
 

*Corresponding author 

  Email address: kharabela1983@gmail.com 

Songklanakarin J. Sci. Technol. 

44 (3), 653-661, May - Jun. 2022 

 

 

 

Original Article 
 

 

Numerical analysis of unsteady non-Newtonian MHD nanofluid flow 

over a stretching sheet 
 

Kharabela Swain1*, Madhusudan Senapati2, and Sampada Kumar Parida2 
 

1 Department of Mathematics, Gandhi Institute for Technology, Bhubaneswar, 752054 India 

 
2 Department of Mathematics, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751030 India 

 
Received: 29 July 2021; Revised: 11 October 2021; Accepted: 26 November 2021 

 

 

Abstract 
 

The advancement in the process of heating/cooling leads to a saving in energy, time, and life expectancy of the 

equipment. The effective heat transport can likewise be improved by increasing the thermal conductivity of the regular liquid. 

The current study explores the Brownian movement and thermophoresis on unsteady, radiative Casson magneto-nonoliquid 

stagnation point flow over a stretching sheet saturated in a porous medium in the presence of exponential space-based heat 

source/sink (ESHS). The resultant non-linear ordinary differential equations (ODEs) are solved by Runge-Kutta fourth order 

method with shooting technique. The significant results of the study presented through figures and tables. It is found that the 

more of Casson fluidity enhances the momentum diffusion in the flow domain and reduces the thermal and mass diffusion 

processes. The temperature distribution exceeds the prescribed temperature at the plate surface for higher diffusion. Hence, care 

should be taken to regulate the thermal diffusion to avoid the thermal instability. 
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1. Introduction  
 

 The heat transfer efficacy of the regular fluids can 

be improved by increasing the thermal conductivity of the 

fluids which is very vital for industrial applications. 

Commonly used fluids such as water, ethylene glycol, 

kerosene etc. have relatively low thermal conductivity, when 

compared to the thermal conductivity of solids. Nanofluid is a 

kind of heat transfer medium, containing nanoparticles (high 

dispersibility with predominant Brownian movement of the 

particles and radius <100 nm) which are uniformly and stably 

distributed in a base fluid. Choi (1995) established that 

thermal conductivities of fluids are greatly enhanced by the 

addition of nanoparticles. Buongiorno (2006) found that the 

Brownian movement and thermophoresis mechanisms are 

responsible for advancement in the thermal conductivity of 

nanoliquid.  

 
The non-Newtonian fluid, Casson fluid for example 

tomato sauce, honey, soup, orange juice and human blood, 

behave like an elastic solid at low shear stress and above a 

critical stress value; it behaves like a Newtonian fluid. Casson 

fluid is an ideal fluid model to represent the flow of blood in 

thin arteries. Further, MHD flow and heat transfer of Casson 

fluid in a saturated porous medium finds wide applications in 

polymer industry and biological system. Casson (1959) 

initially studied an experiential model to describe the flow 

curves of suspensions of pigments in lithographic varnishes 

used for preparation of printing inks. The non-Newtonian 

behaviour of blood, due to yield stress, lies between 0.01 and 

0.06 dyn/cm2, was studied by Krishnan, Rittgers, and 

Yoganathan (2012). Oyelakin, Mondal, and Sibanda (2016) 

studied the radiative Casson nanofluid over a stretching sheet. 

El-Aziz and Afify (2019a) explored the slip flow analysis of 

Casson nanofluid over a stretching sheet with Hall current 

effect. Many researchers (Abel, Mahesha, & Tawade, 2009; 

Bhandari, 2019; Das, Duari, & Kundu, 2014; Das, Mahanta, 

Shaw, & Parida, 2019; Goyal, & Bhargava, 2018; Hsiao, 

2016; Pal, Mandal, & Vajravalu, 2015; Ibrahim, 2015; 
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Ibrahim, Kumar, Lorenzini, & Lorenzini, 2019; Reddy, 

Padma, & Shankar, 2015; Rout & Mishra, 2018; Senapati, 

Parida, Swain, & Ibrahim, 2020) studied the Casson nanofluid 

by considering different flow models. El-Aziz and Afify 

(2019b) explored the Hall current effect on Casson fluid flow 

over a stretching sheet. Reddy, and Chamkha (2016) 

examined the Soret and Dufour impacts on MHD flow of 

water based Al2O3 and TiO2 nanofluids over a stretching sheet. 

Further, Daniel, Aziz, Ismail, and Salah (2019), Sreedevi, 

Reddy, and Chamkha (2020) analyzed the unsteady flow of 

radiative nanofluid over a stretching sheet. Seyedi, Saray, and 

Chamkha (2020) studied the Eyring-Powell flow over a 

stretching channel with chemical reaction. 

The flow over a stretching sheet in a porous medium 

has numerous engineering applications in glass fiber, plasma 

studies, and geothermal energy extraction etc. with magnetic 

fields. For the appropriate cooling purpose, the higher thermal 

conductivity and better heat transmission rate are only 

possible, if the flow phenomena would be considered 

subjected to magnetic field. Several investigations were 

carried out by Chamkha (1997a); Chamkha (1997b); 

Chamkha (2000); Chamkha, Dogonchi, and Ganji (2019); 

Chamkha, and Khaled (2000); Chamkha, and Mohamed 

(2011); Ganesh, Reddy, Sudharani, Shehzad, and Chamkha 

(2020); Khedr, Chamkha, and Bayomi (2009); Takhar, 

Chamkha, and Nath (1999); Wakif, Chamkha, Animasaun, 

Zaydan, Waqas, and Sehaqui (2020) on the field of MHD 

fluid flow by taking different thermo-physical properties. Hall 

current and ion-slip currents with heat transfer have 

numerious industrial applications in power generators, MHD 

accelerators, refrigerators, electric transformers etc. Takhar, 

Chamkha, and Nath (2002), Krishna, and Chamkha (2019) 

have studied the Hall and ion slip effects on MHD rotating 

flow of nanofluid past a moving plate and an infinite vertical 

plate respectively in a porous medium. Krishna, Ahamad, and 

Chamkha (2020), Krishna, Ahamad, and Chamkha (2021), 

Krishna, and Chamkha (2020) and have examined the 

influences of Hall and ion slip on MHD rotating flow of 

elastic-viscous fluid and second grade fluid respectively. 

Modather, Rashad, and Chamkha (2009) analytically studied 

the oscillatory flow of micropolar fluid over a vertical plate 

embedded in a porous medium. 

The ESHS process is the better heating practices due 

to significant enhancement in the thermal field because of 

slight increase in the magnitude of the heat source. 

Mahanthesh, Lorenzini, Oudina, and Animasaun (2019) 

examined the significance of exponential heat source on 

radiative nanofluid flow due to radially elongated disk. 

Nagaraja and Gireesha (2020) studied on exponential heat 

source aspects past a stretching sheet. Recently, Swain, 

Animasaun, and Ibrahim (2021) studied the influences of 

exponential heat source and Joule heating on water based 

copper and copper oxide nanofluid flow over an 

elongating/shrinking sheet inspired by inclined magnetic field. 

The current article aims at to study the Casson 

nanofluid flow over a stretching sheet in a porous medium. 

Buongiorno model has been employed to study the influences 

of Brownian movement, thermophoresis, thermal radiation, 

magnetic field, porosity and ESHS. The novelty lies in 

generalized study of the Casson nanofluid model on 

introducing thermal radiation and permeability of porous 

medium which has not drawn the attention of previous 

researchers. The governing equations admit scaling 

transformation leading to introduce similarity variable 

concomitantly the PDEs are converted to ODEs. The obtained 

ODEs are solved using Runge-Kutta fourth order method 

accompanied by shooting technique. The physical 

significances of the operating parameters are explained in the 

text through graphs and tables. 

 

2. Formulation of the Problem  
 

The 2D stagnation point flow of an unsteady Casson 

nanoliquid over an extending sheet in a porous medium is 

considered. The plate is placed along x-axis and y-axis is 

normal to it (Figure 1). The flow is assumed to be confined to 

y > 0. Let us consider when the time t < 0 the fluid flow is 

steady. The unsteady fluid and heat flows start at t = 0. It is 

assumed that: 

- There is no slip between the base fluid and 

suspended nanoparticles.  

- The viscous dissipative heat is assumed to be 

negligible due to laminar flow.  

- The effect of induced magnetic field is neglected 

due to small Reynolds number. 

The rheological equation of state for an isotropic 

and incompressible flow of a Casson fluid (Senapati, Swain, 

& Parida, 2020) is expressed as 
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is the rate of strain tensor, ij  is 

the component of stress tensor, μB is the Casson coefficient of 

viscosity, 
ij ije e   is the product of the rate of strain tensor 

with itself, 
c  is the critical value of the product of the rate of 

strain tensor with itself, Py is the yield stress of the fluid. 
 

 
 

Figure 1. Flow geometry and Cartesian system 
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The governing equations following Rout and Mishra (2018) are given by 
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0 0,T C are positive reference temperature and nanoparticle volume 

fraction respectively such that 
00 wT T  and 

00 wC C  . 

Using Rosseland approximation (Swain, Parida, & Dash, 2018), the radiative heat flux is given by 
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where  * is the Stefan–Boltzmann constant and 
*k is the absorption coefficient such  

In view of equation (6), equation (3) becomes 
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The stream function 
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3. Results and Discussion 
 

The set of non-linear coupled ODEs (9) – (12) are solved numerically using shooting technique with MATLAB code 

having step length 0.01  and error tolerance 10-5. During calculation, we fix the parameters as Pr = n = 2. Sc = 1, M = K = γ 

= β = 0.5, S = Nb = Nt = 0.3, R = Qe = 0.1 unless otherwise mentioned. To check the validity of our results with previous works 

of Das et al., (2014), Rout and Mishra (2018) and Swain et al., (2017), the values of f”(0) are calculated for β with Nb = Nt = 0, γ 

 ∞ (Newtonian fluid), S = 0 (steady flow), R = Qe = 0 (Table 1).  

From Figure 2 it is interesting to note that significant effect of stretching ratio parameter (β) on horizontal component 

of velocity f’(η) with the distance from the bounding surface, η. It is seen that when β > 1 i.e. the rate of stretching has 

predominance over plate stretching then the flow has a boundary layer structure otherwise there exist an inverted boundary layer 

structure (β < 1). For fixed values of a (corresponding to plate stretching), the increase in b implies increase in straining motion 

near the stagnation region resulting in increased acceleration of the free stream. This leads to thinning of boundary layer with  

increasing in β. It is also to note that β < 1, there is an inverted boundary layer structure. This means that when plate stretching 

velocity exceeds the rate of free stream stretching the inverted boundary layer is formed. Further, it is to note that magnetic 

parameter increases the horizontal velocity and permeability of the medium decreases it for boundary layer structure. For 

inverted structure, reverse effects of these parameters are marked. It is really a noteworthy observation that magnetic parameter 

increases the horizontal component of velocity, usually, the magnetic parameter imbibes a mechanical force (Lorentz force), 

which resists the flow along the main direction. In the present case the effect is reversed. Of course, in inverted boundary layer, 

the magnetic parameter decreases the velocity. A physical reasoning may be attributed to an increase is that the increase in 

straining motion due to stretching generated over power the resistive force due to interaction of transverse magnetic field with 

that of electrically conducting fluid. Figure 3 depicts the effect of unsteady parameter (S). An increase in S implies increase in λ. 
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Table 1. Comparison of f”(0) for different values of β when M = K = S = Qe = 0, γ  ∞. 

 

β f”(0) 

 Das et al., (2014) Swain et al., (2017) Rout and Mishra (2018) Present study 

     

0.1 -0.969328 -0.96965625 -0.96966 -0.9696514 

0.2 -0.918098 -0.91816450 -0.91816 -0.9181601 
0.5 -0.667301 -0.66726432 -0.66726 -0.6672609 

2 2.017467 2.01750252 2.017502 2.0175025 

3 4.729406 4.72928082 --- 4.7292808 
     

 

 
Figure 2. Velocity profiles for various values of M, K and β 

 
Figure 3. Velocity profiles for various values of S 

 

For fixed value of a, which contributes to increasing 

unsteadiness. It is seen that an increase in S slightly decreases 

the velocity in the flow domain.  

From Figure 4 it is observed that unsteady 

parameter increases the temperature of the flow domain and it 

is further enhanced by the radiation parameter (R). From 

Figure 5 it is seen that thermophoresis parameter (Nt) 

decreases the temperature but Brownian motion parameter 

(Nb) increases the temperature throughout the domain. The 

thermophoresis is the thermal process which is the ratio of 

thermal diffusion and momentum diffusion through kinematic 

viscosity (v). Thus, an increase in Nt for a fixed v, implies 

increase in the process of thermo diffusion. Therefore, 

increase in Nt increases the temperature in the flow domain. 

One interesting point is to note that for Nt = 0.5, higher 

diffusion, the temperature exceeds the prescribed temperature 

       
Figure 4. Temperature profiles for various values of R and S 

 
Figure 5. Temperature profiles for various values of Nb and Nt 

 

at the plate surface which is vital. Hence, care should be taken 

to regulate the thermal diffusion to avoid the thermal 

instability. Figure 6 shows that an increase in exponential 

index (n) decreases the thermal power. It is evident from the 

last term of equation (3). Hence, an increase in n results the 

decrease of temperature. Figure 7 shows that an increase in 

strength of temperature dependent heat source leads to 

increase the temperature of the fluid layer. 

Figure 8 displays the concentration distribution for 

various values of Sc and S. It is observed that higher values of 

Sc (heavier species) leads to lower the concentration level but 

higher values of S, for a fixed value of v, leads to increase the 

concentration level at all the layers. Figure 9 depicts the 

effects of Brownian motion parameter (Nb) and 

thermophoresis parameter (Nt) on concentration distribution. 

It is observed that an increase in Brownian motion reduces the  
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Figure 6. Temperature profiles for various values of M and n 

 
Figure 7. Temperature profiles for various values of Qe 

 
Figure 8. Concentration profiles for various values of Sc and S 

 

concentration profiles whereas thermophoresis parameter 

increases the mass transfer leading to higher concentration. 

This remark is supported by thermo diffusion (Schlichting, 

and Gersten (2000)). 

Figure 10 displays the velocity, temperature and 

concentration distribution for different values of Casson 

parameter (γ). When γ  ∞, the model reduces to Newtonian 

viscous fluid model. Therefore, higher values of γ leads to less 

of Casson fluidity.  It is observed that an increase in γ, leads to 

decrease   the  velocity   but  increases  both  temperature   and  

 
Figure 9. Concentration profiles for various values of Nb and Nt 

 
Figure 10. Velocity, temperature and concentration profiles for 

various values of γ when β = 0.1 

 

concentration distribution in the flow domain. In other words, 

decreas in γ reversed effects are observed. Thus, the more of 

Casson fluidity enhances the momentum diffusion in the flow 

domain but reduces the thermal and mass diffusion 

asymptotically when coupling parameter β (β < 1) i.e. under 

the predominance of free stream stretching. Therefore, it is 

suggested to regulate the Casson parameter to attain the 

required level of concentration. 

An overall observation from Table 2, it is noted that 

the skin friction coefficient remains negative always except 

two cases when β = 1.2, 1.5, where it assumes positive values. 

The reason is evident from the velocity distribution (structure 

of boundary layer). Heat transfer coefficient (Nusselt number) 

is always positive indicating heat flows from the plate to fluid 

as long as Tw > T∞. The Sherwood number remains positive 

for Sc=1 and for low values of Schmidt number it becomes 

negative. Hence, mass transfer coefficient depends upon the 

parametric effect enumerated in the table. Moreover, Table 2 

displays the numerical values of surface criteria, which 

controls the process of momentum, thermal and mass 

diffusion in the boundary layers. In the present study, it is 

seen that the force coefficient decreases with an increase in M 

and β < 1. The physical attribution runs as: reduction of 

velocity with increase in M is attributed less shearing effect at 

the bounding surface. Hence, skin friction decreases. Similar 

explanation can be given in case of β > 1 and S where skin 
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Table 2. Computation of      0 , 0 and 0f       when K = γ = 0.5, Nb = Nt = 0.1, n = 2  

M β S Pr R Sc Qe f”(0)  0 
 

 0
 

          

0 0 0 1 0.1 1 0 -1.339497 0.917426 0.609191 

0.5 0      -0.817786 1.043507 0.521385 

 0.3      -0.634473 1.111413 0.598927 
 0.5      -0.480497 1.154215 0.643419 

 1.2      0.226260 1.293905 0.774583 
 1.5      0.598392 1.349797 0.823529 

 0.5 0.3     -0.498855 0.761924 0.392714 

  0.5     -0.510865 0.225037 0.076172 
   2    -0.510865 0.483172 -0.191402 

   5    -0.510865 1.045874 -0.625184 

    0.3   -0.510865 1.110847 -0.512791 
    0.5   -0.510865 1.156090 -0.426788 

     0.78  -0.510865 1.184018 -0.494103 

     0.6  -0.510865 1.199796 -0.512427 
      0.3 -0.510865 0.563060 -0.144689 

      0.1 -0.510865 0.987657 -0.389913 

      0 -0.510865 1.199796 -0.512427 
      -0.1 -0.510865 1.411827 -0.634877 

      -0.3 -0.510865 1.835569 -0.879581 
          

 

friction increases with increase in β
 
and S. The rate of heat 

transfer increases with increase in M, R, Pr, Qe and β
 
on the 

other hand reverse effect is observed in case of  S and Sc.  

 

4. Conclusions 
 

From the present study the following conclusions 

are drawn: 

- The more of Casson fluidity enhances the 

momentum diffusion in the flow domain and reduces the 

thermal and mass diffusion processes. 

- The ratio of free stream stretching to plate 

stretching affects significantly the shearing stress at the plate 

to alter the sign of the skin friction. 

- When the rate of plate stretching velocity exceeds 

the rate of free stream stretching the inverted boundary layer 

is formed otherwise flow phenomena possesses a boundary 

layer structure. 

- It is interesting to note that magnetic parameter 

increases the horizontal component of velocity in the domain 

of boundary layer structure. 

- The temperature distribution exceeds the 

prescribed temperature at the plate surface for higher 

diffusion. Hence, care should be taken to regulate the thermal 

diffusion to avoid the thermal instability. 

- Higher values of S and Nt lead to increase the 

concentration level in all the layers whereas Nb reduces it. 
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Appendix 

 

Nomenclature 
 

u, v  Velocities along x and y directions respectively  Q Heat source/ sink coefficient 

a  Stretching rate Qe Exponential space-based heat source/ sink parameter 

b Strength of stagnation flow T Temperature  

t Time C Concentration 

B0 Magnetic field strength  Ue Ambient fluid velocity 

M Magnetic parameter  Tw Temperature of the wall 

K
 

Porosity parameter T∞ Ambient temperature 

n Exponential index C∞ Ambient concentration 

Pr Prandtl number  Greek Symbols 

Nb Brownian motion parameter η
 

Similarity variable 

Nt Thermophoresis parameter σ Electrical conductivity  

Sc Schmidt number ψ
 

Stream function 

R Radiation parameter λ Positive rate constant 

S Unsteadiness parameter γ
 

Casson parameter 

DB Brownian diffusion coefficient β
 

Stretching ratio parameter 

k Thermal conductivity coefficient α Thermal diffusivity 

DT
 

CP 

Thermophoresis diffusion coefficient 

Specific heat at constant temperature 

τ Ratio of the nanoparticle heat capacity to the base 

fluid heat capacity 

(ρc)p

 
Heat parameter of nanoparticle μf

 
Dynamic viscosity of base fluid 

(ρc)f

 
Heat parameter of base fluid υf

 
Kinematic viscosity of base fluid 

K* Permeability of the medium ρf Density of base fluid  
. 
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