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Abstract 
 

Compression tests have been performed on cylindrical specimens of bedded gypsum under confining pressures up to 15 

MPa. The specimens contain different bedding plane orientations.  Results indicate that transverse isotropic effect occurs under 

all confinements where the strength is lowest when the normal to bedding planes makes an angle () of 60 with the core axis.  

The lowest modulus is obtained at  = 0, and the highest is at  = 90.  Confining pressures rapidly increase the elastic and shear 

moduli normal to bedding plane strike, toward those parallel to the beds. Loading gypsum under high confinement may induce 

plastic deformation by dislocation climb mechanism, which gradually tightens the microcracks and pore spaces along bedding 

planes. Coulomb criterion is capable of describing the rock compressive strengths where the cohesion is defined as a polynomial 

function of . Distortional strain energy induced at failure coincides with the results obtained from Coulomb criterion. 
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1. Introduction  
 

 Gypsum deposit in Nakhon Sawan Province, central 

part of Thailand was rehydrated from the underlain anhydrite.  

The deposit is in a graben extending over 10 km long in north-

south direction. The rock is grey to light grey massive micro-

crystalline (Kuroda et al., 2017).  The volume increase during 

rehydration under burial condition makes its lamination 

deformed, undulated and highly distorted (Warren, 1999). 

Several open pit mines have been operated along the trend of 

the deposit. In many locations, the slope toes intersect gypsum 

ore with bedding plane inclinations as high as 45 degrees. Due 

to the fact that gypsum is a relatively soft rock and exhibits 

transverse isotropic characteristics, concerns are raised as to 

the short- and long-term stability of the mine slopes during 

excavation and after decommissioning. 

The anisotropic degree of rocks has been defined as 

the maximum-to-minimum elastic modulus ratio, or the 

maximum-to-minimum strength ratio. These properties are 

 
from different directions with respect to the transverse 

isotropic planes (e.g., bedding planes for sedimentary rocks, 

foliation planes for metamorphic rocks, or system of micro-

cracks and fractures in rock mass) (Goodman, 1989). 

Ramamurthy (1993) classifies the rock anisotropy into six 

types based on the shapes of strength ratio curve versus the 

transverse isotropic plane angle. These include inherent, 

induced, cleavage, U-shaped, undulatory and bedding plane 

anisotropies (Gholami & Rasouli, 2014). Several investigators 

have found that the degree of anisotropy of rocks decreases 

with increasing confining pressures. Nasseri, Rao, and 

Ramamurthy (2002) perform compression tests on four 

Himalayan schists with confining pressures up to 100 MPa, 

and find that the degree of rock anisotropy in terms of 

strengths and elastic moduli decreases as the confining 

pressures increase. The degrees of anisotropy of mudstones 

compressive strength and static and dynamic elastic moduli 

obtained by Miller, Plumb, and Boitnott (2013) also decrease 

as the confining pressures increase.  This agrees with the 

experimental results obtained by Xu, He, Su, and Chen (2018) 

on phyllite, and by Fereidooni, Khanlari, Heidari, Sepahi, and 

Kolahi-Azar (2016) on phyllite, slate, hornfels and schist. Test 
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results by Hu et al. (2017) however suggest that increasing the 

confining pressures up to 30 MPa does not seem to reduce the 

degree of anisotropy of interbedded sandstone from Shandong 

area, China.   

The transverse isotropic response has also been 

observed in time-dependent rocks, such as salt. Rock salt 

exhibits transverse isotropic structures primarily due to the 

layers of crystallization and the inclusions (e.g., anhydrite, 

potash, gypsum, and clay minerals) (Warren, 1999). These 

inclusions may be interbedded with the salt or disseminate 

between halite crystals.  Jeremic (1994) reports that rock salt 

from Poland shows the transverse isotropic effect on its 

uniaxial compressive strength where the minimum strength is 

obtained when the bedding inclination makes an angle of 45° 

with the loading direction. Dubey and Gairola (2008) 

performed uniaxial creep tests on prismatic salt specimens 

from India under three different bedding orientations (0°, 45° 

and 90°). Their results indicate that the steady-state creep rate 

is highest when the bedding planes make an angle of 45° with 

the loading axis. The lowest rate is observed in the direction 

normal to the bedding planes.  The transverse isotropic effect 

on salt also tends to decrease with increasing loading rates 

(Dubey, 2018). 

Some knowledge gaps remain. A strength criterion 

for rocks including gypsum, that exhibit transverse isotropic 

behavior has never been developed for practical use. The 

mechanisms controlling the strength and elastic responses of 

soft rocks under varied confinements have not been identified. 

These knowledge are needed for the analysis and design of 

relevant geological structures to ensure their long-term 

stability. 

The objective of this study is to determine the 

strength and elastic properties of transverse isotropic gypsum. 

The main tasks involve performing compression tests under 

confining pressures up to 15 MPa, determining elastic 

properties for various bedding plane orientations, developing 

strength criterion that can incorporate the transverse isotropic 

effect, and applying strain energy principle to predict the 

strength and deformability of the rock. 

. Also, many species of Basidiomycota were isolated from 

Salahadin and Baghdad Governorates (Al-Khesraji & 

Suliaman, 2019; Al-Khesraji, Suliaman, Al Hayawi, & Sadiq, 

2019). 

 

2. Gypsum Specimens 
 

Gypsum blocks with approximate size of 50×50×50 

cm3 have been collected from an open pit mine of Siam 

Cement Group, Co. in Nakhon Sawan Province. They are 

cored and cut to obtain cylindrical specimens with nominal 

diameters of 54 mm and length-to-diameter ratio of 2.0. The 

nominal angles ( ) between the specimen main axis and the 

normal to bedding planes are selected as 0, 30, 45, 60 and 90 

degrees. Results from X-ray diffraction analysis indicate that 

the specimens contain 88.90% gypsum, 7.98% calcite, 3.0% 

chlorite and 0.12% anhydrite by weight.  Based on 

petrographic analysis, their crystal sizes range from 0.1 to 0.4 

mm.  The bedding planes can be observed by alternations of 

white gypsum and grey anhydrite bands.  Their average 

density determined based on ASTM D6473-15 (2021) is 

2.25±0.06 g/cc. The rock porosity is 4.47%. It is determined 

in accordance with ASTM C97/C97M-18 (2021).  

3. Test Apparatus and Method 
 

Test procedure and calculation for the compression 

test follow the ASTM D7012-14e1 (2021) standard practice.  

The constant confining pressures are applied by Hoek triaxial 

cell. A pair of strain gages is installed at the mid-section of the 

specimen to monitor the circumferential strains parallel and 

normal to the strike of bedding planes. The axial deformation 

is measured using displacement dial gages. Gypsum 

specimens are tested under constant confining pressures ( 3) 

of 0, 3, 5, 7, 12, and 15 MPa. The specimen is first subjected 

to a desired uniform confining pressure. A hydraulic load cell 

with electric pump increases the axial stress under constant 

rates of 0.1 MPa/s until failure occurs. The specimen 

deformations monitored along the three principal directions 

are used to calculate the principal strains during loading. They 

are recorded to the nearest 0.001 mm. 
 

4. Test Results 
 

Examples of stress-strain curves and representative 

images of gypsum specimens prior to testing are given in 

Figure 1. The diagrams show that the specimens with β= 90 

(beds are parallel to 1) show the lateral strains normal to the 

strike of bedding planes (3O) notably larger than those 

parallel to the bedding planes (3P). The two lateral strains are 

comparable for specimens with β= 0. The specimens with 

β= 60 give the lowest compressive strengths. The highest 

strengths are obtained from those with β= 0. This holds true 

for all confining pressures. The strength discrepancies 

between the three angles become smaller, as the confining 

pressure increases. Table 1 gives the compressive strengths 

(1,f) for all specimens. 
 

Confining pressure appears to be the predominant 

factor controlling the modes of failure.  Under low confining 

pressures (7 MPa or less), combination of shear and extensile 

failures is found for the specimens with β= 0, 30 and 90. 

Most specimens with β= 45 and 60 show shear failure along 

their bedding planes.  Under 3 equal to 12 and 15 MPa, small 

multiple shear fractures are observed for all bedding plane 

orientations.  

 

5. Elastic Properties 
 

Assuming that the specimens are linearly elastic, the 

elastic moduli along the major principal (axial) direction (E1) 

and along the two minor principal (lateral) axes normal and 

parallel to bedding plane strike (E3O and E3P) can be calculated 

from the test results.  For the transverse isotropic material 

(Figure 1d), the strains under triaxial compression can be 

presented in terms of the applied stresses and elastic 

parameters as (Jaeger, Cook, & Zimmerman, 2007): 

 

1 = 1/E1 – 1,3P 3/E3P - 1,3O 3/E3O                        (1) 

 

3P = -1,3P 1/E1 + 3/E3P - 3P,3O 3/E3O                      (2) 

 

3O = -1,3O 1/E1 - 3P,3O 3/E3P + 3/E3O               (3) 

 

where 1 and 3 are the major and minor principal stresses, 1 

is the major principal strain, and 3P and 3O are the strains 
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Figure 1. Examples of stress-strain curves on gypsum specimens with  = 0 (a), 60 (b), and 90 (c). Notations used in Table 1 (d). 

 

Table 1. Compression test results 

 

 3  (MPa) 1,f (MPa) E1 (GPa) E3P (GPa) E3O (GPa) 1,3P 1,3O 3P,3O 

         

0 

0 9.86 3.34 - - 0.27 0.27 - 

3 16.90 4.00 8.06 8.06 0.26 0.26 0.21 
5 21.13 4.85 8.11 8.11 0.26 0.26 0.20 

7 26.51 5.54 8.28 8.28 0.25 0.25 0.20 

12 39.14 6.69 8.46 8.46 0.24 0.24 0.20 
15 44.89 7.85 8.93 8.93 0.22 0.22 0.20 

30 

0 7.89 3.79 - - 0.26 0.30 - 

3 13.71 4.48 8.04 6.07 0.25 0.29 0.23 
5 20.10 5.33 8.12 6.74 0.24 0.27 0.23 

7 24.68 6.01 8.29 7.24 0.25 0.26 0.22 

12 37.48 7.10 8.47 7.89 0.23 0.24 0.21 

15 42.96 8.22 8.93 8.73 0.22 0.22 0.21 

45 

0 6.71 4.49 - - 0.25 0.32 - 

3 12.78 5.34 8.03 5.07 0.24 0.29 0.24 
5 17.79 5.94 8.10 5.89 0.23 0.28 0.23 

7 23.39 6.67 8.28 6.51 0.24 0.27 0.23 

12 35.86 7.31 8.46 7.42 0.22 0.25 0.30 
15 42.09 8.31 8.93 8.54 0.21 0.23 0.20 

60 

0 5.84 6.32 - - 0.24 0.31 - 

3 12.12 6.66 8.05 4.44 0.23 0.29 0.26 
5 15.98 7.03 8.08 5.29 0.22 0.28 0.25 

7 22.10 7.27 8.28 5.97 0.22 0.27 0.23 

12 35.00 7.72 8.45 7.03 0.22 0.24 0.23 
15 41.11 8.51 8.96 8.36 0.20 2.22 0.23 

90 

0 8.51 8.02 - - 0.20 0.27 - 
3 14.28 8.06 8.06 4.00 0.21 0.26 0.21 

5 22.04 8.11 8.11 4.85 0.20 0.25 0.20 

7 25.48 8.28 8.28 5.54 0.20 0.25 0.20 

12 38.16 8.46 8.46 6.69 0.20 0.24 0.20 

15 43.81 8.93 8.93 7.85 0.20 0.22 0.20 
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measured parallel and normal to the strike of bedding planes.  

For transverse isotropic condition, three Poisson’s ratios are 

defined on the specimens: 1,3P and 1,3O represent the 

Poisson’s ratios on the planes between the major principal 

axis and the directions that are parallel and normal to the 

strike of bedding planes. The 3P,3O represents Poisson’s ratio 

between the directions that are parallel and normal to the 

bedding plane strike.   

For  = 0 and 90, the elastic moduli and Poisson’s 

ratios under unconfined condition can be readily calculated 

from equation (1) to (3). Regression analysis using SPSS code 

(Wendai, 2000) are performed to determine the elastic 

parameters of the specimens with 0 <  < 90. The regression 

uses the stresses and their corresponding strains obtained from 

linear portion of the curves from start loading to 40-50% of 

the failure stress for each specimen. Table 1 gives the results. 

Under low confining pressures, the intrinsic elastic moduli 

parallel to bedding plane strike (E3P) are greater than those 

normal to the strike (E3O) which can be clearly observed for  

= 90. The stiffness discrepancies decrease with angle . The 

two moduli are equal for  = 0 (1 is normal to bedding 

planes). Under high confinement, the elastic moduli for all 

angles are comparable. 

Similar behavior is observed for the Poisson’s 

ratios.  Under low confining pressures, the Poisson’s ratios 

parallel to bedding plane strike (1,3P) are slightly lower than 

those normal to the bedding plane strike (1,3O). For  = 0, 

the two Poisson’s ratios are equal while3P,3O is lower than the 

two.  Under high confinement, the Poisson’s ratios measured 

from all planes are comparable. 

 

6. Amadei’s Solutions 
 

The apparent elastic parameters calculated for 0  

  90 are compared with those predicted by Amadei (1996) 

solutions. He proposes sets of equations to determine the 

elastic moduli and Poisson’s ratios under varied orientations 

of transverse isotropic planes, providing that the intrinsic 

elastic parameters for  equal to 0 and 90 are known. 

Exhaustive review and detailed deviation of Amadei’s 

solutions have been described elsewhere (Amadei, 1996; 

Gholami & Rasouli, 2014; Miller et al., 2013; Nasseri et al., 

2002; Nejati, Dambly, & Saar, 2019).  They are not repeated 

here.  Based on the generalized Hook’s law, for transverse 

isotropic material, Amadei introduces three variables: 

 

Ey = 1/a22                                  (4) 

 

yx = a12/a22                  (5) 

 

yz = a23/a22                  (6) 

 

where Ey is apparent Young’s modulus,yx and yz are 

apparent Poisson’s ratios in x-y-z coordinate system, a12, a22 

and a23 are compliance components. These components are 

defined as a function of transverse isotropic plane angle () 

as: 

 

a22 =  cos4 /E  + sin4 /E + sin2 2/4 (1/G - 2 /E )  

               (7) 

a12 = ( /E ) sin  - ( /E ) cos4  + (sin2 2/4) (1/E    

         + 1/ E  - 1/ G )                 (8) 
 

a23 = ( /E ) cos 2 - ( /E) sin2                 (9) 

 

where E and E  are intrinsic Young’s moduli parallel and 

normal to strike of transverse isotropic plane,   and G are 

Poisson’s ratio and shear modulus on transverse isotropic 

plane,   and G are Poisson’s ratio and shear modulus on the 

plane normal to transverse isotropic plane. These parameters 

interrelate as follows: 
 

1/G  = 1/E + 1/E  + 2 /E                (10) 
 

1/G  = 2(1+)/E                (11) 

 

Note that the intrinsic moduli E and E  are equivalent to E1 

values for  = 90 and 0, and   and   are equivalent to 1,3P 

and 1,3O for  = 90 defined from our testing (Table 1).  

Substituting these parameters into equation (7) to (9) and 

subsequently into equation (4) to (6), the apparent Young’s 

moduli and Poisson’s ratios under all confining pressures and 

bedding plane angles can be determined.   

Polar plot provided in Figure 2 gives example of the 

apparent Young’s moduli comparing with the test results for 

different confining pressures. The Young’s moduli for all 

bedding plane angles become similar as the confining pressure 

increases to 15 MPa. This agrees with the Amadei’s prediction 

(lines in Figure 2).  The apparent Poisson’s ratios on y-x plane 

(yx) and y-z plane (yz) slightly depend on the bedding plane 

orientations (β), as indicated by lines and data points in Figure 

3. Their transverse isotropic responses tend to reduce as the 

confining pressure increases toward 15 MPa. 

The similarity and discrepancy between the test 

results and the Amadei’s predictions can be evaluated using 

the mean misfit (s) as an indicator.  It is calculated by (Riley, 

Hobson, & Bence, 1998): 
 

s = 1/m ( si) where si = [(1/n) (  (Xj,p-Xj,t)2]1/2 

                  (12) 

 

where Xj,p and Xj,t are the predicted and measured Young’s 

moduli or Poisson’s ratios, n is the number of bedding plane 

angles () used for each confining pressure, and m is the 

number of confining pressure. The maximum mean misfit for 

the Young’s moduli is calculated as 0.14 MPa, and for 

Poisson’s ratios are 0.01 (for yz) and 0.01 (for yx). These low 

misfit values indicate good agreements between the measured 

elastic parameters and the Amadei’s predictions.  

 

7. Degree of Anisotropy 
 

Figure 4 plots the degree of anisotropy of gypsum in 

the form of the maximum-to-minimum elastic modulus ratios 

(E90 /E0) as a function of confining pressure, where E90 and E0 

are measured parallel and normal to the bedding plane. The 

degrees of modulus anisotropy of various rocks obtained 

elsewhere are also compared in the figure. Gypsum tends to 

show lower degree of anisotropy, and reduces toward the 

isotropic condition much quicker, as compared to other more 

brittle and stronger rocks.  It, however, shows a higher degree 
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Figure 2. Polar plot of apparent elastic moduli (Ey) under different 

bedding plane angles (). Points are test results, lines are 
Amadei’s predictions. 

 

 
 

 
 

Figure 3. Polar plot of apparent Poisson’s ratios yx (a) and yz (b). 

Points are test results, lines are Amadei’s predictions. 
 

of anisotropy than rock salt obtained by Hatzor and Heyman 

(1997). 

To reveal how the degree of anisotropy for gypsum 

reduces as the confining pressure increases, the elastic moduli 

obtained along the major principal (axial) direction for 

different angles  are plotted as a function of confining 

pressure in Figure 5. They are designated as E, where  are 

               
 

Figure 4. Degrees of rock anisotropy (E90/E0) as a function of 

confining pressure. ① Hornfels, ② Schist, ③ Garnet 

hornfels (Fereidooni et al., 2016); ④ Mudstone (Miller et 

al., 2013); ⑤ Quartzitic schist, ⑥ Biotite schists (Nasseri 

et al., 2003); ⑦ Phyllite (Xu et al., 2018); ⑧ Meta-

siltstone, ⑨ Schist (Usoltseva et al., 2017); ⑩ Sandstone 

(Hu et al., 2017); ⑪ Rock salt (Hatzor and Heyman, 
1997) 

 

 
 

Figure 5. Intrinsic and apparent elastic and shear moduli increase 

with confining pressure (3).  Intrinsic elastic parameters 
parallel to beds (E90, G) always greater than those normal 

to beds (E0, G).  Apparent elastic moduli (for 0 < β < 90) 

are between the two intrinsic values. 

 

0, 30, 45, 60 and 90. The shear moduli on the bedding 

planes (G) and on the plane perpendicular to the beds (G ), 

are also given.  These shear moduli are calculated from 

equations (10) and (11). 

Under unconfined condition, E90 is the highest, 

obtained when 1 is parallel to the bedding planes. They 

slightly increase with confining pressure.  The lowest elastic 

moduli are E0 obtained when the bedding planes are 

perpendicular to 1.  These elastic moduli increase, as the 

beds dip away from the major principal axis, as shown by E30, 

E45 and E60. They also increase rapidly toward E90 as the 

confining pressures increase.  The increase of these moduli is 

presumably due to the closure of micro-cracks and inter-
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crystalline boundaries parallel to the bedding planes, and the 

stiffening of the soft layers by the confinement. Such behavior 

is supported by the apparent elastic moduli diagram shown in 

Figure 2. Similar behavior is observed from the shear moduli. 

The confining pressures slightly increase G, but considerably 

increase G . These processes decrease the degree of 

anisotropy of the gypsum as the confining pressure increases. 

 

8. Strength Criterion 
 

 An attempt is made here to incorporate the 

transverse isotropic effects into the Coulomb criterion.  The 

major principal stress at failure (1,f) can be expressed as a 

function of confining pressure (3) as (Jaeger et al. 2007): 

 

1,f  = [(1 + sin )/(1 – sin )]  3 + (2c  cos )/ 

          (1 – sin )                (13) 

 

where c and  are cohesion and internal friction angle.  Figure 

6 plots the Coulomb criterion for all bedding plane angles, . 

The multiplier of 3 represents slope of the curves and the last 

term on the right side of equation (13) is the intercept on 1,f  

axis. The cohesion and friction angle can be determined by 

regression analysis of the strength data.  It is found that the 

friction angles tend to be independent of the bedding plane 

orientation (), where their average value is 24 degrees. The 

cohesions, however, vary with the bedding plane orientation. 

Their numerical values are given in Figure 6. The lowest 

cohesions are obtained from the specimens with  = 60, and 

the highest ones are from those with  = 0.  A third-degree 

polynomial equation can best describe the relationship 

between the cohesions and angle  as: 

 

c = c0 + A + B 2 + C 3               (14) 

 

where c0 is the cohesion obtained from specimens with  = 

0, and A, B and C are empirical constants.  Their numerical 

values obtained from regression analysis are given in Figure 7.  

Good correlation is obtained (R2 > 0.990). 

 

9. Strain Energy Density Criterion 
 

In order to consider both stresses and strains, the 

strain energy principle is applied to describe the gypsum 

failure under different bedding orientations. Distortional strain 

energy (Wd) and mean strain energy (Wm) at failure are 

calculated for each specimen using the following equations 

(Jaeger et al. 2007): 

 

Wd  32oct, f oct, f               (15) 

 

Wm  32m, f  m, f               (16) 

 

where oct, f and oct, f are octahedral shear stress and strain at 

failure, and m, f and m, f are mean stress and mean strain.  

They are calculated by: 

 

m, f = (1, f + 23)/3               (17) 

 

m, f = (1,f  + 3P,f + 3O,f)/3               (18) 

 
 

Figure 6. Major principal stresses at failure (1,f) as a function of 

confining pressure (3). Lines are Coulomb criterion. 

 

 
 

Figure 7. Cohesions as a function of bedding plane orientation 

 

where 1,f, 3P,f and 3O,f are principal strains at failure. Linear 

equation is proposed to represent Wd as a function of Wm: 

 

Wd =   Wm +                  (19) 

 

where  represents slope of Wd-Wm relations, and  is Wd for 

Wm = 0. Figure 8 compares the calculated Wd and Wm with the 

proposed equations for all angles . Correlation coefficients 

(R2) are greater than 0.990. Numerical values for  and  are 

given in the figure. The diagram indicates that the Wd-Wm 

relation obtained at  = 60 shows the lowest value but gives 

the steepest slope ( = 1.611). As a result, the higher Wd-Wm 

relations for  = 45, 30, 90 and 0 would terminate on the 

60 Wd-Wm relation at Wm = 0.063, 0.064, 0.079 and 0.088 

MPa, respectively.  It seems that, Wd for  = 60continues to 

increase linearly with Wm beyond these termination points, 

suggesting that it would be able to describe the gypsum 

strength from transverse isotropic to isotropic behavior. 

The strain energy relations implicitly incorporate 

both stresses and strains, and hence they may be more suitable 

for use as a failure criterion for the gypsum. This is primarily 

because gypsum deformability is significant under failure, as 

compared to other hard and brittle rocks. The Wd-Wm failure 

criterion agrees well with those of the Coulomb criterion 

proposed earlier. Both suggest that gypsum failure and 
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Figure 8. Distortional strain energy (Wd) at failure as a function of 

mean strain energy (Wm) 

 

deformability obtained for  = 60, where it exhibits the 

lowest strength, can be extended to the condition where it 

mechanically responds as isotropic material under higher 

confinement beyond the range tested here. 
 

10. Discussions and Conclusions 
 

The confining pressure significantly reduces the 

transverse isotropic responses of the gypsum in the forms of 

elastic moduli. Increasing the confining pressures presumably 

reduce the porosity, stiffen the soft layers, and tighten the 

micro-cracks and along the bedding planes.  This agrees with 

results obtained by Lyu et al. (2021) who experimentally 

show that increasing confining pressures can effectively 

reduce microcracks, pore spaces and permeability of gypsum 

specimens obtained from China. Under subsequent differential 

stress application, deformability of the micro-crystalline 

gypsum is likely governed by dislocation climb mechanism 

(time-dependent sliding between inter-crystalline boundaries). 

This process reduces the transverse isotropic response of the 

rock, as the applied load cannot well recognize the transverse 

isotropic (bedding) planes. As the differential stress 

progressively increases toward failure, only small shear 

fractures are initiated and propagated along the tight inter-

crystalline boundaries.   

Specimens with β = 60° allow shear fractures to 

propagate more easily along the inter-crystalline boundaries of 

the bedding planes, leading to the lowest compressive 

strengths.  These processes would be similar to those of other 

transverse isotropic rocks, as addressed by several 

investigators, e.g. Dubey and Gairola (2008), Fereidooni et al. 

(2016) and Nessei et al. (2002).   

It is recognized that there are two main mechanisms 

governing the non-linear or plastic behavior of soft crystalline 

rocks (e.g. rock salt, potash and gypsum): dislocation climb 

and dislocation glide (sliding between cleavage planes) 

(Fuenkajorn & Daemen, 1988; Fuenkajorn, Sriapai, & Samsri, 

2012).  Only dislocation climb is induced in the gypsum tested 

here because it is a fine grained (0.1-0.4 mm) rock, has 

relatively high porosity (4.47%), and is compressed for 

relatively short duration.  Sliding between the cleavage planes 

is likely induced in those with large crystals under long-term 

loading and large confinements, as experimentally evidenced 

by Langer (1984). 

The mechanism governing the reduction of the 

degree of gypsum anisotropy described above may not be true 

for other strong and brittle rocks. The mechanisms controlling 

their deformability are likely different, depending on rock 

types and their transverse isotropic characteristics, as 

described by Ramamuthy (1993) and Gholami and Rasouli 

(2014). Unlike gypsum, strong and brittle rocks may not be 

that sensitive to the confining pressure in terms of their 

strength and deformability. 

It is recognized that there are other factors 

influencing the transverse isotropic responses of the rocks, 

which are excluded from this study. These include, for 

example, moisture content, specimen size, and wet-dry cycles. 

These factors may be encountered under in-situ conditions 

which may alter the results obtained here.  For example, pore 

pressure may reduce compressive strengths and elastic moduli 

of the rock, as experimentally evidenced by Khamrat, 

Archeeploha, and Fuenkajorn (2016).  Further studies on these 

effects are desirable. 

The approach presented in this study may be 

transferable to other soft and transverse isotropic rocks.  The 

angles of their transverse isotropic planes corresponding to the 

lowest strength and stiffness, however, may be different from 

the gypsum tested here. 

Conclusions drawn from this study can be 

summarized as follows. 

 Within the range of confinements used here, 

gypsum specimens give the highest elastic 

moduli when the normal to bedding planes 

makes an angle () of 90 with the major 

principal axis, the lowest values are obtained 

when  = 0 (beds are normal to 1).  The elastic 

modulus and Poisson’s ratios measured for 0 < 

 < 90 agree reasonably well with those 

predicted by Amadei’s solutions. The gypsum 

compressive strengths are highest at  = 0, and 

lowest at  = 60. 

 The confining pressures reduces the degree of 

rock anisotropy by stiffening the soft layers and 

closing the micro-cracks along the bedding 

planes. The confinement rapidly increases the 

elastic and shear moduli normal to bedding 

plane strike and approaches those parallel to the 

bedding planes.   

 Coulomb criterion implicitly incorporates the 

transverse isotropic effect by defining the 

cohesion as a polynomial function of bedding 

plane angles. It agrees well with the test results.   

 The strain energy criterion reveals that the 

maximum distortional strain energy densities 

that the gypsum can sustain before failure, 

depend on the bedding plane orientation. The 

Wd-Wm relations for  = 60 give the lowest 

energies while the highest ones are from  = 0.  

This agrees with the strength results obtained 

from the Coulomb criterion. 
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