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Abstract 
 

We first discuss the Fermat-type equation with signature (2, 𝑚, 𝑛), which is the Diophantine equation in the shape 𝑥2 +
𝑦𝑚 = 𝑧𝑛 , where 𝑥, 𝑦 and 𝑧 are unknown  integers, and 𝑚, 𝑛 are fixed positive integers greater than 1. This kind of equations has 

been particularly focused on our work here in the case 𝑚 = 2, 𝑛 = 5 and 𝑦 = 𝑝 is a fixed rational prime. Then the first result 

describing the condition of such a prime 𝑝 in order to illustrate that this certain equation has an integer solution (𝑥, 𝑦) when 𝑝 ≡
1(mod 4) and gcd(𝑥, 𝑝) = 1, and the second result stating that the equation has no integer solution (𝑥, 𝑦) when 𝑝 ≡ 3(mod 4) are 

provided. Lastly, we will indicate that the results of Be ́rczes and Pink about solving the equation 𝑥2 + 𝑝2𝑘 = 𝑧𝑛 in 2008 have 

been generalized in the particular cases (𝑛, 𝑘) = (3,1) and (5,1), and additionally present that the first result and also its analogous 

result in the particular case  𝑛 = 3 can be linked to the Bunyakovsky conjecture. 
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1. Introduction  
 

 We  call  the  Diophantine  equation  in  the form  of 

 

𝑥𝑙 + 𝑦𝑚 = 𝑧𝑛                                (1.1)                        

 

the generalized Fermat equation or simply says the Fermat -

type equation, where 𝑥, 𝑦 and 𝑧 are unknown integers, and the 

exponents 𝑙, 𝑚 and 𝑛 are fixed positive integers greater than 1. 

Our attention is always to consider the integer solutions 

(𝑥, 𝑦, 𝑧) of (1.1) as primitive solutions since the others are not 

interesting and will be fairly set them in the sense of a trivial 

fashion. The triple (𝑙, 𝑚, 𝑛) is said to be the signature of (1.1). 

For instance, the equation with signatures (𝑛, 𝑛, 𝑛) is called the 

family of the Fermat’s Last Theorem, which has been 

eventually proven by Andrew Wile in the early 1990s, and he 

was awarded the Abel prize in 2016 (Mckenzie, 2016; 

Wikipedia contributors, 2021). This is the reason why we call 

the equation (1.1) the generalized Fermat equation. More detail 

about  these  may  be  seen  in  (Wiles,1995; Faltings,1995; John 

 

Wiles,1996).  In fact, the quantity of  𝜎(𝑙, 𝑚, 𝑛) =
1

𝑙
+

1

𝑚
+

1

𝑛
  

allows us to understand about the behaviour of such primitive 

solutions. Following the papers appearing in (Beukers,1998 

;Bennett, Mihăilescu & Siksek, 2016; Nils,1999), we shall give 

more precise statements as follows: (i) if  𝜎(𝑙, 𝑚, 𝑛) < 1, then 

(1.1) has at most finitely many integer solutions, for instance, 

the signatures (𝑛, 𝑛, 𝑛), 𝑛 ≥ 4  have no non-trivial solution, (ii) 

if 𝜎(𝑙, 𝑚, 𝑛) = 1, then all possible signatures of (1.1) can 

happen only 
(𝑙, 𝑚, 𝑛) = (2, 6, 3), (2, 4, 4), (4, 4, 2), (3, 3, 3) or (2, 3, 6), 

arising from a corresponding elliptic curve of rank 0 over ℚ,  

and the last equation has a non-trivial solution, but the others 

have only trivial solutions, (iii) if 𝜎(𝑙, 𝑚, 𝑛) > 1, then (1.1) has 

either no solutions or infinitely many solutions which come 

from its possible signature shown as 
(2,2, 𝑛)  for 𝑛 ≥ 2,  or  (2,3, 𝑛)  for 𝑛 = 3, 4, 5, 

for instance, the signature (2,2,2) has infinitely many non-

trivial solutions depending on two parameters and it is well-

known as the Pythagorean equation. Moreover, we normally  

know that the signatures (2,2, 𝑛) has no integer solution when 

𝑛 is an even integer greater than 2 and this fact may be seen in 

the book of Andreescu et al., (Andreescu, 2010).  The three 

distinguished    cases    above    are    respectively    called    the 
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hyperbolic, parabolic and spherical cases. We will consider throughout this paper only the spherical one. 

Now, we will divide our discussion about some results concerning the Fermat-type equations with the signature (2, 𝑚, 𝑛)  

and 𝑦 = 𝑝  is a fixed rational prime into 2 cases: (note that these equations may be viewed as the generalized Ramanujan-Nagell 

equation and to be in order, we are going to use the unknown 𝑦 instead of 𝑧  from now on). 

 

Case A: Let 𝑚 = 2𝑘 + 1, where 𝑘 is a positive integer, 𝑝 be odd such that 𝑝 ≢ 7(mod 8), and 𝑛 ≥ 3 be an odd integer with  

gcd(𝑛, ℎ) = 1, where ℎ is the class number of the number field  ℚ(√−𝑝). When  𝑛 ≥ 5  is not a multiple of  3, the equation    𝑥2 +

𝑝2𝑘+1 = 𝑦𝑛 with  gcd(𝑝, 𝑥) = 1  has exactly two families of solutions given by 

𝑝 = 19, 𝑛 = 5, 𝑘 = 5𝑀, 𝑥 = 22434 × 195𝑀, 𝑦 = 55 × 192𝑀,  and 

𝑝 = 341, 𝑛 = 5, 𝑘 = 5𝑀, 𝑥 = 2759646 × 3415𝑀, 𝑦 = 377 × 192𝑀, 
and its proof may be seen in (Arif & Abu Muriefah, 2002). The particular equation 𝑥2 + 𝑝2𝑘+1 = 𝑦3, 𝑝 ≠ 3 has exactly one solution 
(𝑝, 𝑘, 𝑥, 𝑦) = (11,1,9324,443) due to (Lin Zhu, 2011) and moreover, Arif and Abu Muriefah illustrated in 1998 that the equation 

𝑥2 + 3𝑚 = 𝑦𝑛  has the unique solution given by  

𝑚 = 5 + 6𝑁, 𝑥 = 10 × 33𝑁, 𝑦 = 7 × 32𝑁, and  𝑛 = 3. 

More detail can be seen in (Arif & Abu Muriefah, 1998). 

 

Case B: Let 𝑚 = 2𝑘, where 𝑘 is a positive integer. In 2008, Be ́rczes and Pink showed that all integer solutions of the equation 

𝑥2 + 𝑝2𝑘 = 𝑦𝑛 are 
(𝑥, 𝑦, 𝑝, 𝑛, 𝑘) = (11,5,2,3,1), (46,13,3,3,2), (524,65,7,3,1), (2,5,11,3,1), 
(278,5,29,7,1), (38,5,41,5,1), (52,17,47,3,1), (1405096,12545,97,3,1) 

under the following conditions: 

(1)  𝑥, 𝑦, 𝑛, 𝑘  are integer unknowns satisfying  𝑥 ≥ 1, 𝑦 > 1, 𝑛 ≥ 3 is prime and 

      𝑘 ≥ 0 with gcd(𝑥, 𝑦) = 1,  and 

(2)  2 ≤ 𝑝 ≤ 100. 

Moreover, they gave the particular case 𝑛 = 𝑝 that this equation has no integer solution when the conditions  (1) holds and  𝑝 ≥ 5. 

See more detail in (B´erczes & Pink, 2008). 

  Inspired by all mentioned information previously, we will introduce a new look that enables us to provide more suitable 

primes 𝑝  for being an existence of an integer solution to the certain equation 𝑥2 + 𝑝2 = 𝑦5. However, providing their all solutions 

will not be studied yet in this paper. The key idea of this line is to follow the property of the unique factorization in the ring of 

Gaussian integers and use MAGMA program at some points. It turns out that we can eventually describe the solvability of the 

certain equation 𝑥2 + 𝑝2 = 𝑦5, where 𝑝 is a fixed prime number considered in two cases as 𝑝 ≡ 1(mod 4) or 𝑝 ≡ 3(mod 4), and 

one more particular case 𝑝 = 2 with gcd(𝑝, 𝑥) = 1 will be illustrated that it always has no any integer solution. Regarding the 

Bunyakovsky conjecture, the magnitude of such a prime arising in the first case and also its analogous result in the case  𝑛 = 3  
will be discussed. We would like to refer this implication to the last section and here are the statements of the mentioned results. 

 

Theorem 1.1 Let 𝑝  be a prime number such that 𝑝 ≡ 1(mod 4). Then the Diophantine equation 𝑥2 + 𝑝2 = 𝑦5  has an integral 

solution (𝑥, 𝑦) with  gcd(𝑝, 𝑥) = 1 if and only if  𝑝 = 5𝑛2 − 10𝑛 + 1  for some non-zero square integer 𝑛. 

 

Theorem 1.2 Let 𝑝 be a prime number such that 𝑝 ≡ 3(mod 4). Then the Diophantine equation 𝑥2 + 𝑝2 = 𝑦5  has no integral 

solution. 

 

Corollary 1.1 The Diophantine equation 𝑥2 + 4 = 𝑦5  with gcd(2, 𝑥) = 1 has no integral solution. 

 

2. Some Important Properties in Gaussian Integers 

 
In order to complete our purpose, let us give the necessary and sufficient condition for having an integer solution of the Fermat-

type equation with signatures (2,2, 𝑛) as follows: 

 

Lemma 2.1 Let  𝑛  be any natural number and 𝛼, 𝛽, 𝛾 be non-zero and non-unit Gaussian integers such that 𝛽  and  𝛾  are coprime. 

If  𝛼𝑛 = 𝛽𝛾, then there exist 𝛽1 , 𝛾1 and unit elements 𝑢, 𝑣  in Gaussian integers for which  

𝛽 = 𝑢𝛽1  and  𝛾 = 𝑣𝛾1, 

where 𝛽1 and  𝛾1  are coprime. 

Applying the unique factorization in the ring of Gaussian integers, the proof of this lemma is done easily. Indeed, the 

above lemma can be true for any unique factorization domain, and its analogue in the sense of using the unique prime ideal 

factorization has been illustrated in (Alaca & Kenneth, 2004). The following two lemmas taken from (Andreescu, Andrica & 

Cucurezeanu, 2010) and (Jaidee &Wannalookkhee, 2020), respectively are shown below. 

 

Lemma 2.2 Let 𝑛  be a natural number such that 𝑛 ≥ 3. If the equation 𝑥2 + 𝑦2 = 𝑧𝑛  has an integer solution (𝑥, 𝑦) with  

gcd(𝑥, 𝑦) = 1, then  𝑥 + 𝑦𝑖  and 𝑥 − 𝑦𝑖 are coprime. 
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Lemma 2.3 Let 𝑛  be a natural number such that 𝑛 ≥ 3, and  𝑝  be a prime number with 𝑝 ≡ 3(mod 4). If the equation  𝑥2 + 𝑝2 =
𝑦𝑛  has an integer solution (𝑥, 𝑦), then gcd(𝑥, 𝑝) = 1. 

Note that the first two lemmas are going to play an important role in proving the following theorem, and its proof may be provided 

in (Andreescu et al., 2010). 

 

Theorem 2.1 Let 𝑛  be an integer greater than 1. Then the equation   𝑥2 + 𝑦2 = 𝑧𝑛 with  gcd(𝑥, 𝑦) = 1 has an integer solution if 

and only if the equation 

𝑥 + 𝑦𝑖 = 𝑢(𝑎 + 𝑏𝑖)𝑛 

 has an integer solution (𝑥, 𝑦, 𝑎, 𝑏) for some  𝑢 ∈ {±𝑖, ±1}. 

  Now, we are ready to show all solutions depending on two integer parameters of Diophantine equation   𝑥2 + 𝑦2 = 𝑧5, 
and the main tool used to obtain such solutions is the unique factorization in the ring of Gaussian integers and some facts in 

elementary number theory. 

 

Theorem 2.2 The Diophantine equation  𝑥2 + 𝑦2 = 𝑧5 has an integral solution (𝑥, 𝑦, 𝑧) with gcd(𝑥, 𝑦) = 1 if and only if there 

exist integers  𝑎 and 𝑏  for which 

𝑥 =   𝑎5 − 10𝑎3𝑏2 + 5𝑎𝑏4, 𝑦 = 5𝑎4𝑏 − 10𝑎2𝑏3 + 𝑏4  and  𝑧 =   𝑎2 + 𝑏2, 
where gcd(𝑎, 𝑏) = 1 and  𝑎 ≢ 𝑏(mod 2). 

 

Proof. Assume that the equation  𝑥2 + 𝑦2 = 𝑧5 has an integral solution (𝑥, 𝑦, 𝑧) with gcd(𝑥, 𝑦) = 1. The term on the left-hand side 

of this equation may be written in terms of two Gaussian integers like 

 

(𝑥 + 𝑦𝑖)(𝑥 − 𝑦𝑖) = 𝑧5. (2.2) 

 

Note that every unit in Gaussian integer can be written as the fifth power of some unit in Gaussian integer. Then we can obtain by 

Theorem 2.1 that (𝑥 + 𝑦𝑖) = (𝑎 + 𝑏𝑖)5 for some integers 𝑎 and 𝑏. Expanding the fifth power and equating the real and imaginary 

parts, we eventually reach 

𝑥 =   𝑎5 − 10𝑎3𝑏2 + 5𝑎𝑏4, 𝑦 = 5𝑎4𝑏 − 10𝑎2𝑏3 + 𝑏5. 

Clearly, gcd(𝑎, 𝑏) = 1, and this leads us to get 𝑎 ≢ 𝑏(mod 2). Otherwise, we can reach a contradiction. Observe that  (𝑥 − 𝑦𝑖) =
(𝑎 − 𝑏𝑖)5. Following (2.2), we finally have 𝑧 =   𝑎2 + 𝑏2. Conversely, let 

𝑥 =   𝑎5 − 10𝑎3𝑏2 + 5𝑎𝑏4, 𝑦 = 5𝑎4𝑏 − 10𝑎2𝑏3 + 𝑏5  and  𝑧 =   𝑎2 + 𝑏2 

for some integers 𝑎 and 𝑏 with gcd(𝑎, 𝑏) = 1 and  𝑎 ≢ 𝑏(mod 2). It is not hard to see that the triple (𝑥, 𝑦, 𝑧) is the solution to the 

considered equation. It remains to show only gcd(𝑥, 𝑦) = 1. Suppose that gcd(𝑥, 𝑦) = 𝑑 ≥ 2. Then there exists a prime number 𝑝 

such that  𝑝|𝑑. Thus 𝑝|𝑥 and 𝑝|𝑦. Thus, we divide our consideration into 4 cases as follows: 

Case 1: 𝑝|𝑎 and 𝑝|𝑏. This leads to a contradiction. 

Case 2: 𝑝|𝑎 and  𝑝|(5𝑎4𝑏 − 10𝑎2𝑏3 + 𝑏5). Then  𝑝|𝑏, leading to a contradiction. 

Case 3: 𝑝|(𝑎5 − 10𝑎3𝑏2 + 5𝑎𝑏4) and 𝑝|𝑏. Then 𝑝|𝑎, leading to a contradiction. 

Case 4: 𝑝|(𝑎4 − 10𝑎2𝑏2 + 5𝑏4) and   𝑝|(5𝑎4 − 10𝑎2𝑏2 + 𝑏4). If 𝑝 = 2, then 2|(𝑎4 + 5𝑏4), which is a contradiction. 

Now, let us suppose that 𝑝 > 2. We first observe that  2|(𝑎4 − 𝑏4) and then combine it with each original condition in the current 

case. Lastly, we can reach the facts that  

𝑝|𝑏2(5𝑎2 − 3𝑏2) and  𝑝|𝑎2(3𝑎2 − 5𝑏2), 
respectively. Again, let us consider all possible subcases coming from these facts: 

       Subcase 4.1:  𝑝|𝑎2 and 𝑝|𝑏2. Then   𝑝|gcd (𝑎, 𝑏), a contradiction. 

       Subcase 4.2:  𝑝|𝑏2 and 𝑝|(3𝑎2 − 5𝑏2). Then 𝑝|3𝑎2. If  𝑝 > 3, then 𝑝|𝑎. 

This leads to a contradiction. Thus, 𝑝 = 3  and we have 3|(𝑎4 − 𝑏4). This immediately contradicts  gcd(𝑎, 𝑏) = 1, as we have 

known that 3|𝑏. 

      Subcase 4.3: 𝑝|𝑎2 and  𝑝|(5𝑎2 − 3𝑏2). Similar to the subcase 4.2. 

      Subcase 4.4: 𝑝|(5𝑎2 − 3𝑏2) and 𝑝|(3𝑎2 − 5𝑏2). We first observe that  𝑝|(𝑎2 − 𝑏2) and combine it with each original 

condition in our current subcase above. We can eventually get 𝑝|𝑎 and 𝑝|𝑏, respectively. Here is a contradiction. Hence the proof 

of this theorem is completed. 

In the paper of Conrad appearing in (Conrad, 2020), he has given the concept how to prove the analogue of Theorem 2.2 

in case 𝑛 = 3  shown below.  

 

Theorem 2.3 The Diophantine equation  𝑥2 + 𝑦2 = 𝑧3 has an integral solution (𝑥, 𝑦, 𝑧) with gcd(𝑥, 𝑦) = 1 if and only if there 

exist integers  𝑎 and 𝑏  for which 

𝑥 =   𝑎3 − 3𝑎𝑏2 + 5𝑎𝑏4, 𝑦 = 3𝑎2𝑏 − 𝑏3 and  𝑧 =   𝑎2 + 𝑏2, 
where gcd(𝑎, 𝑏) = 1 and  𝑎 ≢ 𝑏(𝑚𝑜𝑑 2). 
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3. Proofs of Theorem 1.1, Theorem 1.2 and Corollary 1.3 

 
Proof of Theorem 1.1 Suppose that the equation  𝑥2 + 𝑝2 = 𝑦5  has an integer solution with  gcd(𝑝, 𝑥) = 1 such that 𝑝 ≡
1(mod 4).  By Theorem 2.2, we obtain that 

𝑝 = 5𝑎4𝑏 − 10𝑎2𝑏3 + 𝑏5 = 𝑏(5𝑎4 − 10𝑎2𝑏2 + 𝑏4) 

 for some integers 𝑎, 𝑏  such that gcd(𝑎, 𝑏) = 1 and 𝑎 ≢ 𝑏(mod 2). If  𝑏 = ±1,  then ±𝑝 = 5𝑎4 − 10𝑎2 + 1.  Since 𝑎2 ≥ 4, so 

we eventually get 𝑝 = 5𝑛2 − 10𝑛 + 1 for some non-zero square integer 𝑛. If 𝑏 = ±𝑝,  then we must only have 5𝑎4 − 10𝑎2𝑝2 +
𝑝4 = 1because the other possibility contradicts the value of 5𝑎4 − 10𝑎2𝑝2 + 𝑝4 in modulo 4. By applying the ThueSolve function 

in MAGMA (Bosma, Cannon & Playoust, 1997), we know that  (𝑥, 𝑦) = (±1,0) are only integer solutions of the Thue equation  

𝑥4 − 10𝑥2𝑦2 + 5𝑦4 = 1.  This leads to a contradiction. Conversely, let 𝑝 = 5𝑛2 − 10𝑛 + 1  such that  𝑛 = 𝑚2 for some non- 

zero integer 𝑚. Notice that 𝑚 is even. Choose 𝑎 = 𝑚  and 𝑏 = 1  and then apply Theorem 2.2, we can conclude that 

(𝑥, 𝑦) = (𝑚(𝑚4 − 10𝑚2 + 5), 𝑚2 + 1) 

is the solution to the equation  𝑥2 + 𝑝2 = 𝑧5 with  gcd(𝑝, 𝑥) = 1. Here we can complete the proof. 

 

Proof of Theorem 1.2 Suppose that the equation  𝑥2 + 𝑝2 = 𝑦5   has an integer solution such that 𝑝 ≡ 3(mod 4).  By Lemma 2.3 

and Theorem 2.2, we obtain that 

𝑝 = 5𝑎4𝑏 − 10𝑎2𝑏3 + 𝑏5 = 𝑏(5𝑎4 − 10𝑎2𝑏2 + 𝑏4) 

for some integers  𝑎, 𝑏  such that gcd(𝑎, 𝑏) = 1  and 𝑎 ≢ 𝑏(mod 2).  If 𝑏 = ±1, then  ±𝑝 = 5𝑎4 − 10𝑎2 + 1.  Since  𝑎2 ≥ 4  and  

𝑎  is even, it follows that 𝑝 = 5𝑎4 − 10𝑎2 + 1 ≡ 1(mod 4), leading to a contradiction. If 𝑏 = ±𝑝,  then we must have  5𝑎4 −
10𝑎2𝑝2 + 𝑝4 = 1  because  𝑎  is even and  𝑝 ≡ 3(mod 4).  By applying the ThueSolve function in MAGMA (Bosma et al., 1997), 

we know that  (𝑥, 𝑦) = (±1,0)  are only integer solutions of the Thue equation  𝑥4 − 10𝑥2𝑦2 + 5𝑦4 = 1.  This is a contradiction. 

 

Proof of Corollary 1.3 Following the proof appearing in Theorem 1.2, we can finish the proof of this corollary. Note that each 

case divided to consider here leads to a contradiction easily without applying MAGMA. 

 Following the same recipe as we just did in the proof of the above theorems, we are able to obtain the smaller results 

below without using MAGMA and in fact, their proofs can be found in (Jaidee &Wannalookkhee, 2020). 

 

Theorem 3.1 Let 𝑝  be a prime number such that 𝑝 ≡ 1(mod 4). Then the Diophantine Equation  𝑥2 + 𝑝2 = 𝑦3  has an integral 

solution (𝑥, 𝑦) with gcd(𝑥, 𝑝) = 1  if and only if  𝑝 = √12𝑛2 + 1  for some non-zero integer 𝑛. 

 

Theorem 3.2 Let 𝑝 be a prime number such that 𝑝 ≡ 3(mod 4). Then the Diophantine equation   𝑥2 + 𝑝2 = 𝑦3 has an integral 

solution (𝑥, 𝑦) if and only if 𝑝 = √12𝑛2 + 1 or 𝑝 = 12𝑛2 − 1 for some non-zero integer 𝑛. 

 

Theorem 3.3 The Diophantine equation  𝑥2 + 4 = 𝑦3 has an integral solution. 

 

Corollary 3.1 Let 𝑝 be a prime number. Then the Diophantine equation  𝑥2 + 𝑝2 = 𝑦3 has an integral solution (𝑥, 𝑦) with 

gcd(𝑥, 𝑦) = 1  if and only if  𝑝 = 2, 𝑝 = √12𝑛2 + 1  or 𝑝 = 12𝑛2 − 1  for some non-zero integer 𝑛. 

 

4. The Link to Bunyakovsky Conjecture 
 

Victor Y. Bunyakovsky, the Ukrainian mathematician conjectured in (Bunyakovsky,1857) that a non-constant 

polynomial 𝑓(𝑥) over rational integers produces infinitely many rational primes if the polynomial 𝑓(𝑥) satisfies the following 

statements. 

        (1)  Its leading coefficient is a positive integer. 

        (2)  The greatest common divisor of all coefficients of such a polynomial is 1. 

        (3)  It must be an irreducible polynomial over ℤ. 

        (4)  For each prime 𝑝, there exists 𝑛 ∈ ℤ𝑝 for which 𝑓(𝑛) ≢ 0(mod 𝑝) and ℤ𝑝 is the set of integers modulo 𝑝. 

Indeed, if 𝑓 is linear, that is, 𝑓(𝑥) = 𝑎𝑥 + 𝑏,  where 𝑎  and 𝑏  are integers with gcd(𝑎, 𝑏) = 1, it produces rational prime pattern 

written as the infinite sequence  𝑎𝑛 + 𝑏 for an integer 𝑛. This fact is well-known as Dirichlet’s Theorem (Borevich,1966). However, 

the Bunyakovsky conjecture hasn’t been proven in case  𝑓 is not linear, and many number theorists have been in vain attempting 

to solve it in general or even to provide some certain examples in particular. See more detail in (Conrad, 2021). 

The possible value of primes 𝑝  satisfying the equation  𝑥2 + 𝑝2 = 𝑦3 and  𝑥2 + 𝑝2 = 𝑦5  are respectively illustrated in 

the Table 1. and Table 2.  

Note that the direct approaches used to obtain such data can be found in (Jaidee &Wannalookkhee, 2020). Consequently, 

the results of B´erczes and Pink as mentioned earlier in the case B have been generalized in the case (𝑛, 𝑘) = (3,1) and (5,1).  
 

Remark 4.1 To be continued doing further research about this, let us leave the following conjectures: 

Conjecture 1: There are infinitely many primes 𝑝 ≡ 3(mod 4) satisfying the Diophantine equation  𝑥2 + 𝑝2 = 𝑦3. 

Conjecture 2: There are infinitely many primes 𝑝 ≡ 1(mod 4) with gcd(𝑝, 𝑥) = 1 satisfying the Diophantine equation 

𝑥2 + 𝑝2 = 𝑦5. 
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We firmly believe that the Conjectures 1 and 2 might be true as the Fermat- type equations with signature (2,2,3) and 

(2,2,5) always have infinitely many integral solutions together with being motivated by our information shown before. So, if the 

Conjecture 1 and Conjecture 2 hold, then the polynomials  12𝑥2 − 1 and  5𝑥4 − 10𝑥2 + 1 will produce infinitely many primes, 

respectively. These would be some explicit examples supporting the Bunyakovsky conjecture. 

 
 Table 1. The possible values of primes 𝑝 satisfying the equation 𝑥2 + 𝑝2 = 𝑦3. 
 

Conditions of 𝑝  Possible values 𝑝 

  

𝑝 = √12𝑛2 + 1, 
𝑝 ≡ 1(mod 4), and 

𝑝 < 9863382151 

97, 708158977 

 

 
 

𝑝 = √12𝑛2 + 1, 
𝑝 ≡ 3(mod 4), and 

𝑝 < 9863382151 

7 

 
 

 

𝑝 = 12𝑛2 − 1 

𝑝 ≡ 3(mod 4), and 

𝑝 < 46146251 
 

 
 

11, 47, 107, 191, 431, 587, 971, 1451, 2027, 2351, 2699, 3467,4799,5807, 6911, 7499, 8111, 8747, 10091, 10799, 
14699, 15551, 16427, 17327, 18251, 25391, 27647, 36299, 41771, 44651, 55487, 57131,62207, 67499, 71147, 

67499, 71147, 74891, 80687, 92927, 99371,103787,106031, 124847, 132299, 137387, 139967, 158699, 161471, 

164267, 167087, 175691, 184511, 202799, 215471, 221951, 235199,266411, 277247, 284591, 295787, 299567, 
303371, 314927, 334667, 338687, 350891, 355007, 359147, 380207, 401867, 406271, 437771, 442367, 460991, 

470447, 499391, 504299, 514187, 524171, 549551, 554699, 591407, 602111, 618347, 657071, 691199, 720299, 

726191, 756011, 768107, 786431, 811199, 823727, 836351, 855467, 868331, 874799, 954287, 961067, 995327, 
1009199, 1023167, 1044299, 1058507, 1072811, 1079999, 1123631, 1138367, 1153199, 1175627, 1183151, 

1190699, 1221131, 1236491, 1251947, 1291007, 1338671, 1420031, 1486847,1512299, 1529387, 1537967, 
1555199, 1563851, 1598699, 1607471, 1651691, 1696511, 1732799, 1760267, 1797227, 1806527, 1843967, 

1853387, 1929611, 1939247, 1948907, 1958591, 2046827, 2056751, 2066699, 2096687, 2116799, 2208491, 

2249867, 2281151, 2365631, 2473391, 2561327, 2605871, 2617067, 2650799, 2707499, 2730347, 2753291, 
2846027, 2892971, 2904767, 2916587, 2999999, 3072431, 3121199, 3257291, 3269807, 3383531, 3447551, 

3460427, 3525167, 3538187, 3564299, 3577391, 3629999, 3656447, 3709631, 3736367, 3749771, 3776651, 

3967499, 4009007, 4022891, 4050731, 4078667, 4106699, 4148927, 4163051, 4305611, 4465199, 4479851, 
4494527, 4523951, 4583087, 4627691, 4642607, 4657547, 4687499, 4717547, 4762799, 4808267, 4823471, 

4838699, 5007791, 5023307, 5085611, 5116907, 5132591, 5274827, 5322671, 5338667, 5370731, 5435147, 

5451311, 5467499, 5483711, 5532491, 5696651, 5812991, 5846447, 5863211, 5896811, 5947391, 6032171, 

6134699, 6238091, 6324911, 6359807, 6394799, 6429887, 6482699, 6553451, 6571199, 6642431, 6660299, 

6714047, 6840299, 6876587, 7041071, 7059467, 7226111, 7263407, 7319531, 7357067, 7375871, 7413551, 

7470251, 7584299, 7660811, 7834367, 8108207, 8167499, 8227007, 8286731, 8306687, 8487371, 8608907, 
8649611, 8690411, 8710847, 8772299, 8895851, 8978699, 9166511, 9187499, 9250607, 9377471, 9398699, 

9419951, 9441227, 9676847, 9937199, 9959051, 10090667, 10156799, 10178891, 10201007, 10245311, 10289711,  

10423487, 10490699, 10535627, 10580651, 10603199, 10807211, 10829999, 10898507, 10944299, 11128427, 
11174699, 11244287, 11360747, 11430911, 11666351, 11690027, 11928107, 12338351, 12387071,12509291, 

12681407, 12929327, 13204811, 13229999, 13483199, 13585151, 13610699, 13790207, 13945007, 14022731, 

14048687, 14572847, 14625791, 14652299, 14891951,14918699, 14945471, 14999087, 15025931, 15052799, 
15160511, 15187499, 15513227, 15704831, 15787307, 15814847, 15897611, 15952907, 16119371, 16314671, 

16398731,16426799, 16793867, 16850699, 16993199, 17164991, 17193707, 17453231, 17482187,17627327, 

17656427, 17743871, 17802287, 17948747, 18007499, 18213887, 18273071, 18391727, 18480971, 18600299, 
18690047, 18780011, 18870191, 18990767, 19142027, 19415807, 19660799, 19783871, 20000171, 20093231, 

20311211, 20342447, 20404991, 20561771, 20687627, 21067499, 21131147, 21386699, 21418751, 21450827, 

21482927, 21547199, 21611567, 21708299, 21869999, 21902411, 22129967, 22162571, 22391471, 22753547, 
22919087, 23151851, 23620907, 23654591, 23688299, 23722031, 23891051, 23992751, 24026699, 24060671, 

24094667, 24162731, 24470207, 24607487, 24641867, 24676271, 25125707, 25195211, 25229999, 25299647, 

25439231, 25474187, 25509167, 25579199, 25684427, 25895531, 25930799, 25966091, 26142911, 26249291, 
26284799, 26320331, 26462699, 26569727, 26784431, 27144191, 27397451, 27433727, 27542699, 27724799, 

27761291, 27907499, 28127531, 28274699, 28348427, 28459199, 28718507, 28867211, 28978991, 29090987, 

29203199, 29278127, 30108671, 30222827, 30260927, 30299051, 30337199, 30604907, 30681611, 31221227, 
31453931, 31609547, 31648511, 31961087, 32157227, 32314571, 32590847, 32868299, 32947787, 32987567, 

33266699, 33346667, 33386687, 33466799, 33747947, 33828491, 34151627, 34192127, 34354367, 34516991, 

34639211, 34679999, 34761647, 35335871, 35956331, 36039467, 36247727, 36414767, 36582191, 36792011, 
37340351, 37382699, 37764911, 37807499, 37978091, 38320427, 38492171, 38578187, 38707391, 38879999, 

39139631, 39182987, 39226367, 39443627, 39617867, 39748799, 39923711, 40011311, 40274687, 40318667, 

40583051, 40627199, 40804031, 41203307, 41292299, 41470571, 42097547, 42142511, 42367691, 42729227, 
42819851, 43046831, 43183307, 43274411, 43823051, 44098667, 44144687, 44236799, 44282891, 44698799, 

44884271, 45209771, 45817391, 45911231, 46146251 
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Table 2. The possible values of primes 𝑝 satisfying the equation 𝑥2 + 𝑝2 = 𝑦5. 
 

Conditions of 𝑝  Possible values 𝑝 

  

𝑝 ≡ 3(mod 4) None 
 

𝑝 = 5𝑛4 − 10𝑛2 + 1, 
𝑝 ≡ 1(mod 4), and 

𝑝 < 97825078122 
 

41, 6121, 19841, 102241, 190121, 521641, 596001, 1166441, 2278121, 49141121, 22366121, 56548841, 

64764001, 73843241, 83845121, 106860641, 120001001, 299770241, 424581121, 905185121, 1710325121, 
2271646121, 3616705121, 3982688641, 4375769441, 4582878121, 9723609001, 10485910121, 11712316001, 

12144070441, 13043278121, 13511161441, 18310326121, 25792716641, 28181278121, 32526145121, 

33452110121, 34397706241, 36348895841, 46175089001, 49855105121, 78519246121, 87774625121, 
95749273441, 97825078121 
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