0.88 0.83 0.74 0.88
NM(4) 0.76 0.84 0.72 0.82

Results of coverage probability from Figures 4.18 - 4.20 for function fs are
summarized in Table 4.6 This time, the coverage probability of the classical
RSM(CCD) and the proposed method showed similar results. However, in the case of

both true values (x;,x,) being contained in the 95% CI of their means (%, X, ), the

proposed method was markedly better for all forms. The coverage probability worst
case of 0.72 for the proposed method was shown by form NM(4), although this was
better than the classical RSM(CCD). Once again, note that the results of the proposed
method forms NM(1), NM(2), NM(3), and NM(4)) are not much different from each

other.
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Table 4.7 Comparison of the Coverage Probabilities of the Classical RSM(CCD) and
the Proposed Method Forms NM(1), NM(2), NM(3),and NM(4) for

Function fs
Test Coverage probability of
function Method X, X, Both x,,x, Response(y)
CCD 0.55 0.94 0.53 0.01
NM(1) 0.95 0.83 0.78 0.94
fg NM(2) 0.93 0.84 0.78 0.95
NM(3) 0.92 0.77 0.69 0.91
NM(4) 0.97 0.81 0.79 0.89

Table 4.7 is a summary of coverage probability results from Figures 4.20 -
4.23 for function fs, which is quadratic. This time, the classical RSM(CCD) appeared
to be useful for fitting quadratic models, and comparison of its coverage probability
with the proposed method showed that they both performed similarly. However, when
considering the case of true values (x, X, ), the proposed method was superior. The
worst case shown by the proposed method was NM(3) at 0.69, which was still better

than the classical RSM(CCD). As with the other scenarios, note that the results of the
proposed method forms NM(1), NM(2), NM(3), and NM(4) do not vary by much.
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Table 4.8 Comparison of the MAPE of the classical RSM(CCD) to the Proposed
Method Forms NM(1), NM(2), NM(3), and NM(4) for Function f;

Average MAPE (%)

Compare Method

with RSM NM(1) NM(2) NM(3) NM(4)
True x 3.6965 0.8659 0.4514 0.4805 0.6866
True X, 5.3610 0.9359 0.4876 1.2673 1.4230
True y 36.8224 1.8790 0.3824 0.6934 0.2392

Results for MAPE for function f1 from Figures 4.24 - 4.26 are summarized in
Table 4.8. It is evident that the proposed method forms NM(1), NM(2), NM(3), and
NM(4) performed better than the classical RSM(CCD). Even the worst case scenario of
the proposed method for form NM(1) showed a better performance than the classical
RSM(CCD). Note that the results of the proposed method forms NM(1), NM(2), NM(3),

and NM(4)) were not much different from each other.
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Table 4.9 Comparison of the MAPE of the Classical RSM (CCD) to the Proposed
Method Forms NM(1), NM(2), NM(3), and NM(4) for function f,

Average MAPE (%)

Compare Method

with RSM NM(1) NM(2) NM(3) NM(4)
True X 40.7789 5.1883 7.3857 4.6431 4.3247
True X, 10.2370 4.3123 4.1548 4.8997 4.5812
True y 1.8054 0.1975 0.3449 0.2556 0.2108

Table 4.9 shows the results of MAPE for function f, from Figures 4.27 - 4.29.
Furthermore, we can see that the proposed method forms NM(1), NM(2), NM(3), and
NM(4) were superior to the classical RSM(CCD) by an order of magnitude. Note that
the results of the proposed method forms NM(1), NM(2), NM(3), and NM(4) were

pretty similar.
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the True y of f3

Table 4.10 Comparison of the MAPE of the Classical RSM (CCD) and the Proposed

Method Forms NM(1), NM(2), NM(3), and NM(4) for Function f3

Average MAPE (%)

Compare Method

with RSM NM(1) NM(2) NM(3) NM(4)
True x 64.9701  5.9455 6.5408 4.1388 6.2366
True X, 53.1661  2.5116 1.5221 1.6426 2.4132
True y 50.1187  4.2093 4.4140 1.9570 1.6237

MAPE results for function f3 from Figures 4.30 - 4.32 are summarized in
Table 4.10. The results show that the proposed method forms NM(1), NM(2), NM(3),
and NM(4) showed superior performance over the classical RSM(CCD) by at least an
order of magnitude. Even the worst results of the proposed method forms NM(1),

NM(2), NM(3), and NM(4) when used to identify the true x,x, and Yy, respectively

were far better than those of the classical RSM(CCD). Once again, take note of the
fact that the results of the proposed method forms NM(1), NM(2), NM(3), and NM(4)

were quite similar.
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Table 4.11 Comparison of the MAPE of the classical RSM(CCD) and the Proposed
Method Forms NM(1), NM(2), NM(3), and NM(4) for Function f4

Average MAPE (%)
Compare Method
with RSM  NM(1) NM(2) NM@B)  NM(@3)
True x 1.2809  0.9033 0.5789 0.7628 0.5569
True X, 3.2962  0.8316 0.3380 0.8080 0.3309
True y 12.4090  0.9092 0.7167 0.1041 0.1338

From the MAPE results for function f4 in Figures 4.33 - 4.35 summarized in
Table 4.11, we can see that the proposed method forms NM(1), NM(2), NM(3), and
NM(4) obtained a much higher performance than the classical RSM(CCD). Even the
worst performance of the proposed method NM(1) was better than the classical
RSM(CCD). As before, note that the results of the proposed method forms NM(1),
NM(2), NM(3), and NM(4) are not much different.
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Table 4.12 Comparison of the MAPE of the Classical RSM(CCD) to the Proposed
Method Forms NM(1), NM(2), NM(3), and NM(4) for Function fs

Average MAPE (%)
Compare Method
with RSM  NM(1) NM(2) NM@B)  NM(@3)
True x 0.0970  0.5141 0.4148 0.4848 0.4395
True X, 0.0254 0.2814 0.2574 0.3401 0.2525
True y 1.0416 0.1979 0.1894 0.2107 0.0262

From the MAPE results from Figures 4.36 - 4.38 summarized in Table 4.12
for function fs, we can see that the proposed method forms NM(1), NM(2), NM(3), and
NM(4) and the classical RSM(CCD) performed similarly; this is because function fs is
quadratic. Note that the results of the proposed method forms NM(1), NM(2), NM(3),

and NM(4) were once again quite similar.
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Table 4.13 The True Value, Mean and Standard Deviation of the Estimated Values

of the Minimum Design Points and the Minimum Responses in the
Simulation by the Classical RSM(CCD) and the Proposed Method

Test . Method
. Variable True Value
Function CCD NM(1) NM(2) NM(3) NM(4)
3 3.085 3.210 3.198 3.194 3.195
X ' (0.049) (0.036) (0.019) (0.018) (0.029)
¢ X ”1 2.208 2.113 2.103 2.12 2.119
' 2 ' (0.034) (0.023) (0.016) (0.026) (0.031)
y 651 -4.089 -6.396 -6.504 -6.493 -6.519
' (0.352) (0.168) (0.044) (0.052) (0.017)
0.97 -0.383 -0.284 -0.29 -0.282 -0.28
% ' (0.070) (0.009) (0.005) (0.008) (0.010)
-0.993 -0.955 -0.945 -0.94 -0.945
f, X, -0.92
(0.099) (0.034) (0.039) (0.050) (0.045)
y 1816 -178.537 -181.603 -181.243 -181.255 -181.645
' (1.14) (0.424) (0.657) (0.453) (0.447)
-0.032 -0.096 -0.097 -0.095 -0.096
X -0.092
(0.015) (0.005) (0.006) (0.003) (0.006)
0.334 0.716 0.71 0.709 0.708
fs X, 0.713
(0.094) (0.021) (0.012) (0.013) (0.019)
y 1032 -0.514 -1.038 -1.038 -1.017 -1.017
' (0.102) (0.05) (0.051) (0.022) (0.016)
977 2.747 2.746 2.776 2.758 2.767
% ' (0.03) (0.025) (0.018) (0.024) (0.018)
2.376 2.454 2.455 2.455 2.456
f, X, 2.46
(0.045) (0.025) (0.029) (0.024) (0.009)
y 541 -4.828 -5.272 -5.442 -5.413 -5.414
' (0.1712) (0.117) (0.034) (0.006) (0.008)
86.9 86.816 86.572 86.818 86.65 86.801
% ' (0.044) (0.477) (0.436) (0.483) (0.463)
176.655 176.628 176.624 176.47 176.613
fs X, 176.67
(0.055) (0.666) (0.588) (0.815) (0.582)
y 83.22 -82.353 -83.131 -83.152 -83.119 -83.234
' (0.112) (0.184) (0.196) (0.218) (0.03)

Note: The Numbers in Parentheses are the Standard Deviations of the Estimated

Means.
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From Table 4.13 we can see that the true value of x in f,-f,, the mean of
estimated x, in the proposed method : NM(1), NM(2), NM(3) and NM(4) very close
to the true value of x, than the mean of estimated x, in the classical RSM(CCD).
Only the mean of estimated x, in f; close to the true value of x, than the mean of
estimated x, in NM(1) , NM(3) and NM(4). This is because function fs is quadratic.
The true value of x,in f,-f,, the mean of estimated X, in the proposed method :
NM(1), NM(2), NM(3) and NM(4) very close to the true value of x, than the mean of
estimated x, in the classical RSM(CCD). Only the mean of estimated x, in f; close
to the true value of x, than the mean of estimated x, in NM(1), NM(2), NM(3) and
NM(4). This is because function fs is quadratic. Consider the true value of y in f,- f;,
the mean of estimated y in the proposed method : NM(1), NM(2), NM(3) and NM(4)
very close to the true value of y than the mean of estimated y in the classical

RSM(CCD).



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this dissertation, an improved method for finding the optimum region using
the response surface methodological approach was proposed. This classical method is
an attempt to find a suitable approximation of the true relationship by using the path
of steepest ascent/descent to move points towards the optimum region. After this, a
second-order model is fitted, then stationary points are obtained. In real-life situations,
the true relationship between independent variables and the response is not a second-
order model, then the optimum obtained by the RSM may be far from the true
optimum. Therefore, an improvement on this classical method was to use the NM
algorithm to move towards the optimum region. This algorithm does not require a
gradient function, and instead moves points towards the optimum region by adapting
itself heuristically. Therefore, this algorithm can be used to solve any pattern of
function.

In the simulation study, five mathematical test functions with different
patterns were used to compare the efficiency of the classical RSM(CCD) to the
proposed method forms NM(1), NM(2), NM(3), and NM(4) in terms of the average of
the number of points, coverage probability, and MAPE. The results of the simulation
study allude to the following conclusions. In almost every situation, the average of the
number of points for the proposed method was less than the classical RSM(CCD).
The results of coverage probability showed that the proposed method performed
better than the classical RSM(CCD), especially for the coverage probability of both
true values (X1, X2) being contained in the 95% ClIs of the means of stationary X1,Xo.
These results point towards the fact that the proposed method is far superior to the
classical RSM(CCD). When considering MAPE, the results obtained using the
proposed method showed a much higher performance than the classical RSM(CCD).
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In other words, the fitted model by the proposed method has a value nearby to the true
value.

The exception was testing with function fs where the results between both
methods are quite similar. This is because this test function is quadratic, which
enabled the classical RSM(CCD) to obtain good results. However the other functions
are not quadratic, and so results for them using classical RSM(CCD) showed less
efficiency than the proposed method.

From the simulation study results, we can say that if the true relationship
between response and independent variables is quadratic, the efficiency in terms of
average of points, coverage probability, and MAPE is comparable for both methods.
However, if the true relationship between the response and independent variables is
not quadratic, the efficiency in terms of average of points, coverage probability, and
MAPE of the proposed method is much higher than that of the classical RSM(CCD).

5.2 Future Work

In this dissertation, classical RSM(CCD) is used as a comparison. A further

study could consider other methods such as the Box-Behnken design and Plackett—

Burman designs. Another point of interest would be to extend the independent

variables to perhaps more than three factors.



BIBLIOGRAPHY

Anderson, C.; Borror, C. M. and Montgomery, D. C. 2009. Response Surface Design
Evaluation and Comparison. Journal of Statistical Planning and
Inference. 139 (2): 629-674.

Box, G. E. P. 1966. A Note on Augmented Designs. Technometrics. 8(1):184-188.

Box, G. and Behnken, D. 1960. Some New Three Level Designs for the Study of
Quantitative Variables. Technometrics. 2: 455-475.

Box, G. E. P. and Draper, N. R. 1959. A Basis for the Selection of a Response Surface
Design. Journal of the American Statistical Association. 54 (287): 622-654.

Box, G. E. P. and Draper, N. R. 1963. The Choice of a Second Order Rotatable
Design. Biometrika. 50 (3): 335-352.

Box, G. E. P. and Draper, N. R. 1987. Empirical Model-Building and Response
Surfaces. New York: Wiley.

Box, G. E. P. and Draper, N. R. 2007. Response Surfaces, Mixtures, and Ridge
Analyses. 2" ed. [of Empirical Model-Building and Response Surfaces,
1987]. New York: Wiley.

Box, G. E. P. and Wilson, K. B. 1951. On the Experimental Attainment of Optimum
Conditions. Journal of the Royal Statistical Society. 13 (1):1-45.

Brooks, S. P. and Morgan, B. J. T. 1995. Optimization Using Simulated Annealing.
The Statistician. 44 (2): 241-257.

Byatt, D. 2000. Convergent Variants of the Nelder-Mead Algorithm. Master’s
thesis, University of Canterbury.

Copleland, K. A. F. and Nelson, P. R. 1996. Dual Response Optimization Via Direct
Function Minimization. Journal of Quality Technology. 28 (3): 331-336.

Dennis, J. E. and Torczon, V. (1991). Direct Search Methods on Parallel Machines.
SIAM Journal on Optimization. 1 (4): 448-474.

Draper, N. R. and Lawrence, W. E. 1965. Designs Which Minimize Model
Inadequacies: Cuboidal Regions of Interest. Biometrika.
52 (1/2): 111-118.



77

Draper, N. R. and John, J. A. 1988. Response-surface Designs for Quantitative and
Qualitative Variables. Technometrics. 30 (4): 423-428.

Fan, S. K. S. and Zahara, E. 2004. Simulation Optimization Using an Enhanced
Nelder Mead Simplex Search Algorithm. Proceedings of the Fifth Asia
Pacific Industrial Engineering and Management Systems Conference.

Gavin, H. P. 2013. The Nelder-Mead Algorithm in Two Dimensions. CEE 201L.
Duke U.

Glover, F. and Laguna, M. 1997. Tabu Search. Kluwer Academic Publishers,
Boston.

Grabitech Solutions, A. B. 2001. MultiSimplex Release 2.1 for Windows,
Grabitech Solutions AB, Sundsvall, Sweden.

Han, L. and Neumann M. 2006. Effect of Dimensionality on the Nelder-Mead
Simplex Method. Optim. Methods Software. 21(1): 1-16.

Holland, J. H. 1992. Genetic Algorithms. Scientific American. 267 (1): 66-72.

Kelley, C. T. 2000. Detection and Remediation of Stagnation in the Nelder—Mead
Algorithm Using a Sufficient Decrease Condition. SIAM Journal on
Optimization. 10 (1): 43-55.

Khuri, A. 1. 1988. A Measure of Rotatability for Response Surface Designs.
Technometrics. 30 (1): 95-104.

Khuri, A. 1. and Cornell, J. A. 1987. Response Surfaces: Designs and Analyses.
New York: Marcel Dekker.

Khuri, A. 1. and Cornell, J. A. 1996. Response Surfaces: Design and Analysis.
2" ed. New York: Marcel Dekker, Monticello.

Kolda, T. G.; Lewis, R. M. and Torczon, V. 2003. Optimization by Direct Search:
New Perspectives on Some Classical and Modern Methods. SIAM
Journal Review. 45 (3): 385-482.

Lagarias, J. C.; Reeds, J. A.; Wright, M. H. and Wright, P. E. 1998. Convergence
Properties of the Nelder-Mead Simplex Method in Low Dimensions.
SIAM Journal on Optimization. 9 (1): 112-147.

Mckinnon, K. I. M. 1998. Convergence of the Nelder-Mead Simplex Method to a
Nonstationary Point. SIAM Journal Optimization. 9 (1): 148-158.



78

Montgomery, D. C. 2005. Introduction to Statistical Quality Control.
5t ed. Hoboken, NJ: John Wiley
Myers, R. H. and Montgomery, D. C. 2002. Response Surface Methodology:
Process and Product Optimization Using Designed Experiments.
2" ed. New York: Wiley.
Myers, R. H.; Montgomery, D. C. and Anderson-Cook, C. M. 2009. Response
Surface Methodology: Product and Process Optimization Using
Designed Experiments. 3 ed. New York: Wiley.
Myers, R. H.; Montgomery, D. C.; Vining, G. G.; Borror, C. M. and Kowalski, S. M. 2004.
Response Surface Methodology: A Retrospective and Literature Survey.
Journal of Quality Technology. 36(1): 53-77.
Nelder, J. A. and Mead, R. 1965. A Simplex Method for Function Minimization.
The Computer Journal. 7 (4): 308-313.
Olsson, D. M. 1974. A Sequential Simplex Program For Solving Minimization
Problems. Journal of Quality Technology. 6 (1): 53-57.
Olsson, D. M. and Nelson, L. S. 1975. The Nelder-Mead Simplex Procedure for
Function Minimization. Technometrics. 17 (1): 45-51.
Parkinson, J. M. and Hutchinson, D. 1972. An Investigation into the Efficiency of
the Variants on the Simplex Method. In F. A. Lootsma (Ed.), Numerical
Methods for Non-Linear Optimization. London: Academic Press. Pp.
115-135.
Price, C.J.; Coope, I. D. and Byatt, D. 2002. A Convergent Variant of the Nelder-
Mead Algorithm. Journal Optimization Theory Applications. 113
(1): 5-19.
Russell, V. 2009. Response-Surface Methods in R, Using rsm. Journal of
Statistical Software. 32: 7.
SAS Institute. 1998. SAS/IML Software Release 6.12 for Windows, SAS Institute
Inc., Cary, N. C.
Sexton, R. S., Alidaee, B., Dorsey, R. E. and Johnson, J. 1998. Global Optimization
for Artificial Neural Networks. A Tabu Search Application. European
Journal Operational Research. 106 (2-3): 570-584.



79

Spendley, W.; Hext, G.R. and Himsworth, F.R. 1962. Sequential Application of
Simplex Designs in Optimisation and Evolutionary Operation.
Technometrics. 4: 441-461.

Torczon, V. 1989. Multi-Directional Search: A Direct Search Algorithm for
Parallel Machines. PhD thesis, Rice University, TX.

Torczon, V. 1997. On the Convergence of Pattern Search Methods. SIAM Journal
on Optimization. 7 (1): 1-25.

Tseng, P. 2000. Fortified-Descent Simplicial Search Method: A General Approach.
SIAM Journal on Optimization. 10 (1): 269-288.

Wolfram Research. 2002. Mathematica/Optimization and Statistics Release.
4.2. Wolfram Research Inc.

Wright, M. H. 1996. Direct Search Methods: Once Scorned, Now Respectable. In

D.F. Griffiths and G.A. Watson(Eds.) Numerical Analysis 1995:
Proceedings of the 1995 Dundee Biennial Conference in Numerical
Analysis(Harlow, UK: Addison Wesley Longman. Pp. 191-208.



BIOGRAPHY

NAME Miss Chantha Wongoutong

ACADEMIC BACKGROUND B.Sc. (Computer science),
Silpakorn University,1999
M.Sc. (Statistics),
Kasetsart University,2005

PRESENT POSITION Lecturer, Program of Statistics,
Department of Statistics

Faculty of Science, Kasetsart University.

EXPERIENCES Teaching:
Introduction to Statistics,
Time Series Analysis,
Statistical Analysis with Program

Quantitative Analysis



	RESPONSE SURFACE METHODOLOGY USINGAN OPTIMIZATION TECHNIQUE
	ABSTRACT
	TABLE OF CONTENTS
	CHAPTER 1 INTRODUCTION
	CHAPTER 2 LITERATURE REVIEW
	CHAPTER 3 THE PROPOSED METHOD TO FIT A SECOND-ORDER MODEL
	CHAPTER 4 SIMULATION STUDY
	CHAPTER 5 CONCLUSIONS AND FUTURE WORK
	BIBLIOGRAPHY
	BIOGRAPHY



