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Abstract 
 

In hydrology and soil sciences, infiltration is the process by which water on the ground surface enters the soil, and is 

described mathematically by Richard's equation. The present paper applies the reduced differential transform method to find the 

approximate analytical solution of Richard’s equation describing infiltration phenomena in porous media. Some standard cases of 

Richard’s equation are discussed to demonstrate the effectiveness and reliability of the method. Comparing approximate 

analytical solutions obtained by RDTM with exact solutions shows that the proposed method is reliable and accurate and can be 

applied for solving practical scientific and technological problems. The results obtained are also compared with the analytical 

solution obtained by some well-known methods available in the literature. The proposed approach does not need any 

linearization, discretization, or perturbation parameters to obtain the solution for non-linear PDE, and its direct applicability 

reduces numerical computation. Convergence analysis and error estimation of the approximate solution of Richard’s equation is 

also addressed in this research. 

 

Keywords: richards equation, reduced differential transform method, infiltration phenomena, analytical solution, convergence,  
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1. Introduction  
 

 Non-linear equations are used to explain most 

phenomena in the physical world, and these equations have 

got much attention from scientists, researchers, and engineers. 

Since a broad class of non-linear equations lacks a precise 

analytic solution, numerical methods have mainly been used 

to solve them. The major drawback of numerical methods is 

that it provides the solution at discontinuous points and 

therefore it needs an extensive computational resource to have 

a comprehension of the solution (Asgari, Bagheripour, & 

Mollazadeh, 2011; Deniz, Bildik, & Sezer, 2017; Ren, Shi, & 

Vong, 2020). The other issues are stability and convergence 

criteria (Asgari, Bagheripour, & Mollazadeh, 2011). Non- 

 
linear equations can also be solved using analytic methods. 

The Lyapunov artificial small parameter method, perturbation 

techniques, and the expansion method are some of the classic 

analytic approaches. Some new analytic methods for dealing 

with functional equations have been proposed in the last two 

decades, including Adomian decomposition method (ADM) 

(Pamuk,2005), Modified adomain decomposition method 

(MADM), Differential transform method  (Chen & Dai, 2016; 

Ebrahimi & Mokhtari, 2015; Patel & Dhodiya, 2016), tanh 

method (Wazwaz,2005), Reduced differential transform 

method (Keskin & Oturanc, 2009), Variational iteration 

method (VIM), Homotopy perturbation method(HPM) (Jena 

& Chakraverty, 2019), Optimal homotopy analysis method  

(OHAM) (Pathak  & Singh, 2015), Sumudu decomposition 

method (SDM) (Bildik & Deniz, 2016; Ramadan & Alluhaibi, 

2016),  and Homotopy method (Singh & Sharma,2019), etc. 

However, each of these methods has one or more drawbacks.  

While dealing with a complicated non-linear partial 
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differential equation, ADM faces complications in calculating 

Adomain polynomials (Pamuk, 2005). VIM requires to 

produce the correct function using Lagrange’s multipliers and 

this multiplier can be obtained using variational theory. It also 

leads to repeated computations and computation of unneeded 

terms that require time and effort. Laplace transform method 

can be considered an effective tool to find the exact solution, 

including the lesser number of non-linear terms, but as the 

number of non-linear terms increases, it is difficult to find its 

inverse. HPM requires the identification of parameters and 

solves the functional equation in each step which requires 

time and effort. Some of the hybrid methods agree with the 

exact solution, but it requires computational efforts and 

resources. 

Recently, in the search of the exact solution to non-

linear PDE, mathematicians have come up with the 

combination of two methods namely Elzaki transform and 

Adomain decomposition method (ETADM) (Varsoliwala & 

Singh, 2020), Laplace homotopy perturbation method(LHPM) 

(Johnston et al., 2016),  Elzaki homotopy transformation 

perturbation method (Barari et al., 2009; Singh & Sharma, 

2019), Elzaki projected differential transform method  

(Khalouta & Kadem, 2018), Homotopy-variational iteration 

method  (Cherif & Ziane, 2018), Double Laplace iterative 

method (Dhunde & Waghmare, 2019), Elzaki Homotopy 

perturbation method (Jena & Chakraverty,2019), Laplace 

Adomain decomposition method (Agbavon, Appadu, & 

Khumalo, 2019), Laplace variational iteration method (Shah 

& Singh, 2017), New iterative transform and Homotopy 

perturbation method, (Shah & Singh, 2019), Homotopy 

analysis transform method (HATM) (Hoshyar, Ganji, & 

Abbasi, 2015).In many engineering and science problems, an 

analytical solution is preferable because it demonstrates the 

importance of the variables and how important they are 

concerning the other variables. With good mathematical 

backing, engineers or scientists who formulated the problem 

in their model will see the impact of the inputs on the outputs 

(their influence on the output and the degree of that 

influence). So, in the current research, we discuss the 

analytical solution for the non-linear infiltration process 

described by Richard’s equation, leading to better simulation 

of soil behavior. 

Richard’s equation is one of the most popular non-

linear partial differential equations to study the infiltration 

process introduced by Richard’s. Infiltration is the mechanism 

of water saturation into the soil, which is considered one of 

the interesting issues by water and geotechnical engineers, as 

shown in Figure 1. The process of infiltration is affected by 

several factors, including soil hydrological properties like 

porosity, hydraulic conductivity, rainfall intensity, soil 

moisture content, etc. The water table serves as the boundary 

between saturated and unsaturated flows. Unsaturated and 

saturated flow arises above and beneath the water table, 

respectively. Buckingham introduces the basic concepts that 

describe the fluid flow through porous media. He suggested 

that the water content is a significant factor affecting water 

flow in unsaturated soil. So, he introduces Buckingham law 

that describes the idea of unsaturated hydraulic conductivity. 

He also introduces the concept of moisture diffusivity, defined 

as unsaturated hydraulic conductivity times soil-water 

characteristic curve. Richard applies the equation of continuity 

to Buckingham law to obtain the extended version of Darcy’s 

law. He derives a mathematical equation describing the 

movement of water in non-swelling, unsaturated soil. The 

mixed-based, h- based, and theta-based formulations are the 

three primary forms of the Richards equation published in the 

literature where theta represents the volumetric moisture 

content, and h represents the pressure potential based on 

weight. 

 
 

Figure 1. Schematic Diagram for Infiltration Process 

 

2. Formulation of Richard’s Equation  
 

Richard’s equation (RE) is a PDE that describes the non-saturated flow in soils, which is predicated based on 

Buckingham’s studies done at the start of the 20th century (Asgari, Bagheripour, & Mollazadeh, 2011). It is found by coupling the 

continuity equation with Darcy's law, so one needs to mention both. The continuity equation and Darcy law are given by (Cherif 

& Ziane, 2018): 

q

 

 
 

 
 ,                                                                                       (1)       

    

 
H

q K



 


 ,                                                                                   (2) 

where K represents hydraulic conductivity. Suction head (H) is defined as energy due to soil suction force in saturated flow. It is 

assumed that the positive z-axis is heading downward, so the total suction head (H) is given by h H   . The mathematical 

form of Darcy's law using Equation (1) can be expressed as: 

  1
h

q K h K
 

  
      

  

.                                             (3)       
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Using Equation (3), Equation (2) reduces to   1
h

K


  

     
       

  .                       (4)  

Equation (4) is known as mixed form. To solve Equation (4), the relation between hydraulic conductivity, saturation 

and pressure is required. The idea of differential water capacity is used to eliminate either h or μ, which is the rate of change of 

the soil water retention curve which is given by (Barari et al., 2009):   

 C h
h





.                                                                                                        (5) 

The h-based expression of Richard’s equation is obtained from Equations (4) and (5) as follows:  

 
h h K

C h K
   

    
  

    

 .                                                                                            (6) 

Equation (6) is useful for the mathematical modeling of water in unsaturated soils. To derive the third form of Richard’s 

equation, pore water diffusivity term D is introduced and is given by  

K K dh
D K

dC d

dh

 
  

 .                                                                                                    (7)  

From Equation (3), and Equation (7), we get          

K
D

 

   

    
  

    
.                                                                                                (8) 

Here note that hydraulic conductivity and water diffusivity are highly dependent on moisture content, so they are 

treated as dependent parameters due to which it required proper estimation. In literature, several models have been prompted to 

determine the parameters, namely hydraulic conductivity and water diffusivity, among that “Brooks and Corey’s model” (Brooks 

& Corey, 1964; Corey, 1994) and also the “Van Genuchten model” (Van Genuchten, 1980) are widely applied. The “Van 

Genuchten model” relates soil water pressure head, unsaturated hydraulic conductivity, and water content, mathematical which 

agrees with the experimental data, but the functional form is too intricate to apply in many analytical approaches. On the other 

hand, "Brooks and Corey’s model” provides a more accurate definition. Now we consider the relation between water diffusivity 

and hydraulic conductivity according to "Brook's and Corey's model, "which is given by (Brooks & Corey, 1964; Corey, 1994): 

 
 

1
2

s r

s r s r

K
D

 


    



 
  

  

   ,                          (9)   

 

 

2
3

r
s

s r

K K
 


 



 
  

 

 ,                                                                                                    (10) 

where D(μ), K(μ) are water diffusivity and hydraulic conductivity. Ks, μr, μs represents saturated conductivity, residual water 

content, and saturated water content in the porous medium, α and λ are determined through experimental data. After some 

consideration in the “Brook’s and Corey’s model,” improvement in soil parameters obtain the following equations (Brooks & 

Corey,1964; Corey,1994): 

   0 1 , 0D D       ,                                                   (11) 

 

    0 , 1kK K k   .                                                                         (12) 

where particle size, pore size distribution, etc., are given by K0, D0, m, k,  
1

0

1D d    for all values of x. Due to 

normalization of diffusivity and 0 1  . The conductivity varies linearly, parabolically, and cubically with water content, 

when k takes the value 1, 2, 3, respectively, clear from Equation (12). Using Equations (8), (11), and (12), we get: 

 0 01 kD K 
  

   

    
   

    
  .                                                                      (13)                                                                                     

The time and depth variables are independent variables in Equation (13). A new variable is introduced, a linear 

combination of time and depth using the travelling wave technique. To evaluate these transform equations, the Tangent-

hyperbolic function is generally used. Therefore, the theta-based Richard’s equation in order of (x, 1) is as follows: 
2

2
0  


  

  
  

  
  .                                                                                                   (14) 

and the exact solution of Equation (14) is given by 
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    
1

, 1 tanh ,
2

nA z Bt


  
  

     
  

                                     (15) 

where

 
 

 
0 ,

4 1 1
A B

   


 


   

 
  an arbitrary constant γ is considered as 1. The initial condition can be obtained 

by considering t=0 in the exact solution for Equation (14). The solution of Equation (14) is obtained for different values x using 

RDTM. 

In literature, many case studies, as well as analytical and numerical approaches, have been utilized to study the 

infiltration phenomena (Chavez-Negrete, Santana-Quinteros & Dominguez-Mota, 2021; Khan et al., 2021; Nasseri et al., 2008; 

Nualtong et al., 2021a, 2021b, Shah & Singh, 2017, 2019) but some of the solutions apply elementary initial and geometrical 

conditions (Ghotbi, Omidvar & Barari, 2011; Pamuk, 2005; Witelsiki, 1997). To overcome these difficulties, many numerical 

approaches, namely finite element solutions, the finite difference has been applied. Nevertheless, to study the effect of input 

parameters on the output and degree of influence by numerical approach leads to multiple simulations is often time-consuming 

and requires extensive resources.HPM requires a perturbation parameter to reduce non-linear PDE's complexity, which requires 

effort. To convert a given non-linear PDE into a non-linear ODE, ADM does not need any transformations or perturbations; the 

main difficulty is calculating Adomain polynomials. However, an iterative method like variational iteration and Homotopy 

methods can resolve the drawbacks of the Adomain approach, but still difficult to apply them to highly non-linear infiltration 

equations. In addition to that, they are sensitive to the initial condition. Some authors applied hybrid methods such as Elzaki 

transform homotopy perturbation method, Elzaki transforms Adomain decomposition Method (Varsoliwala & Singh, 2020), 

Modified homotopy method (Shah & Singh, 2019) to solve Richard’s equation in search of the analytical solution. This method 

requires extensive computational efforts, and the solution obtained by these hybrid methods is not satisfactory. 

Moreover, no single best technique deals with the highly non-linear PDE describing infiltration phenomena efficiently. On some 

models/problems, some methods converge faster to a solution, while others do not. That is why non-linear models of infiltration 

phenomena continue to require a wide range of analytical, semi-analytical, and numerical methods to increase the convergence of 

the solutions and was the motivation behind the research. 

In the current research, the reduced differential transform method using MATLAB is applied to non-linear PDE arising 

in infiltration phenomena. The main merit of the method is that it converts the non-linear differential equation into an algebraic 

system and provides the solution in the form of convergent series. After selecting the suitable values of the parameter, this 

approach leads to a more accurate and realistic solution that describes linear and non-linear behavior in the infiltration process. 

Furthermore, using MATLAB, it can be easily extended to all classes of non-linear equations. 

 

3. Reduced Differential Transform Method  
 

This section deals with some essential mathematical preliminaries and definitions of the proposed method required for 

better understanding. RDTM concept has been derived from the two-dimensional Taylor’s series expansion w.r.t to specific 

variable x or t. Consider a function  ,   and assume that  , ( ) ( )h l     . According to the definition of the one-

dimensional differential transform method (ODDTM), the given function  ,    can be expressed as:  

   ,

0 0 0 0

, ,kH L W  

   
   

        
   

   

      ,                  (16) 

where 
,W H L     is called the spectrum of  ,   . The basic concept of RDTM is as follows (Keskin & Oturanc, 2009): 

Definition. In the domain of interest, if  ,    is a continuously differentiable function, then the spectrum or transform the 

form of  ,   w.r.t τ at τ0 is defined as  

   
0

1
,

!



 

 

    
 



 
  

 

,                            (17) 

where  ,    is the original function and    is the reduced differential transform of  ,   . The inverse reduced 

differential transform of     is defined as: 

    0

0

,





      




   .                           (18) 

From Equation (17) and Equation (18), we get 

     
0

0

0

1
, ,

!





  

       
 



 

  
   

   
 .             (19) 
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The fundamental operations of RDTM that can be derived using Equations (17) and (18) are mentioned below in Table 1. 
 

Table 1. Fundamental operation of RDTM w.r.t to variable t 

 

Original function Transformed function 

  

( , ) ( , )
1 2

x y x y      , ,
1 2
    

 ,
1

x y   ,
1

   

 ,  







  , 






 

 ,  







    1 , 1      

 ,  

 



 

 
 

 , 1
1

  




 



 

   1 2, ,          1 2

0

, ,


     



 

     h    where  
1 ,

0 ,

h
h

h


 
  

 

 

  

 

3.1 Implementation of RDTM 
 

  This section discusses the convergence of the solution obtained by RDTM. First of all, we show that the solution 

obtained by the proposed method exists as a power series in terms of t or x. Consider the following non-linear PDE: 

   , , , , ,............. ,v w                                                                                (20) 

                     

with initial condition    0,0 .v v                                                                              (21)    

Applying fundamental operation of RDTM from Table 1 to Equation (20), transformed recursive formula is given by: 

     
   

1

2

2
1 , , , ,............. ,

l

l l

l

dV d V
l V W v

d d

 
 

 

 
   

 

                                                    (22) 

 

and the transformed initial condition is    0 ,v v                                                     (23)   

where  1lV 
and    2

2
, , , ,.............

l l

l

dV d V
W v

d d

 


 

 
 
 

 are transformed form obtained by applying RDTM to the original 

function  ,v    and  , , , , ,.............w x       in the kth iteration. Substituting the value of   lV   for l=0,1,2,3,4,……n 

in Equation (18), the approximate analytical series solution of  Equation (20) with initial condition Equation (21) is  given by 

       0

0

,
l

l

l

v V    




   .                                                                                           (24) 

 

3.2 Convergence and error analysis of RDTM  
   

  The convergence of series solution obtained by RDTM has been discussed by Seyyedeh Roodabeh Moosavi Noori and 

Nasir. We recall the theorems from (Moosavi Noori & Taghizadeh, 2021) that guarantee the convergence of the series solution 

Equation (24). 

Theorem 1. If     0,
l

k lV       , then the series solution  
0

,
n

l

i

  


  for Equation (20),  0l N   (i) is 

convergent if there exist 0 1   such that 
1 ,l l    (ii) is divergent if there exist 1  such that 

1 .l l     

  The truncation error of the series Equation (24), which is a specific case of Banach's fixed point theorem, is 

investigated in Theorem 1.  
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Theorem 2. Suppose  
0

,
n

i

i

  


 is required series solution, where     0,
l

l kV        ,  converges to  , t  .If 

 
0

,
n

i

i

  


  is the truncated series used to approximate the solution and then estimated maximum absolute truncated error is 

as     1

0

0

1
, ,

1

m
m

i

i

t      






 


 . 

One can refer to the proof of Theorem 1 & 2 (Moosavi Noori & Taghizadeh, 2021). 

  From Theorem 1 and 2, it is concluded that series solution obtained using RDTM for non-linear Equation (20) 

converges to an exact solution when there exists 0 1   such that 
1 ,l l    for  0l N   . In addition, 

    1

0

0

1
, ,

1

m
m

i

i

t      






 


  represents the maximum estimated absolute truncated error. 

 

4. Application of RDTM to Richard’s Equation 
 

The series solution of Richard’s equation based on “Brooks and Corey’s model” is discussed in this section using 

RDTM. For simplicity, we have discussed it for two different values of x, although this method can solve the equation for any 

value of x which introduces more non-linear terms in Richard’s equation. 

Case I. Considering x=1, Equation   (14) reduces to 
2

2
0

  


  

  
  

  
,                        (25)      

                                

with initial condition   
1

,0 1 tan
2 4

h


 
  

    
  

  .                          (26)                                                                                 

The exact solution of Equation (25) is given in reference (Witelski, 1997, 2005). 

Applying RDTM to Equation (25), we obtain the following recursive formula: 

       
   2

1 2
0

1 0


  




   
    

 






 
   

 
 ,                     (27) 

 

with transformed initial condition  0

1
1 tan

2 4
h


 

  
    

  

.                                (28) 

 

For ι =0, Equation  (27) reduces to   
 

 
 2

0 0

1 02
x

   
  

 

 
 

 
 .                              (29) 

 

Substituting values from Equation (28) into Equation (29), we get  

 
2

1 2

1 1 1
1 tan 1 tan 1 tan

2 4 2 4 2 4
x h h h

  


 

               
                    
              

, 

  2

1

1 1 1 1
2sec sec tan 1 tan sec

8 4 4 4 4 2 4 8 4
h h h h h

    
 

              
                        

              

  2 2 2

1

1 1 1
sec tan sec sec tanh

16 4 4 16 4 16 4 4
h h h h

    
 

          
                  

          

, 

  2

1

1
sec

16 4
h


 

 
  

 

,                         (30) 

 

For ι =1, Equation  (27) reduces to  
 

       
2

1

2 0 1 1 02
2

 
         

  

   
   

   
.  (31) 

Substituting values from Equations (28), and (30) into Equation (31), we get  
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 

2

2
2

2 2

2

1 1
1 tan sec

2 4 16 41
2 sec ,

16 4 1 1
sec 1 tan

16 4 2 4

h h
x

h

h h
x

 


 

  

        
         

           
                                       

 

  4 2

2

2 4

3 1
2 sec sec

128 4 64 4

1 1 1 1
sec tan tan sec ,

32 4 4 2 2 4 128 4

h h

h h h h

 
 

   

   
       

   

         
               

         

 

  4 2 2

2

2 2 4

3 1 1
2 sec sec sec tan

128 4 64 4 64 4 4

1 1
tan sec sec ,

64 4 4 128 4

h h h h

h h h

   
 

  

       
              

       

     
         

     

 

  2

2

1
sec tan

128 4 4
h h

 
 

   
      

   

.                        (32) 

 

For ι =2, Equation  (27) reduces to  

 
 

           
2

2

3 0 2 1 1 2 02
3

 
             

   

    
        

.       (33) 

 

Substituting values from Equations (30) and (31) into Equation (33), we get  

 
2

2

3 2

2

2 2

2

1
3 sec tan

128 4 4

1 1
1 tan sec tan

2 4 128 4 4

1 1
sec sec

16 4 16 4

1 1
sec tan

128 4 4

h h

h h h

h h

h h

 
 



  



 



 



     
       
     

         
            

        

     
       

    

     
       

    

,

1 tan
2 4

h


 
 
 
 
 
 
 

      
    

 

  2 3

3

4 2 4

2 2

1
3 sec tan h

512 4 4

1 1 1
sec sec sec tanh

1024 4 512 4 512 4 4

1
sec tanh sec 1

512 4 4 4

h

h h h

h h

 
 

   

  

   
      

   

        
             
        

        
          

       

,  

  2 3

3

4 2 4

2 3

1
3 sec tan h

512 4 4

1 1 1
sec sec sec tanh

1024 4 512 4 512 4 4
,

1
sec tanh

512 4 4

h

h h h

h

 
 

   

 

   
      

   

        
             
        

    
     

    

 

 

2 3

4 2 4

3

2 3

1
sec tan h

512 4 4

1 1 1 1
sec sec sec tanh .

3 1024 4 512 4 512 4 4

1
sec tanh

512 4 4

h

h h h

h

 

   
 

 

     
      

    
         

               
         

     
      

     
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Similarly, the rest of the coefficient of the series solution can be obtained using MATLAB software. Using the 

definition of inverse transform and coefficient values     for 0,1,2,3....   , the approximate analytical solution of Equation 

(24) for x =1 is given by  

           2 3

0 1 2 3

0

, . . . .....................,
n

t


               


       

  2 2 2

2 3

4 2 4

1 1 1
, 1 tan sec sec tan

2 4 16 4 128 4 4

1
sec tan h

512 4 4

1 1 1 1
sec sec sec tanh

3 1024 4 512 4 512 4 4

1
s

512

t h h h h

h

h h h

   
   

 

   

          
                 

          

   
     

   

       
             

       



3

2 3

.......

ec tanh
4 4

h



 

 
 
 
  

  
  
     

     
     

. 

Case II. Considering x =2, Equation  (23) reduces to 
2

2

2
0,

  


  

  
  

  
                     (34) 

with initial condition  

1

31
,0 1 tan

2 3
h


 

  
    

  

 .                            (35) 

The exact solution of Equation  (34) is given by  

1

21
, 1 tan

2 3 8
h

 
  

  
     

  

.             (36) 

 

Applying RDTM to Equation (34), we obtain the following recursive formula: 

         
 2

1 2
0 0

1 0,
l

sl
l sl

s

l


 


 
     

 
 

 


   

 
                                (37) 

 

with the transformed initial condition is  

1

2

0

1
1 tan

2 3
h


 

  
    

  

.                    (38) 

 

For l=0, Equation  (37) reduces to  
 

   
 2

0 0

1 0 02
,

   
     

 

 
 

 
                       (39) 

Substituting the value from Equation (38) into Equation (39), we get  

 

2 1

2

1 1

2

sec
1 1 3 13

tanh 1 tan 1 tanh ,
36 2 2 3 48 3 3

1 tanh
3

h

h



  
 



 
                         

           
   

  

 

 

2

1 1

2

sec
1 13

tanh
48 3 3

1 tanh
3

h



 



 
         

    
   

  

.

 
  Similarly, the rest of the coefficient of the series solution can be obtained using MATLAB software. Solution of  

   2 3,    were too long to be mentioned here; therefore, they are shown graphically Using the definition of inverse transform 

and coefficient values     for 0,1,2,3....   the approximate analytical solution of  Equation (24) for x =2 is given by  

           2 3

0 1 2 3

0

, . . . .....................,
n

t


               


       

 

21

2

1

2

sec
1 1 13

, 1 tan tanh ................
2 3 48 3 3

1 tanh
3

h

h



 
   



 
                  

        
   

  
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5. Results and Discussion 
 

Soil moisture content can be traced from the 

obtained solution and its variation w.r.t to depth and time are 

determined. These are shown graphically as well as 

numerically in this section. From Figure 2, it is observed that 

the content of moisture decreases as depth (ω) increases at the 

time (τ), and the content of moisture increases as time 

increases at any depth for x =1 respectively. From Table 1, it 

is clear that for a fixed value of depth (ω=1) if the time τ =0, 

1, 2, 3, 4 is increased, the moisture content will increase, and 

for a fixed value of time (τ =1) if the depth ω=1, 2, 3 is 

increased, the moisture content will decrease, which depends 

on the maximum value of the initial condition. These 

numerical values of moisture content for depth ω=1, 2, 3 and τ 

=0, 1, 2, 3, 4 are mentioned in Table 1 for case (I). To 

examine the accuracy of the RDTM solution, the absolute 

error of the eight-term approximate analytical solution is 

mentioned in Table 2. Table 3 presents the error of the third, 

fifth, and seventh terms for the parameter value x =1 for ω=0, 

1, and τ =0.1, 0.4, 0.7. The comparison of obtained solution 

for ω=1, 2, 3, 4, 5 for τ=1 by ETHPM, DTM, HPM, HAM is 

presented in Table 4. 

  From Figure.3, it is observed that the content of 

moisture decreases as depth increases at any given time, and 

the content of moisture increases as time increases at any 

depth for x =2 respectively. These numerical values are 

presented for depth ω=1, 2, 3 and τ =0, 1, 2, 3, 4 are 

mentioned in Table 5 for case (II). The effect of the parameter 

x can be observed in Figures 2 and 3.  To examine the 

accuracy of RDTM solution for x =2, the absolute error of the 

eight-term approximate analytical solution is mentioned in 

Table 5. Table 7 presents the error of the third, fifth, and 

seventh terms for the parameter value x =2 for ω =0, 1,4, and τ 

=0.1, 0.4, 0.7. The comparison of obtained solution for ω =0, 

1, 2, 3, 4, 5 for τ =1 by ETHPM, DTM, HPM, HAM is 

presented numerically in Table 6. 

 

6. Conclusions 
 

Richard's equation, which describes the behavior of 

unsaturated infiltration regions in soil, was successfully solved 

using the RDTM in this paper. The result obtained for two 

different cases illustrate the effectiveness and preciseness of 

the method. The comparison of the approximate analytical 

solution obtained by RDTM is more accurate than the solution 

 
 

Figure 2. Moisture content versus depth (ω) and time (τ) for case(I) 

 
Table 2. Comparison of exact solution with RDTM at fourth iteration with their absolute error for case(I) 

 

x τ Exact RDTM RDTM Error 

     

1 0 0.377540668798145 0.377540668798145 0 
 1 0.437823499114202 0.437823500013543 8.99341 x 10-10 

 2 0.500000000000000 0.500000225965729 2.25966 x 10-7 

 3 0.562176500885798 0.562182109933744 5.60905 x 10-6 
 4 0.622459331201855 0.622512891320115 5.35601 x 10-5 

2 0 0.268941421369995 0.268941421369995 0 

 1 0.320821300824607 0.320821301114114 2.89507 x 10-10 
 2 0.377540668798145 0.377540755983945 8.71858 x 10-8 

 3 0.437823499114202 0.437826057355635 2.5582 x 10-6 

 4 0.500000000000000 0.500028545864182 2.85459 x 10-5 
3 0 0.182425523806356 0.182425523806356 0 

 1 0.222700138825309 0.222700138525035 3.00274 x 10-10 

 2 0.268941421369995 0.268941348118777 7.32512 x 10-8 
 3 0.320821300824607 0.320819547613199 1.75321 x 10-6 

 4 0.377540668798145 0.377524704679392 1.59641 x 10-5 
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Table 3. The error of the ιth approximate solutions, ι=3, 5, 7 in comparison of exact solution of case (I) at some points 

 

ω τ    3, ,          5, ,          7, ,       

     

0 0.1 0.0000003255 0.00000000651 0.0000000000651 
 0.4 0.0000208125 0.000000416459 0.00000000416 

 0.7 0.000111313 0.00000222966 0.000000223 

1 0.1 0.000000252623 0.00000000736 0.0000000000736 
 0.4 0.0000164841 0.000000474107 0.00000000474 

 0.7 0.0000899617 0.00000255709 0.000000256 
     

 
Table 4. Comparison of result obtained by HAM, HPM, DTM, RDTM, ETHPM and NITHPM for different value ω of and fixed value τ for 

x=1 

 

Moisture content 

ω τ  = 1 
  

 HAM HPM DTM RDTM ETHPM NITHPM Exact 

1 0.4378 0.438 0.4382 0.437823 0.4379 0.43809 0.437823 
2 0.3208 0.3209 0.3211 0.320821 0.3209 0.320934 0.320821 

3 0.2227 0.226 0.2228 0.222700 0.2227 0.22672 0.2227 

4 0.148 0.1479 0.148 0.148047 0.148 0.14795 0.148047 
5 0.0953 0.0952 0.0953 0.095349 0.0953 0.0953 0.095349 
        

 
 

Figure 3. Moisture content versus depth (ω) and time (τ) for case(II) 

 

Table 5. Comparison of exact solution with RDTM at fourth iteration with their absolute error for x=2 
 

x τ   Exact RDTM Absolute error 

     

1 0 0.411851691288371 0.411851691288371 0 

 1 0.42695224600747 0.425280071093563 0.001672175 
 2 0.441974240288073 0.433484860573789 0.00848938 

 3 0.4568532551803070 0.400339475183649 0.05651378 

2 0 0.3229617061866970 0.322961706186697 0 
 1 0.337302251098934 0.340821613600009 0.003519363 
 2 0.351897571133328 0.359266423482335 0.007368852 

 3 0.366702482518182 0.410900397197997 0.044197915 
3 0 0.244134104563575 0.244134104563575 0 

 1 0.256292030241682 0.262709863755740 0.006417834 

 2 0.268865905672212 0.278475345776725 0.00960944 
 3 0.281841360414786 0.283146676521009 0.001305316 
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Table 6. Comparison of result obtained by HAM, HPM, DTM, RDTM, ETHPM and NITHPM for x=2 

 

Moisture content 

ω τ = 1 
  

 HAM HPM DTM RDTM ETHPM NITHPM Exact 
1 0.6252 0.6252 0.6252 0.4253268 0.6252 0.625208 0.426952 

2 0.4977 0.4977 0.4979 0.3407757 0.4969 0.496899 0.337302 

3 0.3802 0.3803 0.3803 0.262730 0.379 0.379047 0.256292 
4 0.2826 0.2826 0.2826 0.196861 0.2814 0.281372 0.189808 

5 0.2065 0.2065 0.2065 0.1447589 0.2055 0.205505 0.138452 
        

 

Table 7. The error of the ιth approximate solutions, ι=3, 5, 7 in comparison of exact solution of case (II) at some points 
 

ω τ    3, ,          5, ,          7, ,       

     

0 0.1 0.0000001155 0.00000000672 0.0000000000245 

 0.4 0.0000308125 0.0000003659 0.00000000503 

 0.7 0.0002313 0.00000423 0.000000211 
1 0.1 0.0000001626 0.00000000748 0.0000000000287 

 0.4 0.00004816 0.0000002516 0.00000000685 

 0.7 0.000017899 0.000001803 0.000000573256 
4 0.1 0.0000002867 0.000000009873 0.0000000000354 

 0.4 0.000003163813 0.00000011194 0.00000000285 

 0.7 0.00002287 0.000002462 0.0000002153 
     

 

obtained using another well-known analytical method which 

is clear from Tables 4 and 6. The error analysis shows that 

converges of RDTM is faster as compared to other methods 

existing in the literature. It is worth mentioning that RDTM is 

capable of overcoming difficulties like perturbation 

parameters, discretization, etc., arising to determine the 

solution of non-linear problems. Therefore, the straight 

forward applicability and capacity to reduce the computational 

work make the RDTM method a promising tool for solving 

Richard’s equation and can be applied to different non-linear 

problems. The proposed method can be utilized to obtain 

solution of a highly non-linear PDE equation describing the 

solute transport phenomena. The symbolic computation of 

RDTM for more than 50 terms is time-consuming is one of 

the limitations of RDTM.  

 

References 
 

Agbavon, K. M., Appadu, A. R., & Khumalo, M. (2019). On 

the numerical solution of Fisher’s equation with 

coefficient of diffusion term much smaller than 

coefficient of reaction term. Advances in Difference 

Equations, 146(1), 1-33. 

Asgari, A., Bagheripour, M. H., & Mollazadeh, M. (2011). A 

generalized analytical solution for a non-linear 

infiltration equation using the exp-function 

method. Scientia Iranica, 18(1), 28-35. 

Barari, A., Omidvar, M., Ghotbi, A. R., & Ganji, D. D. 

(2009). Numerical analysis of Richards' problem for 

water penetration in unsaturated soils. Hydrology 

and Earth System Sciences Discussions, 6(5), 6359-

6385. 

Bildik, N., & Deniz, S. (2016). The use of Sumudu 

decomposition method for solving predator- prey 

systems. Mathematical Sciences Letters an 

International Journal, 5(3), 285-289. 

Brooks, R., & Corey, T. (1964). Hydraulic properties of 

porous media. Hydrology Papers, Colorado State 

University, 24, 1-37. 

Chavez-Negrete, C., Santana-Quinteros, D., & Domínguez-

Mota, F. (2021). A solution of richards’ equation by 

generalized finite differences for stationary flow in a 

dam. Mathematics, 9(14), 1604. 

Chen, X., & Dai, Y. (2016). Differential transform method for 

solving Richards equation. Applied Mathematics 

and Mechanics, 37(2), 169-180. 

Cherif, M. H., & Ziane, D. (2018). Variational iteration 

method combined with new transform to solve 

fractional partial differential equations. Universal 

Journal of Mathematics and Applications, 1(2), 113-

120. 

Corey, A. T. (1994). Mechanics of immiscible fluids in porous 

media. Denver, CO: Water Resource Publication. 

Deniz, S., Bildik, N., & Sezer, M. (2017). A note on stability 

analysis of Taylor collocation method. Celal Bayar 

Universitesi Fen Bilimleri Dergisi, 13(1), 149-153. 

Dhunde, R. R., & Waghmare, G. L. (2019). Double Laplace 

iterative method for solving non-linear partial 

differential equations. New Trends Mathematical 

Sciences, 7(2), 138-149. 

Ebrahimi, F., & Mokhtari, M. (2015). Transverse vibration 

analysis of rotating porous beam with functionally 

graded microstructure using the differential 

transform method. Journal of the Brazilian Society 

of Mechanical Sciences and Engineering, 37(4), 

1435-1444. 

Ghotbi, A. R., Omidvar, M., & Barari, A. (2011). Infiltration 

in unsaturated soils–an analytical approach. 

Computers and Geotechnics, 38(6), 777-782. 



P. Yogeshwari, & J. M Dhodiya / Songklanakarin J. Sci. Technol. 44 (3), 708-719, 2022  719 

 

Hoshyar, H., Ganji, D. D., & Abbasi, M. (2015). 

Determination of temperature distribution for 

porous fin with temperature-dependent heat 

generation by homotopy analysis method. Journal 

of Applied Mechanical Engineering, 4(1),1-5. 

Jena, R. M., & Chakraverty, S. (2019). Solving time-fractional 

Navier–Stokes’s equations using homotopy 

perturbation Elzaki transform. Springer Nature 

Applied Sciences, 1(1),1-13. 

Johnston, S. J., Jafari, H., Moshokoa, S. P., Ariyan, V. M., & 

Baleanu, D. (2016). Laplace homotopy perturbation 

method for Burger’s equation with space-and time-

fractional order. Open Physics, 14(1), 247-252. 

Keskin, Y., & Oturanc, G. (2009). Reduced differential 

transform method for partial differential 

equations. International Journal of Nonlinear 

Sciences and Numerical Simulation, 10(6), 741-750. 

Khan, F. Y., Ashraf, A., Akhter, G., Baig, M. A., & Baig, S. 

A. (2021). Appraisal of groundwater recharge in 

Neelum watershed (Upper Indus Basin) using      

geospatial water balance technique. Science of The 

Total Environment, 785(147318),1-9. 

Khalouta, A., & Kadem, A. (2018). Mixed of elzaki transform 

and projected differential transform method for a 

non-linear wave-like equations with variable 

coefficients. Preprints, 2018. doi:10.20944/preprints 

201808.0088. 

Loyinmi, A. C., & Akinfe, T. K. (2020). Exact solutions to the 

family of Fisher's reaction‐diffusion equation using 

Elzaki homotopy transformation perturbation 

method. Engineering Reports, 2(2), 1-32. 

Moosavi Noori, S. R., & Taghizadeh, N. (2021). Study of 

convergence of reduced differential transform 

method for different classes of differential       

equations. International Journal of Differential 

Equations, 2021(1),1-16. 

Nasseri, M., Shaghaghian, M. R., Daneshbod, Y., & 

Seyyedian, H. (2008). An analytic solution of water 

transport in unsaturated porous media. Journal of 

Porous Media, 11(6),591-601. 

Nualtong, K., Chinram, R., Khwanmuang, P., Kirtsaeng, S., & 

Panityakul, T. (2021a). An efficiency dynamic 

seasonal regression forecasting technique for high 

variation of water level in Yom River Basin of 

Thailand. AIMS Environmental Science, 8(4), 283-

303. 

Nualtong, K., Panityakul, T., Khwanmuang, P., Chinram, R., 

& Kirtsaeng, S. (2021b). A   Hybrid Seasonal Box 

Jenkins-ANN Approach for Water Level 

Forecasting in Thailand. Environment and Ecology 

Research, 9(3),93-106. 

Pamuk, S. (2005). Solution of the porous media equation by 

Adomian's decomposition method. Physics Letters 

A, 344(24), 184-188. 

Patel, Y., & Dhodiya, J. M. (2016). Application of differential 

transform method to solve linear, non-linear 

reaction convection diffusion and convection 

diffusion problem. International Journal of Pure 

and Applied Mathematics, 109(3), 529-538. 

Pathak, S. P., & Singh, T. (2015). Optimal Homotopy 

Analysis Methods for Solving the Linear and 

Nonlinear Fokker-Planck Equations. Journal of 

Advances in Mathematics and Computer Science, 

7(3), 209-217. 

Ramadan, M. L., & Alluhaibi, M. S. (2016). Application of 

Sumudu decomposition method for solving non-

linear wave-like equations with variable 

coefficients. Electronic Journal of Mathematical 

Analysis and Applications, 4(1), 116-124. 

Ren, J., Shi, D., & Vong, S. (2020). High accuracy error 

estimates of a Galerkin finite element method for 

non-linear time fractional diffusion equation. 

Numerical Methods for Partial Differential 

Equations, 36(2), 284-301. 

Shah, K., & Singh, T. (2019). Modified approach to solve 

non-linear equation arising in infiltration 

phenomenon. SeMA Journal, 76(1), 79-95. 

Shah, K., & Singh, T. (2017). An approximate solution of θ-

based Richard’s equation by combination of new 

integral transform and homotopy perturbation 

method. Journal of the Nigerian Mathematical 

Society, 36(1), 85-100. 

Singh, P., & Sharma, D. (2019). Comparative study of 

homotopy perturbation transformation with 

homotopy perturbation Elzaki transform method for 

solving non-linear fractional PDE. Nonlinear 

Engineering, 9(1), 60-71. 

Van Genuchten, M. T. (1980). A closed‐form equation for 

predicting the hydraulic conductivity of unsaturated 

soils. Soil science society of America journal, 44(5), 

892-898. 

Varsoliwala, A. C., & Singh, T. R. (2020). An approximate 

analytical solution of non-linear partial differential 

equation for water infiltration in unsaturated soils by 

combined Elzaki Transform and Adomian 

Decomposition Method.  Journal of Physics: 

Conference Series, 1473(1),1-11. 

Wazwaz, A. M. (2005). The tanh method for generalized 

forms of non-linear heat conduction and Burgers–

Fisher equations. Applied Mathematics and            

Computation, 169(1), 321-338. 

Witelski, T. P. (2005). Motion of wetting fronts moving into 

partially pre-wet soil. Advances in Water Resources, 

28(10), 1133-1141. 

Witelski, T. P. (1997). Perturbation Analysis for Wetting 

Fronts in Richard's Equation. Transport in Porous 

Media, 27(2), 121-134. 

 


