

ROBUST FINANCIAL TRADING SYSTEM WITH DEEP Q

NETWORK (DQN)

Sutta Sornmayura

A Dissertation Submitted in Partial

Fulfillment of the Requirements for the Degree of

Doctor of Philosophy (Management)

International College,

National Institute of Development Administration

2017

ROBUST FINANCIAL TRADING SYSTEM WITH DEEP Q

NETWORK (DQN)

Sutta Sornmayura

International College,

Major Advisor

 (Associate Professor Vesarach Aumeboonsuke, Ph.D.)

The Examining Committee Approved This Dissertation Submitted in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

(Management).

Committee Chairperson

 (Assistant Professor Sid Suntrayuth, Ph.D.)

Committee

 (Associate Professor Vesarach Aumeboonsuke, Ph.D.)

Committee

 (Assistant Professor Nopphon Tangjitprom, Ph.D.)

Dean

 (Associate Professor Piboon Puriveth, Ph.D.)

 ______/______/______

 iii

ABST RACT

ABSTRACT

Title of Dissertation ROBUST FINANCIAL TRADING SYSTEM WITH

DEEP Q NETWORK (DQN)

Author Sutta Sornmayura

Degree Doctor of Philosophy (Management)

Year 2017

Forex trading is one of the most attractive areas in finance. However, developing

the profitable trading system is not an easy task because it requires extensive knowledge

in several areas such as quantitative analysis, financial skills, and computer

programming. Trading system expert, as a human, also bring in their own bias to

develop the system. The trading system developers will prefer some markets over

others, prefer some indicators over others, and prefer some trading time frame over

others. Moreover, developing the trading system will also be prone to data-snooping and

look-ahead bias. Developing trading system is the never-ending task and requires

numerous experiments with several parameters.

Random walk and EMH theories support the assumption for choosing buy-and-

hold as the best alternative when choosing the strategy for trading. However, there are

numerous studies which contradict both theories. Those studies support the idea of using

technical analysis as a predictive tool to find the hidden profitable pattern in the market.

However, technical analysis is also prone to bias of the users as well.

The problem of developing the robust financial trading system is challenging. In

terms of developing cost, time and effort. It must be a new method to efficiently develop

the trading system. Simultaneously, this method should eliminate all biases from system

developers.

The most attractive way to develop the system is to use cutting-edge technology

such as artificial intelligence (AI) technology. This new method of developing the

trading strategy needs to benchmark with buy-and-hold (Random walk and EMH

assumption) and with the trading experts who are commodity trading advisor (CTA).

This study tried to compare the performance of AI to buy-and-hold strategy and

performance of AI to the expert trader. The tested markets were Forex (EURUSD,

USDJPY) and Gold (XAUUSD) market, data obtaining from Dukascopy Bank SA

 iv

Switzerland (15 years data). Both hypotheses were tested with Paired t-Test at the

significance level of 0.05. The findings showed that AI could significantly beat buy-

and-hold strategy for FOREX in both 2 currency pairs (EURUSD, USDJPY), and AI

could also significantly outperform Commodity Trading Advisor (CTA) for trading

EURUSD. However, AI could not significantly outperform CTA for USDJPY trading.

For Gold (XAUUSD) market, AI could not significantly outperform buy-and-hold and

CTA. Limitation, contribution, and further research were also recommended.

 v

ACKNOWLEDGEMENT S

ACKNOWLEDGEMENTS

First, I would like to express my sincerest gratitude to my advisor, Associate

Professor Dr. Vesarach Aumeboonsuke, for the continuous support of my Ph.D. study

and research, for her patience, motivation, enthusiasm, and immense knowledge. On the

academic level, she taught me fundamentals of conducting scientific research in the

financial area. Under her supervision, I learned how to define a research problem, find a

solution to it, and finally publish the results. On a personal level, she inspired me with

her hardworking and passionate attitude. To summarize, I am truly grateful for never-

ending attention, mercy, and support throughout my time as her advisee.

Besides my advisor, I would like to thank the rest of my dissertation committee

members (Assistant Professor Dr. Sid Suntrayuth and Assistant Professor Dr. Nopphon

Tangjitprom) for their great support, invaluable advice, and insightful comments.

I would like to thank all my lovely friends and classmates at international

college, NIDA and my friends at Assumption University for their support and

consideration.

My sincere thanks also go to Ms. Marisa Marsiglietti who always support me

and stand beside me during my difficult time working out how to fix the bug in the code

and problems with word processing.

Big thank also goes to my brother, Dr. Pattana Sornmayura, who always

encourage me to get through my hard time.

Last but not least, I would like to express my deepest gratitude to my parents,

Mr. Sompothi Sornmayura and Mrs. Penchan Sornmayura. This dissertation would not

have been possible without their warm love, continued patience, and endless support.

Sutta Sornmayura

June 2018

TABLE OF CONTENTS

 Page

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS .. vi

LIST OF TABLES ... x

LIST OF FIGURES .. xi

CHAPTER 1 INTRODUCTION ... 1

1.1 Background .. 1

1.2 Problem Statement ... 3

1.3 Purpose of the Study .. 8

1.4 Contribution ... 8

1.5 Implication ... 9

CHAPTER 2 LITERATURE REVIEW .. 10

2.1 Random Walk Theory ... 10

2.2 Efficient Market Hypothesis .. 10

2.3 Financial Trading System .. 11

2.4 Technical Analysis .. 12

2.5 Gold Market ... 13

2.6 Foreign Exchange Market ... 13

 Product .. 14

 Market Participants ... 14

2.7 Technical Analysis for Trading System Contradict to EMH…………. 15

2.8 Artificial Intelligence (AI) ... 17

2.9 Commodity Trading Advisor (CTA) ... 18

2.10 Machine Learning ... 18

2.11 Supervised Learning ... 19

 vii

2.12 Unsupervised Learning ... 20

2.13 Reinforcement Learning ... 20

2.14 Q Learning .. 23

 Temporal Difference ... 25

 Q-learning Algorithm ... 26

2.15 Reinforcement Learning in Financial Trading ... 27

2.16 Deep Learning .. 28

 Convolutional Neural Network (CNN) .. 29

2.17 Deep Q Learning/ Deep Q Network ... 29

 Deep Q-Network (DQN): Experience Replay 31

 Action Selection Policy & Exploration/ Exploitation 32

 Advantages of reinforcement learning to traditional quantitative

trading……………… ... 32

2.18 Deep Q Learning In Financial Trading .. 33

CHAPTER 3 METHODOLOGY .. 35

3.1 Mapping Reinforcement Learning to Financial Trading 35

3.2 Data……………….. .. 36

3.3 Online Learning ... 39

3.4 Paired T-Test ... 39

3.5 Experimental Process .. 40

3.6 Key Performance Matrices for Trading System .. 41

 Sharpe ratio ... 41

 Value at Risk (VAR) .. 42

3.7 Hypothesis Testing .. 42

CHAPTER 4 RESULT AND ANALYSIS .. 44

4.1 Basic Test with Sine Wave Test .. 44

 Sine Wave Equation ... 44

 Steps of Sine Wave test .. 44

 viii

4.2 Experiment with Sine Wave .. 45

4.3 Result of Sine Wave .. 46

4.4 Experiment with Real Historical Data ... 47

 Mapping the trading problem to reinforcement learning 48

 Model configuration ... 49

 Python libraries ... 49

 Our Brain Structure (Network topologies) ... 50

 The architecture of our brain .. 50

 Our training method (Online learning) ... 51

4.5 EURUSD Result .. 51

 Eurusd tear sheet .. 53

 Hypothesis testing for EURUSD_Agent .. 54

 Summary of AI agent learn to trade EURUSD .. 58

4.6 USDJPY Result ... 58

 Usdjpy tear sheet .. 59

 Hypothesis testing for USDJPY_Agent ... 61

 Summary of AI agent learn to trade USDJPY ... 64

4.7 XAUUSD (Gold) Result .. 64

 Xauusd tear sheet .. 65

 Hypothesis testing for XAUUSD_Agent ... 67

 Summary of AI agent learn to trade XAUUSD (Gold) 70

CHAPTER 5 CONCLUSION.. 71

5.1 Factors that Potentially Affect the Result .. 71

 The Deep Learning Algorithm ... 71

 Mapping trading problem to reinforcement learning problem 72

 Deep neural network architecture ... 73

 Trading objective .. 73

5.2 Findings of this study .. 74

 ix

5.3 Limitation .. 75

5.4 Academic Contribution ... 77

5.5 Practical Contribution .. 78

5.6 Suggestion for Future Research ... 78

BIBLIOGRAPHY .. 80

APPENDIX .. 82

BIOGRAPHY .. 113

LIST OF TABLES

Page

Table 2.1 Summary for trading foreign exchange market study with Technical

analysis ... 17

Table 2.2 The summary literature that uses reinforcement learning in financial trading

.. 33

Table 4.1 Performance Table for AI Agent Learn to Trade EURUSD 51

Table 4.2 Paired t-test result for EURUSD AI agent vs. BH (buy-and-hold) using

Sharpe Ratio ... 55

Table 4.3 Paired t-Test result for EURUSD AI agent vs. BH (buy-and-hold) using

Annual Return .. 56

Table 4.4 Paired t-test result for EURUSD AI agent using Annual Return 57

Table 4.5 Performance table for AI Agent learn to trade USDJPY 58

Table 4.6 Paired t-test result for USDJPY AI Agent vs. BH (buy-and-hold) Using

Sharpe Ratio ... 61

Table 4.7 Paired t-test result for USDJPY AI Agent vs. BH (buy-and-hold) Using

Annual Return .. 62

Table 4.8 Paired t-test result for USDJPY AI Agent Using Annual Return 63

Table 4.9 Performance table for AI Agent learn to trade USDJPY 64

Table 4.10 Paired t-test result for XAUUSD AI Agent vs. BH (buy-and-hold) Using

Sharpe Ratio ... 67

Table 4.11 Paired t-test result for XAUUSD AI Agent vs. BH (buy-and-hold) Using

Annual Return .. 68

Table 4.12 Paired t-test result for XAUUSD AI Agent Using Annual Return 70

LIST OF FIGURES

Page

Figure 1.1 Trading System Based on Forecast ... 5

Figure 1.2 Backtest Result vs. Live Trade .. 6

Figure 2.1 Relationships between Artificial Intelligence, Machine learning, and Deep

learning .. 18

Figure 2.2 Three Major Types of Machine Learning.. 19

Figure 2.3 Reinforcement Learning Framework... 20

Figure 2.4 Q-Value in Sequential Decision Process... 21

Figure 2.5 Neural Network Architecture .. 28

Figure 2.6 Generalized Convolutional Neural Network Structure 29

Figure 2.7 Deep Neural Network for Q learning .. 30

Figure 2.8 Sample Experiences from Data-Set and Apply Update 31

Figure 3.1 Descriptive Statistic of EURUSD Daily Returns Data 37

Figure 3.2 Descriptive Statistics of USDJPY Daily Returns Data 38

Figure 3.3 Descriptive Statistics of XAUUSD Daily Returns Data 39

Figure 4.1 Simulated Sine Wave with 800 days ... 45

Figure 4.2 Deep Neural Network with 4 Layers (1 input layer, 2 hidden layers, 4

output layers) ... 46

Figure 4.3 The Result of Sine Wave ... 46

Figure 4.4 The Equity Curve of Sine Wave Test .. 47

Figure 4.5 Architecture of Deep Neural Network (fully connected) with 7 input, 2

hidden layers (each 48 nodes), 4 output nodes .. 50

Figure 4.6 Performance Tear Sheet of AI Agent Learn to Trade EURUSD 54

Figure 4.7 Performance Tear Sheet of AI Agent learn to trade USDJPY 60

Figure 4.8 Performance Tear Sheet of AI Agent learn to trade XAUUSD 66

 xii

Figure 5.1 Increase in Sharpe Ratio compared to portfolio size with different levels of

correlation .. 78

CHAPTER 1

INTRODUCTION

1.1 Background

Financial trading is one of the most interesting, challenging, and promising

areas in finance. Developing profitable trading systems is a hard-working task for

professional traders or trading system developers. However, the payoff for such a

dedicated endeavor may yield high rewards. Currently, there are two schools of

thought when one wants to develop trading systems, based on the underlying

assumption of the value in the long term fundamental factors called fundamental

analysis or based on future price movement that possesses predictive power called

technical analysis; both are followings:

1. Fundamental analysis: the attempt to predict the price of instruments

based on fundamental factors such as P/E, profits, EBITDA, EBIT.

2. Technical analysis: the attempt to predict the future price of instruments

based on historical price, volume, volatility, technical indicator.

The Trading system can be developed purely from technical analysis such as

price action, technical indicators, or only fundamental analysis such as critical

financial metrics like P/E ratio, P/BV ratio, profit growth, or the hybrid system that

combine both technical analysis and fundamental analysis concepts. The Trading

system can also be as simple as using historical price data as an indicator or as

complex as using AI to make complicated trading decisions.

Several literatures substantiate the idea that technical analysis, if appropriately

applied, can be used to develop the profitable system and possess some statistical

edges to trade the market. Dourra et al. (2002) had studied the application of technical

analysis and fuzzy logic with three technical indicators which were ROC, Stochastic,

and support/resistance to study four stocks. The result found to be excellent and

 2

surpassed S&P 500 performance (Dourra & Siy, 2002). Chan et al. (1995) had studied

the application of neural network with three technical indicators which were SMA,

stochastic, momentum. Chan used the neural network to predict the trading signal

before the crowd got into the trade. The result found to be more profitable than using

traditional technical signal. This study showed that if the traders could predict the

trading signal before the majority found out, they would be able to make money, and

the neural network could predict before the crowd (Chan & Teong, 1995). The

researcher found that there is some predictive power in the technical analysis that

used price and technical indicators as the key to unlock the future price movement and

profitable opportunities. Therefore, the purpose of this study is to describe how to use

the price and technical indicators as the valuable pieces of information for the

computer to uncover the hidden profitable patterns and develop the trading systems.

Currently, the majority of trading systems are automated, also known as

algorithmic trading strategies. The systems have been developed based on intensive

quantitative analysis including mathematics, statistics, linear algebra, machine

learning, artificial intelligence, and even the laws of physics. Developing the tradable

algorithmic trading strategies is very challenging because the robust systems need to

survive and adapt itself through several of market conditions. However, after carefully

researched, no such a trading strategy can be profitable in all market conditions. The

market is continuously changing and evolving due to non-linear, stochastic nature of

the market. The researcher found that developing the robust trading system need

critical features such as adaptive capability and synchronicity with the market.

Therefore, the concept of machine learning and artificial intelligence that the

computer will learn to trade from the data is very challenging to study.

The research motivation in this paper comes from two domains of knowledge

which are artificial intelligence (machine learning) and financial trading. The critical

feature for AI is the ability to learn from a significant amount of data to find the

hidden patterns. For financial trading, the endeavor is developing the profitable

trading system which is currently an inefficient task that needs to be automated.

In artificial intelligence (AI) area, there was a big leap shown by the company

named “Deepmind”. They showed that the computer could learn how to play the Atari

game without human supervision. Later, in March 2016, there was a major

 3

breakthrough when the computer learned how to play the board game go, had first-

time beaten human professional go player. The significant development was leading

to the search for general intelligence, the computer that performs self-learning process

to do any task. All these discoveries intrigued the researcher to explore more about

the application of AI or machine learning in the area of financial trading.

In financial trading or quantitative trading areas, trading system developers are

required to apply quantitative analysis concept to develop trading strategies. The key

idea of quantitative trading strategies is to find the statistical edge in the specific types

of the market conditions and apply these developed trading systems in that markets.

However, developing trading system process is time-consuming, error-prone, and

inefficient. Therefore, the majority of trading systems will be developed by computers

instead of humans. Currently, for the past decade, algorithmic trading and high-

frequency trading have been growing until becoming majority strategies in the trading

market. Most of the trading activities are mainly executed by the computers (Seth,

2015).

1.2 Problem Statement

Developing the trading system is a rigorous task. It is required to have several

skills from system developers such as statistics, computer programming, and finance.

However, the developed system has no guarantee that performance of the trading

system will be similar to the backtesting results. Developing quantitative trading

strategy is a time-consuming, inefficient task due to the need to identification of

following factors:

 What instruments to trade (stock, ETF, forex, futures, and commodity).

 How many stocks, lots, and contracts should we open for each position

(position sizing or money management)?

 What timeframe should we trade such as 1hour, 4 hours, daily, weekly,

and monthly?

 What side of the position to take? (go long or go short)

 Position management (what to do when position already opened).

 When to exit?

 4

Making those above decisions are all depend on the constraints of the traders

(available capital, risk tolerance, transaction cost, available time, and trading

objective).

The traditional approach for trading system development will be the variation

of the following process:

1. Define the objective function

2. Decide what to trade and how to trade it

3. Design the trading system

4. Determine the in-sample period

5. Determine the out-of-sample period

6. Decide what to optimize

7. Perform walk forward runs

8. Evaluate out-of-sample results

9. Trade the system

10. Monitor the results

Majority of trading systems belong to the categories of forecasting system.

System developers decide to choose inputs and choose the indicators to predict the up

and down of the markets. If there is an error the process of parameter, adjustment will

take place until the performance is satisfactory. Next step, defining the trading rules

with adjusted parameters will follow. Finally, the trading decision will be made.

 5

Figure 1.1 Trading System Based on Forecast

Source: Moody (2001)

Moreover, There are several of drawbacks when one developing the trading

system such as many biases toward some preferred instruments (i.e., some stock over

the others), bias to choose favorite indicators, bias to choose the in-sample period,

bias toward optimization. All biases are mostly brought to the development process

by the trading system developer. Moreover, there are also some major biases found in

backtest period which are followings:

1.1 Data-snooping bias. During the backtesting process, introducing more

parameters to gain higher performance would be running the risk of

“ curve-fitting”. When trading lives, the performance will be very much

different from the backtesting result.

1.2 Look-Ahead bias. The future data is accidentally included in the backtest

of the system. For example, if the backtest is running day 0 to day 30, but

backtesting data include the information from day 31 onto the future, this

would be called Look-ahead bias.

1.3 Survivorship bias. It could happen when we arbitrarily test only on the

instrument or the stocks that we know it had survived to the current period

of testing.

 6

A system trader could end up with the trading system that can trade profitably

at the specific market condition and be confident to trade live. However, the trading

system will fail when the market and trading system both are not in synchronicity as

we can see in the following picture that the system performs well in the in-sample

period, but fail miserably in the out-of-sample period.

Figure 1.2 Backtest Result vs. Live Trade

Source: Wiecki (2015b)

From above picture, the backtesting result shows uptrend of cumulative return

in green color. However, when trade lives, the cumulative return turned out to be very

much different from the backtesting result due to several reasons such as the

stochastic nature of the market, announcement of the news, central bank intervention,

etc. Moreover, some systems perform well both in in-sample and out-of-sample

period, but when trade lives it fail as well. The researchers have done extensive

studies and found that no any strategy will prosper and perform well through time, no

one size fits all for the trading system or another word “no holy grail trading system”.

The market changes will fail the system. How do we create the profitable system? The

profitable system must be a self-adaptive system that changes according to the market

regime.

 7

After careful studies, the researcher found that traditional ways for developing

trading system may no longer be efficient. Development processes that take years and

months to develop, but no guarantee the result is not acceptable when time factor is

critical. Therefore, the researcher put together all concerns for developing the trading

system as based on the quest for followings answer:

1. How do we create a profitable system with the shortest time possible?

2. How do we adjust the trading system through the change of market

conditions?

3. How do we optimize all parameters regarding each trading system?

4. How do we develop, back-test, validate and production with the shortest

time?

Computer not only can execute trading order according to what we program

them to do, but also be able to find the above solutions as well. Machine learning is

the novel concept that can be applied in financial trading problems. The researcher

found that developing computer-generated strategies is much more efficient ways.

Computer-generated strategies can be performed by several approaches such as

evolutionary algorithm, standard machine learning algorithm such as random forest,

support vector machine.

Several types of research in the past mostly attempting to apply machine

learning for stock prediction using linear regression and classification. For regression-

type research, most research papers tried to forecast and calculate MSE to evaluate the

error. This type of study tried to predict the price rather than developing a trading

system. For classification-type research, most tried to predict next day up or down,

measuring hit rate to evaluate accuracy. Both types of the studies were not enough to

develop a full-blown trading system that can trade live. However, there is a better way

we can develop the trading system by just feeding the computer with all information

they need to make a decision and let them learn from that information. This method is

one type of machine learning called reinforcement learning.

To the best of researcher knowledge, no study uses advanced area of machine

learning and deep learning which is the combination of deep learning (Kalmus,

Trojan, Mott, & Strampfer, 1987) and reinforcement learning (RL) to develop a

trading system for the Foreign Exchange Market (FOREX). Upon this concept,

 8

Computers can develop their strategy by learning from data, no need to tell them the

fixed rules about how to buy, how to sell, when to buy, when to sell, how much to buy

and how much to sell. The computer will be given the data and make their own

decision.

1.3 Purpose of the Study

The purpose of this paper is to explore the possibility to create an automated

and robust trading system using combined knowledge from machine learning,

quantitative finance, and big data. We try to answer two research questions:

1. Can we teach a computer to develop a trading system that beat buy-and-hold

strategy (B&H)?

2. Can the machine trading performance surpass the experienced trader?

EMH (efficient market hypothesis) state that it is impossible to beat the market

by timing the market consistently. Therefore, the best strategy for the EMH supporter

is buy-and-hold (B&H) . However, if the machine can see the repeatable, profitable

patterns in the market that human cannot see, it is possible that the machine can detect

and time the market correctly. Finally, it will be possible to make consistent profits

and provide the performance which is better than buy-and-hold. We could also use the

benchmark from BarclayHedge of currency index fund as a performance

measurement for experienced traders to answer if the machine is better than a human

expert (BarclayHedge, 2017).

1.4 Contribution

Findings from this paper will contribute to the investment and asset

management industry especially the quantitative hedge fund to explore more about

using the machine learning or artificial intelligence to develop trading strategies

efficiently. The result will inspire trading system developer, investment advisor,

quantitative trader, quantitative researcher to explore more in the area of machine

learning and artificial intelligence. Forex brokerage can develop machine learning

model to service their customers with limitless possibilities. Bank trader will also

learn more of application of artificial intelligence for foreign exchange trading from

 9

the desk. A hedge fund can develop more robust strategies for higher profitable

opportunities. An institutional investor will find the way to rebalance the portfolio in

such a way that more diversified. The private or individual investor will be beneficial

from another alternative investment.

Moreover, this study will support those studies in the past that contradict to the

financial theories such as EMH and Random Walk Model in that it is possible to

make consistent returns from the speculative market by identifying the hidden pattern

in the market by the method of machine learning. It is the novel method to trade the

market profitably rather than buy-and-hold strategy.

1.5 Implication

The implication of this study, the possible future will be more of robots or the

machines to make a crucial decision such as trading decision. The most obvious

advantages of the machine over the human is the computing power and discipline. A

human can become too emotional when they are in the trade so when they need to

decide at a crucial time, they tend to make a suboptimal decision. However, there will

be a need for highly skilled system developers who possess the skill in several areas

such as programming, statistic, financial trading. Moreover, Machine can be more

suitable to the task that need not of wisdom such as trading task. In the very near

future, traders and financial analyst might be replaced by the robots.

The paper consists of 6 Chapters, Chapter 2 and 3 are a literature review and

research methodology, respectively. Empirical results and data analysis are reported

in Chapter4. The discussion and findings are in Chapter 5. Lastly, Chapter 6 is the

conclusion, limitation, and future research.

CHAPTER 2

LITERATURE REVIEW

2.1 Random Walk Theory

 The Random Walk theory believes that successive price changes are

independent of each other so that it is impossible to consistently make profits from the

market by using the technical analysis or fundamental analysis (Fama, 1995). The

model explains that the stock price is purely random and unpredictable; however, this

paper will contradict to this model in that AI can learn the hidden patterns in historical

data and make a profitable decision based on these patterns.

2.2 Efficient Market Hypothesis

Efficient market hypothesis (EMH) state that the price of security fairly and

fully reflects all available information. A direct implication of EMH is that the

accurate timing to buy and sell from the market is purely random due to the random

walk of the stock price. EMH also explain the speed and quality of the price

adjustment according to the information. If the market is very efficient also refer to as

strong form, there will be no one can earn a consistent abnormal return from trading.

It has been recognized that there are three forms of EMH which are weak

form, semi-strong form, and strong form. The weak form of efficient market

hypothesis indicates that no investors will make abnormal returns because the

historical price data will always reflect the full information (Technical Analysis will

not be useful). Semi-strong form of efficient market hypothesis indicates that current

price fully reflect both historical price data and available public information so no one

can make abnormal returns based on this information (Both Technical Analysis and

Fundamental analysis will not be useful). Strong form of efficient market hypothesis

indicates that current price will already reflect all information that all participant will

 11

be able to access even investor with inside information still cannot make abnormal

returns (Technical analysis, Fundamental analysis, and Inside Information are not

useful) (Malkiel, 1989).

Fama had laid the foundation about the efficient market hypothesis that all

investors can easily access to the same public information, finally, nobody will be

able to earn abnormal returns consistently. Profitable trades can be made from time to

time could be possibly a fluke. According to EMH, The investors will react to market

instantly so the profit opportunity will disappear (Malkiel & Fama, 1970). Proponents

of the EMH, hence, suggest that the most appropriate strategy to trade the market is to

buy-and-hold.

This study contradicts to what EMH have been proposed. If the machine/AI

can learn how to make a trading decision from the available historical data and make

consistent returns, it implies that the best strategy is not buy-and-hold.

2.3 Financial Trading System

 The trading system is the set of specific rules, together with parameters, that

determine the entry and exit signal for the trade. Generally, the signal will be marked

on the chart (Investopedia, 2017). The financial trading system has been increasingly

evolving into the algorithmic trading system, the trading method that uses a computer

to execute the orders. Farjam et al. (2018) stated that the current market now is

hybrid, the market which is composed of both human and computer trader. However,

there is still inconclusive about the effect of the increase in the algorithmic trading

system relating to the increase in volatility and price discovery (Farjam &

Kirchkamp, 2018).

Some algorithmic trading systems are based on the trading rules, some are

based on statistical learning, and some are developed from machine learning. These

algorithmic trading systems have been developed from historical data such as price,

volume and order flow. All data are an underlying foundation for higher level

mathematical transformation such as trading formula and machine learning. Wang et

al. (2009) have summarized that there are five types of algorithmic trading model

which are price, time, shortfall, volume participation, and smart order routing

 12

algorithm. Moreover, these can be categorized as four most popular strategies which

are 1) volume-weighted average price 2) time-weighted average price, stock index

futures arbitrage, and statistical arbitrage. Almost all algorithmic trading systems are

developed based on historical data for the implication that these data has predictive

power for developing a profitable trading system.

Wang et al. (2009) have also stated that the evolution of trading system

resulted from the expansion of the market, relaxation of government regulation, the

speed of financial transaction to execute the orders, and new advanced technology.

Therefore, the trading system developer will try to stay ahead of the competition to

gain the advantage over the competitors.

Computers have been increasingly used to develop, execute, and automate the

trading system. Nowadays, the trading system will become more complex.

Exploration of using a computer and advanced computation become a more attractive

method to develop the new trading strategy. This study is also trying to leverage the

advanced technology to gain the advantage in developing the profitable trading

system.

2.4 Technical Analysis

Taylor et al. (1 9 9 2) stated that technical analysis is the analysis of financial

market that attempts to forecast the future price movement based on the past historical

price, volume, and volatility. Price and volume can be further transformed into several

of indicators which can help them identify market opportunities. Several studies

explained how to apply the technical analysis to develop the trading system. Farias

Nazário (2017) has conducted extensive studies for technical analysis literature

reviews and proposed that there are three significant indicators that most frequently

used which are stochastic, relative strength index and moving average. Moreover,

there are also some tools which were used to study for technical analysis in the

literatures such as econometric model, evolutionary algorithm, genetic algorithm,

statistical analysis, neural network, and others(Farias Nazário, Silva, Sobreiro, &

Kimura, 2017).

 13

Historical data and technical analysis are the basic inputs to this study because

when computers learn to develop trading decisions, we need to feed raw price data

and technical indicators (all of them are considered to be the main ingredients to our

study) into the system to generate trading decision such as buy and sell.

2.5 Gold Market

 There are some studies that linked technical analysis and speculation of the

gold price. Batten (2018) has studied the intraday predictive power of 3 technical

indicators which are simple moving average (SMA), weighted moving average

(WMA), and exponential moving average (Dempster & Leemans, 2006) and found

that there is a predictive power for some combination of parameters (Batten, Lucey,

McGroarty, Peat, & Urquhart, 2018). It also indicates the possibility to use technical

analysis to develop profitable trading systems. Moreover, Baur (2015) also conducted

the speculative trading in the gold market and found that there is a pattern for bubble-

like characteristics which is predictable. It can substantiate the underlying assumption

that technical analysis which is derived from historical data possess some predictive

power for the gold market (Baur & Glover, 2015).

2.6 Foreign Exchange Market

The foreign exchange market (forex, FX, or currency market) is a

global decentralized market for the trading of currencies. It includes all aspects of

buying, selling and exchanging currencies at current or determined prices. Regarding

the volume of trading, it is by far the largest market in the world, followed by

the credit market. The primary participants in this market are the larger international

banks. Financial centers around the world function as anchors of trading between a

wide range of multiple types of buyers and sellers around the clock, except weekends.

The foreign exchange market does not determine the relative values of different

currencies but sets the current market price of the value of one currency as demanded

against another. In this paper, the researcher found advantages to choose forex market

over stock market due to the following reasons:

 14

1. No corporate action (data cleaning is much more convenient)

2. 24-hour market

3. The largest financial market in the world

4. Data access is prevalent

5. The most liquid market in the world

 Product

The world currencies are the products that will be traded on the foreign

exchange market. There are currencies called “Major pair”, governing all the majority

of foreign exchange market transaction which are United State Dollar (USD) , Euro

(EUR), Great British Pound (GBP), Swiss Franc (CHF) and Japanese Yen (JPY).

 Market Participants

 International Trade Transaction

When there are transactions for export and import between countries that use a

different currency, it will be transactions on the foreign exchange market. If the

company in the UK would like to buy the product in the US, UK Company has to buy

US Dollar and simultaneously sell British Pound to get the products. On the other

hand, if UK Company wants to sell the product to the US, they will need to convert

the US Dollar back to British Pound by Buying British Pound and Sell US Dollar.

 Hedgers

 Hedging is the attempt to minimize the risk of the position by financial

transaction execution (Levinson, 2 0 1 4) . The obvious example of the hedger is the

business party that is obligated to pay foreign currency in the future. They do not

know if the currency will go against them or not. They may use futures or options

contract as tools to minimize their risk.

 15

Speculators

The majority of trading volumes in foreign exchange market comes from

speculative trades. Speculators take the position based on the expectation of the price

direction. For example, when the hedger tries to minimize their risk, the speculators

will undertake the risk in exchange for the opportunity to earn profits.

 Foreign Exchange Dealer and Brokers

 Foreign exchange dealer usually earns profits by offering both bid and ask

price, the profits are the difference between the bid and ask called spread. However,

brokers are different from a dealer in that they do not take the opposite side, but earn

profits from brokerage fee.

 Central banks and treasuries

 Central bank objective to participate in the foreign market is to achieve the

target rate which comes from the policy. The target will be controlled due to the

policy to encourage export and import for the trade in each country.

 Bank and non-bank institution.

 Major activity of the banks that they usually participate in forex market are

mostly in the wholesale market or interbank market. Most activities in interbank

market are done by their own account called proprietary desk.

 Non-bank institutions which are an insurance company, multi-national

Corporation, financial institution, hedge fund, mutual fund and provident fund, etc.

also participate in the wholesale market to minimize or to diversify risk for their

portfolio.

Individuals and firms conducting commercial or investment transactions

 A large firm like multi-national corporation also participates in the foreign

exchange market. Their objective is to hedge against the volatility of foreign

exchange market, to minimize the risk, and to make an investment for future profits.

2.7 Technical Analysis for Trading System Contradict to EMH………….

Several studies have supported that technical analysis can be utilized to

develop the profitable trading systems. Technical analysis in literature, mainly applied

in the speculative markets such as foreign exchange market and the stock market, had

 16

been studied by several of researchers. Many studies found that this technique can be

applied profitably in the markets. Taylor et al. (1992) conducted the questionnaire

survey the professional foreign exchange dealer in Hong Kong and found that

technical analysis is more useful when used in shorter-term and most of them use to

forecasting the trend and turning point (Taylor & Allen, 1992) . Neely et al. (1997)

used genetic programming technique to find technical trading rules, and found strong

evidence to support out-of-sample excess returns for six exchange rate from 1981-

1995 (Neely, Weller, & Dittmar, 1997). Moreover, Lu et al. (2012) investigated the

application of candlestick reversal pattern which is the relationship of open, high, low,

and the closing price of stock in Taiwan during 2002-2008. All three bullish reversal

patterns was profitable (Lu, Shiu, & Liu, 2012). Vajda (2014) had conducted the test

for trading forex market with MACD and found that it is possible to earn profits from

forex market with technical indicators like MACD in timeframe 1 hour (H) with

optimized stop loss and target profit (Vajda, 2014).

 Moreover, there is a study to provide empirical evidence from FOREX market

that contradicts to the efficient market hypothesis. Alonso et al. (2015) had conducted

the study of automated trading in Forex market. The study was conducted for six

currency pair which are EUR/ USD, GBP/ USD, USD/ CAD, USD/ JPY, USD/ CHF,

AUD/ USD, the optimized period start form 20001-2008) , the testing period from

2008-2011, the indicator used for generating signal was MACD. The study showed

satisfactory results for all currencies. Results from all currencies showed positive

returns whereas ETF showed negative returns in some years. This study contradicts to

the efficient market hypothesis. (Alonso-González, Peris-Ortiz, & Almenar-Llongo,

2015). Coakley et al. (2016) had conducted the trading study of 22 currencies quoted

in US dollar, 113,148 technical trading system had been tested. The result showed that

the robust trading rules declined overtime especially the traditional trading rules

which used a moving average. However, the newer technical trading rules which used

Bollinger Band, MACD and RSI showed robust, profitable results over the testing

period started from 1997-2015 (Coakley, Marzano, & Nankervis, 2016). The paper

showed that it is possible to earn abnormal returns in the forex market by using

technical analysis developed from historical price data.

 17

Table 2.1 Summary for trading foreign exchange market study with Technical

analysis

Authors Article Title Currency &

period

Indicators

used

Results

Neely, Weller

& Dittmar,

1997

Is technical

analysis in

foreign

exchange

market

profitable?

EURUSD,

GBPUSD,

GBPJPY,

USDCAD,

USDCHF,

AUDUSD

1981-1995

Genetic

Algorithm

Profitable

Vajda, 2014 Could a trader

using only

“old” technical

indicator be

successful

at the Forex

market?

EURUSD

(2000-2003)

MACD Profitable if

optimized

SL/TP

Alonso-

González,

2015

Providing

empirical

evidence

 MACD Comparison to

ETF in the

same period,

all currencies

are profitable

Coakley et al.,

2016

How profitable

are FX

technical

trading rules?

22 Currencies

based on US

dollar (1997-

2015)

Bollinger

Band, MACD,

RSI

Step SPA-Test

show robust

evidence for a

robust,

profitable

trading system

2.8 Artificial Intelligence (AI)

 AI is the ability of digital computers or computer-controlled robot to solve the

problem that is typically associated with the higher intellectual processing capability

of a human (Ertel, 2018). Artificial intelligence is the program that sense, think, act,

and adapt to the environment. Machine learning is the algorithm of the machine to

learn from data. Deep learning is the new subset of machine learning which become

popular because of the performance and diverse applications.

 18

Figure 2.1 Relationships between Artificial Intelligence, Machine learning, and Deep

learning

2.9 Commodity Trading Advisor (CTA)

 Nasdaq provides the definition of CTA which is “An investment manager that

focuses on long and short trading in the futures markets. The trades are often intraday

trades. Sometimes referred to as Managed Futures” (Nasdaq, 2018).

2.10 Machine Learning

Machine Learning (ML) is a fascinating field of artificial intelligence (AI)

research and practice where we investigate how computer agents can improve their

perception, cognition, and action with experience. Machine Learning is about

machines improving data, knowledge, experience, and interaction.

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance

improve as they are expected to

more data over time

DEEP LEARNING

Subset of machine

learning in which

multilayered neural

networks learn from

vast amounts of data

 19

Machine learning techniques to intelligently handle large and complex

amounts of information build upon foundations in many disciplines, including

statistics, knowledge representation, planning and control, databases, causal inference,

computer systems, machine vision, and natural language processing (Veloso, 2017).

Machine learning application in finance is the new area due to the

advancement of computing power, latest algorithm to solve the complex problem that

never happens before, especially in the area of deep learning that is being applied in

computer vision, voice recognition, machine translation, etc. Machine learning can be

categorized into three groups based on how machine learning from data which are

1. Supervised Learning

2. Unsupervised Learning

3. Reinforcement Learning.

Figure 2.2 Three Major Types of Machine Learning

2.11 Supervised Learning

 Supervised learning is a type of machine learning algorithm that identifies the

function from labeled data. The supervised learning mostly will use for classification

and regression problems, such as prediction of the fraudulent online transaction,

disease prediction, time series forecasting.

 20

2.12 Unsupervised Learning

 Unsupervised learning is a type of machine learning algorithm that identifies

the inference of the data set without labeling (do not know the ground truth) . For

example, unsupervised learning is used to find the group of similar features, such as

K-mean clustering,

2.13 Reinforcement Learning

Concept and terminology

Reinforcement learning is one of the approaches in machine learning that

machine can learn sequential decision-making process from data. There are composed

of environment, states (what features the agent can sense from the environment) ,

action, and reward. The agent will learn to find the optimal policy (what action to take

in each specific state) that maximize the cumulative future reward. Agents sometimes

are called learner or decision maker.

Figure 2.3 Reinforcement Learning Framework

State st ∈ S where is all possible states

Action at ∈ A(St) where A(St) is all action in each state t

Final/terminal states: The states that have no available actions are

final/terminal states.

Episode: An episode is a complete play from one of the initial state to a final

state.

Environment
𝑅𝑡+1

𝑆𝑡+1

reward

Rt

state

St

Agent

action

At

 21

For example, the agent randomly starts in one state (s), then choose an action

(a) to earn an immediate reward (r) and end up at next state (s΄) and the process keep

repeating as Markov decision process (MDP)

Source: Vladimir and Kabysh

Experience tuple we can get the information of series as called experience

tuple <s,a,s,r΄> to iterate over time. For example, we can start with s0, we take action

a0, we get the reward r0, and then we end up with state s1, and then repeat again so we

can have the series of

S0 , A0 , R0 , S1, A1, R1,………………, Sn (1)

Where

S0 is a numerical representation of state zero

A0 is a numerical representation of action at state zero

R0 is a numerical representation of reward at state zero

S1 is a numerical representation of state one

A1 is a numerical representation of action at state one

R1 is a numerical representation of reward at state one

Cumulative reward: The cumulative reward is the discounted sum of reward

accumulated throughout an episode:

R = R0 + γ R1 + γ2 R2 + ……….. (2)

Figure 2.4 Q-Value in Sequential Decision Process

Select action a
and do them

Possible actions

Next state s΄

Receive reward - r

Observe next actions

and do one of it - a΄

Current state s

on MDP

Q(s, a΄)

Q(s, a)

 22

Where

 Ri= Reward at state i

 γ = Discounted rate

Policy: A Policy is the agent’s strategy/ behavior to choose an action in each

state. It is noted by π. The policy is different from the plan in that the policy is

stochastic based on probabilistic state transition, but the plan is deterministic.

Policy in each state can be

Deterministic policy π(s) = a (3)

Stochastic policy π(a|s) = P[a|s] (4)

Where

 π(s) = policy in any state

 a = action

 π(a|s) = policy to choose action given state s

 P[a|s] = probability of state transition

Value function: a prediction of future reward. Q- Value function is expected a

future reward

Optimal policy: The optimal policy is the theoretical policy that maximizes

the expectation of cumulative reward. From the definition of expectation and the law

of large numbers, this policy has the highest average cumulative rewards given

sufficient episode.

The objective of reinforcement learning is to train an agent such that his policy

converges to the theoretical optimal policy.

There are three approaches to reinforcement learning (Silver, 2015).

1. Value-based RL: Find optimal value function to find the optimal policy

2. Policy-based RL: Find the policy directly

3. Model-based RL: Build a model of the environment

 23

In this paper, we will focus on Value-based RL which is Q learning and

combine with the concept of the deep neural network to become deep Q network or

deep Q-learning.

2.14 Q Learning

Q learning is one of the most widely accepted algorithms in reinforcement

learning. Q function is value function based approach which the agent will learn value

function and choose the action based on the highest Q-value. There are two value

function that needs to be specified first which are followings:

1. State-value function V(s): this value tell how good it is to be in any state

2. Action- value function Q(s, a): this value tells the quality of certain action

in any state.

From above information, we can create state-value function V(s) that represent

how good the agent is in any state used the Bellman Equation as following:

V(s) = maxa(R(s, a) + γ V(s΄)) (5)

Where

V(s) is value function of any state

R(s,a) is reward function of any state and action

γ is a discounted rate

V(s΄) is value function of state S΄

From (5) , in any state, the value of each state is equal to the sum of Reward

plus γ (discounted rate) multiplied with the value of the next state given that choose

the action that maximizes the sum. If discounted factor (γ) = 0, that means V(s) =

max(R(s, a)) or we do not care about the future state that we will end up with we care

only the reward. If discounted factor (γ =1), that means V(s) = max(R(s, a) +V(s΄)), or

we do care about the future value of the next state (γ is the parameter to adjust

depending on how much we care about future).

From above Bellman equation, If we take account of Markov decision process

(MDP) which is a stochastic process of the random sequence (if the agent performs a

 24

certain action there are probability distribution to end up in any states) , we could

rewrite the above equation to following in the recursive form as below:

V(S) = max (R(s, a)) + 𝛾 ∑ 𝑝(𝑠, 𝑎, 𝑠΄)𝑉(𝑠΄)𝑠΄) (6)

Where

V(s) is value function of any state

R(s,a) is reward function of any state and action

γ is a discounted rate

P(s,a,s΄) is the probability of transition to end up in any states

V(s΄) is value function of state S΄

Now, we know how good to be in any state. The next step, we will find the

quality of each specific action in any state which is Q. We use Q function or Q(s, a) to

represent the quality of each action in any given state. Therefore, we will get the

equation for Q(s, a) as below:

Q(s, a) = R(s, a) + 𝛾(∑ 𝑝(𝑠, 𝑎, 𝑠΄)𝑉(𝑠΄)𝑠΄) (7)

Where

 Q(s,a) is Q function of any state and action

R(s,a) is reward function of any state and action

γ is a discounted rate

P(s,a,s΄) is the probability of transition to end up in any states

V(s΄) is value function of state S΄

There is a link between V(s) and Q(s, a) that the term in the bracket in (6) is

equal to (7), so the value in (6) is to choose a maximum of all possible Q values.

From (7), we can replace the last term of V(s΄) with maxa΄(Q(s΄,a΄)) to get the

recursive form of the Q function so we would get the following Bellman equation in

the form of Q:

Q(s, a) = R(s, a) + 𝛾(∑ 𝑝(𝑠, 𝑎, 𝑠΄)𝑠΄ maxa΄(Q(s΄,a΄)) (8)

Where

 25

 Q(s,a) is Q function of any state and action

R(s,a) is reward function of any state and action

γ is a discounted rate

p(s,a,s΄) is the probability of transition to end up in any states

Q(s΄, a΄) is value function of state S΄

From (8) we can simplify into to the deterministic Q(s,a) as following:

Q(s,a) = R(s,a) + γ maxa΄(Q(s΄,a΄)) (9)

Where

 Q(s,a) is Q function of any state and action

R(s,a) is reward function of any state and action

γ is a discounted rate

Q(s΄, a΄) is value function of state S΄

 Temporal Difference

Compare Q(s,a) before action to Q(s, a) after the action in any state to find

Temporal Difference

TDt (a, s) = [R(s, a) + γ maxa΄(Q(s΄,a΄))]- Qt-1(s, a) (10)

Where

 TDt(a,s) is Temporal Different function of any state and action

R(s,a) is reward function of any state and action

γ is a discounted rate

Q(s΄, a΄) is Q function of state s΄ and action a΄

 Qt-1(s, a) is Q function of state s and action a at time t-1

So, we can get the update rules

Q(s, a) = Qt-1 (s, a) + α TDt (a, s) (11)

 26

Where

Q(s, a) is Q function of state s΄ and action a΄

TDt(a,s) is Temporal Different function of any state and action

 Qt-1(s, a) is Q function of state s and action a at time t-1

α is learning rate (0 ≤ α ≤ 1)

π (s) = argmaxa Q(s,a) (12)

Where

 π (s) is policy at state s

 Q(s,a) is Q function of state s and action a

 Q-learning Algorithm

The main idea of Q-learning is that we can iteratively repeat the process of the

update until it converges as the following algorithm:

Initialize Q[num_states, num_actions] arbitrarily

Observe initial state s

Repeat

Select and carry out an action a

 Observe reward r and new state s΄

 Q[s,a] = Q[s,a] + α (r+ γ maxa΄ Q[s΄ , a΄] – Q[s,a])

Until terminate

This procedural approach can be translated into simple steps as follows:

1. Initialize the Q-values table, Q(s, a).

2. Observe the current state, s.

3. Choose an action, a, for that state based on one of the action selection policies.

 27

4. Take action, and observe the reward, r, as well as the new state, s'.

5. Update the Q-value for the state using the observed reward and the maximum

reward possible for the next state. The updating is done according to the

formula and parameters described above.

6. Set the state to the new state, and repeat the process until a terminal state is

reached.

2.15 Reinforcement Learning in Financial Trading

Moody et al. (1998) studied the application of RRL (recurrent reinforcement

learning) in 3 empirical studies 1) Trader simulation 2) Portfolio management

formulation 3) S&P500 and T-bill asset allocation system. For trader simulation, they

test 2 RRL in one simulation stock price (one with maximizing profit, one with

maximizing differential Sharpe ratio compare to forecast model and found that RRL

performed better. For Portfolio management formulation, RRL trained to maximize

differential Sharpe ratio perform better than maximize profits. For S&P 500 and T-bill

asset allocation system, it showed the predictive power from 1970 to 1994 (Moody,

Wu, Liao, & Saffell, 1998).

Moody et al. (2001) introduced the direct reinforcement learning using

differential Sharpe ratio as performance function to be optimized. They found that

direct reinforcement learning performs better than Q learning for asset allocation

problem in S&P500 T-bill portfolio (Moody & Saffell, 2001).

Gold (2003) studied RRL (recurrent reinforcement learning) to explore the

effect of training parameters on the performance of FX trading (Gold, 2003).

Dempster el al. (2006) also studied to deal with the usable, fully automated

intelligent system. The system based on three layers 1. Machine learning algorithm 2.

Risk management layer 3. Dynamic optimization layer and together called Adaptive

reinforcement learning which is based on RRL. The added features make the model

more flexible for different risk tolerance leave. The study used EUR/USD 1 min

(from 2000 to 2002). It showed absolute profits in pips (5104) or approximately 26%

p.a. , compared to Buy and hold (8% loss or 1636 pips loss) (Dempster & Leemans,

2006).

 28

Du et al. (2009) studied reinforcement learning method between RRL and Q

learning in asset allocation problem between risky and riskless asset. The study, used

simulation, showed that RRL outperforms Q learning regarding stability when

exposed to the noisy dataset. Q-learning is sensitive to the selection of value function.

On the other hand, RRL is more flexible to choose objective function (Du, Zhai, &

Lv, 2016).

2.16 Deep Learning

Deep learning belongs to the broader family of the machine learning method.

Deep learning is composed of the artificial neural network (ANN) with multi-hidden

layers.

Figure 2.5 Neural Network Architecture

From above picture, single neural network compares to deep learning neural

network with four hidden layers. In the context of this paper, there are several uses of

deep learning depend on training methods (supervised, unsupervised, and partially

supervised) , in this paper, we will use deep learning neural network as a function

approximation. We will provide the state as input and try to predict Q; then we will

input the next state (S΄) and predict new Q. We will repeat this step to update Q

according to Deep Q learning algorithm explain later.

 29

 Convolutional Neural Network (CNN)

 Convolutional neural network (CNN) is one type of the deep learning network

which works best for the image task. This network has been widely used in the tasks

like image classification, image recognition, and computer vision. For training AI to

play the game, CNN also is used to convert pixel to signal, and the output will be

classification types of signal.

CNN is composed of two types of layers which are a convolutional layer,

subsampling layer. These types of the layer will connect successively. In

convolutional layer, the convolution operation will be performed; the outcome will be

passed on to the next layer. In the subsampling layer, representation size and

parameter will be reduced until the data become one-dimensional vector (Sezer &

Ozbayoglu, 2018).

Figure 2.6 Generalized Convolutional Neural Network Structure

2.17 Deep Q Learning/ Deep Q Network

It has been known that deep-learning network is good at learning hierarchical

of patterns of data, and also good at representation of noisy data, invariant,

disturbance data. Thus, we can use Deep Q-Learning as a function approximation to

find Q(s, a).

Input Convolutional Subsampling Convolutional Subsampling Fully Connected

 30

Learning:

The above picture shows that we can feed the input to the network (state) and

calculate the predicted Q using the deep neural network. The predicted Q will be

compared to the target for each specific action (in this example, there are four actions

so we can have four Q values).

Loss function will be calculated as below:

𝑳 =
𝟏

𝟐
[𝒓 +𝒎𝒂𝒙𝒂΄𝑸(𝒔΄, 𝒂΄) − 𝑸(𝒔, 𝒂)]𝟐 (13)

Where

 L is loss function

r is reward

Q(s, a) is Q function of state s and action a

Q(s΄, a΄) is Q function of state s΄ and action a΄

Given a transition < s, a, r, s’ >, the Q-table update rule for Q-learning in the

previous algorithm must be modified when applying deep neural network with the

following:

Target

Prediction

Figure 2.7 Deep Neural Network for Q learning

Hidden

Layer

Output

Layer

Input Layer

VS. Q-Target1

VS. Q-Target2

VS. Q-Target3

VS. Q-Target4

Q1

Q2

Q3

Q4

X1

X2

 31

1. Do a feedforward pass for the current state s to get predicted Q-values for all

actions.

2. Do a feedforward pass for the next state s΄ and calculate maximum overall

network outputs max a’ Q(s΄, a΄).

3. Set Q-value as a target for action to r + γmax a’ Q(s΄, a΄) (use the max Q-

values calculated in step 2). For all other actions, set the Q-value target to the

same as initially returned from step 1, making the error 0 for those outputs.

4. Update the weights using backpropagation.

Experience Replay: Due to the use of neural network to solve Q-learning, we

would end up with diverges due to the correlation between samples and Non-

stationary target. To solve this problem, we keep previous experiences in memory and

after each action taken we draw a mini-batch of experience from that memory to

perform the update step.

 Deep Q-Network (DQN): Experience Replay

To remove correlations, build data-set from agent’s own experience

Figure 2.8 Sample Experiences from Data-Set and Apply Update

𝑙 = (𝑟 + 𝛾
𝑚𝑎𝑥

𝑎΄
𝑄(𝑠΄, 𝑎΄, 𝒘ˉ) − 𝑄(𝑠, 𝑎,𝒘))

2

 (14)

Where

 l is loss

 r is reward

 γ is a discounted rate

To deal with non-stationarity, target parameters wˉ are held fixed

s1,a1,r2,s2

s2,a2,r3,s3

s3,a3,r4,s4

…

st, at, rt+1, st+1

s, a, r,

s΄

 st, at, rt+1, st+1

 32

 Action Selection Policy & Exploration/ Exploitation

In reinforcement learning, the agent needs to learn in all possible state to take

action. The agent needs some experiences to learn how to make a good action. How

the agent knows if it the good action. The agent needs to explore as much as possible.

However, if the agent thinks that he already had a good action, sometimes he does not

want to explore for more. Therefore, there is a trade-off between exploration and

exploitation.

1. Greedy Approach: The agent takes the action to exploiting the knowledge that

he knows from current states to choose the action. This makes him does not

want to explore for more actions the problems of this approach will arrive with

a suboptimal solution.

2. Random Approach: This approach is opposite to greedy approach the agent

will always select the random action to explore more.

3. ϵ Greedy Approach: This approach is the combination of Greedy approach and

random approach. When starting with the unknown environment, the agent

will act randomly and then adjust to more exploitation.

 Advantages of reinforcement learning to traditional quantitative

trading………………

1. The agents can learn trading strategy from financial data. It is not necessary

to input the preferred indicators or prefer instruments.

2. It is different from supervised learning that one could develop the system

that performs well in the past, but fail in the future. Due to the volatility,

unexpected event, short-term noise, the better system should be self-adaptive.

Thus online learning approach that quickly adapts to such a change will be

practically necessary.

3. The agents will learn the optimal policy based on performance function

(reward) to maximize the future cumulative reward so that we can adjust the

performance function for the agent based on the critical metric of system

performance.

 33

2.18 Deep Q Learning In Financial Trading

Deng et al. (2017) studied the performance of trading in a different method

which are FDDR, DDR, SCOT, DRL, and BH. The study used three instruments (IF,

AG, SU) and used TP and SR as performance function. It found that FDDR show the

most attractive results (Deng, Bao, Kong, Ren, & Dai, 2017).

Wang et al. (2016) have researched developing an algorithmic trading system

based on DQN which can automatically determine the signal to buy, sell, or hold with

each trading time stamp (Wang, 2016).

After rigorously studied, the researcher found that there is still lack of Deep q

network learning to trade the forex market. After the success of Alpha go, deep q

network (combined deep learning with reinforcement learning) has been applied in

several areas including finance. To the best of researcher knowledge, we believe that

this paper will be the first to explore this lucrative, most liquid market in the world.

Table 2.2 The summary literature that uses reinforcement learning in financial trading

Literature Machine

Learning

Model

Features Market Evaluation Outcome

Moody et al.,

1998

RRL Simulation

data

Simulation

data

Differential

Sharpe ratio

MSE

Cumulative

profits

Compare

Max DSR of

Long/Short

better than of

min MSE

Portfolio of

RRL

Moody &

Saffell, 2001

RRL Simulation

data

Forex

Comparison

between

DRL and Q

learning

DRP

performance is

higher than Q

learning

 34

Literature Machine

Learning

Model

Features Market Evaluation Outcome

M. a. H.

Dempster &

Jones, 2001

Genetic

Algorithm

Technical

indicators

Forex Sharpe Trading

performance

Gold, 2003 Recurrent

Reinforce

ment

Learning

Price &

M/S ratio

(price

movement

/ spreads)

Forex Profits and

Sharpe ratio

Single layer is

better than two

layers

M. A. H.

Dempster &

Leemans,

2006

Reinforce

ment

Learning

Risk

parameters

/ price

Forex Sharpe/

differential

Sharpe ratio

Trading

performance

Du et al.,

2016

Reinforce

ment

Learning

Price of

risky asset

Simulated

Data

Interval

profit/

Sharpe

ratio/

Policy search

outperform

value search

Deng et al.,

2017

FDDR,

DDR,

SCOT,

DRL

Price Stock TP/SR FDDR is the

most attractive

result

Wang et al.

DQN Delta of

the close

price

Index

price

Accumulate

d Wealth,

Sharpe

ratio, Max

DD

DQN is better

than BH and

RRL

CHAPTER 3

METHODOLOGY

3.1 Mapping Reinforcement Learning to Financial Trading

To solve the trading problems, we need to start mapping trading problem into

reinforcement problems. We have to identify the following components:

1. Set of states:

The set of states can be OHLC, indicators, and other features of three

instruments (EURUSD, USDJPY, and XAUUSD). This set of states represent

the perception that the agent can perceive the world.

2. Set of Actions:

The set of actions can be the actions to take in each state. In this case, there are

four actions: {Hold, Buy, Sell, Close}

The agent will open only one position at a time.

3. Reward function/Performance function:

The reward function is the reward that the agent will earn after performing the

action in each state. The reward function can be the function of Cumulative

profits (in pips), Sharpe ratio, total profits, and reward to risk.

4. Experience tuple,

Experience tuple is the experience of the agent store in the memory buffer. in

this part is the experience of the agent that learn from the data which is <

S,A,R,S΄> this part will be used as experience replay.

When we all have above 1-4, we will be able to find the optimal policy π by

using Deep-Q Learning algorithm.

In this paper, we will test 3 assets/ instruments separately; we will test each

currency pair as long/ short trader to compare if we can use Deep-Q Network to

develop the model for all instruments.

 36

3.2 Data………………..

The study uses 15 years of historical data obtained from the prominent Swiss

broker, Dukascopy Bank, Switzerland. The data in our experiment will be daily data

from (01/ 01/ 2001 – 12/ 31/ 2015) . Data is downloaded from Dukascopy website

(https://www.dukascopy.com/swiss/english/marketwatch/historical/).

We use the daily data obtained from free historical feed data source

(Dukascopy, 2017) . Data pre-processing (Cleaning) is necessary to ensure the

reliability of the data. Followings are steps for data pre-processing.

1. Checking for missing data: if there is a missing data and replace with the

average of 2 previous days.

2. Checking data format to ensure that the data are in a correct format such as

numeric value rather than string.

3. Standardize data to ensure that significant numbers of one feature will not

outweigh other features with a smaller number. We will use Z-score to the

standard the data.

The data was split into a training set (01/01/2001-12/31/2003) and test data set

(01/01/2005 -12/31/2015) using the function in scikit-learn python library to split the

data automatically. We will randomly initialize the model and let the AI learn in batch

during 2001-2004 so the AI will initially learn from small amount of data (2001-

2003) and then AI will learn online (learn and update as it get more data) from the

beginning (2001) again until it get smarter when it gets more data until 2015.

 37

Figure 3.1 Descriptive Statistic of EURUSD Daily Returns Data

 38

Figure 3.2 Descriptive Statistics of USDJPY Daily Returns Data

 39

Figure 3.3 Descriptive Statistics of XAUUSD Daily Returns Data

3.3 Online Learning

 We will train the agent online with stream data. The Q learning algorithm will

update itself incrementally each of time-step. With this algorithm, the agent will learn

more when getting more data.

3.4 Paired T-Test

A paired t-test is used as a statistical tool when we want to compare two

population means, and both two samples can be paired together. For example, one

 40

sample with the series of returns with one strategy and another sample is series of

returns for another strategy.

Procedures for carrying out paired t-test

Let A is the data series for model 1, and B is the data series for model 2. To

test the null hypothesis that the mean difference is zero, we need to calculate as

followings:

1. Calculate the difference between A series and B Series on each pair.

2. Calculate the mean of the difference.

3. Calculate the standard deviation of the difference.

4. Calculate t-statistic , T = mean difference/ standard deviation of difference.

5. Use the table of t-distribution to compare T value from calculation to T value

of (n-1 degree of freedom).

3.5 Experimental Process

1. Data prepossessing: in this step we need to do data cleaning and prepare the

database for all currency pair for the daily timeframe. We will replace missing

value with the average price for two previous days. We will check the format

of the data.

2. Feature engineering: we need to create all relevant features which have the

predictive power of price movement this includes all relevant indicators. We

can do this by using the python library called Talib to calculate other features

such as technical indicators. After we get the OHLC historical data from step

1, we will calculate all necessary indicators. After that, we will standardize all

features.

3. Split data into train set and test set using the python library called Scikit-

Learn. We will feed data into the training data set (2001-2003). We will train

with a small amount of batch learning during the trading phase.

4. Feed data to Deep Q-Network to learn.

5. Hyper-parameter tuning during the training phase: tune the parameters for the

architecture of the neural network.

 41

6. Feed data to Deep Q-Network again to learn online. AI will learn again from

the beginning and update gradient to get smarter over time.

7. Perform Hypothesis testing using Paired t-Test.

8. Evaluate the results.

3.6 Key Performance Matrices for Trading System

 Sharpe ratio

The following relation defines the Sharpe Ratio S:

𝑆 =
𝐸(𝑅𝑎−𝑅𝑏)

√𝑉𝑎𝑟(𝑅𝑎−𝑅𝑏)
 (11)

Where

 S is Sharpe ratio

 Ra is the period return of the asset or strategy

 Rb is the period return of a suitable benchmark.

The Sharpe ratio was introduced by William Sharpe (Sharpe, 1966). Sharpe

ratio can be used to measure the performance for holding stock by considering risk

factor. The Sharpe ratio quantifies how much excess return you get for each unit of

risk you are willing to take. Excess return is calculated from the difference between

expected returns to risk-free rate. Dividing excess returns with a standard deviation of

the daily returns will get Sharpe ratio. There is some limitation form using Sharpe

ratio in that, during unstable economic condition, it is difficult to find expected return.

Moreover, sometimes, the distribution of returns (risk) may not be a bell-curve so

using standard deviation may be misleading. Some fund managers may hold the risky

stock in hope for higher returns, but without considering risk factors. So Sharpe ratio

can measure portfolio performance without overlook the risk factors. The higher

Sharpe ratio means the portfolio will experience lesser volatility. In this paper, we

will compare the difference between Sharpe ratio of AI and others (Buy-and-Hold,

CTA) to test if it is significantly different or not.

 42

 Value at Risk (VAR)

VAR provides an estimate, under a given degree of confidence, of the size of a

loss from a trading system over a given period. For example, the hedge fund may

determine the VAR of the portfolio as 5% 3-months VAR of 3%; this means that

there is 5% probability that the portfolio will decrease in value for more than 3% of

portfolio value in three months period.

The advantage of using VAR is to estimate the risk in the portfolio which are

composed of several highly correlated assets. The financial institution can determine

capital reserve to ensure that there is sufficient capital reserve.

There are two types of VAR calculation methods which are non-parametric

and parametric. In this paper, we will use non-parametric method for VAR because

we will use historical simulation instead of predicting the future parameters.

For loss L exceeding a value VaR with a confidence level c we have:

𝑃(𝐿 ≤ −𝑉𝑎𝑅) = 1 − 𝑐 (12)

Where

 L is loss

 VaR is Value at Risk

 c is confidence level

3.7 Hypothesis Testing

There are 2 hypothesis testing we need to conduct to answer the research

questions we mentioned in chapter 1

Hypothesis 1

H0: There is no significant difference between the performance of AI agent

and performance of the buy-and-hold strategy

H1: There is a significant difference that performance of AI agent is superior

to the performance of the buy-and-hold strategy

 43

To test the hypothesis 1, we will use Paired t-Test of Sharpe ratio and annual

return to test the performance between buy-and-hold and AI agent.

Hypothesis 2

H0: There is no significant difference between the performance of AI agent

and performance of experienced trader (CTA)

H1: There is a significant difference that performance of AI agent is superior

to the performance of experienced trader (CTA)

To test the hypothesis 2, we will compare our AI agent with currency trader

performance (CTA). We will use Paired t-Test of Sharpe ratio and annual returns to

test the hypothesis.

CHAPTER 4

RESULT AND ANALYSIS

4.1 Basic Test with Sine Wave Test

We build simulated sine wave data to test the performance of the AI Agent

whether the agent can learn and make a profitable trading decision by given

predictable and stable pattern, we believe that if AI Agent can learn how to trade from

sine wave pattern, it could learn from historical data as well.

We simulated the sine wave with total 800 time steps/days and 20 time steps

(peak-to-trough) so that we will get below picture

The reason why we should see the sine wave because it is one of the

components in Fourier transform mentioned in literature as Giampaoli (2009) had

used advanced Fourier transform to analyze the financial data. He introduced the way

to decompose the unevenly-spaced data into the frequency domain with “Lomb–

Scargle Fourier transform (LSFT)” method, this can overcome the problem of

transform unevenly-spaced data into evenly-spaced data. Lomb introduced this

method with the sinusoidal curves (sine wave) to fit the data. Then, scale extends

Lomb work later by introducing periodogram (Giampaoli, Ng, & Constantinou,

2009).

 Sine Wave Equation

 Y(t) = Asin(2πft + φ) = Asin(ωt + φ)

 Where A = Amplitude

 f = frequency

 ω = angular frequency

 φ = the phase

 Steps of Sine Wave test

1. Create the Sine wave function using numpy python library from 800 days

with 20 days cycle

 45

2. Initialize state and data series (from close and diff close)

3. Train for 20 epoch

4. Update gradient until performance converge

Figure 4.1 Simulated Sine Wave with 800 days

4.2 Experiment with Sine Wave

1. Mapping Trading with Reinforcement learning: we need to specify the state,

reward, action to create the experience tuple (<S,A,R,S΄>) for the agent

 State: there are two states which are Close and Diff Close (different in

Closing price).These will be used as inputs to feed into the deep neural

network.

 Action: there are 4 actions that AI Agent can take:

Buy/sell/close/do nothing

 Reward: if terminal state = true , reward = cumulative reward

 If terminal state = false, reward = profit for that time step

 Next state observation: we will observe what happen to the next state

(Close and Diff Close) after we have already taken action.

2. Model configuration: we will set parameters and topology for the deep

network as following

 46

 Deep network topology

1 input layer with 2 input node (for 2 inputs)

2 hidden layers with 4 nodes (fully connected)

1 output layers with 4 inputs node (for 4 actions)

The activation function is ‘liner’ to predict Q value

All network are fully connected with 10% drop-out (to prevent curve

fitting)

3. The architecture of our brain

Figure 4.2 Deep Neural Network with 4 Layers (1 input layer, 2 hidden layers, 4

output layers)

4.3 Result of Sine Wave

Figure 4.3 The Result of Sine Wave

 47

The above picture shows the result of the sine wave for 800 days (time steps),

the green color show possible buy signal and the red color show possible sell signal.

We set that there will be only one trade at a time if we will open the new position we

have to close the opened position before taking another trade.

Our AI agent will open a long trade when the color change from red to green

and will open a short trade when the color change from green to red. There are 14

trades on the top and bottom for the whole series with Sharpe ratio is 33. 54.

Figure 4.4 The Equity Curve of Sine Wave Test

Above picture show equity curve of sine wave trade with a steady

performance, this can signal that it is possible to train the AI Agent to learn the

pattern of the historical price. If we know price pattern and there is some degree of

repeatable pattern, we would be able to train AI agent to learn the pattern and provide

the trading signal very accurately.

4.4 Experiment with Real Historical Data

We will perform three experiments with real historical data (two experiments

with two currencies and one experiment with Gold), Total historical data for all

experiments will be from 1 January 2001 to 31 December 2015 (total 15 years), we

will split the data into 2 sets (train/test), train set (01/01/2001-12/31/2003) and test set

(01/01/2005- 12/31/2015). we use the following symbol to represent each currency.

 EURUSD = Euro/Dollar

 USDJPY = Dollar/Yen

 XAUUSD = GOLD/Dollar

 48

 Mapping the trading problem to reinforcement learning

The assumption of our backtest

 Initial capital for 100,000

 No transaction cost

 The position sizing is 1% for each trade

 Only one position can be opened at a time

 We enter into the close price of that day

Firstly, we need to perform Mapping Trading problem with Reinforcement

learning problem. Therefore, we need to specify the state, reward, action to create the

experience tuple for the agent to learn from (<S, A, R, S΄>).

The performance of the AI agent also depends on what agent perceive its own

environment which are states that the agent can see. Typically, deep learning is good

at feature extraction; it can usually detect the relevant features for classification and

regression problems. However, when we set up the states which represent the features

that agent will learn, we still need human knowledge and experience to choose what

to feed into the deep neural network.

States are composed of 7 inputs

 1. Close: this feature is from the closing price of each day

 2. Diff Close: this feature is calculated from the difference between

consecutive closing price.

 Diff Close = Close (t) – Close (t-1)

 3. Diff Close and SMA(10) = Close- SMA(10) – moving average period 10

Where :

 SMA(10) = Close10+…….+Close1/10

4. Diff Close and SMA(50) = Close- SMA(50) – moving average period 50

Where:

 SMA(50) = Close50+…….+Close1/50

5. Diff Close and SMA(100) = Close- SMA(100)- moving average period 100

Where:

 49

 SMA(100) = Close100+…….+Close1/100

6. Diff SMA(10) and SMA(50) = SMA(10)-SMA(50)

Where:

 Sma(50) = Close50+…….+Close1/50

 SMA(100) = Close100+…….+Close1/100

7. Diff Close and Sine wave = Close – Sine wave

Where:

 Y(t) = Asin(2πft + φ) = Asin(ωt + φ)

We add sine wave indicators due to the test on simulate sine wave shows the

positive result, so if we transform the price into the cyclic indicator like a sine wave,

we believe that we would increase the performance of the AI agent dramatically.

Actions: There are 4 actions which are

1. Buy

2. Sell

3. Close

4. Do Nothing

Reward: we have intermediate reward and long-term reward

If terminal state = false, our reward is based on the price difference if an agent

takes action and price increase (long position), the agent gets profits as our reward. If

an agent takes short position and price decrease (short position)

If terminal state = true, our reward is calculated for all cumulative profits

 Model configuration

We will use deep learning model called ‘ Convolutional Neural Network

(CNN)’ which is suitable for developing Deep Q learning model.

 Python libraries

a. Keras and Tensorflow (to build our neural network)

b. Pyfolio from Quantopian (to create performance tear sheet) and Backtrader

library

c. Jupyter notebook environment (to run the python code)

 50

 Our Brain Structure (Network topologies)

1 input layer with 7 nodes

2 hidden layer with 48 nodes

1 output layer with 4 nodes

Our activation function is ‘Linear’ to output Q value

 The architecture of our brain

Figure 4.5 Architecture of Deep Neural Network (fully connected) with 7 input, 2

hidden layers (each 48 nodes), 4 output nodes

 51

 Our training method (Online learning)

Most trading systems will fail because the market is very volatile. There are

several reasons such as market evolution, short-term news, and some noise in the

market. The trading system that is not sufficiently adaptive will definitely fail in

some market condition, so the better system should be adaptive to the market

change. The way that we train the agent is pretty much similar to the real trade and

making the trading system more adaptive. We first train our deep learning network

with a small amount of data, and then we will rerun from the beginning. Then, In

each day, we will add new trading example <S,A, R,S΄> to the buffer. After that,

we will use minibatch from the buffer to update the Q network by

backpropagation.

4.5 EURUSD Result

Table 4.1 Performance Table for AI Agent Learn to Trade EURUSD

From above table, it shows the important metric (The result of annual returns

from 2001-2015), annual return for all history(2001-2015) is 25%, annual return for

backtest period (2001-2003) is 56%, and annual return for out of sample (OOS)

 52

period (2001-2015) is 18 %, lower than the backtest period. It indicates that AI agent,

learning online, can learn to trade from data during the out-of-sample period quite

well even though the AI agent never sees out-of-sample data before, and we can

expect the performance of backtesting or in-sample period will be higher than the

performance during out-of-sample (OOS) period.

For the cumulative return, cumulative return for all history (2001-2015) is

2,685%, cumulative return for backtesting period (2001-2003) is 279%, and

cumulative return for out of sample (OOS) period (2001-2015) is 634%, lower than

the backtest period. It indicates that AI agent, learning online, can learn to trade from

data during the out-of-sample period quite well even though the AI agent never sees

out-of-sample data before, and we can expect the performance of backtesting or in-

sample period will be higher than the performance during out-of-sample (OOS)

period.

For annual volatility, annual volatility for all history (2001-2015) is 52%,

annual volatility for backtesting period (2001-2003) is 82%, and annual return for out

of sample (OOS) period (2001-2015) is 41%. This implication for the effect of

volatility on the returns performance is about the stability of returns. If there are high

returns, but high volatility, it can indicate the better metric to use for measuring

performance is Sharpe ratio that takes the volatility into consideration.

For Sharpe ratio, Sharpe ratio for all history (2001-2015) is 0.68, annual return

for backtesting period (2001-2003) is 0.94, and annual return for out of sample (OOS)

period (2001-2015) is 0.61. It indicates the interesting performance perspective

regarding the risk-adjusted return. Even though The AI agent return performance is

quite satisfactory, the AI performance is still not very satisfactory if we take both

return and risk perspective together. It is a common high-risk-high-return

consequence when one developing a trading system.

 53

 Eurusd tear sheet

 54

Figure 4.6 Performance Tear Sheet of AI Agent Learn to Trade EURUSD

From above figure, cumulative returns volatility matched to benchmark shows

the AI performance compare to buy-and-hold (benchmark), we can visually see that

the AI can learn better when getting more data.

Next picture shows the plot of 6-month rolling Sharpe ratio. We can see that

rolling shape for six months is positive and close to 1.

Next picture shows top 5 drawdown periods and underwater plot; we can

visually see that sometimes AI still experiences a hard time, getting the consecutive

losing trades. It indicates that we should be aware of stability of returns in not only

Sharpe ratio but also the drawdown as well.

We can visualize that the majority of monthly returns are positive. Most of the

positive monthly returns are in the period of backtesting period. The performance

during this period could be too good to be true because of curve-fitting effect.

Annual returns during 2001, 2004, 2006, 2008, 2009, and 2014 are negative.

We could not see the learning pattern from this plot.

Distribution of monthly returns shows that the mean of monthly return is

positive. It shows the statistical edge of the AI trading system when compared to

mean of daily returns which are nearly zero.

 Hypothesis testing for EURUSD_Agent

 Paired t-Test will be used to test the hypothesis

1. AI Agent vs. buy-and-hold strategy using Sharpe ratio to test the hypothesis

H0: There is no significant difference between the performance of AI agent

and the performance of the buy-and-hold strategy

 55

H1: There is a significant difference that the performance of AI agent is

superior to the performance of the buy-and-hold strategy

Table 4.2 Paired t-test result for EURUSD AI agent vs. BH (buy-and-hold) using

Sharpe Ratio

t-Test: Paired Two Sample for Means

 Sharpe _agent Sharpe _BH

Mean 0.879333333 0.175133333

Variance 1.305220952 1.504498552

Observations 15 15

Pearson Correlation 0.370981418

Hypothesized Mean Difference 0

df 14

t Stat 2.050010818

P(T<=t) one-tail 0.029789104

t Critical one-tail 1.761310136

P(T<=t) two-tail 0.059578207

t Critical two-tail 2.144786688

From above table, Sharpe ratio mean of AI agent is 0.879(variance = 1.305), and

Sharpe ratio mean of buy-and-hold strategy is 0.175 (variance =1.504). Both of Sharpe

ratio have a positive correlation (0.37). It is significant that Sharpe ratio of the agent is

superior to Sharpe ratio of buy-and-hold strategy (P(T<=t) one-tail=0.029, p < 0.05)

Result: There is a significant difference that the performance of AI agent is

superior to the performance of the buy-and-hold strategy.

 56

2. AI Agent vs. buy-and-hold strategy using Annual return to test the hypothesis

H0: There is no significant difference between the performance of AI agent

and the performance of the buy-and-hold strategy

H1: There is a significant difference that the performance of AI agent is

superior to the performance of the buy-and-hold strategy

Table 4.3 Paired t-Test result for EURUSD AI agent vs. BH (buy-and-hold) using

Annual Return

t-Test: Paired Two Sample for Means

 Annual Returns_agent Annual Returns_BH

Mean 43.88866667 1.466

Variance 5056.348212 108.3599257

Observations 15 15

Pearson Correlation 0.477950253

Hypothesized Mean Difference 0

df 14

t Stat 2.461020542

P(T<=t) one-tail 0.013727607

t Critical one-tail 1.761310136

P(T<=t) two-tail 0.027455215

t Critical two-tail 2.144786688

From above table, annual return mean of AI agent is 43.88 (variance = 5056.34)

and annual return mean of buy-and-hold strategy is 1.46 (variance =108.35). Both of

annual return have a positive correlation (0.47). It is significant that an annual return of

the agent is superior to an annual return of buy-and-hold strategy (P(T<=t) one-

tail=0.013, p < 0.05).

Result: There is a significant difference that the performance of AI agent is

superior to the performance of the buy-and-hold strategy.

 57

3. AI agent vs. CTA (experienced trader) using Annual return to test the

hypothesis

H0: There is no significant difference between the performance of AI agent

and the performance of CTA

H1: There is a significant difference that the performance of AI agent is

superior to the performance of CTA

Table 4.4 Paired t-test result for EURUSD AI agent using Annual Return

t-Test: Paired Two Sample for Means

 Annual Returns Annual Returns_CTA

Mean 43.88866667 3.934666667

Variance 5056.348212 28.88141238

Observations 15 15

Pearson Correlation -0.035775111

Hypothesized Mean Difference 0

df 14

t Stat 2.164144073

P(T<=t) one-tail 0.024114189

t Critical one-tail 1.761310136

P(T<=t) two-tail 0.048228379

t Critical two-tail 2.144786688

From above table, Annual return mean of AI agent is 43.88(variance = 5056.34)

and Annual return mean of CTA is 3.93 (variance =28.88). Both of annual return has a

negative correlation (-0.035). It is significant that an annual return of agent is superior

to an annual return of buy-and-hold strategy (P(T<=t) one-tail=0.024, p < 0.05)

 58

Result: There is a significant difference that the performance of AI agent is

superior to the performance of CTA

 Summary of AI agent learn to trade EURUSD

1. AI outperforms buy-and-hold strategy (use Sharpe)

2. AI outperforms buy-and-hold strategy (use annual returns)

3. AI outperforms CTA (use annual returns)

4.6 USDJPY Result

Table 4.5 Performance table for AI Agent learn to trade USDJPY

From above table, it shows the vital metric (The result of annual returns from

2001-2015), annual return for all history(2001-2015) is 19%, annual return for

backtest period (2001-2003) is 17%, and annual return for out-of-sample (OOS)

period (2001-2015) is 20 %, higher than the backtest period. It indicates that AI agent,

learning online, can learn to trade from data during the out-of-sample period quite

well even though the AI agent never sees out-of-sample data before.

For the cumulative return, cumulative return for all history (2001-2015) is

1,287%, cumulative return for backtesting period (2001-2003) is 58%, and cumulative

return for out of sample (OOS) period (2001-2015) is 780%, higher than the backtest

 59

period. It indicates that AI agent, learning online, can learn to trade from data during

the out-of-sample period quite well even though the AI agent never sees out-of-

sample data before.

For annual volatility, annual volatility for all history (2001-2015) is 32%,

annual volatility for backtesting period (2001-2003) is 39%, and annual return for out

of sample (OOS) period (2001-2015) is 31%. This implication for the effect of

volatility on the return performance is about the stability of returns. If there are high

returns, but high volatility, it can indicate the better metric to use for measuring

performance is Sharpe ratio that takes the volatility into consideration.

For Sharpe ratio, Sharpe ratio for all history (2001-2015) is 0.70, annual return

for backtesting period (2001-2003) is 0.58, and annual return for out of sample (OOS)

period (2001-2015) is 0.74. It indicates the interesting performance perspective

regarding the risk-adjusted return. Even though The AI agent return performance is

quite satisfactory, the AI performance is still not very satisfactory if we take both

return and risk perspective together. It is a common high-risk-high-return

consequence when one developing a trading system.

 Usdjpy tear sheet

 60

Figure 4.7 Performance Tear Sheet of AI Agent learn to trade USDJPY

From above figure, cumulative returns volatility matched to benchmark shows

the AI performance compare to buy-and-hold (benchmark), we can visually see that

the AI can learn better when getting more data and outperform the benchmark.

Next picture shows the plot of 6-month rolling Sharpe ratio. We can see that

rolling shape for six months is positive and close to 1.

Next picture shows top 5 drawdown periods and underwater plot; we can

visually see that sometimes AI still experiences the hard time (2007-2011), getting the

consecutive losing trades. It indicates that we should be aware of stability of returns

by looking at not only Sharpe ratio but also the drawdown as well.

 61

We can see that the majority of monthly returns are positive. Most of the

positive monthly returns are in the later test period. It implies that the when AI agent

learns more from data, the AI agent will become smarter.

Annual returns during 2001, 2005, 2007 and 2008 are negative. We could not

see the learning pattern from this plot.

Distribution of monthly returns shows that the mean of monthly return is

positive. It shows the statistical edge of the AI trading system when compared to

mean of daily returns which are nearly zero.

 Hypothesis testing for USDJPY_Agent

 Paired t-Test will be used to test the hypothesis

1. AI Agent vs. buy-and-hold strategy using Sharpe ratio to test the hypothesis

H0: There is no significant difference between the performance of AI agent

and the performance of the buy-and-hold strategy

H1: There is a significant difference that the performance of AI is superior to

the performance of the buy-and-hold strategy

Table 4.6 Paired t-test result for USDJPY AI Agent vs. BH (buy-and-hold) Using

Sharpe Ratio

t-Test: Paired Two Sample for Means

 Sharpe _agent Sharpe_BH

Mean 1.136666667 0.158666667

Variance 1.88862381 1.231969524

Observations 15 15

Pearson Correlation -0.172514948

Hypothesized Mean Difference 0

df 14

t Stat 1.983459045

P(T<=t) one-tail 0.033641974

t Critical one-tail 1.761310136

P(T<=t) two-tail 0.067283947

t Critical two-tail 2.144786688

 62

From above table, Sharpe ratio mean of AI Agent is 1.13(variance = 1.88) and

Sharpe ratio mean of buy-and-hold strategy is 0.15 (variance =1.23). Both of Sharpe

ratios have a negative correlation (-0.17). It is significant that Sharpe ratio of the agent

is superior to Sharpe ratio of buy-and-hold strategy (P(T<=t) one-tail=0.033, p < 0.05)

Result: There is a significant difference that the performance of AI agent is

superior to the performance of the buy-and-hold strategy

2. AI Agent vs. buy-and-hold strategy using Annual return to test the hypothesis

H0: There is no significant difference between the performance of AI agent

and the performance of the buy-and-hold strategy

H1: There is a significant difference that the performance of AI agent is

superior to the performance of the buy-and-hold strategy

Table 4.7 Paired t-test result for USDJPY AI Agent vs. BH (buy-and-hold) Using

Annual Return

t-Test: Paired Two Sample for Means

 Annual Return_agent Annual Returns_BH

Mean 26.732 0.925333333

Variance 2255.99946 142.8156552

Observations 15 15

Pearson Correlation 0.076078354

Hypothesized Mean Difference 0

df 14

t Stat 2.078459449

P(T<=t) one-tail 0.028269352

t Critical one-tail 1.761310136

P(T<=t) two-tail 0.056538704

t Critical two-tail 2.144786688

From above table, annual return mean of AI Agent is 26.73(variance = 2255.99)

and Annual return mean of buy-and-hold strategy is 0.92 (variance =142.81). Both of

 63

annual return have a positive correlation (0.07). It is significant that the annual of

return of the AI agent is superior to the annual return of buy-and-hold strategy (P

(T<=t) one-tail=0.028, p < 0.05).

Result: There is a significant difference that the performance of AI agent is

superior to the performance of the buy-and-hold strategy

3. AI Agent vs. CTA (experienced trader) using Annual return to test the

hypothesis

H0: There is no significant difference between the performance of AI agent

and the performance of CTA

H1: There is a significant difference that the performance of AI agent is

superior to the performance of CTA

Table 4.8 Paired t-test result for USDJPY AI Agent Using Annual Return

t-Test: Paired Two Sample for Means

 Annual Returns_agent Annual Returns_CTA

Mean 26.732 3.934666667

Variance 2255.99946 28.88141238

Observations 15 15

Pearson Correlation -0.474885183

Hypothesized Mean Difference 0

df 14

t Stat 1.756304525

P(T<=t) one-tail 0.0504389

t Critical one-tail 1.761310136

P(T<=t) two-tail 0.1008778

t Critical two-tail 2.144786688

From above table, annual return mean of AI agent is 26.73(variance = 2255.99)

and annual return mean of CTA is 3.93 (variance =28.88). Both of annual returns have a

negative correlation (-0.47). There was not significant that the annual return of agent is

 64

superior to the annual return of buy-and-hold strategy (P(T<=t) one-tail=0.0504, p >

0.05)

Result: There is no significant difference that the performance of AI agent is

superior to the performance of CTA

 Summary of AI agent learn to trade USDJPY

1. AI outperform buy-and-hold strategy (use Sharpe)

2. AI outperforms buy-and-hold strategy (use Annual Returns)

3. Not significant that the performance of AI agent outperforms CTA (use

returns)

4.7 XAUUSD (Gold) Result

Table 4.9 Performance table for AI Agent learn to trade USDJPY

From above table, it shows the critical metric (The result of annual returns

from 2001-2015), annual return for all history(2001-2015) is 7%, annual return for

backtest period (2001-2003) is 4%, and annual return for out-of-sample (OOS) period

(2001-2015) is 12 %, higher than the backtest period. It indicates that AI agent,

learning online, can learn to trade from data during the out-of-sample period quite

well even though the AI agent never sees out-of-sample data before.

 65

For the cumulative return, cumulative return for all history (2001-2015) is

190%, cumulative return for backtesting period (2001-2003) is 46%, and cumulative

return for out of sample (OOS) period (2001-2015) is 99%, higher than the backtest

period. It indicates that AI agent, learning online, can learn to trade from data during

the out-of-sample period quite well even though the AI agent never sees out-of-

sample data before.

For annual volatility, annual volatility for all history (2001-2015) is 19%,

annual volatility for backtesting period (2001-2003) is 22%, and annual return for out

of sample (OOS) period (2001-2015) is 14%. This implication for the effect of

volatility on the return performance is about the stability of returns. If there is a high

return, but high volatility, it can indicate the better metric to use for measuring

performance is Sharpe ratio that takes the volatility into consideration.

For Sharpe ratio, Sharpe ratio for all history (2001-2015) is 0.47, annual return

for backtesting period (2001-2003) is 0.30, and annual return for out of sample (OOS)

period (2001-2015) is 0.88. It indicates the interesting performance perspective

regarding the risk-adjusted return. Even though The AI agent return performance is

entirely satisfactory, the AI performance is still not very satisfactory if we take both

return and risk perspective together. It is a common high-risk-high-return

consequence when one developing a trading system.

 Xauusd tear sheet

 66

Figure 4.8 Performance Tear Sheet of AI Agent learn to trade XAUUSD

From above figure, cumulative returns volatility matched to benchmark shows

the AI performance, compared to buy-and-hold (benchmark), we can visually see that

the AI can learn better when getting more data and outperform the benchmark,

especially during the later test period.

Next picture shows the plot of 6-month rolling Sharpe ratio. We can see that

rolling shape for six months is positive and above 1.

 67

Next picture shows top 5 drawdown periods and underwater plot; we can

visually see that sometimes AI still experiences the hard time (2003-2004), getting the

consecutive losing trades. Comparing to EURUSD and USDJPY, this XAUUSD

agent shows lower and shorter period of drawdown because the volatility of EURUSD

(52%) and USDJPY (32%) are higher than the volatility of XAUUSD. It implies that

AI agent will learn better if there is lower volatility.

We can see that the majority of monthly returns are positive. Most of the

positive monthly returns are in the later test period. It implies that the when AI agent

learns more from data, the AI agent will become smarter.

Annual returns during 2002 are negative (backtesting period). We can also see

the pattern that AI learn more from data.

Distribution of monthly returns shows that the mean of monthly return is

positive. It shows the statistical edge of the AI trading system when compared to

mean of daily returns which are nearly zero.

 Hypothesis testing for XAUUSD_Agent

 A paired t-test will be used to test the hypothesis

1. AI Agent vs. buy-and-hold strategy using Sharpe ratio to test the hypothesis

H0: There is no significant difference between the performance of AI agent

and the performance of the buy-and-hold strategy

H1: There is a significant difference that the performance of AI agent is

superior to the performance of the buy-and-hold strategy

Table 4.10 Paired t-test result for XAUUSD AI Agent vs. BH (buy-and-hold) Using

Sharpe Ratio

t-Test: Paired Two Sample for Means

 Sharpe_agent Sharpe_BH

Mean 0.956666667 0.636666667

Variance 0.63272381 0.822838095

Observations 15 15

 68

t-Test: Paired Two Sample for Means

 Sharpe_agent Sharpe_BH

Pearson Correlation -0.251361575

Hypothesized Mean Difference 0

df 14

t Stat 0.919100153

P(T<=t) one-tail 0.186803901

t Critical one-tail 1.761310136

P(T<=t) two-tail 0.373607802

t Critical two-tail 2.144786688

From above table, Sharpe ratio mean of AI gent is 0.95(variance = 0.63) and

Sharpe ratio mean of buy-and-hold strategy is 0.63 (variance =0.82). Both of Sharpe

ratios have a negative correlation (-0.25). It is not significant that Sharpe ratio of AI

agent is superior to Sharpe ratio of buy-and-hold strategy (P(T<=t) one-tail=0.18, p >

0.05)

Result: There is no significant difference that the performance of AI agent is

superior to the performance of the buy-and-hold strategy

2. AI Agent vs. Buy&Hold using Annual return to test the hypothesis

H0: There is no significant difference between the performance of AI agent

and the performance of the buy-and-hold strategy

H1: There is a significant difference that the performance of AI agent is

superior to the performance of the buy-and-hold strategy

Table 4.11 Paired t-test result for XAUUSD AI Agent vs. BH (buy-and-hold) Using

Annual Return

t-Test: Paired Two Sample for Means

 Annual Return_agent Annual Returns_BH

Mean 7.707333333 10.67666667

 69

t-Test: Paired Two Sample for Means

 Annual Return_agent Annual Returns_BH

Variance 167.2801638 269.7047238

Observations 15 15

Pearson Correlation -0.099990996

Hypothesized Mean Difference 0

df 14

t Stat -0.52520322

P(T<=t) one-tail 0.303829983

t Critical one-tail 1.761310136

P(T<=t) two-tail 0.607659966

t Critical two-tail 2.144786688

From above table, Annual return mean of AI agent is 7.70(variance = 167.28)

and Annual return mean of buy-and-hold strategy is 10.67 (variance =269.70). Both of

annual return has a negative correlation (-0.09). It is not significant that the annual

return of the agent is superior to the annual return of buy-and-hold strategy (P(T<=t)

one-tail=0.30, p > 0.05).

Result: There is no significant difference that the performance of AI agent is

superior to the performance of the buy-and-hold strategy

3. AI Agent vs. CTA (experienced trader) using Annual return to test the

hypothesis

H0: There is no significant difference between the performance of AI agent

and the performance of CTA

H1: There is a significant difference that the performance of AI agent is

superior to the performance of CTA

 70

Table 4.12 Paired t-test result for XAUUSD AI Agent Using Annual Return

t-Test: Paired Two Sample for Means

 Annual

Returns_agent

Annual

Returns_CTA

Mean 7.707333333 3.934666667

Variance 167.2801638 28.88141238

Observations 15 15

Pearson Correlation -0.48593098

Hypothesized Mean Difference 0

df 14

t Stat 0.89976294

P(T<=t) one-tail 0.191731111

t Critical one-tail 1.761310136

P(T<=t) two-tail 0.383462222

t Critical two-tail 2.144786688

From above table, annual return mean of AI agent is 7.70(variance = 167.28)

and annual return mean of CTA is 3.93 (variance =28.88). Both of annual return has a

negative correlation (-0.48). There was not significant that the annual return of agent is

superior to the annual return of CTA (P(T<=t) one-tail=0.19, p > 0.05).

Result: There is no significant difference that performance of AI agent is

superior to the performance of CTA

 Summary of AI agent learn to trade XAUUSD (Gold)

1. Not significant that the performance of AI agent outperforms buy-and-hold

strategy (use Sharpe)

2. Not significant that the performance of AI agent outperforms buy-and-hold

strategy (use returns)

3. Not significant that the performance of AI agent outperforms CTA (use

returns)

CHAPTER 5

CONCLUSION

This chapter mainly focuses on the underlying assumption of this study,

limitation of the study, findings, contributions and the suggestion for the future

research.

5.1 Factors that Potentially Affect the Result

The primary assumption of this study is that, if there is a pattern in the data,

the machine or AI should be able to detect the underlying pattern and make a trading

decision better than the human expert whom we believe that they are vulnerable to

bias developed from their own experience and knowledge. The key to understanding

the modeling that we used to test the market depends on following factors

 The Deep Learning Algorithm

In this paper, we would like to explore how to apply DQN (Deep Q Learning),

which is one of the approaches for reinforcement learning. There are several

parameters related to DQN that determine the performance of our algorithm. For

example, the ratio between test/train set can show the different performance. More

training data mean AI can learn several patterns and can adapt to several trading

environments. If the data that we use to train AI and the data we use to test AI are in

the same pattern, there is more likely that the performance will be better than training

with different patterns.

The algorithm itself is complicated to be replicated due to randomness which

is nature of the deep network. If we test the neural network model, in each time, it will

show the result differently. Sometimes, the model will not converge, but the

performance is getting better. When start running the model, the model will randomly

 72

initialize the data and update the weight of the deep network by backpropagation. The

model will usually update the weight until finding the global maxima/minima or the

model become converged.

The amount we choose for the batch size to update the weight for the DQN

algorithm also affect the training speed and also the performance of the deep neural

network. When we choose the small batch size to update weight the training speed

will be faster. However, the accuracy and the performance will become lower.

The learning rate can be too high/low. The typical learning rate is between 0.1-

0.00001. If we set learning rate too low, when we train several epochs, the loss for

DQN will not decrease that means optimal process stuck in a local minimum. If we set

the learning rate too high, the loss will become NAN. Setting the appropriate learning

rate is trial and error process.

 Mapping trading problem to reinforcement learning problem

When we map the trading problem to reinforcement problem, we need to

select the states which determine what AI will see the environment or perceive the

world. We subjectively choose the indicators which we believe could detect some

profitable patterns. Firstly, we tried to use input with close and moving average. The

differences among moving average can signal the cross of the two moving average

which mostly used as a trading signal. The difference between close and moving

average was also chosen as a signal as well. Based on the result we test for sine wave

data, we believe that if we could transform data to a pure sine wave, AI will learn how

to trade as well. We then select one of the cyclic indicators which was sine wave

indicators, and the performance got better once we added such indicators. So we

believe that if we could transform the historical price into more predictable such as

sine wave, we could train AI with advantage.

We have to identify reward function for the AI to learn and set up gamma

which can determine how much we consider more for long-term or short-term profits.

Gamma can be set between 0-1. Gamma is equal to 1 means we weight 100% on long-

 73

term profits. Gamma is equal to 0 means we weight 100% on short-term or immediate

profits.

Different reward function could result in different performance. If we choose

reward function as winning rate or reward to risk, we could train AI with finer tune

objective. For example, if we take more risk with the expectation of higher returns we

could set to reward to risk as reward function to win significant profit but small

winning rate, but our Sharpe ratio will be lower. If we want to be more conservative

with the risk, we could use winning rate as a reward function to win more times with

small profits.

 Deep neural network architecture

The architecture of the deep neural network also contributes to the

performance of the AI because the deep network is used as the function

approximation to update the weight of each node after calculation of loss function.

The small brain will typically result in lower performance compared to the bigger

brain with the more hidden layer. However, a non-complex problem such as

predictable pattern will be indifferent between small and big brain. For the large-

complex problem, the bigger brain tends to be better.

 Trading objective

There are several factors contribute to trading objectives such as risk tolerance

of the investors, investment policy, account size, etc. Most institutional investors

prefer low risk, but steady returns due to the account size which is very large. Hedge

fund and investment company could take more risk compared to traditional

institutional investors who are more conservative. Typical hedge fund strategies are to

maximize Sharpe ratio to increase more leverage for higher returns. Individual

investors, however, can take more risk compensated by higher returns.

Due to different objectives, Ai can be trained by different reward function

such as maximized Sharpe ratio, profits, winning percentage, reward to risk ratio,

annual returns, etc. When we change the reward function, the AI performance will

change as well according to reward function.

 74

5.2 Findings of this study

 The findings for EURUSD AI agent, we found that the AI agent significantly

outperforms buy-and-hold both using Sharpe ratio and annual returns. It is the

indicator that AI can learn to trade from the data. If we look at the benchmark which is

buy-and-hold, it is clear that if we hold the EURUSD for longer than ten years, we

will get almost nothing. It is due to the nature of fiat currency that is not suitable to be

the investment class. We would suggest that Trading by AI would be better than

holding the currency.

 The findings for EURUSD AI agent, we found that the AI agent significantly

outperforms CTA (experienced trader) using annual returns. It does not mean that AI

agent is undoubtedly better than a human expert. The differences between machine

and human are emotion. AI can execute the trade without the emotion of fear or greed.

When AI see the profitable pattern, it will not hesitate to take action. Therefore, we

would suggest that trading by AI would be better if we care more about annual returns

(we did not use Sharpe ratio because data is not available).

 The findings for USDJPY AI agent, we found that the AI agent significantly

outperforms buy-and-hold strategy both using Sharpe ratio and annual returns. It is the

indicator that AI can learn to trade from the data. If we look at the benchmark which is

buy-and-hold, it is clear that if we hold the USDJPY for longer than ten years, we will

get loss slightly not to mention the inflation rate. It is due to the nature of fiat currency

that is not suitable to be the investment class. We would suggest that trading by AI

would be better than holding the currency.

 The findings for USDJPY AI agent, we found that the AI agent does not

significantly outperform CTA (experienced trader) using annual returns. In this case,

we cannot be sure that AI is better than a human expert when we compare the returns

even though the mean returns of the AI is better than CTA. However, the standard

deviation also very much higher as well. Therefore, we would suggest that we need

 75

more data to test this hypothesis again. We could not suggest that which one is better

over another (we did not use Sharpe ratio because data is not available).

 The findings for XAUUD AI agent, we found that the AI agent does not

significantly outperform buy-and-hold both using Sharpe ratio and annual returns.

However, if we look at the performance of AI itself, AI show some capability to learn

from data. If we look at the benchmark which is buy-and-hold , it is clear that if we

hold XAUUSD (Gold) for long-term investment, in some period, the performance will

be better than AI. It is due to the nature of gold as a safe haven that is considered to be

investment asset. We would suggest that trading by AI compare to holding gold is not

significantly different.

 The findings for XAUUSD AI agent, we found that the AI agent does not

significantly outperform CTA (experienced trader) using annual returns. In this case,

we cannot be sure that AI is better than a human expert when we compare the returns

even though the mean returns of the AI is better than CTA. However, the standard

deviation also very much higher as well. Therefore, we would suggest that we need

more data to test this hypothesis again. We could trade prefer AI over Holding Gold if

we can tolerate the high volatility of AI performance. We could not suggest that which

on is better over another (We did not use Sharpe ratio because data is not available).

5.3 Limitation

1. Available data

To train AI, we need a massive amount of data to learn how to trade. However,

we found limitation in that we can access to only historical price data (Open, High,

Low, and Close). We could not access the valuable data such as actual volume and

order flow between interbank orders. Those data are expensive and available only for

the giant hedge fund or quant firm. The researcher believes that, with more complete

data, the AI will learn better and make a more informed trading decision. With more

data, we will try to test and may end up with a trading portfolio of several currency

 76

pairs combined with several assets such as gold, silver, oil, etc. The robust portfolio

trading will be possible to create if we can access to more data for AI. For investment,

diversification is the closest thing to free lunch so if more data available we could

diversify more of our portfolio.

2. Computing power

Training the deep neural network is quite expensive in that it consumes time

and computing power for complicated calculation. We all know that deep neural

network can surpass the performance of almost all machine learning algorithm.

However, it comes with the cost we have to pay. In this study, we have to spend 2-3

days running computers to perform parameter tuning until the acceptable parameters.

The researchers have tried and tweak countless possibilities of the almost all

parameters. Typically, a bigger brain with more hidden layers would be able to detect

more complicated pattern and perform complex computation.

We could, however, take more data (>15 years) to validate the performance of

the model if we could have more computing power in the future. Cloud computing

and GPU acceleration for training the model will be available economically in very

near future. We hope that we could test more again when the resource is economically

available.

3. Trading assumption

Even though AI performance is quite satisfactory, it does not mean we should

jump into the trading with real money because the study just ignited the possibility

that we can train AI to trade live in the future. However, when trade lives, we should

be aware of how to set up risk management system to protect from unexpected events

such as gap opening/ central bank intervention, nonfarm payroll, news, etc. This study

will not include transaction cost and spread which could contribute to the big

difference between backtesting and real trade. Moreover, our study simplifies reality

for trading lives such as transaction cost, the spread between bid-ask, entry price, type

of orders. It would indicate that there is plenty of room for improvement in the future.

 77

5.4 Academic Contribution

From this study, there are several contributions to the academic study such as

the application of artificial intelligence in algorithmic trading system development is a

desirable method to replace the human-decision-making system in that the computer

can read hidden profitable price pattern better than human and computer can execute

the trade swiftly and accurately. AI can be the best candidate to replace the human.

Academically, more studies can be conducted to compare the performance of human

and AI.

This research is to touch only one specific area of investment and financial

problem. Reinforcement learning technique can be applied in several areas of finance

under the condition that there are enough data to learn from so that AI can make the

better decision because of the adaptive capability to the environment. One of the

applications which is very attractive to study is to use reinforcement learning for

portfolio management problems. The AI agent will find the appropriate weight for

each asset in the portfolio. AI will make decisions for not only about the asset to trade

but also when to rebalance the portfolio (Moody et al., 1998).

Moreover, this study supports the opponents of EMH. It is possible to develop

the trading system to outperform buy-and-hold in the long run. For EURUSD and

USDJPY, the performance of AI agent surpassed the buy-and-hold significantly.

However, the in-depth test and live trade should be conducted before jumping to the

conclusion due to several of limitations.

 78

5.5 Practical Contribution

Figure 5.1 Increase in Sharpe Ratio compared to portfolio size with different levels of

correlation

Source: Wiecki (2015a)

From this study, we can find the new, alternative to create return streams that

have a low correlation to each other using the AI-generated trading system. As we can

see from the results such as the annual return of AI agent and CTA have a very low

correlation (-0.03) so that we could create the min-correlation, risk-diversified portfolio

for stable returns. From the figure 5.1, it shows that if we can add more return streams

with low correlation, we can increase Sharpe ratio. We can use several AIs to create

several returns streams that are not correlated to each other.

5.6 Suggestion for Future Research

1. In the future research, we hope that the computing power will be available for

training deep neural network with lower cost. If it is available, the possibility to try

something new is endless. At the current time, there is an open-source project who

 79

try to create peer-to-peer, sharing computing power. The supercomputing power

will be much cheaper and faster.

2. We could try all possible states. We could input several thousand indicators and

more of fundamental data. Moreover, more complex cyclic and time series

analysis will be added on to test the model such as singular spectrum analysis to

decompose the price series into the cycle.

3. We could try to add some filters such as Hidden Markov model. We could

separately train another model to extract market mode only. Hidden Markov model

will help us to identify the satisfactory market situation for each specific trading

strategies.

4. We could use the larger brain for AI. We can add more layers for AI to increase

the capability to learn more form data. We can tweak all the topology of several

deep learning types such as convolutional neural network, GRU, GAN to beat the

performance of the human expert.

5. We could combine several AIs to become super AI for the portfolio. We could

train AI separately to identify what market AI is best for, to identify what market

mode AI is best for, and to identify the correlation between all AI.

6. In the future research, we could extend by making the real live trade with some

predetermine risk parameters such as risk per trade, add stop loss, add more

advanced pending order, add more scale in/scale out an algorithm to teach AI to

learn the more complex trading process.

7. During the completion time of this study, there is another huge leap from the

company named “Deepmind” with alpha go zero. The AI that can learn by itself,

not limited by the domain they train from, AI that can learn without a human

expert to train for them. In the future research, it possible to follow what deep

mind has achieved and trading for the better result.

BIBLIOGRAPHY

BIBLIOGRAPHY

Alonso-González, A., Peris-Ortiz, M., & Almenar-Llongo, V. (2015). Providing

Empirical Evidence from Forex Autotrading to Contradict the Efficient Market

Hypothesis New Challenges in Entrepreneurship and Finance (pp. 71-85):

Springer.

BarclayHedge, L. (2017). Barclay Currency Traders Index. from

https://www.barclayhedge.com/research/indices/cta/sub/curr.html

Batten, J. A., Lucey, B. M., McGroarty, F., Peat, M., & Urquhart, A. (2018). Does

intraday technical trading have predictive power in precious metal markets?

Journal of International Financial Markets, Institutions and Money, 52, 102-

113. doi: https://doi.org/10.1016/j.intfin.2017.06.005

Baur, D. G., & Glover, K. J. (2015). Speculative trading in the gold market.

International Review of Financial Analysis, 39, 63-71. doi:

https://doi.org/10.1016/j.irfa.2015.02.004

Chan, K. C., & Teong, F. K. (1995). Enhancing technical analysis in the Forex market

using neural networks. Paper presented at the Neural Networks, 1995.

Proceedings., IEEE International Conference on.

Coakley, J., Marzano, M., & Nankervis, J. (2016). How profitable are FX technical

trading rules? International Review of Financial Analysis, 45, 273-282. doi:

https://doi.org/10.1016/j.irfa.2016.03.010

Dempster, M. A. H., & Leemans, V. (2006). An automated FX trading system using

adaptive reinforcement learning. Expert Systems with Applications, 30(3), 543-

552. doi: 10.1016/j.eswa.2005.10.012

Deng, Y., Bao, F., Kong, Y., Ren, Z., & Dai, Q. (2017). Deep direct reinforcement

learning for financial signal representation and trading. IEEE transactions on

neural networks and learning systems, 28(3), 653-664.

Dourra, H., & Siy, P. (2002). Investment using technical analysis and fuzzy logic. Fuzzy

sets and systems, 127(2), 221-240.

Du, X., Zhai, J., & Lv, K. (2016). Algorithm Trading using Q-Learning and Recurrent

Reinforcement Learning. positions, 1, 1.

Dukascopy. (2017). Historical Data Feed. from

https://www.dukascopy.com/swiss/english/marketwatch/historical

Ertel, W. (2018). Introduction to artificial intelligence: Springer.

Fama, E. F. (1995). Random walks in stock market prices. Financial analysts journal,

51(1), 75-80.

Farias Nazário, R. T., e Silva, J. L., Sobreiro, V. A., & Kimura, H. (2017). A literature

review of technical analysis on stock markets. The Quarterly Review of

Economics and Finance, 66, 115-126. doi:

https://doi.org/10.1016/j.qref.2017.01.014

Farjam, M., & Kirchkamp, O. (2018). Bubbles in hybrid markets: How expectations

about algorithmic trading affect human trading. Journal of Economic Behavior

& Organization, 146, 248-269. doi: https://doi.org/10.1016/j.jebo.2017.11.011

Giampaoli, I., Ng, W. L., & Constantinou, N. (2009). Analysis of ultra-high-frequency

financial data using advanced Fourier transforms. Finance Research Letters,

6(1), 47-53. doi: https://doi.org/10.1016/j.frl.2008.11.002

Gold, C. (2003). FX trading via recurrent reinforcement learning. Paper presented at

 81

the Computational Intelligence for Financial Engineering, 2003. Proceedings.

2003 IEEE International Conference on.

Investopedia. (2017). What is a trading system. Retrieved 09/11/2017, from

http://www.investopedia.com/university/tradingsystems/tradingsytems1.asp

Kalmus, L. P., Trojan, D. R., Mott, B., & Strampfer, J. (1987). Automated securities

trading system: Google Patents.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-

444.

Levinson, M. (2014). The Economist Guide To Financial Markets: Economist book.

Malkiel, B. G. (1989). Efficient market hypothesis Finance (pp. 127-134): Springer.

Malkiel, B. G., & Fama, E. F. (1970). Efficient capital markets: A review of theory and

empirical work. The journal of Finance, 25(2), 383-417.

Moody, J., & Saffell, M. (2001). Learning to trade via direct reinforcement. IEEE Trans

Neural Netw, 12(4), 875-889.

Moody, J., Wu, L., Liao, Y., & Saffell, M. (1998). Performance functions and

reinforcement learning for trading systems and portfolios. Journal of

Forecasting, 17(56), 441-470.

Nasdaq. (2018). Retrieved 04/21/18, 2018, from

https://www.nasdaq.com/investing/glossary/c/commodity-trading-advisor

Seth, S. (2015). The World Of High Frequency Algorithmic Trading.

Sezer, O. B., & Ozbayoglu, A. M. (2018). Algorithmic Financial Trading with Deep

Convolutional Neural Networks: Time Series to Image Conversion Approach.

Applied Soft Computing. doi: https://doi.org/10.1016/j.asoc.2018.04.024

Sharpe, W. F. (1966). Mutual fund performance. The Journal of business, 39(1), 119-

138.

Silver, D. (2015). Deep Reinforcement Learning. from

http://videolectures.net/rldm2015_silver_reinforcement_learning/

Taylor, M. P., & Allen, H. (1992). The use of technical analysis in the foreign exchange

market. Journal of international Money and Finance, 11(3), 304-314.

Vajda, V. (2014). Could a Trader Using Only “Old” Technical Indicator be Successful

at the Forex Market? Procedia Economics and Finance, 15, 318-325. doi:

https://doi.org/10.1016/S2212-5671(14)00515-2

Veloso, M. (2017). What is machine learning ? Retrieved 09/12/2017, from

https://www.ml.cmu.edu/

Vladimir, G., & Kabysh, A. Supporting Coherence in Multi-Agent System: Related

Temporal Difference with Influence Trace.

Wang, Y., Wang, D., Zhang, S., Feng, Y., Li, S., & Zhou, Q. (2016). Deep Q-trading.

Wiecki, T. (2015a). Monte-Carlo simulations of correlated portfolios -- the quest for

uncorrelated return streams.

Wiecki, T. (2015b). Prediction future returns of trading algorithm.

APPENDIX

Python Code

Sine wave test

1. Build simulated sine wave

from __future__ import print_function

import numpy as np

np.random.seed(100)
from sklearn import metrics, preprocessing

import pandas as pd

from matplotlib import pyplot as plt

define sine wave

def load_data():
 sinewave = np.sin(np.arange(800)/20.0)
 return sinewave

sinewave = load_data()

2. Building neural network

from keras.models import Sequential

from keras.layers.core import Dense, Dropout, Activation

from keras.optimizers import RMSprop

model = Sequential()
model.add(Dense(4, init='lecun_uniform', input_shape=(2,)))
model.add(Activation('relu'))

model.add(Dense(4, init='lecun_uniform'))
model.add(Activation('relu'))

model.add(Dense(4, init='lecun_uniform'))
model.add(Activation('linear'))
rms = RMSprop()
model.compile(loss='mse', optimizer=rms)

 83

3. Sample backtesting with btgym

import backtrader as bt

import backtrader.indicators as btind

import numpy as np

import scipy.signal as signal

from scipy import stats

from gym import spaces

from btgym import BTgymEnv, BTgymStrategy, BTgymDataset

from btgym.a3c import Launcher, LSTMPolicy

class MyStrategy(BTgymStrategy):

 def __init__(self, **kwargs):
 super(MyStrategy,self).__init__(**kwargs)
 self.order_penalty = 1

 self.trade_just_closed = False

 self.trade_result = None

 def notify_trade(self, trade):
 if trade.isclosed:
 # Set trade flag and result:
 self.trade_just_closed = True

 self.trade_result = trade.pnlcomm

 def get_state(self):
 T = 1e3 # amplifier

 X = np.gradient(self.raw_state, axis=0)
 X *= T

 self.state['model_input'] = X

 return self.state

 def get_reward(self):
 r = (self.broker.get_value() / self.env.broker.startingcash - 1) * 10

 if self.trade_just_closed:
 r += self.trade_result

 self.trade_just_closed = False

 if self.order_failed:

 84

 r -= self.order_penalty

 self.order_failed = False

 return r / 20

time_embed_dim = 30

state_shape = {

 'raw_state': spaces.Box(low=-1, high=1, shape=(time_embed_dim, 4)),
 'model_input': spaces.Box(low=-100, high=100, shape=(time_embed_dim, 4))
}

MyCerebro = bt.Cerebro()

MyCerebro.addstrategy(
 MyStrategy,

 state_shape=state_shape,

 portfolio_actions=('hold', 'buy', 'sell', ‘close’),
 drawdown_call=5, # max to loose, in percent of initial cash

 target_call=20, # max to win, same

 skip_frame=10,

)

Set leveraged account:
MyCerebro.broker.setcash(100000)
MyCerebro.broker.setcommission(commission=0.0001, leverage=1) #

commisssion to imitate spread

MyCerebro.broker.set_shortcash(False)
MyCerebro.addsizer(bt.sizers.SizerFix, stake=10000,)

MyCerebro.addanalyzer(bt.analyzers.DrawDown)

MyDataset = BTgymDataset(
 filename='../data/test_sine_wave.csv',

 start_weekdays=[0, 1, 2, 3,],
 episode_len_days=1,

 episode_len_hours=23,

 episode_len_minutes=0,

 start_00=False,

 time_gap_hours=2,

)
env_config = dict(

 85

 dataset=MyDataset,

 engine=MyCerebro,

 render_modes=['episode', 'human', 'model_input'],
 render_state_as_image=True,

 render_ylabel='OHLC Price Gradients',

 render_size_episode=(12,8),
 render_size_human=(8, 3.5),
 render_size_state=(10, 5),
 render_dpi=75,

 port=5100,

 data_port=5099,

 connect_timeout=60,

 verbose=0,

)

Set tensorflow distributed cluster and a3c configuration:
cluster_config = dict(
 host='127.0.0.1',

 port=42222,

 num_workers=8,

 num_ps=1,

)
launcher = Launcher(
 cluster_config=cluster_config,

 env_class=BTgymEnv,

 env_config=env_config,

 policy_class=LSTMPolicy,

 rollout_length=20,

 test_mode=False,

 train_steps=1000000000,

 model_summary_freq=20,

 episode_summary_freq=1,

 env_render_freq=10,

 verbose=1

)

Historical Data Test

1. Import data use library called DUKA

pip install duka

 86

usage

usage: duka [options]

 positional arguments:
 SYMBOLS symbol list using format EURUSD EURGBP

 optional arguments:
 -h show help message and exit

 -v show program's version number and exit

 -d DAY specific day format YYYY-MM-DD (default today)
 -s STARTDATE start date format YYYY-MM-DD (default today)
 -e ENDDATE end date format YYYY-MM-DD (default today)
 -c CANDLE use candles instead of ticks. Accepted values M1 M2 M5 M10 M15

M30 H1 H4 D1

 -f FOLDER the dowloaded data will be saved in FOLDER (default '.')
 -t THREAD number of threads (default 10)
 --header include CSV header (default false)

duka EURUSD -s 2001-01-01 -e 2015-12-31

2. Build Neural Network for AI agent

from keras.models import Sequential

from keras.layers.core import Dense, Dropout, Activation

from keras.optimizers import RMSprop

model = Sequential()
model.add(Dense(48, init='lecun_uniform', input_shape=(7,)))
model.add(Activation('relu'))

model.add(Dense(48, init='lecun_uniform'))
model.add(Activation('relu'))

model.add(Dense(4, init='lecun_uniform'))
model.add(Activation('linear'))
rms = RMSprop()
model.compile(loss='mse', optimizer=rms)

3. Example of training network and backtest

import numpy as np

from market_env import MarketEnv

 87

from market_model_builder import MarketModelBuilder

class ExperienceReplay(object):
 def __init__(self, max_memory=100, discount=.9):
 self.max_memory = max_memory

 self.memory = list()
 self.discount = discount

 def remember(self, states, game_over):
 self.memory.append([states, game_over])
 if len(self.memory) > self.max_memory:
 del self.memory[0]

 def get_batch(self, model, batch_size=10):
 len_memory = len(self.memory)
 num_actions = model.output_shape[-1]
 inputs = []

 dim = len(self.memory[0][0][0])
 for i in xrange(Vladimir & Kabysh):
 inputs.append([])

 targets = np.zeros((min(len_memory, batch_size), num_actions))
 for i, idx in enumerate(np.random.randint(0, len_memory,

size=min(len_memory, batch_size))):
 state_t, action_t, reward_t, state_tp1 =
self.memory[idx][0]
 game_over = self.memory[idx][1]

 for j in xrange(Vladimir & Kabysh):
 inputs[j].append(state_t[j][0])

 targets[i] = model.predict(state_t)[0]
 Q_sa = np.max(model.predict(state_tp1)[0])
 if game_over: # if game_over is True

 targets[i, action_t] = reward_t

 else:
 targets[i, action_t] = reward_t + self.discount *
Q_sa

 inputs = [np.array(inputs[i]) for i in xrange(Vladimir & Kabysh)]

 88

 return inputs, targets

if __name__ == "__main__":
 import sys

 import codecs

 codeListFilename = sys.argv[1]
 modelFilename = sys.argv[2] if len(sys.argv) > 2 else None

 codeMap = {}

 f = codecs.open(codeListFilename, "r", "utf-8")

 for line in f:
 if line.strip() != "":
 tokens = line.strip().split(",") if not "\t" in line else

line.strip().split("\t")
 codeMap[tokens[0]] = tokens[1]

 f.close()

 env = MarketEnv(dir_path = "./data/", target_codes = codeMap.keys(),
input_codes = [], start_date = "2001-01-01", end_date = "2015-12-31", sudden_death = -1.0)

 # parameters

 epsilon = .5 # exploration

 min_epsilon = 0.1

 epoch = 100000

 max_memory = 5000

 batch_size = 128

 discount = 0.8

 from keras.optimizers import SGD

 model = MarketModelBuilder(modelFilename).getModel()
 sgd = SGD(lr = 0.001, decay = 1e-6, momentum = 0.9, nesterov = True)
 model.compile(loss='mse', optimizer='rmsprop')

 # Initialize experience replay object

 exp_replay = ExperienceReplay(max_memory = max_memory, discount =
discount)

 # Train

 win_cnt = 0

 for e in range(epoch):

 89

 loss = 0.
 env.reset()
 game_over = False

 # get initial input

 input_t = env.reset()
 cumReward = 0

 while not game_over:
 input_tm1 = input_t

 isRandom = False

 # get next action

 if np.random.rand() <= epsilon:
 action = np.random.randint(0, env.action_space.n,

size=1)[0]

 isRandom = True

 else:
 q = model.predict(input_tm1)
 action = np.argmax(q[0])

 #print " ".join(["%s:%.2f" % (l, i) for l, i in zip(env.actions,

q[0].tolist())])
 if np.nan in q:
 print "OCCUR NaN!!!"
 exit()

 # apply action, get rewards and new state

 input_t, reward, game_over, info = env.step(action)
 cumReward += reward

 if env.actions[action] == "LONG" or env.actions[action] ==
"SHORT":
 color = bcolors.FAIL if env.actions[action] == "LONG"
else bcolors.OKBLUE

 if isRandom:
 color = bcolors.WARNING if env.actions[action]
== "LONG" else bcolors.OKGREEN

 print "%s:\t%s\t%.2f\t%.2f\t" % (info["dt"], color +
env.actions[action] + bcolors.ENDC, cumReward, info["cum"]) + ("\t".join(["%s:%.2f" % (l, i)
for l, i in zip(env.actions, q[0].tolist())]) if isRandom == False else "")

 90

 exp_replay.remember([input_tm1, action, reward, input_t],
game_over)

 inputs, targets = exp_replay.get_batch(model,

batch_size=batch_size)

 loss += model.train_on_batch(inputs, targets)

 if cumReward > 0 and game_over:
 win_cnt += 1

 print("Epoch {:03d}/{} | Loss {:.4f} | Win count {} | Epsilon

{:.4f}".format(e, epoch, loss, win_cnt, epsilon))

 model.save_weights("model.h5" if modelFilename == None else

modelFilename, overwrite=True)
 epsilon = max(min_epsilon, epsilon * 0.89)

4. Example of analyzing stock returns (from

https://github.com/backtrader/backtrader/blob/master/samples/analyzer-

annualreturn/analyzer-annualreturn.py)

from __future__ import (absolute_import, division, print_function,

 unicode_literals)

import argparse

import datetime

The above could be sent to an independent module

import backtrader as bt

import backtrader.feeds as btfeeds

import backtrader.indicators as btind

from backtrader.analyzers import (SQN, AnnualReturn, TimeReturn,

SharpeRatio,

 TradeAnalyzer)

class LongShortStrategy(bt.Strategy):

 '''This strategy buys/sells upong the close price crossing

 upwards/downwards a Simple Moving Average.

 It can be a long-only strategy by setting the param "onlylong" to True

 '''

 params = dict(

 period=15,

 91

 stake=1,

 printout=False,

 onlylong=False,

 csvcross=False,

)

 def start(self):

 pass

 def stop(self):

 pass

 def log(self, txt, dt=None):

 if self.p.printout:

 dt = dt or self.data.datetime[0]

 dt = bt.num2date(dt)

 print('%s, %s' % (dt.isoformat(), txt))

 def __init__(self):

 # To control operation entries

 self.orderid = None

 # Create SMA on 2nd data

 sma = btind.MovAv.SMA(self.data, period=self.p.period)

 # Create a CrossOver Signal from close an moving average

 self.signal = btind.CrossOver(self.data.close, sma)

 self.signal.csv = self.p.csvcross

 def next(self):

 if self.orderid:

 return # if an order is active, no new orders are allowed

 if self.signal > 0.0: # cross upwards

 if self.position:

 self.log('CLOSE SHORT , %.2f' % self.data.close[0])

 self.close()

 self.log('BUY CREATE , %.2f' % self.data.close[0])

 self.buy(size=self.p.stake)

 elif self.signal < 0.0:

 if self.position:

 self.log('CLOSE LONG , %.2f' % self.data.close[0])

 self.close()

 if not self.p.onlylong:

 self.log('SELL CREATE , %.2f' % self.data.close[0])

 92

 self.sell(size=self.p.stake)

 def notify_order(self, order):

 if order.status in [bt.Order.Submitted, bt.Order.Accepted]:

 return # Await further notifications

 if order.status == order.Completed:

 if order.isbuy():

 buytxt = 'BUY COMPLETE, %.2f' % order.executed.price

 self.log(buytxt, order.executed.dt)

 else:

 selltxt = 'SELL COMPLETE, %.2f' % order.executed.price

 self.log(selltxt, order.executed.dt)

 elif order.status in [order.Expired, order.Canceled, order.Margin]:

 self.log('%s ,' % order.Status[order.status])

 pass # Simply log

 # Allow new orders

 self.orderid = None

 def notify_trade(self, trade):

 if trade.isclosed:

 self.log('TRADE PROFIT, GROSS %.2f, NET %.2f' %

 (trade.pnl, trade.pnlcomm))

 elif trade.justopened:

 self.log('TRADE OPENED, SIZE %2d' % trade.size)

def runstrategy():

 args = parse_args()

 # Create a cerebro

 cerebro = bt.Cerebro()

 # Get the dates from the args

 fromdate = datetime.datetime.strptime(args.fromdate, '%Y-%m-%d')

 todate = datetime.datetime.strptime(args.todate, '%Y-%m-%d')

 # Create the 1st data

 data = btfeeds.BacktraderCSVData(

 dataname=args.data,

 fromdate=fromdate,

 todate=todate)

 # Add the 1st data to cerebro

 93

 cerebro.adddata(data)

 # Add the strategy

 cerebro.addstrategy(LongShortStrategy,

 period=args.period,

 onlylong=args.onlylong,

 csvcross=args.csvcross,

 stake=args.stake)

 # Add the commission - only stocks like a for each operation

 cerebro.broker.setcash(args.cash)

 # Add the commission - only stocks like a for each operation

 cerebro.broker.setcommission(commission=args.comm,

 mult=args.mult,

 margin=args.margin)

 tframes = dict(

 days=bt.TimeFrame.Days,

 weeks=bt.TimeFrame.Weeks,

 months=bt.TimeFrame.Months,

 years=bt.TimeFrame.Years)

 # Add the Analyzers

 cerebro.addanalyzer(SQN)

 if args.legacyannual:

 cerebro.addanalyzer(AnnualReturn)

 cerebro.addanalyzer(SharpeRatio, legacyannual=True)

 else:

 cerebro.addanalyzer(TimeReturn, timeframe=tframes[args.tframe])

 cerebro.addanalyzer(SharpeRatio, timeframe=tframes[args.tframe])

 cerebro.addanalyzer(TradeAnalyzer)

 cerebro.addwriter(bt.WriterFile, csv=args.writercsv, rounding=4)

 # And run it

 cerebro.run()

 # Plot if requested

 if args.plot:

 cerebro.plot(numfigs=args.numfigs, volume=False, zdown=False)

def parse_args():

 parser = argparse.ArgumentParser(description='TimeReturn')

 94

 parser.add_argument('--data', '-d',

 default='../../datas/2005-2006-day-001.txt',

 help='data to add to the system')

 parser.add_argument('--fromdate', '-f',

 default='2005-01-01',

 help='Starting date in YYYY-MM-DD format')

 parser.add_argument('--todate', '-t',

 default='2006-12-31',

 help='Starting date in YYYY-MM-DD format')

 parser.add_argument('--period', default=15, type=int,

 help='Period to apply to the Simple Moving Average')

 parser.add_argument('--onlylong', '-ol', action='store_true',

 help='Do only long operations')

 parser.add_argument('--writercsv', '-wcsv', action='store_true',

 help='Tell the writer to produce a csv stream')

 parser.add_argument('--csvcross', action='store_true',

 help='Output the CrossOver signals to CSV')

 group = parser.add_mutually_exclusive_group()

 group.add_argument('--tframe', default='years', required=False,

 choices=['days', 'weeks', 'months', 'years'],

 help='TimeFrame for the returns/Sharpe calculations')

 group.add_argument('--legacyannual', action='store_true',

 help='Use legacy annual return analyzer')

 parser.add_argument('--cash', default=100000, type=int,

 help='Starting Cash')

 parser.add_argument('--comm', default=2, type=float,

 help='Commission for operation')

 parser.add_argument('--mult', default=10, type=int,

 help='Multiplier for futures')

 parser.add_argument('--margin', default=2000.0, type=float,

 help='Margin for each future')

 parser.add_argument('--stake', default=1, type=int,

 help='Stake to apply in each operation')

 95

 parser.add_argument('--plot', '-p', action='store_true',

 help='Plot the read data')

 parser.add_argument('--numfigs', '-n', default=1,

 help='Plot using numfigs figures')

 return parser.parse_args()

if __name__ == '__main__':

 runstrategy()

5. Sample of Building RL Brain (from https://github.com/noootown/Forex-

DQN/blob/master/train/RLBrain.py)

import numpy as np

import tensorflow as tf

import datetime as dt

from account import Account

from constants import STOP, BUY, SELL, CLOSE, SHOW_HAND

from helper import mkdir

np.random.seed(dt.datetime.now().microsecond)

tf.set_random_seed(dt.datetime.now().microsecond)

class DeepNetwork:

 def __init__(

 self,

 forex,

 dates,

 featureNum,

 config,

):

 self.forex = forex

 self.dates = dates

 self.config = config

 self.episodes = config['episodes']

 self.interval = config['interval']

 self.n_actions = 4

 self.n_features = featureNum * config['count']

 self.lr = config['learning_rate']

 self.gamma = config['reward_decay']

 self.epsilon_max = config['e_greedy'] if config['isTrain'] else 1

 96

 self.replace_target_iter = config['replace_target_iter']

 self.memory_size = config['memory_size']

 self.batch_size = config['batch_size']

 self.epsilon_increment = config['e_greedy_increment']

 self.epsilon = 0 if config['e_greedy_increment'] is not None else

self.epsilon_max

 # account

 self.initBalance = 100000

 self.isTrain = config['isTrain']

 self.dir = config['dir']

 self.ckptFile = config['ckptFile']

 self.ckptSavePeriod = config['ckptSavePeriod']

 # total learning step

 self.step = -config['startStep']

 self.totalLoss = 0

 self.totalMaxQ = 0

 self.r_actions = []

 # initialize zero memory [s, a, r, s_]

 self.memory = np.zeros((self.memory_size, self.n_features * 2 + 2))

 self.memory_counter = 0

 self.sess = tf.Session()

 # consist of [target_net, evaluate_net]

 self.buildNet()

 self.saver = tf.train.Saver(max_to_keep = int(self.episodes /

self.ckptSavePeriod))

 if config['isLoad'] or not self.isTrain:

 self.saver.restore(self.sess, 'data/%s/%s' % (self.dir, self.ckptFile))

 print('Load data/%s/%s sucessfully!\n' % (self.dir, self.ckptFile))

 else:

 self.sess.run(tf.global_variables_initializer())

 print('Apply global initializer!\n')

 def subTrain(self, isTrain, dates):

 account = Account(

 balance = self.initBalance,

 cliOutput = self.config['cliOutput'],

)

 for date in dates:

 97

 self.forex.setDate(date)

 startTime, endTime = self.forex.getTime()

 price, state = self.forex.getPrice(startTime)

 for time in range(startTime, endTime - self.interval, self.interval):

 # Q learning start

 action = self.chooseAction(state, isTrain)

 reward = 0

 if action == STOP:

 reward = account.stop()

 elif action == BUY or action == SELL:

 reward = account.order(

 price, # price is at column 0

 {

 'type': action,

 'unit': SHOW_HAND,

 },

 time = time

)

 elif action == CLOSE:

 reward = account.closePosition(price, time = time)

 price, state_ = self.forex.getPrice(time + self.interval)

 self.storeTransition(

 transition = np.hstack((state, [action, reward], state_)),

 mode = 0 if isTrain else 1,

)

 if isTrain:

 if self.step > 0 and self.step % self.config['learn_period'] == 0:

 self.learn()

 self.step += 1

 state = state_

 return account.balance

 def train(self):

 if self.isTrain:

 print('Start training\n')

 else:

 print('Start testing\n')

 for episode in range(self.episodes):

 98

 if episode % 10 == 0:

 print('episode', episode)

 if self.isTrain:

 epsilonBalance = self.subTrain(isTrain = True, dates = self.dates)

 # to get the actual balance

 realBalance = self.subTrain(isTrain = False, dates = self.dates)

 self.finishEpisode(episode, epsilonBalance, realBalance)

 else:

 if self.config['cliOutput']:

 print(Account.getCloseHeader())

 print(self.subTrain(isTrain = False, dates = self.dates))

 if self.isTrain:

 print('Finish training\n')

 else:

 print('Finish testing\n')

 def optimize(self):

 if self.config['optimizer'] == 'RMSProp':

 return tf.train.RMSPropOptimizer(

 self.lr,

 decay = 0.9 if self.config['op_decay'] == None else self.config['op_decay'],

 momentum = 0.0 if self.config['op_momentum'] == None else

self.config['op_momentum'],

 epsilon = pow(10, -10) if self.config['op_epsilon'] == None else

self.config['op_epsilon'],

).minimize(self.loss)

 def buildNet(self):

 def addLayer(

 name,

 input,

 output_dim,

 w_init,

 b_init,

 c_names,

 active_fn = None,

):

 with tf.variable_scope(name):

 w = tf.get_variable('w', [input.get_shape().as_list()[1], output_dim],

 initializer = w_init, collections = c_names)

 b = tf.get_variable('b', [1, output_dim], initializer = b_init, collections =

c_names)

 99

 if active_fn != None:

 out = active_fn(tf.matmul(input, w) + b)

 else:

 out = tf.matmul(input, w) + b

 return out, w, b

 # ------------------ build evaluate_net ------------------

 self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s') # input

 self.q_target = tf.placeholder(tf.float32, [None, self.n_actions],

name='Q_target') # for calculating loss

 # config of layers

 self.w = {}

 self.w_init = \

 tf.random_normal_initializer(self.config['init_w_mean'],

self.config['init_w_std'])

 self.b_init = \

 tf.constant_initializer(self.config['init_b'])

 active_fn = tf.nn.relu

 with tf.variable_scope('eval_net'):

 # c_names(collections_names) are the collections to store variables

 c_names = ['eval_net_params', tf.GraphKeys.GLOBAL_VARIABLES]

 self.w['l1_o'], self.w['l1_w'], self.w['l1_b'] =\

 addLayer('l1', self.s, self.config['l1_dim'], self.w_init, self.b_init, c_names,

active_fn)

 # output layer

 self.q_eval, self.w['lout_w'], self.w['lout_b'] = \

 addLayer('lout', self.w['l1_o'], self.n_actions, self.w_init, self.b_init,

c_names)

 with tf.name_scope('loss'):

 self.loss = tf.reduce_sum(tf.squared_difference(self.q_target, self.q_eval))

 with tf.name_scope('train'):

 self._train_op = self.optimize()

 # ------------------ build target_net ------------------

 self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_') # input

 self.t_w = {}

 100

 with tf.variable_scope('target_net'):

 c_names = ['target_net_params', tf.GraphKeys.GLOBAL_VARIABLES]

 self.t_w['l1_o'], self.t_w['l1_w'], self.t_w['l1_b'] = \

 addLayer('l1', self.s_, self.config['l1_dim'], self.w_init, self.b_init, c_names,

active_fn)

 # output layer

 self.q_next, self.t_w['lout_w'], self.t_w['lout_b'] = \

 addLayer('lout', self.t_w['l1_o'], self.n_actions, self.w_init, self.b_init,

c_names)

 with tf.variable_scope('summary'):

 # e_XX means with epsilon

 # r_XX means without epsilon, which is real simulation

 scalar_summary_tags = ['loss_avg', 'e_balance', 'r_balance',

 'q_max', 'q_total', 'epsilon']

 self.summary_placeholders = {}

 self.summary_ops = {}

 for tag in scalar_summary_tags:

 self.summary_placeholders[tag] = tf.placeholder('float32', None,

name=tag.replace(' ', '_') + '_0')

 self.summary_ops[tag] = tf.summary.scalar(tag,

self.summary_placeholders[tag])

 histogram_summary_tags = ['r_actions']

 for tag in histogram_summary_tags:

 self.summary_placeholders[tag] = tf.placeholder('float32', None,

name=tag.replace(' ', '_') + '_0')

 self.summary_ops[tag] = tf.summary.histogram(tag,

self.summary_placeholders[tag])

 with tf.variable_scope('param'):

 w_c_names = 'eval_net_params_summaries'

 histogram_w_tags = ['l1_w', 'l1_b', 'lout_w', 'lout_b']

 for tag in histogram_w_tags:

 tf.summary.histogram(tag, self.w[tag], collections = [w_c_names])

 if self.isTrain:

 self.merged = tf.summary.merge_all(key = w_c_names)

 self.writer = tf.summary.FileWriter('data/' + self.dir, self.sess.graph)

 # state action reward next state

 # mode: 0: store train 1: store test

 101

 def storeTransition(self, transition, mode = 0):

 # replace the old memory with new memory

 self.memory[self.memory_counter % self.memory_size] = transition

 self.memory_counter += 1

 def chooseAction(self, observation, isTrain = True):

 # to have batch dimension when feed into tf placeholder

 observation = observation[np.newaxis, :]

 if not isTrain:

 actions = self.sess.run(self.q_eval, feed_dict={self.s: observation})

 action = np.argmax(actions)

 self.r_actions.append(action)

 elif self.step < 0 or np.random.uniform() >= self.epsilon:

 action = np.random.randint(0, self.n_actions)

 else:

 # forward feed the observation and get q value for every actions

 actions = self.sess.run(self.q_eval, feed_dict={self.s: observation})

 action = np.argmax(actions)

 return action

 def replaceTargetParams(self):

 t_params = tf.get_collection('target_net_params')

 e_params = tf.get_collection('eval_net_params')

 self.sess.run([tf.assign(t, e) for t, e in zip(t_params, e_params)])

 def learn(self):

 # check to replace target parameters

 if self.step % self.replace_target_iter == 0:

 self.replaceTargetParams()

 # sample batch memory from all memory

 batch_memory =\

 self.memory[np.random.choice(

 self.memory_size\

 if self.memory_counter > self.memory_size\

 else self.memory_counter,

 self.batch_size), :]

 q_next, q_eval = self.sess.run(

 [self.q_next, self.q_eval],

 feed_dict={

 self.s_: batch_memory[:, -self.n_features:],

 self.s: batch_memory[:, :self.n_features]

 102

 })

 # change q_target w.r.t q_eval's action

 q_target = q_eval.copy()

 q_target[np.arange(self.batch_size), batch_memory[:,

self.n_features].astype(LeCun, Bengio, & Hinton)] = \

 batch_memory[:, self.n_features + 1] + self.gamma * np.max(q_next, axis=1)

 # train eval network

 _, self.param_summary, cost = \

 self.sess.run([self._train_op, self.merged, self.loss],

 feed_dict={self.s: batch_memory[:, :self.n_features],

 self.q_target: q_target,

 })

 # increasing epsilon

 self.epsilon =\

 self.epsilon + self.epsilon_increment\

 if self.epsilon < self.epsilon_max\

 else self.epsilon_max

 self.totalLoss += cost

 self.totalQ += q_eval.mean(axis = 1).mean(axis = 0)

 self.totalMaxQ += np.max(q_eval, axis=1).mean()

 # mode 0: normal save, 1: period save

 def saveParam(self, dir = 'tmp', mode = 0):

 subdir = ''

 if mode == 1:

 subdir = 'history/%s/' % (dir)

 fulldir = 'data/%s/%s' % (self.dir, subdir)

 mkdir(fulldir)

 self.saver.save(self.sess, '%s%s' % (fulldir, self.ckptFile))

 def injectSummary(self, tag_dict, episode):

 summary_str_lists = self.sess.run([self.summary_ops[tag] for tag in

tag_dict.keys()], {

 self.summary_placeholders[tag]: value for tag, value in tag_dict.items()

 })

 for summary_str in summary_str_lists:

 self.writer.add_summary(summary_str, episode)

 self.writer.add_summary(self.param_summary, episode)

 103

 def finishEpisode(self, episode, epsilonBalance, realBalance):

 if self.step > 0:

 injectDict = {

 # scalar

 'loss_avg': self.totalLoss,

 'e_balance': epsilonBalance,

 'r_balance': realBalance,

 'epsilon': self.epsilon,

 'q_max': self.totalMaxQ,

 'q_total': self.totalQ,

 # histogram

 'r_actions': self.r_actions,

 }

 self.injectSummary(injectDict, episode)

 self.saveParam(mode = 0)

 if episode % self.ckptSavePeriod == 0:

 self.saveParam(dir = '%d' % (episode), mode = 1)

 self.r_actions = []

 self.totalLoss = 0

 self.totalQ = 0

 self.totalMaxQ = 0

6. Sample of DQN trade
(From https://github.com/jjakimoto/DQN/blob/master/model/dqn.py)

import tensorflow as tf

from keras.layers.convolutional import Convolution2D

from keras.layers.pooling import MaxPooling2D

from keras.layers.core import Flatten, Lambda

from keras.models import Sequential

from keras.layers import BatchNormalization

from keras.layers import Activation

from keras.layers.core import Dense

from keras.engine.topology import Merge

from keras.layers.advanced_activations import PReLU

from keras.layers import SpatialDropout2D

from keras.layers import Dropout, Reshape

from keras import backend as K

import numpy as np

import pandas as pd

import time

local library

from memory import SequentialMemory

class DQN(object):

 104

 """Deep Q-Learning Networ

 Basend on DQN and Multiscale CNN, find the optimal time to

 exit from a stock market.

 Available function

 - build_model: build network based on tensorflow and keras

 - train: given DateFrame stock data, train network

 - predict_action: givne DataFrame stock data, return optimal protfolio

 """

 def __init__(self, config):

 """initialized approximate value function

 config should have the following attributes

 Args:

 device: the device to use computation, e.g. '/gpu:0'

 gamma(float): the decay rate for value at RL

 history_length(LeCun et al.): input_length for each scale at CNN

 n_feature(LeCun et al.): the number of type of input

 (e.g. the number of company to use at stock trading)

 n_history(LeCun et al.): the nubmer of history that will be used as

input

 n_smooth, n_down(LeCun et al.): the number of smoothed and down

sampling input at CNN

 k_w(LeCun et al.): the size of filter at CNN

 n_hidden(LeCun et al.): the size of fully connected layer

 n_batch(LeCun et al.): the size of mini batch

 n_epochs(LeCun et al.): the training epoch for each time

 update_rate (0, 1): parameter for soft update

 learning_rate(float): learning rate for SGD

 memory_length(LeCun et al.): the length of Replay Memory

 n_memory(LeCun et al.): the number of different Replay Memories

 alpha, beta: [0, 1] parameters for Prioritized Replay Memories

 """

 self.device = config.device

 self.save_path = config.save_path

 self.is_load = config.is_load

 self.gamma = config.gamma

 self.history_length = config.history_length

 self.n_stock = config.n_stock

 self.n_feature = config.n_feature

 self.n_smooth = config.n_smooth

 self.n_down = config.n_down

 self.k_w = config.k_w

 self.n_hidden = config.n_hidden

 105

 self.n_batch = config.n_batch

 self.n_epochs = config.n_epochs

 self.update_rate = config.update_rate

 self.alpha = config.alpha

 self.beta = config.beta

 self.lr = config.learning_rate

 self.memory_length = config.memory_length

 self.n_memory = config.n_memory

 # the length of the data as input

 self.n_history = max(self.n_smooth + self.history_length, (self.n_down +

1) * self.history_length)

 print ("building model....")

 # have compatibility with new tensorflow

 tf.python.control_flow_ops = tf

 # avoid creating _LEARNING_PHASE outside the network

 K.clear_session()

 self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,

log_device_placement=False))

 K.set_session(self.sess)

 with self.sess.as_default():

 with tf.device(self.device):

 self.build_model()

 print('finished building model!')

 def train(self, input_data, noise_scale=0.1):

 """training DQN, which has two actions: 0-exit, 1-stay

 Args:

 data (DataFrame): stock price for self.n_feature companies

 """

 stock_data = input_data.values

 date = input_data.index

 T = len(stock_data)

 self.noise_scale = noise_scale

 # frequency for output

 print_freq = int(T / 100)

 if print_freq == 0:

 print_freq = 1

 print ("training....")

 st = time.time()

 # udpate rate for prioritizing parameter

 db = (1 - self.beta) / 1000

 # result for return value

 values = [[] for _ in range(self.n_stock)]

 date_label = [[] for _ in range(self.n_stock)]

 106

 date_use = []

 stock_use = []

 # will not train until getting enough data

 t0 = self.n_history + self.n_batch

 self.initialize_memory(stock_data[:t0], scale=noise_scale)

 save_data_freq = 10

 save_weight_freq = 10

 count = 0

 input_data.to_csv("stock_price.csv")

 for t in range(t0, T):

 stock_use.append(stock_data[t])

 date_use.append(date[t])

 action = self.predict_action(stock_data[t])

 for i in range(self.n_stock):

 if action[i] == 0:

 date_label[i].append(date[t])

 values[i].append(stock_data[t][i])

 self.update_memory(stock_data[t])

 count += 1

 for epoch in range(self.n_epochs):

 # select transition from pool

 self.update_weight()

 # update prioritizing paramter untill it goes over 1

 self.beta += db

 if self.beta >= 1.0:

 self.beta = 1.0

 idx = np.random.randint(0, self.n_memory)

 experiences, weights = self.memory[idx].sample(self.n_batch,

self.n_history, self.alpha, self.beta)

 max_idx = self.get_max_idx(experiences.state1)

 target_value = self.sess.run(self.target_value,

 feed_dict={self.state_target: experiences.state1,

 self.reward: experiences.reward,

 self.max_idx_target: max_idx})

 if t % print_freq == 0:

 print ("time:", date[t])

 error = self.sess.run(self.error,

 feed_dict={self.state: experiences.state0,

 self.target: target_value,

 self.reward: experiences.reward,

 K.learning_phase(): 0})

 print("error:", np.mean(error))

 action = self.predict_action(stock_data[t])

 print("portfolio:", action)

 print ("elapsed time", time.time() - st)

 107

print("***

***********")

 if count % save_data_freq == 0:

 for i in range(self.n_stock):

 result = pd.DataFrame(values[i],

index=pd.DatetimeIndex(date_label[i]))

 result.to_csv("exit_result_{}.csv".format(i))

 data_use = pd.DataFrame(stock_use,

index=pd.DatetimeIndex(date_use))

 data_use.to_csv("stock_price.csv")

 if count % save_weight_freq == 0:

 save_path = self.saver.save(self.sess, self.save_path)

 print("Model saved in file: %s" % self.save_path)

 save_path = self.saver.save(self.sess, self.save_path)

 print("Model saved in file: %s" % self.save_path)

 print ("finished training")

 return [pd.DataFrame(values[i], index=pd.DatetimeIndex(date_label[i]))

for i in range(self.n_stock)]

 def predict_action(self, state):

 """Preduct Optimal strategy

 Args:

 state(float): stock data with size: [self.n_stock,]

 Retrun:

 integer: 0-exit, 1-stay

 """

 pred_state = self.memory[0].sample_state_uniform(self.n_batch,

self.n_history)

 new_state = pred_state[-1]

 new_state = np.concatenate((new_state[1:], [state]), axis=0)

 pred_state = np.concatenate((pred_state[:-1], [new_state]), axis=0)

 action = self.max_action.eval(

 session=self.sess,

 feed_dict={self.state: pred_state, K.learning_phase(): 0})[-1]

 return action

 def update_weight(self):

 """Update networks' parameters and memories"""

 idx = np.random.randint(0, self.n_memory)

 experiences, weights = self.memory[idx].sample(self.n_batch,

self.n_history, self.alpha, self.beta)

 108

 max_idx = self.get_max_idx(experiences.state1)

 # get target value for optimization

 target_value = self.sess.run(self.target_value,

 feed_dict={self.state_target: experiences.state1,

 self.reward: experiences.reward,

 self.max_idx_target: max_idx})

 # optimize network

 self.sess.run(self.critic_optim,

 feed_dict={self.state: experiences.state0,

 self.target: target_value,

 self.weights: weights,

 self.learning_rate: self.lr,

 K.learning_phase(): 1})

 # compute errors to determine prioritizing ratio

 error = self.sess.run(self.error,

 feed_dict={self.state: experiences.state0,

 self.target: target_value,

 self.reward: experiences.reward,

 K.learning_phase(): 0})

 self.memory[idx].update_priority(error)

 # softupdate for critic network

 old_weights = self.critic_target.get_weights()

 new_weights = self.critic.get_weights()

 weights = [self.update_rate * new_w + (1 - self.update_rate) * old_w

 for new_w, old_w in zip(new_weights, old_weights)]

 self.critic_target.set_weights(weights)

 def initialize_memory(self, stocks, scale=10):

 self.memory = []

 for i in range(self.n_memory):

 self.memory.append(SequentialMemory(self.memory_length))

 for t in range(len(stocks)):

 for idx_memory in range(self.n_memory):

 action = None

 reward = np.concatenate((np.reshape(stocks[t], (self.n_stock, 1)),

np.zeros((self.n_stock, 1))), axis=-1)

 self.memory[idx_memory].append(stocks[t], action, reward)

 def update_memory(self, state):

 """Update memory without updating weight"""

 for i in range(self.n_memory):

 self.memory[i].observations.append(state)

 self.memory[i].priority.append(1.0)

 # to stabilize batch normalization, use other samples for prediction

 pred_state = self.memory[0].sample_state_uniform(self.n_batch,

self.n_history)

 for i in range(self.n_memory):

 109

 action_off = None

 reward_off = np.concatenate((np.reshape(state, (self.n_stock, 1)),

np.zeros((self.n_stock, 1))), axis=-1)

 self.memory[i].rewards.append(reward_off)

 self.memory[i].actions.append(action_off)

 def get_max_idx(self, state):

 max_action = self.sess.run(self.max_action_target,

feed_dict={self.state_target: state})

 shape = max_action.shape

 max_idx = []

 for i in range(shape[0]):

 for j in range(shape[1]):

 max_idx.append([i, j, max_action[i][j]])

 return np.array(max_idx, dtype=int)

 def build_model(self):

 """Build all of the network and optimizations

 just for conveninece of trainig, seprate placehoder for train and target

network

 critic network input: [raw_data, smoothed, downsampled]

 """

 self.critic = self.build_critic()

 self.critic_target = self.build_critic()

 # transform input into the several scales and smoothing

 self.state = tf.placeholder(tf.float32, [None, self.n_history, self.n_stock],

name='state')

 self.state_target = tf.placeholder(tf.float32, [None, self.n_history,

self.n_stock], name='state_target')

 # reshape to convolutional input

 state_ = tf.reshape(self.state, [-1, self.n_history, self.n_stock, 1])

 state_target_ = tf.reshape(self.state_target, [-1, self.n_history,

self.n_stock, 1])

 raw, smoothed, down = self.transform_input(state_)

 raw_target, smoothed_target, down_target =

self.transform_input(state_target_)

 # build graph for citic training

 input_q = [raw,] + smoothed + down

 self.Q = self.critic(input_q)

 self.max_action = tf.argmax(self.Q, dimension=2)

 # target network

 input_q_target = [raw_target,] + smoothed_target + down_target

 Q_target = self.critic_target(input_q_target)

 110

 self.reward = tf.placeholder(tf.float32, [None, self.n_stock, 2],

name='reward')

 double_Q = self.critic(input_q_target)

 self.max_action_target = tf.argmax(double_Q, 2)

 self.max_idx_target = tf.placeholder(tf.int32, [None, 3], "double_idx")

 Q_max = tf.gather_nd(Q_target, self.max_idx_target)

 Q_max = tf.reshape(Q_max, [-1, self.n_stock, 1])

 Q_value = tf.concat(2, (tf.zeros_like(Q_max), Q_max))

 self.target_value = self.reward + self.gamma * Q_value

 self.target_value = tf.cast(self.target_value, tf.float32)

 self.target = tf.placeholder(tf.float32, [None, self.n_stock, 2],

name="target_value")

 # optimization

 self.learning_rate = tf.placeholder(tf.float32, shape=[],

name="learning_rate")

 # get rid of bias of prioritized

 self.weights = tf.placeholder(tf.float32, shape=[None], name="weights")

 self.loss = tf.reduce_mean(self.weights *

tf.reduce_sum(tf.square(self.target - self.Q), [1, 2]), name='loss')

 # TD-error for priority

 self.error = tf.reduce_sum(tf.abs(self.target - self.Q), [1, 2])

 self.critic_optim = tf.train.AdamOptimizer(self.learning_rate) \

 .minimize(self.loss, var_list=self.critic.trainable_weights)

 self.saver = tf.train.Saver()

 is_initialize = True

 if self.is_load:

 if self.load(self.save_path):

 print('succeded to load')

 is_initialize = False

 else:

 print('failed to load')

 # initialize network

 tf.initialize_all_variables().run(session=self.sess)

 weights = self.critic.get_weights()

 self.critic_target.set_weights(weights)

 def build_critic(self):

 """Build critic network

 recieve transformed tensor: raw_data, smooted_data, and

downsampled_data

 """

 nf = self.n_feature

 # layer1

 # smoothed input

 111

 sm_model = [Sequential() for _ in range(self.n_smooth)]

 for m in sm_model:

 m.add(Lambda(lambda x: x, input_shape=(self.history_length,

self.n_stock, 1)))

 m.add(Convolution2D(nb_filter=nf, nb_row=self.k_w, nb_col=1,

border_mode='same'))

 m.add(BatchNormalization(mode=2, axis=-1))

 m.add(PReLU())

 # down sampled input

 dw_model = [Sequential() for _ in range(self.n_down)]

 for m in dw_model:

 m.add(Lambda(lambda x: x, input_shape=(self.history_length,

self.n_stock, 1)))

 m.add(Convolution2D(nb_filter=nf, nb_row=self.k_w, nb_col=1,

border_mode='same'))

 m.add(BatchNormalization(mode=2, axis=-1))

 m.add(PReLU())

 # raw input

 state = Sequential()

 nf = self.n_feature

 state.add(Lambda(lambda x: x, input_shape=(self.history_length,

self.n_stock, 1)))

 state.add(Convolution2D(nb_filter=nf, nb_row=self.k_w, nb_col=1,

border_mode='same'))

 state.add(BatchNormalization(mode=2, axis=-1))

 state.add(PReLU())

 merged = Merge([state,] + sm_model + dw_model, mode='concat',

concat_axis=-1)

 # layer2

 nf = nf * 2

 model = Sequential()

 model.add(merged)

 model.add(Convolution2D(nb_filter=nf, nb_row=self.k_w, nb_col=1,

border_mode='same'))

 model.add(BatchNormalization(mode=2, axis=-1))

 model.add(PReLU())

 model.add(Flatten())

 # layer3

 model.add(Dense(self.n_hidden))

 model.add(BatchNormalization(mode=1, axis=-1))

 model.add(PReLU())

 # layer4

 model.add(Dense(int(np.sqrt(self.n_hidden))))

 model.add(PReLU())

 # output

 model.add(Dense(2 * self.n_stock))

 model.add(Reshape((self.n_stock, 2)))

 112

 return model

 def transform_input(self, input):

 """Transform data into the Multi Scaled one

 Args:

 input: tensor with shape: [None, self.n_history, self.n_stock]

 Return:

 list of the same shape tensors, [None, self.length_history, self.n_stock]

 """

 # the last data is the newest information

 raw = input[:, self.n_history - self.history_length:, :, :]

 # smooth data

 smoothed = []

 for n_sm in range(2, self.n_smooth + 2):

 smoothed.append(

 tf.reduce_mean(tf.pack([input[:, self.n_history - st -

self.history_length:self.n_history - st, :, :]

 for st in range(n_sm)]),0))

 # downsample data

 down = []

 for n_dw in range(2, self.n_down + 2):

 sampled_ = tf.pack([input[:, idx, :, :]

 for idx in range(self.n_history-n_dw*self.history_length,

self.n_history, n_dw)])

 down.append(tf.transpose(sampled_, [1, 0, 2, 3]))

 return raw, smoothed, down

 def load(self, checkpoint_dir):

 print(" [*] Reading checkpoints...")

 try:

 self.saver.restore(self.sess, self.save_path)

 return True

 except:

 return False

BIOGRAPHY

BIOGRAPHY

NAME MR. SUTTA SORNMAYURA

ACADEMIC

BACKGROUND

M.B.A. (2002), marketing and international business,

Thammasat University, Thailand

M.Eng.Sc. (1999), Biomedical Engineering,

The University of New South Wales, Australia

B.Eng. (1997), Electrical Engineering,

King Mongkut Institute of Technology Thonburi, Thailand

EXPERIENCES Lecturer, Industrial Management and Logistics

Martin de tour school of management

Assumption University, Thailand

	ROBUST FINANCIAL TRADING SYSTEM WITH DEEP QNETWORK (DQN)
	ABSTRACT
	TABLE OF CONTENTS
	CHAPTER 1 INTRODUCTION
	CHAPTER 2 LITERATURE REVIEW
	CHAPTER 3 METHODOLOGY
	CHAPTER 4 RESULT AND ANALYSIS
	CHAPTER 5 CONCLUSION
	BIBLIOGRAPHY
	APPENDIX
	BIOGRAPHY

