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ABST RACT 

ABSTRACT 
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Year 2017 

  
 

Forex trading is one of the most attractive areas in finance. However, developing 

the profitable trading system is not an easy task because it requires extensive knowledge 

in several areas such as quantitative analysis, financial skills, and computer 

programming. Trading system expert, as a human, also bring in their own bias to 

develop the system. The trading system developers will prefer some markets over 

others, prefer some indicators over others, and prefer some trading time frame over 

others. Moreover, developing the trading system will also be prone to data-snooping and 

look-ahead bias. Developing trading system is the never-ending task and requires 

numerous experiments with several parameters. 

Random walk and EMH theories support the assumption for choosing buy-and-

hold as the best alternative when choosing the strategy for trading. However, there are 

numerous studies which contradict both theories. Those studies support the idea of using 

technical analysis as a predictive tool to find the hidden profitable pattern in the market. 

However, technical analysis is also prone to bias of the users as well. 

The problem of developing the robust financial trading system is challenging. In 

terms of developing cost, time and effort. It must be a new method to efficiently develop 

the trading system. Simultaneously, this method should eliminate all biases from system 

developers. 

The most attractive way to develop the system is to use cutting-edge technology 

such as artificial intelligence (AI) technology. This new method of developing the 

trading strategy needs to benchmark with buy-and-hold (Random walk and EMH 

assumption) and with the trading experts who are commodity trading advisor (CTA). 

This study tried to compare the performance of AI to buy-and-hold strategy and 

performance of AI to the expert trader. The tested markets were Forex (EURUSD, 

USDJPY) and Gold (XAUUSD) market, data obtaining from Dukascopy Bank SA 
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Switzerland (15 years data). Both hypotheses were tested with Paired t-Test at the 

significance level of 0.05. The findings showed that AI could significantly beat buy-

and-hold strategy for FOREX in both 2 currency pairs (EURUSD, USDJPY), and AI 

could also significantly outperform Commodity Trading Advisor (CTA) for trading 

EURUSD. However, AI could not significantly outperform CTA for USDJPY trading. 

For Gold (XAUUSD) market, AI could not significantly outperform buy-and-hold and 

CTA. Limitation, contribution, and further research were also recommended. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background  

Financial trading is one of the most interesting, challenging, and promising 

areas in finance. Developing profitable trading systems is a hard-working task for 

professional traders or trading system developers. However, the payoff for such a 

dedicated endeavor may yield high rewards. Currently, there are two schools of 

thought when one wants to develop trading systems, based on the underlying 

assumption of the value in the long term fundamental factors called fundamental 

analysis or based on future price movement that possesses predictive power called 

technical analysis; both are followings: 

1. Fundamental analysis: the attempt to predict the price of instruments 

based on fundamental factors such as P/E, profits, EBITDA, EBIT. 

2. Technical analysis: the attempt to predict the future price of instruments 

based on historical price, volume, volatility, technical indicator. 

The Trading system can be developed purely from technical analysis such as 

price action, technical indicators, or only fundamental analysis such as critical 

financial metrics like P/E ratio, P/BV ratio, profit growth, or the hybrid system that 

combine both technical analysis and fundamental analysis concepts. The Trading 

system can also be as simple as using historical price data as an indicator or as 

complex as using AI to make complicated trading decisions. 

Several literatures substantiate the idea that technical analysis, if appropriately 

applied, can be used to develop the profitable system and possess some statistical 

edges to trade the market. Dourra et al. (2002) had studied the application of technical 

analysis and fuzzy logic with three technical indicators which were ROC, Stochastic, 

and support/resistance to study four stocks. The result found to be excellent and 
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surpassed S&P 500 performance (Dourra & Siy, 2002). Chan et al. (1995) had studied 

the application of neural network with three technical indicators which were SMA, 

stochastic, momentum. Chan used the neural network to predict the trading signal 

before the crowd got into the trade. The result found to be more profitable than using 

traditional technical signal. This study showed that if the traders could predict the 

trading signal before the majority found out, they would be able to make money, and 

the neural network could predict before the crowd (Chan & Teong, 1995). The 

researcher found that there is some predictive power in the technical analysis that 

used price and technical indicators as the key to unlock the future price movement and 

profitable opportunities. Therefore, the purpose of this study is to describe how to use 

the price and technical indicators as the valuable pieces of information for the 

computer to uncover the hidden profitable patterns and develop the trading systems. 

Currently, the majority of trading systems are automated, also known as 

algorithmic trading strategies.  The systems have been developed based on intensive 

quantitative analysis including mathematics, statistics, linear algebra, machine 

learning, artificial intelligence, and even the laws of physics. Developing the tradable 

algorithmic trading strategies is very challenging because the robust systems need to 

survive and adapt itself through several of market conditions. However, after carefully 

researched, no such a trading strategy can be profitable in all market conditions. The 

market is continuously changing and evolving due to non-linear, stochastic nature of 

the market.  The researcher found that developing the robust trading system need 

critical features such as adaptive capability and synchronicity with the market. 

Therefore, the concept of machine learning and artificial intelligence that the 

computer will learn to trade from the data is very challenging to study. 

The research motivation in this paper comes from two domains of knowledge 

which are artificial intelligence (machine learning) and financial trading. The critical 

feature for AI is the ability to learn from a significant amount of data to find the 

hidden patterns. For financial trading, the endeavor is developing the profitable 

trading system which is currently an inefficient task that needs to be automated. 

In artificial intelligence (AI) area, there was a big leap shown by the company 

named “Deepmind”. They showed that the computer could learn how to play the Atari 

game without human supervision. Later, in March 2016, there was a major 
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breakthrough when the computer learned how to play the board game go, had first-

time beaten human professional go player.  The significant development was leading 

to the search for general intelligence, the computer that performs self-learning process 

to do any task.  All these discoveries intrigued the researcher to explore more about 

the application of AI or machine learning in the area of financial trading. 

In financial trading or quantitative trading areas, trading system developers are 

required to apply quantitative analysis concept to develop trading strategies. The key 

idea of quantitative trading strategies is to find the statistical edge in the specific types 

of the market conditions and apply these developed trading systems in that markets. 

However, developing trading system process is time-consuming, error-prone, and 

inefficient. Therefore, the majority of trading systems will be developed by computers 

instead of humans. Currently, for the past decade, algorithmic trading and high-

frequency trading have been growing until becoming majority strategies in the trading 

market.  Most of the trading activities are mainly executed by the computers ( Seth, 

2015). 

 

1.2 Problem Statement 

Developing the trading system is a rigorous task. It is required to have several 

skills from system developers such as statistics, computer programming, and finance. 

However, the developed system has no guarantee that performance of the trading 

system will be similar to the backtesting results. Developing quantitative trading 

strategy is a time-consuming, inefficient task due to the need to identification of 

following factors: 

 What instruments to trade (stock, ETF, forex, futures, and commodity). 

 How many stocks, lots, and contracts should we open for each position 

(position sizing or money management)? 

 What timeframe should we trade such as 1hour, 4 hours, daily, weekly, 

and monthly? 

 What side of the position to take? (go long or go short) 

 Position management (what to do when position already opened). 

 When to exit?  
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Making those above decisions are all depend on the constraints of the traders 

(available capital, risk tolerance, transaction cost, available time, and trading 

objective). 

The traditional approach for trading system development will be the variation 

of the following process: 

1. Define the objective function  

2. Decide what to trade and how to trade it  

3. Design the trading system  

4. Determine the in-sample period  

5. Determine the out-of-sample period 

6. Decide what to optimize  

7. Perform walk forward runs  

8. Evaluate out-of-sample results  

9. Trade the system  

10. Monitor the results 

Majority of trading systems belong to the categories of forecasting system. 

System developers decide to choose inputs and choose the indicators to predict the up 

and down of the markets. If there is an error the process of parameter, adjustment will 

take place until the performance is satisfactory.  Next step, defining the trading rules 

with adjusted parameters will follow. Finally, the trading decision will be made.  
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Figure 1.1 Trading System Based on Forecast 

Source: Moody (2001) 

 

Moreover, There are several of drawbacks when one developing the trading 

system such as many biases toward some preferred instruments (i.e., some stock over 

the others), bias to choose favorite indicators, bias to choose the in-sample period, 

bias toward optimization. All biases are mostly brought to the development process 

by the trading system developer. Moreover, there are also some major biases found in 

backtest period which are followings: 

1.1 Data-snooping bias.  During the backtesting process, introducing more 

parameters to gain higher performance would be running the risk of 

“ curve-fitting”.  When trading lives, the performance will be very much 

different from the backtesting result. 

1.2 Look-Ahead bias. The future data is accidentally included in the backtest 

of the system. For example, if the backtest is running day 0 to day 30, but 

backtesting data include the information from day 31 onto the future, this 

would be called Look-ahead bias. 

1.3 Survivorship bias.  It could happen when we arbitrarily test only on the 

instrument or the stocks that we know it had survived to the current period 

of testing.  
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A system trader could end up with the trading system that can trade profitably 

at the specific market condition and be confident to trade live.  However, the trading 

system will fail when the market and trading system both are not in synchronicity as 

we can see in the following picture that the system performs well in the in-sample 

period, but fail miserably in the out-of-sample period. 

 

 

 
 

Figure 1.2 Backtest Result vs. Live Trade 

Source: Wiecki (2015b) 

 

From above picture, the backtesting result shows uptrend of cumulative return 

in green color. However, when trade lives, the cumulative return turned out to be very 

much different from the backtesting result due to several reasons such as the 

stochastic nature of the market, announcement of the news, central bank intervention, 

etc.  Moreover, some systems perform well both in in-sample and out-of-sample 

period, but when trade lives it fail as well.  The researchers have done extensive 

studies and found that no any strategy will prosper and perform well through time, no 

one size fits all for the trading system or another word “no holy grail trading system”. 

The market changes will fail the system. How do we create the profitable system? The 

profitable system must be a self-adaptive system that changes according to the market 

regime. 
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After careful studies, the researcher found that traditional ways for developing 

trading system may no longer be efficient. Development processes that take years and 

months to develop, but no guarantee the result is not acceptable when time factor is 

critical. Therefore, the researcher put together all concerns for developing the trading 

system as based on the quest for followings answer: 

1. How do we create a profitable system with the shortest time possible?  

2. How do we adjust the trading system through the change of market 

conditions? 

3. How do we optimize all parameters regarding each trading system? 

4. How do we develop, back-test, validate and production with the shortest 

time? 

Computer not only can execute trading order according to what we program 

them to do, but also be able to find the above solutions as well. Machine learning is 

the novel concept that can be applied in financial trading problems.  The researcher 

found that developing computer-generated strategies is much more efficient ways. 

Computer-generated strategies can be performed by several approaches such as 

evolutionary algorithm, standard machine learning algorithm such as random forest, 

support vector machine. 

Several types of research in the past mostly attempting to apply machine 

learning for stock prediction using linear regression and classification. For regression-

type research, most research papers tried to forecast and calculate MSE to evaluate the 

error.  This type of study tried to predict the price rather than developing a trading 

system.  For classification-type research, most tried to predict next day up or down, 

measuring hit rate to evaluate accuracy. Both types of the studies were not enough to 

develop a full-blown trading system that can trade live. However, there is a better way 

we can develop the trading system by just feeding the computer with all information 

they need to make a decision and let them learn from that information. This method is 

one type of machine learning called reinforcement learning. 

To the best of researcher knowledge, no study uses advanced area of machine 

learning and deep learning which is the combination of deep learning ( Kalmus, 

Trojan, Mott, & Strampfer, 1987) and reinforcement learning ( RL) to develop a 

trading system for the Foreign Exchange Market ( FOREX). Upon this concept, 
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Computers can develop their strategy by learning from data, no need to tell them the 

fixed rules about how to buy, how to sell, when to buy, when to sell, how much to buy 

and how much to sell.  The computer will be given the data and make their own 

decision. 

  

1.3 Purpose of the Study 

The purpose of this paper is to explore the possibility to create an automated 

and robust trading system using combined knowledge from machine learning, 

quantitative finance, and big data. We try to answer two research questions: 

1. Can we teach a computer to develop a trading system that beat buy-and-hold 

strategy (B&H)?  

2. Can the machine trading performance surpass the experienced trader?   

EMH (efficient market hypothesis) state that it is impossible to beat the market 

by timing the market consistently. Therefore, the best strategy for the EMH supporter 

is buy-and-hold ( B&H) .  However, if the machine can see the repeatable, profitable 

patterns in the market that human cannot see, it is possible that the machine can detect 

and time the market correctly.  Finally, it will be possible to make consistent profits 

and provide the performance which is better than buy-and-hold. We could also use the 

benchmark from BarclayHedge of currency index fund as a performance 

measurement for experienced traders to answer if the machine is better than a human 

expert (BarclayHedge, 2017). 

 

1.4 Contribution 

Findings from this paper will contribute to the investment and asset 

management industry especially the quantitative hedge fund to explore more about 

using the machine learning or artificial intelligence to develop trading strategies 

efficiently.  The result will inspire trading system developer, investment advisor, 

quantitative trader, quantitative researcher to explore more in the area of machine 

learning and artificial intelligence.  Forex brokerage can develop machine learning 

model to service their customers with limitless possibilities.  Bank trader will also 

learn more of application of artificial intelligence for foreign exchange trading from 
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the desk.  A hedge fund can develop more robust strategies for higher profitable 

opportunities. An institutional investor will find the way to rebalance the portfolio in 

such a way that more diversified. The private or individual investor will be beneficial 

from another alternative investment. 

Moreover, this study will support those studies in the past that contradict to the 

financial theories such as EMH and Random Walk Model in that it is possible to 

make consistent returns from the speculative market by identifying the hidden pattern 

in the market by the method of machine learning. It is the novel method to trade the 

market profitably rather than buy-and-hold strategy. 

 

1.5 Implication 

The implication of this study, the possible future will be more of robots or the 

machines to make a crucial decision such as trading decision.  The most obvious 

advantages of the machine over the human is the computing power and discipline. A 

human can become too emotional when they are in the trade so when they need to 

decide at a crucial time, they tend to make a suboptimal decision. However, there will 

be a need for highly skilled system developers who possess the skill in several areas 

such as programming, statistic, financial trading.  Moreover, Machine can be more 

suitable to the task that need not of wisdom such as trading task.  In the very near 

future, traders and financial analyst might be replaced by the robots. 

The paper consists of 6 Chapters, Chapter 2 and 3 are a literature review and 

research methodology, respectively. Empirical results and data analysis are reported 

in Chapter4. The discussion and findings are in Chapter 5. Lastly, Chapter 6 is the 

conclusion, limitation, and future research.   



CHAPTER 2 

 

LITERATURE REVIEW 

2.1 Random Walk Theory 

 The Random Walk theory believes that successive price changes are 

independent of each other so that it is impossible to consistently make profits from the 

market by using the technical analysis or fundamental analysis (Fama, 1995). The 

model explains that the stock price is purely random and unpredictable; however, this 

paper will contradict to this model in that AI can learn the hidden patterns in historical 

data and make a profitable decision based on these patterns. 

  

2.2 Efficient Market Hypothesis 

Efficient market hypothesis ( EMH)  state that the price of security fairly and 

fully reflects all available information.  A direct implication of EMH is that the 

accurate timing to buy and sell from the market is purely random due to the random 

walk of the stock price.  EMH also explain the speed and quality of the price 

adjustment according to the information. If the market is very efficient also refer to as 

strong form, there will be no one can earn a consistent abnormal return from trading.  

It has been recognized that there are three forms of EMH which are weak 

form, semi-strong form, and strong form. The weak form of efficient market 

hypothesis indicates that no investors will make abnormal returns because the 

historical price data will always reflect the full information (Technical Analysis will 

not be useful). Semi-strong form of efficient market hypothesis indicates that current 

price fully reflect both historical price data and available public information so no one 

can make abnormal returns based on this information (Both Technical Analysis and 

Fundamental analysis will not be useful). Strong form of efficient market hypothesis 

indicates that current price will already reflect all information that all participant will 
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be able to access even investor with inside information still cannot make abnormal 

returns (Technical analysis, Fundamental analysis, and Inside Information are not 

useful) (Malkiel, 1989). 

Fama had laid the foundation about the efficient market hypothesis that all 

investors can easily access to the same public information, finally, nobody will be 

able to earn abnormal returns consistently. Profitable trades can be made from time to 

time could be possibly a fluke. According to EMH, The investors will react to market 

instantly so the profit opportunity will disappear (Malkiel & Fama, 1970). Proponents 

of the EMH, hence, suggest that the most appropriate strategy to trade the market is to 

buy-and-hold. 

This study contradicts to what EMH have been proposed. If the machine/AI 

can learn how to make a trading decision from the available historical data and make 

consistent returns, it implies that the best strategy is not buy-and-hold. 

 

2.3 Financial Trading System 

 The trading system is the set of specific rules, together with parameters, that 

determine the entry and exit signal for the trade. Generally, the signal will be marked 

on the chart (Investopedia, 2017). The financial trading system has been increasingly 

evolving into the algorithmic trading system, the trading method that uses a computer 

to execute the orders. Farjam et al. (2018) stated that the current market now is 

hybrid, the market which is composed of both human and computer trader. However, 

there is still inconclusive about the effect of the increase in the algorithmic trading 

system relating to the increase in  volatility and price discovery (Farjam & 

Kirchkamp, 2018). 

Some algorithmic trading systems are based on the trading rules, some are 

based on statistical learning, and some are developed from machine learning.  These 

algorithmic trading systems have been developed from historical data such as price, 

volume and order flow. All data are an underlying foundation for higher level 

mathematical transformation such as trading formula and machine learning. Wang et 

al. (2009) have summarized that there are five types of algorithmic trading model 

which are price, time, shortfall, volume participation, and smart order routing 
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algorithm. Moreover, these can be categorized as four most popular strategies which 

are 1) volume-weighted average price 2) time-weighted average price, stock index 

futures arbitrage, and statistical arbitrage. Almost all algorithmic trading systems are 

developed based on historical data for the implication that these data has predictive 

power for developing a profitable trading system. 

Wang et al. (2009) have also stated that the evolution of trading system 

resulted from the expansion of the market, relaxation of government regulation, the 

speed of financial transaction to execute the orders, and new advanced technology. 

Therefore, the trading system developer will try to stay ahead of the competition to 

gain the advantage over the competitors.  

Computers have been increasingly used to develop, execute, and automate the 

trading system.  Nowadays, the trading system will become more complex. 

Exploration of using a computer and advanced computation become a more attractive 

method to develop the new trading strategy. This study is also trying to leverage the 

advanced technology to gain the advantage in developing the profitable trading 

system. 

 

2.4 Technical Analysis 

Taylor et al. (1 9 9 2 )  stated that technical analysis is the analysis of financial 

market that attempts to forecast the future price movement based on the past historical 

price, volume, and volatility. Price and volume can be further transformed into several 

of indicators which can help them identify market opportunities.  Several studies 

explained how to apply the technical analysis to develop the trading system. Farias 

Nazário (2017) has conducted extensive studies for technical analysis literature 

reviews and proposed that there are three significant indicators that most frequently 

used which are stochastic, relative strength index and moving average. Moreover, 

there are also some tools which were used to study for technical analysis in the 

literatures such as econometric model, evolutionary algorithm, genetic algorithm, 

statistical analysis, neural network, and others(Farias Nazário, Silva, Sobreiro, & 

Kimura, 2017). 
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Historical data and technical analysis are the basic inputs to this study because 

when computers learn to develop trading decisions, we need to feed raw price data 

and technical indicators (all of them are considered to be the main ingredients to our 

study) into the system to generate trading decision such as buy and sell. 

 

2.5 Gold Market 

 There are some studies that linked technical analysis and speculation of the 

gold price. Batten (2018) has studied the intraday predictive power of 3 technical 

indicators which are simple moving average (SMA), weighted moving average 

(WMA), and exponential moving average (Dempster & Leemans, 2006) and found 

that there is a predictive power for some combination of parameters (Batten, Lucey, 

McGroarty, Peat, & Urquhart, 2018). It also indicates the possibility to use technical 

analysis to develop profitable trading systems. Moreover, Baur (2015) also conducted 

the speculative trading in the gold market and found that there is a pattern for bubble-

like characteristics which is predictable. It can substantiate the underlying assumption 

that technical analysis which is derived from historical data possess some predictive 

power for the gold market (Baur & Glover, 2015). 

 

2.6 Foreign Exchange Market 

The foreign exchange market (forex, FX, or currency market) is a 

global decentralized market for the trading of currencies.  It includes all aspects of 

buying, selling and exchanging currencies at current or determined prices. Regarding 

the volume of trading, it is by far the largest market in the world, followed by 

the credit market.  The primary participants in this market are the larger international 

banks.  Financial centers around the world function as anchors of trading between a 

wide range of multiple types of buyers and sellers around the clock, except weekends. 

The foreign exchange market does not determine the relative values of different 

currencies but sets the current market price of the value of one currency as demanded 

against another. In this paper, the researcher found advantages to choose forex market 

over stock market due to the following reasons: 
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1. No corporate action (data cleaning is much more convenient) 

2. 24-hour market  

3. The largest financial market in the world 

4. Data access is prevalent 

5. The most liquid market in the world 

 

 Product 

 

The world currencies are the products that will be traded on the foreign 

exchange market. There are currencies called “Major pair”, governing all the majority 

of foreign exchange market transaction which are United State Dollar ( USD) , Euro 

(EUR), Great British Pound (GBP), Swiss Franc (CHF) and Japanese Yen (JPY).  

 

 Market Participants 

 

 International Trade Transaction 

When there are transactions for export and import between countries that use a 

different currency, it will be transactions on the foreign exchange market.  If the 

company in the UK would like to buy the product in the US, UK Company has to buy 

US Dollar and simultaneously sell British Pound to get the products.  On the other 

hand, if UK Company wants to sell the product to the US, they will need to convert 

the US Dollar back to British Pound by Buying British Pound and Sell US Dollar. 

 Hedgers 

 Hedging is the attempt to minimize the risk of the position by financial 

transaction execution ( Levinson, 2 0 1 4 ) . The obvious example of the hedger is the 

business party that is obligated to pay foreign currency in the future.  They do not 

know if the currency will go against them or not.  They may use futures or options 

contract as tools to minimize their risk. 
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Speculators 

The majority of trading volumes in foreign exchange market comes from 

speculative trades. Speculators take the position based on the expectation of the price 

direction. For example, when the hedger tries to minimize their risk, the speculators 

will undertake the risk in exchange for the opportunity to earn profits. 

 Foreign Exchange Dealer and Brokers 

 Foreign exchange dealer usually earns profits by offering both bid and ask 

price, the profits are the difference between the bid and ask called spread. However, 

brokers are different from a dealer in that they do not take the opposite side, but earn 

profits from brokerage fee. 

 Central banks and treasuries 

 Central bank objective to participate in the foreign market is to achieve the 

target rate which comes from the policy. The target will be controlled due to the 

policy to encourage export and import for the trade in each country. 

 Bank and non-bank institution. 

 Major activity of the banks that they usually participate in forex market are 

mostly in the wholesale market or interbank market. Most activities in interbank 

market are done by their own account called proprietary desk. 

 Non-bank institutions which are an insurance company, multi-national 

Corporation, financial institution, hedge fund, mutual fund and provident fund, etc. 

also participate in the wholesale market to minimize or to diversify risk for their 

portfolio. 

Individuals and firms conducting commercial or investment transactions 

 A large firm like multi-national corporation also participates in the foreign 

exchange market. Their objective is to hedge against the volatility of foreign 

exchange market, to minimize the risk, and to make an investment for future profits. 

 

2.7 Technical Analysis for Trading System Contradict to EMH…………. 

Several studies have supported that technical analysis can be utilized to 

develop the profitable trading systems. Technical analysis in literature, mainly applied 

in the speculative markets such as foreign exchange market and the stock market, had 
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been studied by several of researchers. Many studies found that this technique can be 

applied profitably in the markets.  Taylor et al. (1992) conducted the questionnaire 

survey the professional foreign exchange dealer in Hong Kong and found that 

technical analysis is more useful when used in shorter-term and most of them use to 

forecasting the trend and turning point ( Taylor & Allen, 1992) . Neely et al. (1997) 

used genetic programming technique to find technical trading rules, and found strong 

evidence to support out-of-sample excess returns for six exchange rate from 1981-

1995 (Neely, Weller, & Dittmar, 1997). Moreover, Lu et al. (2012) investigated the 

application of candlestick reversal pattern which is the relationship of open, high, low, 

and the closing price of stock in Taiwan during 2002-2008. All three bullish reversal 

patterns was profitable (Lu, Shiu, & Liu, 2012). Vajda (2014) had conducted the test 

for trading forex market with MACD and found that it is possible to earn profits from 

forex market with technical indicators like MACD in timeframe 1 hour (H) with 

optimized stop loss and target profit (Vajda, 2014). 

  Moreover, there is a study to provide empirical evidence from FOREX market 

that contradicts to the efficient market hypothesis. Alonso et al. (2015) had conducted 

the study of automated trading in Forex market.  The study was conducted for six 

currency pair which are EUR/ USD, GBP/ USD, USD/ CAD, USD/ JPY, USD/ CHF, 

AUD/ USD, the optimized period start form 20001-2008) , the testing period from 

2008-2011, the indicator used for generating signal was MACD.  The study showed 

satisfactory results for all currencies.  Results from all currencies showed positive 

returns whereas ETF showed negative returns in some years. This study contradicts to 

the efficient market hypothesis.  ( Alonso-González, Peris-Ortiz, & Almenar-Llongo, 

2015). Coakley et al. (2016) had conducted the trading study of 22 currencies quoted 

in US dollar, 113,148 technical trading system had been tested. The result showed that 

the robust trading rules declined overtime especially the traditional trading rules 

which used a moving average. However, the newer technical trading rules which used 

Bollinger Band, MACD and RSI showed robust, profitable results over the testing 

period started from 1997-2015 (Coakley, Marzano, & Nankervis, 2016). The paper 

showed that it is possible to earn abnormal returns in the forex market by using 

technical analysis developed from historical price data. 
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Table 2.1 Summary for trading foreign exchange market study with Technical 

analysis 

 

Authors Article Title  Currency & 

period 

Indicators 

used  

Results 

Neely, Weller 

& Dittmar, 

1997 

Is technical 

analysis in 

foreign 

exchange 

market 

profitable? 

EURUSD, 

GBPUSD, 

GBPJPY, 

USDCAD, 

USDCHF, 

AUDUSD 

1981-1995 

Genetic 

Algorithm 

Profitable 

Vajda, 2014 Could a trader 

using only 

“old” technical 

indicator be 

successful 

at the Forex 

market? 

EURUSD 

(2000-2003) 

MACD Profitable if 

optimized 

SL/TP 

Alonso-

González, 

2015 

Providing 

empirical 

evidence 

 MACD Comparison to 

ETF in the 

same period, 

all currencies 

are profitable 

Coakley et al., 

2016 

How profitable 

are FX 

technical 

trading rules? 

22 Currencies 

based on US 

dollar (1997-

2015) 

Bollinger 

Band, MACD, 

RSI 

Step SPA-Test 

show robust 

evidence for a 

robust, 

profitable 

trading system 

 

2.8 Artificial Intelligence (AI)  

 AI is the ability of digital computers or computer-controlled robot to solve the 

problem that is typically associated with the higher intellectual processing capability 

of a human (Ertel, 2018).  Artificial intelligence is the program that sense, think, act, 

and adapt to the environment. Machine learning is the algorithm of the machine to 

learn from data. Deep learning is the new subset of machine learning which become 

popular because of the performance and diverse applications. 
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Figure 2.1 Relationships between Artificial Intelligence, Machine learning, and Deep 

learning 

 

2.9 Commodity Trading Advisor (CTA) 

 Nasdaq provides the definition of CTA which is “An investment manager that 

focuses on long and short trading in the futures markets. The trades are often intraday 

trades. Sometimes referred to as Managed Futures” (Nasdaq, 2018). 

 

2.10 Machine Learning  

Machine Learning ( ML)  is a fascinating field of artificial intelligence ( AI) 

research and practice where we investigate how computer agents can improve their 

perception, cognition, and action with experience.  Machine Learning is about 

machines improving data, knowledge, experience, and interaction. 

ARTIFICIAL INTELLIGENCE 

A program that can sense, reason, act, and adapt 
 

 

 

 

 

 

 

 

MACHINE LEARNING 

Algorithms whose performance 

improve as they are expected to 

more data over time 
 

 

 

 

 

 

 

 

 

 

DEEP LEARNING 

Subset of machine 

learning in which 

multilayered neural 

networks learn from 

vast amounts of data 
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Machine learning techniques to intelligently handle large and complex 

amounts of information build upon foundations in many disciplines, including 

statistics, knowledge representation, planning and control, databases, causal inference, 

computer systems, machine vision, and natural language processing (Veloso, 2017). 

Machine learning application in finance is the new area due to the 

advancement of computing power, latest algorithm to solve the complex problem that 

never happens before, especially in the area of deep learning that is being applied in 

computer vision, voice recognition, machine translation, etc. Machine learning can be 

categorized into three groups based on how machine learning from data which are  

1. Supervised Learning  

2. Unsupervised Learning  

3. Reinforcement Learning.  

 

 
 

Figure 2.2 Three Major Types of Machine Learning 

 

2.11 Supervised Learning 

 Supervised learning is a type of machine learning algorithm that identifies the 

function from labeled data. The supervised learning mostly will use for classification 

and regression problems, such as prediction of the fraudulent online transaction, 

disease prediction, time series forecasting. 
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2.12 Unsupervised Learning 

 Unsupervised learning is a type of machine learning algorithm that identifies 

the inference of the data set without labeling ( do not know the ground truth) .  For 

example, unsupervised learning is used to find the group of similar features, such as 

K-mean clustering,  

 

2.13 Reinforcement Learning 

Concept and terminology  

Reinforcement learning is one of the approaches in machine learning that 

machine can learn sequential decision-making process from data. There are composed 

of environment, states (what features the agent can sense from the environment) , 

action, and reward. The agent will learn to find the optimal policy (what action to take 

in each specific state) that maximize the cumulative future reward. Agents sometimes 

are called learner or decision maker. 

 

 
Figure 2.3 Reinforcement Learning Framework 

      

State          st  ∈ S where is all possible states 

Action        at ∈ A(St) where A(St) is all action in each state t 

Final/terminal states: The states that have no available actions are 

final/terminal states. 

Episode: An episode is a complete play from one of the initial state to a final 

state. 

 

Environment 
𝑅𝑡+1 

𝑆𝑡+1 

reward 

Rt 

state 

St 

Agent 

action 

At 
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For example, the agent randomly starts in one state (s), then choose an action 

(a) to earn an immediate reward (r) and end up at next state (s΄) and the process keep 

repeating as Markov decision process (MDP) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Source: Vladimir and Kabysh  

 

Experience tuple we can get the information of series as called experience 

tuple   <s,a,s,r΄> to iterate over time.  For example, we can start with s0, we take action 

a0, we get the reward r0, and then we end up with state s1, and then repeat again so we 

can have the series of  

 

S0 , A0 , R0 , S1, A1, R1,………………, Sn    (1) 

Where   

S0 is a numerical representation of state zero    

A0 is a numerical representation of action at state zero 

R0 is a numerical representation of reward at state zero 

S1 is a numerical representation of state one 

A1 is a numerical representation of action at state one 

R1 is a numerical representation of reward at state one 

 

Cumulative reward: The cumulative reward is the discounted sum of reward 

accumulated throughout an episode: 

 

R  = R0 + γ R1 + γ2 R2 + ………..     (2) 

Figure 2.4 Q-Value in Sequential Decision Process 

Select action a  
and do them 

 

Possible actions 

 

Next state s΄ 

 

Receive reward - r 

Observe next actions 

and do one of it - a΄ 

 

Current state s 

on MDP 

Q(s, a΄) 

Q(s, a) 
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Where 

 Ri= Reward at state i 

            γ = Discounted rate  

  

Policy: A Policy is the agent’s strategy/ behavior to choose an action in each 

state.  It is noted by π.  The policy is different from the plan in that the policy is 

stochastic based on probabilistic state transition, but the plan is deterministic. 

Policy in each state can be  

 

Deterministic policy π(s) = a     (3) 

Stochastic policy    π(a|s ) = P[ a|s ]   (4) 

Where  

          π(s) = policy in any state 

          a = action 

          π(a|s ) = policy to choose action given state s 

          P[ a|s ] = probability of state transition 

 

Value function: a prediction of future reward. Q- Value function is expected a 

future reward 

Optimal policy:  The optimal policy is the theoretical policy that maximizes 

the expectation of cumulative reward. From the definition of expectation and the law 

of large numbers, this policy has the highest average cumulative rewards given 

sufficient episode.  

The objective of reinforcement learning is to train an agent such that his policy 

converges to the theoretical optimal policy. 

There are three approaches to reinforcement learning (Silver, 2015). 

1. Value-based RL: Find optimal value function to find the optimal policy 

2. Policy-based RL: Find the policy directly  

3. Model-based RL: Build a model of the environment 
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In this paper, we will focus on Value-based RL which is Q learning and 

combine with the concept of the deep neural network to become deep Q network or 

deep Q-learning. 

 

2.14 Q Learning 

Q learning is one of the most widely accepted algorithms in reinforcement 

learning. Q function is value function based approach which the agent will learn value 

function and choose the action based on the highest Q-value.  There are two value 

function that needs to be specified first which are followings: 

1. State-value function V(s): this value tell how good it is to be in any state 

2. Action- value function Q(s, a):  this value tells the quality of certain action 

in any state. 

From above information, we can create state-value function V(s) that represent 

how good the agent is in any state used the Bellman Equation as following: 

 

V(s) = maxa(R(s, a) + γ V(s΄))      (5) 

Where  

V(s) is value function of any state 

R(s,a) is reward function of any state and action 

γ is a discounted rate 

V(s΄) is value function of state S΄ 

From (5) , in any state, the value of each state is equal to the sum of Reward 

plus γ (discounted rate) multiplied with the value of the next state given that choose 

the action that maximizes the sum. If discounted factor ( γ)  =  0, that means V(s)  = 

max(R(s, a)) or we do not care about the future state that we will end up with we care 

only the reward. If discounted factor (γ =1), that means V(s) = max(R(s, a) +V(s΄)), or 

we do care about the future value of the next state (  γ is the parameter to adjust 

depending on how much we care about future). 

From above Bellman equation, If we take account of Markov decision process 

(MDP) which is a stochastic process of the random sequence (if the agent performs a 
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certain action there are probability distribution to end up in any states) , we could 

rewrite the above equation to following in the recursive form as below: 

 

V(S) = max (R(s, a)) +  𝛾 ∑ 𝑝(𝑠, 𝑎, 𝑠΄)𝑉(𝑠΄)𝑠΄  )   (6) 

Where  

V(s) is value function of any state 

R(s,a) is reward function of any state and action 

γ is a discounted rate 

P(s,a,s΄)  is the probability of transition to end up in any states 

V(s΄) is value function of state S΄ 

 

Now, we know how good to be in any state.  The next step, we will find the 

quality of each specific action in any state which is Q. We use Q function or Q(s, a) to 

represent the quality of each action in any given state.  Therefore, we will get the 

equation for Q(s, a) as below: 

 

Q(s, a) = R(s, a) + 𝛾(∑ 𝑝(𝑠, 𝑎, 𝑠΄)𝑉(𝑠΄)𝑠΄ )    (7) 

Where  

 Q(s,a) is Q function of any state and action 

R(s,a) is reward function of any state and action 

γ is a discounted rate 

P(s,a,s΄)  is the probability of transition to end up in any states 

V(s΄) is value function of state S΄ 

 

There is a link between V(s) and Q(s, a) that the term in the bracket in (6) is 

equal to (7), so the value in (6) is to choose a maximum of all possible Q values.  

From (7), we can replace the last term of V(s΄) with maxa΄(Q(s΄,a΄)) to get the 

recursive form of the Q function  so we would get the following Bellman equation in 

the form of Q: 

 

Q(s, a) = R(s, a) + 𝛾(∑ 𝑝(𝑠, 𝑎, 𝑠΄)𝑠΄  maxa΄(Q(s΄,a΄))   (8) 

Where  



 25 

 Q(s,a) is Q function of any state and action 

R(s,a) is reward function of any state and action 

γ is a discounted rate 

p(s,a,s΄)  is the probability of transition to end up in any states 

Q(s΄, a΄) is value function of state S΄ 

 

From (8) we can simplify into to the deterministic Q(s,a) as following:  

 

Q(s,a)  =  R(s,a) + γ maxa΄(Q(s΄,a΄))     (9) 

Where  

 Q(s,a) is Q function of any state and action 

R(s,a) is reward function of any state and action 

γ is a discounted rate 

Q(s΄, a΄) is value function of state S΄ 

 

 Temporal Difference 

 

Compare Q(s,a) before action to  Q(s, a) after the action in any state to find 

Temporal Difference 

 

TDt (a, s)   =  [R(s, a) + γ maxa΄(Q(s΄,a΄))]-  Qt-1(s, a)   (10) 

Where  

 TDt(a,s) is Temporal Different function of any state and action 

R(s,a) is reward function of any state and action 

γ is a discounted rate 

Q(s΄, a΄) is Q function of state s΄ and action a΄ 

 Qt-1(s, a) is Q function of state s and action a at time t-1  

 

So, we can get the update rules 

 

Q(s, a) = Qt-1 (s, a) + α TDt (a, s)     (11)  
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Where  

Q(s, a) is Q function of state s΄ and action a΄ 

TDt(a,s) is Temporal Different function of any state and action 

 Qt-1(s, a) is Q function of state s and action a at time t-1  

α is learning rate ( 0 ≤ α ≤ 1)  

 

π (s) = argmaxa Q(s,a)       (12) 

Where 

 π (s)  is policy at state s 

 Q(s,a) is Q function of state s and action a 

 

 Q-learning Algorithm 

 

The main idea of Q-learning is that we can iteratively repeat the process of the 

update until it converges as the following algorithm:  

Initialize Q[num_states, num_actions] arbitrarily 

 

Observe initial state s 

 

Repeat  

  

Select and carry out an action a 

 Observe reward r and new state s΄ 

         Q[s,a] = Q[s,a] + α (r+ γ maxa΄ Q[s΄ , a΄] – Q[s,a]) 

 

Until terminate 

 

This procedural approach can be translated into simple steps as follows: 

 

1. Initialize the Q-values table, Q(s, a). 

2. Observe the current state, s. 

3. Choose an action, a, for that state based on one of the action selection policies. 
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4. Take action, and observe the reward, r, as well as the new state, s'. 

5. Update the Q-value for the state using the observed reward and the maximum 

reward possible for the next state. The updating is done according to the 

formula and parameters described above. 

6. Set the state to the new state, and repeat the process until a terminal state is 

reached. 

 

2.15 Reinforcement Learning in Financial Trading  

Moody et al. (1998) studied the application of RRL (recurrent reinforcement 

learning) in 3 empirical studies 1) Trader simulation   2) Portfolio management 

formulation 3) S&P500 and T-bill asset allocation system. For trader simulation, they 

test 2 RRL in one simulation stock price (one with maximizing profit, one with 

maximizing differential Sharpe ratio compare to forecast model and found that RRL 

performed better.  For Portfolio management formulation, RRL trained to maximize 

differential Sharpe ratio perform better than maximize profits. For S&P 500 and T-bill 

asset allocation system, it showed the predictive power from 1970 to 1994 (Moody, 

Wu, Liao, & Saffell, 1998). 

Moody et al. (2001) introduced the direct reinforcement learning using 

differential Sharpe ratio as performance function to be optimized. They found that 

direct reinforcement learning performs better than Q learning for asset allocation 

problem in S&P500 T-bill portfolio (Moody & Saffell, 2001). 

Gold (2003) studied RRL (recurrent reinforcement learning) to explore the 

effect of training parameters on the performance of FX trading (Gold, 2003). 

Dempster el al. (2006) also studied to deal with the usable, fully automated 

intelligent system. The system based on three layers 1. Machine learning algorithm 2. 

Risk management layer 3. Dynamic optimization layer and together called Adaptive 

reinforcement learning which is based on RRL. The added features make the model 

more flexible for different risk tolerance leave. The study used EUR/USD 1 min 

(from 2000 to 2002). It showed absolute profits in pips (5104) or approximately 26% 

p.a. , compared to Buy and hold (8% loss or 1636 pips loss) (Dempster & Leemans, 

2006). 
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Du et al. (2009) studied reinforcement learning method between RRL and Q 

learning in asset allocation problem between risky and riskless asset. The study, used 

simulation, showed that RRL outperforms Q learning regarding stability when 

exposed to the noisy dataset. Q-learning is sensitive to the selection of value function. 

On the other hand, RRL is more flexible to choose objective function (Du, Zhai, & 

Lv, 2016). 

 

2.16 Deep Learning 

Deep learning belongs to the broader family of the machine learning method. 

Deep learning is composed of the artificial neural network (ANN) with multi-hidden 

layers. 

 

 
 

Figure 2.5 Neural Network Architecture 

 

From above picture, single neural network compares to deep learning neural 

network with four hidden layers. In the context of this paper, there are several uses of 

deep learning depend on training methods ( supervised, unsupervised, and partially 

supervised) , in this paper, we will use deep learning neural network as a function 

approximation. We will provide the state as input and try to predict Q; then we will 

input the next state ( S΄)  and predict new Q.  We will repeat this step to update Q 

according to Deep Q learning algorithm explain later. 
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 Convolutional Neural Network (CNN) 

 

 Convolutional neural network (CNN) is one type of the deep learning network 

which works best for the image task. This network has been widely used in the tasks 

like image classification, image recognition, and computer vision. For training AI to 

play the game, CNN also is used to convert pixel to signal, and the output will be 

classification types of signal. 

CNN is composed of two types of layers which are a convolutional layer, 

subsampling layer. These types of the layer will connect successively. In 

convolutional layer, the convolution operation will be performed; the outcome will be 

passed on to the next layer. In the subsampling layer, representation size and 

parameter will be reduced until the data become one-dimensional vector (Sezer & 

Ozbayoglu, 2018). 

 

 
 

Figure 2.6 Generalized Convolutional Neural Network Structure 

 

2.17 Deep Q Learning/ Deep Q Network 

It has been known that deep-learning network is good at learning hierarchical 

of patterns of data, and also good at representation of noisy data, invariant, 

disturbance data. Thus, we can use Deep Q-Learning as a function approximation to 

find Q(s, a). 

  

Input Convolutional Subsampling Convolutional Subsampling Fully Connected 
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Learning: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above picture shows that we can feed the input to the network (state) and 

calculate the predicted Q using the deep neural network.  The predicted Q will be 

compared to the target for each specific action (in this example, there are four actions 

so we can have four Q values). 

 

Loss function will be calculated as below: 

 

𝑳 =
𝟏

𝟐
[𝒓 +𝒎𝒂𝒙𝒂΄𝑸(𝒔΄, 𝒂΄) − 𝑸(𝒔, 𝒂)]𝟐     (13) 

 

 

Where  

 L is loss function 

r is reward 

Q(s, a) is Q function of state s and action a 

Q(s΄, a΄) is Q function of state s΄ and action a΄ 

 

Given a transition < s, a, r, s’  >, the Q-table update rule for Q-learning in the 

previous algorithm must be modified when applying deep neural network with the 

following: 

 

Target 

 

Prediction 

 

Figure 2.7 Deep Neural Network for Q learning 
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1. Do a feedforward pass for the current state s to get predicted Q-values for all 

actions. 

2. Do a feedforward pass for the next state s΄ and calculate maximum overall 

network outputs max a’ Q(s΄, a΄). 

3. Set Q-value as a target for action to r +  γmax a’  Q( s΄, a΄)  ( use the max Q-

values calculated in step 2). For all other actions, set the Q-value target to the 

same as initially returned from step 1, making the error 0 for those outputs. 

4. Update the weights using backpropagation. 

 

Experience Replay: Due to the use of neural network to solve Q-learning, we 

would end up with diverges due to the correlation between samples and Non-

stationary target. To solve this problem, we keep previous experiences in memory and 

after each action taken we draw a mini-batch of experience from that memory to 

perform the update step. 

 

 Deep Q-Network (DQN): Experience Replay 

 

To remove correlations, build data-set from agent’s own experience 

 

 

 

 

 

 

 

Figure 2.8 Sample Experiences from Data-Set and Apply Update 

 

𝑙 = (𝑟 + 𝛾
𝑚𝑎𝑥

𝑎΄
𝑄(𝑠΄, 𝑎΄, 𝒘ˉ) − 𝑄(𝑠, 𝑎,𝒘))

2

     (14) 

 

Where 

 l is loss 

 r is reward 

 γ is a discounted rate 

  

To deal with non-stationarity, target parameters wˉ are held fixed 

 

s1,a1,r2,s2 

s2,a2,r3,s3 

s3,a3,r4,s4 

… 

st, at, rt+1, st+1 

s, a, r, 

s΄ 

 st, at, rt+1, st+1 
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 Action Selection Policy & Exploration/ Exploitation 

 

In reinforcement learning, the agent needs to learn in all possible state to take 

action. The agent needs some experiences to learn how to make a good action. How 

the agent knows if it the good action. The agent needs to explore as much as possible. 

However, if the agent thinks that he already had a good action, sometimes he does not 

want to explore for more.  Therefore, there is a trade-off between exploration and 

exploitation. 

1. Greedy Approach: The agent takes the action to exploiting the knowledge that 

he knows from current states to choose the action.  This makes him does not 

want to explore for more actions the problems of this approach will arrive with 

a suboptimal solution. 

2. Random Approach:  This approach is opposite to greedy approach the agent 

will always select the random action to explore more. 

3. ϵ Greedy Approach: This approach is the combination of Greedy approach and 

random approach.  When starting with the unknown environment, the agent 

will act randomly and then adjust to more exploitation. 

 Advantages of reinforcement learning to traditional quantitative 

trading……………… 

1. The agents can learn trading strategy from financial data. It is not necessary 

to input the preferred indicators or prefer instruments. 

2.  It is different from supervised learning that one could develop the system 

that performs well in the past, but fail in the future.  Due to the volatility, 

unexpected event, short-term noise, the better system should be self-adaptive. 

Thus online learning approach that quickly adapts to such a change will be 

practically necessary. 

3.  The agents will learn the optimal policy based on performance function 

(reward) to maximize the future cumulative reward so that we can adjust the 

performance function for the agent based on the critical metric of system 

performance. 
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2.18 Deep Q Learning In Financial Trading 

Deng et al. (2017) studied the performance of trading in a different method 

which are FDDR, DDR, SCOT, DRL, and BH. The study used three instruments (IF, 

AG, SU) and used TP and SR as performance function. It found that FDDR show the 

most attractive results (Deng, Bao, Kong, Ren, & Dai, 2017). 

Wang et al. (2016) have researched developing an algorithmic trading system 

based on DQN which can automatically determine the signal to buy, sell, or hold with 

each trading time stamp (Wang, 2016). 

After rigorously studied, the researcher found that there is still lack of Deep q 

network learning to trade the forex market.  After the success of Alpha go, deep q 

network ( combined deep learning with reinforcement learning)  has been applied in 

several areas including finance. To the best of researcher knowledge, we believe that 

this paper will be the first to explore this lucrative, most liquid market in the world. 

 

Table 2.2 The summary literature that uses reinforcement learning in financial trading 

 

Literature Machine 

Learning 

Model 

Features Market Evaluation Outcome 

Moody et al., 

1998 

RRL Simulation 

data 

Simulation 

data 

Differential 

Sharpe ratio 

MSE 

Cumulative 

profits 

Compare 

Max DSR of 

Long/Short 

better than of 

min MSE 

 

Portfolio of 

RRL 

Moody & 

Saffell, 2001 

RRL Simulation 

data 

Forex 

 

 

 

Comparison 

between 

DRL and Q 

learning 

DRP 

performance is 

higher than Q 

learning 
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Literature Machine 

Learning 

Model 

Features Market Evaluation Outcome 

 

M. a. H. 

Dempster & 

Jones, 2001 

Genetic 

Algorithm 

Technical 

indicators 

Forex Sharpe Trading 

performance 

Gold, 2003 Recurrent 

Reinforce

ment 

Learning 

Price & 

M/S ratio 

(price 

movement

/ spreads) 

Forex Profits and 

Sharpe ratio 

Single layer is 

better than two 

layers 

 

M. A. H. 

Dempster & 

Leemans, 

2006 

Reinforce

ment 

Learning 

Risk 

parameters

/ price 

Forex Sharpe/ 

differential 

Sharpe ratio 

Trading 

performance 

Du et al., 

2016 

Reinforce

ment 

Learning 

Price of 

risky asset 

Simulated 

Data 

Interval 

profit/ 

Sharpe 

ratio/ 

Policy search 

outperform 

value search 

Deng et al., 

2017 

FDDR, 

DDR, 

SCOT, 

DRL 

Price Stock TP/SR FDDR is the 

most attractive 

result 

Wang et al.  

 

DQN Delta of 

the close 

price 

Index 

price 

Accumulate

d Wealth, 

Sharpe 

ratio, Max 

DD 

DQN is better 

than BH and 

RRL 



CHAPTER 3 

 

METHODOLOGY 

3.1 Mapping Reinforcement Learning to Financial Trading 

To solve the trading problems, we need to start mapping trading problem into 

reinforcement problems. We have to identify the following components: 

1. Set of states:  

The set of states can be OHLC, indicators, and other features of three 

instruments (EURUSD, USDJPY, and XAUUSD). This set of states represent 

the perception that the agent can perceive the world.   

2. Set of Actions:  

The set of actions can be the actions to take in each state. In this case, there are 

four actions: {Hold, Buy, Sell, Close} 

The agent will open only one position at a time.  

3. Reward function/Performance function:  

The reward function is the reward that the agent will earn after performing the 

action in each state.  The reward function can be the function of Cumulative 

profits (in pips), Sharpe ratio, total profits, and reward to risk. 

4. Experience tuple,  

Experience tuple is the experience of the agent store in the memory buffer. in 

this part is the experience of the agent that learn from the data which is < 

S,A,R,S΄>  this part will be used as experience replay. 

When we all have above 1-4, we will be able to find the optimal policy π by 

using Deep-Q Learning algorithm. 

In this paper, we will test 3 assets/  instruments separately; we will test each 

currency pair as long/ short trader to compare if we can use Deep-Q Network to 

develop the model for all instruments. 
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3.2 Data……………….. 

The study uses 15 years of historical data obtained from the prominent Swiss 

broker, Dukascopy Bank, Switzerland. The data in our experiment will be daily data 

from (01/ 01/ 2001 – 12/ 31/ 2015) .  Data is downloaded from Dukascopy website 

(https://www.dukascopy.com/swiss/english/marketwatch/historical/). 

We use the daily data obtained from free historical feed data source 

( Dukascopy, 2017) . Data pre-processing (Cleaning) is necessary to ensure the 

reliability of the data. Followings are steps for data pre-processing. 

1. Checking for missing data: if there is a missing data and replace with the 

average of 2 previous days. 

2. Checking data format to ensure that the data are in a correct format such as 

numeric value rather than string. 

3. Standardize data to ensure that significant numbers of one feature will not 

outweigh other features with a smaller number. We will use Z-score to the 

standard the data. 

The data was split into a training set (01/01/2001-12/31/2003) and test data set 

(01/01/2005 -12/31/2015) using the function in scikit-learn python library to split the 

data automatically. We will randomly initialize the model and let the AI learn in batch 

during 2001-2004 so the AI will initially learn from small amount of data (2001-

2003) and then AI will learn online ( learn and update as it get more data) from the 

beginning (2001) again until it get smarter when it gets more data until 2015. 
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Figure 3.1 Descriptive Statistic of EURUSD Daily Returns Data 

  



 38 

 
 

 
 

Figure 3.2 Descriptive Statistics of USDJPY Daily Returns Data 
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Figure 3.3 Descriptive Statistics of XAUUSD Daily Returns Data 

 

3.3 Online Learning 

 We will train the agent online with stream data. The Q learning algorithm will 

update itself incrementally each of time-step. With this algorithm, the agent will learn 

more when getting more data. 

 

3.4 Paired T-Test 

A paired t-test is used as a statistical tool when we want to compare two 

population means, and both two samples can be paired together. For example, one 
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sample with the series of returns with one strategy and another sample is series of 

returns for another strategy. 

Procedures for carrying out paired t-test 

Let A is the data series for model 1, and B is the data series for model 2. To 

test the null hypothesis that the mean difference is zero, we need to calculate as 

followings: 

1. Calculate the difference between A series and B Series on each pair. 

2. Calculate the mean of the difference. 

3. Calculate the standard deviation of the difference. 

4. Calculate t-statistic , T =  mean difference/ standard deviation of difference. 

5. Use the table of t-distribution to compare T value from calculation to T value 

of (n-1 degree of freedom). 

 

3.5 Experimental Process 

1. Data prepossessing:  in this step we need to do data cleaning and prepare the 

database for all currency pair for the daily timeframe. We will replace missing 

value with the average price for two previous days. We will check the format 

of the data. 

2. Feature engineering:  we need to create all relevant features which have the 

predictive power of price movement this includes all relevant indicators.  We 

can do this by using the python library called Talib to calculate other features 

such as technical indicators. After we get the OHLC historical data from step 

1, we will calculate all necessary indicators. After that, we will standardize all 

features. 

3. Split data into train set and test set using the python library called Scikit-

Learn. We will feed data into the training data set (2001-2003). We will train 

with a small amount of batch learning during the trading phase. 

4. Feed data to Deep Q-Network to learn. 

5. Hyper-parameter tuning during the training phase: tune the parameters for the 

architecture of the neural network. 
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6. Feed data to Deep Q-Network again to learn online. AI will learn again from 

the beginning and update gradient to get smarter over time. 

7. Perform Hypothesis testing using Paired t-Test. 

8. Evaluate the results. 

 

3.6 Key Performance Matrices for Trading System 

 Sharpe ratio 

The following relation defines the Sharpe Ratio S: 

 

𝑆 =
𝐸(𝑅𝑎−𝑅𝑏)

√𝑉𝑎𝑟(𝑅𝑎−𝑅𝑏)
       (11) 

Where  

 S is Sharpe ratio 

 Ra is the period return of the asset or strategy  

 Rb is the period return of a suitable benchmark. 

The Sharpe ratio was introduced by William Sharpe (Sharpe, 1966). Sharpe 

ratio can be used to measure the performance for holding stock by considering risk 

factor. The Sharpe ratio quantifies how much excess return you get for each unit of 

risk you are willing to take. Excess return is calculated from the difference between 

expected returns to risk-free rate. Dividing excess returns with a standard deviation of 

the daily returns will get Sharpe ratio. There is some limitation form using Sharpe 

ratio in that, during unstable economic condition, it is difficult to find expected return. 

Moreover, sometimes, the distribution of returns (risk) may not be a bell-curve so 

using standard deviation may be misleading. Some fund managers may hold the risky 

stock in hope for higher returns, but without considering risk factors. So Sharpe ratio 

can measure portfolio performance without overlook the risk factors. The higher 

Sharpe ratio means the portfolio will experience lesser volatility. In this paper, we 

will compare the difference between Sharpe ratio of AI and others (Buy-and-Hold, 

CTA) to test if it is significantly different or not. 
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 Value at Risk (VAR) 

VAR provides an estimate, under a given degree of confidence, of the size of a 

loss from a trading system over a given period.  For example, the hedge fund may 

determine the VAR of the portfolio as 5% 3-months VAR of 3%; this means that 

there is 5% probability that the portfolio will decrease in value for more than 3% of 

portfolio value in three months period. 

The advantage of using VAR is to estimate the risk in the portfolio which are 

composed of several highly correlated assets. The financial institution can determine 

capital reserve to ensure that there is sufficient capital reserve. 

There are two types of VAR calculation methods which are non-parametric 

and parametric. In this paper, we will use non-parametric method for VAR because 

we will use historical simulation instead of predicting the future parameters. 

For loss L exceeding a value VaR with a confidence level c we have: 

 

𝑃(𝐿 ≤ −𝑉𝑎𝑅) = 1 − 𝑐      (12) 

Where  

 L is loss 

 VaR is Value at Risk 

 c is confidence level 

 

3.7 Hypothesis Testing 

There are 2 hypothesis testing we need to conduct to answer the research 

questions we mentioned in chapter 1 

Hypothesis 1 

H0: There is no significant difference between the performance of AI agent 

and performance of the buy-and-hold strategy 

 

H1: There is a significant difference that performance of AI agent is superior 

to the performance of the buy-and-hold strategy 
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To test the hypothesis 1, we will use Paired t-Test of Sharpe ratio and annual 

return to test the performance between buy-and-hold and AI agent. 

 

Hypothesis 2 

H0:   There is no significant difference between the performance of AI agent 

and performance of experienced trader (CTA) 

 

H1: There is a significant difference that performance of AI agent is superior 

to the performance of experienced trader (CTA) 

To test the hypothesis 2, we will compare our AI agent with currency trader 

performance (CTA). We will use Paired t-Test of Sharpe ratio and annual returns to 

test the hypothesis. 



CHAPTER 4 

 

RESULT AND ANALYSIS  

4.1 Basic Test with Sine Wave Test  

We build simulated sine wave data to test the performance of the AI Agent 

whether the agent can learn and make a profitable trading decision by given 

predictable and stable pattern, we believe that if AI Agent can learn how to trade from 

sine wave pattern, it could learn from historical data as well. 

We simulated the sine wave with total 800 time steps/days and 20 time steps 

(peak-to-trough) so that we will get below picture 

The reason why we should see the sine wave because it is one of the 

components in Fourier transform mentioned in literature as Giampaoli (2009) had 

used advanced Fourier transform to analyze the financial data. He introduced the way 

to decompose the unevenly-spaced data into the frequency domain with “Lomb–

Scargle Fourier transform (LSFT)” method, this can overcome the problem of 

transform unevenly-spaced data into evenly-spaced data. Lomb introduced this 

method with the sinusoidal curves (sine wave) to fit the data. Then, scale extends 

Lomb work later by introducing periodogram (Giampaoli, Ng, & Constantinou, 

2009). 

 Sine Wave Equation 

  Y(t) = Asin(2πft + φ) = Asin( ωt + φ)  

  Where    A = Amplitude 

                                      f   = frequency 

     ω = angular frequency 

     φ = the phase      

 Steps of Sine Wave test 

1. Create the Sine wave function using numpy python library from 800 days 

with 20 days cycle 
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2. Initialize state and data series (from close and diff close) 

3. Train for 20 epoch 

4. Update gradient until performance converge 

 

 

Figure 4.1 Simulated Sine Wave with 800 days 
 

4.2 Experiment with Sine Wave 

1. Mapping Trading with Reinforcement learning:  we need to specify the state, 

reward, action to create the experience tuple ( <S,A,R,S΄>) for the agent 

 State:  there are two states which are Close and Diff Close (different in 

Closing price).These will be used as inputs to feed into the deep neural 

network. 

 Action: there are 4 actions that AI Agent can take:  

Buy/sell/close/do nothing 

 Reward:  if terminal state = true , reward = cumulative reward 

                If terminal state = false, reward = profit for that time step 

 Next state observation: we will observe what happen to the next state 

(Close and Diff Close) after we have already taken action. 

2. Model configuration: we will set parameters and topology for the deep 

network as following 
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 Deep network topology  

1 input layer with 2 input node (for 2 inputs) 

2 hidden layers with 4 nodes (fully connected) 

1 output layers with 4 inputs node (for 4 actions) 

The activation function is ‘liner’ to predict Q value 

All network are fully connected with 10% drop-out (to prevent curve 

fitting) 

3. The architecture of our brain 

 

Figure 4.2 Deep Neural Network with 4 Layers (1 input layer, 2 hidden layers, 4 

output layers) 
 

4.3 Result of Sine Wave 

 

Figure 4.3 The Result of Sine Wave 

 



 47 

The above picture shows the result of the sine wave for 800 days (time steps), 

the green color show possible buy signal and the red color show possible sell signal. 

We set that there will be only one trade at a time if we will open the new position we 

have to close the opened position before taking another trade. 

Our AI agent will open a long trade when the color change from red to green 

and will open a short trade when the color change from green to red. There are 14 

trades on the top and bottom for the whole series with Sharpe ratio is 33. 54. 

 

Figure 4.4 The Equity Curve of Sine Wave Test 

 

Above picture show equity curve of sine wave trade with a steady 

performance, this can signal that it is possible to train the AI Agent to learn the 

pattern of the historical price. If we know price pattern and there is some degree of 

repeatable pattern, we would be able to train AI agent to learn the pattern and provide 

the trading signal very accurately. 

 

4.4 Experiment with Real Historical Data 

We will perform three experiments with real historical data (two experiments 

with two currencies and one experiment with Gold), Total historical data for all 

experiments will be from 1 January 2001 to 31 December 2015 (total 15 years), we 

will split the data into 2 sets (train/test), train set (01/01/2001-12/31/2003) and test set 

(01/01/2005- 12/31/2015). we use the following symbol to represent each currency. 

 EURUSD   =   Euro/Dollar 

 USDJPY   = Dollar/Yen 

 XAUUSD =   GOLD/Dollar      
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 Mapping the trading problem to reinforcement learning  

The assumption of our backtest 

 Initial capital for 100,000 

 No transaction cost  

 The position sizing is 1% for each trade 

 Only one position can be opened at a time 

 We enter into the close price of that day 

Firstly, we need to perform Mapping Trading problem with Reinforcement 

learning problem. Therefore, we need to specify the state, reward, action to create the 

experience tuple for the agent to learn from (<S, A, R, S΄>). 

The performance of the AI agent also depends on what agent perceive its own 

environment which are states that the agent can see.  Typically, deep learning is good 

at feature extraction; it can usually detect the relevant features for classification and 

regression problems. However, when we set up the states which represent the features 

that agent will learn, we still need human knowledge and experience to choose what 

to feed into the deep neural network. 

States are composed of 7 inputs 

  1. Close: this feature is from the closing price of each day 

             2. Diff Close: this feature is calculated from the difference between 

consecutive closing price. 

  Diff Close = Close (t) – Close (t-1) 

       3. Diff Close and SMA(10)  = Close- SMA(10) – moving average period 10  

Where :  

 SMA(10) = Close10+…….+Close1/10    

4.  Diff Close and SMA(50) = Close- SMA(50) – moving average period 50 

Where: 

           SMA(50) = Close50+…….+Close1/50 

5. Diff Close and SMA(100) = Close- SMA(100)- moving average period 100 

Where: 
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           SMA(100) = Close100+…….+Close1/100 

6. Diff SMA(10) and SMA(50) = SMA(10)-SMA(50) 

Where: 

           Sma(50) = Close50+…….+Close1/50 

           SMA(100) = Close100+…….+Close1/100 

7. Diff Close and  Sine wave  = Close – Sine wave  

Where: 

    Y(t) = Asin(2πft + φ) = Asin( ωt + φ)  

We add sine wave indicators due to the test on simulate sine wave shows the 

positive result, so if we transform the price into the cyclic indicator like a sine wave, 

we believe that we would increase the performance of the AI agent dramatically. 

Actions: There are 4 actions which are  

1. Buy 

2. Sell  

3. Close 

4. Do Nothing 

Reward: we have intermediate reward and long-term reward 

If terminal state = false, our reward is based on the price difference if an agent 

takes action and price increase (long position), the agent gets profits as our reward. If 

an agent takes short position and price decrease (short position)  

If terminal state = true, our reward is calculated for all cumulative profits 

 Model configuration 

We will use deep learning model called ‘ Convolutional Neural Network 

(CNN)’ which is suitable for developing Deep Q learning model. 

 Python libraries 

a. Keras and Tensorflow ( to build our neural network) 

b. Pyfolio from Quantopian ( to create performance tear sheet) and Backtrader 

library 

c. Jupyter notebook environment ( to run the python code) 
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 Our Brain Structure (Network topologies) 

1 input layer with 7 nodes 

2 hidden layer with 48 nodes 

1 output layer with 4 nodes 

Our activation function is ‘Linear’ to output Q value 

 The architecture of our brain  

 

 

Figure 4.5 Architecture of Deep Neural Network (fully connected) with 7 input, 2 

hidden layers (each 48 nodes), 4 output nodes 
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 Our training method (Online learning) 

Most trading systems will fail because the market is very volatile. There are 

several reasons such as market evolution, short-term news, and some noise in the 

market. The trading system that is not sufficiently adaptive will definitely fail in 

some market condition, so the better system should be adaptive to the market 

change. The way that we train the agent is pretty much similar to the real trade and 

making the trading system more adaptive. We first train our deep learning network 

with a small amount of data, and then we will rerun from the beginning. Then, In 

each day, we will add new trading example <S,A, R,S΄> to the buffer. After that, 

we will use minibatch from the buffer to update the Q network by 

backpropagation. 

 

4.5 EURUSD Result  

Table 4.1 Performance Table for AI Agent Learn to Trade EURUSD 

 

 

 

From above table, it shows the important metric (The result of annual returns 

from 2001-2015), annual return for all history(2001-2015) is 25%, annual return for 

backtest period (2001-2003) is 56%, and annual return for out of sample (OOS) 
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period (2001-2015) is 18 %, lower than the backtest period. It indicates that AI agent, 

learning online, can learn to trade from data during the out-of-sample period quite 

well even though the AI agent never sees out-of-sample data before, and we can 

expect the performance of backtesting or in-sample period will be higher than the 

performance during out-of-sample (OOS) period. 

For the cumulative return, cumulative return for all history (2001-2015) is 

2,685%, cumulative return for backtesting period (2001-2003) is 279%, and 

cumulative return for out of sample (OOS) period (2001-2015) is 634%, lower than 

the backtest period. It indicates that AI agent, learning online, can learn to trade from 

data during the out-of-sample period quite well even though the AI agent never sees 

out-of-sample data before, and we can expect the performance of backtesting or in-

sample period will be higher than the performance during out-of-sample (OOS) 

period. 

For annual volatility, annual volatility for all history (2001-2015) is 52%, 

annual volatility for backtesting period (2001-2003) is 82%, and annual return for out 

of sample (OOS) period (2001-2015) is 41%. This implication for the effect of 

volatility on the returns performance is about the stability of returns. If there are high 

returns, but high volatility, it can indicate the better metric to use for measuring 

performance is Sharpe ratio that takes the volatility into consideration. 

For Sharpe ratio, Sharpe ratio for all history (2001-2015) is 0.68, annual return 

for backtesting period (2001-2003) is 0.94, and annual return for out of sample (OOS) 

period (2001-2015) is 0.61. It indicates the interesting performance perspective 

regarding the risk-adjusted return. Even though The AI agent return performance is 

quite satisfactory, the AI performance is still not very satisfactory if we take both 

return and risk perspective together. It is a common high-risk-high-return 

consequence when one developing a trading system. 
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 Eurusd tear sheet 
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Figure 4.6 Performance Tear Sheet of AI Agent Learn to Trade EURUSD 

 

From above figure, cumulative returns volatility matched to benchmark shows 

the AI performance compare to buy-and-hold (benchmark), we can visually see that 

the AI can learn better when getting more data. 

Next picture shows the plot of 6-month rolling Sharpe ratio. We can see that 

rolling shape for six months is positive and close to 1.  

Next picture shows top 5 drawdown periods and underwater plot; we can 

visually see that sometimes AI still experiences a hard time, getting the consecutive 

losing trades. It indicates that we should be aware of stability of returns in not only 

Sharpe ratio but also the drawdown as well. 

We can visualize that the majority of monthly returns are positive. Most of the 

positive monthly returns are in the period of backtesting period. The performance 

during this period could be too good to be true because of curve-fitting effect. 

Annual returns during 2001, 2004, 2006, 2008, 2009, and 2014 are negative. 

We could not see the learning pattern from this plot.  

Distribution of monthly returns shows that the mean of monthly return is 

positive. It shows the statistical edge of the AI trading system when compared to 

mean of daily returns which are nearly zero. 

 Hypothesis testing for EURUSD_Agent  

 Paired t-Test will be used to test the hypothesis 

1. AI Agent vs. buy-and-hold strategy using Sharpe ratio to test the hypothesis 

H0:   There is no significant difference between the performance of AI agent 

and the performance of the buy-and-hold strategy 



 55 

H1: There is a significant difference that the performance of AI agent is 

superior to the performance of the buy-and-hold strategy 

 

Table 4.2 Paired t-test result for EURUSD AI agent vs. BH (buy-and-hold) using 

Sharpe Ratio 

 

t-Test: Paired Two Sample for Means 

  Sharpe _agent Sharpe _BH 

Mean 0.879333333 0.175133333 

Variance 1.305220952 1.504498552 

Observations 15 15 

Pearson Correlation 0.370981418  

Hypothesized Mean Difference 0  

df 14  

t Stat 2.050010818  

P(T<=t) one-tail 0.029789104  

t Critical one-tail 1.761310136  

P(T<=t) two-tail 0.059578207  

t Critical two-tail 2.144786688   

 

From above table, Sharpe ratio mean of AI agent is 0.879(variance = 1.305), and 

Sharpe ratio mean of buy-and-hold strategy is 0.175 (variance =1.504). Both of Sharpe 

ratio have a positive correlation (0.37). It is significant that Sharpe ratio of the agent is 

superior to Sharpe ratio of buy-and-hold strategy (P(T<=t) one-tail=0.029, p < 0.05) 

Result:  There is a significant difference that the performance of AI agent is 

superior to the performance of the buy-and-hold strategy. 
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2. AI Agent vs. buy-and-hold strategy using Annual return to test the hypothesis 

H0:    There is no significant difference between the performance of AI agent 

and the performance of the buy-and-hold strategy 

H1:  There is a significant difference that the performance of AI agent is 

superior to the performance of the buy-and-hold strategy 

 

Table 4.3 Paired t-Test result for EURUSD AI agent vs. BH (buy-and-hold) using 

Annual Return 

 

t-Test: Paired Two Sample for Means 

 Annual Returns_agent Annual Returns_BH 

Mean 43.88866667 1.466 

Variance 5056.348212 108.3599257 

Observations 15 15 

Pearson Correlation 0.477950253  

Hypothesized Mean Difference 0  

df 14  

t Stat 2.461020542  

P(T<=t) one-tail 0.013727607  

t Critical one-tail 1.761310136  

P(T<=t) two-tail 0.027455215  

t Critical two-tail 2.144786688  

 

From above table, annual return mean of AI agent is 43.88 (variance = 5056.34) 

and annual return mean of buy-and-hold strategy is 1.46 (variance =108.35). Both of 

annual return have a positive correlation (0.47). It is significant that an annual return of 

the agent is superior to an annual return of buy-and-hold strategy (P(T<=t) one-

tail=0.013, p < 0.05). 

Result: There is a significant difference that the performance of AI agent is 

superior to the performance of the buy-and-hold strategy. 
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3. AI agent vs. CTA (experienced trader) using Annual return to test the 

hypothesis 

H0:   There is no significant difference between the performance of AI agent 

and the performance of CTA 

H1: There is a significant difference that the performance of AI agent is 

superior to the performance of CTA 

 

Table 4.4 Paired t-test result for EURUSD AI agent using Annual Return 

 

t-Test: Paired Two Sample for Means 

 Annual Returns Annual Returns_CTA 

Mean 43.88866667 3.934666667 

Variance 5056.348212 28.88141238 

Observations 15 15 

Pearson Correlation -0.035775111  

Hypothesized Mean Difference 0  

df 14  

t Stat 2.164144073  

P(T<=t) one-tail 0.024114189  

t Critical one-tail 1.761310136  

P(T<=t) two-tail 0.048228379  

t Critical two-tail 2.144786688  

 

From above table, Annual return mean of AI agent is 43.88(variance = 5056.34) 

and Annual return mean of CTA is 3.93 (variance =28.88). Both of annual return has a 

negative correlation (-0.035). It is significant that an annual return of agent is superior 

to an annual return of buy-and-hold strategy (P(T<=t) one-tail=0.024, p < 0.05) 
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Result: There is a significant difference that the performance of AI agent is 

superior to the performance of CTA 

 Summary of AI agent learn to trade EURUSD 

1. AI outperforms buy-and-hold strategy (use Sharpe) 

2. AI outperforms buy-and-hold strategy (use annual returns) 

3. AI outperforms CTA (use annual returns)  

4.6 USDJPY Result 

Table 4.5 Performance table for AI Agent learn to trade USDJPY 

 

 

 

From above table, it shows the vital metric (The result of annual returns from 

2001-2015), annual return for all history(2001-2015) is 19%, annual return for 

backtest period (2001-2003) is 17%, and annual return for out-of-sample (OOS) 

period (2001-2015) is 20 %, higher than the backtest period. It indicates that AI agent, 

learning online, can learn to trade from data during the out-of-sample period quite 

well even though the AI agent never sees out-of-sample data before.  

For the cumulative return, cumulative return for all history (2001-2015) is 

1,287%, cumulative return for backtesting period (2001-2003) is 58%, and cumulative 

return for out of sample (OOS) period (2001-2015) is 780%, higher than the backtest 
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period. It indicates that AI agent, learning online, can learn to trade from data during 

the out-of-sample period quite well even though the AI agent never sees out-of-

sample data before. 

For annual volatility, annual volatility for all history (2001-2015) is 32%, 

annual volatility for backtesting period (2001-2003) is 39%, and annual return for out 

of sample (OOS) period (2001-2015) is 31%. This implication for the effect of 

volatility on the return performance is about the stability of returns. If there are high 

returns, but high volatility, it can indicate the better metric to use for measuring 

performance is Sharpe ratio that takes the volatility into consideration. 

For Sharpe ratio, Sharpe ratio for all history (2001-2015) is 0.70, annual return 

for backtesting period (2001-2003) is 0.58, and annual return for out of sample (OOS) 

period (2001-2015) is 0.74. It indicates the interesting performance perspective 

regarding the risk-adjusted return. Even though The AI agent return performance is 

quite satisfactory, the AI performance is still not very satisfactory if we take both 

return and risk perspective together. It is a common high-risk-high-return 

consequence when one developing a trading system. 

 

 Usdjpy tear sheet 
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Figure 4.7 Performance Tear Sheet of AI Agent learn to trade USDJPY 
 

From above figure, cumulative returns volatility matched to benchmark shows 

the AI performance compare to buy-and-hold (benchmark), we can visually see that 

the AI can learn better when getting more data and outperform the benchmark. 

Next picture shows the plot of 6-month rolling Sharpe ratio. We can see that 

rolling shape for six months is positive and close to 1.  

Next picture shows top 5 drawdown periods and underwater plot; we can 

visually see that sometimes AI still experiences the hard time (2007-2011), getting the 

consecutive losing trades. It indicates that we should be aware of stability of returns 

by looking at not only Sharpe ratio but also the drawdown as well. 
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We can see that the majority of monthly returns are positive. Most of the 

positive monthly returns are in the later test period. It implies that the when AI agent 

learns more from data, the AI agent will become smarter. 

Annual returns during 2001, 2005, 2007 and 2008 are negative. We could not 

see the learning pattern from this plot.  

Distribution of monthly returns shows that the mean of monthly return is 

positive. It shows the statistical edge of the AI trading system when compared to 

mean of daily returns which are nearly zero. 

 Hypothesis testing for USDJPY_Agent  

 Paired t-Test will be used to test the hypothesis 

1. AI Agent vs. buy-and-hold strategy using Sharpe ratio to test the hypothesis 

H0:    There is no significant difference between the performance of AI agent 

and the performance of the buy-and-hold strategy 

H1: There is a significant difference that the performance of AI is superior to 

the performance of the buy-and-hold strategy 

 

Table 4.6 Paired t-test result for USDJPY AI Agent vs. BH (buy-and-hold) Using 

Sharpe Ratio 

 

t-Test: Paired Two Sample for Means 

 Sharpe _agent Sharpe_BH 

Mean 1.136666667 0.158666667 

Variance 1.88862381 1.231969524 

Observations 15 15 

Pearson Correlation -0.172514948  

Hypothesized Mean Difference 0  

df 14  

t Stat 1.983459045  

P(T<=t) one-tail 0.033641974  

t Critical one-tail 1.761310136  

P(T<=t) two-tail 0.067283947  

t Critical two-tail 2.144786688  
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From above table, Sharpe ratio mean of AI Agent is 1.13(variance = 1.88) and 

Sharpe ratio mean of buy-and-hold strategy is 0.15 (variance =1.23). Both of Sharpe 

ratios have a negative correlation (-0.17). It is significant that Sharpe ratio of the agent 

is superior to Sharpe ratio of buy-and-hold strategy (P(T<=t) one-tail=0.033, p < 0.05) 

Result: There is a significant difference that the performance of AI agent is 

superior to the performance of the buy-and-hold strategy 

2. AI Agent vs. buy-and-hold strategy using Annual return to test the hypothesis 

H0:   There is no significant difference between the performance of AI agent 

and the performance of the buy-and-hold strategy 

H1: There is a significant difference that the performance of AI agent is 

superior to the performance of the buy-and-hold strategy 

 

Table 4.7 Paired t-test result for USDJPY AI Agent vs. BH (buy-and-hold) Using 

Annual Return 

 

t-Test: Paired Two Sample for Means 

 Annual Return_agent Annual Returns_BH 

Mean 26.732 0.925333333 

Variance 2255.99946 142.8156552 

Observations 15 15 

Pearson Correlation 0.076078354  

Hypothesized Mean Difference 0  

df 14  

t Stat 2.078459449  

P(T<=t) one-tail 0.028269352  

t Critical one-tail 1.761310136  

P(T<=t) two-tail 0.056538704  

t Critical two-tail 2.144786688  

From above table, annual return mean of AI Agent is 26.73(variance = 2255.99) 

and Annual return mean of buy-and-hold strategy is 0.92 (variance =142.81). Both of 
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annual return have a positive correlation (0.07). It is significant that the annual of 

return of the AI agent is superior to the annual return of buy-and-hold strategy (P 

(T<=t) one-tail=0.028, p < 0.05). 

Result: There is a significant difference that the performance of AI agent is 

superior to the performance of the buy-and-hold strategy 

 

3. AI Agent vs. CTA (experienced trader) using Annual return to test the 

hypothesis 

H0:   There is no significant difference between the performance of AI agent 

and the performance of CTA 

H1: There is a significant difference that the performance of AI agent is 

superior to the performance of CTA 

 

Table 4.8 Paired t-test result for USDJPY AI Agent Using Annual Return 

 

t-Test: Paired Two Sample for Means 

 Annual Returns_agent Annual Returns_CTA 

Mean 26.732 3.934666667 

Variance 2255.99946 28.88141238 

Observations 15 15 

Pearson Correlation -0.474885183  

Hypothesized Mean Difference 0  

df 14  

t Stat 1.756304525  

P(T<=t) one-tail 0.0504389  

t Critical one-tail 1.761310136  

P(T<=t) two-tail 0.1008778  

t Critical two-tail 2.144786688  

 

From above table, annual return mean of AI agent is 26.73(variance = 2255.99) 

and annual return mean of CTA is 3.93 (variance =28.88). Both of annual returns have a 

negative correlation (-0.47). There was not significant that the annual return of agent is 
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superior to the annual return of buy-and-hold strategy (P(T<=t) one-tail=0.0504, p > 

0.05) 

Result:  There is no significant difference that the performance of AI agent is 

superior to the performance of CTA 

 Summary of AI agent learn to trade USDJPY 

1. AI outperform buy-and-hold strategy (use Sharpe) 

2. AI outperforms buy-and-hold strategy (use Annual Returns) 

3. Not significant that the performance of AI agent outperforms CTA (use 

returns)  

4.7 XAUUSD (Gold) Result 

Table 4.9 Performance table for AI Agent learn to trade USDJPY 

 

 

 

From above table, it shows the critical metric (The result of annual returns 

from 2001-2015), annual return for all history(2001-2015) is 7%, annual return for 

backtest period (2001-2003) is 4%, and annual return for out-of-sample (OOS) period 

(2001-2015) is 12 %, higher than the backtest period. It indicates that AI agent, 

learning online, can learn to trade from data during the out-of-sample period quite 

well even though the AI agent never sees out-of-sample data before.  
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For the cumulative return, cumulative return for all history (2001-2015) is 

190%, cumulative return for backtesting period (2001-2003) is 46%, and cumulative 

return for out of sample (OOS) period (2001-2015) is 99%, higher than the backtest 

period. It indicates that AI agent, learning online, can learn to trade from data during 

the out-of-sample period quite well even though the AI agent never sees out-of-

sample data before. 

For annual volatility, annual volatility for all history (2001-2015) is 19%, 

annual volatility for backtesting period (2001-2003) is 22%, and annual return for out 

of sample (OOS) period (2001-2015) is 14%. This implication for the effect of 

volatility on the return performance is about the stability of returns. If there is a high 

return, but high volatility, it can indicate the better metric to use for measuring 

performance is Sharpe ratio that takes the volatility into consideration. 

For Sharpe ratio, Sharpe ratio for all history (2001-2015) is 0.47, annual return 

for backtesting period (2001-2003) is 0.30, and annual return for out of sample (OOS) 

period (2001-2015) is 0.88. It indicates the interesting performance perspective 

regarding the risk-adjusted return. Even though The AI agent return performance is 

entirely satisfactory, the AI performance is still not very satisfactory if we take both 

return and risk perspective together. It is a common high-risk-high-return 

consequence when one developing a trading system. 

 

 Xauusd tear sheet 
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Figure 4.8 Performance Tear Sheet of AI Agent learn to trade XAUUSD 

 

From above figure, cumulative returns volatility matched to benchmark shows 

the AI performance, compared to buy-and-hold (benchmark), we can visually see that 

the AI can learn better when getting more data and outperform the benchmark, 

especially during the later test period. 

Next picture shows the plot of 6-month rolling Sharpe ratio. We can see that 

rolling shape for six months is positive and above 1. 
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Next picture shows top 5 drawdown periods and underwater plot; we can 

visually see that sometimes AI still experiences the hard time (2003-2004), getting the 

consecutive losing trades.  Comparing to EURUSD and USDJPY, this XAUUSD 

agent shows lower and shorter period of drawdown because the volatility of EURUSD 

(52%) and USDJPY (32%) are higher than the volatility of XAUUSD. It implies that 

AI agent will learn better if there is lower volatility. 

We can see that the majority of monthly returns are positive. Most of the 

positive monthly returns are in the later test period. It implies that the when AI agent 

learns more from data, the AI agent will become smarter. 

Annual returns during 2002 are negative (backtesting period). We can also see 

the pattern that AI learn more from data. 

Distribution of monthly returns shows that the mean of monthly return is 

positive. It shows the statistical edge of the AI trading system when compared to 

mean of daily returns which are nearly zero. 

 

 Hypothesis testing for XAUUSD_Agent  

 A paired t-test will be used to test the hypothesis 

1. AI Agent vs. buy-and-hold strategy using Sharpe ratio to test the hypothesis 

H0:   There is no significant difference between the performance of AI agent 

and the performance of the buy-and-hold strategy 

H1: There is a significant difference that the performance of AI agent is 

superior to the performance of the buy-and-hold strategy 

 

Table 4.10 Paired t-test result for XAUUSD AI Agent vs. BH (buy-and-hold) Using 

Sharpe Ratio 

 

t-Test: Paired Two Sample for Means 

 Sharpe_agent Sharpe_BH 

Mean 0.956666667 0.636666667 

Variance 0.63272381 0.822838095 

Observations 15 15 
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t-Test: Paired Two Sample for Means 

 Sharpe_agent Sharpe_BH 

Pearson Correlation -0.251361575  

Hypothesized Mean Difference 0  

df 14  

t Stat 0.919100153  

P(T<=t) one-tail 0.186803901  

t Critical one-tail 1.761310136  

P(T<=t) two-tail 0.373607802  

t Critical two-tail 2.144786688  

 

From above table, Sharpe ratio mean of AI gent is 0.95(variance = 0.63) and 

Sharpe ratio mean of buy-and-hold strategy is 0.63 (variance =0.82). Both of Sharpe 

ratios have a negative correlation (-0.25). It is not significant that Sharpe ratio of AI 

agent is superior to Sharpe ratio of buy-and-hold strategy (P(T<=t) one-tail=0.18, p > 

0.05) 

Result: There is no significant difference that the performance of AI agent is 

superior to the performance of the buy-and-hold strategy 

 

2. AI Agent vs. Buy&Hold using Annual return to test the hypothesis 

H0:   There is no significant difference between the performance of AI agent 

and the performance of the buy-and-hold strategy 

H1: There is a significant difference that the performance of AI agent is 

superior to the performance of the buy-and-hold strategy 

 

Table 4.11 Paired t-test result for XAUUSD AI Agent vs. BH (buy-and-hold) Using 

Annual Return 

 

t-Test: Paired Two Sample for Means 

 Annual Return_agent Annual Returns_BH 

Mean 7.707333333 10.67666667 
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t-Test: Paired Two Sample for Means 

 Annual Return_agent Annual Returns_BH 

Variance 167.2801638 269.7047238 

Observations 15 15 

Pearson Correlation -0.099990996  

Hypothesized Mean Difference 0  

df 14  

t Stat -0.52520322  

P(T<=t) one-tail 0.303829983  

t Critical one-tail 1.761310136  

P(T<=t) two-tail 0.607659966  

t Critical two-tail 2.144786688  

 

From above table, Annual return mean of AI agent is 7.70(variance = 167.28) 

and Annual return mean of buy-and-hold strategy is 10.67 (variance =269.70). Both of 

annual return has a negative correlation (-0.09). It is not significant that the annual 

return of the agent is superior to the annual return of buy-and-hold strategy (P(T<=t) 

one-tail=0.30, p > 0.05). 

Result: There is no significant difference that the performance of AI agent is 

superior to the performance of the buy-and-hold strategy 

 

3. AI Agent vs. CTA (experienced trader) using Annual return to test the 

hypothesis 

H0:   There is no significant difference between the performance of AI agent 

and the performance of CTA 

H1:   There is a significant difference that the performance of AI agent is 

superior to the performance of CTA 
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Table 4.12 Paired t-test result for XAUUSD AI Agent Using Annual Return 

 

t-Test: Paired Two Sample for Means 

  Annual 

Returns_agent 

Annual 

Returns_CTA 

Mean 7.707333333 3.934666667 

Variance 167.2801638 28.88141238 

Observations 15 15 

Pearson Correlation -0.48593098  

Hypothesized Mean Difference 0  

df 14  

t Stat 0.89976294  

P(T<=t) one-tail 0.191731111  

t Critical one-tail 1.761310136  

P(T<=t) two-tail 0.383462222  

t Critical two-tail 2.144786688   

 

From above table, annual return mean of AI agent is 7.70(variance = 167.28) 

and annual return mean of CTA is 3.93 (variance =28.88). Both of annual return has a 

negative correlation (-0.48). There was not significant that the annual return of agent is 

superior to the annual return of CTA (P(T<=t) one-tail=0.19, p > 0.05). 

Result: There is no significant difference that performance of AI agent is 

superior to the performance of CTA 

 Summary of AI agent learn to trade XAUUSD (Gold) 

1. Not significant that the performance of AI agent outperforms buy-and-hold 

strategy (use Sharpe) 

2. Not significant that the performance of AI agent outperforms buy-and-hold 

strategy (use returns) 

3. Not significant that the performance of AI agent outperforms CTA (use 

returns)  



CHAPTER 5 

 

CONCLUSION 

This chapter mainly focuses on the underlying assumption of this study, 

limitation of the study, findings, contributions and the suggestion for the future 

research. 

 

5.1 Factors that Potentially Affect the Result 

The primary assumption of this study is that, if there is a pattern in the data, 

the machine or AI should be able to detect the underlying pattern and make a trading 

decision better than the human expert whom we believe that they are vulnerable to 

bias developed from their own experience and knowledge. The key to understanding 

the modeling that we used to test the market depends on following factors 

 The Deep Learning Algorithm 

In this paper, we would like to explore how to apply DQN (Deep Q Learning), 

which is one of the approaches for reinforcement learning. There are several 

parameters related to DQN that determine the performance of our algorithm. For 

example, the ratio between test/train set can show the different performance. More 

training data mean AI can learn several patterns and can adapt to several trading 

environments. If the data that we use to train AI and the data we use to test AI are in 

the same pattern, there is more likely that the performance will be better than training 

with different patterns.  

The algorithm itself is complicated to be replicated due to randomness which 

is nature of the deep network.  If we test the neural network model, in each time, it will 

show the result differently. Sometimes, the model will not converge, but the 

performance is getting better. When start running the model, the model will randomly 
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initialize the data and update the weight of the deep network by backpropagation. The 

model will usually update the weight until finding the global maxima/minima or the 

model become converged. 

The amount we choose for the batch size to update the weight for the DQN 

algorithm also affect the training speed and also the performance of the deep neural 

network. When we choose the small batch size to update weight the training speed 

will be faster. However, the accuracy and the performance will become lower. 

The learning rate can be too high/low. The typical learning rate is between 0.1- 

0.00001. If we set learning rate too low, when we train several epochs, the loss for 

DQN will not decrease that means optimal process stuck in a local minimum. If we set 

the learning rate too high, the loss will become NAN. Setting the appropriate learning 

rate is trial and error process.  

 Mapping trading problem to reinforcement learning problem 

When we map the trading problem to reinforcement problem, we need to 

select the states which determine what AI will see the environment or perceive the 

world. We subjectively choose the indicators which we believe could detect some 

profitable patterns. Firstly, we tried to use input with close and moving average. The 

differences among moving average can signal the cross of the two moving average 

which mostly used as a trading signal. The difference between close and moving 

average was also chosen as a signal as well. Based on the result we test for sine wave 

data, we believe that if we could transform data to a pure sine wave, AI will learn how 

to trade as well. We then select one of the cyclic indicators which was sine wave 

indicators, and the performance got better once we added such indicators. So we 

believe that if we could transform the historical price into more predictable such as 

sine wave, we could train AI with advantage. 

We have to identify reward function for the AI to learn and set up gamma 

which can determine how much we consider more for long-term or short-term profits. 

Gamma can be set between 0-1. Gamma is equal to 1 means we weight 100% on long-
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term profits. Gamma is equal to 0 means we weight 100% on short-term or immediate 

profits.  

Different reward function could result in different performance. If we choose 

reward function as winning rate or reward to risk, we could train AI with finer tune 

objective. For example, if we take more risk with the expectation of higher returns we 

could set to reward to risk as reward function to win significant profit but small 

winning rate, but our Sharpe ratio will be lower. If we want to be more conservative 

with the risk, we could use winning rate as a reward function to win more times with 

small profits. 

 Deep neural network architecture 

The architecture of the deep neural network also contributes to the 

performance of the AI because the deep network is used as the function 

approximation to update the weight of each node after calculation of loss function. 

The small brain will typically result in lower performance compared to the bigger 

brain with the more hidden layer. However, a non-complex problem such as 

predictable pattern will be indifferent between small and big brain. For the large-

complex problem, the bigger brain tends to be better. 

 Trading objective  

There are several factors contribute to trading objectives such as risk tolerance 

of the investors, investment policy, account size, etc. Most institutional investors 

prefer low risk, but steady returns due to the account size which is very large. Hedge 

fund and investment company could take more risk compared to traditional 

institutional investors who are more conservative. Typical hedge fund strategies are to 

maximize Sharpe ratio to increase more leverage for higher returns. Individual 

investors, however, can take more risk compensated by higher returns.  

Due to different objectives, Ai can be trained by different reward function 

such as maximized Sharpe ratio, profits, winning percentage, reward to risk ratio, 

annual returns, etc. When we change the reward function, the AI performance will 

change as well according to reward function. 
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5.2 Findings of this study 

 The findings for EURUSD AI agent, we found that the AI agent significantly 

outperforms buy-and-hold both using Sharpe ratio and annual returns. It is the 

indicator that AI can learn to trade from the data. If we look at the benchmark which is 

buy-and-hold, it is clear that if we hold the EURUSD for longer than ten years, we 

will get almost nothing. It is due to the nature of fiat currency that is not suitable to be 

the investment class. We would suggest that Trading by AI would be better than 

holding the currency.  

 The findings for EURUSD AI agent, we found that the AI agent significantly 

outperforms CTA (experienced trader) using annual returns. It does not mean that AI 

agent is undoubtedly better than a human expert. The differences between machine 

and human are emotion. AI can execute the trade without the emotion of fear or greed. 

When AI see the profitable pattern, it will not hesitate to take action. Therefore, we 

would suggest that trading by AI would be better if we care more about annual returns 

( we did not use Sharpe ratio because data is not available). 

 The findings for USDJPY AI agent, we found that the AI agent significantly 

outperforms buy-and-hold strategy both using Sharpe ratio and annual returns. It is the 

indicator that AI can learn to trade from the data. If we look at the benchmark which is 

buy-and-hold, it is clear that if we hold the USDJPY for longer than ten years, we will 

get loss slightly not to mention the inflation rate. It is due to the nature of fiat currency 

that is not suitable to be the investment class. We would suggest that trading by AI 

would be better than holding the currency.  

 The findings for USDJPY AI agent, we found that the AI agent does not 

significantly outperform CTA (experienced trader) using annual returns. In this case, 

we cannot be sure that AI is better than a human expert when we compare the returns 

even though the mean returns of the AI is better than CTA. However, the standard 

deviation also very much higher as well. Therefore, we would suggest that we need 
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more data to test this hypothesis again. We could not suggest that which one is better 

over another (we did not use Sharpe ratio because data is not available). 

 The findings for XAUUD AI agent, we found that the AI agent does not 

significantly outperform buy-and-hold both using Sharpe ratio and annual returns. 

However, if we look at the performance of AI itself, AI show some capability to learn 

from data. If we look at the benchmark which is buy-and-hold , it is clear that if we 

hold XAUUSD (Gold) for long-term investment, in some period, the performance will 

be better than AI. It is due to the nature of gold as a safe haven that is considered to be 

investment asset. We would suggest that trading by AI compare to holding gold is not 

significantly different. 

 The findings for XAUUSD AI agent, we found that the AI agent does not 

significantly outperform CTA (experienced trader) using annual returns. In this case, 

we cannot be sure that AI is better than a human expert when we compare the returns 

even though the mean returns of the AI is better than CTA. However, the standard 

deviation also very much higher as well. Therefore, we would suggest that we need 

more data to test this hypothesis again. We could trade prefer AI over Holding Gold if 

we can tolerate the high volatility of AI performance. We could not suggest that which 

on is better over another (We did not use Sharpe ratio because data is not available). 

 

5.3 Limitation 

1. Available data 

To train AI, we need a massive amount of data to learn how to trade. However, 

we found limitation in that we can access to only historical price data (Open, High, 

Low, and Close). We could not access the valuable data such as actual volume and 

order flow between interbank orders. Those data are expensive and available only for 

the giant hedge fund or quant firm. The researcher believes that, with more complete 

data, the AI will learn better and make a more informed trading decision. With more 

data, we will try to test and may end up with a trading portfolio of several currency 
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pairs combined with several assets such as gold, silver, oil, etc. The robust portfolio 

trading will be possible to create if we can access to more data for AI. For investment, 

diversification is the closest thing to free lunch so if more data available we could 

diversify more of our portfolio. 

2. Computing power 

Training the deep neural network is quite expensive in that it consumes time 

and computing power for complicated calculation. We all know that deep neural 

network can surpass the performance of almost all machine learning algorithm. 

However, it comes with the cost we have to pay. In this study, we have to spend 2-3 

days running computers to perform parameter tuning until the acceptable parameters. 

The researchers have tried and tweak countless possibilities of the almost all 

parameters. Typically, a bigger brain with more hidden layers would be able to detect 

more complicated pattern and perform complex computation. 

We could, however, take more data (>15 years) to validate the performance of 

the model if we could have more computing power in the future. Cloud computing 

and GPU acceleration for training the model will be available economically in very 

near future. We hope that we could test more again when the resource is economically 

available. 

3. Trading assumption 

Even though AI performance is quite satisfactory, it does not mean we should 

jump into the trading with real money because the study just ignited the possibility 

that we can train AI to trade live in the future. However, when trade lives, we should 

be aware of how to set up risk management system to protect from unexpected events 

such as gap opening/ central bank intervention, nonfarm payroll, news, etc. This study 

will not include transaction cost and spread which could contribute to the big 

difference between backtesting and real trade. Moreover, our study simplifies reality 

for trading lives such as transaction cost, the spread between bid-ask, entry price, type 

of orders. It would indicate that there is plenty of room for improvement in the future. 
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5.4 Academic Contribution 

From this study, there are several contributions to the academic study such as 

the application of artificial intelligence in algorithmic trading system development is a 

desirable method to replace the human-decision-making system in that the computer 

can read hidden profitable price pattern better than human and computer can execute 

the trade swiftly and accurately. AI can be the best candidate to replace the human. 

Academically, more studies can be conducted to compare the performance of human 

and AI. 

This research is to touch only one specific area of investment and financial 

problem. Reinforcement learning technique can be applied in several areas of finance 

under the condition that there are enough data to learn from so that AI can make the 

better decision because of the adaptive capability to the environment. One of the 

applications which is very attractive to study is to use reinforcement learning for 

portfolio management problems. The AI agent will find the appropriate weight for 

each asset in the portfolio. AI will make decisions for not only about the asset to trade 

but also when to rebalance the portfolio (Moody et al., 1998). 

Moreover, this study supports the opponents of EMH. It is possible to develop 

the trading system to outperform buy-and-hold in the long run. For EURUSD and 

USDJPY, the performance of AI agent surpassed the buy-and-hold significantly. 

However, the in-depth test and live trade should be conducted before jumping to the 

conclusion due to several of limitations. 
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5.5 Practical Contribution 

 

Figure 5.1 Increase in Sharpe Ratio compared to portfolio size with different levels of 

correlation 

Source: Wiecki (2015a) 

 

From this study, we can find the new, alternative to create return streams that 

have a low correlation to each other using the AI-generated trading system. As we can 

see from the results such as the annual return of AI agent and CTA have a very low 

correlation (-0.03) so that we could create the min-correlation, risk-diversified portfolio 

for stable returns. From the figure 5.1, it shows that if we can add more return streams 

with low correlation, we can increase Sharpe ratio. We can use several AIs to create 

several returns streams that are not correlated to each other.  

 

5.6 Suggestion for Future Research  

1. In the future research, we hope that the computing power will be available for 

training deep neural network with lower cost. If it is available, the possibility to try 

something new is endless. At the current time, there is an open-source project who 



 79 

try to create peer-to-peer, sharing computing power. The supercomputing power 

will be much cheaper and faster.  

2. We could try all possible states. We could input several thousand indicators and 

more of fundamental data. Moreover, more complex cyclic and time series 

analysis will be added on to test the model such as singular spectrum analysis to 

decompose the price series into the cycle. 

3. We could try to add some filters such as Hidden Markov model. We could 

separately train another model to extract market mode only. Hidden Markov model 

will help us to identify the satisfactory market situation for each specific trading 

strategies. 

4. We could use the larger brain for AI. We can add more layers for AI to increase 

the capability to learn more form data. We can tweak all the topology of several 

deep learning types such as convolutional neural network, GRU, GAN to beat the 

performance of the human expert.  

5. We could combine several AIs to become super AI for the portfolio. We could 

train AI separately to identify what market AI is best for, to identify what market 

mode AI is best for, and to identify the correlation between all AI. 

6. In the future research, we could extend by making the real live trade with some 

predetermine risk parameters such as risk per trade, add stop loss, add more 

advanced pending order, add more scale in/scale out an algorithm to teach AI to 

learn the more complex trading process. 

7. During the completion time of this study, there is another huge leap from the 

company named “Deepmind” with alpha go zero. The AI that can learn by itself, 

not limited by the domain they train from, AI that can learn without a human 

expert to train for them. In the future research, it possible to follow what deep 

mind has achieved and trading for the better result. 
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APPENDIX 

Python Code 

 

Sine wave test 

1. Build simulated sine wave 

 

from __future__ import print_function 

 

import numpy as np 

np.random.seed(100)   
from sklearn import metrics, preprocessing 

 

import pandas as pd 

from matplotlib import pyplot as plt 

 

# define sine wave  

def load_data(): 
    sinewave = np.sin(np.arange(800)/20.0)  
    return sinewave 

 

sinewave  = load_data() 
 

2. Building neural network 

 

from keras.models import Sequential 

from keras.layers.core import Dense, Dropout, Activation 

from keras.optimizers import RMSprop 

 

model = Sequential() 
model.add(Dense(4, init='lecun_uniform', input_shape=(2,))) 
model.add(Activation('relu')) 
 

model.add(Dense(4, init='lecun_uniform')) 
model.add(Activation('relu')) 
 

model.add(Dense(4, init='lecun_uniform')) 
model.add(Activation('linear'))  
rms = RMSprop() 
model.compile(loss='mse', optimizer=rms) 
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3. Sample backtesting with btgym 

 

import backtrader as bt 

import backtrader.indicators as btind 

import numpy as np 

import scipy.signal as signal 

from scipy import stats 

 

from gym import spaces 

 

from btgym import BTgymEnv, BTgymStrategy, BTgymDataset 

 

from btgym.a3c import Launcher, LSTMPolicy 

 

class MyStrategy(BTgymStrategy): 
 

    def __init__(self, **kwargs): 
        super(MyStrategy,self).__init__(**kwargs) 
        self.order_penalty = 1 

        self.trade_just_closed = False 

        self.trade_result = None 

         
    def notify_trade(self, trade):     
        if trade.isclosed: 
            # Set trade flag and result: 
            self.trade_just_closed = True 

            self.trade_result = trade.pnlcomm 

         
    def get_state(self): 
        T = 1e3 # amplifier 

        X = np.gradient(self.raw_state, axis=0) 
        X *= T 

        self.state['model_input'] = X  

        return self.state 

     
    def get_reward(self): 
        r = (self.broker.get_value() / self.env.broker.startingcash - 1) * 10 

         
        if self.trade_just_closed: 
            r += self.trade_result 

            self.trade_just_closed = False 

             
        if self.order_failed: 
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            r -= self.order_penalty 

            self.order_failed = False 

 

        return r / 20   

 

time_embed_dim = 30 

 

state_shape = { 

    'raw_state': spaces.Box(low=-1, high=1, shape=(time_embed_dim, 4)), 
    'model_input': spaces.Box(low=-100, high=100, shape=(time_embed_dim, 4)) 
} 

 

MyCerebro = bt.Cerebro() 
 

MyCerebro.addstrategy( 
    MyStrategy, 

    state_shape=state_shape, 

    portfolio_actions=('hold', 'buy', 'sell', ‘close’), 
    drawdown_call=5, # max to loose, in percent of initial cash 

    target_call=20,  # max to win, same 

    skip_frame=10, 

) 
 

# Set leveraged account: 
MyCerebro.broker.setcash(100000) 
MyCerebro.broker.setcommission(commission=0.0001, leverage=1) # 

commisssion to imitate spread 

MyCerebro.broker.set_shortcash(False) 
MyCerebro.addsizer(bt.sizers.SizerFix, stake=10000,) 
 

MyCerebro.addanalyzer(bt.analyzers.DrawDown) 
 

MyDataset = BTgymDataset( 
    filename='../data/test_sine_wave.csv', 

    start_weekdays=[0, 1, 2, 3, ], 
    episode_len_days=1, 

    episode_len_hours=23, 

    episode_len_minutes=0, 

    start_00=False, 

    time_gap_hours=2, 

) 
env_config = dict( 
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    dataset=MyDataset, 

    engine=MyCerebro, 

    render_modes=['episode', 'human', 'model_input'], 
    render_state_as_image=True, 

    render_ylabel='OHLC Price Gradients', 

    render_size_episode=(12,8), 
    render_size_human=(8, 3.5), 
    render_size_state=(10, 5), 
    render_dpi=75, 

    port=5100, 

    data_port=5099, 

    connect_timeout=60, 

    verbose=0, 

) 
 

# Set tensorflow distributed cluster and a3c configuration: 
cluster_config = dict( 
    host='127.0.0.1', 

    port=42222, 

    num_workers=8, 

    num_ps=1, 

) 
launcher = Launcher( 
    cluster_config=cluster_config, 

    env_class=BTgymEnv, 

    env_config=env_config, 

    policy_class=LSTMPolicy, 

    rollout_length=20, 

    test_mode=False, 

    train_steps=1000000000, 

    model_summary_freq=20, 

    episode_summary_freq=1, 

    env_render_freq=10, 

    verbose=1 

     
) 

 

Historical Data Test 

  

1. Import data use library called DUKA 

pip install duka 
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usage 

 

usage: duka [options] 
 

 positional arguments: 
    SYMBOLS               symbol list using format EURUSD EURGBP  

 

 optional arguments: 
     -h           show help message and exit  

     -v           show program's version number and exit 

     -d DAY       specific day format YYYY-MM-DD (default today) 
     -s STARTDATE start date format YYYY-MM-DD (default today) 
     -e ENDDATE   end date format YYYY-MM-DD (default today) 
     -c CANDLE    use candles instead of ticks. Accepted values M1 M2 M5 M10 M15 

M30 H1 H4 D1 

     -f FOLDER    the dowloaded data will be saved in FOLDER (default '.') 
     -t THREAD    number of threads (default 10) 
     --header     include CSV header (default false) 
 

duka EURUSD -s 2001-01-01 -e 2015-12-31 

2. Build Neural Network for AI agent 

 

from keras.models import Sequential 

from keras.layers.core import Dense, Dropout, Activation 

from keras.optimizers import RMSprop 

 

model = Sequential() 
model.add(Dense(48, init='lecun_uniform', input_shape=(7,))) 
model.add(Activation('relu')) 
 

model.add(Dense(48, init='lecun_uniform')) 
model.add(Activation('relu')) 
 

model.add(Dense(4, init='lecun_uniform')) 
model.add(Activation('linear'))  
rms = RMSprop() 
model.compile(loss='mse', optimizer=rms) 

 

3. Example of training network and backtest 

 

import numpy as np 

 

from market_env import MarketEnv 
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from market_model_builder import MarketModelBuilder 

 

class ExperienceReplay(object): 
 def __init__(self, max_memory=100, discount=.9): 
  self.max_memory = max_memory 

  self.memory = list() 
  self.discount = discount 

 

 def remember(self, states, game_over): 
  self.memory.append([states, game_over]) 
  if len(self.memory) > self.max_memory: 
   del self.memory[0] 
 

 def get_batch(self, model, batch_size=10): 
  len_memory = len(self.memory) 
  num_actions = model.output_shape[-1] 
  inputs = [] 
 

  dim = len(self.memory[0][0][0]) 
  for i in xrange(Vladimir & Kabysh): 
   inputs.append([]) 
 

  targets = np.zeros((min(len_memory, batch_size), num_actions)) 
  for i, idx in enumerate(np.random.randint(0, len_memory, 

size=min(len_memory, batch_size))): 
   state_t, action_t, reward_t, state_tp1 = 
self.memory[idx][0] 
   game_over = self.memory[idx][1] 
 

   for j in xrange(Vladimir & Kabysh): 
    inputs[j].append(state_t[j][0]) 
 

   targets[i] = model.predict(state_t)[0] 
   Q_sa = np.max(model.predict(state_tp1)[0]) 
   if game_over:  # if game_over is True 

    targets[i, action_t] = reward_t 

   else: 
    targets[i, action_t] = reward_t + self.discount * 
Q_sa 

   

  inputs = [np.array(inputs[i]) for i in xrange(Vladimir & Kabysh)] 
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  return inputs, targets 

 

if __name__ == "__main__": 
 import sys 

 import codecs 

 

 codeListFilename = sys.argv[1] 
 modelFilename = sys.argv[2] if len(sys.argv) > 2 else None 

 

 codeMap = {} 

 f = codecs.open(codeListFilename, "r", "utf-8") 
 

 for line in f: 
  if line.strip() != "": 
   tokens = line.strip().split(",") if not "\t" in line else 

line.strip().split("\t") 
   codeMap[tokens[0]] = tokens[1] 
 

 f.close() 
 

 env = MarketEnv(dir_path = "./data/", target_codes = codeMap.keys(), 
input_codes = [], start_date = "2001-01-01", end_date = "2015-12-31", sudden_death = -1.0) 
 

 # parameters 

 epsilon = .5  # exploration 

 min_epsilon = 0.1 

 epoch = 100000 

 max_memory = 5000 

 batch_size = 128 

 discount = 0.8 

 

 from keras.optimizers import SGD 

 model = MarketModelBuilder(modelFilename).getModel() 
 sgd = SGD(lr = 0.001, decay = 1e-6, momentum = 0.9, nesterov = True) 
 model.compile(loss='mse', optimizer='rmsprop') 
 

 # Initialize experience replay object 

 exp_replay = ExperienceReplay(max_memory = max_memory, discount = 
discount) 
 

 # Train 

 win_cnt = 0 

 for e in range(epoch): 
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  loss = 0. 
  env.reset() 
  game_over = False 

  # get initial input 

  input_t = env.reset() 
  cumReward = 0 

 

  while not game_over: 
   input_tm1 = input_t 

   isRandom = False 

 

   # get next action 

   if np.random.rand() <= epsilon: 
    action = np.random.randint(0, env.action_space.n, 

size=1)[0] 
 

    isRandom = True 

   else: 
    q = model.predict(input_tm1) 
    action = np.argmax(q[0]) 
 

    #print "  ".join(["%s:%.2f" % (l, i) for l, i in zip(env.actions, 

q[0].tolist())]) 
    if np.nan in q: 
     print "OCCUR NaN!!!" 
     exit() 
 

   # apply action, get rewards and new state 

   input_t, reward, game_over, info = env.step(action) 
   cumReward += reward 

 

   if env.actions[action] == "LONG" or env.actions[action] == 
"SHORT": 
    color = bcolors.FAIL if env.actions[action] == "LONG" 
else bcolors.OKBLUE 

    if isRandom: 
     color = bcolors.WARNING if env.actions[action] 
== "LONG" else bcolors.OKGREEN 

    print "%s:\t%s\t%.2f\t%.2f\t" % (info["dt"], color + 
env.actions[action] + bcolors.ENDC, cumReward, info["cum"]) + ("\t".join(["%s:%.2f" % (l, i) 
for l, i in zip(env.actions, q[0].tolist())]) if isRandom == False else "") 
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   exp_replay.remember([input_tm1, action, reward, input_t], 
game_over) 
 

   inputs, targets = exp_replay.get_batch(model, 

batch_size=batch_size) 
 

   loss += model.train_on_batch(inputs, targets) 
 

  if cumReward > 0 and game_over: 
   win_cnt += 1 

 

  print("Epoch {:03d}/{} | Loss {:.4f} | Win count {} | Epsilon 

{:.4f}".format(e, epoch, loss, win_cnt, epsilon)) 
 

  model.save_weights("model.h5" if modelFilename == None else 

modelFilename, overwrite=True) 
  epsilon = max(min_epsilon, epsilon * 0.89) 
 

4. Example of analyzing stock returns (from 

https://github.com/backtrader/backtrader/blob/master/samples/analyzer-

annualreturn/analyzer-annualreturn.py) 

 

from __future__ import (absolute_import, division, print_function, 

                        unicode_literals) 

 

import argparse 

import datetime 

 

# The above could be sent to an independent module 

import backtrader as bt 

import backtrader.feeds as btfeeds 

import backtrader.indicators as btind 

from backtrader.analyzers import (SQN, AnnualReturn, TimeReturn, 

SharpeRatio, 

                                  TradeAnalyzer) 

 

 

class LongShortStrategy(bt.Strategy): 

    '''This strategy buys/sells upong the close price crossing 

    upwards/downwards a Simple Moving Average. 

 

    It can be a long-only strategy by setting the param "onlylong" to True 

    ''' 

    params = dict( 

        period=15, 
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        stake=1, 

        printout=False, 

        onlylong=False, 

        csvcross=False, 

    ) 

 

    def start(self): 

        pass 

 

    def stop(self): 

        pass 

 

    def log(self, txt, dt=None): 

        if self.p.printout: 

            dt = dt or self.data.datetime[0] 

            dt = bt.num2date(dt) 

            print('%s, %s' % (dt.isoformat(), txt)) 

 

    def __init__(self): 

        # To control operation entries 

        self.orderid = None 

 

        # Create SMA on 2nd data 

        sma = btind.MovAv.SMA(self.data, period=self.p.period) 

        # Create a CrossOver Signal from close an moving average 

        self.signal = btind.CrossOver(self.data.close, sma) 

        self.signal.csv = self.p.csvcross 

 

    def next(self): 

        if self.orderid: 

            return  # if an order is active, no new orders are allowed 

 

        if self.signal > 0.0:  # cross upwards 

            if self.position: 

                self.log('CLOSE SHORT , %.2f' % self.data.close[0]) 

                self.close() 

 

            self.log('BUY CREATE , %.2f' % self.data.close[0]) 

            self.buy(size=self.p.stake) 

 

        elif self.signal < 0.0: 

            if self.position: 

                self.log('CLOSE LONG , %.2f' % self.data.close[0]) 

                self.close() 

 

            if not self.p.onlylong: 

                self.log('SELL CREATE , %.2f' % self.data.close[0]) 
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                self.sell(size=self.p.stake) 

 

    def notify_order(self, order): 

        if order.status in [bt.Order.Submitted, bt.Order.Accepted]: 

            return  # Await further notifications 

 

        if order.status == order.Completed: 

            if order.isbuy(): 

                buytxt = 'BUY COMPLETE, %.2f' % order.executed.price 

                self.log(buytxt, order.executed.dt) 

            else: 

                selltxt = 'SELL COMPLETE, %.2f' % order.executed.price 

                self.log(selltxt, order.executed.dt) 

 

        elif order.status in [order.Expired, order.Canceled, order.Margin]: 

            self.log('%s ,' % order.Status[order.status]) 

            pass  # Simply log 

 

        # Allow new orders 

        self.orderid = None 

 

    def notify_trade(self, trade): 

        if trade.isclosed: 

            self.log('TRADE PROFIT, GROSS %.2f, NET %.2f' % 

                     (trade.pnl, trade.pnlcomm)) 

 

        elif trade.justopened: 

            self.log('TRADE OPENED, SIZE %2d' % trade.size) 

 

 

def runstrategy(): 

    args = parse_args() 

 

    # Create a cerebro 

    cerebro = bt.Cerebro() 

 

    # Get the dates from the args 

    fromdate = datetime.datetime.strptime(args.fromdate, '%Y-%m-%d') 

    todate = datetime.datetime.strptime(args.todate, '%Y-%m-%d') 

 

    # Create the 1st data 

    data = btfeeds.BacktraderCSVData( 

        dataname=args.data, 

        fromdate=fromdate, 

        todate=todate) 

 

    # Add the 1st data to cerebro 
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    cerebro.adddata(data) 

 

    # Add the strategy 

    cerebro.addstrategy(LongShortStrategy, 

                        period=args.period, 

                        onlylong=args.onlylong, 

                        csvcross=args.csvcross, 

                        stake=args.stake) 

 

    # Add the commission - only stocks like a for each operation 

    cerebro.broker.setcash(args.cash) 

 

    # Add the commission - only stocks like a for each operation 

    cerebro.broker.setcommission(commission=args.comm, 

                                 mult=args.mult, 

                                 margin=args.margin) 

 

    tframes = dict( 

        days=bt.TimeFrame.Days, 

        weeks=bt.TimeFrame.Weeks, 

        months=bt.TimeFrame.Months, 

        years=bt.TimeFrame.Years) 

 

    # Add the Analyzers 

    cerebro.addanalyzer(SQN) 

    if args.legacyannual: 

        cerebro.addanalyzer(AnnualReturn) 

        cerebro.addanalyzer(SharpeRatio, legacyannual=True) 

    else: 

        cerebro.addanalyzer(TimeReturn, timeframe=tframes[args.tframe]) 

        cerebro.addanalyzer(SharpeRatio, timeframe=tframes[args.tframe]) 

 

    cerebro.addanalyzer(TradeAnalyzer) 

 

    cerebro.addwriter(bt.WriterFile, csv=args.writercsv, rounding=4) 

 

    # And run it 

    cerebro.run() 

 

    # Plot if requested 

    if args.plot: 

        cerebro.plot(numfigs=args.numfigs, volume=False, zdown=False) 

 

 

def parse_args(): 

    parser = argparse.ArgumentParser(description='TimeReturn') 
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    parser.add_argument('--data', '-d', 

                        default='../../datas/2005-2006-day-001.txt', 

                        help='data to add to the system') 

 

    parser.add_argument('--fromdate', '-f', 

                        default='2005-01-01', 

                        help='Starting date in YYYY-MM-DD format') 

 

    parser.add_argument('--todate', '-t', 

                        default='2006-12-31', 

                        help='Starting date in YYYY-MM-DD format') 

 

    parser.add_argument('--period', default=15, type=int, 

                        help='Period to apply to the Simple Moving Average') 

 

    parser.add_argument('--onlylong', '-ol', action='store_true', 

                        help='Do only long operations') 

 

    parser.add_argument('--writercsv', '-wcsv', action='store_true', 

                        help='Tell the writer to produce a csv stream') 

 

    parser.add_argument('--csvcross', action='store_true', 

                        help='Output the CrossOver signals to CSV') 

 

    group = parser.add_mutually_exclusive_group() 

    group.add_argument('--tframe', default='years', required=False, 

                       choices=['days', 'weeks', 'months', 'years'], 

                       help='TimeFrame for the returns/Sharpe calculations') 

 

    group.add_argument('--legacyannual', action='store_true', 

                       help='Use legacy annual return analyzer') 

 

    parser.add_argument('--cash', default=100000, type=int, 

                        help='Starting Cash') 

 

    parser.add_argument('--comm', default=2, type=float, 

                        help='Commission for operation') 

 

    parser.add_argument('--mult', default=10, type=int, 

                        help='Multiplier for futures') 

 

    parser.add_argument('--margin', default=2000.0, type=float, 

                        help='Margin for each future') 

 

    parser.add_argument('--stake', default=1, type=int, 

                        help='Stake to apply in each operation') 
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    parser.add_argument('--plot', '-p', action='store_true', 

                        help='Plot the read data') 

 

    parser.add_argument('--numfigs', '-n', default=1, 

                        help='Plot using numfigs figures') 

 

    return parser.parse_args() 

 

 

if __name__ == '__main__': 

    runstrategy() 

 

5. Sample of Building RL Brain (from https://github.com/noootown/Forex-

DQN/blob/master/train/RLBrain.py) 

 

 

import numpy as np 

import tensorflow as tf 

import datetime as dt 

 

from account import Account 

from constants import STOP, BUY, SELL, CLOSE, SHOW_HAND 

from helper import mkdir 

 

np.random.seed(dt.datetime.now().microsecond) 

tf.set_random_seed(dt.datetime.now().microsecond) 

 

class DeepNetwork: 

  def __init__( 

    self, 

    forex, 

    dates, 

    featureNum, 

    config, 

  ): 

    self.forex = forex 

    self.dates = dates 

    self.config = config 

 

    self.episodes = config['episodes'] 

    self.interval = config['interval'] 

 

    self.n_actions = 4 

    self.n_features = featureNum * config['count'] 

    self.lr = config['learning_rate'] 

    self.gamma = config['reward_decay'] 

    self.epsilon_max = config['e_greedy'] if config['isTrain'] else 1 
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    self.replace_target_iter = config['replace_target_iter'] 

    self.memory_size = config['memory_size'] 

    self.batch_size = config['batch_size'] 

    self.epsilon_increment = config['e_greedy_increment'] 

    self.epsilon = 0 if config['e_greedy_increment'] is not None else 

self.epsilon_max 

 

    # account 

    self.initBalance = 100000 

 

    self.isTrain = config['isTrain'] 

    self.dir = config['dir'] 

 

    self.ckptFile = config['ckptFile'] 

    self.ckptSavePeriod = config['ckptSavePeriod'] 

 

    # total learning step 

    self.step = -config['startStep'] 

    self.totalLoss = 0 

    self.totalMaxQ = 0 

    self.r_actions = [] 

 

    # initialize zero memory [s, a, r, s_] 

    self.memory = np.zeros((self.memory_size, self.n_features * 2 + 2)) 

    self.memory_counter = 0 

 

    self.sess = tf.Session() 

 

    # consist of [target_net, evaluate_net] 

    self.buildNet() 

 

    self.saver = tf.train.Saver(max_to_keep = int(self.episodes / 

self.ckptSavePeriod)) 

 

    if config['isLoad'] or not self.isTrain: 

      self.saver.restore(self.sess, 'data/%s/%s' % (self.dir, self.ckptFile)) 

      print('Load data/%s/%s sucessfully!\n' % (self.dir, self.ckptFile)) 

    else: 

      self.sess.run(tf.global_variables_initializer()) 

      print('Apply global initializer!\n') 

 

  def subTrain(self, isTrain, dates): 

    account = Account( 

      balance = self.initBalance, 

      cliOutput = self.config['cliOutput'], 

    ) 

    for date in dates: 
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      self.forex.setDate(date) 

 

      startTime, endTime = self.forex.getTime() 

      price, state = self.forex.getPrice(startTime) 

 

      for time in range(startTime, endTime - self.interval, self.interval): 

        # Q learning start 

        action = self.chooseAction(state, isTrain) 

 

        reward = 0 

        if action == STOP: 

          reward = account.stop() 

        elif action == BUY or action == SELL: 

          reward = account.order( 

            price, # price is at column 0 

            { 

              'type': action, 

              'unit': SHOW_HAND, 

            }, 

            time = time 

          ) 

        elif action == CLOSE: 

          reward = account.closePosition(price, time = time) 

 

        price, state_ = self.forex.getPrice(time + self.interval) 

 

        self.storeTransition( 

          transition = np.hstack((state, [action, reward], state_)), 

          mode = 0 if isTrain else 1, 

        ) 

 

        if isTrain: 

          if self.step > 0 and self.step % self.config['learn_period'] == 0: 

            self.learn() 

          self.step += 1 

 

        state = state_ 

 

    return account.balance 

 

  def train(self): 

    if self.isTrain: 

      print('Start training\n') 

    else: 

      print('Start testing\n') 

 

    for episode in range(self.episodes): 
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      if episode % 10 == 0: 

        print('episode', episode) 

 

      if self.isTrain: 

        epsilonBalance = self.subTrain(isTrain = True, dates = self.dates) 

 

        # to get the actual balance 

        realBalance = self.subTrain(isTrain = False, dates = self.dates) 

 

        self.finishEpisode(episode, epsilonBalance, realBalance) 

      else: 

        if self.config['cliOutput']: 

          print(Account.getCloseHeader()) 

 

        print(self.subTrain(isTrain = False, dates = self.dates)) 

 

    if self.isTrain: 

      print('Finish training\n') 

    else: 

      print('Finish testing\n') 

 

  def optimize(self): 

    if self.config['optimizer'] == 'RMSProp': 

      return tf.train.RMSPropOptimizer( 

        self.lr, 

        decay = 0.9 if self.config['op_decay'] == None else self.config['op_decay'], 

        momentum = 0.0 if self.config['op_momentum'] == None else 

self.config['op_momentum'], 

        epsilon = pow(10, -10) if self.config['op_epsilon'] == None else 

self.config['op_epsilon'], 

      ).minimize(self.loss) 

 

  def buildNet(self): 

    def addLayer( 

            name, 

            input, 

            output_dim, 

            w_init, 

            b_init, 

            c_names, 

            active_fn = None, 

    ): 

      with tf.variable_scope(name): 

        w = tf.get_variable('w', [input.get_shape().as_list()[1], output_dim], 

                            initializer = w_init, collections = c_names) 

        b = tf.get_variable('b', [1, output_dim], initializer = b_init, collections = 

c_names) 



 99 

 

        if active_fn != None: 

          out = active_fn(tf.matmul(input, w) + b) 

        else: 

          out = tf.matmul(input, w) + b 

 

      return out, w, b 

 

    # ------------------ build evaluate_net ------------------ 

    self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s')  # input 

    self.q_target = tf.placeholder(tf.float32, [None, self.n_actions], 

name='Q_target')  # for calculating loss 

 

    # config of layers 

    self.w = {} 

 

    self.w_init = \ 

      tf.random_normal_initializer(self.config['init_w_mean'], 

self.config['init_w_std']) 

    self.b_init = \ 

      tf.constant_initializer(self.config['init_b']) 

 

    active_fn = tf.nn.relu 

 

    with tf.variable_scope('eval_net'): 

      # c_names(collections_names) are the collections to store variables 

      c_names = ['eval_net_params', tf.GraphKeys.GLOBAL_VARIABLES] 

 

      self.w['l1_o'], self.w['l1_w'], self.w['l1_b'] =\ 

        addLayer('l1', self.s, self.config['l1_dim'], self.w_init, self.b_init, c_names, 

active_fn) 

 

      # output layer 

      self.q_eval, self.w['lout_w'], self.w['lout_b'] = \ 

        addLayer('lout', self.w['l1_o'], self.n_actions, self.w_init, self.b_init, 

c_names) 

 

    with tf.name_scope('loss'): 

      self.loss = tf.reduce_sum(tf.squared_difference(self.q_target, self.q_eval)) 

 

    with tf.name_scope('train'): 

      self._train_op = self.optimize() 

 

    # ------------------ build target_net ------------------ 

    self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_')    # input 

    self.t_w = {} 
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    with tf.variable_scope('target_net'): 

      c_names = ['target_net_params', tf.GraphKeys.GLOBAL_VARIABLES] 

 

      self.t_w['l1_o'], self.t_w['l1_w'], self.t_w['l1_b'] = \ 

        addLayer('l1', self.s_, self.config['l1_dim'], self.w_init, self.b_init, c_names, 

active_fn) 

 

      # output layer 

      self.q_next, self.t_w['lout_w'], self.t_w['lout_b'] = \ 

        addLayer('lout', self.t_w['l1_o'], self.n_actions, self.w_init, self.b_init, 

c_names) 

 

    with tf.variable_scope('summary'): 

      # e_XX means with epsilon 

      # r_XX means without epsilon, which is real simulation 

      scalar_summary_tags = ['loss_avg', 'e_balance', 'r_balance', 

                             'q_max', 'q_total', 'epsilon'] 

 

      self.summary_placeholders = {} 

      self.summary_ops = {} 

 

      for tag in scalar_summary_tags: 

        self.summary_placeholders[tag] = tf.placeholder('float32', None, 

name=tag.replace(' ', '_') + '_0') 

        self.summary_ops[tag] = tf.summary.scalar(tag, 

self.summary_placeholders[tag]) 

 

      histogram_summary_tags = ['r_actions'] 

 

      for tag in histogram_summary_tags: 

        self.summary_placeholders[tag] = tf.placeholder('float32', None, 

name=tag.replace(' ', '_') + '_0') 

        self.summary_ops[tag] = tf.summary.histogram(tag, 

self.summary_placeholders[tag]) 

 

    with tf.variable_scope('param'): 

      w_c_names = 'eval_net_params_summaries' 

      histogram_w_tags = ['l1_w', 'l1_b', 'lout_w', 'lout_b'] 

      for tag in histogram_w_tags: 

        tf.summary.histogram(tag, self.w[tag], collections = [w_c_names]) 

 

    if self.isTrain: 

      self.merged = tf.summary.merge_all(key = w_c_names) 

      self.writer = tf.summary.FileWriter('data/' + self.dir, self.sess.graph) 

 

  # state action reward next state 

  # mode: 0: store train 1: store test 
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  def storeTransition(self, transition, mode = 0): 

    # replace the old memory with new memory 

    self.memory[self.memory_counter % self.memory_size] = transition 

    self.memory_counter += 1 

 

  def chooseAction(self, observation, isTrain = True): 

    # to have batch dimension when feed into tf placeholder 

    observation = observation[np.newaxis, :] 

 

    if not isTrain: 

      actions = self.sess.run(self.q_eval, feed_dict={self.s: observation}) 

      action = np.argmax(actions) 

      self.r_actions.append(action) 

 

    elif self.step < 0 or np.random.uniform() >= self.epsilon: 

      action = np.random.randint(0, self.n_actions) 

 

    else: 

      # forward feed the observation and get q value for every actions 

      actions = self.sess.run(self.q_eval, feed_dict={self.s: observation}) 

      action = np.argmax(actions) 

 

    return action 

 

  def replaceTargetParams(self): 

    t_params = tf.get_collection('target_net_params') 

    e_params = tf.get_collection('eval_net_params') 

    self.sess.run([tf.assign(t, e) for t, e in zip(t_params, e_params)]) 

 

  def learn(self): 

    # check to replace target parameters 

    if self.step % self.replace_target_iter == 0: 

      self.replaceTargetParams() 

 

    # sample batch memory from all memory 

    batch_memory =\ 

    self.memory[np.random.choice( 

      self.memory_size\ 

      if self.memory_counter > self.memory_size\ 

      else self.memory_counter, 

      self.batch_size), :] 

 

    q_next, q_eval = self.sess.run( 

      [self.q_next, self.q_eval], 

      feed_dict={ 

        self.s_: batch_memory[:, -self.n_features:], 

        self.s: batch_memory[:, :self.n_features] 
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      }) 

 

    # change q_target w.r.t q_eval's action 

    q_target = q_eval.copy() 

 

    q_target[np.arange(self.batch_size), batch_memory[:, 

self.n_features].astype(LeCun, Bengio, & Hinton)] = \ 

      batch_memory[:, self.n_features + 1] + self.gamma * np.max(q_next, axis=1) 

 

    # train eval network 

    _, self.param_summary, cost = \ 

      self.sess.run([self._train_op, self.merged, self.loss], 

                    feed_dict={self.s: batch_memory[:, :self.n_features], 

                               self.q_target: q_target, 

                               }) 

 

    # increasing epsilon 

    self.epsilon =\ 

      self.epsilon + self.epsilon_increment\ 

      if self.epsilon < self.epsilon_max\ 

      else self.epsilon_max 

    self.totalLoss += cost 

    self.totalQ += q_eval.mean(axis = 1).mean(axis = 0) 

    self.totalMaxQ += np.max(q_eval, axis=1).mean() 

 

  # mode 0: normal save, 1: period save 

  def saveParam(self, dir = 'tmp', mode = 0): 

    subdir = '' 

 

    if mode == 1: 

      subdir = 'history/%s/' % (dir) 

 

    fulldir = 'data/%s/%s' % (self.dir, subdir) 

 

    mkdir(fulldir) 

    self.saver.save(self.sess, '%s%s' % (fulldir, self.ckptFile)) 

 

  def injectSummary(self, tag_dict, episode): 

    summary_str_lists = self.sess.run([self.summary_ops[tag] for tag in 

tag_dict.keys()], { 

      self.summary_placeholders[tag]: value for tag, value in tag_dict.items() 

    }) 

    for summary_str in summary_str_lists: 

      self.writer.add_summary(summary_str, episode) 

 

    self.writer.add_summary(self.param_summary, episode) 
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  def finishEpisode(self, episode, epsilonBalance, realBalance): 

    if self.step > 0: 

      injectDict = { 

        # scalar 

        'loss_avg': self.totalLoss, 

        'e_balance': epsilonBalance, 

        'r_balance': realBalance, 

        'epsilon': self.epsilon, 

        'q_max': self.totalMaxQ, 

        'q_total': self.totalQ, 

        # histogram 

        'r_actions': self.r_actions, 

      } 

      self.injectSummary(injectDict, episode) 

 

      self.saveParam(mode = 0) 

      if episode % self.ckptSavePeriod == 0: 

        self.saveParam(dir = '%d' % (episode), mode = 1) 

 

    self.r_actions = [] 

    self.totalLoss = 0 

    self.totalQ = 0 

    self.totalMaxQ = 0 

 

6. Sample of DQN trade  
(From https://github.com/jjakimoto/DQN/blob/master/model/dqn.py) 

 

import tensorflow as tf 

from keras.layers.convolutional import Convolution2D 

from keras.layers.pooling import MaxPooling2D  

from keras.layers.core import Flatten, Lambda 

from keras.models import Sequential 

from keras.layers import BatchNormalization 

from keras.layers import Activation 

from keras.layers.core import Dense 

from keras.engine.topology import Merge 

from keras.layers.advanced_activations import PReLU 

from keras.layers import SpatialDropout2D 

from keras.layers import Dropout, Reshape 

from keras import backend as K 

import numpy as np 

import pandas as pd 

import time 

# local library 

from memory import SequentialMemory 

 

class DQN(object): 



 104 

    """Deep Q-Learning Networ 

     

    Basend on DQN and Multiscale CNN, find the optimal time to  

    exit from a stock market. 

     

    Available function 

    - build_model: build network based on tensorflow and keras 

    - train: given DateFrame stock data, train network 

    - predict_action: givne DataFrame stock data, return optimal protfolio 

    """ 

     

    def __init__(self, config): 

        """initialized approximate value function 

         

        config should have the following attributes 

         

        Args: 

            device: the device to use computation, e.g. '/gpu:0' 

            gamma(float): the decay rate for value at RL 

            history_length(LeCun et al.): input_length for each scale at CNN 

            n_feature(LeCun et al.): the number of type of input  

                (e.g. the number of company to use at stock trading) 

            n_history(LeCun et al.): the nubmer of history that will be used as 

input 

            n_smooth, n_down(LeCun et al.): the number of smoothed and down 

sampling input at CNN 

            k_w(LeCun et al.): the size of filter at CNN 

            n_hidden(LeCun et al.): the size of fully connected layer 

            n_batch(LeCun et al.): the size of mini batch 

            n_epochs(LeCun et al.): the training epoch for each time 

            update_rate (0, 1): parameter for soft update 

            learning_rate(float): learning rate for SGD 

            memory_length(LeCun et al.): the length of Replay Memory 

            n_memory(LeCun et al.): the number of different Replay Memories 

            alpha, beta: [0, 1] parameters for Prioritized Replay Memories 

        """ 

        self.device = config.device 

        self.save_path = config.save_path 

        self.is_load = config.is_load 

        self.gamma = config.gamma 

        self.history_length = config.history_length 

        self.n_stock = config.n_stock 

        self.n_feature = config.n_feature 

        self.n_smooth = config.n_smooth 

        self.n_down = config.n_down 

        self.k_w = config.k_w 

        self.n_hidden = config.n_hidden 
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        self.n_batch = config.n_batch 

        self.n_epochs = config.n_epochs 

        self.update_rate = config.update_rate 

        self.alpha = config.alpha 

        self.beta = config.beta 

        self.lr = config.learning_rate 

        self.memory_length = config.memory_length 

        self.n_memory = config.n_memory 

        # the length of the data as input 

        self.n_history = max(self.n_smooth + self.history_length, (self.n_down + 

1) * self.history_length) 

        print ("building model....") 

        # have compatibility with new tensorflow 

        tf.python.control_flow_ops = tf 

        # avoid creating _LEARNING_PHASE outside the network 

        K.clear_session() 

        self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, 

log_device_placement=False)) 

        K.set_session(self.sess) 

        with self.sess.as_default(): 

            with tf.device(self.device): 

                self.build_model() 

        print('finished building model!') 

     

    def train(self, input_data, noise_scale=0.1): 

        """training DQN, which has two actions: 0-exit, 1-stay 

         

        Args: 

            data (DataFrame): stock price for self.n_feature companies 

        """ 

        stock_data = input_data.values 

        date = input_data.index 

        T = len(stock_data) 

        self.noise_scale = noise_scale 

         

        # frequency for output 

        print_freq = int(T / 100) 

        if print_freq == 0: 

            print_freq = 1 

        print ("training....") 

        st = time.time() 

        #  udpate rate for prioritizing parameter 

        db = (1 - self.beta) / 1000 

         

        # result for return value 

        values = [[] for _ in range(self.n_stock)] 

        date_label = [[] for _ in range(self.n_stock)] 
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        date_use = [] 

        stock_use = [] 

        # will not train until getting enough data 

        t0 = self.n_history + self.n_batch 

        self.initialize_memory(stock_data[:t0], scale=noise_scale) 

        save_data_freq = 10 

        save_weight_freq = 10 

        count = 0 

        input_data.to_csv("stock_price.csv") 

        for t in range(t0, T): 

            stock_use.append(stock_data[t]) 

            date_use.append(date[t]) 

            action = self.predict_action(stock_data[t]) 

            for i in range(self.n_stock): 

                if action[i] == 0: 

                    date_label[i].append(date[t]) 

                    values[i].append(stock_data[t][i]) 

            self.update_memory(stock_data[t]) 

            count += 1 

            for epoch in range(self.n_epochs):     

                # select transition from pool 

                self.update_weight() 

                # update prioritizing paramter untill it goes over 1 

            self.beta  += db 

            if self.beta >= 1.0: 

                self.beta = 1.0 

            idx = np.random.randint(0, self.n_memory) 

             

            experiences, weights = self.memory[idx].sample(self.n_batch, 

self.n_history, self.alpha, self.beta) 

            max_idx = self.get_max_idx(experiences.state1) 

            target_value = self.sess.run(self.target_value, 

                                     feed_dict={self.state_target: experiences.state1, 

                                 self.reward: experiences.reward, 

                                               self.max_idx_target: max_idx}) 

             

            if t % print_freq == 0: 

                print ("time:",  date[t]) 

                error = self.sess.run(self.error, 

                              feed_dict={self.state: experiences.state0, 

                                         self.target: target_value, 

                                         self.reward: experiences.reward, 

                                         K.learning_phase(): 0}) 

                print("error:", np.mean(error)) 

                action = self.predict_action(stock_data[t]) 

                print("portfolio:", action) 

                print ("elapsed time", time.time() - st) 
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print("*********************************************************

***********") 

                 

            if count % save_data_freq == 0: 

                for i in range(self.n_stock): 

                    result = pd.DataFrame(values[i], 

index=pd.DatetimeIndex(date_label[i])) 

                    result.to_csv("exit_result_{}.csv".format(i)) 

                data_use = pd.DataFrame(stock_use, 

index=pd.DatetimeIndex(date_use)) 

                data_use.to_csv("stock_price.csv") 

                 

            if count % save_weight_freq == 0: 

                save_path = self.saver.save(self.sess, self.save_path) 

                print("Model saved in file: %s" % self.save_path) 

 

        save_path = self.saver.save(self.sess, self.save_path) 

        print("Model saved in file: %s" % self.save_path) 

        print ("finished training") 

         

        return [pd.DataFrame(values[i], index=pd.DatetimeIndex(date_label[i])) 

for i in range(self.n_stock)] 

     

    def predict_action(self, state): 

        """Preduct Optimal strategy 

         

        Args: 

            state(float): stock data with size: [self.n_stock, ] 

        Retrun: 

            integer: 0-exit, 1-stay 

        """ 

        pred_state = self.memory[0].sample_state_uniform(self.n_batch, 

self.n_history) 

        new_state = pred_state[-1] 

        new_state = np.concatenate((new_state[1:], [state]), axis=0) 

        pred_state = np.concatenate((pred_state[:-1], [new_state]), axis=0) 

        action = self.max_action.eval( 

            session=self.sess, 

            feed_dict={self.state: pred_state, K.learning_phase(): 0})[-1] 

        return action 

     

    def update_weight(self): 

        """Update networks' parameters and memories""" 

        idx = np.random.randint(0, self.n_memory) 

        experiences, weights = self.memory[idx].sample(self.n_batch, 

self.n_history, self.alpha, self.beta) 
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        max_idx = self.get_max_idx(experiences.state1) 

        # get target value for optimization 

        target_value = self.sess.run(self.target_value, 

                                     feed_dict={self.state_target: experiences.state1, 

                                 self.reward: experiences.reward, 

                                               self.max_idx_target: max_idx}) 

        # optimize network 

        self.sess.run(self.critic_optim,  

                      feed_dict={self.state: experiences.state0, 

                                 self.target: target_value, 

                                 self.weights: weights, 

                                 self.learning_rate: self.lr, 

                                 K.learning_phase(): 1})   

        # compute errors to determine prioritizing ratio 

        error = self.sess.run(self.error, 

                              feed_dict={self.state: experiences.state0, 

                                         self.target: target_value, 

                                         self.reward: experiences.reward, 

                                         K.learning_phase(): 0}) 

        self.memory[idx].update_priority(error) 

        # softupdate for critic network 

        old_weights = self.critic_target.get_weights() 

        new_weights = self.critic.get_weights() 

        weights = [self.update_rate * new_w + (1 - self.update_rate) * old_w 

                   for new_w, old_w in zip(new_weights, old_weights)] 

        self.critic_target.set_weights(weights) 

         

    def initialize_memory(self, stocks, scale=10): 

        self.memory = [] 

        for i in range(self.n_memory): 

            self.memory.append(SequentialMemory(self.memory_length)) 

        for t in range(len(stocks)): 

            for idx_memory in range(self.n_memory): 

                action = None 

                reward = np.concatenate((np.reshape(stocks[t], (self.n_stock, 1)), 

np.zeros((self.n_stock, 1))), axis=-1) 

                self.memory[idx_memory].append(stocks[t], action, reward) 

         

    def update_memory(self, state): 

        """Update memory without updating weight""" 

        for i in range(self.n_memory): 

            self.memory[i].observations.append(state) 

            self.memory[i].priority.append(1.0) 

        # to stabilize batch normalization, use other samples for prediction 

        pred_state = self.memory[0].sample_state_uniform(self.n_batch, 

self.n_history) 

        for i in range(self.n_memory): 
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            action_off = None 

            reward_off = np.concatenate((np.reshape(state, (self.n_stock, 1)), 

np.zeros((self.n_stock, 1))), axis=-1) 

            self.memory[i].rewards.append(reward_off) 

            self.memory[i].actions.append(action_off) 

     

    def get_max_idx(self, state): 

        max_action = self.sess.run(self.max_action_target, 

feed_dict={self.state_target: state}) 

        shape = max_action.shape 

        max_idx = [] 

        for i in range(shape[0]): 

            for j in range(shape[1]): 

                max_idx.append([i, j, max_action[i][j]]) 

        return np.array(max_idx, dtype=int) 

     

     

    def build_model(self): 

        """Build all of the network and optimizations 

         

        just for conveninece of trainig, seprate placehoder for train and target 

network 

        critic network input: [raw_data, smoothed, downsampled] 

        """ 

        self.critic = self.build_critic() 

        self.critic_target = self.build_critic() 

        # transform input into the several scales and smoothing 

        self.state =  tf.placeholder(tf.float32, [None, self.n_history, self.n_stock], 

name='state') 

        self.state_target = tf.placeholder(tf.float32, [None, self.n_history, 

self.n_stock], name='state_target') 

        # reshape to convolutional input 

        state_ = tf.reshape(self.state, [-1, self.n_history, self.n_stock, 1]) 

        state_target_ = tf.reshape(self.state_target, [-1, self.n_history, 

self.n_stock, 1]) 

        raw, smoothed, down = self.transform_input(state_) 

        raw_target, smoothed_target, down_target = 

self.transform_input(state_target_) 

         

        # build graph for citic training 

        input_q = [raw,] +  smoothed + down 

        self.Q = self.critic(input_q) 

        self.max_action = tf.argmax(self.Q, dimension=2) 

        # target network 

        input_q_target = [raw_target,] +  smoothed_target + down_target 

        Q_target = self.critic_target(input_q_target) 
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        self.reward = tf.placeholder(tf.float32, [None, self.n_stock, 2], 

name='reward') 

        double_Q = self.critic(input_q_target) 

        self.max_action_target = tf.argmax(double_Q, 2) 

        self.max_idx_target = tf.placeholder(tf.int32, [None, 3], "double_idx") 

        Q_max = tf.gather_nd(Q_target, self.max_idx_target) 

        Q_max = tf.reshape(Q_max, [-1, self.n_stock, 1]) 

        Q_value = tf.concat(2, (tf.zeros_like(Q_max), Q_max)) 

        self.target_value = self.reward  + self.gamma * Q_value 

        self.target_value = tf.cast(self.target_value, tf.float32) 

        self.target = tf.placeholder(tf.float32, [None, self.n_stock, 2], 

name="target_value") 

        # optimization 

        self.learning_rate = tf.placeholder(tf.float32, shape=[], 

name="learning_rate") 

        # get rid of bias of prioritized 

        self.weights = tf.placeholder(tf.float32, shape=[None], name="weights") 

        self.loss = tf.reduce_mean(self.weights * 

tf.reduce_sum(tf.square(self.target - self.Q), [1, 2]), name='loss') 

        # TD-error for priority 

        self.error = tf.reduce_sum(tf.abs(self.target - self.Q), [1, 2]) 

        self.critic_optim = tf.train.AdamOptimizer(self.learning_rate) \ 

            .minimize(self.loss, var_list=self.critic.trainable_weights) 

         

        self.saver = tf.train.Saver() 

        is_initialize = True 

        if self.is_load: 

            if self.load(self.save_path): 

                print('succeded to load') 

                is_initialize = False 

            else: 

                print('failed to load') 

         

        # initialize network 

        tf.initialize_all_variables().run(session=self.sess) 

        weights = self.critic.get_weights() 

        self.critic_target.set_weights(weights) 

         

    def build_critic(self): 

        """Build critic network 

         

        recieve transformed tensor: raw_data, smooted_data, and 

downsampled_data 

        """ 

        nf = self.n_feature 

        # layer1 

        # smoothed input 
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        sm_model = [Sequential() for _ in range(self.n_smooth)] 

        for m in sm_model: 

            m.add(Lambda(lambda x: x,  input_shape=(self.history_length, 

self.n_stock, 1))) 

            m.add(Convolution2D(nb_filter=nf, nb_row=self.k_w, nb_col=1, 

border_mode='same')) 

            m.add(BatchNormalization(mode=2, axis=-1)) 

            m.add(PReLU()) 

        # down sampled input 

        dw_model = [Sequential() for _ in range(self.n_down)] 

        for m in dw_model: 

            m.add(Lambda(lambda x: x,  input_shape=(self.history_length, 

self.n_stock, 1))) 

            m.add(Convolution2D(nb_filter=nf, nb_row=self.k_w, nb_col=1, 

border_mode='same')) 

            m.add(BatchNormalization(mode=2, axis=-1)) 

            m.add(PReLU()) 

        # raw input 

        state = Sequential() 

        nf = self.n_feature 

        state.add(Lambda(lambda x: x,  input_shape=(self.history_length, 

self.n_stock, 1))) 

        state.add(Convolution2D(nb_filter=nf, nb_row=self.k_w, nb_col=1, 

border_mode='same')) 

        state.add(BatchNormalization(mode=2, axis=-1)) 

        state.add(PReLU()) 

        merged = Merge([state,] + sm_model + dw_model, mode='concat', 

concat_axis=-1) 

        # layer2 

        nf = nf * 2 

        model = Sequential() 

        model.add(merged) 

        model.add(Convolution2D(nb_filter=nf, nb_row=self.k_w, nb_col=1, 

border_mode='same')) 

        model.add(BatchNormalization(mode=2, axis=-1)) 

        model.add(PReLU()) 

        model.add(Flatten()) 

        # layer3 

        model.add(Dense(self.n_hidden)) 

        model.add(BatchNormalization(mode=1, axis=-1)) 

        model.add(PReLU()) 

        # layer4 

        model.add(Dense(int(np.sqrt(self.n_hidden)))) 

        model.add(PReLU()) 

        # output 

        model.add(Dense(2 * self.n_stock)) 

        model.add(Reshape((self.n_stock, 2))) 
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        return model 

     

    def transform_input(self, input): 

        """Transform data into the Multi Scaled one 

         

        Args: 

            input: tensor with shape: [None, self.n_history, self.n_stock] 

        Return: 

            list of the same shape tensors, [None, self.length_history, self.n_stock] 

        """ 

        # the last data is the newest information 

        raw = input[:, self.n_history - self.history_length:, :, :] 

        # smooth data 

        smoothed = [] 

        for n_sm in range(2, self.n_smooth + 2): 

            smoothed.append( 

                tf.reduce_mean(tf.pack([input[:, self.n_history - st - 

self.history_length:self.n_history - st, :, :] 

                                        for st in range(n_sm)]),0)) 

        # downsample data 

        down = [] 

        for n_dw in range(2, self.n_down + 2): 

            sampled_ = tf.pack([input[:, idx, :, :]  

                                for idx in range(self.n_history-n_dw*self.history_length, 

self.n_history, n_dw)]) 

            down.append(tf.transpose(sampled_, [1, 0, 2, 3])) 

        return raw, smoothed, down 

     

    def load(self, checkpoint_dir): 

        print(" [*] Reading checkpoints...") 

        try: 

            self.saver.restore(self.sess, self.save_path) 

            return True 

        except: 

            return False 
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