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Agreement on word-object pairing in communication depends on the intensity 

of belief that gradually emerges in a society of agents under the condition that no one 

is born with embedded knowledge. In know-nothing word-object pairing, the agents in 

communication find meaning until they reach a consensus on what an object should be 

called. A language game is a social process of finding agreement on word-object pairing 

which enables its communication in a multi-agent system. In this research, techniques 

are proposed to discover the association between a word and agents’ beliefs on an object 

using self-organizing maps and flexible searching with a cultural algorithm to find the 

meaning for concepts in a space that retains the agents’ beliefs in three quality 

dimensions represented by colors: red, green, and blue. The techniques were evaluated 

in a variety of scenarios using four significant measures: coherence, specificity, success 

rate, and word count. The results show that social agents were able to quickly reach 

mutual agreement for multiple listeners by searching their social beliefs and using a 

cultural algorithm to search for cultural beliefs. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Motivation  

 

The meaning of an object is represented in the world by humans using language 

symbols, but in relation to what? Humans use meaning to identify an object in the world 

for communication purposes. Each community has the same meaning for the same 

object, but they represent it in language symbols in different ways. There must be some 

rules for each community related to their use of symbols to find meaning, and this 

phenomenon has been investigated since the early twentieth century by both Ferdinand 

de Saussure (a Swiss linguist (1857-1913)) and Charles Sanders Pierce (an American 

logician (1839-1914)), both helping to lay down the foundations of semiology. Their 

ideas had a significant effect to Ludwig Wittgenstein (known primarily as a philosopher 

in logic), not directly but by being partly communicated to him via Frank Ramsey 

(Pietarinen, 2003).  

Wittgenstein defined a language game, i.e. “rule, “use”, and “play with rule”, in 

his writings named “Philosophical Investigations” from the mid-1930s. It inspired 

many of researchers to find the origin of language that humans use with less ambiguity 

and variability for successful communication under the belief that if we discover the 

origin of language, it will also help to discover two important things: first, the origin of 

the mind (referred to as part of artificial life), and second, it can support computation 

linguists with two basic problems: ambiguity and variability, known as polysemy (a 

related sense or meaning), homonymy (an unrelated sense of meaning), and synonymy.  

For example, Stuber, Hassas and Mille (2006) showed that a computer agent helped an 

actor (human) to fulfil her task by providing contextual access to her individual 

experience. To do so, some meanings on simulation in a language game needed to be 

shared by the actor and her assistant (the computer agent) to allow their mutual 
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understanding during this interpretation of the current trace. Moreover, Steels (2010) 

reported that robots (so-called autonomous agents) can communicate not only single 

but multiple words using case grammar, which is a kind of linguistic syntax 

emphasizing on word function.  

They are more uses, as can be seen in a number of papers in literature review 

chapter, especially on the idea of conceptual space presented by Gärdenfors (2000), and 

also Logan’s (2004) recommendation that a time dimension could be used instead of a 

space dimension to form a dynamic cognitive system, namely, the human mind. In the 

article by Loreto, Baronchelli and Puglisi (2010), they indicated that cultural 

negotiation is needed for a hierarchical level: a superior linguistic structure on top of 

the individual-dependent discrimination layer. When concepts come from the 

perception of the physical world mapped by language in some spaces of the brain plus 

the time dimension, then time in a language game serves in this way, as found in some 

parts of the physical dimension space suggested by Lindh-Knuutila, Honkela and Lagus 

(2006) and Beule and Bleys (2010), and some parts of the time dimension space 

suggested by Lenaerts, Jansen, Tuyls and Vylder (2005).  

 

1.2 The Research Objective 

 

There is little research on conceptual space implemented for multiple listeners 

that includes a time dimension, such as cultural belief. Furthermore, there are also few 

studies on language games with multiple listeners. Even in the research of Li, Chen and 

Chow (2013), there is still no coverage of conceptual space. 

The aim of this research is to use conceptual space, the time dimension, and 

multiple listeners in language games to better develop agent communication by 

improvements in ambiguity and variability. The research is extended using conceptual 

space with flexible searching in a self-organizing map (SOM) to construct a similar 

conceptual space for supporting improvements in ambiguity using coherence and 

specificity measures. The time dimension is applied along with a cultural algorithm to 

search for global belief, in which all agents hold the same belief, using long runs. 

Additionally, multiple listeners in a cooperative concept are included to support an 

improvement of variability by measuring communication success and lexical item size. 
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1.3 Concept of Meaning 

 

1.3.1 Mental Representation 

 Meaning from a mental standpoint is a form of representation, but what is the 

form? The traditional theory especially refers to picture theory when it refers to an 

object name (Wittgenstein, 2001). However, this theory has one drawback: is the 

picture one individual refers to the same object in another’s mind because both may 

have experienced it in a different way? For example, for a common noun like triangle, 

one speaker may have a mental image of an equilateral triangle whereas another’s might 

be an isosceles or scalene triangle. To relieve this problem, Wittgenstein suggested that 

an individual’s mind has a picture of resemblance. He said, “We see a complicated 

network of similarities overlapping and criss-crossing” (Wittgenstein, 1963: 66). He 

compared the relationships between different games to the family resemblance that 

exists in the appearances of members of the same family. As seen in comparing the 

game Solitaire or a TV game show, for example, we know that they belong to a category 

of game but they might not be defined by any core of shared attributes. Even if using a 

list of necessary and sufficient conditions, the core shared attributes to classify them as 

the same category may not be found. However, family resemblance is a certain set of 

possible attributes which tie the members to the same category. 

 

1.3.2 Prototype Theory 

Rosch and her colleagues, a group of psychologists at the University of 

California at Berkeley, generalized the family resemblance structure of Wittgenstein. 

This group conducted experiments in order to test the category in which subjects were 

asked to consider examples from different categories, like BIRD, VEGETABLE, 

FURNITURE, and CLOTHING, and rate them on a seven-point Likert scale for each 

category: “1” meant that is was considered an excellent example, “4” indicated a 

moderate fit, whereas “7” suggested that it was a very poor example. The results 

showed that agreement was high for the items rated as very good examples of a 

particular category. For example, a robin was the best example of a bird, a pea the best 

example of a vegetable, and a chair the best example of furniture. In accordance with 

these examples, Figure 1.1 shows birdiness rankings from Rosch’s testing.  
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 To summarize, Rosch’s work indicates that people seem to have some idea of 

the characteristics of exemplars to categorize common objects. The decision on 

category is not an exact match; it just has to be sufficiently similar, but not necessarily 

an exact match. This is a so-called prototype in Rosch’s work and family resemblance 

in Wittgenstein’s work.  

 

 

Figure 1.1  Birdiness Rankings 

Source:  Aitchison, 2012: 54. 

 

1.3.3 The Idealized Cognitive Model  

Prototype models have fuzzy boundaries and category members do not all share 

the same discrete features. These ideas form a type of complex classification called 

radial categories that show the typicality effect, which comes from a culture where the 

individuals hold a social belief together. Lakoff (1987) proposed the idealized cognitive 

model theory (ICM) as a prototype for an idealized cognition of social beliefs. For 

example, the word ‘bachelor’ means simply “an unmarried man”, but in some culture 
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it means bachelorhood, and ‘marriage’ (a frame or ICM) is a monogamous union 

between eligible people, typically involving romantic love. In the case of the former 

word, an idealized model about the word ‘bachelor’ forms from general knowledge due 

to its use. Later, this theory plays an important role in the implementation of the cultural 

algorithm.  

 

1.3.4 Conceptual Space 

A mind has something like an idea to represent objects in the world that as a 

prototype can be mapped by symbols or word to form meaningful expression. The 

symbols represent language propositions of various kinds that equate to logical 

relationships, so the mind processing constructs a logical sentence to show its meaning. 

This representation has two levels: one is the meaning in the mind and the other is 

translating the meaning into symbols. This cooperation on two levels is a sentential 

paradigm forming an implicit methodology for much of the research into AI 

(Gärdenfors, 1996). The combination of symbols to form expression in a language of 

thought is referred to as mentalese by the author, who claimed that if mentalese 

processing is likened to computer processing, then the first processing level is mind 

mapping of a thought response to an object in the world and the second level is 

translation of thought to express it in language form, which constitutes metaphorical 

expression between computer and mind processing.  

Sensors and actuators can also be metaphorical in relation to the two levels of 

interconnection in mentalese processing. The sensors accept physical data like weight, 

velocity, etc., while the actuators translate the physical data to make changes driven by 

voltage. However, in the mentalese process, one of the two steps must involve 

symbolism of thought that is not specific to any natural language and the other ensures 

the application of the natural language of a specific community. Furthermore, 

Gärdenfors claimed that in all sentential paradigms, the first step of mental presentation 

cannot be reduced to neurobiological or other naturalistic categories, so it must be 

something that works similarly to a pattern that is a percept.  
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Figure 1.2  Dimensions of Thought in Conceptual Space 

 

For possible simulation in a computer, the geometric conceptual space proposed 

by Gärdenfors is the best one at this time. In brief, space conceptualized as a geometric 

structure is represented as a quality of dimensions. Each dimension represents a world 

perception or feature and the dimensions form the geometric space as a category of the 

perception that represents an example of a prototype, which he later referred to as the 

best example of a prototype.  

 

1.3.5 Linguistic Words 

 To form meaning, some lexemes or semantic words are used to explain 

conceptual representation and the relationship between concepts, as has been stated for 

conceptual networks. In linguistics, a lexeme is represented as a lexical field, which to 

be clear, is also definded as a lexical relation as follows. 

 Homonymy has unrelated sense or meaning whereby an identical word can 

reference a different concept. A homonym is divided in two types: homographs (the 

same written word), and the homophones (the same sounds in a spoken word). For 

example, the word “bank” has two meanings: one for financial institution and the other 

is the land next to a river. 

 Polysemy is where a sign (e.g. word, phrase, or symbol) has multiple meanings. 

For example, the word “hook” in Collins English Dictionary has several distinct but 

similar meanings like 1. a piece of material, usually metal, curved or bent and used to 

suspend, catch, hold, or put something. 2. short for fish-hook. 3. a trap or snare, and 

Feature c 

Feature a 

Feature c 
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also more esoteric meanings, such as “a thing designed to catch people’s attention” 

when referred to in a sales context. However, it is important to note that although 

homonymy is accidental, polysemy is not.   

 Synonymy is used to explain different phonological words which have the same 

or very similar meaning, e.g. large and big are synonyms but are used in different 

situations and with different collocations. It is the opposite of polysemy and 

homonymy, where the same word has a different meaning. Synonymy, homonymy, and 

polysemy are the ambiguity and variability of the most basic and pervasive phenomena 

characterizing lexical semantics. 

 A lexeme is a basic word of a language and may consist of one word or several 

words to form a particular meaning., and a lexicon is an inventory of the lexemes of a 

particular language. An English dictionary is an example of a lexicon of the English 

language. 

 

1.4  Language Game    

 

 To model conceptual space in this study, a simulate language game based 

originally on the notation of Wittgenstein (1963) is used. To demonstrate this, consider 

an example dialogue taken from a language game reported by Loreto et al. (2010) 

between two agents, a speaker and a listener, within a particular contextual setting; their 

language game considered a question about opinion where the meaning as a judgment 

does not only depend on “I think” but on the question, “Don’t you think so?”. 

 

1.4.1 A Simple Language Game 

 Loreto et al. (2010) listed the simplest rules of the language game process as 

follows:  

1)  The speaker randomly selects a topic from the set of topics on the 

current context. 

2)  The speaker retrieves a word from its inventory associated with its 

topic, or, if its inventory is empty, the speaker invents a new word. 

  3)  The speaker utters the selected word to the listener. 
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  4)  The listener searches the word named by the speaker in its inventory 

and that word is associated with the selected topic.  

  5)  If the listener finds that word, it accepts that word. Thus, the 

interaction is a success and both players maintain their inventories only with the 

successful word and delete all the others.  

  6)  If the listener does not find the word associated with the selected topic 

and named by the speaker in its inventory or the word is associated with a different 

topic, the interaction is unsuccessful and the listener updates its inventory by adding an 

association between the new word and the selected topic.  

 

 

 

Figure 1.3  Simple Language Game Examples 

 

 Figure 1.3 is an illustrated example of simple language games. In the 

unsuccessful game, the speaker selects the italicized word (ABC) in the top left figure. 

The listener does not possess that word (ABC), so the speaker adds that word to its 

inventory (top right of the figure). On the other hand, in the successful game, the 

speaker utters the ‘CTA’ word (bottom left of the figure) to the listener and the listener 

Successful game 

Unsuccessful game 

Speaker        Listener 

ABC  XXX 

XYZ  CAT 

CTA  CTA 

Speaker        Listener 

KTC  XXX 

XYZ  CAT 

CTA  CTA 

  ABC 

Speaker        Listener 

ABC  XXX 

XYZ  CAT 

CTA  CTA 

  ABC 

Speaker        Listener 

 

 

CTA  CTA 
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finds that word in its inventory, so the listener accepts that word and both listener and 

speaker erase their inventories except for the accepted word (bottom right). 

 

1.4.2  Category Game 

For higher forms of agreement, the so-called category game focuses on the 

process by which a population of individuals manage to categorize a single perceptually 

continuous channel. Loreto et al. (2010) and described the sequence of a category 

language game (depicted in Figure 1.4) as follows: 

 In the case of game 1: 

1)  In the game, two players, a speaker and a listener, are randomly 

selected from the population. 

2)  Two topics are randomly presented to the two players and the speaker 

first selects the topic (“a” in this example). 

3)  The speaker has to discriminate the chosen topic (“a”) by creating a 

new boundary in the speaker’s rightmost perceptual category at position (a+b)/2. 

4)  The two new categories inherit the word inventory of the parent 

perceptual category (the words “green” and “olive” in this example) along with two 

different new words (“brown” and “blue”).  

5)  Later, the speaker retrieves the words associated with the perceptual 

category that contains the topic.  

6)  There are two possibilities. If a previous successful communication 

has occurred with this perceptual category, the last winning word is chosen, else the 

last created word is selected. 

In this example, the speaker chooses the word “brown” and utters that word to 

the listener. The result of this game is a failure because the listener does not have the 

word “brown” in its inventory. The speaker shows the topic in a non-linguistic way 

(e.g. by ostensive definition or pointing at the topic), then the listener adds the new 

word to its inventory.  

In game 2:  

1)  The speaker chooses topic “a”, finds the topic that was already 

discriminated, and utters the last successful communicated word (the word “green” in 

this example).  
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2)  Both the speaker and the listener  know this word, and so they define 

the topic correctly. This is a successful game because the speaker and the listener 

eliminate all competing words (the word “green” from the perceptual category in this 

example).  

In general, when ambiguities exist, the listener finds the word associated with 

more than one category containing and topic, but these ambiguities may be resolved by 

ordering the words. 

 

 

 

Figure 1.4  Category Language Game Examples 

Source:  Loreto et al., 2010: 273.  

 

1.4.3  Level of Social learning in a Language Game 

 Horizontal, vertical, oblique, and orthogonal transmission are defined levels of 

learning. Horizontal transmission focuses on one generic generation communication 

within a population, while vertical transmission is the communication between different 

generations, like a parent and child. Oblique transmission addresses communication 

between different role-relationships within a culture and also different cultures. 

Orthogonal transmission is a special case because it combines horizontal and oblique 

transmission to solve conflicts caused by genetic and cultural differences.   
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The acquisition framework is a major form of cultural transmission. Gong 

(2010) created the framework for cultural transmission with three levels (horizontal, 

vertical, and oblique) as shown in Figure 1.5.  

 

 

Figure 1.5  Cultural Transmission with 3 Levels 

Source:  Gong, 2010: 3. 

  

1.4.4 Types of Language Game  

 There are several types of simulated language games compartmentalized into 

three categories according to Lindh-Knuutila et al. (2006) as follows: 

 1)  Observational games: the speaker and listener know in advance the 

topic of the game. The listener learns the name the speaker uses for that topic, whereby 

learning is associative. For the proposal in this study, categorization is mostly similar 

to an observational game. 

 2)  Guessing game: the players (a speaker and a listener) are presented 

with a small number of topics. The listener must guess which topic is the one the 

speaker is referring to. However, at the end of game, the speaker gives corrective 

feedback to the listener as to whether the guessed word was right or not. 

 3) Selfish game: the listener does not receive any feedback on words from 

the speaker, thus the listener must infer the meanings of words from their co-

occurrences in different contexts or situations. The game is called ‘selfish’ because the 

speaker does not care whether the listener clearly understands or not. 

Adult 

population 

Child 

population 

Oblique transmission (Adult to child) 

Vertical transmission (Parent to child) 

Horizontal transmission (Child to child) 



 

CHAPTER 2 

 

LITERATURE REVIEW 

There are many related approaches to language games, but researchers have 

rarely investigated the concept space with many listeners using SOMs and including a 

time dimension with a cultural algorithm. In general, language game searches for 

cooperative cognition in a society to do with its community, and so researchers have 

presented many inter-disciplinary methods to study this. However, the main functions 

in language games can be used to form new concepts with the help of topics associated 

with them.  

 

2.1 Forming a Concept 

 

2.1.1 Using Conceptual Space 

 Since Gärdenfors (2000) introduced conceptual space based on geometric form, 

many studies such as the one by Chella, Frixione and Gaglio (2001) have shown how 

to implement conceptual spaces for the computer vision-based idea of Gärdenfors by 

defining conceptual semantics of the symbols-grounded data from sensors. Gärdenfors 

defined three levels of conceptual representation: sub-conceptual space, conceptual 

space, and symbolic. The data objects from cameras consist of complex data with many 

qualities reduced to a simple form for the presentation of sub-conceptual space, which 

then becomes conceptual space with a set of convex concepts to represent the semantic 

region mapped to symbolic words. Figure 2.1 shows the relationship between the three 

level of Gärdenfors’ idea and the general architecture of computer vision. To map 

meaning to symbolic words, the semantic regions in the internal structure of concepts 

based on a geometric dimensional map is converted to 3D primitive shapes and also 

labelled with words. The basic shapes are defined by Mortenson (1997) using 

Constructive Solid Geometry (CSG) that later became widely used in computer 
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graphics. CSG representation is based on super-quadrics that are geometric shapes 

according to Gärdenfors’ concept.   

 

 

 

Figure 2.1  Mapping the Three Levels of Concept for Computer Vision Architecture 

 

 

 

Figure 2.2  Mapping of 3D Primitive Shapes to a Symbolic Inventory 

 

 A SOM is another structure that can be implemented using conceptual space, as 

suggested by Lindh-Knuutila et al. (2006) who investigated conceptual space using 

SOMs with three color dimensions (red, green, and blue) and using the social dimension 

as a rule for an observation game to form constraints on conceptual space that can then 

be considered as part of a symbolic level. Objects that are played in the language game 

 

Camera 

Intermedia 

presentation 

Symbolic 

presentation 

Sub-concept 

Concept 

Cylinder     Box Symbolic Inventory 

Conceptual Space 
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are colors that are mapped to the best map unit in the SOM structure and later labeled 

with words. However, in the gameplay, patterned structures in the SOM must be trained 

with eight different prototypical colors as if it were a baby within who the brain is not 

yet fully developed. The reasons why they used colors as objects for topics played in 

the language game are that object color observation and storage unit have a similar 

structure; they have the same three dimension features (red, green, and blue), and 

therefore communication is established easily. Moreover, this is an example that shows 

how success leads to meaning in environments of language game simulations. 

However, this simulation lacked another dimension that serves to improve the quality 

of conceptual space and should also be taken into consideration: the time dimension as 

a cultural constraint.  

An SOM has many nodes that are memorized objects mapped to a region of its 

structure: so-called object belief. The mapping pairs have beliefs about objects that are 

updated from players’ experiences in a language game. Figure 2.3 shows lexemes 

mapped to nodes in an SOM structure in an experimental language game reported by 

Lindh-Knuutila et al. (2006). As seen on this figure, many of the lexemes contain 

instances of homonymy, polysemy, and/or synonymy. 

 

 

 

Figure 2.3  Two Example Conceptual Maps Implemented with SOM 

Source:  Lindh-Knuutila et al., 2006: 177. 

 

 Beule and Bleys (2010) develop a model showing that language concerning 

color terms freely change from the Old English period (c. 600-1150) to the Middle 
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English period (c. 1150-1500) without any extra level of competition and selection 

between two explicitly represented and predefined language strategies. To create 

models, they constructed a similar conceptual space but defined perceptual space using 

the standard Euclidian distance in color space. The perceptual and the conceptual spaces 

comprise a geometric structure, so it may be claimed that perceptual space is another 

form of conceptual space. Each player perceives colors as points in its private 

perceptual color space and its linguistic inventory. All example colors linked to the 

same term are said to form a linguistic category, so this technique is similar to the 

category language game described in chapter 1. 

 A statistical method such as principal component analysis (PCA) is a way to 

reduce the dimensionality of a dataset in the processing of sub-conceptual space layer 

(recall that this layer is the internal process to form a concept). McGovern, Lawry and 

Leonards (2014) used this technique to model conceptual space by focusing on 

vagueness. They defined conceptual space with two properties: the prototype, which is 

object knowledge defined within the conceptual space; and the threshold, which is a 

random variable representing an agent’s estimate of an object’s vagueness using the 

radius of the region corresponding to conceptual space. As can be seen in Figure 2.4, 

the concept is defined by a prototype P and a threshold ε, whose size is obtained by 

probability.   

 

 

 

Figure 2.4  The Representation of a Concept in 2-Dimension Conceptual Space Ω 

Source:  McGovern et al., 2014: 2. 
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Before forming conceptual space, PCA can be applied to analyze the data from, 

for instance, an artificial fingertip (see Figure 2.5) to construct a viable feature space. 

The data on the features of a cloth’s texture must be ignored as it is the least significant, 

i.e. the dimension along which there is minimal variance. Hence, the significant data is 

then the quality of the dimension formed conceptual space. 

 

 

 

Figure 2.5  An Artificial Fingertip Reading Features on Texture 

Source:  McGovern et al., 2014: 2. 

 

2.1.2  Non-use of Conceptual Space 

 There a number of non-uses of conceptual space, and all of them can form 

concepts by using graph theory. 

Using a network of lexemes to form a concept can be found in the study of 

Lipowska and Lipowiski (2012). Nodes are linked within an adaptive weighted 

network, in which each agent has a lexicon acting as linked nodes to form a network of 

semantics. This means that a concept contains at least one network, and there can be 

many networks for each concept. However, in the process of learning words from 

communications that succeed or fail to readjust a weighted link, a pair of successful 

communications between agents is selected by 

 

   ��� =
���

∑ ���
�
���

 , 

where the weights are 
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                          ��� =  � 
��� + ∈ ��� � ≠ �

0         ���  � = �
, 

 

for i, j = 1, 2, …, N. The (positive and typically small) parameter ∈ ensures that 

a speaker can sometimes play the language game with agents with which its up-to-now 

communicative success rate is very small or even zero.  

When using this network, each pair of the successful communications is 

memorized and kept as historical data, so the next time the successful word can be 

picked. Figure 2.4 shows the final stage for modeling a concept based on this network.  

 

 

 

 

 

 

 

 

Figure 2.6  An Adaptive Weighted Network in the Final Stage of the Coarsening 

Process 

  

The steps played in the language game in this model are as follows: (i) a black 

speaker (a black circle) selects a white listener (a white circle), which results in failure, 

and the white listener adds the word used by the black speaker to its lexicon; (ii) the 

white agent selected as a speaker utters the word to the black listener and the word it 

chooses to communicate is the one acquired in step (i), so this second step is successful. 

 The matrix for a lexicon is similar to the network but has the different way of 

updating the object-word pairing. Forming the matrix found in the simulation of 

Lenaerts et al. (2005), the following  formula for creating a lexicon shows a number of 

words mapped with their meanings: 

 

 Lexicon = { (d1, w1), (d2, w2),…,(dj,w2), …,(dk, wl), ..}, 
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where d is the meaning of a particular object, and w is the word mapped to meaning d. 

They fixed the number of meanings and words to keep things simple, even though 

unrealistic in practice. The word-meaning associations can be used in matrix n = (d x 

w), and associated with value v: a specifier of the strength of association between a 

particular meaning and word having a range of 0 to 1. Hence, a value close to 1 means 

a strong relationship and one close to 0 means the opposite. With this representation, 

the lexical matrix behaves like an adaptive weighted network. The specifiers can also 

be represent in matrix form as (Lenaerts, et al., 2005: 568) 

 

�� =  

⎝

⎜
⎛

���
� ⋯ ���

�

⋮ ⋱ ⋮

���
� ⋯ ���

�

⎠

⎟
⎞

 

 

The BA scale-free network found in Guo, Meng and Liu (2014) is a kind of 

network topology used to implement the formation of concepts in a language game. At 

each step in this network, a new node with m edges is preferentially attached to nodes 

in the existing network. The process is repeated until there are N nodes that avoid 

reconnection and self-connection, so the average degree of the BA scale-free network 

is approximately equal to 2m, and the minimal language game that evolved is as 

follows: 

1)  At the first step, the speaker i is selected from a random node and 

proposes an opinion z with probability �� =  
��

�

∑ ��
�

�
, where v is the sum of all opinions 

in node i and F is the freshness.   

2)  The listener is selected from j neighbors, and if the jth listener has an 

opinion z, the negotiation is successful, the freshness of opinion z is renewed as  

 ��
� = ���

� + (1 − �),  where � =
�

∝
 (α is the personal ability to accept a new opinion), 

and the other opinions u in the memory of j are revised as  ��
� = ���

�. Otherwise, 

the game fails and adds opinion z to the memory of j. 
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3)  After the negotiation has finished, the listener checks all opinions in 

the memory of j. If the opinion freshness goes to 0, the opinion and its freshness will 

both be dropped. 

The key evolution of this game is that the model can reflect the common 

behavior in agents’ (node) memories. For α > 2, so β < 0.5 and the freshness of the 

latest transmitted opinion will increase. Note that in the language, there is no mention 

of topics or objects with meaning. 

 

2.2 Acquiring a Correct Concept  

 

A language game plays an important role in finding a correct concept. Recall 

that a language game (sometimes called a naming game) is used to find word 

agreement, so a word has no meaning if it is used in a private language and its use 

means nothing between agents if its meaning is not communicated. Thus, a language 

game is used as a tool for ostensive definitions in communications between agents. 

 

2.2.1 Learning Process 

Learning by ostensive definition contributes to general learning in language 

games. After setting one actor as a speaker and another as a listener, the speaker points 

out a thing to the listener then utters a word to refer to that thing. In this way, the listener 

learns a new word from the speaker.  

Ostensive definition is simple to explain, but Ryan (2004) added more detail 

using Kripke-Wittgenstein’s skeptical solution to give an account of a language game 

in terms of negotiations about the meaning of expression. An interesting point in this 

paper is negotiation by stealth occurring in the background; his epistemic analysis 

showed that if the listener considers the speaker to be more authoritative than him or 

herself, then the listener is more likely to believe the speaker. Hence, belief and 

authority make intuitive research an idea on how to properly manage each agent’s belief 

in the language game.  In Lindh-Knuutila et al.’s (2006) study, they counted word-

meaning pairs in successful games using a counter newly defined as a belief playing an 

important role in mapping word-object pairs.  
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Some studies have defined other ways to maintain belief, such as using a 

specifier for keeping strengths or weaknesses (Lenaerts et al., 2005), using weights 

between nodes in a network (Lipowska and Lipowiski, 2012), and using the evolution 

of freshness in a free-scale network (Guo et al., 2014). However, all of these are similar 

to retaining belief based on experience from incurred successes or failures. 

Additionally, a utility to negotiate by stealth is used to maintain the capacity to 

communicate with each other as a maximizing utility considered to be a consensus of 

multiple listeners. Although it is not a real consensus, it is similar to the cooperative 

concept of listeners, thus the idea of ensuring that a game has multiple listeners in order 

to encourage cooperative belief is included in this study. 

 

2.2.2 Reducing Learning Time 

 Meaning can gradually change to make new agreement when sharing it in a 

society, something which is inevitable over time. During the enactment of language 

games, interactions of meaning might change the meaning, so time must be considered. 

There are many algorithms to speed up the consensus of agreement.  

The view of Lenaerts et al. (2005) on society and culture is another study that 

emphasizes on cultural transmission. They claimed that horizontal and oblique 

structures occur within one genetic generation, thus there is a difference between 

genetic and cultural time. Subsequently, they provided an alternative mathematical 

framework that incorporates those features of a cultural evolution system which are 

orthogonal in their model and are claimed to reduce learning time more compared to 

other cultural transmission systems. In computer science, an algorithm coupled with 

their approach creates a genetic algorithm that can incorporate those features of a 

cultural evolution system in a natural and clever mathematical way.  

 Lipowska and Lipowiski (2012) examined a naming game using an adaptive 

weighted network. A weight of connection for a pair of agents depends on their 

communication success rate and determines the roulette rule probability with which the 

agents communicate. In this way, they preferably select agents who have communicated 

successfully; this is often used with an evolutionary algorithm but not genetic evolution.  

 Guo et al. (2014) recommended modeling a free-scale network to improve the 

success rate by increasing the number of people accepting a particular opinion for a 
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single transmission; to improve of frequency of publishing opinion, increase the 

number of publishers, and enhance personal ability to accept new information. 

There have recently been studies investigating the use of multiple listeners (Li 

et al., 2013) and multiple parties (Lorkiewicz and Katarzyniak, 2014; Maity, 

Mukherjee, Tria and Loreto, 2013; Yuan, Chen and Chan, 2013) where one party may 

eavesdrop on conversations involving other parties. This approach simulates the 

incidence of agents simultaneously playing two roles, both as speaker and listener. 

However, knowledge sharing for speaking with meaning and listening with 

understanding in real life should also come from a social gathering (Roche, Barnes-

Holmes, Barnes-Holmes and Hayes, 2002; Lipowska and Lipowiski, 2012), i.e. cultural 

knowledge for individuals to adjust their beliefs (likened to social introspection). 

Moreover, specific domain knowledge is used to promote desirable knowledge or to 

reduce searching for desirable knowledge. It can give the game system a better 

opportunity to reach desirable words more quickly. For this reason, the cultural 

algorithm by Reynolds (1999) is included as a social process for maintaining norms of 

the community and thus reducing ambiguity and variability that are also primary 

functions in computational linguistics (Gliozzo and Strapparava, 2009). 

 

 

  

 

 

 

 



 

CHAPTER 3 

 

FORMING CONCEPTS WITH SELF-ORGANIZING MAPS 

As Lindh-Knuutila et al. (2006) suggested, language games were invented to 

understand how language forms in children’s brains, which is also supported by Diller 

and Cann (2010) who stated that “… the theory demanded universal grammar to be 

innate so that children could universally learn language in impoverished language 

environments without teaching.” They investigated the innateness of language from 

Chomsky’s theories and came to believe that humans have an innate brain structure 

called a language acquisition device (LAD), which influences computational language 

today. However, other researchers (Steels, 1996; Croft, 2007) claim that language is the 

result of the environment and culture. Furthermore, Loreto et al. (2010) suggested that 

polysemy requiring the existence of two or more perceptual categories identified by the 

same unique word was found when utilizing the category game; it needed a two-step 

process to emerge and a global self-organize agreement to become stable. This situation 

emphasizes that cultural negotiation can improve communication. All of this has led to 

a combination of genetic and cultural factors in this study to construct conceptual space 

as a system containing each component: innate concept (newborn), social learning 

(interaction), and cultural learning (time dimension).  

 

3.1 Components of the System 

 

 Belief is an important part of conceptual space. Since each new born baby 

(agent) does not have a prior set of beliefs, they contain empty concepts. Nevertheless, 

an individual will develop his/her beliefs by interacting with others in language game 

playing and gradually adjusts his/her beliefs about culture, which requires a certain 

period of time. Thus, there are three phases of language learning. 
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1)  Newborn baby:  born with an empty set of beliefs, this is the first phase 

during which conceptual spaces are constructed with a SOM and trained with 10 color 

prototypes. 

2)  Social learning: during this phase, beliefs are adjusted while playing 

language games using multiple listeners. 

3)  Cultural learning: the last learning phase, during which beliefs are again 

adjusted by exposure to cultural beliefs. 

  

3.2  Modeling Conceptual Space 

 

 To formulate concepts, Gärdenfors (2000) proposed modeling conceptual space 

as a geometric structure instead of using symbolic or associationism models. With a 

SOM, space can be formed by a set of quality dimensions as well as, in this research, 

from knowledge sharing among multiple listeners and social knowledge. According to 

Gärdenfors, knowledge representation in cognitive science has three levels: symbolic, 

conceptual and sub-conceptual levels. On the symbolic level, a language is a simple 

kind of representation from which humans read others. When mapping the geometric 

structure at the conceptual level, a SOM is applied, which keeps input data as a space 

on nodes containing vectors of red-green-blue colors or a set of quality dimensions. 

Each node includes an array of concepts where each one holds a single word associated 

with a degree of belief. The nodes are connected as a map which represents the sub-

conceptual level, the main function of which is to represent the complexity of input as 

general information that can be easily mapped to meaning. Thus, a SOM in this model 

contains knowledge from all three levels. 

To create a conceptual structure, each agent needs to formulate it innately. 10 

prototypes of colors (gray, blue, green, aquamarine, red, pink, yellow, white, azure, and 

brown) are defined to create the innate conceptual structure (the larger the number of 

prototypes, the more complex the knowledge will be). The innate concept is trained 

with the prototypes at the initial state only, before game playing. A SOM forms a 

conceptual space that is a repository of the physical world for the internal cognition of 

the agent. Conceptual space using a SOM with two-dimensional nodes is shown in 

Figure 3.1. 
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An agent maintains a degree of belief in the association between a lexeme 

(symbolic level) and the conceptual space. The conceptual space has three quality 

dimensions (denoted by red, green and blue) and holds the physical world (the colors) 

associated with the conceptual space. 

 

 

 

Figure 3.1  Conceptual Space Containing an SOM and Two-dimensional Nodes 

 

3.3  Using Color as an Object 

 

For simulations, objects are assumed to be colors with properties: red, green, 

and blue. The number of categories is based upon color prototypes, and in this 

simulation, a small number (10 object color prototypes) are used.  

An object has a set of features represented by red (R), green (G), and blue (B), 

which can be categorized on an SOM to form conceptual space:  

 

  Object = {R, G, B}. 

 

Each agent has conceptual spaces consisting of concepts constructed with an 

object, word (or language symbols), and its belief. A word is an utterance by a speaker 

and consists of discrete symbols representing limited consonants and limited vowels 

that when combined, become a non-limited word. When each word is bound with a 

Map 

-nodes:Node[][] 

 
Space 

-dimension:Float[] 

 

Node 

-space:Space 

-concepts:List<Concept> 

 

Concept 

-word:String 

-belief:Integer 
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belief, it is counted as a success when playing the game and may be referred to as a so-

called confidential experience for each agent. A belief has a limited number of settings 

ranging from 0 to 20 and if this number is high, it is a high belief, else if the number is 

low, it is a low belief: 

 

  Concept = {Object, Word, Belief}. 

 

A given set of topics randomized for agents playing a language game is shown 

for both the speaker and listeners: 

 

  Topic = {(Object1,), (Object2,), …, (Objectn)}. 

 

       

 

Figure 3.2  Two Examples of Conceptual Spaces Mapped to Object Meaning 

 

3.4  The Language Game Algorithm 

 

Playing a naming game is a process of finding a proper name to identify an 

object. A speaker and listeners are random selected, after which the speaker is the first 

one to utter a word that is the best belief for the object topic, and the listeners either 

accept the speaker’s word for the object topic or reject it. This process involves 

searching for a word in conceptual space.  

The algorithm is divided into three main phases of language learning: newborn, 

social (self), and cultural, but the phases can occur simultaneously. A language game 
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can be described as follows:   

 (Newborn) 

The agents’ conceptual map is trained with three–dimensional color data vectors 

using a SOM to classify the color categories.  

(Social Learning) 

1) The speaker is chosen randomly from a group of agents. The agent is 

arbitrarily assigned the role of speaker, while a number of agents are also randomly 

chosen as listeners (e.g. 60% of the remaining agents). 

2) The topics are initially generated and randomly chosen in the game. 

3) The speaker searches for the belief concept (a node in its SOM) that best 

matches the topic. This is called the best-matching unit (BMU). 

4) If nothing is found, the speaker looks at the cultural memory and after 

searching, selects the best match in the cultural memory. If it cannot be found, the 

speaker searches in the neighboring nodes; this situation can produce synonymy, which 

is a natural process in human language. If there is still no word found, the speaker will 

generate a new word and keep this word mapped to the best node. Finally, the speaker 

utters this word to the listeners. 

5) The listeners search this topic in their memory in the similar fashion to the 

speaker. However, they integrate the three levels of belief: self, social, and cultural. 

6) When the listeners receive a word from the speaker, they search their self-

memory. If the number of the listeners who find the word is more than a pre-specified 

number (e.g. 50% of listeners), the uttered word of the speaker is accepted and this 

game is considered to be successful. The unknown listeners update the beliefs 

associated with that word in their own BMUs. 

7) If the sixth step fails, searches are continually made in neighboring nodes 

(in the listeners’ SOMs). By doing this, a synonym might also be created, as in natural 

language. If the number of listeners finding that word is more than the pre-specified 

number, this game is considered a successful game, and the unknown listeners update 

their beliefs.  

8) If the seventh step fails, searches are continually made across all nodes. If 

the number of listeners who find that word reaches the pre-specified number of 

listeners, the unknown listeners update the knowledge following the known listeners. 
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This game is considered a successful game; otherwise the game fails. For a successful 

game, both speaker and listeners increase their belief counters by one, while for a failed 

game only the speaker decreases its belief counter by one. The maximum belief is set 

at 20 and minimum belief is set at zero.  

(Cultural Learning) 

Meanwhile, a cultural algorithm is applied to adjust cultural belief. 

 

3.5  Searching for Words in SOMs and the Cultural Repository 

 

After an SOM has been trained 1,000 times with random prototypes, a random 

topic, i.e. a color vector, is shown to the speaker and the listeners. The process of 

searching for the best word is performed at four levels: searching in the best node, the 

cultural repository, neighboring nodes, and then all nodes. The speaker searches in the 

first source (the BMU). This node may contain many concepts in which each concept 

stores a word associated with its belief. Only the best belief is selected. Recall that the 

best belief is defined by a count each time a game succeeds, after which it is 

incremented by one. 

If there is no word in the best node, the speaker searches in the cultural 

repository, which is maintained as a hash collection. If it finds the mapping node in this 

collection, the speaker keeps this word and associates it with the node. However, the 

word may not be found in the cultural repository, then the speaker will search for a 

word in its neighboring nodes within radius R. For effective communication, the radius 

is set at one or two neighborhoods. If the speaker cannot find a word in the neighboring 

nodes, it will search all nodes in the map. If it still cannot find any word, a new word is 

generated, mapped to its BMU, and finally uttered to the listeners. 

The topic that has been shown to the speaker is also shown to the listeners. A 

listener performs searching in a similar way to the speaker, except that it does not look 

at the cultural memory. Thus, listener searching has only three stages: the BMU, 

neighboring nodes, and then all nodes. Moreover, at each stage, the number of agents 

who find the word is pre-specified. If the number of those listeners is greater than the 

value, it is considered to be a successful game, and the word is spread to all listeners 

who did not find it. If the listeners cannot find a word in any state, the communication 
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fails. However, they must add the speaker’s word to their BMUs, and the speaker 

decreases its belief counter by one for this word. In the case of a successful game, the 

speaker and listeners increase their belief counters for that word by one. 

  

 

 

Figure 3.3  Color Properties Assigned to Different Nodes in a SOM 

 

Figure 3.3 shows a visualization and classification of tree-structure data. The root 

of the tree represents a physical world in which random colors is assigned to the player. 

The lower tree shows the color prototypes used for conceptual space (in this example,  

there are ten color prototypes, i.e. red, green, blue, pink, yellow, etc.). 

 

3.6  Lexicon in Nodes 

 

The word generation process uses all of the English characters (A – Z). A word 

has a length of two to six characters, interleaving consonants and vowels, e.g. 

‘CABAKI’. Word generation is performed by the speaker, and Figure 3.4 shows words 

generated by a speaker on a SOM map consisting of 14 x 14 nodes to reduce 

computational resources while still sufficient to generate suitable words in simulated 

communications.    

 

Red, Green, and 

Blue value properties 

are assigned  
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Figure 3.4  Possible Words on a SOM  

 

3.7 Improve Ambiguity with Flexible Search in Conceptual Space 

 

Even fixed searching of conceptual space can help make agents come to an 

agreement and can be used for communication, but polysemy can occur easily with 

closeness in meaning. To remove this ambiguity, flexible searching in conceptual space 

was incorporated. As Lindh-Knuutila et al. (2006) showed, the search radius (R) in a 

neighborhood has an effect on word ambiguity in that a higher radius range (R > 4) 

results in more ambiguity, but less range achieves more effective meaning, and an R 

value between 1 and 2 has more effect on the number of played games. These results 

point towards how to set a flexible range for searching in the neighborhood for agents 

to obtain effective meaning when playing language games.     

The new algorithm for the flexible search was applied to both the speaker and 

the listeners, and neighboring node searching used a flexible radius, i.e. the initial radius 

value was set at 0.2, and increased by 0.2 every round up to a limit of 1.8. Searching 

stopped if the best word was found. The speaker then uttered the selected word to the 

listeners. Furthermore, the search algorithm for the listeners was similar to that of the 

speaker. 
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3.8 Evaluation Measures 

 

 To evaluate agent learning, four measures were utilized: communication 

success, coherence, specificity, and lexicon size. The first two measures were taken 

from DeJong (2000) and Lindh-Knuutila et al. (2006), respectively. 

 

3.8.1 Coherence 

 The basic hypothesis of lexical coherence is that a great percentage of the 

concepts expressed in the same text belong to the same domain. One concept can 

occasionally be conveyed by many words, i.e. synonymy, as shown in Figure 3.5. This 

is natural in human languages. 

 

 

 

Figure 3.5  Measuring Coherence 

 

Coherence is a measure of whether a certain word is utilized coherently among 

the agents to denote a certain meaning in the community. It is calculated from the rate 

of average word reference per average no word reference to the topic of the agent. 

Coherence allows the disambiguation of ambiguous words by associating domain-

specific sense to them. 

Table 3.1 shows concepts in each agent and their coherence. The black circles 

indicate words agreed with other agents. Concept 1 has two different words (W1 and 

W2). To calculate the coherence of each agent (coh(Ai)), the number of agreed words 

are summed and divided by the total number of concepts, as shown in the following 

formula: 

 

��ℎ(��)= 
� �

∑ ��
���

, 

 

C1 

W1 

W2 
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where wc is the number of agreed words (black circle), and A is the total number of 

concepts in the games. 

 

Table 3.1  Coherence Calculation 

 Agent Concept 1 Concept 2 Concept 3 Concept 4 Coherence  

Agent1 W1   W3   W4   W6   1 

Agent2 W1   W3   W5 W7 0.5 

Agent3 W2 W3   W4   W6   0.75 

Agent4 W1   W3   W4   W7 0.75 

Frequency 3 4 3 2  

Coherence  0.75 1 0.75 0.5  

 

In some cases, one word may convey different meanings or concepts, which 

may cause ambiguity. Figure 3.8 shows that concepts 1 and 2 are associated with word 

1; a polysemy occurs here whereas it does not occur for concept 3 referring to word 2 

(W2) or concept 4 (C4) referring to word 3 (W3). 

 

3.8.2 Specificity 

As De Jong (2000) said, “Specificity indicates to what degree the words an 

agent uses determine the referent that is the subject of communication.” Specificity 

decreases if two meanings refer to the same word, thus it is the degree of polysemy in 

the lexicon: the higher the specificity, the less polysemy there is.   

 

 

 

Figure 3.6  Measuring Specificity 
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 The specificity of the population spec(Ai) is then defined as the average 

specificity of the agents: 

 

spec(Ai) = 
��

��∑ ��
��
���

��
�� ��

, 

 

where ns represents the number of concepts and fk is the frequency of the word related 

to those particular concepts. This formula specifies the degree of polysemy. 

Table 3.2 shows various specificities under different circumstances. When 

agent 1 has two concepts (1 and 2) referring to the same word (W1), while concepts 3 

and 4 have a single reference since they refer to different words, W2 and W3, 

respectively. 

 

Table 3.2  Concepts of Agents and Their Specificities 

 

Agent Concept 1 Concept 2 Concept 3 Concept 4 ∑f Specificity 

Agent1 2 2 1 1 6 0.833 

Agent2 1 3 3 3 10 0.5 

Agent3 1 1 1 1 4 1 

 

To select a word for a concept while an agent has many words associated with 

it, the selected word is the one with the highest values of coherence and specificity. 

Word ambiguity has been considered to be coherence in some papers (Lorkiewicz and 

Katarzyniak, 2014; Lorkiewicz, Kowalczyk, Katarzyniak, and Vo, 2011).    

 

3.8.3 Word Count 

At the end of a game, the average size of the lexicons was calculated. In counting 

the number of words in lexicons, words having zero belief (i.e. were not used in a 

successful communication) were also included. The measure can be calculated as 

follows: 

��������� =  ∑ �����∑ ��������
�
��� �

�

�
��� , 
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where m is the number of concepts in a node, and n is the number of nodes on the map. 

A smaller word count indicates that the communication is more effective than a larger 

size. 

 

3.8.4 Success Rate 

Success rate was computed after every 10 games and calculated as a sliding 

window average as follows: 

 

�������� =
�

�
 ∑ �

�

�
∑ ��

�
������� �

�

�
��� , 

 

where xj is the successful communications evaluated after every 10 games, n is the 

number of sliding windows, m is the total number of agents, and t is the number of 

games. The success rate indicates the effectiveness of the communications. 

 

 

 

 



 

CHAPTER 4 

 

CULTURAL ALGORITHMS AND THEIR USES  

IN LANGUAGE GAMES 

Evolutionary computation (EC) is a mechanism extracted from the 

understanding of how natural systems evolve to solve complex computational 

problems. EC focuses on the process of natural selection and genetics in populations. 

A Cultural Algorithm (CA) works in the same way as the EC process, but focuses on 

knowledge selection in the population that is transmitted from generation to generation. 

In this chapter, a general description of a cultural algorithm is provided. Spaces in the 

cultural algorithm can be maintained by language games similar to other evolutionary 

processes. 

 

4.1 The Basics of the Cultural Algorithm 

 

Reynolds (1994) is the pioneer of CAs. He proposed the method as an extension 

of the version space algorithm (a binary string-based genetic algorithm). The version 

space is the generalization of individual solutions communicated as cultural knowledge 

in the form of schema patterns (string of 1’s, 0’s, and #’s, where ‘#’ represents a 

wildcard). His idea was inspired by Renfrew’s thinking (Renfrew, 1994) by what the 

latter refers to as a world map: the internalized knowledge or symbolization of an 

individual’s past experiences and forecasts concerning future experiences. The map can 

be merged, generalized, and specialized to form a group of maps via evolution that in 

human societies is called cultural transmission.   

To model the algorithm, Reynolds extracted knowledge from an individual, 

which he defined as a set of traits, and generalized their experiences later to become the 

map suggested by Renfrew. Traits can be represented by symbols that can be modified, 

exchanged, added, or possibly lost between individuals by means of a variety of socially 
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motivated operations. The map can also be modified over time based upon experience, 

thus traits and map can evolve as the result of group experiences.  

The process of evolution is like natural selection defined as rules for evaluation. 

The set of evaluated traits is most of the general beliefs in a group of populations called 

the belief domain, which later Reynolds named the population space (Reynolds, 1999). 

The population space is promoted via acceptable functions to the upper level and then 

can be merged with currently existing group maps in the belief space if the conditions 

for one or merging operations are met via adjusted functions. Hence, the belief space is 

specific knowledge separately stored in the cultural knowledge of individuals or a 

population. This belief space is used as guidelines or norms that everyone agrees with 

for individual action, and these guidelines are defined as an influence function that has 

influence or feedback to control the individual. While belief space has influence on a 

population, the population variates itself before the selection start again. After each step 

in time, the belief space will become more specific. The process of CA as described is 

illustrated in Figure 4.1. 

 

 

Figure 4.1  The General Framework of a Cultural Algorithm 

 

Belief Space 

Adjust beliefs 

Fitness evaluation 

Variation population 

Selection 

Accept function Influence function 

Population Space 
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The pseudocode for the above general model is given in Figure 4.2. 

 

Begin  

 t = 0; 

 Initialize Population P 

 Initialize Belief Space B 

 while (condition is true) 

  Evaluate(Pt);  

  Adjust(Bt, Accept(Pt));   

  Variate(Pt, Influence (Bt)); 

  t = t + 1; 

  Select Pt from Pt-1   

 end 

End 

 

Figure 4.2  General Cultural Algorithm Pseudocode 

 

4.2  The Space-Guided Evolutionary Algorithm 

 

Various CAs can be implemented depending upon how the population space 

and the belief space are represented, such as evolutionary algorithms (EAs) as well as 

network, logic, and set theory (Reynold, 1994), but the most common is EAs due to 

their ability to evolve using natural selection, as can be seen in optimization problem 

applications (Brownlee, 2011). One reason for this choice is that EA can mimic natural 

evolutionary processes such as selection, variation, and reproduction to produce a new 

generation in an accelerated version of natural evolution. For CAs, spaces contain 

knowledge, experience, or belief of an individual that has evolved via transmission 

from generation to generation.  

Genetic algorithms (GAs) are a kind of EA that use chromosomes to represent 

population traits. This representation has become one of the important features of CAs 

that can be used as traits to represent belief corresponding with population experiences. 

A GA’s chromosomes can be modified (known as mutation) or exchanged (known as 
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crossover) between individuals based upon population experience over the evolutionary 

timeframe. The process of GA’s selection is a technique to achieve a new desirable 

generation. One method is to use roulette wheel selection, and a CA can use this 

technique to produce a new generation with new belief coming from the population 

space. Subsequently, knowledge from information acquired by generations is stored at 

the higher level of belief space, which is accessible by the current generation. 

Interaction between the two spaces gradually progresses in an evolution-like process.  

 

4.3  The Space-Guided Language Game 

 

To apply CA to a language game, the agents are the population with the primary 

source of knowledge (or normative knowledge) retained in the population space, while 

secondary knowledge in the belief space holds the cultural belief.  

Knowledge is represented as belief in words with different degrees occurring 

during communication among the social agents. When a speaker utters a word to 

listener, the belief of the word will change, and then the population space is also 

changed. With GAs, the trait is in the chromosomes but the language game keeps the 

trait in the belief. In the same way that a GA can solve an optimization problem, a 

language game can achieve this in a similar way, by which they are often used to solve 

meaning problems. 

The internal structure of conceptual spaces retains knowledge in nodes 

implemented in a SOM. Each node contains the space mapping of a physical word (red, 

green, and/or blue) and a list of concepts. The concept is composed of the pairing of a 

word with the degree of belief that change while play the language game is being 

played, thus the two spaces are guided by the language game. 
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Figure 4.3  The Concept to Maintain the Belief of a Word 

 

Figure 4.3 shows the concept that is used to maintain the belief of a word 

mapped to a space. The belief can be changed by an agent’s experience and success rate 

when playing the game. 

 

4.4  Using a CA in a Language Game 

 

To incorporate a CA in a language game, a protocol is set to allow the two 

spaces to interact and to exchange information. Hence, CAs in language games can be 

defined as 

 

CA = {P, V, B, f, Accept, Adjust, Influence}, 

 

where P is the population or players, V is a variate function, B is the belief space, f is 

the performance function representing the problem-solving experience of an individual, 

Accept is the acceptance function, Adjust is the adjust function that adjusts or updates 

the belief space, and Influence is the influence function that is used to influence the 

variation function. However, the players do not reproduce in order to maintain the same 

population in games, so the selection is not applied. The pseudocode for the proposed 

CA for language games is shown in Figure 4.4. 

 

 

 

Concept 

-word:String 

-belief:Integer 

+generateWord( ) 

+increaseBelief( ) 

+decreaseBelief( ) 
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Begin  

 Gamet=0; 

 Initialize Pt 

 Initialize Bt 

 while (condition is true) 

  Evaluate(P(COHt, SPEt));  

  Adjust(Bt, Accept(Pt));   

  Variate(Pt, Influence (Bt)); 

  Gamet = Gamet + 1;   

 end 

End 

 

Figure 4.4  The Proposed Cultural Algorithm for Language Games 

 

Language games start at game 0 (Gamet). The agents are generated (Pt) with 

empty belief, and the belief space (Bt) is also empty. When a game begins, the agents’ 

knowledge is evaluated with a performance function that computes the two fitness 

measures: coherence (COHt) and specificity (SPEt). The results of these evaluations are 

determined by the acceptance function (Accept(Pt)). The agents’ knowledge with the 

best fitness is considered to be acceptable and is promoted to the belief space with the 

adjust function (Adjust(Bt, Accept(Pt)). The adjust function uses the acceptable 

knowledge to update the belief space which is shared by the population. The new belief 

space has an influence on listeners’ beliefs via the influence function (Influence(Bt)) 

when the speaker chooses this knowledge. As described earlier, the speaker selects a 

word from the cultural belief only if it is not found in its BMU and neighboring nodes, 

thus the selected word from the belief space that maps to the topic has influence on the 

population. A listener will accept the knowledge or adjust its belief with the variate 

function, i.e. a guided variation (Mesoudi, 2011). After each step of the game, the two 

sources of knowledge are updated, and the belief space and the individuals’ normative 

knowledge are recalculated. Consequently, the language games promote the specific 

knowledge in the belief space and broker agreements among the agents. 

 



 

CHAPTER 5 

 

EXPERIMENTAL RESULTS 

In the game evaluations, four measurements were made: the comparative 

performance between single and multiple listeners, the effect of the number of agents, 

the effect of the number of listeners, and the effectiveness of including social 

knowledge. Moreover, flexible searching was incorporated in the search algorithm 

whereby testing first searched either the BMU or used the CA, whichever one was more 

effective. 

 

5.1  Single Listener vs Multiple Listeners 

 

The first comparison of using a single listener and multiple listeners was tested 

using four measurements: coherence, specificity, game success rate, and word count. 

Figure 5.1 shows a comparison of coherence and specificity between a single listener 

and multiple listeners. The results are averaged across 10 simulations using 50 agents, 

60% of which were randomly selected as listeners. We can see that the graphs of 

multiple listeners rise sharply at the beginning and become stable as the games 

developed, which indicates that using multiple listeners was much better than a single 

listener since knowledge was spread and exchanged among the agents. 

The results on success rate and word count are shown in Figure 5.2. It is evident 

that the success rate of using multiple listeners (left graph) increased sharply at the 

beginning, while that of using a single listener increased gradually and reached only 

around 25%. In the right graph showing word count, using multiple listeners created a 

much smaller word count, indicating the ability of using words to communicate 

successfully using a smaller set of words. In addition, a small word count reduced word 

ambiguity and variability. It is clear that using multiple listeners was more effective 
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than using a single listener. In further experiments, only multiple listeners were 

examined. 

 

 

 

Figure 5.1  Coherence (left) and Specificity (right) with 50 Agents 

    

    

 

Figure 5.2  Success Rate (left) and Word Count (right) with 50 Agents 

 

5.2  Effect of the Number of Agents in Games 

 

When more agents are involved in the games, the ambiguity and variability were 

expected to increase. Figure 5.3 shows coherence and specificity rates of the different 
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number of agents as the games proceeded. In general, as shown in the previous section, 

coherence and specificity rose steeply early on and slowly converged to a certain level 

as the games progressed. Three sizes of agent community: 5, 10, and 20 (60% of those 

were selected as listeners) were selected to play the language games.  

We can see that a small group of agents communicated much more efficiently 

than a larger group since the smaller group created less variability in the words 

generated and found it easier to communicate. To improve on word variability and 

ambiguity, a better method was needed which is reported on in next section. 

 

 

 

Figure 5.3  Effect of the Number of Agents 

 

5.3  Effect of the Number of Listeners  

 

In this section, the study of the effect of the number of listeners by varying the 

percentage of agents selected as listeners from the total of 50 agents was investigated. 

The results in Figure 5.4 show that more listeners had better coherence and specificity 

and at the same time climbed to a steady state more quickly than fewer listeners because 

more listeners generated more knowledge sharing. This means that the interpretation of 

object meaning depended more on interpretations by others than the agent itself. 
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Figure 5.4  Effect of the Number of Listeners 

 

5.4  Effectiveness of Social Knowledge 

 

So far, the examination of language games without the inclusion of social 

knowledge was implemented by the CA. In this experiment, social knowledge as 

described in the proposed method was included and its effectiveness studied. We can 

see from the results in Figure 11 that using CA yielded more coherence and slightly 

more specificity, which means that social knowledge allowed agents to reach agreement 

more efficiently as expected. 

 

    

 

Figure 5.5  Effectiveness of Social Knowledge on Coherence and Specificity 
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The results on word count, shown in Figure 5.6, show that the games using the 

CA generated lower word counts than those without it. The results indicate that agents 

in a society holding strong beliefs extracted them from it and were more confident in 

communication if the speaker chose a standard belief about a word-object pairing from 

the cultural memory when it encountered an obscure situation. 

 

 

 

Figure 5.6  Effectiveness of Social Knowledge on Word Count 

 

5.5  Effectiveness of Flexible Search on Conceptual Space 

 

In this section, the effectiveness of the flexible search on conceptual spaces is 

reported, with the expectation that it gives more effective communication among social 

agents.  
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Figure 5.7  Coherence and Specificity Using the Flexible Search  

 

In Figure 5.7, at game 100, the coherence graph shows that using the flexible 

search space rose to a higher rate than not using it. After 3,000 games, there was only 

a 20% improvement caused by the agents having more choice to interpret a word’s 

meaning. In terms of specificity, using a fixed search space produced only a slightly 

higher rate after game 250 through to the end of the game playing because the increase 

in meaning choices probably caused a word to be used to describe multiple objects on 

different nodes. 

 

  

 

Figure 5.8  Success Rate and Word Count Using the Flexible Search 

 



46 

On the success rate graph (Figure 5.8), it is evident that whether using the 

flexible concept or not is not much different. Both graphs show a good success rate 

from the beginning of the game onwards. For the word count, using the flexible concept 

reduced the number of words. 

 

5.6  Effectiveness of the Flexible Search with Cultural Belief  

 

The best concept voted for by agents will be promoted to the belief space or 

norm for that belief for the society. As can be seen in the left-hand-side graph in Figure 

5.9, the coherence graph using the CA has a higher rating and smoother line, but after 

a large number of games had been played, the two lines tend to converge. This is the 

effect of cultural belief supporting the agents with norm concepts since the beginning 

of the games. In the long run, all agents learned all or most of the topics, thus the graphs 

converge. For the specificity rate in the right-hand-side graph in Figure 5.9, the results 

show that the line with the CA remains steady after game 200, while the method not 

using cultural knowledge levels off.  

As expected, in the success and word count graphs shown in Figure 5.10, using 

cultural knowledge obtained a constant success rate of 1 from game 250 onwards and 

also yielded a smaller word count. Therefore, including cultural knowledge in addition 

to the use of the flexible concept in the games improved the performance further. 
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Figure 5.9  Coherence and Specificity Using the Flexible Search with Cultural    

 Knowledge 

 

  

 

Figure 5.10  Success Rate and Word Count Using Cultural Knowledge 

 

5.7  Effectiveness of Applying Search with the CA Prior to the BMU 

The previous simulations were tested on searching the BMU before searching 

with the CA. Thus, the question may arise, “Is it better if an agent searches spaces with 

the CA prior to the BMU?” from the presupposition that the CA is the most confident 

belief of the society of agents, while the BMU is an individual’s belief which may lack 

agreement with others because it is not based on a consensus.  
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The presupposition was correct for all cases, as can be seen in the following 

figures. These simulations showed that when the agents search using the CA first, 

selecting the correct word was more likely than searching in the BMU first. 

      
 

Figure 5.11  Coherence and Specificity when Searching with the CA and in the BMU 

 

 Figure 5.11 shows that coherence was higher when agents searched with the 

CA first compared to when agents searched in the BMU first, which was also the case 

for specificity, albeit only at a slightly higher rate. 

  

 

Figure 5.12  Coherence and Specificity when Searching with the CA First at Various 

           Starting Points 
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 Since using the CA first to search was better, it is of interest to discover whether 

searching should start earlier or later while playing the games, which is influenced by 

the presupposition that at the beginning of game playing, the belief space in cultural 

memory is empty or has little belief. For testing this assumption, the simulation shown 

in Figure 5.12 indicates that there was an effect in that searching using the CA first at 

the beginning of game playing had a higher effect than using CA first at a later time. 

The significance is obviously seen in the coherence graph. 

 

 

Figure 5.13  Coherence and Specificity when Searching with the CA First with   

                      Different CA Acceptance Criteria 

 

Lastly, different CA acceptance functions were tested. The test compared the 

different percentages of the acceptance function used in the CA: 10% and 20% by their 

effect on coherence and specificity, and the results shown in Figure 5.13 demonstrate 

that was no significant difference. 

So far, it can be concluded that using the CA to search first before searching in 

the BMU was more efficient because the belief space in the CA is the belief that is 

extracted from the social belief even if searching at beginning of game. 

 



 

 

 

CHAPTER 6 

 

CONCLUSIONS  

Language games attempt to find meaning for objects by using mutual 

agreement, and autonomous agreement among agents is important for improving 

communication. In this research, language games were proposed to share agreement in 

populations using the three levels of belief: conceptual space implemented with a SOM 

to form individual belief, multiple listeners to create social belief, and a cultural 

algorithm to normalize cultural standard belief.  

The evaluation results show that using multiple listeners yielded fast 

convergence to mutual agreement in a society of agents, a low lexicon size, and a higher 

success rate, especially with a large number of agents. In addition, using the cultural 

algorithm helped the speaker select words from the cultural repository when the speaker 

needed help and had a positive impact on the word-belief of the listeners. Moreover, an 

improved flexible search in conceptual space was able to make finding agreement 

among the agents more effective. 

In future research, sharing belief, either social or cultural, should be investigated 

in more detail to help process autonomous learning more quickly and correctly. 

Moreover, learning by agents in language games could be viewed as an evolutionary 

process for finding a better solution so that there is no end to the process when finding 

meaning for an ambiguous word by extending the process to find the optimal solution, 

much like the general application of evolutionary algorithms in computing. 
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Appendix A 

 

List of Tools or Programs were Used for  

Construction Language Game System 

 

1. Netbeans IDE: a Java integrated development environment. 

(https://netbeans.org/) 

2. Processing : a processing of game creation and image visualizing. 

(https://www.r-project.org/) 

3. R : a statistical programming. 

(https://processing.org) 

4. SQLite: a standalone database. 

(https://sqlite.org/) 

 

 

 

 

 



 

Appendix B 

 

Main Class 

 

Class 1 - Agent: Self-Organizing Map 

 

import CultrualAlgorithm.CulturalA; 

import java.util.ArrayList; 

import java.util.Comparator; 

import java.util.List; 

import java.util.Optional; 

import java.util.stream.Collectors; 

 

public class Agent { 

 public float fitness; 

 boolean speaker, listener; 

 int mapWidth; 

 int mapHeight; 

 public Map map;  

 float radius; 

 float timeConstant; 

 float learnRate = 0.05f; 

 int[] domainWeight; 

 int[] coordDrawWord; 

 float learnDecay; 

 float getLearnDecay(){ 

     return this.learnDecay; 

 } 

 float radiusDecay; 

 float getRadiusDecay(){ 

     return this.radiusDecay; 
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 } 

 //for test 

 public Agent(float fitness){this.fitness = fitness;} 

  

 public Agent(int w, int h, int domainWeight) { 

   //coordDrawWord = new int[2]; 

   fitness = 0.0f; 

   speaker = false; 

   listener = false; 

   mapWidth = w; 

   mapHeight = h;  

   map = new Map(w,h);   

   radius = (h + w) / 2;     

   for(int i = 0; i < h; i++){ 

     for(int j = 0; j < w; j++) {       

         map.nodes[i][j] = new Node(w,h,domainWeight); 

         map.nodes[i][j].x = i; 

         map.nodes[i][j].y = j;             

     }//for j 

   }//for    

 }  

 void initTraining(int iterations) { 

   timeConstant = iterations/(float)Math.log(radius);   

 }  

 void train(int i, Space space, Node[][] node) {    

   radiusDecay = radius*(float)Math.exp(-1*i/timeConstant); 

   learnDecay = learnRate*(float)Math.exp(-1*i/timeConstant);    

   //get best matching unit 

   int[] ndxComposite = bestMatch(space); 

   int x = ndxComposite[0]; 

   int y = ndxComposite[1]; 

   //scale best match and neighbors. 
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   for(int a = 0; a < mapHeight; a++) { 

     for(int b = 0; b < mapWidth; b++) {   

        //evaluate nodes between map(a,b) and prototype (x,y) 

        float d = distance(node[x][y], node[a][b]); 

        float influence=(float)Math.exp((-1*Math.pow(d,2))/ (2*radiusDecay*i));       

        if (d < radiusDecay)           

          for(int k = 0; k < space.dimension.length; k++) 

            //update = learning Rate * error 

            node[a][b].weight[k] += influence*learnDecay*(space.dimension[k]  

                    - node[a][b].weight[k]);        

     } //for b 

   } // for a  

 } // train() 

 float distance(Node node1, Node node2){ 

        return (float)Math.sqrt((float)Math.pow((node1.x - node2.x),2) + 

                (float)Math.pow((node1.y - node2.y),2)); 

 } 

 public List<Node> getNeighborhood(float radius, Space space){ 

   Node[][] node = map.nodes; 

   List<Node> neighborhood = new ArrayList(); 

   int[] bestMatch_coord = bestMatch(space); 

   int x = bestMatch_coord[0]; 

   int y = bestMatch_coord[1];  

   for(int a = 0; a < mapHeight; a++) { 

     for(int b = 0; b < mapWidth; b++) {           

        float d = distance(node[x][y], node[a][b]);               

        if (d < radius){ 

          neighborhood.add(node[a][b]); 

        }                 

     } //for b 

   } // for a  

   return neighborhood; 
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 } 

 

 public int[] bestMatch(Space space) {   

   float minDist = (float) Math.sqrt(space.dimension.length); 

   int[] minIndex = new int[2];   

   for (int i = 0; i < mapHeight; i++) { 

     for (int j = 0; j < mapWidth; j++) {       

       float tmp =weight_distance(this.map.nodes[i][j].weight, space.dimension); 

       if (tmp < minDist) { 

         minDist = tmp; 

         minIndex[0] = i; 

         minIndex[1] = j; 

         this.map.nodes[i][j].space = space; 

       }//if 

     } //for j 

   }//for i    

   return minIndex; 

 } 

 public Concept getBestConcept(Space space){ 

     Concept best_concept = null; 

     int[] bestIndex = bestMatch(space);    

     List<Concept> concepts = this.map.nodes[bestIndex[0]][bestIndex[1]].concepts;  

     if(concepts.size()>0) 

        best_concept = concepts.stream().max(Comparator.comparing(c-

>c.belief)).get(); 

     return  best_concept; 

 } 

  

 float weight_distance(float x[], float y[]) { 

    if (x.length != y.length) { 

      //System.out.println("x,y length " + x.length + ":" + y.length); 

      System.out.println ("Error in SOM::distance(): array length don't match"); 
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      //System.exit(0); 

    } 

    float tmp = 0.0f; 

    for(int i = 0; i < x.length; i++) 

       tmp += Math.pow( (x[i] - y[i]), 2); 

    tmp = (float)Math.sqrt(tmp); 

    return tmp; 

 } 

 

 public int[] searchWord(String s){//search all nodes in map 

   int[] indexFound = new int[]{0,0,0,0}; 

   //1st index ->0 = unfound, 2nd,3rd index = ij node, 4th index = index concept 

   int tempBelief=0; 

   for(int i=0; i<mapWidth; i++){ 

     for(int j=0; j<mapHeight;j++){ 

       for(int k=0; k< map.nodes[i][j].concepts.size(); k++){          

         if (s.equals(map.nodes[i][j].concepts.get(k).word)){ 

           //select the most beliefest  

           if(map.nodes[i][j].concepts.get(k).belief>=tempBelief){ 

             tempBelief = map.nodes[i][j].concepts.get(k).belief; 

             indexFound[0] =1;//found 

             indexFound[1] =i;//i node 

             indexFound[2] =j;//j node 

             indexFound[3] =k;//index of concept 

           } 

         } 

       }         

     }     

   } 

   return indexFound; 

 } 

 //check duplicate word 
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 public boolean searchWordAllNode(String word){ 

     boolean found = false; 

     int[] indexFound = this.searchWord(word); 

     if(indexFound[0]==0) found = true; 

     return found;      

 } 

  

 public int[] searchWord(String s, Node node){ 

    //search word in node 

    int[] indexFound = new int[]{0,0,0,0}; 

    //1st index ->0 = unfound, 2nd,3rd index = ij node, 4th index = index concept 

    int tempBelief=0;    

    for(Concept concept: node.concepts){ 

      if(s.equals(concept.word)){ 

        if(tempBelief>=concept.belief){ 

        //if(concept.belief>=tempBelief){ 

          indexFound[0] = 1; 

          indexFound[1] = node.x; 

          indexFound[2] = node.y; 

          indexFound[3] = node.concepts.indexOf(concept); 

          tempBelief = concept.belief; 

        } 

      } 

   } 

   return indexFound; 

 }    

 

 //search best word in node  

  public int[] searchWord(Node node){ 

    //search word in node 

    int[] indexFound = new int[]{0,0,0,0}; 

    //1st index ->0 = unfound, 2nd,3rd index = ij node, 4th index = index concept 
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    int tempBelief=0;    

    for(Concept concept: node.concepts){ 

      if(!(concept.word.equals("null"))){ 

        if(concept.belief>=tempBelief){ 

          indexFound[0] = 1; 

          indexFound[1] = node.x; 

          indexFound[2] = node.y; 

          indexFound[3] = node.concepts.indexOf(concept); 

          tempBelief = concept.belief; 

        } 

      } 

   } 

   return indexFound; 

 }    

  public int[] searchWord(String s, List<Node> nodeNeighborhood ){ 

   //search word in neighborhood node 

   int[] indexFound = new int[]{0,0,0,0}; 

   //1st index ->0 = unfound, 2nd,3rd index = ij node, 4th index = index concept 

   int tempBelief=0; 

   for(Node node: nodeNeighborhood){ 

     for(Concept concept: node.concepts){ 

       if(s.equals(concept.word)){ 

         if(concept.belief>=tempBelief){ 

           indexFound[0] = 1; 

           indexFound[1] = node.x; 

           indexFound[2] = node.y; 

           indexFound[3] = node.concepts.indexOf(concept); 

           tempBelief = concept.belief; 

         } 

       } 

     } 

   } 
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   return indexFound; 

 }    

  

  public Node findBestNodeInNeighborhoodDynmicMathWord(Space space, String 

w){ 

      Node bestNode = null; 

      float r = 0.1f; 

       

      List<Node> neighbor = this.getNeighborhood(r, space); 

      while(bestNode==null){ 

        if(neighbor.size()>0){  

            for(Node node: neighbor){ 

                Concept c = node.getConceptMaxBelief(); 

                if(c.word.equals(w)) { 

                    bestNode = node; 

                } 

                if(bestNode!=null) break; 

            } 

        } 

        r+=0.2f; 

        if(r>2) break; 

        neighbor = this.getNeighborhood(r, space); 

      } 

      return bestNode;       

  } 

  public Node findBestNodeInNeighborhoodDynmic(Space space){ 

      Node bestNode = null; 

      float r = Config.radius_start; 

       

      List<Node> neighbor = this.getNeighborhood(r, space); 

      while(bestNode==null){ 

        if(neighbor.size()>0){     
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            try{ 

bestNode = neighbor.stream().max(Comparator.comparing( 

n->n.getConceptMaxBelief().belief)).get(); 

            } 

            catch(Exception e){ 

                bestNode = null; 

            } 

        } 

        r+=0.2f; 

        if(r>Config.radius_end) break; 

        neighbor = this.getNeighborhood(r, space); 

      } 

      return bestNode;       

  } 

  public boolean selfContemplate(CulturalA cultural, Space world){ 

        boolean myConceptMapToCa = false; 

        Concept ca_concept = cultural.ca_belief.getConcept(world); 

        int[] bmu_coord = bestMatch(world); 

        Node node_bmu = map.nodes[bmu_coord[0]][bmu_coord[1]]; 

        int[] bestWord_in_bmu = searchWord(node_bmu); 

         

        if(bestWord_in_bmu[0]==1){ 

            List<Concept> concepts = 

map.nodes[bestWord_in_bmu[1]][bestWord_in_bmu[2]].concepts; 

            Concept self_concept = concepts.get(bestWord_in_bmu[3]); 

            if(self_concept.word.equals(ca_concept)){ 

                myConceptMapToCa = true; 

            } 

        } 

        return myConceptMapToCa;                     

    } 

}//end class Som 
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Class 2 - CulturalA: Cultural Algorithm  

 

public class CulturalA { 

    public Belief ca_belief; 

    public List<Belief> beliefs; 

      

    //****BEGIN: VARIABLE FROM MULTI-HEARER PACKAGE 

    public Space[] topics; 

    public Agent[] agents;  

    public Evaluation evaluation; 

    //****END: VARIABLE FROM MULTI-HEARER PACKAGE 

    public CulturalA(){} 

    public CulturalA(Space[] topics, Agent[] agents, Evaluation evaluation){   

        this.topics = topics; 

        this.agents = agents; 

        this.evaluation = evaluation; 

        ca_belief = new Belief(); 

    } 

    public void fitness(){ 

 

        //update fitnees of each agent 

        float fitness = 0; 

        for(Agent agent : agents){ 

            //each agent has many concept 

            //compute each fitness for each concept  

             

            //However, each topic which agent gets must 

            //be the best concept (max count). 

             

            //when they get best concept, it is ready 

            //to compute objective function to get finess 

            float spec = 0; 
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            float cohe = 0;           

            spec = evaluation.specificity(agent, topics ); 

            cohe = evaluation.coherence(agents, topics,  agent);                 

            fitness += objective(spec, cohe);      

            agent.fitness = fitness/agents.length;//this line just add     

        }         

    } 

    public void initial_belief(){ 

        ca_belief = new Belief(); 

        //every things is null, it konws nothing.         

    } 

    public float objective(float spec, float cohe){           

        return (spec + cohe)/2;  

    } 

    

    public void update_belief(){         

        //1.set fitness: find the best fitness of agent         

        Agent agents_max = Arrays.asList(agents) 

                                       .stream() 

                                       .max(Comparator.comparing(a->a.fitness)) 

                                       .get();         

        ca_belief.fitness = agents_max.fitness; 

        //2. set ca_belief.Situation 

        //get best concepts of each topic for this best agent         

        //Arrays.asList(topics).forEach(t-

>this.ca_belief.situation.put(t,agents_max.getBestConcept(t))); 

        for(Space topic: topics){   

           Concept c = agents_max.getBestConcept(topic);//error on this line 

           if(c != null){ 

              this.ca_belief.situation.put(topic,c); 

              //System.out.println("Situation:"+ c.word); 

           }            
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        } 

        //this normative is not use if there is no reporduction 

        //3. set ca_belieft.Normantive 

        //3.1 find acceptable agents at Config.ca_accept% of sort best fitness 

        List<Agent> agents_sort = Arrays 

                                    .asList(agents) 

                                    .stream() 

                                    .sorted(Comparator.comparing(a->a.fitness)) 

                                    .collect(toList()); 

         

        int accept = Math.round(agents.length * Config.ca_accept); 

        List<Agent> agents_accept = new ArrayList<>();         

        for (int i = 0; i < accept; i++) 

            agents_accept.add(agents_sort.get(i)); 

         

        //3.2 read best word of that topic  

        List<Concept> accept_concept = new ArrayList<>(); 

        for(Space topic : topics){ 

            for(Agent ag: agents_accept){ 

                accept_concept.add(ag.getBestConcept(topic)); 

            }   

            ca_belief.normative.put(topic, accept_concept); 

        }          

    }    

    public void update_belief_newversion(){   

        //a new version of paper 2 

        //the new version change situation getting knowledge for direct agent to  

        //get from normative knoledge  

         

         

        //1.set fitness: find the best fitness of agent         

        Agent agents_max = Arrays.asList(agents) 
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                                       .stream() 

                                       .max(Comparator.comparing(a->a.fitness)) 

                                       .get();         

        ca_belief.fitness = agents_max.fitness; 

        //System.out.println("\t\tCA beleft finess:" + ca_belief.fitness);//not OK due to 

zero over time 

        //2. set ca_belief.Situation 

        //get best concepts of each topic for this best agent         

        //Arrays.asList(topics).forEach(t-

>this.ca_belief.situation.put(t,agents_max.getBestConcept(t))); 

        for(Space topic: topics){   

           Concept c = agents_max.getBestConcept(topic);//error on this line 

           if(c != null){ 

              this.ca_belief.situation.put(topic,c); 

              //System.out.println("Situation:"+ c.word); 

           }            

        } 

        //this normative is not use if there is no reporduction 

        //3. set ca_belieft.Normantive 

        //3.1 find acceptable agents at Config.ca_accept% of sort best fitness 

        List<Agent> agents_sort = Arrays 

                                    .asList(agents) 

                                    .stream() 

                                    .sorted(Comparator.comparing(a->a.fitness)) 

                                    .collect(toList()); 

         

        int accept = Math.round(agents.length * Config.ca_accept); 

        List<Agent> agents_accept = new ArrayList<>();         

        for (int i = 0; i < accept; i++) 

            agents_accept.add(agents_sort.get(i)); 

         

        //3.2 read best word of that topic  
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        List<Concept> accept_concept = new ArrayList<>(); 

        for(Space topic : topics){ 

            for(Agent ag: agents_accept){ 

                accept_concept.add(ag.getBestConcept(topic)); 

            }   

            ca_belief.normative.put(topic, accept_concept); 

        }          

    }     

    public void mutation(){ 

        //no need to mutation  

        //because this situation is not a case of optimization 

    } 

    public Agent[] reproduction(){ 

        //double[] agents = {.9, .9, .5, .9, .3, .3, .5, .2, .8, .7}; 

        //     .9 = 3 prob. .9/3.4 = .264  count = .264*10 = 2.6 ~ 3 

        //     .5 = 2 prob. .5/3.4 = .147                  = 1.4 ~ 1 

        //     .3 = 2       .3/3.4 = .088                  = 0.8 ~ 1` ` 

        //     .2 = 1       .2/3.4 = .058                  = 0.5 ~ 1` 

        //     .8 = 1       .8/3.4 = .235                  = 2.3 ~ 2 

        //     .7 = 1       .7/3.4 = .205                  = 2.0 ~ 2 

        //sum = 5.99   

        //List<Double> agentsList = 

Arrays.stream(agents).boxed().collect(Collectors.toList()); 

        List<Agent> population = Arrays.asList(agents); 

        System.out.print("Befor reproduction "); 

        population.forEach(a -> System.out.format(" %f ", a.fitness)); 

        int size = agents.length; 

        double sum = population 

                            .stream() 

                            .mapToDouble(a->a.fitness) 

                            .sum(); 

        List<Double> prob = population 
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                                    .stream() 

                                    .map(a -> a.fitness/sum) 

                                    .collect(Collectors.toList());      

        //prob.forEach(p -> System.out.print(p + "\t")); 

        List<Long> countList = prob.stream() 

                                    .map(p -> Math.round(p*size)) 

                                    .collect(Collectors.toList()); 

        //System.out.format("\nCount List "); 

        //countList.forEach(arg -> System.out.print(String.format(" %d", arg))); 

         

        Long count = prob.stream() 

                         .map(p ->Math.round(p*size)) 

                         .collect(Collectors.toList()) 

                         .stream() 

                         .reduce(0L,(acc, d)-> acc + d);; 

        //System.out.println(); 

        //System.out.format("Count : %d  \n" , count); 

         

        while(count<size){ 

            double max_agent = population.indexOf((Agent)population.stream() 

                                .max(Comparator.comparing(c->c.fitness)) 

                                .get() 

                                );            

            countList = prob.stream() 

                                    .map(p ->  

                                        (prob.indexOf(p) == max_agent)?  

                                         Math.round(p*size)+1: 

                                         Math.round(p*size)                                       

                                        ) 

                                    .collect(Collectors.toList()); 

      

            count++; 
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        } 

        List<Agent> temAgent = new ArrayList<>(); 

        for(int i= 0; i< countList.size(); i++){ 

            for(int j= 0; j< countList.get(i); j++){ 

                temAgent.add(agents[i]); 

            } 

        } 

        System.out.println(); 

        System.out.print("After reproduction  "); 

        temAgent.forEach(a->System.out.format("%f  ", a.fitness)); 

        Agent[] agents = temAgent.toArray(new Agent[temAgent.size()]); 

         

        return agents; 

    } 

    public Agent[] evolution(){         

        fitness(); 

        //update_belief(); 

        update_belief_newversion(); 

        mutation(); 

        if(Config.reproduction) return reproduction(); 

        else return agents; 

    } 

} 

 

Class 3 - Evaluation   

 

import java.lang.reflect.Array; 

import java.util.ArrayList; 

import java.util.Arrays; 

import static java.util.Arrays.asList; 

import java.util.Collections; 

import java.util.Comparator; 
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import java.util.HashSet; 

import java.util.List; 

import java.util.Set; 

 

public class Evaluation { 

    float successRate; 

    float coherence;     

 

    // List<Concept> concepts;     

    int word_belief_upperBound; 

    int word_belief_lowerBound; 

    //Add this words variable becaurse I need only count  

    //total of word that isn't identical 

    //Prior I count word from total of concepts  

    Set<String> words; 

    public Evaluation(){ 

        this.successRate =0.0f; 

        this.coherence = 0.0f;         

     

        words = new HashSet(); 

    } 

 

    public void addConcept(Concept concept){ 

        words.add(concept.word);//new modify        

    } 

 

    //specificity of a agent 

    public float specificity(Agent ag, Space[] topics ){ 

        float spec = 0;   

        String[] words = new String[topics.length]; 

        for(int j=0; j<topics.length; j++){ 

            int[] bmu = ag.bestMatch(topics[j]); 
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            int bestBelief = 0;//no need using 

            //there are many concept in each node 

            //but it speak only the best word 

            //so select the best word and add it in array words[] 

            for(Concept concept: ag.map.nodes[bmu[0]][bmu[1]].concepts){ 

                if(concept.belief >= bestBelief){ 

                    bestBelief = concept.belief; 

                    words[j]=concept.word;//?why, because it must add all word 

                    //and keep word with max belife 

                } 

            }           

        }   

        //find frequency of each word 

        int[] freq = new int[words.length]; 

        for(int a=0; a<words.length; a++){             

            for(int b=0; b< words.length; b++){ 

                if(words[a]==words[b])//no need use qual function since it compare itself. 

                    freq[a] += 1; 

                } 

        } 

        //sum all words 

        float sum_freq = 0; 

        for(int a=0; a<freq.length; a++){ 

            sum_freq = sum_freq + freq[a]; 

        } 

        double nPow2 = Math.pow((double) words.length, 2); 

        spec = ((float)nPow2 - sum_freq) /  

                  ((float)nPow2 - (float) words.length);   

        return spec; 

    }     

    //calulate for all agents 

    public float AverageSpecificity(Agent[] players, Space[] topics){ 
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        float spec = 0; 

        for(Agent player: players){ 

            spec += specificity(player, topics); 

        } 

        spec = spec/players.length; 

        return spec;         

    } 

    /**          

        Topic    1      2     3 

        Agent  Conc1   Conc2 Conc3  Coh 

        A1      W1*     W3*   W5*   3/3 (has 3 word star) 

        A2      W2      W3*   W5*   2/3 (has 2 word star) 

        A3      W1*     W3*   W5*   3/3 

        A4      W1*     W4    W5*   2/3 

        A5      W1*     W3*   W5*   3/3   Sum 13/3 = 4.33 

                                          Averate 5 agent 4.33/5 = 0.866 

        Coh     4/5  +  4/5 + 5/5 = 2.6 

        Sum     2.6/ 3 concept = 0.866 

               

    } 

    */ 

     

    //for single agent //this method is used in CA     

    public float coherence(Agent[] players, Space[] topics,  Agent aAgent){ 

        String[][] words = new String[topics.length][players.length];   

        String[] wordStar= new String[topics.length]; 

        //1. find word;in concept,that has max frequency in all agents 

        //1.1 loading topic to agent to see it 

        for(int i=0; i<topics.length; i++){ 

            for(int j=0; j< players.length;j++){ 

                //agent sees the topic 

                int[] bmu = players[j].bestMatch(topics[i]); 



76 

                Node bestNode = players[j].map.nodes[bmu[0]][bmu[1]]; 

                 

                //agent maps to the concepts 

                List<Concept> concepts = bestNode.concepts;                 

                 

                //dinamic search in neighborhood 

                if(concepts.size()==0 & Config.dynmicConcept){ 

                    //find best node 

                    //bestNode = findBestNodeInNeighborhood(players[j], topics[i]);   

                    bestNode = players[j].findBestNodeInNeighborhoodDynmic(topics[i]); 

                    if(bestNode != null) concepts = bestNode.concepts; 

                    else concepts = new ArrayList<>(); 

                }    

                                 

                 

                int bestBelief = 0; 

                for(Concept con: concepts){ 

                    if(con.belief>=bestBelief){ 

                        bestBelief = con.belief; 

                        words[i][j] = con.word; 

                    }                         

                }                     

            }//end for j (players)                 

        }//end for i (topics) 

                 

        //for at the topic i, finding the max word using 

        for(int i=0; i< players.length; i++){ 

            for(int j = 0; j< topics.length; j++){ 

            int temMax = 0; 

                for (String s1 : words[j]) { 

                    if(s1!=null){ 

                        int temp = 0; 
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                        for (String s2 : words[j]) { 

                            if (s1.equals(s2)) { 

                                temp += 1; 

                            } 

                            if (temp>temMax) { 

                                temMax = temp; 

                                wordStar[j] = s2; 

                            } 

                        } 

                    } 

                }              

            }            

        } 

 

        //find wordstart commparing to wordMax[] 

        int row = asList(players).indexOf(aAgent); 

        int countWordStart = 0; 

        for(int i=0; i< wordStar.length; i++){ 

            //System.out.print("Max:["+i+"]" + wordMax[i] + ": *"+ words[i][row]); 

            if(words[i][row]!=null){ 

                if(words[i][row].equals(wordStar[i]))  

                    countWordStart += 1; 

            } 

        } 

        float coh = (float)countWordStart/(float)topics.length; 

        //System.out.println("\t\t\tcohs of agent[" + row + "]:" + coh);  

        return coh;         

    }   

    //for all agent  //use this method in game 

    public float averateCoherence(Agent[] players, Space[] topics){ 

        float coh = 0; 

        for(Agent agent: players){ 
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            coh += coherence(players, topics, agent); 

        } 

        coh = coh/(float) players.length; 

        return coh; 

    } 

    public Node findBestNodeInNeighborhood(Agent agent, Space space){ 

        List<Node> nodes = agent.getNeighborhood(Config.radiusFix, space);     

        int bestBelief = 0; 

        Node bestNode = null; 

        for(Node node : nodes){ 

            for(Concept concept: node.concepts){ 

                if(concept.belief >= bestBelief){ 

                    bestBelief = concept.belief; 

                    bestNode = node; 

                } 

            } 

        } 

        return bestNode; 

    }    

}
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