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ABSTRACT 
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Year  2016 

 

  

Response surface methodology (RSM) is techniques combine both of 

experimental designs and statistical techniques for empirical model building and 

optimization. The experimental design is considered by the objective is to optimize 

one or more response variables influenced by several independent variables. 

However, in real situation, we may not be able to identify the true model and so an 

approximated model, usually a central composite design for building a second-order 

polynomial model, this design is popular in RSM.  

A novel method using the Nelder-Mead algorithm is proposed to be used 

instead of the first order model in moving the experiment in the response surface 

methodology toward the neighbor of the optimum. A second order model similar to 

the second order model in the CCD is constructed to estimate the optimum design 

point and the optimum response. From the simulation using five published test 

functions and five different normal generators, it can be concluded that the proposed 

method outperforms the traditional CCD in terms of the number of experiments, the 

MAPEs of the estimated. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Background 

 

It is common knowledge that the design of experiments (DOEs) is a statistical 

technique used to find the optimum performance of a system when the independent 

variables (factors) are known. The first step using this technique is to screen the 

experimental design used to identify the important factors suspected of affecting the 

system's performance (response). When the number of independent variables (factors) 

is large, there is a need to reduce this number by screening them using the 

experimental design. After that, another designed experiment test plan needs to be 

carried out with the objective of optimizing the system's performance. In general, the 

initial and final optimized DOEs are called the screening design and the response 

surface method (RSM), respectively. Response surface methodology, developed by 

Box and Wilson (1951), is usually employed to achieve optimum efficiency in 

manufacturing by establishing the best settings for the control process parameters 

(factors) to achieve the optimum process response. For a recent review of response 

surface methodology, see Myers et al. (2004), and there are also many books devoted 

exclusively to various aspects of the process, such as Khuri and Cornell (1996), Box 

and Draper (2007), and Myers et al. (2009). 

Mayers and Montgomery (2002) introduced three phases for conducting an 

RSM: phase 0, the screening of independent variables (input factors) is considered to 

identify those which have a significant effect on the response(s); phase 1) the location 

of the optimum operating conditions is determined by conducting a sequence of 

suitable experiments; and phase 2) the fitting of an appropriate empirical model, 

usually a second-order polynomial model, is carried out to examine the nature of the 

response surface in the vicinity of the optimum. There are many types of second-order 

design with the central composite design (CCD) introduced by Box and Wilson 

(1951) being the most popular.  
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Most of the problems in response surface methodology occur when searching 

for the relationship between the response and independent variables, which is usually 

solved by using a low order polynomial in some region of the independent variables. 

However, for some regions that should be in the optimum region (refer to phase 1 

above), the steepest ascent/descent search approach is used to move them to the 

optimum region.  

The traditional RSM is based on initially conducting steepest ascent or descent 

searches until a significant curvature is detected. Box and Wilson (1951) used this 

method to maximize the response based on experiments conducted on the direction 

defined by the gradient of an estimated main effects model. The observed responses 

along the steepest ascent direction are used to locate the neighborhood of the 

maximum. This method can theoretically locate the maximum through numerous 

iterations as long as it exists. However, if it is used on a badly scaled system, the rate 

of convergence may become too slow and the use of the method is impractical. 

Normally, the step size is estimated by using the coefficient of regression in the first 

order model based on the results from the experiments. In other words, the 

effectiveness of the traditional RSM depends on the step size given by the first order 

model.  

An alternative to solving the step size problem in the traditional RSM is to 

only obtain the values experimentally without using the steepest direction when 

searching for the optimum of the response surface. The best-known methods in the 

direct search class include genetic algorithms (Holland, 1992), simulated annealing 

(Brooks and Morgan, 1995), Tabu search (Glover and Laguna, 1997), neural networks 

(Sexton et al., 1998) and the Nelder-Mead (NM) algorithm (Nelder and Mead, 1965). 

The NM algorithm is quite simple to understand and very easy to use (Gavin, 2013). 

These studies have led to its widespread application in many fields of science and 

technology, especially in chemistry and medicine.  

The NM method is a derivative-free process for searching for the local 

optimum of a function. In this optimization process, the initial simplex adapts itself 

iteratively to the local surface landscape by varying its size and orientation. The NM 

algorithm is especially suitable for exploring “unwieldy” terrains, and has been 

widely accepted as the most robust and efficient of the current sequential techniques 
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for unconstrained optimization (Lagarias et al., 1998). Numerous software packages 

include the NM algorithm as an optimization solver, such as Mathematica (2002), 

MultiSimplex (2001), PROC IML in SAS (1998), among others. The idea behind the 

NM algorithm is to “crawl” to the optimum in the selected direction by moving one 

vertex of the simplex during each iteration. The vertices are moved by performing 

four basic operations: reflection, expansion, contraction, and multiple contractions 

(shrink). 

Aimed at having better convergence, several variants of the simplex method 

have been proposed (Torczon, 1989; Dennis and Torczon, 1991; Byatt, 2000; Kelley, 

2000; Tseng, 2000; Price et al., 2002). The NM algorithm generally performs well for 

solving small dimensional real-life problems and continuously remains as one of the 

most popular direct search methods (Wright, 1996; Lagarias et al., 1998; Kolda et al., 

2003). However, many researchers have observed that the NM algorithm may become 

inefficient for large dimensional problems (Parkinson and Hutchinson, 1972; 

Torczon, 1989; Byatt, 2000). Nevertheless, for the majority of problems arising from 

response surface methodology practice, the number of influential process factors 

included in the final model is rarely larger than six (Olsson and Nelson, 1975; Myers 

and Montgomery, 2002). Typically, a “pre-experiment” via a fractional factorial is 

carried out in an earlier phase to eliminate irrelevant factors, leaving only a small 

number of relevant ones.                                                                                      

The NM algorithm has demonstrated its wide versatility, accuracy, and ease of 

use for solving various types of optimization problem in noise-free environments in 

the area of applied statistics (Olsson, 1974; Olsson and Nelson, 1975; Khuri and 

Cornell, 1987; Copeland and Nelson, 1996). However, the application of the NM 

algorithm in response surface optimization in the presence of errors has seldom been 

reported in the response surface methodology literature. In this dissertation, the 

problem of moving non-stationary to the optimum region is addressed. The NM 

algorithm is used for searching for the optimum region instead of the steepest 

direction in traditional response surface methodology. 
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1.2  Objectives of the Study 

 

1) To develop an experiment capable of constructing a second-order model 

based on the NM algorithm.  

2) To compare the number of experimental points between the classical RSM              

(CCD) and the proposed method. 

3) To compare the coverage probability and mean absolute percentage error 

(MAPE) between the classical RSM (CCD) method and the proposed method. 

 

1.3  Scope of the Study 

 

In this study, the proposed method is developed from the NM algorithm. For 

finding the relationship between the response and independent variables, a second-

order model is used. The efficiency of the proposed method is considered by 

comparison with the classical RSM (CCD) in terms of the number of experimental 

points, MAPE, and coverage probability.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

In this chapter, a review of the literature on the following topics is presented. 

Sections 2.1-2.6 contain details of response surface methodology, screening factors, 

methods of steepest ascent/descent, second-order models, canonical analysis, and the 

NM algorithm. 

 

2.1  Response Surface Methodology (RSM) 

 

Response surface methodology is a method consisting of an experimental 

design and statistical techniques for empirical model building and optimization. The 

theoretical approach to response surface methodology consists of three phases, as 

suggested by Mayers and Montgomery (2002): the first phase is the experimental 

strategy for exploring the space of the process or independent variables (factors), the 

second phase is the use of an empirical statistical model useful in developing an 

appropriate approximate relationship between the response and the independent 

variables, and the last phase consists of optimization methods useful for finding the 

values of the independent variables that produce the desired response variable values. 

Box and Wilson (1951) introduced the use of the first-order model, and, for the 

second-order models, many scientists and engineers have a working knowledge of 

central composite designs (CCDs) and the three-level designs of Box and Behnken 

(1960).  

An appropriate approximating model is developed by statistical modeling of 

the response y and the independent variables (factors) 
1 2, ,..., k   . In general, the 

relationship between the response y and the independent variables
 1 2, ,..., k    can be 

expressed as 
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1 2y ( , ,..., ) .kf                   (2.1)  

 

In a real-life situation, the form of the true response function f  is unknown and may 

be very complicated. The error term ( ) represents other sources of variability not 

measured in f, usually random error assumed to have a normal distribution with zero 

mean and variance 
2 . 

 

1 2 1 2( ) [ ( , ,..., )] ( ) ( , ,..., )k kE y E f E f           ,           (2.2) 

 

where variables 
1 2, ,..., k    are usually called natural variables because they are 

expressed in natural units of measurement. The natural variables can be transformed 

to coded variables 
1 2, ,..., kx x x , which are usually defined to be dimensionless with 

zero mean and the same standard deviation for covariance. 

Russell (2009) mentioned that an appropriate coding transformation of the 

data is an important aspect in the response surface analysis. In this approach, the 

coded data affect the results of canonical and steepest ascent analysis. Using a coding 

method that makes all coded variables in the experiment vary over the same range is a 

way of giving each predictor an equal share in potentially determining the steepest 

ascent path. Thus, coding is an important step in response surface analysis.  

Coded variables are usually calculated using the following equation: 

 

                       

[(max min ) / 2]

[(max min ) / 2]

ij ij ij

ij

ij ij

x
  

 

 



,                                                   (2.3) 

 

where 
ij  is the  ith natural variable for the  jth experimental run, 1,2,....,i k  and 

1,2,....,nj .  

In terms of the coded variables, the response in equation (2.2) can be written as 

 

1 2( , ,..., )kf x x x  .                           (2.4) 
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In general, such a relationship is unknown but can be approximated by a low-order 

polynomial model of the form 

 

1 2( , ,..., )T

kx x x y  f ,                          (2.5) 

 

where 
 1 2( , ,..., )kx x xf  is a vector function of p elements consisting of powers and 

cross products of powers 
1 2, ,..., kx x x  up to a certain degree denoted by d(≥ 1),   is a 

vector of p unknown constant coefficients referred to as parameters, and    is a 

random experimental error assumed to have a zero mean. This is conditioned on the 

understanding that equation (2.5) provides an adequate representation of the response. 

In this case, the quantity
1 2( , ,..., )T

kx x xf  represents the mean response, that is, the 

expected value of y, and is denoted by (x) . 

Two important models are commonly used in response surface methodology. 

These are special cases of model (2.5), when (d = 1) the first-degree model is obtained 

as 

0

1

k

i i

i

y x  


   .                (2.6) 

 

If curvature is detected, a higher order polynomial model is required, such as a 

quadratic model (d = 2); 

2

0

1 1

k k

i i ii i ij i j

i i i j

y x x x x    
  

       ,               (2.7) 

where   y ~ 2( , )X IN   and  ~ 2( , )0 IN  . 

 

Typically, the parameters estimate is carried out using the least squares method. The 

layout between response and independent variables are shown in Table 2.1 below.  
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Table 2.1  Relationship between the Response and Independent Variables 

 

 

y  1x  
2x  …. 

kx  

y1 x11 x12 …. x1k 
y1 x21 x22 …. x2k 

 

 

  ….  
yn xn1 xn2 …. xnk 

 

Equation (2.6) can be rewritten in matrix form as  

 

 y X  , 

 

where   

1

2

n

y

y

y

 
 
 
 
 
 

y , 

11 12 1

21 22 2

1 2

1 ...

1 ...

1 ...

 
 
 
 
 
 

X

k

k

n n nk

x x x

x x x

x x x

, 

0

1

 
 
 
 
 
 k







 , and     

1

2

 
 
 
 
 
 n







  . 

Let 2

1

L ( ) ( )
n

i

i




      Y X Y X     be the least squares estimator L to be 

minimized, then L may be expressed as   

( ) ( )

2

  

        

      

y X y X

y y X y y X X X

y y X y X X

L  

   

  

 

 

L is minimized by taking derivatives with respect to the model parameters and setting 

them to zero, thus 

ˆ

1

ˆ2 2 0

ˆ

ˆ ( )


    



 

 

X y X X

X X X y

X X X y

L










 

 

The fitted regression model can be presented as  ˆˆ y X  . 

Properties of LSE ̂ : 
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1
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







 

 

 

 



X X X y

X X X y

X X X X

X X X X

E E

E









 

 
1

1 1

1 2 1

2 1 1

2 1 1

2 1

ˆ2. ( ) [( ) ( )]

( ) ( )[( ) ]

( ) [( ) ]

( ) [( ) ]

( ) ( )( )

( )



 

 

 

 



 

    

    

    

  



X X X y

X X X y X X X

X X X I X X X

X X X X X X

X X X X X X

X X

V V

V











 

 

ˆ3.   ~ 2 1( , ( ) )X XN  . 

 

 

2.1.1  The Important Steps in Response Surface Methodology 

1) A screening factor is used when there are a lot of possible 

independent variables (factors), the main purpose being to eliminate the less important 

factors. After that, the experiment should be conducted with the independent variables 

varied around the present operating point. 

2) Regression methods are usually used in this step for fitting the 

equation with experimental data. A linear (first-order) model usually represents the 

model sufficiently well. 

3) If curvature is not found, it is necessary to move the experimental 

point in the direction of steepest ascent (or descent for a minimum). 

4) If curvature is found, this indicates that the experiments are near the 

optimum. 

5) Conduct a five-level factorial experiment around this point. 

6) Regression analysis is used to obtain a fitted quadratic model. 

7) Based on this quadratic model, determine the optimum by canonical 

analysis. 
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2.2   Screening Design 

 

In many process development and manufacturing applications, there are a 

large number of independent variables (factors). Screening is used to reduce the 

number of independent variables by identifying the most important ones or process 

conditions that affect product quality. This reduction allows the focus to be on process 

improvement efforts on the few really important variables, or the "vital few". 

Screening may also suggest the optimal settings for these factors, and indicate 

whether or not curvature exists in the responses. The best settings of these factors can 

be determined by optimization experiments and defining the nature of the curvature. 

In industry, many designs are used to screen for the really important factors such as 

two-level full and fractional factorial designs, and Plackett-Burman (1946) designs; 

these are useful for fitting first-order models (which detect linear effects), and can be 

extended for second-order effects (curvature) when the design includes center points. 

 

2.2.1 Full Factorial Designs 

A full factorial design is a screening process which considers every possible 

combination of treatment levels for the different factors. In general, when using a full 

factorial design, responses for all combinations of design variable levels are 

evaluated. Therefore, all possible effects and interactions are included in the process, 

which means that for cases with large numbers of design variables and levels, the total 

number of runs becomes large. Hence, it is desirable to reduce the size of the runs, 

after which full factorial designs on two levels become appropriate. This design 

includes all input factors on two levels: ‘high’ and ‘low’, and can be denoted by ‘+1’ 

and ‘ 1 ’, respectively. Generally, when k factors are considered, each at two levels, a 

full factorial design has 2k runs. Figure 2.1 shows the 23 full factorial design, where k 

= 3. 
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Figure 2.1  23 Full Factorial Design 

 

Table 2.2  Number of Runs for 2k Full Factorial Designs 

 

Number of Factors (k) Number of Runs (2k) 

2 22=4 

3 23=8 

4 24=16 

5 25=32 

6 26=64 

7 27=128 

 

From Table 2.2, when the number of factors is greater than five, a 2k full 

factorial design requires a large number of runs, and so is not very efficient. In these 

cases, other approaches such as a fractional factorial design or a Plackett-Burman 

design is a better choice. 

 

2.2.2 Fractional Factorial Designs 

Resources for the process are often insufficient when constructing a full 

factorial design, and so, for this reason, a fractional factorial design is a reasonable 

choice. Fractional factorial designs, especially two-level fractional factorial designs            

     

                                               
 

 

(-,-,-) 

(-,-,+) 

(-,+,-) 

(+,-,-) 

(+,+,-) 

(+,+,+) 

(-,+,+) 

(+,-,+) 

Factors 

A B C 

      

+     

- +   

+ +   

    + 

+   + 

  + + 

+ + + 
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( 2 k p ), are the most commonly used experimental plan. This is a very efficient 

screening design provided that the effects of interest can be estimated. Box and 

Hunter (1978) described a useful fractional factorial design for reducing the number 

of runs to be executed in an experiment by choosing a subset (fraction) of 

experimental runs of a full factorial design. This is a special category of two-level 

designs where not all factor level combinations are considered, and the experimenter 

can choose which combinations are to be excluded. Table 2.3 shows four factors in an 

experiment (A, B, C, and D) at each of two levels. 

 

Table 2.3  
42  Full Factorial Design 

 

Factors 

A B C D 

 

    

        

 

 
        

 

 
        

 

 
        

 

 

  

 

 

      

+       

        

        

        

        

        

        

        

        

        

        

 

A 24 full factorial design is design with four factors that consist of all 16 level 

combinations, but the available resources are only sufficient to conduct eight 

http://en.wikipedia.org/wiki/Factorial_design
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experimental runs. Therefore, the requirement is to choose half of them. The chosen 

half is called a 4 12  fractional factorial design, as shown in Table 2.4. 

Table 2.4  24-1 Fractional Factorial Design 

 

I A B C AB AC BC ABC=D 

1  1  1  1  1  1  1  1  

1  1  1  1  1  1  1  1  

1  1  1  1  1  1  1  1  

1  1  1  1  1  1  1  1  

1  1  1  1  1  1  1  1  

1  1  1  1  1  1  1  1  

1  1  1  1  1  1  1  1  

1  1  1  1  1  1  1  1  

 

 

When the number of factors k = 4, the fraction index p = 1 can be used to 

construct a 4 12  design, and so the number of runs (level combinations) N = 24/21 = 8.  

In this case, three factors (A, B, and C) are used to form a 23 full factorial 

design where factor D is confounded by high order interactions between A, B, and C.  

 

2.3  The Method of Steepest Ascent 

 

Traditionally, RSM are initially used to conduct the steepest ascending or 

descending searches until significant curvature is detected (Box and Wilson, 1951). 

Steepest ascent is the method which considers the direction defined by the gradient of 

an estimated main effects model for used in maximizing the response based on the 

experiments being conducted by means of the observed responses along the steepest 

ascent to estimate when the experiment reaches the maximum in that direction. Using 

the path of steepest ascent improves the region of the optimum and a flow chart of the 

response surface is constructed, as illustrated in Figures 2.2 and 2.3, respectively. 
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Figure 2.2  Path of Steepest Ascent Improvement in the Region of the Optimum 

 

 

Figure 2.3  Flow Chart showing the Construction of the Response Surface  

 

The method of steepest ascent is a procedure useful for moving sequentially 

along the path of steepest ascent. Using this method, the direction of potential 

improvement is essentially a "path" to find the region or neighborhood of the 

optimum. Consider the fitted first-order response surface model 
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0

1

ˆ ˆˆ
k

i i

i

y x 


  ,              (2.8) 

where ŷ  is the predicted response, ix  represents the ith independent factor, 0̂  is the 

estimated intercept, and the individual ˆ
i ’s are the estimated coefficients for the ith 

independent variable. The method of steepest ascent attempts to fit the points of a set 

independent variables that results in the maximum estimated response over all points 

that are a fixed distance r from the center of the design. As a result, the optimization 

problem involves the use of a Lagrange multiplier ( )  subject to the restraint given by

2 2

1

k

i

i

x r


 . Take partial derivatives with respect to jx , 

2 2
0 1 1

1

ˆ ˆ ˆ... ( )
k

k k i

i

L x x x r   


      ,           (2.9) 

and set them equal to zero, ˆ 2 0j j

j

L
x

x
 


  


.  Next, obtain the coordinate of 

jx  

along the path of steepest ascent as 
ˆ

2

j

jx



 .  

The expression 
1

2
 is set to be the constant of proportionality   in  

1 1 2 2
ˆ ˆ ˆ, ,..., k kx x x     .                     (2.10) 

 

By considering the step size in one of the variables (selecting the largest 

estimated coefficient of the independent variables), the step size of steepest ascent can 

be found in other variables using the relationship in (2.9); The positive (negative) 

value of  in (2.10) is used when searching for the minimum (maximum) on the 

response surface. The origin of independent variables is moved to the point given by 

(2.9) which is the point where the largest absolute change of (2.8) occurs on the 

hyper-sphere of radius r.  The value of jx in (2.9) can be considered as an increment 

of jx , ,jx  moving away from the origin.  Let
1

| | max | |i j
j k

 
 

 . The increment of jx , 

jx , in term of the largest absolute increment jx  can be written as 
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ˆ

1,2,..., ,
ˆ

j

j

i i

x j k i j
x




   


.              (2.11)      

  

The incremental jx in (2.11) is converted back to the increment of the 

corresponding natural variable before running the next experiment. After the 

experiment moves toward the neighborhood of the optimum along the steepest 

direction, step by step given by (2.11), until a curvature is detected by direct 

comparison of the successive responses, the 2k vertices of the current simplex with a 

number of center points are performed as in the initial experiment to test the 

hypothesis of the existence of a curvature. If the test cannot reject the null hypothesis, 

a number of axial points by using the central composite design (CCD) are added in 

the experiment to construct the second order model, d = 2,  for estimating the 

optimum design point. The second order model consists of k first order terms, k 

second order terms and ( 1) / 2k k   interaction terms and can be written as 

 

ˆ
1,2,..., ,

ˆ
j

j

i

i

x j k i j

x




   



.          (2.12) 

which is used to approximate the response surface in the neighborhood of the 

optimum. After the parameters of the second order model are estimated, the optimum 

design point in terms of the coded variables can be written as (Montgomery 2009) 

 

11

2
opt

 x B b ,                                                       (2.13) 

where 

1 11 12 1

2 12 22 2

1 2

ˆ ˆ ˆ ˆ2 2

ˆ ˆ ˆ ˆ2 2
and 

ˆ ˆ ˆ ˆ2 2

k

k

k k k kk

   

   

   

   
   
   

    
   
   
   

b B , 
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and the predicted response at the optimum design point is given by 

0

1ˆˆ
2

opt opty    x b ,                                              (2.14) 

which is to be converted back in terms of the natural variables.   

Typically, the steepest ascent is efficient when the initial experiment is far 

from the region with optimum conditions (see Figure 2.4). It is in these beginning 

regions that the first-order approximations are most reasonable. When the experiment 

has nearly reached the optimum, interactions and pure quadratics begin to dominate, 

and, in this situation, the steepest ascent method becomes less effective. At this point, 

the response surface model requires a fitted second-order method for finding the 

optimum conditions in the response variable.  

 

 
 

 

Figure 2.4  First-order Response Surface and Path of Steepest Ascent 

 

2.3.1  Steps in the Steepest Ascent Method 

1) Use an orthogonal design to fit a first-order model. Designs with 

two levels are appropriate, and center runs are often recommended. 

2) Compute the path of steepest ascent /descent so one may expect the 

maximum increase or decrease in response. The path is considered to be proportional 

to the regression coefficients ( ˆ
i  ). 

3) Experimental runs are conducted along the path, the results of which 

should show improving response values. At some region along the path, the 

improvement will decline and eventually disappear. 
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4) At some location where an approximation of the maximum response 

is located on the path, choose a base for the second experiment. It is reasonable that 

center runs for testing curvature and degrees of freedom for interaction-type lack of fit 

are important at this point. 

5) Conduct a second experiment with the fitted first-order model. Lack 

of fit is tested to find the point where it is no longer significant, at which point a 

second path based on the new model is computed. 

 

2.4   Second-order Models 

 

It is well known that response surface methodology is an experimental 

technique invented to find the optimal response within specified ranges of factors. If 

curvature is detected (lack of fit to the first-order model), then we need to add points 

in order to obtain a second-order design near the optimum. The most popular second-

order designs are CCD and the Box-Behnken design, which are used to fit a second-

order prediction equation for the response, and the quadratic terms in these equations 

model the curvature of the path on the true response function. If there exists a 

maximum or minimum inside the factor region, then response surface methodology 

can estimate it reasonably. 

The second-order model can be expressed as follows: 

 

   2
0

1 1

k k

i i ii i ij i j

i i i j

y x x x x    
  

       ,   

 

where   y ~ 2( , )N X I   and   ~ 2( , )N 0 I . 

 

2.4.1  Central Composite Design (CCD) 

Myers et al. (1989) came up with an orthogonal design motivated by Box and 

Wilson (1951) in the case of the first-order model. For second-order models, many 

subject matter scientists and engineers have a working knowledge of CCD and the 

three-level designs of Box and Behnken (1960). In addition, the same researchers 
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stated that another important contribution came from Hartley (1959) who made an 

effort to create a more economical or compact composite design. 

Box and Wilson’s (1951) CCD has become the most popular choice for fit                 

a second-order model. This design contains a factorial or fractional factorial design 

with center points that are augmented with a group of star points (axial points) that 

allow estimation of curvature. If the distance from the center of the design space to a 

factorial point is 1  unit for each factor, the distance from the center of the design 

space to a star point is   with | | > 1. The precise value of   depends on certain 

properties desired for the design and on the number of factors involved. Figure 2.5 

shows the generation of a CCD for two factors. 

Assuming 2k   design variables, the CCD consists of: 

1) An 2k pf   full (p=0) or fractional (p>0) factorial design; each 

point is of the form 1( ,...., x ) ( 1,...., 1)kx    . 

2) 2k axial or star points of the form 

1( ,..., ,...., ) (0,...,0, ,0,...,0)i kx x x    for 1 i k  . 

3) cn  center points 1( ,...., x ) (0,0,...,0)kx  . 

 

 

 

Figure 2.5  Generation of a CCD for Two Factors 

 

The CCD contains 2 cN f k n  
 
points, and the 

2k

n

 
 
 

 parameters are 

estimated in the second-order model. Each of the three types of points in a CCD plays 

a different role: 
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1) Estimation of the first-order and interaction terms is used by the 

factorial points. 

2) Estimation of the squared terms is used by the axial points. 

3) The center points provide an internal estimate of pure error used to 

test for lack of fit and also contribute towards the estimation of the squared terms. 

The different CCD types are shown in Table 2.5 and Figure 2.6. 

 

Table 2.5  CCD Types 

 

CCD Type Terminology Comments 

Circumscribed CCC The original form of CCD is a central composite 

circumscribed (CCC) design. The distance α from the 

center based on the properties desired for the design results 

in a star point for each factor. New extremes for the low 

and high settings for each factor are established using star 

points These designs require five levels for each factor and 

have circular, spherical, or hyper spherical symmetry. 

Augmenting the star points can result in an existing 

factorial or resolution V fractional factorial design. 

Inscribed CCI This design also requires five levels for each factor, but 

has specific limits for factor settings which are true limits 

in a specific situation. The central composite inscribed 

(CCI) design uses the factor settings as the star points and 

creates a factorial or fractional factorial design within 

those limits (in other words, a CCI design is a scaled down 

CCC design with each factor level of the latter divided 

by α to generate the CCI design).  

Face-centered CCF The central composite face-centered (CCF) design requires 

three levels for each factor. The star points 1    are 

produced at the center of each face of the factorial space. 

Augmenting an existing factorial or resolution V design 

with appropriate star points can also produce this design.  
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Figure 2.6  The Three CCD Types with Three Factors 

 

Table 2.6  Structural Comparison of CCC (CCI), CCF, and BBD for Three Factors 

 

CCC (CCI)  CCF  BBD  

Rep  X1  X2  X3  Rep  X1  X2  X3  Rep  X1  X2  X3  

1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 0 

1 1 -1 -1 1 1 -1 -1 1 1 -1 0 

1 -1 1 -1 1 -1 1 -1 1 -1 1 0 

1 1 1 -1 1 1 1 -1 1 1 1 0 

1 -1 -1 1 1 -1 -1 1 1 -1 0 -1 

1 1 -1 1 1 1 -1 1 1 1 0 -1 

1 -1 1 1 1 -1 1 1 1 -1 0 1 

1 1 1 1 1 1 1 1 1 1 0 1 

1 -1.682 0 0 1 -1 0 0 1 0 -1 -1 

1 1.682 0 0 1 1 0 0 1 0 1 -1 

1 0 0.682 0 1 0 -1 0 1 0 -1 1 

1 0 1.682 0 1 0 1 0 1 0 1 1 

1 0 0 0.682 1 0 0 

 

3 0 0 0 

1 0 0 1.682 1 0 0 1 
    

6 0 0 0 6 0 0 0 
    

Total Runs = 20  Total Runs = 20  Total Runs = 15 

 

2.5  Experimental Design Properties 

 

Box and Hunter (1957) suggested that a desirable experimental design should 

consist of two parts as follows: the first judged partly on the precision of the estimates 

of the regression coefficients, and the second partly on the magnitude of the bias of 

   

CCC CCI CCF 
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those estimates. The researchers list the following qualities as desirable in the 

experimental design: 

1) The design should estimate the assumed model within the region of 

interest. 

2) The design should have a built-in check on the assumed model. 

3) The design should not have a large number of experimental points. 

4) The design should be blockable.  

5) The design should be easily expanded. 

6) The design should have properties such as orthogonality and 

rotatability.  

  

2.5.1  Orthogonality  

The important concept in a DOE is orthogonality because it can allude to 

independence. At the beginning of creating a DOE, each column corresponds to a 

different factor. Therefore, if every single column in the design is orthogonal, we 

ensure that each factor is independently estimated with regard to every other factor. 

Consider a 23 full factorial with eight runs:  

 

Factors 

A B C 

      

      

      

      

      

      

      

      

 

First, three factors are multiplied: A∙B, A∙C, and B∙C to ensure that each column 

(vector) is orthogonal to every other column:  
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A B 1( 1) 1( 1) 1(1) 1(1) 1( 1) 1( 1) 1(1) 1(1) 0              , 

  A C= 1( 1)+1( 1) 1( 1)+1( 1) 1(1)+1(1) 1(1)+1(1)=0         , 

  B C= 1( 1) 1( 1)+1( 1)+1( 1) 1(1) 1(1)+1(1)+1(1)=0         . 

 

Therefore, factors A, B and C are estimated independently. 

 

2.5.2   Rotatability 

An important property for second-order designs is rotatability. This property 

requires that the scaled prediction variance is equal for all points x that are the same 

distance from the center of the design. Box and Hunter (1957) found that first-order 

orthogonal designs, such as factorial designs, are rotatable. For second-order designs, 

two conditions are required for rotatability: 

1) All odd moments through order four are zero. 

2) The ratio of moments    / 3 ( )iiii iijj i j  . 

Therefore, a rotatable CCD requires that   

 

 
 

4

42
3

iiii F
or F

iijj F





   . 

 

The second-order model 

2

0

1 1

( )
k k

i i ii i ij i j

i i i j

x x x x x    
  

       

  

may be written in matrix notation as 

( ) sx x  , 

where 

1 2( , ,..., )kx x x x  , 

2 2 2

1 2 1 2 1 2 1(1, , ,..., , , ,..., , ,..., )s k k k kx x x x x x x x x x x
  , 

  is an rn x 1 column vector,  

ˆ( )y x  is the predicted response value at a particular point
1 2( , ,..., )kx x x x  , 
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 X is the N x m matrix of values of the elements of 
sx 's taken at the design   

points, and  

y is the N x1 matrix of observations. 

If the prediction variance   1 2ˆ( ) ( )s sVar y x x X X x   is constant at all points, 

then that design matrix is said to be rotatable equidistant from the design center, 

which, by proper coding of the control variables, can be chosen to be the point at the 

origin of the k-dimensional coordinates system. We can say that if the design is 

rotatable,  ˆVar y x    is constant at all points that fall on the surface of a hypersphere 

centered at the origin. This property is advantageous in that the prediction variance 

remains unchanged under any rotation of the coordinate axes. In addition, if 

optimization of  ŷ x  is desired on concentric hyperspheres, such as in the application 

of ridge analysis, then it is desirable for the design to be rotatable, which can easily be 

determined by comparing the values of  ŷ x on a given hypersphere since all such 

values have the same variance. 

 

2.6  Canonical Analysis 

 

A contour plot and canonical analysis can be useful to study the shape of 

response when a process has only two or three process variables, which is easiest to 

consider with a contour plot. Canonical analysis is helpful first to transform the model 

into a new coordinate system with the origin at the stationary point x and then to 

rotate the axes of this system until they are parallel to the principal axes of the fitted 

response surface. In addition, canonical analysis is used to investigate the overall 

shape of the curvature and determine whether the stationary point is a maximal, 

minimal, or saddle point (see Figure 2.9). The eigenvalues and eigenvectors indicate 

the shape of the response surface, and the fitted second-order model, in matrix 

notation, is written as 
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0
ˆŷ x b x Bx     .

            
(2.12) 

The intercept, linear, and second-order coefficients are estimated and denoted by 
0 ,

b , and B̂ , respectively. For the stationary point, we can differentiate ŷ  in equation 

(2.12) with respect to x by setting the derivative equal to zero, that is 

 

ˆ ˆ2 0


  


B
y

b x
x

.
                       

(2.13) 

 

The stationary point can be obtained in the form  

11 ˆ
2

  Bsx b ,                                  (2.14) 

 

where   is a diagonal matrix containing the eigenvalues of B̂ .  

In factor analysis, rotation of canonical weights can improve interpretability of 

the stationary point solution. If the second-order model is transformed to a new 

center, i.e. the stationary point,
sz x x  , and its axis rotated with respect to C, which 

is a k k  matrix whose columns are normalized eigenvectors associated with the 

eigenvalues w C z , then we obtain  

 

0
ˆˆ (z ) b (z ) B(z )

ˆˆ B

s s s

s

y x x x

y z z

       

 
 

The rotation is given by 

2

1

ˆˆ ˆ w P BPw

ˆ w w

ˆ

s

s

k

s i i

i

y y

y

y w


  

  

 

 

where ˆ
sy  is the estimated response at the stationary point and 

1 2, ,..., k    are the 

eigenvalues of B̂ . The eigenvalue decomposition is used to describe the nature of the 

stationary point by canonical analysis. The signs of the eigenvalues give the different 

types of the response system as follows: 
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1) If all eigenvalues are negative, the stationary point yields a 

maximum response. 

2) If all eigenvalues are positive, the stationary point yields a minimum 

response. 

3) If the eigenvalues have mixed signs, the stationary point yields a 

saddle point. 

 

 

 

 

 

 

 

           

Figure 2.7  Types of Response Surface  

 

2.7  The NM Method 

 

Nelder and Mead (1965) introduced the NM method, which is a heuristic 

algorithm for multidimensional unconstrained optimization problems. This method is 

a very popular derivative-free technique useful for finding the local minimum of a 

function. The minimization of a function of n variables by this method is dependent 

on a comparison of function values at the  1n  vertices of a general simplex. The 

simplex adapts itself to the local landscape and contracts to the final minimum. For a 

two-dimensional problem, a simplex is a triangle, and, with this method, the function 

values at the three vertices of the triangle are compared using a pattern search. The 

worst vertex, where  ,f x y  is largest, is rejected and replaced with a new vertex. A 

new triangle is formed and the search for a better outcome is continued. A sequence 

of  triangles in the process is generated for which the function values at the vertices 

get smaller and smaller. The sizes of the triangles are iteratively reduced and the 

coordinates of the minimum point found (see Figure 2.8). When the response at a 

reflected point is not improved, the algorithm has special rules for cases where an 

(a) Maximum (b) Minimum (c) Saddle 
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additional expanded reflection gives improvement; these special rules cause the 

simplex to either shrink or expand. Therefore, it is also referred to as the flexible 

simplex algorithm. The simplex algorithm can easily be extended to higher 

dimensions (Nelder and Mead, 1965). 

 

 

 

Figure 2.8  The Sequence of Triangles {
kT  } converging to the Point (3,2) for   

                    Minimization of a Function of Two Variables using the NM Method 

 

Box (1966), and Parkinson and Hutchinson (1972), have suggested using the 

Nelder-Mead simplex search (NMSS), although they stated that this method is less 

effective in optimum seeking as the number of dimensions increases. Myers and 

Montgomery (2002), and Olsson and Nelson (1975), mentioned that for the usual 

problems arising from response surface methodology practice, the number of 

influential process factors included in the final model is rarely larger than six. The 

earlier phase eliminates the unimportant factors, so the remaining number of 

significant ones is small. By using a “pre-experiment” such as a fractional factorial 

design, if properly devised, the NMSS can be expected to work well for stochastic 

response surface optimization. This particular case holds when the response surface 

has not been fitted because it is too complex to provide an adequate physical model, 

so the gradient information is unavailable. The alternative is to use NMSS to 

sequentially optimize the “actual” process response. 
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Spendley, Hext and Himsworth (1962) propounded the first simplex search 

scheme later developed by Nelder and Mead (1965). One of most popular “direct-

search” techniques is the NMSS method for unconstrained optimization that requires 

no gradient computation of the function to be minimized. In essence, this procedure is 

of the steepest descent kind. First, k 1 vertices of the response function are evaluated 

under exploration in a procedure called an initial simplex, which is a polyhedron in 

the factor space of k (independent variables). Its purpose is to minimize the function 

by using a descent direction to move the search course away from the vertex with the 

worst (or highest) function value, yielding a newly reflected, possibly improved point 

that is located in the neighborhood. When optimizing the NMSS process, the simplex 

adapts itself to the local surface landscape by varying its size and orientation 

continuously, so NMSS is especially suitable for exploring “unwieldy” terrains. The 

current sequential technique for unconstrained optimization is NMSS, which has been 

widely accepted as the most robust and efficient. 

The NMSS method is a technique for solving the unconstrained optimization 

problem   min f x , where nf :  is called the objective function with n 

dimensions. A simplex is described as a geometric figure with n dimensions that is the 

convex hull of n+1 vertices, i.e. a simplex with vertices of 
1 2 1, ,..., nx x x 

 denoted by 

. The method iteratively generates a sequence of simplexes to approximate an optimal 

point of
 

  min f x ; the simplexes are ordered according to the objective function 

values with
 1 2 1( ) ( ) ... ( )nf f f        for each iteration, with corresponding 

vertices 
1

1{ }n

j j



 . Let  
1  refer  to the best vertex, and  

1n  refer  to the worst vertex.  

Four possible operations are determined in the algorithm: reflection, 

expansion, contraction, and shrink, each being associated with a scalar parameter: α, 

β, γ, and δ, respectively (see Figure 2.9). The values of these parameters satisfy  

1,0, 0 1       and 0 1  . In the standard implementation of the NM 

method, the parameters are chosen to be {α, β, γ, δ}={1, 2, 1/2, 1/2}. Let  be the 

centroid of the n best vertices computed by 
1

1 n

i

in 

   . 
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2.7.1  An Iteration of the NM Algorithm 

1) Sort. Evaluate f at the n+1 vertices of   and sort the vertices so that 

1 2 1( ) ( ) ... ( )nf f f        holds. 

2)  Reflection. Compute the reflection point with  r  by 

1( ).r n    
 
Evaluate ( )r rf f  . If 1 r nf f f  , replace 

1n  with 
r so 

that 1( ).r n      

3) Expansion. If 1rf f , then the expansion point is computed. Let   

( )e r      and evaluate ( )e ef f  . If e rf f , replace 1n  with e , 

otherwise replace 1n  with r . 

4) Outside Contraction. If 1n r nf f f   , complete the outside 

contraction point by ( )oc r      and evaluate ( )oc ocf f  . If oc rf f , 

replace 1n  with oc , otherwise go to step 6. 

5) Inside Contraction. If 1r nf f  , the inside contraction expansion 

point is computed by ( )i c r       and evaluate ( )i c i cf f  . If 1i c nf f  , 

replace 1n  with i c , otherwise go to step 6. 

6) Shrink. For 2 1i n   , define 1 1( )i i       

7) Stopping Criterion. This is based on a comparison of function 

values originally considered with 1 1( ) ( )nf x f x    , where  
61 10   . 
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Figure 2.9  Possible Operations Performed on a Simplex in 
2  

 

2.8  Coverage Probability   

  

A confidence interval (CI) as a region constructed under the assumption 

that the model contains the “true” value (the parameter of the model) with a 

specified probability. This region is constructed using the particular properties of 

an estimator and takes into account both the accuracy and precision of this 

estimate. There are two quantities associated with confidence intervals:  

Coverage probability: this term can be explained with the probability that a 

procedure for constructing random regions produces an interval containing, or 

covering, the true value. This quantity is the chance that the parameter of interest is 

Reflection Expansion 

 

Outside Contraction Inside Contraction 

Shrink 
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covered by the interval constructed. It is independent of the particular sample to 

which such a procedure is applied and is a property of the interval producing 

procedure. 

Confidence level: any particular sample produces the interval with a procedure 

with coverage probability p can be said to have a confidence level of p, hence the 

term ‘confidence interval’. Both of these definitions, the confidence level and 

coverage probability, are equivalent before obtaining a sample. After considering 

whether a parameter is either in or not in the interval, the interval containing the 

parameter is either 0 or 1, respectively. Thus, if constructed with 95% of 95% CI, this 

will cover the parameter under repeated sampling. Of course, for any particular 

sample, we do not know if the CI produced contains the true value. 

 

2.9  Mean Absolute Percentage Error (MAPE) 

 

MAPE is a useful statistic to compare fitted values obtained using different 

methods. A method with a lower value is usually indicative of a better fitting model 

over another; 

 

 i i i

1

y -y /y

MAPE=

ˆ

n

n

i


. 
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CHAPTER 3 

 

THE PROPOSED METHOD TO FIT A SECOND-ORDER MODEL 

 

In this Chapter, the proposed method for finding the optimum points for a 

second-order model in order to obtain a best fit for it is described. There are two steps, 

the details of which are covered in Sections 3.1 and 3.2. 

 

3.1  The Seeding Step for the Proposed Method 

 

A 2k factorial design is used to begin the process and, for the case of k=2, a 22 

factorial design, is shown in Figure 3.1. Both the CCD classical method and the 

proposed method have the same starting points set by using a 2k factorial design.  

 

 

 

 

 

 

 

Figure 3.1  The 22 Factorial Design as a Starting Point 

 

An illustration of all possible combination starting points in four cases for k=2 

is shown in Figure 3.2. 

 

 

a) Design Geometry b) Design Matrix 
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Figure 3.2  Four Possible Starting Points in the First Phase of the Proposed Method 

 

The possible four cases of starting points are as follows: case 1 (points (1), (2), 

and (3)), case 2 (points (1), (3), and (4)), case 3 (points (2), (3), and (4)), and case 4 

(points (1), (2), and (4)). The initial simplex is set up using the four cases above, and 

so possibly consists of the four types.  

 

3.2  The Second Step in the Proposed Method 

 

The steps in the proposed method are shown in Figure 3.1. After using the 2k 

factorial design for setting the starting points for random without replacement k+1 

points, all possible starting points are noted. The NM algorithm (see Figure 3.3) is 

applied to each case in order to move to the optimum region with a stopping criterion 

based on a comparison of 1 1( ) ( )nf x f x    , where 11 10   .  

After this, the experimental points are obtained and used to fit the second-

order model. After the second-order model has been obtained, the stationary points 

are computed. 
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Figure 3.3  Flow Chart of the NM Algorithm 



 

CHAPTER 4 

 

SIMULATION STUDY 

 

Five mathematical test functions were used to compare the performance of the 

classical RSM (CCD) to the proposed method; they are expressed as follows: 

 

 2 2 2 1 1 2
1 1 2 2 1 1 2 1 2

7
( , ) 2 0.01( ) (1 ) 2(2 ) 7sin sin ; , 1,4

2 10

   
           

   

x x x
f x x x x x x x x

 2 2 2 2

2 1 2 1 2 1 2 1 2( , ) ( 11) ( 7) ; , 2,2        f x x x x x x x x

   2 4 6 2 4

3 1 2 1 1 1 1 2 2 2 1 2

1
( , ) 4 2.1 4 4 ; 1,0.5 , 0,1

3
f x x x x x x x x x x x        

 

 4 1 2 1 1 2 2 1 2( , ) sin(4 ) 1.1 sin(2 ); , 1.5,3.5  f x x x x x x x x
 

   2 2

5 1 2 1 2 1 2 1 2 1 2( , ) 1431 7.81 13.3 0.0551 0.0401 0.01 ; 50,120 , 150,200f x x x x x x x x x x       

 

Figures 4.1-4.5 illustrate the response surface and contour of each mathematical 

test function. Table 4.1 shows the minima and the minimum response of the test 

functions. 

 

Figure 4.1  The Response Surface and Contour of 1f  
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Figure 4.2  The Response Surface and Contour of 2f  
 

 

Figure 4.3  The Response Surface and Contour of 3f  
 

 

 

Figure 4.4  The Response Surface and Contour of 4f  
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Figure 4.5  The Response Surface and Contour of 5f  

 

Table 4.1  The Minima and the Minimum Response of the Test Functions. 

  

Test function 

Minimum Points Minimum 

Response 
1minx  

2minx  miny  

1f  3.20 2.10 -6.51 

2f  -0.27 -0.92 -181.6 

3f  -0.092 0.713 -1.032 

4f  2.77 2.46 -5.41 

5f  86.9 176.67 -83.22 

 

4.1  Steps in the Simulation Study 

 

Step 1  Independent variables for each mathematical test function were 

generated with a uniform distribution. Values of the independent variables were 

randomly selected from the ranges. The functions f1 to f5  have  1 2, 1, 4x x
 

,

 1 2, 2, 2 x x ,  1 2, 1.5,3.5x x  and  1 2, 2, 2 x x ,
 

 1 50,120 ,x 
 

 2 150,200x   

respectively.   
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Step 2  Classical RSM (CCD) was constructed starting with a factorial design. 

For functions f1 to f5, 1 2,x x  are both called factors in the experiment. They were 

generated using ( , ) ; 1,2i i iX U a b i , supported by  ,i i iX a b , mean =
1

( ),
2

i ia b

and variance = 21
( ) ,

12
i ib a  where ia and ib  are the lower and upper bound of ix , 

respectively.  

Step 3  50 replications were carried out for each. 

1)  Set up  
1

, ( ) ;
2

ij ij ij ijL a a b
 

  
 

 1,2i ; 1,2, ,50j . 

2)  Set up   
1

[0, ( )];
2

ij ij ij ijb a b     1,2i ; 1,2, ,50j . 

3)  Set up   [ ] ij ij ijH L  ; 1,2i ; 1,2, ,50j . 

4)  Set up   2(0, )i N  .
  

For f1  
2(0,0.01 )i N

  
 

For f2  
2(0,1 )i N

  
 

For f3  
2(0,0.01 )i N

  
 

For f4  
2(0,0.01 )i N

  
 

For f5  
2(0,1 )i N

  
 

Step 4  From step 3, where  i = 1 to 50 , 50  factorial designs were obtained to 

begin with. Five center points were added for each factorial design. The center point 

in a 22 factorial  design ijC  is given by ( ) 2ij ijL H , for  1,2i , 1,2, ,50.j  

Curvature was tested for and, if found, it was deemed necessary to add an axial point. 

However, if it was not found, the steepest ascent was used to move to a new region 

until curvature was found.  

Where the axial point is computed by 1/4[number of fatorial run]   for a 

factorial design with k=2, 2 1/4 2/4 1/2[2 ] 2 2 1.414     . 

After that, the second-order procedure was performed and the parameters of 

the model estimated by the ordinary least squares (OLS), then the stationary points 
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1 2,x x , and y  were obtained. Following this, the 95% confidence interval was 

constructed for the means of the stationary points 
1 2,x x , and y . 

Step 5  From steps 3 and 4, only one 95% confidence interval for the means of 

stationary points 
1 2,x x  and y  were selected. Steps 1-4 were iterated 100 times, 

producing a 95% confidence interval for each mean of the stationary points 
1 2,x x  and 

y , resulting in one hundred CIs of average the stationary points 
1 2,x x  and y  

confidence intervals.  

Step 6  First, the classical RSM (CCD) was performed to create a 22 factorial 

design (see Figure 4.6).   

 

 

Figure 4.6  22 Factorial Design  

 

The performance of the proposed method was tested with the same starting 

points as the classical RSM (CCD), and used a k+1 simplex for moving to the 

optimum region, where k is the number of factors. The functions f1 to f5 consist of the 

stationary points 
1 2,x x  i.e. two factors, and so the possible starting point for the 

proposed method could be one of four possible cases, as is shown in Figure 4.7. The 

resultant algorithms for the four cases are referred to as NM(1), NM(2), NM(3), and 

NM(4). 

 

 

 

 

 

 

 

(2) (4) 

(1) (3) 
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Figure 4.7  Four Possible Starting Points in the First Phase of the Proposed Method 

 

Step 7  The NM algorithm was applied in the proposed method (either NM(1), 

NM(2), NM(3), or NM(4)) and utilized to optimize the response of interest instead of 

the steepest ascent/descent method. The functions f1 to f5 were applied using the 

proposed method. Following this, each function obtained one hundred CIs with 95% 

for the mean of the stationary points 
1 2,x x  and y

 
were obtained for each function for 

each of the four cases dependent on NM(1), NM(2), NM(3) and NM(4), respectively. 

Step 8 To compare the efficiency of the classical RSM(CCD) with the 

proposed method, the coverage probability was computed as counts of the 

identification of the true value of each function contained in the 100 95% confidence 

intervals for the mean of the stationary points 
1 2,x x  and y .  

Step 9 MAPE was computed for both methods and used to compare their 

efficiencies: 

 

 

50 min min1 1

min1
1 min1

50 min min2 2

min2
1 min2

ˆ
1

ˆMAPE( ) 100
50

ˆ
1

ˆMAPE( ) 100;
50

j

j

j

j

x x
x

x

x x
x

x






 


 





 

 50 min min

min

1 min

ˆ
1

ˆMAPE( ) 100
50

j

j

y y
y

y


  . 

 

Step 10 The average number of points from 100 replications was computed 

for each method.  
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4.2  Results of the Simulation Study 

 

Simulation study results were computed from 100 sets of 50 replications. The 

efficiencies of the RSM (CCD) and the proposed method forms NM(1), NM(2), NM(3) 

and NM(4) were compared in terms of the average number of points, coverage 

probability, and MAPE. 

 

Table 4.2  The Average Number of Required Experiments for RSM (CCD) and the  

                  Proposed Method  

 

 

Test 

Function 

Average Number of Required Experiments 

CCD NM(1) NM(2) NM(3) NM(4) 

1f  13.00 12.06(92.77) 11.95(91.92) 10.97(84.38) 10.51(80.85) 

2f  19.83 11.04(55.67) 12.02(60.62) 11.12(56.08) 11.51(58.04) 

3f  13.89 9.48(68.25) 10.49(75.52) 10.41(74.95) 10.36(74.59) 

4f  14.83 9.79(66.01) 10.54(71.07) 9.91(66.82) 10.46(70.53) 

5f  13.00 14.19(109.15) 14.61(112.38) 14.23(109.46) 13.89(106.85) 

      

Note:  The Numbers in Parentheses are the Percentage Relative to CCD 

 

 

  

Figure 4.8  Comparison of Average Points for CCD and the Proposed Method        

        for Functions f1 to f5 
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In Table 4.2 and Figure 4.8, we can see that the average points for classical 

RSM (CCD) are more than the proposed method for almost all of the functions. 

Except function  f5, both methods are similar in terms of average number of points. 

 

 

Figure 4.9  One Hundred CIs of Average of 1f   
Using (CCD) and Propose   

                     Method where (a) CCD, (b) NM(1), (c) NM(2), (d) NM(3) and (e) NM(4) 

1minx̂
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Figure 4.10  One Hundred CIs of Average 
2minx̂ of 1f  

Using (CCD) and Propose  

                     Method where (a) CCD, (b) NM(1), (c) NM(2), (d) NM(3) and (e)  

                     NM(4) 
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Figure 4.11  One Hundred CIs of Average minŷ  of 1f  
Using (CCD) and Propose  

                      Method where (a) CCD, (b) NM(1), (c) NM(2), (d) NM(3) and (e)  

                      NM(4) 
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Table 4.3  Comparison of the Coverage Probability of RSM(CCD) to the Proposed  

                  Method (NM(1),NM(2),NM(3),NM(4)) for f1 

 

Test  

function 
Method 

Coverage probability of 

1x  2x  Both 1x , 2x   Response( y ) 

1f  

CCD 0.27 0.01 0.00 0.00 

NM(1) 0.96 0.98 0.95 0.93 

NM(2) 0.99 0.99 0.98 0.85 

NM(3) 0.98 0.96 0.94 0.84 

NM(4) 0.88 0.93 0.87 0.98 

 

A summary of the results of coverage probability for function f1 from Figures 

4.9 - 4.11 are contained in Table 4.3. We can see that the proposed method consisting 

of forms NM(1), NM(2), NM(3), and NM(4) performed better than the classical 

RSM(CCD), especially in the case of both true values (
1 2,x x ) being contained in the 

95% CI of their means (
1 2

ˆ ˆ,x x ). The worst case of coverage probability of 0.87 was 

shown by proposed method form NM(4). Even though this was the worst case for the 

proposed method, it still outperformed the classical RSM (CCD). Note that the results 

of the proposed method forms NM(1), NM(2), NM(3), and NM(4)) are not much 

different from each other. 
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Figure 4.12  One Hundred CIs of Average 
1minx̂ of 2f  

Using (CCD) and Propose  

                     Method where (a) CCD, (b) NM(1), (c) NM(2), (d) NM(3) and (e)  

                     NM(4) 
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Figure 4.13  One Hundred CIs of Average 
2minx̂ of 2f  

Using (CCD) and Propose  

                     Method where (a) CCD, (b) NM(1), (c) NM(2), (d) NM(3) and (e)  

                     NM(4) 
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Figure 4.14  One Hundred CIs of Average minŷ of 2f  
Using (CCD) and Propose  

                      Method  where (a) CCD, (b) NM(1), (c) NM(2), (d) NM(3) and (e)  

                      NM(4) 
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Table 4.4  Comparison of the Coverage Probability of the Classical RSM(CCD) to  

                  the Proposed Method Forms NM(1), NM(2), NM(3), and NM(4) for  

                  Function  f2 

 

Test 

function Method 

Coverage probability of 

 
1x  2x  Both 1x , 2x   Response( y ) 

2f  

CCD 0.60 0.65 0.28 0.16 

NM(1) 0.96 0.91 0.89 0.84 

NM(2) 0.89 0.86 0.84 0.78 

NM(3) 0.98 0.96 0.94 0.80 

NM(4) 0.95 0.91 0.89 0.82 

 

The results of coverage probability for function f2 from Figures 4.12 - 4.14 are 

summarized in Table 4.4. Once again, it is evident that the proposed method forms 

NM(1), NM(2), NM(3), and NM(4) showed superior performance to the classical 

RSM(CCD), especially when considering the true values (
1 2,x x ) together at the 95% 

CIs of their means (
1 2

ˆ ˆ,x x ). The worst case of coverage probability (0.84) of the 

proposed method was shown by form NM(2). Even though this was the worst case 

scenario for the proposed method, it still had far superior performance than shown by 

the classical RSM(CCD). Once more, note that there are no major differences among 

the results of the proposed method forms NM(1), NM(2), NM(3), and NM(4). 
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Figure 4.15  One Hundred CIs of Average 
1minx̂ of 3f  

Using (CCD) and Propose  

                     Method where (a) CCD, (b) NM(1), (c) NM(2), (d) NM(3) and (e)  

                     NM(4) 
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Figure 4.16  One Hundred CIs of Average 
2minx̂ of 3f  

Using (CCD) and Propose  

                      Method where (a) CCD, (b) NM(1), (c) NM(2), (d) NM(3) and (e)  

                      NM(4) 
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Figure 4.17  One Hundred CIs of Average of 3f  
Using (CCD) and Propose   

                      Method where (a) CCD, (b) NM(1), (c) NM(2), (d) NM(3) and (e)  

                      NM(4) 

 

 

 

minŷ
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Table 4.5  Comparison of the Coverage Probability of the Classical RSM(CCD) with 

the Proposed  Method Forms NM(1), NM(2), NM(3), and NM(4) for 

Function 3f  

 

Test 

function Method 

Coverage probability of 

 
  Both , 2x   Response( y ) 

 

CCD 0.08 0.08 0.04 0.01 

NM(1) 0.94 0.89 0.83 0.89 

NM(2) 0.97 0.87 0.85 0.88 

NM(3) 0.97 0.95 0.95 0.95 

NM(4) 0.96 0.94 0.91 0.97 
 

The results in Table 4.5 comprise a summary of the results of coverage 

probability from Figures 4.15 - 4.17 for function f3, which is not quadratic. Once 

again, we can see that the proposed method forms NM(1), NM(2), NM(3), and NM(4) 

performed much better than the classical RSM(CCD), especially in the case of both 

true values ( ) being contained in the 95% CIs of their means (
1 2

ˆ ˆ,x x ). The worst 

case of coverage probability (0.83) was shown by the proposed method form NM(1). 

However, all cases of the proposed method showed performances far superior to the 

classical RSM (CCD), although, once again note that the results of the proposed 

method forms NM(1), NM(2), NM(3), and NM(4) showed no major differences. 
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Figure 4.18  One Hundred CIs of Average 
1minx̂ of 4f  

Using (CCD) and Propose  

                      Method where (a) CCD, (b) NM(1), (c) NM(2), (d) NM(3) and (e)  

                      NM(4) 
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Figure 4.19  One Hundred CIs of Average of 
 
Using (CCD) and Propose  

                      Method where (a) CCD, (b) NM(1), (c) NM(2), (d) NM(3) and (e)  

                      NM(4) 

 

2minx̂
4f
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Figure 4.20  One Hundred CIs of Average minŷ of 4f  
Using (CCD) and Propose  

                     Method where (a) CCD, (b) NM(1), (c) NM(2), (d) NM(3) and (e)  

                     NM(4) 
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Table 4.6  Comparison of the Coverage Probability of the Classical RSM(CCD) and  

                  the Proposed Method forms NM(1), NM(2), NM(3), and NM(4) for  

                  Function f4 

 

Test 

function Method 

Coverage probability of 

 
1x  2x  Both ,   Response( ) 

 

CCD 0.88 0.46 0.37 0.04 

NM(1) 0.99 0.84 0.83 0.93 

NM(2) 0.82 0.79 0.73 0.90 

NM(3) 0.88 0.83 0.74 0.88 

NM(4) 0.76 0.84 0.72 0.82 

 

Results of coverage probability from Figures 4.18 - 4.20 for function f4 are 

summarized in Table 4.6 This time, the coverage probability of the classical 

RSM(CCD) and the proposed method showed similar results. However, in the case of 

both true values (
1 2,x x ) being contained in the 95% CI of their means (

1 2
ˆ ˆ,x x ), the 

proposed method was markedly better for all forms. The coverage probability worst 

case of 0.72 for the proposed method was shown by form NM(4), although this was 

better than the classical RSM(CCD). Once again, note that the results of the proposed 

method forms  NM(1), NM(2), NM(3), and NM(4)) are not much different from each 

other. 
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Figure 4.21  One Hundred CIs of Average 
1minx̂ of 

 
Using (CCD) and Propose  

                     Method where (a) CCD, (b) NM(1), (c) NM(2), (d) NM(3) and (e)  

                     NM(4) 

 

 

 

 

5f
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Figure 4.22  One Hundred CIs of Average 
2minx̂ of 5f  

Using (CCD) and Propose  

                     Method where (a) CCD, (b) NM(1), (c) NM(2), (d) NM(3) and (e)  

                     NM(4) 

 

 



60 

 

 

Figure 4.23  One Hundred CIs of Average of 
 
Using (CCD) and Propose  

                     Method where (a) CCD, (b) NM(1), (c) NM(2), (d) NM(3) and (e)  

                     NM(4) 

 

2minx̂
5f
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Table 4.7  Comparison of the Coverage Probabilities of the Classical RSM(CCD) and 

the Proposed Method Forms NM(1), NM(2), NM(3),and NM(4) for 

Function f5 

 

Test 

function Method 

Coverage probability of 

 
 2x  Both 1x ,   Response( ) 

5f  

CCD 0.55 0.94 0.53 0.01 

NM(1) 0.95 0.83 0.78 0.94 

NM(2) 0.93 0.84 0.78 0.95 

NM(3) 0.92 0.77 0.69 0.91 

NM(4) 0.97 0.81 0.79 0.89 
 

Table 4.7 is a summary of coverage probability results from Figures 4.20 - 

4.23 for function f5, which is quadratic. This time, the classical RSM(CCD) appeared 

to be useful for fitting quadratic models, and comparison of its coverage probability  

with the proposed method showed that they both performed similarly. However, when 

considering the case of true values (
1 2,x x ), the proposed method was superior. The 

worst case shown by the proposed method was NM(3) at 0.69, which was still better 

than the classical RSM(CCD). As with the other scenarios, note that the results of the 

proposed method forms NM(1), NM(2), NM(3), and NM(4) do not vary by much. 
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Figure 4.24  Comparison of the MAPE of RSM (CCD) to the Proposed Method for  

                      the True 
1x  of f1 

 

 
          

Figure 4.25  Comparison of the MAPE of RSM (CCD) to the Proposed Method for  

                     the True 
2x of  f1 

 

 

 

Figure 4.26  Comparison of the MAPE of RSM (CCD) to the Proposed Method for  

                     the True y of  f1 
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Table 4.8  Comparison of the MAPE of the classical RSM(CCD) to the Proposed  

                  Method Forms NM(1), NM(2), NM(3), and NM(4) for Function f1 

 

Compare 

with 

Average MAPE (%)  

Method 

RSM NM(1) NM(2) NM(3) NM(4) 

True  3.6965 0.8659 0.4514 0.4805 0.6866 

True  5.3610 0.9359 0.4876 1.2673 1.4230 

True y  36.8224 1.8790 0.3824 0.6934 0.2392 

 

Results for MAPE for function f1 from Figures 4.24 - 4.26 are summarized in 

Table 4.8. It is evident that the proposed method forms NM(1), NM(2), NM(3), and 

NM(4) performed better than the classical RSM(CCD). Even the worst case scenario of 

the proposed method for form NM(1) showed a better performance than the classical 

RSM(CCD). Note that the results of the proposed method forms NM(1), NM(2), NM(3), 

and NM(4)) were not much different from each other. 
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Figure 4.27  Comparison of the MAPE of RSM (CCD) to the Proposed Method for  

                      the True
1x of  f2 

 

 

 

Figure 4.28  Comparison of the MAPE of RSM(CCD) to the Proposed Method for           

                     the True of  f2 

 

 

 

Figure 4.29  Comparison of the MAPE of RSM (CCD) to the Proposed Method for  

                     the True of  f2 
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Table 4.9  Comparison of the MAPE of the Classical RSM (CCD) to the Proposed 

Method Forms NM(1), NM(2), NM(3), and NM(4) for function f2 

 

Compare 

with 

Average MAPE (%)  

Method 

RSM NM(1) NM(2) NM(3) NM(4) 

True 
1x  40.7789 5.1883 7.3857 4.6431 4.3247 

True 
2x  10.2370 4.3123 4.1548 4.8997 4.5812 

True  1.8054 0.1975 0.3449 0.2556 0.2108 

 

Table 4.9 shows the results of MAPE for function f2 from Figures 4.27 - 4.29. 

Furthermore, we can see that the proposed method forms NM(1), NM(2), NM(3), and 

NM(4) were superior to the classical RSM(CCD) by an order of magnitude. Note that 

the results of the proposed method forms NM(1), NM(2), NM(3), and NM(4) were 

pretty similar. 
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Figure 4.30  Comparison of the MAPE of RSM (CCD) to the Proposed Method for  

                     the True of  f3 

 

 

 

Figure 4.31  Comparison of the MAPE of RSM (CCD) to the Proposed Method for  

                     the True of  f3 

 

 

 

Figure 4.32  Comparison of the MAPE of RSM (CCD) to the Proposed Method for  
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                     the True y of  f3 

Table 4.10  Comparison of the MAPE of the Classical RSM (CCD) and the Proposed 

Method Forms NM(1), NM(2), NM(3), and NM(4) for Function f3 

 

Compare 

with 

Average MAPE (%)  

Method 

RSM NM(1) NM(2) NM(3) NM(4) 

True 
1x  64.9701 5.9455 6.5408 4.1388 6.2366 

True  53.1661 2.5116 1.5221 1.6426 2.4132 

True y  50.1187 4.2093 4.4140 1.9570 1.6237 

  

MAPE results for function f3 from Figures 4.30 - 4.32 are summarized in 

Table 4.10. The results show that the proposed method forms NM(1), NM(2), NM(3), 

and NM(4) showed superior performance over the classical RSM(CCD) by at least an 

order of magnitude. Even the worst results of the proposed method forms NM(1), 

NM(2), NM(3), and NM(4) when used to identify the true 
1 2,x x  and , respectively 

were far better than those of the classical RSM(CCD). Once again, take note of the 

fact that the results of the proposed method forms NM(1), NM(2), NM(3), and NM(4) 

were quite similar. 
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Figure 4.33  Comparison of the MAPE of RSM (CCD) to the Proposed Method for  

                     the True of  f4 

 
 

Figure 4.34  Comparison of the MAPE of RSM (CCD) to the Proposed Method for  

                     the True
2x of  f4 

 

 

Figure 4.35  Comparison of the MAPE of RSM (CCD) to the Proposed Method for  

                     the  True y of  f4 
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Table 4.11  Comparison of the MAPE of the classical RSM(CCD) and the Proposed 

Method Forms NM(1), NM(2), NM(3), and NM(4) for Function f4 

 

Compare 

with 

Average MAPE (%)  

Method 

RSM NM(1) NM(2) NM(3) NM(4) 

True 
1x  1.2809 0.9033 0.5789 0.7628 0.5569 

True 
2x  3.2962 0.8316 0.3380 0.8080 0.3309 

True y  12.4090 0.9092 0.7167 0.1041 0.1338 

 

From the MAPE results for function f4 in Figures 4.33 - 4.35 summarized in 

Table 4.11, we can see that the proposed method forms NM(1), NM(2), NM(3), and 

NM(4) obtained a much higher performance than the classical RSM(CCD). Even the 

worst performance of the proposed method NM(1) was better than the classical 

RSM(CCD). As before, note that the results of the proposed method forms NM(1), 

NM(2), NM(3), and NM(4) are not much different. 
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Figure 4.36  Comparison of the MAPE of RSM (CCD) to the Proposed Method for  

                     the True
1x and f5 

 

 

 

Figure 4.37  Comparison of the MAPE of RSM (CCD) to the proposed method for  

                     the True
2x and f5 

 

 

Figure 4.38  Comparison of the MAPE of RSM (CCD) to the Proposed Method for  

                     the True y and f5 
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Table 4.12  Comparison of the MAPE of the Classical RSM(CCD) to the Proposed 

Method Forms NM(1), NM(2), NM(3), and NM(4) for Function f5 

 

Compare 

with 

Average MAPE (%)  

Method 

RSM NM(1) NM(2) NM(3) NM(4) 

True 
1x  0.0970 0.5141 0.4148 0.4848 0.4395 

True 
2x  0.0254 0.2814 0.2574 0.3401 0.2525 

True y  1.0416 0.1979 0.1894 0.2107 0.0262 

 

From the MAPE results from Figures 4.36 - 4.38 summarized in Table 4.12 

for function  f5, we can see that the proposed method forms NM(1), NM(2), NM(3), and 

NM(4) and the classical RSM(CCD) performed similarly; this is because function f5 is 

quadratic. Note that the results of the proposed method forms NM(1), NM(2), NM(3), 

and NM(4) were once again quite similar. 
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Table 4.13  The True Value, Mean and Standard Deviation of the Estimated Values 

of the Minimum Design Points and the Minimum Responses in the 

Simulation by the Classical RSM(CCD) and the Proposed Method 

 

Test 

Function 
Variable True Value 

Method 

CCD NM(1) NM(2) NM(3) NM(4) 

1f  

1x  3.2 
3.085 3.210 3.198 3.194 3.195 

(0.049) (0.036) (0.019) (0.018) (0.029) 

2x  2.1 
2.208 2.113 2.103 2.12 2.119 

(0.034) (0.023) (0.016) (0.026) (0.031) 

 -6.51 
-4.089 -6.396 -6.504 -6.493 -6.519 

(0.352) (0.168) (0.044) (0.052) (0.017) 

 

1x  -0.27 
-0.383 -0.284 -0.29 -0.282 -0.28 

(0.070) (0.009) (0.005) (0.008) (0.010) 

2x  -0.92 
-0.993 -0.955 -0.945 -0.94 -0.945 

(0.099) (0.034) (0.039) (0.050) (0.045) 

 -181.6 
-178.537 -181.603 -181.243 -181.255 -181.645 

(1.14) (0.424) (0.657) (0.453) (0.447) 

 

1x  -0.092 
-0.032 -0.096 -0.097 -0.095 -0.096 

(0.015) (0.005) (0.006) (0.003) (0.006) 

2x  0.713 
0.334 0.716 0.71 0.709 0.708 

(0.094) (0.021) (0.012) (0.013) (0.019) 

 -1.032 
-0.514 -1.038 -1.038 -1.017 -1.017 

(0.102) (0.05) (0.051) (0.022) (0.016) 

 

 2.77 
2.747 2.746 2.776 2.758 2.767 

(0.03) (0.025) (0.018) (0.024) (0.018) 

2x  2.46 
2.376 2.454 2.455 2.455 2.456 

(0.045) (0.025) (0.029) (0.024) (0.009) 

y  -5.41 
-4.828 -5.272 -5.442 -5.413 -5.414 

(0.171) (0.117) (0.034) (0.006) (0.008) 

 

 86.9 
86.816 86.572 86.818 86.65 86.801 

(0.044) (0.477) (0.436) (0.483) (0.463) 

 176.67 
176.655 176.628 176.624 176.47 176.613 

(0.055) (0.666) (0.588) (0.815) (0.582) 

y  -83.22 
-82.353 -83.131 -83.152 -83.119 -83.234 

(0.112) (0.184) (0.196) (0.218) (0.03) 

 

Note:  The Numbers in Parentheses are the Standard Deviations of the Estimated  

            Means. 

 

y

2f

y

3f

y

4f

1x

5f

1x

2x
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From Table 4.13 we can see that the true value of 
1x in 1f - 4f , the mean of 

estimated 
1x  in the proposed method : NM(1), NM(2), NM(3) and NM(4) very close 

to the true value of 
1x  than the mean of  estimated 

1x  in the classical RSM(CCD). 

Only the mean of estimated  in  close to the true value of 
1x  than the mean of 

estimated  in NM(1) , NM(3) and NM(4). This is because function f5 is quadratic. 

The true value of in 1f - 4f , the mean of estimated 
2x  in the proposed method : 

NM(1), NM(2), NM(3) and NM(4) very close to the true value of 
2x  than the mean of  

estimated  in the classical RSM(CCD). Only the mean of estimated  in 5f  close 

to the true value of 
2x  than the mean of estimated  in NM(1), NM(2), NM(3) and 

NM(4). This is because function f5 is quadratic. Consider the true value of in 1f - 5f , 

the mean of estimated y  in the proposed method : NM(1), NM(2), NM(3) and NM(4) 

very close to the true value of y  than the mean of  estimated y  in the classical 

RSM(CCD).  
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK 

 

5.1  Conclusions  

 

In this dissertation, an improved method for finding the optimum region using 

the response surface methodological approach was proposed. This classical method is 

an attempt to find a suitable approximation of the true relationship by using the path 

of steepest ascent/descent to move points towards the optimum region. After this, a 

second-order model is fitted, then stationary points are obtained. In real-life situations, 

the true relationship between independent variables and the response is not a second-

order model, then the optimum obtained by the RSM may be far from the true 

optimum. Therefore, an improvement on this classical method was to use the NM 

algorithm to move towards the optimum region. This algorithm does not require a 

gradient function, and instead moves points towards the optimum region by adapting 

itself heuristically. Therefore, this algorithm can be used to solve any pattern of 

function.  

In the simulation study, five mathematical test functions with different 

patterns were used to compare the efficiency of the classical RSM(CCD) to the 

proposed method forms NM(1), NM(2), NM(3), and NM(4) in terms of the average of 

the number of points, coverage probability, and MAPE. The results of the simulation 

study allude to the following conclusions. In almost every situation, the average of the 

number of points for the proposed method was less than the classical RSM(CCD). 

The results of coverage probability showed that the proposed method performed 

better than the classical RSM(CCD), especially for the coverage probability of both 

true values (X1, X2) being contained in the 95% CIs of the means of stationary X1,X2. 

These results point towards the fact that the proposed method is far superior to the 

classical RSM(CCD). When considering MAPE, the results obtained using the 

proposed method showed a much higher performance than the classical RSM(CCD). 
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In other words, the fitted model by the proposed method has a value nearby to the true 

value.  

The exception was testing with function f5 where the results between both 

methods are quite similar. This is because this test function is quadratic, which 

enabled the classical RSM(CCD) to obtain good results. However the other functions 

are not quadratic, and so results for them using classical RSM(CCD) showed less 

efficiency than the proposed method. 

From the simulation study results, we can say that if the true relationship 

between response and independent variables is quadratic, the efficiency in terms of 

average of points, coverage probability, and MAPE is comparable for both methods. 

However, if the true relationship between the response and independent variables is 

not quadratic, the efficiency in terms of average of points, coverage probability, and 

MAPE of the proposed method is much higher than that of the classical RSM(CCD). 

 

5.2  Future Work  

  

In this dissertation, classical RSM(CCD) is used as a comparison. A further 

study could consider other methods such as the Box-Behnken design and Plackett–

Burman designs. Another point of interest would be to extend the independent 

variables to perhaps more than three factors.  
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